

1 **Title:** Microbial community-scale metabolic modeling predicts personalized short chain fatty acid
2 production profiles in the human gut.

3
4 **Authors:** Nick Quinn-Bohmann^{1,2}, Tomasz Wilmanski¹, Katherine Ramos Sarmiento¹, Lisa
5 Levy³, Johanna W. Lampe³, Thomas Gurry^{4,5}, Noa Rappaport⁶, Erin M. Ostrem⁷, Ophelia S.
6 Venturelli^{7,8,9,10}, Christian Diener^{1,*}, Sean M. Gibbons^{1,2,11,12,13*}

7
8 **Affiliations:** ¹ Institute for Systems Biology, Seattle, WA 98109, USA; ² Molecular Engineering
9 Graduate Program, University of Washington, Seattle, WA 98195, USA; ³ Fred Hutchinson
10 Cancer Center, Seattle, WA 98109, USA; ⁴ Pharmaceutical Biochemistry Group, School of
11 Pharmaceutical Sciences, University of Geneva, Switzerland; ⁵ Myota GmbH, Berlin, Germany; ⁶
12 Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA; ⁷
13 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; ⁸
14 Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706,
15 USA; ⁹ Department of Chemical & Biological Engineering, University of Wisconsin-Madison,
16 Madison, WI 53706, USA; ¹⁰ Department of Bacteriology, University of Wisconsin-Madison,
17 Madison, WI 53706, USA; ¹¹ Department of Bioengineering, University of Washington, Seattle,
18 WA 98195, USA; ¹² Department of Genome Sciences, University of Washington, Seattle, WA
19 98195, USA; ¹³ eScience Institute, University of Washington, Seattle, WA 98195, USA; *
20 correspondence can be addressed to cdiener@isbscience.org and sgibbons@isbscience.org

21 **Abstract**

22 Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host
23 metabolism, immune regulation, and integrity of the intestinal epithelium. However, the
24 production of SCFAs can vary widely between individuals consuming the same diet, with lower
25 levels often associated with disease. A systems-scale mechanistic understanding of this
26 heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM)
27 approach to predict individual-specific SCFA production profiles. We assess the quantitative
28 accuracy of our MCMMs using *in vitro*, *ex vivo*, and *in vivo* data. Next, we show how MCMM
29 SCFA predictions are significantly associated with blood-derived clinical chemistries, including
30 cardiometabolic and immunological health markers, across a large human cohort. Finally, we
31 demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and
32 probiotic interventions that optimize SCFA production in the gut. Our results represent an
33 important advance in engineering gut microbiome functional outputs for precision health and
34 nutrition.

35

36 **Keywords**

37 gut microbiome, short chain fatty acids, flux balance analysis, metabolic model, precision
38 nutrition

39

40

41

42
43 **44 Introduction**

45 The human gut microbiota serves many functions: maintaining intestinal barrier function,
46 regulating peripheral and systemic inflammation, and breaking down indigestible dietary
47 components and host substrates into a wide range of bioactive compounds ^{1,2}. One of the
48 primary mechanisms by which the gut microbiota impacts human health is through the
49 production of small molecules that enter the circulation and are absorbed and transformed by
50 host tissues ³⁻⁵. Approximately half of the metabolites detected in human blood are significantly
51 associated with cross-sectional variation in gut microbiome composition ⁶.

52 Short chain fatty acids (SCFAs) are among the most abundant metabolic byproducts
53 produced by the gut microbiota, largely through the fermentation of indigestible dietary fibers
54 and resistant starches, with acetate, propionate and butyrate being the most abundant SCFAs ⁷⁻
55 ⁹. Deficits in SCFA production, specifically butyrate and propionate, have been repeatedly
56 associated with disease, including inflammatory bowel disease and colorectal cancer ¹⁰⁻¹⁵.
57 Therefore, SCFA production is a crucial ecosystem service that the gut microbiota provides to
58 its host, with extensive impacts on health ^{1,11,16,17}. However, different human gut microbiota
59 provided with identical dietary substrates can show variable SCFA production profiles ^{18,19}, and
60 predicting this heterogeneity remains a fundamental challenge to the microbiome field.
61 Measuring SCFA abundances in blood or feces is rarely informative of *in situ* production rates,
62 due to the volatility of SCFAs, cross-feeding among microbes, and the rapid consumption and
63 transformation of these metabolites by the colonic epithelium ^{10,20,21}. Furthermore, SCFA
64 production fluxes (i.e., the amount of a metabolite produced over a given period of time) within
65 an individual can vary longitudinally, depending upon dietary inputs and the availability of host
66 substrates ²². In order to account for this inter- and intra-individual heterogeneity, we propose
67 the use of microbial community-scale metabolic models (MCMMs), which mechanistically
68 account for metabolic interactions between gut microbes, host substrates, and dietary inputs, to
69 estimate personalized, context-specific SCFA production profiles.

70 Statistical modeling and machine-learning approaches for predicting metabolic output
71 from the microbiome have shown promising results in recent years. For example, postprandial
72 blood glucose responses can be predicted by machine-learning algorithms trained on large
73 human cohorts ^{23,24}. Nevertheless, machine-learning methods are limited by the measurements
74 and interventions represented within the training data ²⁵. Mechanistic models like MCMMs, on
75 the other hand, do not rely on training data and can provide causal insights ²¹. Metabolic
76 modeling of individual commensal taxa has been used to predict plasma concentrations of
77 microbially derived metabolites ²⁶, but these methods have not been extended to diverse, real-
78 world microbiomes. MCMMs can be constructed using existing knowledge bases, including
79 curated genome-scale metabolic models (GEMs) of individual taxa ²⁷. MCMMs are limited by
80 the availability of well-curated GEMs for abundant taxa present within every individual in a
81 population and by information on individual-specific dietary variation. These limitations are
82 further exacerbated in human populations that are generally underrepresented in microbiome
83 research, where our databases are also less representative ²⁸. However, as our knowledge
84 bases grow, so too will the power and scope of MCMMs. Overall, MCMMs have the potential to
85 serve as powerful, transparent, knowledge-driven tools for predicting community-specific
86 responses to a wide array of interventions or perturbations.

87 Here, we demonstrate the utility of MCMMs for the prediction of personalized SCFA
88 production profiles in the context of different dietary, prebiotic, and probiotic inputs. We first
89 validate our modeling platform using diverse synthetic *in vitro* gut microbial communities (N =
90 1,387) and *ex vivo* stool incubation assays (N = 29). Next, we investigate the relevance of this
91 modeling strategy *in vivo* using data from a 10-week high-fiber dietary intervention cohort (N =
92 18), where individuals showed a variety of immune responses. We assess the clinical
93 significance of these precision SCFA predictions by looking at associations between predicted
94 SCFA production on an average European diet and a panel of blood-based clinical lab tests in a

95 large human cohort (N = 2,687). Finally, we demonstrate the potential power of MCMMs in
96 designing personalized prebiotic, probiotic, and dietary interventions that optimize predictions
97 for individual-specific butyrate production rates.

98

99 **Results**

100 *MCMMs capture SCFA production rates in vitro*

101 Details on the origin and composition of each dataset used in these analyses can be found in
102 the supplement (**Table S1**).

103 We sought to investigate whether MCMMs can predict production rates of the major
104 SCFAs (i.e., acetate, propionate, and butyrate) under controlled experimental conditions (**Fig.**
105 **1**). Growth media, matching the environmental context of each experiment, were constructed
106 and applied as bounds on metabolic import to MCMMs (**Fig. 1A**), which were concurrently
107 constructed by combining manually-curated GEMs from the AGORA database²⁹ using MICOM²¹,
108 constraining taxon abundances using 16S amplicon or shotgun metagenomic sequencing
109 relative abundance estimates (**Fig. 1B**). Sample-specific metabolic models were then solved
110 using cooperative tradeoff flux balance analysis (ctFBA), a previously-reported two-step
111 quadratic optimization strategy that yields empirically-validated estimates of the steady state
112 growth rates and metabolic uptake and secretion fluxes for each taxon in the model²¹ (**Fig. 1C**,
113 see Materials and Methods). Models constructed from 16S amplicon sequencing data were
114 summarized at the genus level, which was the finest level of phylogenetic resolution that the
115 data allowed for. When shotgun metagenomic sequencing data were available, models were
116 constructed at the species level. Models constructed from both 16S and shotgun metagenomic
117 data at the species and genus levels showed highly consistent results (**Fig. S1**). Measured
118 SCFA production profiles from synthetic *in vitro* community and stool *ex vivo* experiments (**Fig.**

119 **1D)** were compared to paired SCFA flux predictions from MCMMs to validate the accuracy of
120 the models.

121 First, we looked at published data from synthetically constructed communities of
122 bacterial commensals isolated from the human gut³⁰. This data set included endpoint
123 measurements of relative microbial abundances, derived from 16S amplicon sequencing,
124 measured endpoint butyrate concentrations, and the overall optical density for each of 1,387
125 independent co-cultures (**Fig. 2A**). Cultures varied in richness from 1-25 strains. MCMMs were
126 constructed for each co-culture as described above, simulating growth of each of the models
127 using a defined medium mapped to a database of metabolic constituents, matching the
128 composition of the medium used in the *in vitro* experiments (see Materials and Methods).
129 Model-predicted butyrate fluxes were compared with calculated butyrate production rates
130 (endpoint butyrate divided by culturing time, assuming no butyrate at the start of growth,
131 normalized to total biomass using OD600), stratifying results into low richness (1-5 genera) and
132 high richness (10-25 genera) communities. Model predictions for butyrate production fluxes
133 were significantly correlated with measured butyrate production fluxes across all communities
134 (Pearson's correlation; Low Richness: $r = 0.17$, $p < 0.001$; High Richness: $r = 0.53$, $p < 0.001$),
135 but the predictions were more accurate in the higher richness communities (**Fig. 2B-C**).

136 Next, we compared MCMM predictions to anaerobic *ex vivo* incubations of human stool
137 samples from a small number of individuals ($N = 29$), cultured after supplementation with sterile
138 PBS buffer or with different dietary fibers across four independent studies. Study A contained
139 samples from two donors cultured for 7 hours with a final dilution of 1:5, Study B¹⁸ contained
140 samples from 10 donors cultured for 24 hours diluted 1:19, Study C contained samples from 8
141 donors cultured for 4 hours diluted 1:5, and Study D contained samples from 9 donors cultured
142 for 6 hours diluted 1:3. Fecal *ex vivo* assays allow for the direct measurement of bacterial SCFA
143 production fluxes without interference from the host. For all three studies, *ex vivo* incubations

144 were performed by homogenizing fecal material in sterile buffer under anaerobic conditions,
145 adding control or fiber interventions to replicate fecal slurries, and measuring the resulting SCFA
146 production rates *in vitro* at 37°C (see Materials and Methods). Metagenomic (Studies A, C and
147 D) or 16S amplicon (Study B) sequencing data from these *ex vivo* cultures were used to
148 construct MCMMs, using relative abundances as a proxy for relative biomass for each bacterial
149 taxon (see Materials and Methods). MCMMs were simulated using a diluted standardized
150 European diet (i.e., to approximate residual dietary substrates still present in the stool slurry),
151 with or without specific fiber amendments, matching the experimental treatments (see Material
152 and Methods). Within studies, the divergence in measured SCFA production between control
153 samples and fiber-treated samples seemed to be highly dependent upon the final dilution of the
154 *ex vivo* cultures (**Fig. S2**). This was accounted for by matching the dilution of residual fiber
155 (starch, cellulose and dextrin) in the medium used for growth simulation to the corresponding
156 study. For instance, Study A was diluted 1:5, so the residual fiber in the medium used to
157 simulate growth for these samples was diluted by a factor of 5. The resulting SCFA flux
158 predictions were then compared to the measured fluxes. MCMM fluxes are given in units of
159 mmol/gDW/h, while measured production fluxes are given in mmol/L/h. Without knowledge of
160 the live-cell biomass within the fecal homogenates, it was not possible to normalize the units
161 across the two axes, but the predicted and measured values were expected to be proportional.
162 To overcome study-specific differences in protocols and allow for comparison of results across
163 studies, we Z-scored both measured and predicted SCFA production fluxes within each data set
164 (**Fig. 2D-F**). We observed a similar degree of agreement between MCMM-predicted and
165 measured production fluxes for butyrate and propionate across all four *ex vivo* data sets (**Fig.**
166 **2E-F**). The model was notably less capable of accurately predicting differences in acetate
167 production between individuals, with no significant association seen (**Fig. 2-3**). Significant
168 agreement was observed between measured and predicted production fluxes of butyrate and

