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ABSTRACT

Bacteriophages (phages) within the Przondovirus genus are T7-like podoviruses belonging
to the Studiervirinae subfamily, within the Autographiviridae family and have a highly
conserved genome organisation. The genome size of these phages ranges from 37 kb to 42
kb, encode 50-60 genes and are characterised by the presence of direct terminal repeats
(DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only
and hybrid assemblies. Moreover, long-read-only assemblies are often littered with
sequencing and/or assembly errors and require additional curation. Here, we present the
isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We
describe HYPPA — a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-
read assemblies in combination with short-read sequencing to resolve phage DTRs and
correcting errors, negating the need for laborious primer walking and Sanger sequencing
validation. Our data demonstrate the importance of careful curation of phage assemblies

before publication, and prior to using them for comparative genomics.
IMPACT STATEMENT

The current workflows employed for phage genome assembly are often error-prone and
can lead to many incomplete phage genomes being deposited within databases. This can
create challenges when performing comparative genomics, and may also lead to incorrect
taxonomic assignment. To overcome these challenges we proposed HYPPA, a workflow that
can produce complete and high-quality phage genomes without the need for laborious lab-

based validation.
DATA SUMMARY

Phage raw reads are available from the National Centre for Biotechnology Information
Sequence Read Archive (NCBI-SRA) under the BioProject number PRINA914245. Phage
annotated genomes have been deposited at GenBank under the accessions OQ579023-
OQ579032 (Table 1). Bacterial WGS data for clinical preterm infant samples have been
deposited at GenBank under BioProject accession PRINA471164 (Table S1). Bacterial raw
reads for food samples are available from NCBI-SRA with individual accessions
(SAMN33593347-SAMN33593351), and can be found under the BioProject number
PRJNA941224 (Table S1). Strain-specific details for bacteria and publicly-available phages
used in these analyses, along with accessions for the latter can be found in Table S1 and
Table S6, respectively. The CL1-CL8 clinical Klebsiella strains (Table S$1) were under a
Materials Transfer Agreement, for which sequencing data and strain information is not

available.
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INTRODUCTION

Double-stranded (ds) DNA bacteriophages with the characteristic head-tail morphology,
also known as tailed phages, are a diverse group of viruses spanning 47 families, 98
subfamilies, and 1197 genera, with many more being unclassified (1-4). Phages within the
Przondovirus genus are T7-like podoviruses, meaning they have a short tail morphotype,
belonging to the Studiervirinae subfamily, within the Autographiviridae family (5). T7-like
phages are renowned for following a strictly Iytic life cycle, with the eponymous Escherichia
coli phage T7 often used as the type isolate to represent the Autographiviridae family (6, 7).

Autographiviridae phages typically have genomes ranging from 37 to 42 kb in size and
encode 50-60 genes, with the DNA-directed RNA polymerase (RNAP) being a hallmark of the
family (5, 6, 8). The genome organisation of genera within the Studiervirinae subfamily is
highly conserved: all genes are unidirectional and show a high degree of synteny (2, 5-7).

Tailed phages employ a remarkably diverse array of packaging methods that generate
distinct termini (9, 10). The termini of T7-like phages consist of direct terminal repeats (DTRs)
of varying lengths that flank the genome (6). The DNA of T7-like phages is concatemeric when
generated within the bacterial cell and requires the assistance of terminases to cut at specific
sites to package the DNA into the procapsid (9-11). Whilst each concatemer contains a single
copy of the repeat, a second repeat is synthesised at the other end of the genome to prevent
loss of genetic material (9, 12). Additionally, the DTRs are thought to prevent host-associated
digestion in vivo and assist in DNA replication during phage infection (10, 13).

Many phage genomes deposited within public sequence databases are incomplete, often
with DTR sequences missing or simply not annotated. Thus, our relatively limited
understanding of phage biology is exacerbated by incomplete data and can make
classification and comparative genomics more challenging (14). Indeed, high-quality genomic
data will help identify relationships between taxonomic classification, infection kinetics, and
phage-host interactions that are essential to the use of phages as therapeutics (14).

The genus Klebsiella comprises a heterogenous group of Gram-negative bacteria in the
Enterobacterales order (15). Klebsiella spp. are common commensals of human mucosae,
presenting a major risk factor for developing invasive disease and are therefore important
opportunistic pathogens (15, 16). Antibiotic resistance among Klebsiella spp. represents a
major threat to human health, with many isolates now multidrug resistant (15, 16). Therefore,
conventional treatment using currently available antibiotics is becoming increasingly
ineffective, and combined with no new antibiotics in the drug development pipeline, we are
entering a post-antibiotic era (17, 18). Treatment of recalcitrant infections with bacterial
viruses, bacteriophage therapy, has seen a resurgence in recent years as an alternative or

adjunctive to current antibiotic therapy (19, 20).
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97 Phage isolation involves monomicrobial or polymicrobial enrichment that often selects for

98 the fittest phages (14, 21-23). Indeed, the rapid infection cycle of T7-like phages means that

99 they are often overrepresented following traditional isolation methods (14, 21, 23). Here, ten
100  novel T7-like phages belonging to the Przondovirus genus in the Autographiviridae family have
101  been isolated against four Klebsiella strains belonging to different species, and characterised.
102  Hybrid poly-polish assembly methods have recently been described for assembling bacterial
103 genomes (24). Here we developed and validated a similar approach to ensure accurate and
104  complete phage genome assembly, in a new worklow HYPPA — a HYbrid and Poly-polish
105 Phage Assembly which was tested and validated for these new phages. The workflow utilises
106 long-read assemblies in combination with short-read sequencing to resolve phage DTRs and
107  correct sequencing and/or assembly errors, which negates the need for laborious primer

108  walking and Sanger sequencing validation.
109 MATERIALS AND METHODS

110  Bacterial strains and growth conditions

111 Where specified, Klebsiella spp. used here were derived from previous studies (25-29) and
112  are listed in Table S1. All Klebsiella strains were cultured overnight on brain heart infusion
113  (BHI) agar (Oxoid) at 37°C. Liquid cultures were prepared by inoculation of 10 mL BHI broth
114  with each bacterial strain and incubated at 37°C with shaking at 200 rpm for 3 h. Single colony
115  variants were identified on solid media by changes in colony morphology and were purified by
116  selecting a single colony for three successive rounds of purification on MacConkey no. 3 agar
117  (Oxoid), and incubated overnight at 37°C.