169 propionate within each individual data set ($r = 0.41-0.97$, Pearson test, $p < 0.05$) with the
170 exception of propionate in Study A, which had a very limited sample size ($N = 2$) (**Fig. 3E-L**).
171 Notably, the correlation coefficient (Pearson r) for these associations was similar to that seen in
172 the high-richness *in vitro* cultures (**Fig. 2C**). As previously seen, the prediction of acetate was
173 worse, most notably in studies C and D, where no significant prediction was observed. In
174 studies A and B, acetate production was more readily predicted, likely due to a strong
175 treatment-effect (**Fig. 3A-D**). Within treatment groups, similar correlations were observed,
176 though statistical power was severely limited by the smaller sample sizes (**Table S2**).
177 Predictions from models built with shotgun metagenomic sequencing data showed slightly better
178 results when constructed at the species level, as compared to building at the genus level (**Fig.**
179 **S3**). To test whether SCFA production was impacted by sample diversity, we compared
180 measured butyrate and propionate against Shannon index for each sample in each study (**Fig.**
181 **S4**). A weak significant signal was seen in only one of the four studies (Study D). In summary,
182 we observed agreement between MCMM predicted and measured *in vitro* production rates of
183 butyrate and propionate in the presence or absence of fiber supplementation, with better
184 agreement in more diverse communities and over longer experimental incubation times (**Fig. 2-**
185 **3**). As acetate was not well predicted by the MCMMs (i.e., acetate was not strongly coupled to
186 biomass production, and predictions could vary widely for the same biomass optimum), we
187 focused our downstream predictions and analyses on the SCFAs butyrate and propionate.
188
189 *MCMM predictions correspond with variable immunological responses to a 10-week high-fiber*
190 *dietary intervention*
191 We next investigated whether MCMM-predicted SCFA production rates could be leveraged to
192 help explain inter-individual differences in phenotypic response following a dietary intervention.
193 Specifically, we looked at data from 18 individuals who were placed on a high-fiber diet for ten

194 weeks³¹. These individuals fell into three distinct immunological response groups: one in which
195 high inflammation was observed over the course of the intervention (high-inflammation group),
196 and two other distinct response groups that both exhibited lower levels of inflammation (low-
197 inflammation groups I and II; **Fig. 4A**). We hypothesized that these immune response groups
198 could be explained, in part, by differences in MCMM-predicted production rates of anti-
199 inflammatory SCFAs. Using 16S amplicon sequencing data from seven time points collected
200 from each of these 18 individuals over the 10-week intervention, we built MCMMs for each study
201 participant at each time point. Growth was then simulated for each model using a standardized
202 high-fiber diet, rich in resistant starch (see Material and Methods). Throughout the study, a
203 trend of decreasing propionate production was observed in high-inflammation individuals ($r =$
204 0.39, Pearson test, $p = 0.019$), showing less production as the intervention went on, despite the
205 high fiber content of the diets consumed by participants (**Fig. 4B**). Individuals in the high-
206 inflammation group showed significantly lower predicted propionate production, on average,
207 compared to the individuals in each of the low-inflammation groups (High vs. Low I: 131.9 ± 5.8
208 vs 158.1 ± 5.7 mmol/(gDW h), Mann-Whitney $p = 0.0053$; High vs. Low II: 131.9 ± 5.8 vs
209 $163.08.3 \pm 6.5$ mmol/(gDW h), Mann-Whitney $p = 0.0017$; **Fig. 4C**). Butyrate showed no such
210 significant effects across immune response groups (**Fig. 4D, 4E**). To investigate whether
211 sample alpha-diversity was sufficient to explain the differences between the immune response
212 groups, we calculated the alpha diversity for each sample at each timepoint during the study.
213 Across all seven time points tested, only one significant difference in alpha diversity was seen,
214 between the two low inflammation groups at time point 2 (Mann-Whitney U-test, $p < 0.05$),
215 leading us to determine that differences in SCFA production throughout the intervention were
216 not the result of differences in diversity. (**Fig. S4**).
217

218 *MCMM-predicted SCFA profiles are associated with a wide range of blood-based clinical*
219 *markers*

220 To further evaluate the clinical relevance of personalized MCMMs, we generated SCFA
221 production rate predictions from stool 16S amplicon sequencing data for 2,687 individuals in a
222 deeply phenotyped, generally-healthy cohort from the West Coast of the United States (i.e., the
223 Arivale cohort)³². Baseline MCMMs were built for each individual assuming the same dietary
224 input (i.e., an average European diet) in order to compare SCFA production rate differences,
225 independent of background dietary variation. MCMM-predicted SCFA fluxes were then
226 regressed against a panel of 128 clinical chemistries and health metrics collected from each
227 individual, adjusting for a standard set of common covariates (i.e., age, sex, and microbiome
228 sequencing vendor; **Fig. 5A**). After FDR correction, 20 markers were significantly associated
229 with the predicted production rate of butyrate (**Fig. 5B**). Predicted butyrate production showed
230 significant positive associations with only 3 markers, including the health-associated hormone
231 adiponectin, and significant negative associations with 17 markers linked to disease, including
232 C-reactive protein (CRP), low-density lipoprotein (LDL), and blood pressure (mean arterial
233 pressure; $P < 0.05$, FDR-corrected t-test). Propionate showed no significant associations after
234 covariate adjustment and multiple comparison correction (**Fig. 5B**). Total combined propionate
235 and butyrate production was significantly associated with 16 clinical markers, all overlapping
236 with those associated with butyrate. Predicted butyrate production was significantly negatively
237 associated with BMI ($\beta = -0.10$, t-test, $p < 0.001$), while propionate was not (**Fig. 5 C-D**).
238 Covariate-adjusted p-values and beta coefficients for all clinical markers included in the analysis
239 can be found in the supplementary material (**Table S3**).

240
241 *Leveraging MCMMs to design precision dietary, prebiotic, and probiotic interventions*

242 As a proof-of-concept for *in silico* engineering of the metabolic outputs of the human gut
243 microbiome, we screened a set of potential interventions designed to increase SCFA production
244 for individuals from the Arivale cohort (**Fig. 6A**). MCMMs were built using two different dietary
245 contexts: an average European diet, and a vegan, high-fiber diet rich in resistant starch (see
246 Material and Methods). As expected, models grown on a high-fiber diet showed higher average
247 predicted butyrate production: $87.78 \pm 0.67 \text{ mmol/(gDW h)}$ vs $16.29 \pm 0.13 \text{ mmol/(gDW h)}$, t-
248 test, $t = 104.3$, $p < 0.001$ (**Fig. 6B**). However, this increase in butyrate production between the
249 European and high-fiber diets was not uniform across individuals. On the high-fiber diet, some
250 individual gut microbiota compositions showed very large increases in butyrate production,
251 some showed little-to-no change, and a small subset of samples actually showed a decrease in
252 butyrate production, relative to the European diet. We identified a set of 'non-responders' ($N =$
253 9) who produced less than $15 \frac{\square\square\square\square}{\square\square\square*\square}$ of butyrate on the European diet and showed an increase
254 in butyrate production of less than 20% on the high-fiber diet (**Fig. 6C**). We also identified a set
255 of 'regressors' ($N = 7$) who showed decreased butyrate production on the high-fiber diet when
256 compared to the European diet (**Fig. 6D**). We then simulated a handful of simple prebiotic and
257 probiotic interventions across these individuals, to identify optimal combinatorial interventions
258 for each individual (**Fig. 6C-E**). MCMMs for each subset of individuals were simulated with
259 prebiotic and probiotic interventions in the context of either the European or the high-fiber diet.
260 Specifically, diets were supplemented with the dietary fiber inulin, with the dietary fiber pectin, or
261 with a simulated probiotic intervention that consisted of introducing 10% relative abundance of
262 the butyrate-producing genus *Faecalibacterium* to the MCMM. In general, optimal combinatorial
263 interventions significantly increased the population-level butyrate production well above either
264 dietary intervention alone (**Fig. 6C-D**).

265 For 15/16 individuals in the regressors or non-responders groups, supplementation of
266 the background diet with a specific prebiotic or probiotic increased the butyrate production rate

267 (Fig. 6C-E). For both regressors and non-responders, the optimal intervention showed
268 substantial increases over the standard European diet (+290±80% for non-responders;
269 +239±102% for regressors). The exact intervention that yielded the highest butyrate production
270 for any given individual across both populations varied widely (Fig. 6E). For example, the
271 probiotic intervention was more successful in raising predictions for butyrate production in non-
272 responders than it was in regressors (Fig. 6E). Overall, no single combinatorial intervention was
273 optimal for every individual in the population.

274

275 **Discussion**

276 The objective of this study was to experimentally validate personalized MCMM SCFA
277 predictions. Predictions of butyrate production in synthetically constructed *in vitro* co-cultures
278 showed significant agreement between measured and predicted butyrate fluxes (Fig. 2), a first
279 step toward validation. Interestingly, better agreement was observed in richer communities,
280 indicating increased model complexity benefitted predictions. Decreasing accuracy of butyrate
281 predictions as community richness declined may reflect a limitation of building models at the
282 genus-level, as reconstructions contain a summarized aggregation of the metabolic capability of
283 the genus as a whole, without species- or strain-level resolution. Furthermore, we are
284 leveraging database models, which do not reflect the exact strains present in a given sample.
285 Consequently, pathways included in the metabolic models are not a perfect match to the reality
286 of what is present in a sample. In high richness models, predictions of SCFAs became more
287 accurate, suggesting this mismatch gets averaged out as species richness increases, likely due
288 to functional redundancies across organisms that can mask the inaccuracies of any single taxon
289 model. Alternatively, there could be some unknown biological reason for why SCFA production
290 is less variable in higher richness communities, which would affect our ability to make accurate
291 MCMM predictions. Overall, the observed increase in accuracy with community diversity

292 benefits modeling of real-world microbiomes, which are often more species-rich than synthetic
293 *in vitro* communities^{33,34}. As our model databases grow to better-reflect the metabolic diversity
294 of real-world ecosystems, we expect MCMMs to become more and more accurate, independent
295 of community diversity.

296 Further validation of MCMM predictions was observed from *ex vivo* anaerobic fecal
297 incubations. We saw good agreement between SCFA flux predictions and measurements,
298 especially for butyrate and propionate, across four independent studies (**Fig. 3**). Acetate is
299 known to act as an overflow metabolite^{35,36}, with a wide range of possible fluxes for a given
300 biomass optimum, so it is perhaps not surprising that the predictions for this metabolite tended
301 to be less accurate across studies and within treatment groups. Butyrate and propionate,
302 however, showed a narrower range of possible fluxes for a given biomass optimum, suggesting
303 that the production of these molecules is more strongly coupled to biomass production. The
304 dilution level of the *ex vivo* stool incubations had a sizable effect on the results, where the *in*
305 *vitro* prebiotic treatment effect was dampened in less dilute fecal homogenates, likely due to the
306 presence of residual dietary fibers in stool. The more accurate predictions of acetate production
307 in the more dilute fecal homogenates is likely due to the fact that total SCFA production was
308 more strongly coupled to *in vitro* prebiotic treatment in these samples. Accounting for this
309 dilution factor in the construction of the *in silico* media improves predictions and returns more
310 accurate results for butyrate and propionate production.

311 We were interested in seeing how 16S- and metagenomic-based models compared at a
312 similar taxonomic level, and how genus and species level predictions compared, in order to
313 assess how applicable our modeling strategy could be to different data types. Using paired 16S
314 and shotgun metagenomic sequencing data from Study C, we saw strong agreement between
315 models constructed at the genus level for both 16S and metagenomic data (**Fig. S1**).
316 Furthermore, we saw robust agreement between predictions at the genus and species levels

317 across metagenomic data sets (**Fig. S5**). Interestingly, predictions from Studies A, C and D
318 showed marginally better agreement with measured values when constructed at the species
319 level vs. the genus level, indicating that higher specificity in model construction is desirable
320 when possible (**Fig. S5**). Across the *in vitro* and *ex vivo* studies, our results strongly support the
321 use of MCMMs for predicting personalized butyrate and propionate production rates in response
322 to prebiotic, probiotic, and dietary interventions.

323 *In vivo* validation via direct measurement of SCFA production is not easily accomplished,
324 due to the rapid consumption of these metabolites by the colonic epithelium and noisy
325 measurements in either stool or serum^{37 38}. However, higher SCFA production rates are known
326 to influence the phenotype of the host in a number of ways, including a reduction in systemic
327 inflammation and improvements in cardiometabolic health^{17,22,39,40}. Wastyk et al. found that
328 among 18 individuals given a 10-week high fiber dietary intervention, one third showed an
329 increase in inflammation over the course of the intervention and two thirds showed a decline in
330 systemic markers of inflammation³¹. In the original paper, there was no clear mechanism for
331 explaining these variable immune response groups³¹. We found that propionate production, a
332 strong inhibitor of inflammation through activation of FFA2 and FFA3^{41,42}, was predicted to be
333 significantly lower in individuals who showed the high inflammation response (**Fig. 4B-C**)³¹.
334 While it is impossible to say whether or not our propionate flux predictions are underlying these
335 dietary response phenotypes, the observed immune response groups and propionate
336 production fluxes could not be explained by differences in alpha-diversity between groups (**Fig.**
337 **S4**). We also had access to blood-based clinical labs and microbiome data for a cohort of 2,687
338 Americans. We built MCMMs for this cohort, assuming a standard European diet, and predicted
339 butyrate and propionate production. We found that butyrate was negatively associated with
340 systemic inflammation, LDL cholesterol, and insulin resistance, blood pressure, and BMI (**Fig.**
341 **5**). These results are consistent with what is known about how butyrate is protective against

342 inflammation, cardiovascular disease, obesity, and metabolic syndrome^{17,22,39,40,43} (**Fig. 5B**),
343 and they provide us with further confidence in the predictive power of our MCMM approach.
344 Dietary interventions have long been known to elicit variable responses, but a mechanistic
345 framework for predicting this microbiome-mediated heterogeneity has not been available until
346 now.

347 Given this set of promising associations between SCFA predictions and host phenotypic
348 variation, we sought to demonstrate the potential for leveraging MCMMs for designing precision
349 prebiotic, probiotic, and dietary interventions. Using the Arivale cohort, we identified two classes
350 of individuals that responded differently to an *in silico* high-fiber dietary intervention: non-
351 responders and regressors (**Fig. 6**). We designed combinatorial interventions that added either
352 a prebiotic or a probiotic to the background diets, to see if we could rescue these non-responder
353 and regressor phenotypes. We found significant heterogeneity in which combinatorial
354 intervention was optimal across individuals from each of these response groups (**Fig. 6E**).
355 Given that the non-responders had low baseline levels of butyrate production to begin with and
356 did not respond to a high-fiber diet, this result underscores the importance of personalized
357 predictions for those who tend not to respond well to population-scale interventions. These
358 results also suggest that butyrate production in some individuals is limited by composition of the
359 microbiota, indicating that probiotic interventions would be necessary to induce meaningful
360 increases in production.

361 This study had several limitations that should be considered. First, we were limited by
362 the availability of high-quality fluxomic data sets for model validation. For example, we had
363 limited sample sizes in the *ex vivo* fecal studies presented above, due to the cost and difficulty
364 of generating these kinds of data for larger cohorts. Additionally, the human cohort data
365 presented here only provided indirect support for our MCMM predictions (**Figs. 4-5**). Second,
366 predictions are dependent on the availability of GEMs. Obtaining large numbers of GEMs that

367 faithfully recapitulate the full metabolic capacities of each organism in a sample is a challenging
368 task. We used the publicly available AGORA model database ²⁹. While AGORA models have
369 gone through some degree of manual curation, many of these models are not fully validated and
370 have been shown to include infeasible and missing reactions ⁴⁴. Nevertheless, these GEMs
371 appear to work well in the context of butyrate and propionate flux predictions. SCFA production
372 pathways are fairly phylogenetically conserved and adjacent to central metabolism, so we might
373 expect these reactions to be robust to strain- or species-level variation and variation in model
374 quality. However, predictions for metabolites that are peripheral to central metabolism will likely
375 be much noisier in the absence of well-curated models that closely match the organisms within
376 a given sample. Third, model building is dependent on accurate taxonomic assignment of
377 sequencing reads. For 16S amplicon sequencing, reads can only be confidently assigned at the
378 genus level, limiting the specificity of a model to the genera present in the original samples.
379 However, as model databases grow and shotgun metagenomic sequencing becomes more
380 common, we anticipate this limitation will be resolved. Finally, the lack of individual-specific
381 dietary constraints limits the accuracy of our predictions. For *ex vivo* fecal fermentations, as well
382 as *in vivo* analysis, participant dietary information was not available, and so a standard
383 European diet was used across all models. Detailed knowledge of dietary intake should
384 increase the accuracy of MCMM predictions. Despite these limitations, MCMMs were able to
385 explain 25-35% of the variance in butyrate and propionate production across individuals, and we
386 expect that advances in model curation, pathway annotation, and personalized dietary
387 constraints will only improve upon the accuracy of this approach over time.

388

389 **Conclusion**

390 Here we present an approach for the rational prediction of personalized SCFA production rates
391 from the human gut microbiome, validated using *in vitro*, *ex vivo* and *in vivo* experimental data.

392 Additional analysis demonstrated a clear relationship between SCFA predictions and
393 physiological responses in the host, including lower inflammation and improved cardiometabolic
394 health. SCFA predictions were also significantly associated with variable immune responses to
395 a high fiber dietary intervention. Finally, we showed how MCMMs could be used to rapidly
396 design and test combinatorial prebiotic, probiotic and dietary interventions *in silico* for a large
397 human population. Personalized prediction of SCFA production profiles from human gut
398 MCMMs represents an important technological step forward in leveraging computational
399 systems biology for precision nutrition. Mechanistic modeling allowed us to translate the
400 ecological composition of the gut microbiome into concrete, individual-specific metabolic
401 outputs, in response to particular interventions ^{45,46}. MCMMs are transparent models that do not
402 require training data, with clear causal and mechanistic explanations behind each prediction.
403 The clinical relevance of these predictions is evident, due to the widespread physiological
404 effects of SCFAs on the human body ^{47,48}. A rational framework for engineering the production
405 or consumption rates of these metabolites has broad potential applications in precision nutrition
406 and personalized healthcare.

407

408 **Materials and Methods**

409 *In vitro culturing*

410 Culturing of the synthetically assembled gut microbial communities is described in Clark et al.,
411 2021³⁰. Culturing of *ex vivo* samples in Study A was done using the methodology described
412 below. Culturing of *ex vivo* samples in Study B is described in Cantu-Jungles et al., 2021¹⁸.
413 Culturing of *ex vivo* samples in Study C was conducted by co-author Dr. Thomas Gurry, using
414 the methodology described below.

415

416 *In vitro culturing of fecal-derived microbial communities (Study A)*

417 Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the
418 Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number
419 5722) and transferred into an large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen,
420 20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 20
421 minutes of defecation. All further processing and incubation was then run inside the anaerobic
422 chamber. 50 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks (Nasco, USA)
423 with sterile PBS + 0.1% L-cysteine at a 1:2.5 w/v ratio and homogenized with a Stomacher
424 Biomaster (Seward, USA) for 15 minutes. After homogenization, each sample was transferred
425 into three sterile 250 mL serum bottles and another 2.5 parts of PBS + 0.1% L-cysteine was
426 added to bring the final dilution to 1:5 in PBS. 87 ug/mL inulin or an equal volume of sterile PBS
427 buffer were added to treatment or control bottles, respectively. Samples were immediately
428 pipetted onto sterile round-bottom 2 mL 96-well plates in triplicates. Baseline samples were
429 aliquoted into sterile 1.5 mL Eppendorf tubes and the plates were covered with Breathe-Easy
430 films (USA Scientific Inc., USA). Plates were incubated for 7 h at 37°C and gently vortexed
431 every hour within the chamber. Final samples were aliquoted into 1.5 mL Eppendorf tubes at the
432 end of incubation. Baseline and 7 h samples were kept on ice and immediately processed after
433 sampling. 500 uL of each sample were aliquoted for metagenomics and kept frozen at -80°C
434 before and during transfer to the commercial sequencing service (Diversigen, Inc). The
435 remaining sample was transferred to a table-top centrifuge (Fisher Scientific accuSpin, USA)
436 and spun at 1,500 rpm for 10 minutes. The supernatant was then transferred to collection tubes
437 kept on dry ice and transferred to the commercial metabolomics provider Metabolon, USA, for
438 targeted SCFA quantification.

439

440 *In vitro culturing of fecal-derived microbial communities (Study C)*

441 Homogenized fecal samples in this study again underwent anaerobic culturing at 37°C, as
442 described above, but with a shorter culturing time of 4 hours. The slurry was diluted 2.5x in
443 0.1% L-cysteine PBS buffer solution. Cultures were supplemented with the dietary fibers pectin
444 or inulin to a final concentration of 10g/L, or a sterile PBS buffer control treatment. Aliquots were
445 taken at 0h and 4h and further processed for measurement of SCFA concentrations, which were
446 used to estimate experimental production flux (concentration[4h] - concentration[0h]/4h). SCFA
447 concentrations were measured using GC-FID. Briefly, the pH of the aliquots was adjusted to 2-3
448 with 1% aqueous sulfuric acid solution, after which they were vortexed for 10 minutes and
449 centrifuged for 10 minutes at 10,000 rpm. 200 uL aliquots of clear supernatant were transferred
450 to vials containing 200 uL of MeCN and 100 uL of a 0.1% v/v 2-methyl pentanoic acid solution.
451 The resulting solutions were analyzed by GC-FID on a Perkin Elmer Clarus 500 equipped with a
452 DB-FFAP column (30m, 0.250mm diameter, 0.25um film) and a flame ionization detector.
453

454 *In vitro culturing of fecal-derived microbial communities (Study D)*

455 Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the
456 Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number
457 10961) and transferred into a large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen,
458 20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 30
459 minutes of sample receipt. All further processing and incubation was then run inside the
460 anaerobic chamber. 30 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks
461 (Nasco, USA) with 90 mL sterile PBS + 0.1% L-cysteine + 0.0001% resazurin and homogenized
462 with a Stomacher Biomaster (Seward, USA) for 5 minutes. For each individual fecal sample,
463 triplicate baseline samples of 1500uL slurry were transferred to a deep 96-well place (Fisher
464 Scientific, USA), sealed and centrifuged at 4000rpm for 10 minutes. 300uL of the supernatant
465 were transferred to collection tubes and immediately frozen at -80°C. An additional 1800uL of

466 fecal slurry was transferred into a 2mL Eppendorf tube and frozen at -80°C for metagenomic
467 shotgun sequencing. Interventions of 100uL inulin at 625mg/L, pectin at 750mg/L or PBS were
468 transferred to in duplicate to a new deep 96-well plate, topped with 1500uL fecal slurry each,
469 and immediately sealed with Breathe-Easy films (USA Scientific Inc., USA). Plates were
470 incubated for 6 h at 37°C and gently vortexed every 2 hours within the chamber. After
471 incubation, plates were immediately centrifuged at 4000rpm for 10 minutes at room temperature
472 and 300uL of the supernatant was again transferred to collection tubes and kept at -80°C. The
473 frozen slurry sample for metagenomic shotgun sequencing was transferred to a commercial
474 sequencing service (Diversigen, Inc) on dry ice. The remaining supernatant samples were kept
475 on dry ice and transferred to the commercial metabolomics provider (Metabolon, USA) for
476 targeted SCFA quantification.

477

478 *Metagenomic sequencing and analysis*

479 For Study A, shallow metagenomic sequencing was performed by the sequencing vendor
480 Diversigen, USA (i.e., their BoosterShot service). In brief, DNA was extracted from the fecal
481 slurries with the DNeasy PowerSoil Pro Kit on a QiaCube HT (Qiagen, Germany) and quantified
482 using the Qiant-iT Picogreen dsDNA Assay (Invitrogen, USA). Library preparation was
483 performed with a proprietary protocol based on the Nextera Library Prep kit (Illumina, USA) and
484 the generated libraries were sequenced on a NovaSeq (Illumina, USA) with a single-end 100bp
485 protocol. Demultiplexing was performed using Illumina BaseSpace to generate the final FASTQ
486 files used during analysis. For Study D, DNA extraction was performed under the same protocol
487 as Study A. Libraries for Study D were prepared with the Nextera XT Library Prep kit (Illumina,
488 USA) and sequenced with a paired-end 2x150bp protocol on a NovaSeq 6000 (Illumina, USA)
489 yielding at least 70M reads/sample.

490 Preprocessing of raw sequencing reads from Study A and D was performed using
491 FASTP⁴⁹. The first 5bp on the 5' end of each read were trimmed, and the 3' end was trimmed
492 using a sliding window quality filter that would trim the read as soon as the average window
493 quality fell below 20. Reads containing ambiguous base calls or with a length of less than 15bp
494 after trimming were removed from the analysis.

495 Bacterial species abundances were quantified using Kraken2 v2.0.8 and Bracken v2.2
496 using the Kraken2 default database which was based on Refseq release 94, retaining only
497 those species with at least 10 assigned reads^{50,51}. The analysis pipeline can be found at
498 https://github.com/Gibbons-Lab/pipelines/tree/master/shallow_shotgun.

499

500 *Metabolomics*

501 Targeted metabolomics were performed using Metabolon's high-performance liquid
502 chromatography (HPLC)-mass spectrometry (MS) platform, as described before⁵². In brief,
503 fecal supernatants were thawed on ice, proteins were removed using aqueous methanol
504 extraction, and organic solvents were removed with a TurboVap (Zymark, USA). Mass
505 spectroscopy was performed using a Waters ACQUITY ultra-performance liquid
506 chromatography (UPLC) and Thermo Scientific Q-Exactive high resolution/accuracy mass
507 spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an Orbitrap
508 mass analyzer operated at 35,000 mass resolution. For targeted metabolomics ultra-pure
509 standards of the desired short-chain fatty acids were used for absolute quantification. Fluxes for
510 individual metabolites were estimated as the rate of change of individual metabolites during the
511 incubation period (concentration[7h] - concentration[0h]/7h).

512

513 *Model Construction*

514 Taxonomic abundance data inferred from 16S amplicon sequencing was summarized to the
515 genus level (as in *in vitro* cultures, *ex vivo* study B, fiber intervention samples, and samples from
516 the Arivale cohort), or to the species level when shotgun metagenomic sequencing was
517 available (as in *ex vivo* studies A, C and D). Abundances were used to construct all MCMMs in
518 this analysis using the community-scale metabolic modeling platform MICOM v0.32.5²¹. Models
519 were built using the MICOM build() function with a relative abundance threshold of 0.001,
520 omitting taxa that made up less than 0.1% relative abundance. The AGORA database (v1.03) of
521 taxonomic reconstructions summarized to the genus level for 16S data or the species level for
522 metagenomic sequencing data was used to collect genome-scale metabolic models for taxa
523 present in each model. Building models at the genus level for metagenomic sequencing data
524 was explored, but was outperformed by species level models. *In silico* media were applied to
525 the grow() function, defining the bounds for metabolic imports by the MCMM. Medium
526 composition varied between analyses (see *Media Construction*). Steady state growth rates and
527 metabolic fluxes for all samples were then inferred using cooperative tradeoff flux balance
528 analysis (ctFBA). In brief, this is a two-step optimization scheme, where the first step finds the
529 maximal biomass production rate for the full microbial community and the second step infers
530 taxon-specific growth rates and fluxes, while maintaining community growth within a suboptimal
531 fraction of the theoretical maximum (i.e., the tradeoff parameter), thus balancing individual
532 growth rates and the community-wide growth rate²¹. All models in the manuscript used a
533 tradeoff parameter of 0.7. This parameter value was chosen through cooperative tradeoff
534 analysis in MICOM. Multiple tradeoff parameters were tested, and the highest parameter value
535 (i.e. the value closest to the maximal community growth rate at 1.0) that allowed most (>90%) of
536 taxa to grow was chosen (i.e., 0.7). Predicted growth rates from the simulation were analyzed to
537 validate correct behavior of the models. All models were found to grow with minimum
538 community growth rate of 0.3 h⁻¹. Predicted values for export fluxes of SCFAs were collected

539 from each MCMM using the production_rates() function, which calculates the overall production
540 from the community that would be accessible to the colonic epithelium.