118  Preparation of bacterial DNA and sequencing

119 Genomic DNA for each Kilebsiella strain was extracted using the AllPrep Bacterial
120 DNA/RNA/Protein kit (QIAGEN) according to the manufacturer’s instructions. DNA was
121  quantified as previously described and normalised to 5 ng yL™.

122 DNA was prepared using the lllumina DNA Prep library preparation kit and was whole-
123  genome sequenced on the lllumina NextSeq500 platform generating 2 x 150 bp paired-end
124  reads by QIB Sequencing Core Services.

125 Additionally, K. michiganensis M7 21 2 #35, K. pneumoniae M26 18 1, K. pneumoniae M26
126 18 2 #21 KpnN, K. pneumoniae M26 18 2 #21 KpnA, and K. pneumoniae ST38 01 were
127 prepared for enhanced sequencing according to the sequence facilities instructions

128  (MicrobesNG). Genomes were provided assembled and annotated by MicrobesNG.
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129  Bacterial genomics

130 Short-read data provided without pre-processing by QIB Sequencing Core Services was
131 QC filtered, trimmed, assembled, annotated, and analysed using the ASA®P v1.2.2 (30), or
132  Bactopia v1.6.4 (31) pipelines. Preliminary strain designations were determined by ribosomal
133  multilocus sequence typing (rMLST) (https:/pubmist.org/species-id) (32). The PubMLST
134  database (https://pubmlst.org/) (33) was used to determine sequence type (ST) for K. oxytoca
135 species complex and K. aerogenes, while the Institute Pasteur MLST database
136  (https://bigsdb.pasteur.fr/) was used to determine sequence types of K. pneumoniae species
137  complex. The capsular type for each strain was predicted using Kleborate (34) and Kaptive
138  (35) on the QIB Galaxy platform, and those with a match confidence of good or higher were
139  included.

140 Isolation and single-plaque purification of phages

141 Samples from various UK wastewater treatment plants were screened for Klebsiella-
142  specific phages using a range of Klebsiella strains as hosts for enrichment, adapted from Van
143  Twest et al. (36). Briefly, 300 pL filtered wastewater was mixed with 60 uL exponential bacterial
144  culture and used to inoculate 5 mL BHI broth. Enrichments were incubated overnight at 37°C
145  with shaking at 200 rpm. Enrichments were then centrifuged (4000 x g for 15 min) and passed
146  through a 0.45 um filter before spot testing by double agar overlay plaque assay, as previously
147  described (37). All incubations for overlay method were performed over 4-17 h at 37°C. Single
148  plaque purifications were made by extracting single plaques from the soft agar layer using
149  sterile toothpicks and suspended in approximately 300 uL BHI broth. Suspensions were
150  centrifuged (13,000 x g for 5 min) and supernatant collected. Ten-fold serial dilutions of the
151  supernatant were performed in phage buffer (75 mM NaCl; 10 mM MgSOs4; 10 mM Tris, pH
152  7.5; 0.1 mM CaCl) and 10 uL of each dilution plated onto double agar overlay and incubated
153  as described above. This process was repeated at least three times to create phage stocks.
154 Phage amplification was performed as for single plaque purification in BHI broth. Once
155  supernatant was collected, approximately 100 pL of phage suspension was spread onto three
156 double agar overlay plates and incubated as before. Phage stocks were prepared by
157  extraction of phage clearance zones. This was achieved by removal of the soft agar layer,
158  which was resuspended in phage buffer, and centrifuged (4000 x g for 15 min). Phage
159  supernatant was passed through a 0.45 um filter into a sterile glass universal and stored at
160 4°C.
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161  Phage host range

162 Phage host range was tested by plaque assay as described above on a range of clinical,
163  wastewater, food, and type strain Klebsiella spp. as described previously (38). Only assays

164  where individual plaques were identified were recorded as positive.

165 Phage DNA extraction and whole-genome sequencing

166 Phage virions were concentrated by polyethylene glycol (PEG) 8000 (Thermo Fisher)
167  precipitation for DNA extraction. Briefly, phage stock was treated with 1 yL DNase | (10 U uL-
168 ') (Merck) and 1 uL RNase A (10 U uL™") (Merck) per mL of stock and incubated at 37°C for
169 30 min. PEG precipitation was performed with PEG 8000 (10% w/v) and 1 M NaCl and
170  incubated overnight at 4°C. The precipitate was centrifuged (17,000 x g for 10 min) and
171 resuspended in 200 pL nuclease-free water. Resuspended phage pellets were treated with
172  proteinase K (50 ug mL™") (Merck), EDTA (final concentration 20 mM), and 10% SDS (final
173  concentration 0.5% v/v) and incubated at 55°C for 1 h.

174 DNA was extracted using the Maxwell® RSC Viral Total Nucleic Acid Purification kit
175  (Promega), as per the manufacturer’s instructions into nuclease-free water. Phage DNA was
176  quantified by Qubit 3.0 fluorometer using the high sensitivity dsDNA kit (Invitrogen). DNA was
177  prepared using lllumina DNA Prep (formerly Nextera Flex) library preparation kit and was
178  whole-genome sequenced on the lllumina NextSeq500 platform generating 2 x 150 bp paired-
179 end reads by QIB Sequencing Core Services. MinlON libraries (Oxford Nanopore
180  Technologies, ONT) were constructed without shearing using the short fragment buffer and
181 loaded onto the R9.4.1 flow cell according to the manufacturer’s instructions by QIB
182  Sequencing Core Services.

183 Both long-read and short-read raw data for all ten przondoviruses were deposited in NCBI
184  under BioProject number PRINA914245.

185 Phage genomics
186  Assembly and annotation

187 All quality control, pre-processing, assembly, and annotation of phage genomes were
188  performed on the QIB Galaxy platform.

189 We checked short-read data for quality using fastQC v0.11.8 (39). Based on this fastQC
190 analysis, reads were pre-processed with fastp v0.19.5 (40), using a hard trim of between 4
191 and 10 bases on both the front and tail to retain at least a per base quality of 28.

192 Long-read data was demultiplexed following sequencing and quality checked with
193  NanoStat v0.1.0 (41). Pre-processing was performed as part of the assembly, and assembled
194  using Flye v2.9 (42) with default settings, which included correction and trimming of reads.

195  Flye was used in the first instance as previously published work has determined it is the most
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196  accurate and reliable assembler (43-45). Where Flye was unable to generate a high-quality
197  assembly, Canu v2.2 (46) was used as an alternative. Error correction and trimming were
198 performed as part of the default settings when assembling using Flye or Canu. Flye
199  additionally performed one iteration of long-read polishing by default. We assembled all
200 phages with and without trimming adapter/barcode sequences for long-reads. Trimming was
201 performed with Porechop v0.2.3 (https://github.com/rrwick/Porechop) (47) with default
202  settings.

203 We performed several iterations of long-read and short-read polishing on long-read-only
204 assemblies in a specific order. Firstly, two iterations of long-read polishing were performed
205 using Medaka (48) with default settings, using the previous polished data as the input for the
206  next round of polishing. Secondly, one iteration of short-read polishing was performed using
207  Polypolish (49) with default settings. Finally, a second iteration of short-read polishing was
208  performed using POLCA (50) with default settings. We used raw reads for each iteration of
209 long-read polishing and pre-processed reads for each iteration of short-read polishing.

210 Prior to development of the current phage assembly workflow, we had adopted a few other
211 methodologies for resolving the genomes. One method was short-read-only assembly, where
212  phages were assembled de novo using Shovill v1.0.4 (https://github.com/tseemann/shovill)
213  with default settings (51, 52). Briefly, trimming was disabled by default and manual trimming
214  was performed as part of the pre-processing step prior to assembly. Additionally, SPAdes was
215  used as the default assembler within the Shovill pipeline. We attempted short-read polishing
216  of long-read-only data using Pilon v1.20.1 (53) with default settings. Where specified, we also
217  performed hybrid assembly using raw long-read and pre-processed short-read data, as
218  previously described using Unicycler v0.4.8.0 (54) with default settings. Porechop v0.2.3
219  (https://github.com/rrwick/Porechop) (47) was used for Klebsiella phage Oda only. All
220 assembly details are given in Tables S3-S5.

221 Following assembly, the contigs were manually checked for DTRs flanking the genome, as
222  well as with PhageTerm (55) which was unable to identify the DTRs since it does not work
223  well for Nextera-based sequence libraries. Where we could not determine the length and
224  sequence of the DTRs, we performed primer walking. Outward-facing primers were designed
225  to “walk” the genome termini using Sanger sequencing (56). Phage DNA was extracted, and
226  for each phage at least two primers were designed for the reverse strand to walk the beginning
227  of the genome and identify the left terminal repeat, and at least two primers were designed for
228 the forward strand to walk the end of the genome to identify the right terminal repeat. The
229 phage DNA and each primer were then sent for Sanger sequencing separately (Eurofins,
230 Germany). Sanger sequences were visualised in FinchTV v1.5.0

231  (https://digitalworldbiology.com/FinchTV) and compared to the reference phage genome, and
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232 DTRs annotated using the Molecular Biology suite on the Benchling platform

233  (https://www.benchling.com/).

234 Assemblies generating multiple contigs were checked for contamination using Kraken 2
235 v2.1.1(57).
236 Verification of the DTRs and assessment of assembly quality was performed by mapping

237  the raw reads back to the assembled genome using Bowtie 2 v2.3.4.3 (58) and visualised
238 using IGV v2.7.2 (59), and variant calling performed using iVar v1.0.1 (60). Additionally, BWA-
239 MEM v0.7.17.1 (https://github.com/In3/bwa) was used to map long-reads back to the
240 reference using default settings optimised for ONT reads (61, 62).

241 Assemblies in the reverse orientation were reorientated by reverse complementation of the
242  genome in UGENE v38.0 (63) and uploaded to Benchling. Contigs were then reoriented to
243  begin at the same start point, based on well-curated reference phages and the analysis of the
244  DTRs.

245 Genome annotation was performed using Pharokka v1.2.1 with default settings
246  (https://github.com/gbouras13/pharokka) (64). Specifically, coding sequences were predicted
247  with PHANOTATE (65).

248  Comparative genomics

249 Where specified, publicly-available phage genomes used for comparative genomics were
250  derived from these studies (20, 66-78), listed in Table $6, and downloaded from the GenBank
251  database.

252 The closest relative for each phage was determined as as the top hit according to maximum
253  score identified by nucleotide BLAST (BLASTN) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and
254  optimised for somewhat similar sequences (79). Genes associated with specific phage
255  families were identified and used for preliminary taxonomic assignment. Alignments were
256  performed using Mauve v20150226 (80) between the closest relative and phages from the
257 same genera. The intergenomic similarity between przondoviruses in the collection and a
258  selection of publicly-available related phages was calculated using VIRIDIC on the web server
259  (http://rhea.icbm.uni-oldenburg.de/VIRIDIC/) (81).

260 Phylogenetic analyses were performed using the hallmark DNA-directed RNA polymerase
261 (RNAP) amino acid sequence for all phages and a selection of publicly-available
262 phylogenetically-related phages downloaded from the NCBI protein database
263  (https://www.ncbi.nim.nih.gov/). Multisequence alignment of the RNAP amino acid sequences
264  was performed using the MUSCLE algorithm in MEGA X v10.0.5 (82) with default settings. A
265 maximum-likelihood tree was generated with 500 boostraps using the default Jones-Taylor-

266  Thornton model. Phylogenetic analysis was performed using 35 amino acid sequences, with
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267  a total of 684 positions in the final analysis. Tree image rendering was performed using iTOL
268 v6.1.1 (https://itol.embl.de/) (83).