541

542 *Media Construction*

543 Individual media were constructed based on the context of each individual analysis. For the
544 synthetic *in vitro* cultures conducted by Clark et al. (2021), a defined medium (DM38) was used
545 that supported growth of all taxa used in the experiments, excluding *Faecalibacterium*
546 *prausnitzii*. Manually mapping each component to the Virtual Metabolic Human database, we
547 constructed an *in silico* medium with flux bounds scaled to component concentration. All
548 metabolites were found in the database. Using the MICOM fix_medium() function, a minimal set
549 of metabolites necessary for all models to grow to a minimum community growth rate of 0.3 h^{-1}
550 was added to the medium - here, only iron(III) was added (*in silico* medium available here:
551 https://github.com/Gibbons-Lab/scfa_predictions/tree/main/media).

552 To mimic the medium used in *ex vivo* cultures of fecally-derived microbial communities,
553 a carbon-stripped version of a standard European diet was used. First, a standard European
554 diet was collected from the Virtual Metabolic Human database (www.vmh.life/#nutrition)⁵³.
555 Components in the medium which could be imported by the host, as defined by an existing
556 uptake reaction in the Recon3D model⁵⁴, were diluted to 20% of their original flux, to adjust for
557 absorption in the small intestine⁵⁴. Additionally, host-supplied metabolites such as mucins and
558 bile acids were added to the medium. The medium was augmented with a minimal set of
559 metabolites required for growth of all taxa in the model database using the
560 complete_db_medium() function within MICOM. As most carbon sources are consumed in the
561 body and are likely not present in high concentrations in stool, this diet was then manually
562 stripped of carbon sources by removing metabolites identified to be carbon sources for
563 microbes. All components in the media were then diluted to 10% of their original flux to mimic

564 the fecal microenvironment. Residual dietary fiber not easily digested including resistant starch,
565 dextrin and cellulose, was not removed from the medium during carbon removal. The amount of
566 this residual fiber was scaled to the dilution factor of samples in each study prior to culturing. To
567 simulate fiber supplementation, single fiber additions were made to the medium, either pectin,
568 inulin or fructo-oligosaccharide (1.0 mmol/gDW*h for pectin, 10.0 mmol/gDW*h for inulin, 100
569 mmol/gDW*h for FOS, based on carbon content reported for each).

570 For *in vivo* modeling, two diets were used: a high-fiber diet containing high levels of
571 resistant starch, and a standard European diet ^{53,55}. Again, both diets were collected from the
572 Virtual Metabolic Human database (www.vmh.life/#nutrition). Each medium was subsequently
573 adjusted to account for absorption in the small intestine by diluting metabolite flux as described
574 previously. Additionally, host-supplied metabolites such as mucins and bile acids were added to
575 the medium, to match the composition of the medium *in vivo*. Finally, the
576 `complete_db_medium()` function was again used to augment the medium, as described above.

577 Prebiotic interventions were designed by supplementing the high-fiber or average
578 European diet with single fiber additions, either pectin or inulin, as described previously.

579

580 *Probiotic Intervention*

581 To model a probiotic intervention, 5% relative abundance of the genus *Faecalibacterium*, a
582 known butyrate-producing taxon ⁵⁶, was added to the MCMMs by adding a pan-genus model of
583 the taxon derived from the AGORA database (v1.03). Measured taxonomic abundances were
584 scaled to 95% of their initial values, after which *Faecalibacterium* was artificially added to the
585 model.

586

587 *External Data Collection*

588 Data containing taxonomic abundance, optical density, and endpoint butyrate concentration for
589 synthetically-constructed *in vitro* microbial cultures were collected from Clark et al. (2021)³⁰.
590 Endpoint taxonomic abundance data, calculated from fractional read counts collected via 16S
591 amplicon sequencing, was used to construct individual MCMMs for each co-culture (see *Model*
592 *Construction*). Resulting models ranged in taxonomic richness from 1 to 25 taxa.

593 Data from *ex vivo* studies A and D, containing shotgun metagenomic sequencing and
594 SCFA metabolomics, was collected and processed as described previously. Taxonomic
595 abundance data was used to construct MCMMs for each individual (see *Model Construction*).

596 From a study by Cantu-Jungles et al. (2021)¹⁸ (*ex vivo* Study B), preprocessed
597 taxonomic abundance and SCFA metabolomics data was collected. Homogenized fecal
598 samples in this study underwent a similar culturing process, with a culturing time of 24 hours.
599 Cultures were supplemented with the dietary fiber pectin, or a PBS control. Initial and endpoint
600 metabolomic SCFA measurements were used to estimate experimental production flux
601 (concentration[24h] - concentration[0h]/24h). Taxonomic abundance data was used to construct
602 MCMMs for each individual .

603 Data from a third (Study C) was collected from the Pharmaceutical Biochemistry Group
604 at the University of Geneva, Switzerland, under study protocol 2019-00632, containing
605 sequencing data in FASTQ format and targeted metabolomics SCFA measurements.

606 Data was collected from Wastyk, et al 2021³¹, which provided 16S amplicon sequencing
607 data at 9 timepoints spanning 14 weeks, along with immunological phenotyping, for 18
608 participants undergoing a high-fiber dietary intervention. Only 7 timepoints spanning 10 weeks
609 were included in subsequent analysis, as the last 2 timepoints were taken after the conclusion
610 of the dietary intervention. MCMMs were constructed for each participant at each timepoint at
611 the genus level (see *Model Construction*). Mean total butyrate and propionate production were
612 compared between immune response groups.

613 De-identified data was obtained from a former scientific wellness program run by Arivale,
614 Inc. (Seattle, WA)³². Arivale closed its operations in 2019. Taxonomic abundances, inferred
615 from 16S amplicon sequencing data, for 2,687 research-consenting individuals were collected
616 and used to construct MCMMs. 128 paired blood-based clinical chemistries taken within 30
617 days of fecal sampling were also collected and used to find associations between MCMM SCFA
618 predictions on a standard European diet and clinical markers. Blood pressure and BMI for each
619 individual were also collected. Metadata for each sample including age, sex, and microbiome
620 sequencing vendor were included in the analysis as confounders.

621

622 *Statistical analysis*

623 Statistical analysis was performed using SciPy (v1.9.1) and statsmodels (v0.14.0) in Python
624 (v3.8.13). Pearson correlation coefficients and p-values were calculated between measured and
625 predicted SCFA production fluxes in *in vitro* and *ex vivo* cultures, as well as for predicted SCFA
626 production fluxes across timepoints for an *in vivo* high-fiber intervention. Significance in SCFA
627 production between immune response groups in the high-fiber dietary intervention was
628 determined by non-parametric pairwise Mann-Whitney U test for butyrate, propionate, and
629 combined butyrate and propionate production. Association of MCMM-predicted SCFA
630 production flux with paired blood-based clinical labs was tested using OLS regression, adjusting
631 for age, sex, microbiome sequencing vendor, and tested for significance by two-sided t-test.
632 BMI was not included as a confounder in the analysis because it was itself negatively correlated
633 with butyrate production⁴³. Multiple comparison correction for p-values was done using the
634 Benjamini–Yekutieli method for adjusting the False Discovery Rate (FDR)⁵⁷. Comparison of
635 butyrate production between dietary interventions was tested using paired Student's t-tests. In
636 all analyses, significance was considered at the p<0.05 threshold.

637

638 *Data, Software, and Code Availability*

639 Code used to run analysis and create figures for this manuscript can be found at

640 https://github.com/Gibbons-Lab/scfa_predictions.

641 Processed data for synthetically constructed cultures can be found at

642 <https://github.com/RyanLincolnClark/DesignSyntheticGutMicrobiomeAssemblyFunction>. Raw

643 sequencing data can be found at <https://doi.org/10.5281/zenodo.4642238>.

644

645 Raw sequencing data for Study A can be found in the NCBI SRA under accession number

646 PRJNA937304.

647 Processed data for *ex vivo* Study B can be found at

648 https://github.com/ThaisaJungles/fiber_specificity. Raw sequencing data can be found in the

649 NCBI SRA under accession number PRJNA640404.

650 Raw sequencing data for *ex vivo* Study C can be found in the NCBI SRA under accession

651 number PRJNA939256.

652 Raw sequencing data for *ex vivo* Study D can be found in the NCBI SRA under accession

653 number PRJNA1033794.

654 Processed data for the longitudinal high-fiber intervention study can be found at

655 <https://github.com/SonnenburgLab/fiber-fermented-study/>.

656 Qualified researchers can access the full Arivale deidentified dataset supporting the findings in

657 this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to

658 access the data can be made at data-access@isbscience.org and will be responded to within 7

659 business days.

660 Illustrations were created with BioRender.com.

661

662

663 *Acknowledgements*

664 We thank members of the Gibbons Lab for helpful discussions and suggestions regarding this
665 work. Thanks to Nathan Price, Amy Willis, and Lauren Rajakovich for helpful input on this work.

666

667 *Funding*

668 This research was funded by Washington Research Foundation Distinguished Investigator
669 Award and by startup funds from the Institute for Systems Biology (to SMG). Fecal sample
670 collection at Fred Hutchinson Cancer Center was supported by P30 CA015704. Research
671 reported in this publication was supported by the National Institute of Diabetes and Digestive
672 and Kidney Diseases of the National Institutes of Health (NIH) under award no. R01DK133468
673 (to SMG), by the Global Grants for Gut Health from Yakult and Nature Portfolio (to SMG), and
674 by the National Institute on Aging of the National Institutes of Health (NIH) under award no.
675 U19AG023122 (to NR).

676

677 *Author contributions*

678 N.Q.B., S.M.G. and C.D. conceptualized the study. N.Q.B. ran the analyses, interpreted results
679 and authored the first draft of the manuscript. S.M.G. and C.D. provided funding, materials and
680 resources for the work, and supervised the work. S.M.G, C.D. and K.R.S. performed the *ex vivo*
681 fermentation and sampling included in Study A and D. C.D. ran metagenomic analysis. J.W.L.,
682 L.L., O.V., E.M.O., K.R.S. and T.G. contributed data and resources. T.W. and N.R. provided
683 support with analyses and statistical interpretation. All authors reviewed and edited the
684 manuscript.

685

686

687 **Citations**

688

689 1. Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome:

690 major fermentation by-products and their impact on host health. *Microbiome* **7**, 91 (2019).

691 2. Rackerby, B., Van De Grift, D., Kim, J. H. & Park, S. H. Effects of Diet on Human Gut

692 Microbiome and Subsequent Influence on Host Physiology and Metabolism. *Gut*

693 *Microbiome and Its Impact on Health and Diseases* 63–84 Preprint at

694 https://doi.org/10.1007/978-3-030-47384-6_3 (2020).

695 3. Tomasova, L., Grman, M., Ondrias, K. & Ufnal, M. The impact of gut microbiota metabolites

696 on cellular bioenergetics and cardiometabolic health. *Nutr. Metab.* **18**, 72 (2021).

697 4. Glotfelty, L. G., Wong, A. C. & Levy, M. Small molecules, big effects: microbial metabolites

698 in intestinal immunity. *Am. J. Physiol. Gastrointest. Liver Physiol.* **318**, G907–G911 (2020).

699 5. Donia, M. S. & Fischbach, M. A. HUMAN MICROBIOTA. Small molecules from the human

700 microbiota. *Science* **349**, 1254766 (2015).

701 6. Diener, C. *et al.* Genome-microbiome interplay provides insight into the determinants of the

702 human blood metabolome. *Nat Metab* **4**, 1560–1572 (2022).

703 7. Ríos-Covián, D. *et al.* Intestinal Short Chain Fatty Acids and their Link with Diet and Human

704 Health. *Front. Microbiol.* **7**, 185 (2016).

705 8. Nogal, A., Valdes, A. M. & Menni, C. The role of short-chain fatty acids in the interplay

706 between gut microbiota and diet in cardio-metabolic health. *Gut Microbes* **13**, 1–24 (2021).

707 9. Silva, Y. P., Bernardi, A. & Frozza, R. L. The Role of Short-Chain Fatty Acids From Gut

708 Microbiota in Gut-Brain Communication. *Frontiers in Endocrinology* vol. 11 Preprint at

709 <https://doi.org/10.3389/fendo.2020.00025> (2020).

710 10. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and

711 their impact on human metabolism. *Gut Microbes* **7**, 189–200 (2016).

712 11. Cong, J., Zhou, P. & Zhang, R. Intestinal Microbiota-Derived Short Chain Fatty Acids in

713 Host Health and Disease. *Nutrients* **14**, (2022).

714 12. Yang, W. *et al.* Intestinal microbiota-derived short-chain fatty acids regulation of immune

715 cell IL-22 production and gut immunity. *Nat. Commun.* **11**, 4457 (2020).