269 Linear mapping of coding sequences for phage final assemblies was performed using
270  Clinker v.0.0.23 (84).

271  RESULTS AND DISCUSSION

272  Phage isolation and host range determination

273 In this study, we isolated ten lytic T7-like phages from a variety of river water and
274  wastewater samples, using four different Klebsiella spp. as isolation hosts (Table 1). To
275 examine the host range, we tested the ten phages against a collection of Klebsiella spp. from
276  different sources, representing a range of capsule and sequence types. All phages had a
277  narrow host range, with seven being able to infect only a single Klebsiella strain within our
278  collection (Fig. 1).

279 Three of the ten przondoviruses were used to test and validate the HYPPA workflow: Oda,
280 Toyotomi, and Tokugawa. As the three unifiers of the HYPPA workflow, these were named
281  after the three unifiers of Japan (see Development of a new workflow for the assembly of
282 complete phage genomes).

283 Only three of our phages were capable of productively infecting more than one Klebsiella
284  strain. Klebsiella phage Toyotomi was able to infect two different species; a K. michiganensis
285  strain (its isolation host) and a K. quasipneumoniae strain. Klebsiella phages Emom and
286  Amrap were both able to infect two different isolates of K. oxytoca. Klebsiella phage Whistle
287  was the only phage capable of productively infecting four strains of Klebsiella, spanning three
288  different species (K. grimontii, K. michiganensis, and K. variicola), and caused lysis without
289  productive infection on a further three K. pneumoniae isolates. We could not establish a link
290 between capsular type and host range for these phages.

291 Przondoviruses and other T7-like phages have a relatively small genome of 37 to 42 kb,
292 and this may limit their host expansion capabilities (for taxonomic assignment of the ten
293 phages in this study, see section Phage genome characterisation and taxonomy).
294  However, Whistle was capable of infecting multiple hosts, along with Emom, Amrap, and
295  Toyotomi. Previous work has shown that T7-like phages are capable of infecting multiple hosts
296 (66) and that host range is determined by interaction between phage receptor binding proteins,
297 i.e. tail fibre and/or spike proteins, and bacterial cell receptors (14, 66, 85). LPS components
298 are almost always identified as the secondary receptor for irreversible attachment in Gram-
299  negative-targeting podoviruses (6, 14). Whether initial interaction with the outer membrane

300 and degradation of the CPS constitutes a bone fide reversible attachment step, or whether
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Table 1. Przondoviruses within the collection to date and data relating to the closest database relative.

ZZ?ngee Source Ihsoosliltion Si(::czl;npe) S:n tent ?J;; size ggs Accession Closest database relative according to BLASTn
(%) Name Coverage (%) ID (%)
Oda River water K.mi. 41,642 52.64 181 58 0Q579023 Klebsiella phage SH-KP152226  92.0 94.62
Toyotomi Wastewater K.mi. 41,268 52.64 180 55 0Q579024 Klebsiella phage SH-KP152226  92.0 94.71
Mera Wastewater K.mi. 41,400 52.58 180 56 0Q579025 Klebsiella phage SH-KP152226  92.0 94.34
Speegle Wastewater K.mi. 41,395 52.64 180 58 0Q579026 Klebsiella phage SH-KP152226  93.0 94.70
Cornelius Wastewater K.mi. 40,437 52.72 180 55 0Q579027 Klebsiella phage SH-KP152226  94.0 94.84
Tokugawa  Wastewater K.mi. 41,414 52.64 181 56 0Q579028 Klebsiella phage SH-KP152226  92.0 94.70
Saitama Wastewater K.qp. 40,741 53.06 181 51 0Q579029 Klebsiella phage K11 96.0 95.71
Emom Wastewater K.ox. 40,788 52.56 183 53 0Q579030 Klebsiella phage KP32 94.0 93.14
Amrap Wastewater K.ox. 41,209 52.47 182 57 0Q579031 Klebsiella phage KPN3 85.0 95.05
Whistle Wastewater K.va. 40,735 52.40 181 54 0Q579032 Klebsiella phage IME264 94.0 94.78

K.mi., K. michiganensis M7 21 2 #21; K.ox., K. oxytoca M59 22 8; K.qp., K. quasipneumoniae PO57K W; K.va., K. variicola DSM15968. CDS, coding sequences.
Bacterial host species accessions are given in Table S2.

10
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Isolate Type-
Capsular Locus -
Sequence Type {134

169
216

102 109
157

74 74 8 21 24 16 3
215215453 290 15 15 14 3

107 10 38 30 52 11 16
432432 258461 37 1618 38 5372263

Klebsiella phage Oda+
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Fig. 1. Heatmap for host range of the przondoviruses in the collection by plaque assay against a diverse range of Klebsiella spp. Top panel, isolate
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Kaptive and/or Kleborate, green; unknown or no match confidence, grey. Sequence type (ST) determined by multilocus sequence typing, blue; unknown or
incomplete matches, grey. No sequencing data available, untested. Bottom panel, host range heatmap. Productive infection (positive) is the observation of
individual plaques, purple; lysis without productive infection is the observation of clearance without individual plaques, green; no productive infection or clearance
(negative), yellow.

11


https://doi.org/10.1101/2023.03.09.531871
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.09.531871; this version posted March 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

304 this is a prerequisite to reversible attachment by the phage to another outer membrane
305 component is yet to be fully elucidated (6, 14, 86, 87).

306 Some phages can be “trained” to increase their host range through co-evolution assays
307 (19, 88). This may be particularly useful in cases of lysis from without, such as observed in
308 Whistle, as they are already capable of binding to host receptors but unable to cause
309  productive infection.

310 Intriguingly, Toyotomi was the only phage capable of infecting two different Klebsiella
311 species, that none of its closest relatives from our collection were capable of infecting, despite
312  exceptionally high protein sequence similarity across their tail fibre proteins.

313 Multiple factors affect host range and broadly involve extracellular and intracellular
314  mechanisms. Extracellular mechanisms involve the ability of phages to bind to specific phage
315 receptors on the bacterial cell surface that facilitate DNA ejection (89). Intracellular
316  mechanisms involve evasion of phage defence systems that facilitate phage propagation (89).
317  Expression of diffusible depolymerases facilitate interaction of phages with their primary and
318  secondary receptor. This extracellular mechanism is more likely to explain the ability of Whistle
319 to infect more than one isolate since there is productive infection. Thus, the ability several
320 przondoviruses in our collection to infect different Klebsiella isolates could indicate that they
321 share similarities in the chemical composition of their capsules, enabling degradation by a
322 single depolymerase and allowing access to the phage receptors on the bacterial cell.
323 Moreover, the bacterial isolates could share similar sugar motifs within their LPS structures,
324  which are thought to be the secondary receptor of phages within the Autographiviridae family
325 (6).

326 Development of a new workflow for the assembly of complete phage genomes

327 To generate complete and accurate genomes for these ten phages, which included
328 resolving the defined ends of phage genomes, and correcting sequencing and/or assembly
329 errors, we utilised a long-read-only assembly with sequential polishing steps. This
330 methodology exploited both long-read and short-read sequencing data in a workflow that we
331  have named HYPPA — HYbrid and Poly-polish Phage Assembly (see also Materials and
332  Methods) before moving onto annotation and comparative genomics (Fig. 2). Firstly, the long-
333 reads were assembled using Flye or Canu, followed by two iterations of long-read polishing
334  with Medaka. Next, we performed two iterations of short-read polishing using Polypolish (for
335 the first iteration) and POLCA (for the second iteration).

336 Initially, Flye was used as the primary assembler in our HYPPA workflow and worked
337  particularly well for phages with both very high sequence read coverage (Toyotomi at
338 >117,000x) and very low sequence read coverage, which included Mera (8x), Speegle (23x),
339 and Amrap (27x) (Table S2). However, Canu performed better with the other phages as the
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340 assemblies in general contained fewer errors. This is contrary to previously published literature
341  that found Flye was more the more accurate assembler using default settings (43-45).

342 As an illustration of the HYPPA workflow, we provided a more detailed description of the
343  process for phage Oda as an exemplar, for which the DTRs were validated with primer
344  walking. Firstly, Oda was assembled using Canu, which yielded one contig of 41,761 bp. After
345  two iterations of long-read polishing followed by two iterations of short-read polishing, the
346  resulting contig was 41,769 bp in size. We were able to identify the terminal repeat regions,
347  but both were flanked by a 64 bp sequence upstream of the left terminal repeat, and
348  downstream of the right terminal repeat after all polishing iterations were complete. The two
349 64 bp sequences were inverted repeats containing adapter sequences of 23 bp, with the
350 remaining sequence being Nanopore barcodes which were manually removed. HYPPA was
351  then used for phage Tokugawa, which after short-read only assembly had included a 79 bp
352  repeat within the genome, but outside of the presumed DTR region (Fig. S1). Using HYPPA,
353  the repeat was determined to be an assembly artefact and removed from the assembly. The
354  final curated assembly for phages Oda and Tokugawa was 41,642 bp and 41,414 bp,
355  respectively. Terminal repeats were present for both phages and complete at 181 bp, validated
356 by primer walking and Sanger sequencing (Fig. S1).

357 We trimmed the long-reads using Porechop in an attempt to remove the adapter/barcode
358  sequences, but when phage Oda was reassembled and polished using the trimmed reads,
359 the right terminal repeat was missing three bases, but no other single nucleotide
360 polymorphisms (SNPs) or indels were identified.

361 The HYPPA workflow without Porechop-mediated trimming was repeated for the remaining
362  eight przondoviruses, resulting in final genome assemblies ranging between 40-42 kb (Table
363 1). HYPPA was able to generate a complete genome for phage Toyotomi, where short-read-
364  only, long-read-only, and hybrid assemblies were unable to do so and resulted in fragmented
365 assemblies. Although our HYPPA workflow is a hybrid assembly approach, there is a clear
366  distinction between this and traditional hybrid assembly methods. Importantly, HYPPA used
367  the short-reads for polishing only, not during the genome assembly, whereas traditional hybrid
368 assemblies utilise both long-read and short-read data during the assembly process itself.
369  Moreover, short-read polishing of a long-read-only assembly using Pilon was also unable to
370 resolve the genome of Toyotomi: partial repeat regions were found at the termini but were
371 incomplete, and multiple errors within coding regions persisted. Using HYPPA, we were able
372  to not only preserve the DTRs of Toyotomi, but also correct persistent sequencing and/or
373 assembly errors that occurred in all non-HYPPA assemblies.

374 The genome organisation of genera within the Autographiviridae family is highly conserved:
375 all genes are unidirectional and show a high degree of synteny, and genomes are flanked by
376 DTRs (2, 5-7). The DTRs of the przondoviruses described here were 180-183 bp in size,
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annotation and then comparative genomics.
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378 demonstrating sequence similarity of 84.3-99.7%. DTRs are thought to assist circularisation
379  of the phage genome once in the host cytoplasm to prevent host-induced enzymatic digestion
380  (13). Thus, resolution of the DTRs is integral to accurate genomics and understanding of the

381  biology of different phages.

382 Comparison of HYPPA with traditional short-read-only assembly

383  When compared to typical short-read-only methodologies of phage genome assembly, in our
384  case using Shovill (51), the HYPPA workflow required significantly less manual curation (Fig.
385  2). Typically, phage genomes are assembled using short-read only data, and many of these
386 genomes are then published without additional curation, leaving them with potentially
387  significant sequencing and/or assembly errors. Using short-read-only assembly methods for
388  our collection of przondoviruses, we observed that some were in the reverse orientation rather
389 than the forward orientation as is expected for 50% of the assemblies, and some had the
390 DTRs assembled in the middle of the contig. Addressing these issues required manually re-
391  orienting the assemblies and ensuring they all had the same start position, as suggested in
392 the Phage Annotation Guide (90). In contrast, the HYPPA workflow resulted in assemblies
393  with correct start and stop sites, but some were still in the reverse orientation.