716 13. Scheppach, W. *et al.* Effect of butyrate enemas on the colonic mucosa in distal ulcerative
717 colitis. *Gastroenterology* **103**, 51–56 (1992).

718 14. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-
719 chain fatty acids suppresses colon cancer. *Int. J. Cancer* **128**, 847–856 (2011).

720 15. Singh, N. *et al.* Activation of Gpr109a, receptor for niacin and the commensal metabolite
721 butyrate, suppresses colonic inflammation and carcinogenesis. *Immunity* **40**, 128–139
722 (2014).

723 16. Tan, J. *et al.* The role of short-chain fatty acids in health and disease. *Adv. Immunol.* **121**,
724 91–119 (2014).

725 17. Mortensen, P. B. & Clausen, M. R. Short-chain fatty acids in the human colon: relation to
726 gastrointestinal health and disease. *Scand. J. Gastroenterol. Suppl.* **216**, 132–148 (1996).

727 18. Cantu-Jungles, T. M. *et al.* Dietary Fiber Hierarchical Specificity: the Missing Link for
728 Predictable and Strong Shifts in Gut Bacterial Communities. *MBio* **12**, e0102821 (2021).

729 19. Healey, G. R., Murphy, R., Brough, L., Butts, C. A. & Coad, J. Interindividual variability in
730 gut microbiota and host response to dietary interventions. *Nutr. Rev.* **75**, 1059–1080
731 (2017).

732 20. Boets, E. *et al.* Quantification of in Vivo Colonic Short Chain Fatty Acid Production from
733 Inulin. *Nutrients* **7**, 8916–8929 (2015).

734 21. Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: Metagenome-Scale Modeling
735 To Infer Metabolic Interactions in the Gut Microbiota. *mSystems* **5**, (2020).

736 22. van Deuren, T., Blaak, E. E. & Canfora, E. E. Butyrate to combat obesity and obesity-
737 associated metabolic disorders: Current status and future implications for therapeutic use.
738 *Obes. Rev.* **23**, e13498 (2022).

739 23. Zeevi, D. *et al.* Personalized Nutrition by Prediction of Glycemic Responses. *Cell* **163**,

740 1079–1094 (2015).

741 24. Rein, M. *et al.* Effects of personalized diets by prediction of glycemic responses on
742 glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary
743 intervention pilot trial. *BMC Med.* **20**, 56 (2022).

744 25. Gibbons, S. M. *et al.* Perspective: Leveraging the Gut Microbiota to Predict Personalized
745 Responses to Dietary, Prebiotic, and Probiotic Interventions. *Adv. Nutr.* **13**, 1450–1461
746 (2022).

747 26. Shoaei, S. *et al.* Quantifying Diet-Induced Metabolic Changes of the Human Gut
748 Microbiome. *Cell Metab.* **22**, 320–331 (2015).

749 27. Heinken, A. *et al.* Genome-scale metabolic reconstruction of 7,302 human microorganisms
750 for personalized medicine. *Nat. Biotechnol.* (2023) doi:10.1038/s41587-022-01628-0.

751 28. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are
752 dominated by highly developed countries. *PLoS Biol.* **20**, e3001536 (2022).

753 29. Magnúsdóttir, S. *et al.* Generation of genome-scale metabolic reconstructions for 773
754 members of the human gut microbiota. *Nat. Biotechnol.* **35**, 81–89 (2017).

755 30. Clark, R. L. *et al.* Design of synthetic human gut microbiome assembly and butyrate
756 production. *Nat. Commun.* **12**, 3254 (2021).

757 31. Wastyk, H. C. *et al.* Gut-microbiota-targeted diets modulate human immune status. *Cell*
758 **184**, 4137–4153.e14 (2021).

759 32. Manor, O. *et al.* Health and disease markers correlate with gut microbiome composition
760 across thousands of people. *Nat. Commun.* **11**, 5206 (2020).

761 33. Quigley, E. M. M. Gut bacteria in health and disease. *Gastroenterol. Hepatol.* **9**, 560–569
762 (2013).

763 34. Guinane, C. M. & Cotter, P. D. Role of the gut microbiota in health and chronic
764 gastrointestinal disease: understanding a hidden metabolic organ. *Therap. Adv.*

765 *Gastroenterol.* **6**, 295–308 (2013).

766 35. Valgepea, K. *et al.* Systems biology approach reveals that overflow metabolism of acetate
767 in *Escherichia coli* is triggered by carbon catabolite repression of acetyl-CoA synthetase.

768 *BMC Syst. Biol.* **4**, 166 (2010).

769 36. Wolfe, A. J. The acetate switch. *Microbiol. Mol. Biol. Rev.* **69**, 12–50 (2005).

770 37. Liu, H. *et al.* Butyrate: A Double-Edged Sword for Health? *Adv. Nutr.* **9**, 21–29 (2018).

771 38. Sze, M. A., Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., 4th & Schloss, P. D. Fecal
772 Short-Chain Fatty Acids Are Not Predictive of Colonic Tumor Status and Cannot Be
773 Predicted Based on Bacterial Community Structure. *MBio* **10**, (2019).

774 39. Gut microbial metabolites lower blood pressure in patients with hypertension. *Nat
775 Cardiovasc Res* **2**, 18–19 (2023).

776 40. Amiri, P. *et al.* Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular
777 Diseases: A comprehensive narrative review. *Front. Pharmacol.* **12**, 837509 (2021).

778 41. Tough, I. R., Forbes, S. & Cox, H. M. Signaling of free fatty acid receptors 2 and 3 differs in
779 colonic mucosa following selective agonism or coagonism by luminal propionate.
780 *Neurogastroenterol. Motil.* **30**, e13454 (2018).

781 42. Ulven, T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new
782 potential therapeutic targets. *Front. Endocrinol.* **3**, 111 (2012).

783 43. Coppola, S., Avagliano, C., Calignano, A. & Berni Canani, R. The Protective Role of
784 Butyrate against Obesity and Obesity-Related Diseases. *Molecules* **26**, (2021).

785 44. Babaei, P., Shoaei, S., Ji, B. & Nielsen, J. Challenges in modeling the human gut
786 microbiome. *Nat. Biotechnol.* **36**, 682–686 (2018).

787 45. Gurry, T., Nguyen, L. T. T., Yu, X. & Alm, E. J. Functional heterogeneity in the fermentation
788 capabilities of the healthy human gut microbiota. *PLoS One* **16**, e0254004 (2021).

789 46. Passi, A. *et al.* Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big

790 Data. *Metabolites* **12**, (2021).

791 47. Gasaly, N., de Vos, P. & Hermoso, M. A. Impact of Bacterial Metabolites on Gut Barrier
792 Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for
793 Intestinal Inflammation. *Front. Immunol.* **12**, 658354 (2021).

794 48. Agus, A., Clément, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators
795 in metabolic disorders. *Gut* **70**, 1174–1182 (2021).

796 49. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
797 *Bioinformatics* **34**, i884–i890 (2018).

798 50. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2.
799 *Genome Biol.* **20**, 257 (2019).

800 51. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species
801 abundance in metagenomics data. *PeerJ Comput. Sci.* **3**, e104 (2017).

802 52. Gauglitz, J. M. *et al.* Enhancing untargeted metabolomics using metadata-based source
803 annotation. *Nat. Biotechnol.* **40**, 1774–1779 (2022).

804 53. Elmadafa, I. *Österreichischer Ernährungsbericht 2012*. **1**, (2012).

805 54. Brunk, E. *et al.* Recon3D enables a three-dimensional view of gene variation in human
806 metabolism. *Nat. Biotechnol.* **36**, 272–281 (2018).

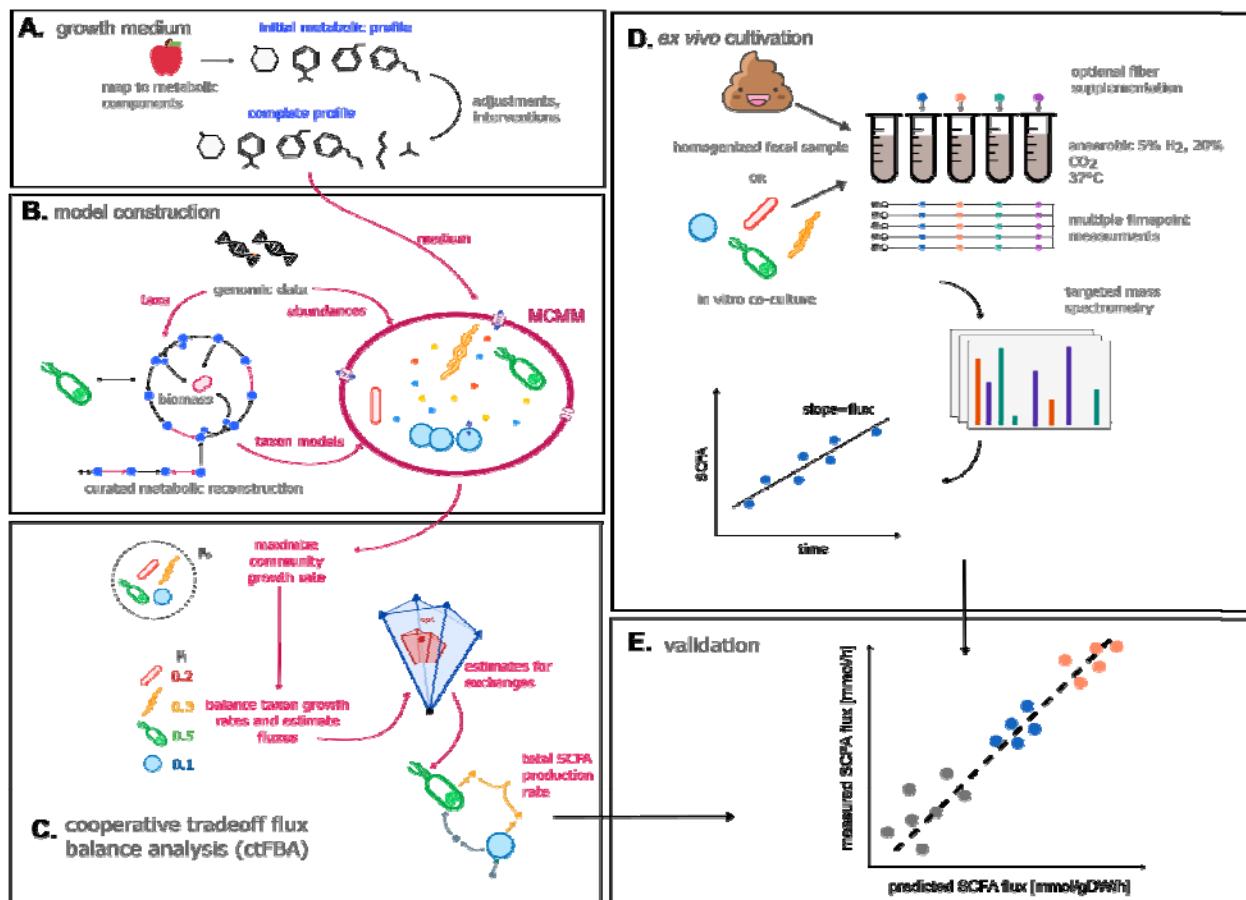
807 55. Waldmann, A., Koschizke, J. W., Leitzmann, C. & Hahn, A. Dietary intakes and lifestyle
808 factors of a vegan population in Germany: results from the German Vegan Study. *Eur. J.*
809 *Clin. Nutr.* **57**, 947–955 (2003).

810 56. Zhou, L. *et al.* *Faecalibacterium prausnitzii* Produces Butyrate to Maintain Th17/Treg
811 Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. *Inflamm.*
812 *Bowel Dis.* **24**, 1926–1940 (2018).

813 57. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful
814 approach to multiple testing. *J. R. Stat. Soc.* **57**, 289–300 (1995).