394 To check for DTRs in short-read only assemblies, we initially looked for increased reads
395  within the read mapping profiles, which are distinguished by one or two large peaks, and can
396 be automated using the tool PhageTerm (55). If a single peak was observed anywhere other
397 than at either end of the assembly, the assembly had been opened in the middle of the genome
398 and required each to be re-oriented to have the same starting position.

399 Incorrect orientation is a feature of phage genome assembly, and with short-read-only data
400 in particular, may be artificially linearised by the assembler with the DTRs located in the middle
401  of the contig. In many of our own short-read-only assemblies, the przondoviruses described
402  here were linearised in the middle of the genome, and required read mapping to identify where
403 the DTRs may be. In T7-like phages, DNA is concatemeric and requires the assistance of
404 terminases to cut at specific sites to package the DNA into the procapsid (9-11). Although
405 each concatemer contains a single copy of the repeat, a second repeat is synthesised at the
406 other end of the genome to prevent loss of genetic material (9, 12). Since the DTRs are present
407  twice per phage genome, the number of terminal sequences is double following whole genome
408 sequencing and are identified as a single peak of increased reads during read mapping (10-
409 12, 55). Therefore, the DTR and by proxy, the start of the genome can be inferred from the
410 read mapping. Moreover, due to the highly conserved nature of the genomes, all
411 przondoviruses had almost the same starting sequence as the well-curated Enterobacteria

412  phage K30 (accession HM480846) (67), making the beginning relatively easy to find. As a
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413  result, considerable time was spent on re-orienting the short-read-only assemblies to be
414  unidirectional and to have the same starting sequence.

415 One of the most problematic aspects using short-reads for phage assembly (both short-
416 read-only and has part of a traditional hybrid assembly) was that the DTRs were deleted,
417  possibly because the assemblers used deem them to be a sequencing artefact. Thus, DTRs
418 need to be manually validated through primer walking and Sanger sequencing validation.
419  However, this was unnecessary when using short-reads for polishing rather than for assembly.
420  Thus, using the HYPPA workflow, the DTRs were present in the final polished assembly in the
421  correct location at the ends and did not have to be manually added.

422 A second type of error that routinely occurred during non-HYPPA phage sequencing and
423 assembly was the introduction of short insertions and/or deletions (indels) that were
424  particularly noticeable in coding regions.

425 For the short-read only assemblies, many sequencing and assembly errors present in
426  coding regions were only found upon annotation of the genomes, including frameshift errors
427  in DNA polymerase (DNAP) and tail fibre protein genes. Often, these frameshift errors were
428  found in homopolymer regions and were introduced during sequencing. Before using HYPPA,
429 these frameshift errors were checked through read mapping followed by variant calling and
430 edited accordingly. Particularly noteworthy were repeat regions of ~79 bp identified close to
431  and sometimes within the DTR regions of seven of the ten phages (See Development of a
432 new workflow for the assembly of complete phage genomes for description of repeats for
433  Tokugawa), but that did not correlate with the increased reads observed in the read mapping.
434  This suggested that these repeats were introduced in error during assembly and were
435 confirmed to be artefacts in most phages, including Tokugawa through Sanger sequencing
436  (see supplementary Fig. S$1). Using HYPPA, we found that the two iterations of short-read
437  polishing were able to correct single nucleotide polymorphisms and/or correct indels that
438 resulted in these frameshift errors that long-read polishing was unable to resolve, particularly
439 in homopolymer regions. POLCA was also able to correct indels that Polypolish was unable
440 toresolve.

441 As previously described for Oda, all the przondoviruses contained adapter and barcode
442  DNA upstream and/or downstream of the DTR regions. Initially, as we were trying to
443  reconstruct the linear genome ends, we did not perform adapter and barcode trimming of the
444  Nanopore reads prior to the long-read assembly. We then removed these sequences manually
445  after assembly. To limit the amount of manual curation, Porechop can be used to trim the
446 reads, however, when we attempted this for all the remaining przondoviruses, Porechop-
447  mediated trimming resulted in several further errors. These included trimming bases from the
448  beginning of the left terminal repeat and the end of the right terminal repeat, ranging from 3-

449 18 bpin total; indels; multiple SNPs; and in some cases failure to assemble the phage genome
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450 into a single contig, or at all. We would thus recommend manual removal of the
451 adapter/barcodes rather than trimming of long-reads using Porechop, which appears to
452  require more manual curation when compared to using raw Nanopore reads.

453 Multiple sequencing and/or assembly errors were identified in the coding regions of other
454  phages, that again, persisted following traditional methods of phage assembly. Using trial and
455  error, we were able to show that the HYPPA method was superior to other methods of phage
456  assembly, whether hybrid or through using a single sequencing platform in correcting errors
457  (see supplemental Tables S2-S5 for all assembly details). Moreover, the HYPPA workflow
458  required far fewer manual curation steps than traditional phage assembly methods: while long-
459 read only assemblies were sometimes in the reverse orientation, all were linearised at the
460  starting sequence. This is in contrast with the traditional assembly methods that required re-
461  orienting the genomes to be unidirectional and starting at the same position, manual correction
462  of large assembly errors such as indels, manual correction of homopolymer errors in coding
463 regions, and in some cases, rearrangement of contigs and manual stitching the genome
464  together, followed by primer walking and Sanger sequencing validation to determine the
465 genome termini and DTRs.

466 Errors in homopolymer sequences and repeat regions are particularly common in long-
467 read-only assemblies of bacterial genomes (43, 44, 49), and as we have described here, in
468 phage genomes also. Indeed, two homopolymer errors occurred in the DNAP of Toyotomi,
469 leading to a double frameshift error that resulted in three protein annotations. Short-read
470  polishing can correct errors introduced during long-read-only assemblies (49), as we have
471 demonstrated here. Similarly to using short-read data for polishing, we found that a traditional
472  hybrid assembly using both short- and long-read data for Toyotomi also introduced large
473  deletions in repeat regions, with assembly errors persisting, as has been described previously
474 (44, 54). Assembly metadata showing all previous long-read-only, short-read-only, and hybrid
475  assemblies is provided (see supplemental Tables S2-S5).