815
816
817
818
819
820
821
822
823
824

Figures and Figure Captions

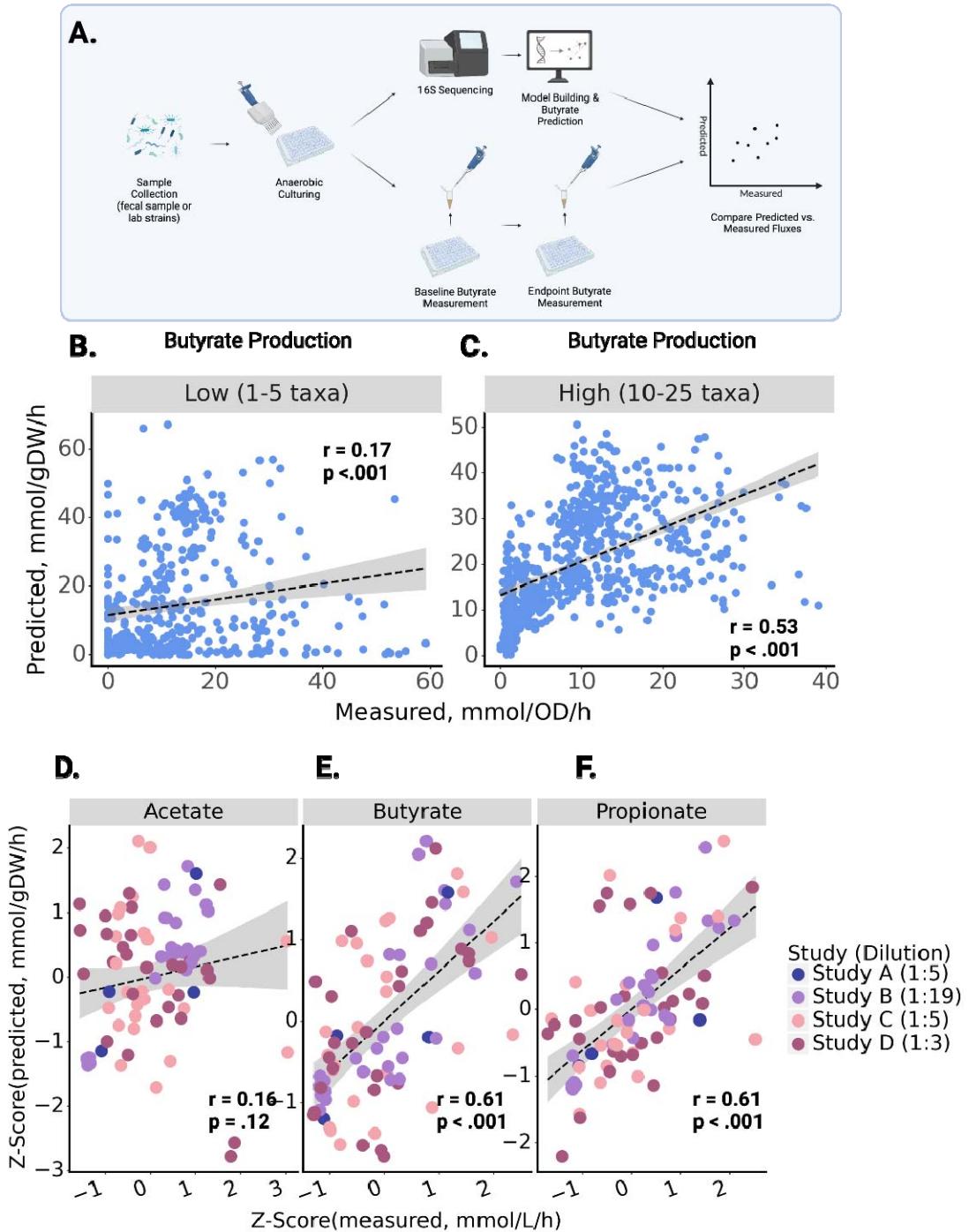


825
826 **Figure 1. Microbial community-scale metabolic models (MCMMs) predict personalized SCFA**
827 **production profiles.** Schematic of our workflow for validating MCMM-based personalized predictions
828 for SCFA production. **(A)** Prior to modeling, an *in silico* medium is constructed, containing a matched
829 diet mapped to its constituent metabolic components. The medium is depleted in compounds absorbed
830 by the host in the small intestine and augmented with other host-supplied compounds, in addition to
831 adding a minimal set of metabolites required for growth. **(B)** MCMMs are constructed, combining
832 abundance and taxonomic data with pre-curated GEMs into a community model. **(C)** Growth in the
833 MCMM is simulated through cooperative tradeoff flux balance analysis (ctFBA), yielding predicted
834 growth rates and SCFA production fluxes. **(D)** To validate predicted levels of SCFA production fluxes,
835 measured production fluxes are collected from *in vitro* communities of human gut commensals and

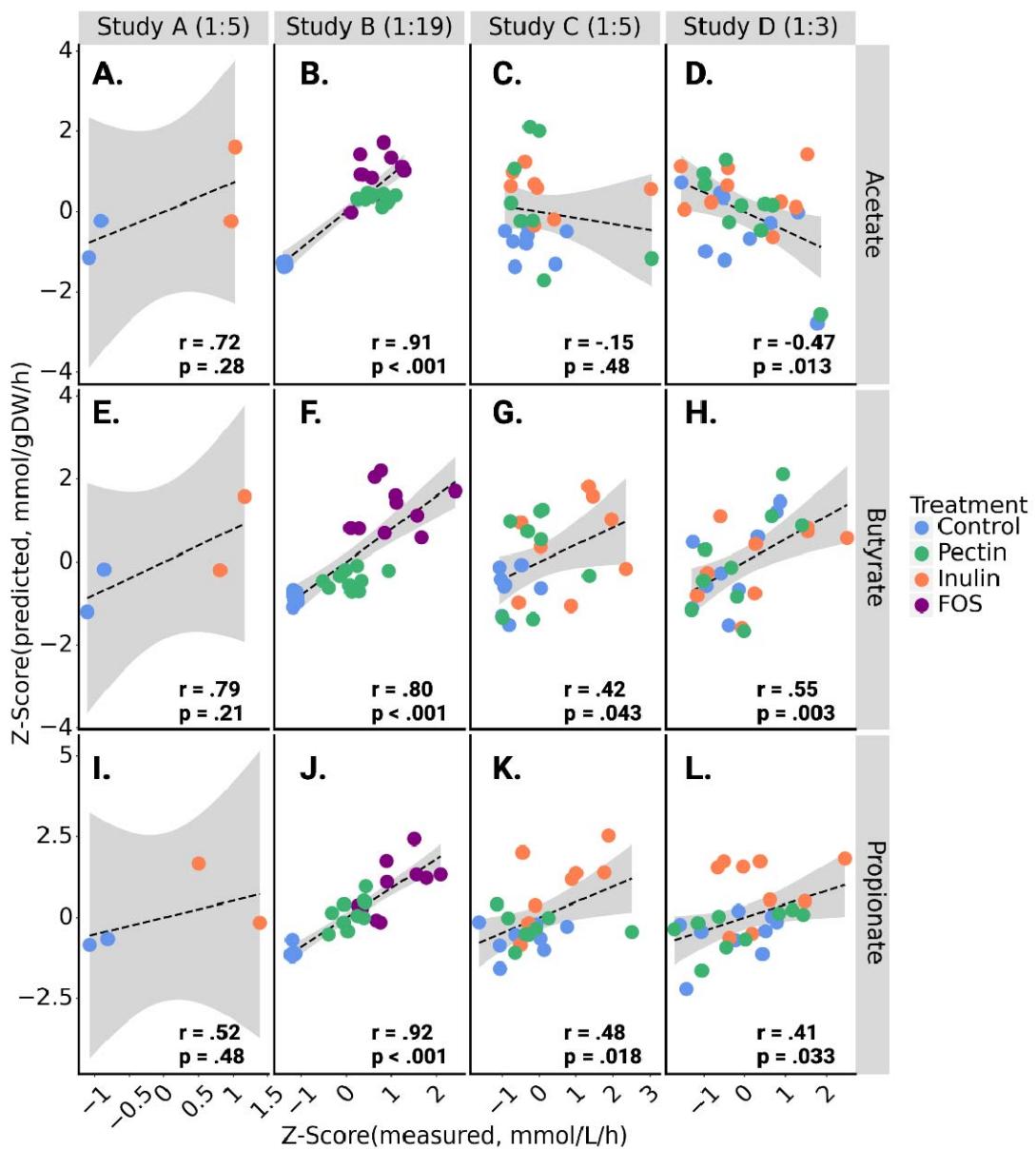
836 fecal samples cultured anaerobically *ex vivo* at 37°C over time. **(E)** Predicted and measured SCFA
837 production fluxes are compared to assess the accuracy of the model.

838

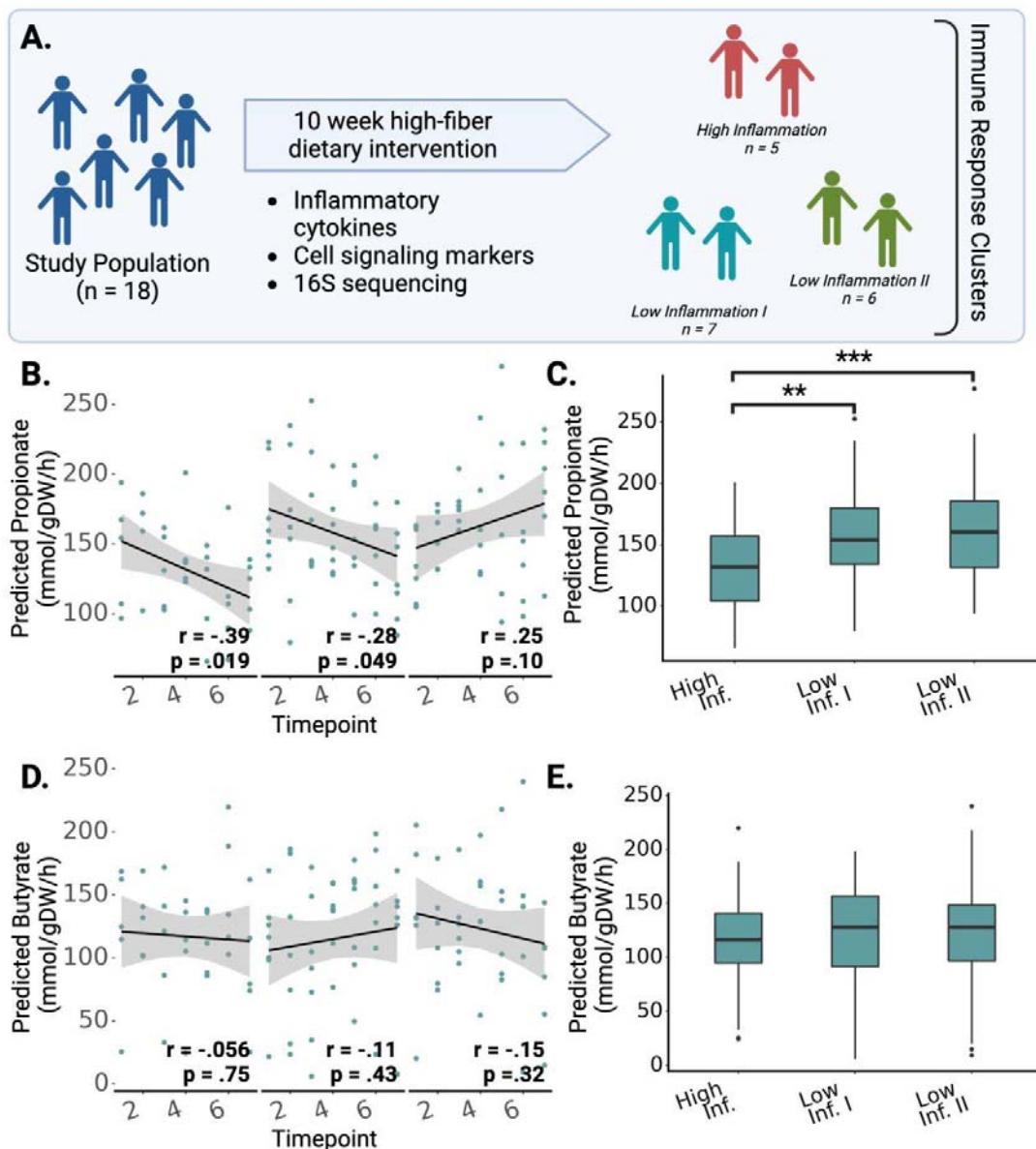
839



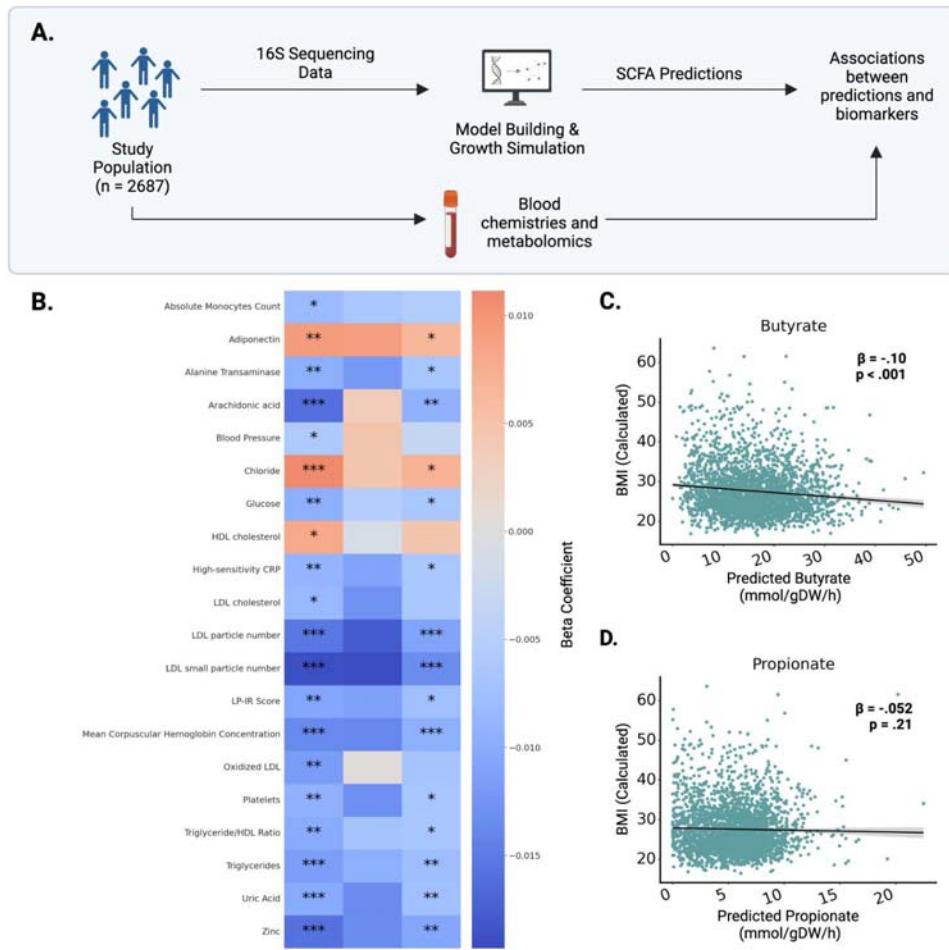
841
842 **Figure 2. Relationship between predicted and measured butyrate production rates in *in vitro* and**
843 ***ex vivo* co-cultures.** Butyrate production flux predictions from MCMMs are shown on the y-axes and
844 measured values are shown on the x-axes, along with R^2 and p-values from a Pearson's correlation **(A)**
845 *In vitro* or *ex vivo* communities were cultured anaerobically. Endpoint butyrate concentration was used
846 to calculate production flux and compared with MCMM-predicted flux. **(B)** Predicted and measured
847 butyrate fluxes in models of low richness synthetic communities (1-5 genera per model, $N = 882$). **(C)**
848 Predicted and measured butyrate fluxes in models of high richness synthetic communities (10-25
849 genera, $N = 697$). **(D-F)** Z-scored predicted and measured fluxes for acetate, butyrate and propionate,
850 across four independent *ex vivo* studies. The label in the figure legend indicates the final dilution level
851 of cultures in each study (dilution = 1: x). In (B-F) the dashed line denotes a linear model fit to the data,
852 with the surrounding shaded region indicating the 95% confidence interval.
853