476 Several limitations of this study include the need for both short-read and long-read data for
477  phage assembly, and specialised knowledge to access and install the software which is all
478 freely available. Which polishing program used and what type of polishing (long-read versus
479  short-read) in what order may give different results of equal validity. While we believe that the
480 HYPPA workflow provides the most accurate phage genome possible, it still may not exactly
481 reflect the DNA that is present within each phage capsid. Additionally, while the highly
482  conserved nature of T7-like phages made it easier to determine the DTR starting sequence,
483  this may not be the case for novel phages.

484

485
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486 Phage genome characterisation and taxonomy

487 All ten phages were dsDNA phages at 40,336-41,720 bp with a GC content of 52.40-
488 53.06% which is slightly lower than their isolation host GC content of ~55.46-57.59% (Table
489 1, Fig. 3). The number of predicted coding sequences within the genomes varies from 51 to
490 58, and almost all coding sequences were found in the same orientation on the forward strand.
491 However, five phages had one to four small hypothetical proteins found in opposite orientation.
492 We performed BLASTn on all phages to determine closest relatives in the NCBI GenBank
493 database (as of October 2022). Based on the BLASTn results, which showed high levels of
494  nucleotide similarity with reference phages, the phages in our collection were preliminarily
495  assigned to the Przondovirus genus within the Studiervirinae subfamily and Autographiviridae
496 family, according to the currently established ICTV genus demarcation criterion of 70%
497  nucleotide sequence similarity over the genome length to belong to the same genus (1).

498 The genomic relationships between our novel przondoviruses and a selection of
499  Autographiviridae reference phages were explored further by conducting a nucleotide-based
500 intergenomic similarity analysis using VIRIDIC (Fig. 4, Table S2). Included within the analysis
501  were relatives within the same genus (Przondovirus), those within different genera but the
502 same subfamily (Studiervirinae), and those within different subfamilies (Molineuxvirinae,
503  Slopekvirinae) (Fig. 4). These data confirmed that the przondoviruses from this study were
504  within the ICTV genus demarcation criterion of 70% nucleotide sequence similarity over the
505 genome length when compared to other przondoviruses. Several genera within the subfamily
506  Studiervirinae that were included only shared ~45-57% nucleotide sequence similarity with the
507 przondoviruses in this study (Fig. 4).

508 Several przondoviruses clustered more closely together, including Klebsiella phages Oda,
509 Toyotomi, Mera, Speegle, Cornelius, and Tokugawa, which were within ~98% nucleotide
510  similarity, except Cornelius which was the most dissimilar at ~95-96% (Fig. 4). All
511  aforementioned phages except Oda were isolated from the same wastewater treatment plant
512  at different stages of the treatment process, using the same host. These phages are therefore
513 likely to be different strains of the same new species of phage within the Przondovirus genus.
514  Emom and Amrap clustered with their closest relative KP32, but also clustered together with
515  ~92% similarity, and should be assigned to separate species (Fig. 4). Saitama and Whistle
516  did not cluster closely with any other phage from our collection, possibly due to differences in
517  their host specificity. Saitama did cluster with its closest relative Klebsiella phage K11, and
518  Whistle clustered with its closest relative IME264 (Fig. 4). This suggests that Saitama, Emom,
519  Amrap, and Whistle should be assigned to different species within the same genus.

520 After comparative genomic analyses, we observed that several of the closest database

521  relatives were deposited in databases with incomplete genomes. Specifically, the incompleteness
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484  was most often due to an absence of the DTRSs, including Klebsiella phages KP32, KPN3, and
485 IME264 (Table S2, Fig. S2.). Incomplete genomes could lead to incorrect assignments to
486  species in cases where the reciprocal nucleotide identities are close to the species threshold
487  of 95% similarity across the genome length (1).

488 Additionally, potential errors were noted in phages KPN3 (accession MN101227) and KMI1
489  (accession MN052874) (Table S2, Fig. S2). For example, KPN3 contained no annotated
490 DNA-directed DNAP, which is conserved across all Przondovirus genomes analysed here.
491 KMI1 contained a shorter DNA-directed RNAP annotation that, when included in the
492  phylogenetic analyses, showed higher divergence, which could not be confirmed, and was
493  therefore excluded from our phylogenetic analysis. Without raw short-read and long-read data,
494 it is difficult to determine whether these are genuine errors or whether their differences are a
495 true representation of the genome.

496 To further verify the taxonomic classification of the phages, phylogenetic analysis was
497  performed using the protein sequence of the DNA-dependent RNAP, since it is the hallmark
498 gene of the Autographiviridae family, using a selection of publicly available phages from the
499  genera Apdecimavirus, Berlinvirus, Przondovirus, Teetrevirus, and Teseptimavirus, within the
500 subfamily Studiervirinae (Fig. 5). As expected, the pzondoviruses clustered together, and there
501  was a clear separation from other phage genera. There were some slight differences between
502 the clustering patterns exhibited in the phylogenetic tree when compared to the VIRIDIC
503 analysis using whole nucleotide data. Klebsiella phages Emom and Amrap exhibited relatively
504  high similarity, sharing 91.5% sequence similarity across the whole nucleotide sequence, but
505 this distinction is less obvious in the phylogenetic analysis. As observed previously (91), a
506 single gene phylogenetic tree at the amino acid level will not provide enough resolution to
507 accurately display within-genus relationships, leading to discrepancies between clustering of

508 the phages Saitama, Emom, Amrap and Whistle in the VIRIDIC plot and the phylogenetic tree.

509 Genome organisation and synteny

510 We conducted comparative genomic analysis of przondoviruses according to coding
511  sequence similarity with a selection of reference phages (Fig. 3). We selected Enterobacteria
512  phage K30 as the representative isolate of the Przondovirus genus since its genome is well-
513  curated. Przondoviruses were grouped together with their closest relative according to BLASTn.
514  As expected, all phages share a highly conserved genome organisation, which revealed a
515  high degree of gene synteny, in concordance with the VIRIDIC data (Fig. 4).

516 All genomes were found to contain the early, middle, and late genes associated with viral
517  host takeover, DNA replication, and virion assembly and lysis, respectively (Fig. 3). The host
518 takeover proteins that were annotated included the S-adenosyl-L-methionine hydrolase, which

519 is a good marker for the start of the genome; serine/threonine kinase; and DNA-directed
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Fig. 4. Nucleotide-based intergenomic similarities of przondoviruses in the collection and a selection
of related phages within the Studiervirinae subfamily, using VIRIDIC. A heatmap of hierarchical clustering
of the intergenomic similarity values was generated and given as percentage values (right half, blue-green
heatmap). Each genome pair is represented by three values (left half), where the top and bottom (blue scale)
represent the aligned genome fraction for the genome in the row and column, respectively, where darker colour
indicates a lower fraction of the genome was aligned. The middle value (grey scale) represents the genome
length ratio for each genome pair, where darker colour indicates increasing distance between phages. The
przondoviruses within our collection are highlighted in blue-grey. Yersinia phage vB_YenP_AP10 is in the
Apdecimavirus genus.
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557 RNAP, with the latter being a hallmark of the Autographiviridae family (5, 8). The middle
558  proteins annotated were typical for phage DNA replication. The late proteins included all the
559 components necessary for virion assembly, such as capsid proteins and tail-associated
560 proteins, and lysis such as holins and Rz-like lysis proteins. Of the tail-associated proteins,
561 two tail fibre and/or spike proteins were annotated for each przondovirus.

562 Within the Przondovirus genus, the main differences were found in the tail proteins (Fig.
563  3). The tail fibre and tail spike proteins are major determinants for host range, so phages that
564  were isolated against the same Klebsiella host strain were expected to have higher sequence
565  similarity across their tail fibre proteins. Klebsiella phages Oda, Toyotomi, Mera, Speegle,
566  Cornelius, and Tokugawa, which were isolated against the same K. michiganensis strain,
567 shared considerable sequence similarity across their entire genomes, including the tail fibre
568 proteins. However, one difference was that Toyotomi was able to infect two hosts, whereas
569 the remaining phages were not. This is intriguing since the high homology in the tail fibre
570  protein would suggest similar narrow host range capabilities for this subset of przondoviruses
571 in our collection. Emom and Amrap were both isolated against the same K. oxyfoca strain,
572  where they shared sequence similarity across their entire genomes, including at the tail fibre
573  protein location. The tail fibre protein sequence similarity is complemented by the host range
574  data for these two phages. In contrast, Cornelius and its closest relative Klebsiella phage SH-
575 KP152226 still shared a high degree of sequence similarity across their entire genome,
576 including the tail proteins, despite infecting different host species (K. michiganensis and K.
577  pneumoniae, respectively). In fact, all przondoviruses in this study were found to share
578 significant sequence similarity in their tail proteins with their closest relatives, except for
579 Emom, and by proxy Amrap, and Klebsiella phage KP32. There was a lower degree of
580 sequence similarity in the first tail fibre protein between Emom and KP32, but there was no
581  sequence similarity in the second tail protein between Emom and that of KP32. This is possibly
582  due to their different isolation hosts, where KP32 had been isolated against a K. pneumoniae
583  strain, and Emom/Amrap were isolated against a K. oxytoca strain.

584 The most striking differences however, were in the tail proteins between przondoviruses in
585 this study and reference phages that were not their closest BLASTn relatives. For example,
586  Saitama showed sequence similarity with SH-KP152226 in only the initial part of the first tail
587  fibre protein, with no sequence similarity exhibited elsewhere in the tail protein location. A
588  similar pattern was observed for Emom and K11, and Whistle and KP32. This is unsurprising
589  since the isolation host for Emom and K11 are K. oxytoca and K. pneumoniae, respectively
590 (69, 92). Similarly, Whistle and KP32 infected two different species, K. variicola and K.
591  pneumoniae, respectively. The differences in the tail fibre proteins therefore likely reflect the

592  different isolation hosts for the przondoviruses in our collection and their database relatives.
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597 Fig. 5. Maximum-likelihood phylogeny of the RNAP for przondoviruses in this study and a
598 selection of related Studiervirinae phages. All phages from this study (purple highlight) clustered
599  with related przondoviruses (purple). Outgroups, Berlinvirus (orange), Apidecimavirus (yellow),
600  Teseptimavirus (green), and Teetrevirus (blue). Tree is midpoint rooted. Bootstrap support values at
601  =20.7 are given in blue (500 replicates).
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603 Other differences between the closely related phages were found in the Rz-like lysis
604 proteins, particularly within the przondoviruses that were within 95-98% similarity to one
605 another. There is high sequence similarity for this protein between Cornelius and Oda, but not
606 between Oda and Toyotomi, for example. Rz-like lysis proteins are involved in the lysis of the
607 inner and outer membrane of Gram-negative bacteria and can be highly diverse (93-95).
608 These proteins may be part of a single-component system, or part of a two-component system:
609 this is where one gene may be embedded within another, overlap another, or exist as separate
610 genes (93-95). These genes encode two different proteins that operate together to disrupt the
611 bacterial membrane, but appear to have distinct evolutionary origins (95). The differences in
612 membrane composition among different Klebsiella spp. could explain the differences in the
613  Rz-like proteins, or may simply highlight differences between not only the proteins themselves,

614  but the type of lysis system employed by each phage.

615 CONCLUSION

616 Here, we developed the HYPPA workflow for generating high quality phage genomes that
617  require minimal manual curation, and is most representative of what is actually biologically
618 present within the phage capsid. We tested and validated the workflow using ten
619  przondoviruses, negating the need for laborious primer walking and Sanger sequencing
620 validation. Accurate phage genomes provide the necessary foundation for a mechanistic
621  understanding of infection biology, which itself is integral to the use of phages within a phage
622 therapy setting. Moreover, accurate phage genomes provide better understanding of the
623 nucleotide and proteomic structure and how they fit into current taxonomic classification of
624  phages. This is particularly important when performing comparative genomic analyses. We
625 acknowledge that the production of high-quality phage genomes using this workflow requires

626 sequencing and bioinformatic capabilities, and may be a limiting factor for some.
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