855 **Figure 3. Human stool ex vivo assays show quantitative agreement between measured**
856 **and predicted SCFA production fluxes within and across fiber treatment groups.** Z-scored
857 SCFA production flux predictions from MCMMS are shown on the y-axes and Z-scored
858 measured values are shown on the x-axes. Pearson's r and associated p-value are calculated
859 for all points in a given plot. Color encoding indicates the specific fiber treatment given to each
860 sample. The dashed line denotes a linear regression line and the gray area denotes the 95%
861 confidence interval of the regression. Residual fiber in the media used to simulate growth of
862 each study was scaled according to the dilution factor, shown next to the study name in each
863 column **(A-D)** Z-scored predictions compared with z-scored measurements of acetate
864 production across all four studies. **(E-H)** Z-scored predictions compared with z-scored
865 measurements of butyrate production across all four studies. **(I-L)** Z-scored predictions
866 compared with z-scored measurements of propionate production across all four studies.



868 **Figure 4. Predicted SCFA production profiles were associated with variable immune**
869 **response groups following a high-fiber dietary intervention. (A)** Summary of the study from
870 Wastyk et al.³¹, where a cohort of 18 individuals participated in a 10-week high-fiber dietary
871 intervention. Immune profiling based on circulating inflammatory cytokines and immune cells
872 clustered individuals into three groups: two low-inflammation groups and one high-inflammation
873 group. **(B)** Total predicted propionate production at each timepoint across the three immune-
874 response groups identified in the original study. **(C)** Average predicted propionate production
875 rates, stratified by immune response group **(D)** Total predicted butyrate production at each
876 timepoint across the three immune-response groups identified in the original study. **(E)** Average
877 predicted butyrate production rates, stratified by immune response group. In (B-E) stars denote
878 significance under a Mann-Whitney U-test, * = p<0.05, ** = p< 0.01, *** = p<0.001.

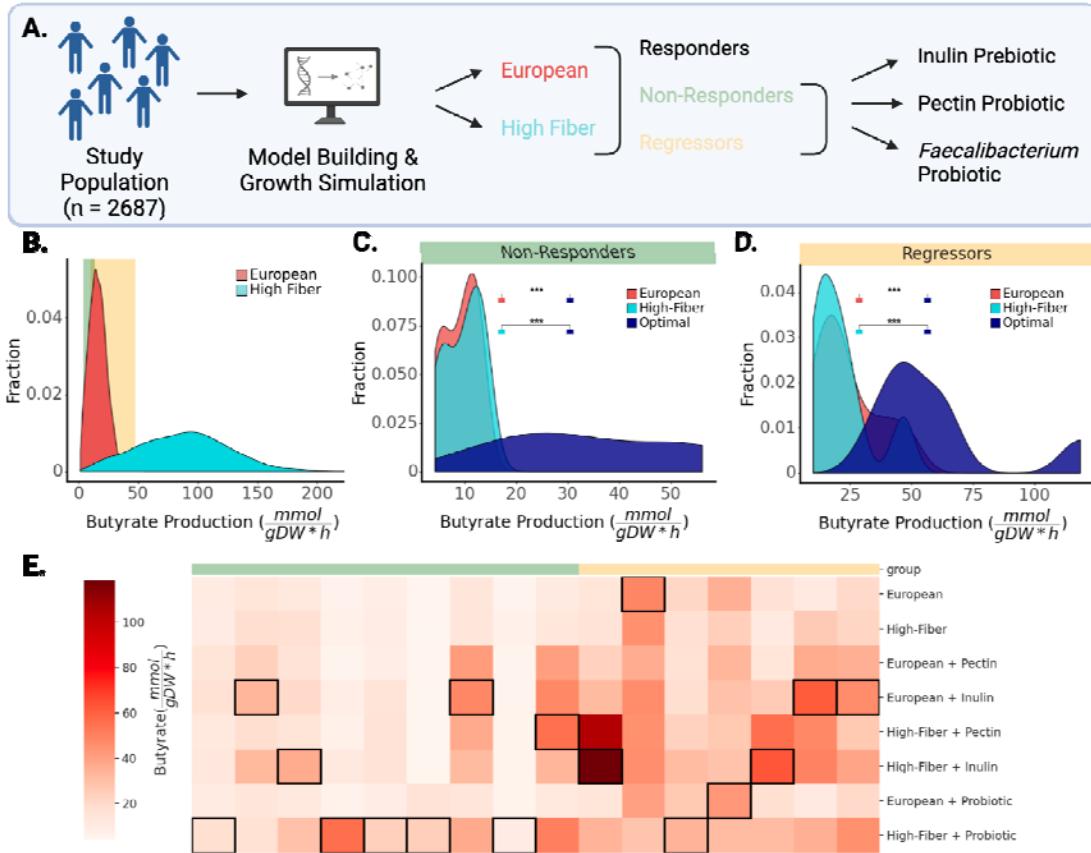


879
880

881 **Figure 5. SCFA flux predictions are significantly associated with blood-derived clinical**
882 **markers. (A)** MCMMs were constructed for 2,687 Arivale participants, assuming an average
883 European diet, to predict SCFA production profiles. SCFA predictions were regressed against a
884 set of 128 blood-based clinical labs and health markers, with sex, age, and sequencing vendor
885 as covariates in the regressions. **(B)** Heatmap showing the 20 significant associations (FDR-
886 corrected t-test p<0.05) between measured blood markers and predicted SCFA production
887 rates. **(C-D)** Predictions for butyrate were significantly correlated with reported BMI

888 measurements for respective participants, but not for propionate. Each dot denotes an individual
889 model reconstructed for a single sample in the Arivale study ($N = 2,687$). The black line denotes
890 a linear regression line and the gray area denotes the 95% confidence interval of the
891 regression. β -coefficients were calculated from multiple regression accounting for age, sex and
892 microbiome sequencing vendor.

893
894
895



896

897 **Figure 6. Microbial MCMMs can be used to design and select personalized prebiotic,**
898 **probiotic, and dietary interventions aimed at optimizing SCFA production profiles. (A)**
899 **MCMMs built from the Arivale cohort ($N = 2,687$) were used to test personalized responses to**
900 **dietary interventions. Personalized models were simulated on an average European diet, as**
901 **well as on a high-fiber diet, and divided into responders, non-responders, and regressors, based**
902 **on the changes in predicted butyrate production in response to increasing dietary fiber. Non-**
903 **responders were defined as individuals who produced less than 15 mmol/gDW*h of butyrate on the**
904 **European diet and showed an increase of less than 20% in butyrate production on the high-fiber**
905 **diet. Regressors were defined as individuals who showed a decline in butyrate production on**
906 **the high-fiber diet when compared to the European diet. Single-fiber and probiotic interventions**
907 **were applied to non-responders and regressors. (B) Distribution of butyrate production rates on**
908 **two different diets simulated for all participants in the study. Butyrate production ranges that**
909 **contain non-responders ($N = 9$) and regressors ($N = 7$) are highlighted in green and yellow**
910 **shaded areas, respectively. (C) Distributions of butyrate production rates for the non-responder**
911 **group ($N = 9$). The optimal intervention resulting in the highest butyrate production is shown in**

912 blue. **(D)** Butyrate production rates for the regressor group (N = 7). The optimal intervention that
913 resulted in the highest butyrate production is shown in blue. **(E)** Heatmap of butyrate production
914 rates across simulated interventions for the individuals in the non-responder and regressor
915 groups. Rows denotes specific interventions, columns denote individuals in the response groups
916 (N = 16). Cell shading (white-to-red) denotes butyrate production rate. Added interventions
917 tested on both non-responders and regressors included probiotic supplementation (inulin or
918 pectin) as well as prebiotic supplementation (5% relative abundance *Faecalibacterium*). The
919 most successful intervention for each individual is denoted by a black border around that cell in
920 the corresponding column.

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

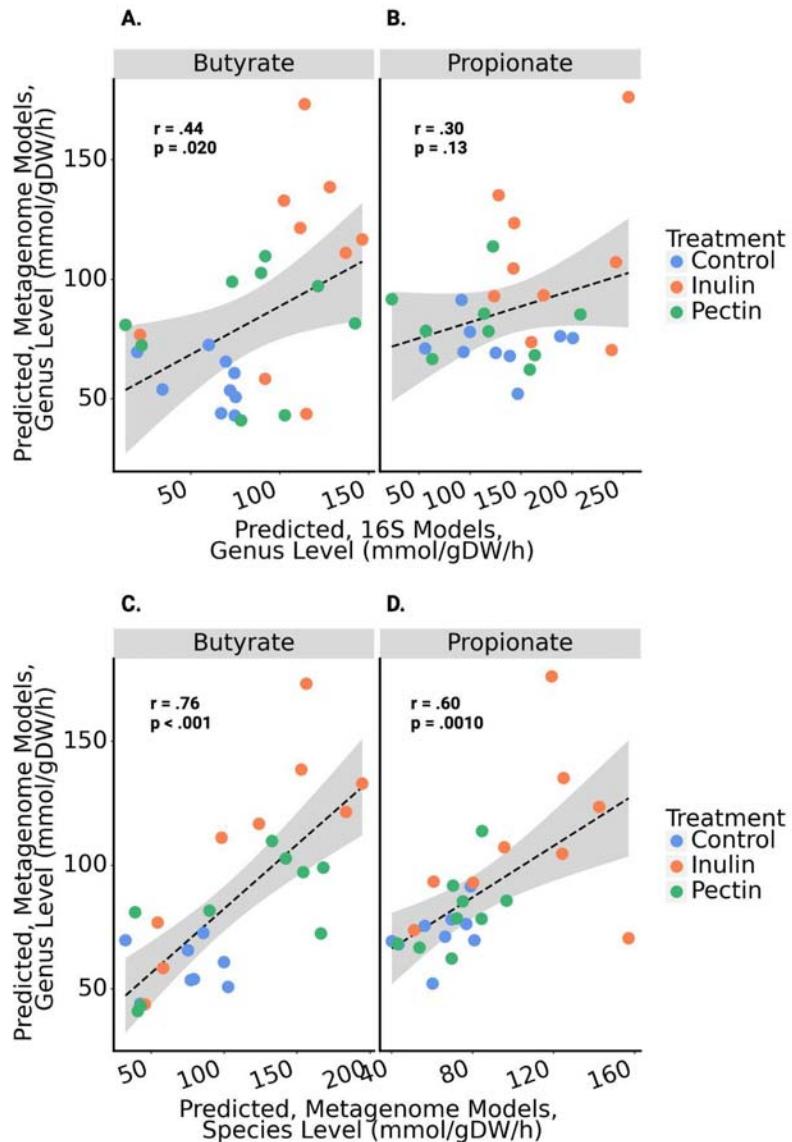
958

959

960

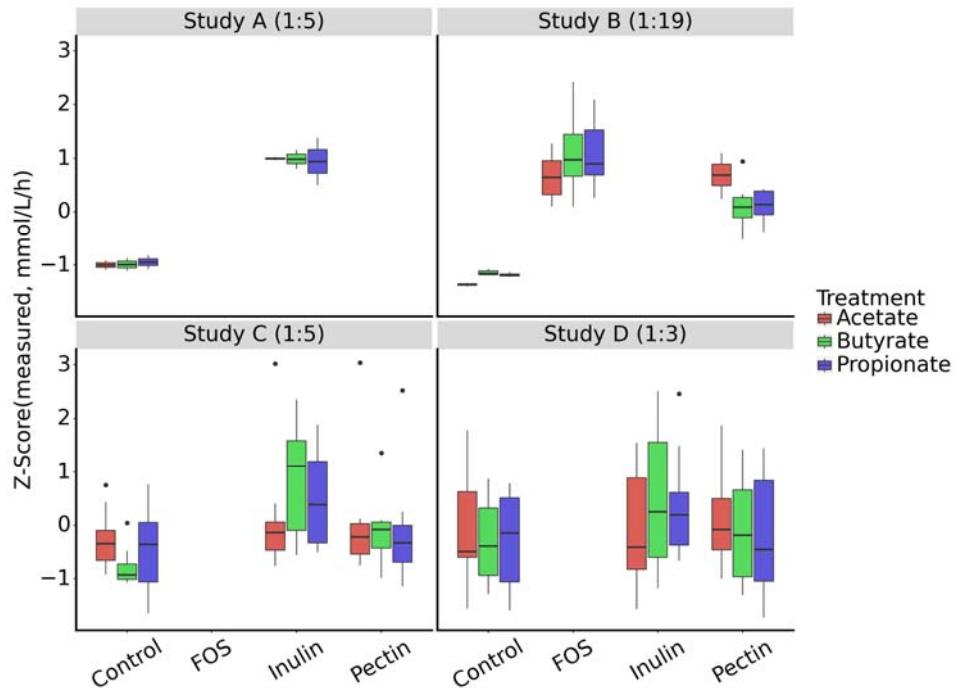
961

Supplemental Figures and Captions

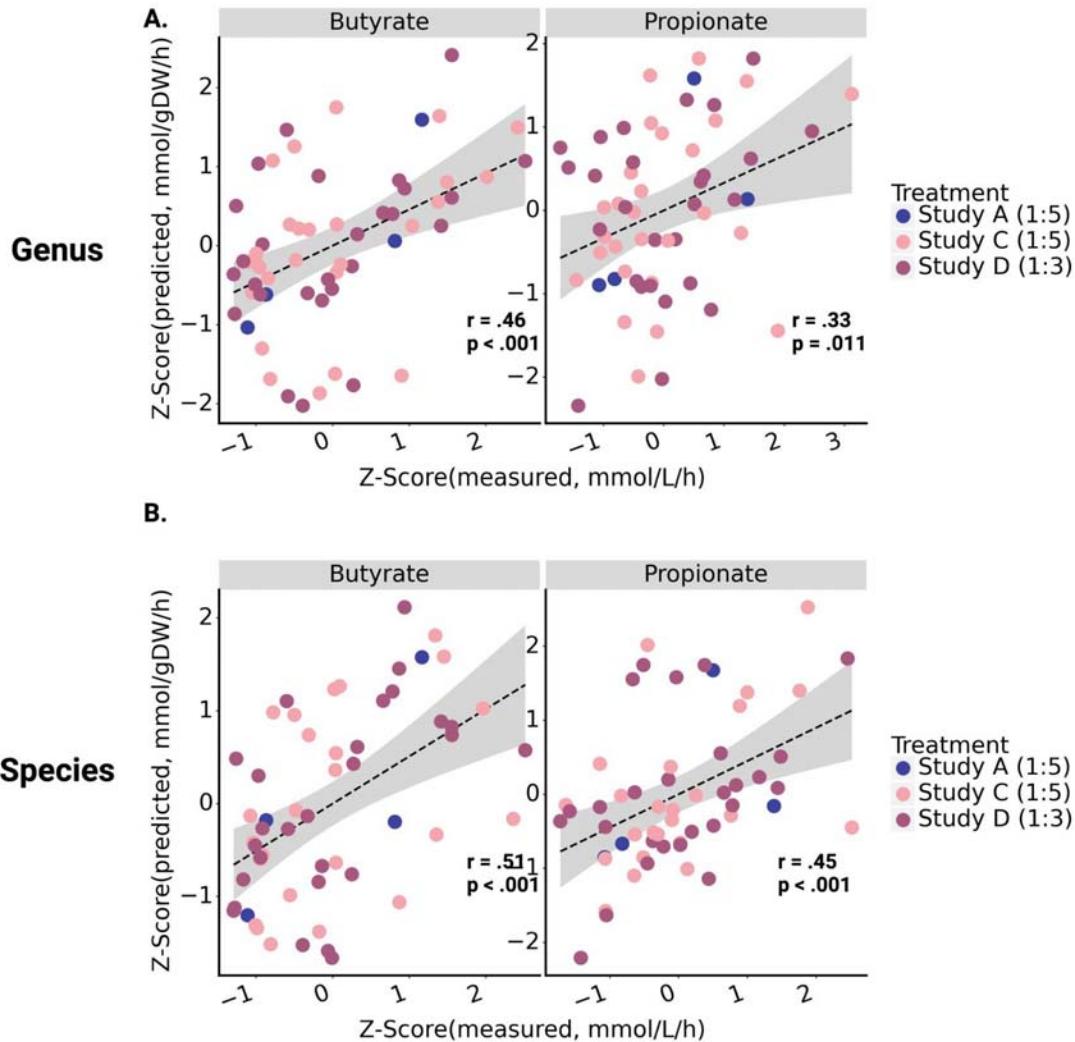


962
963
964
965
966
967
968
969
970
971

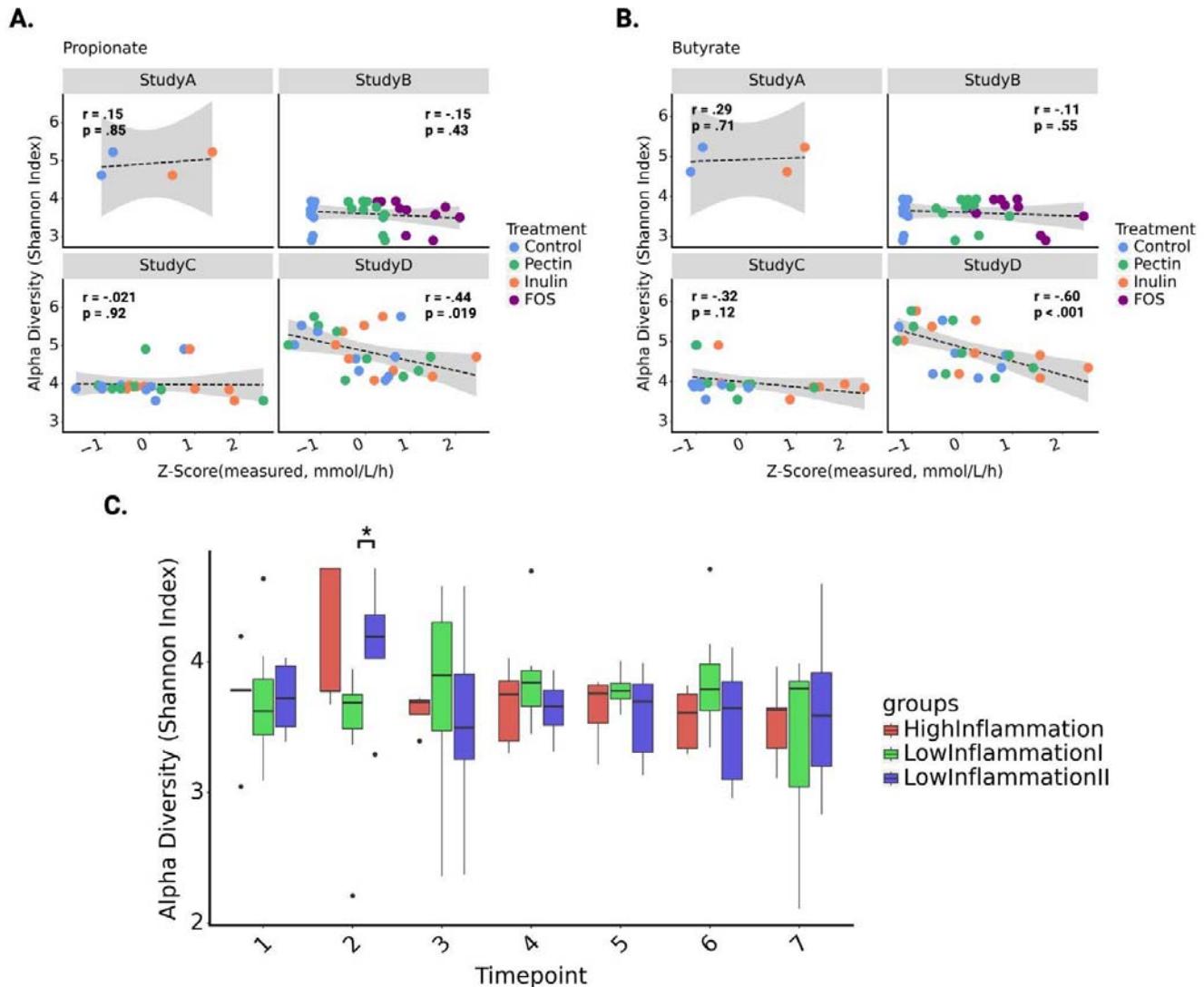
Figure S1. Predictions of SCFA production using 16S amplicon sequencing or shotgun metagenomic sequencing data show concordance. Data from Study C included 16S amplicon sequencing as well as shotgun metagenomic sequencing. The black line denotes a linear regression line and the gray area denotes the 95% confidence interval of the regression. Color encoding indicates the specific fiber treatment given to each sample. **(A-B)** Predictions for butyrate and propionate between models summarized to the genus level from 16S amplicon sequencing data and shotgun metagenome data. **(C-D)** Predictions for butyrate and propionate from models built using shotgun metagenome data at the genus level and species level.



972
973 **Figure S2. Divergence in SCFA production between controls and fiber-treated samples is**
974 **related to culture dilution.** Four independent ex vivo studies were used to validate predictions
975 of MCMMs. Each study used a different dilution for the final culture, changing the scale of
976 substrates available to the microbial communities. Illustrated here, the dilution factor, shown
977 next to the study name, seems to show agreement with the divergence in SCFA production
978 between control samples and fiber-treated samples. This was accounted for by diluting the
979 residual fiber available to the microbial communities in the *in silico* medium.

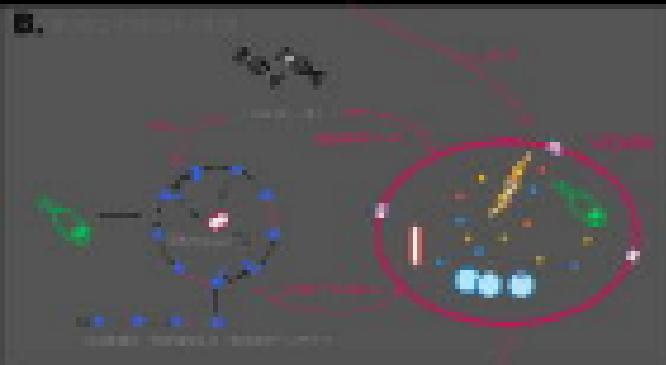
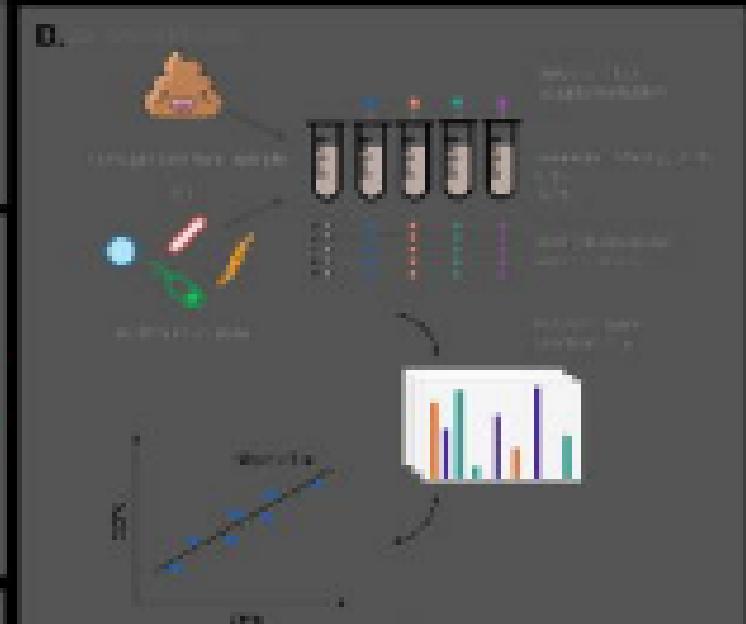


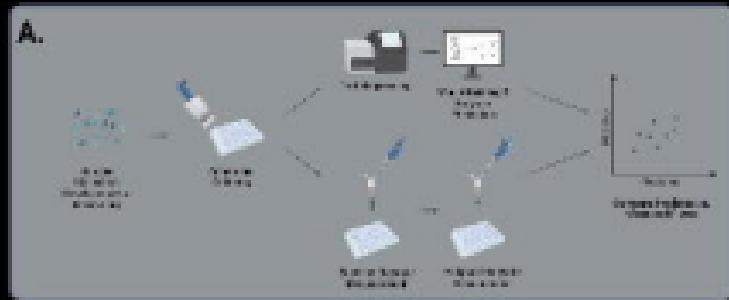
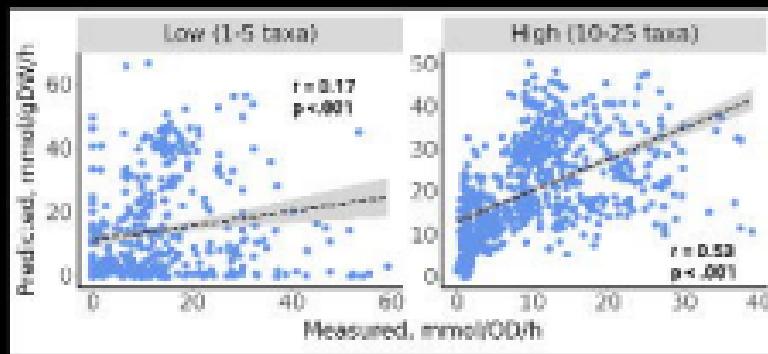
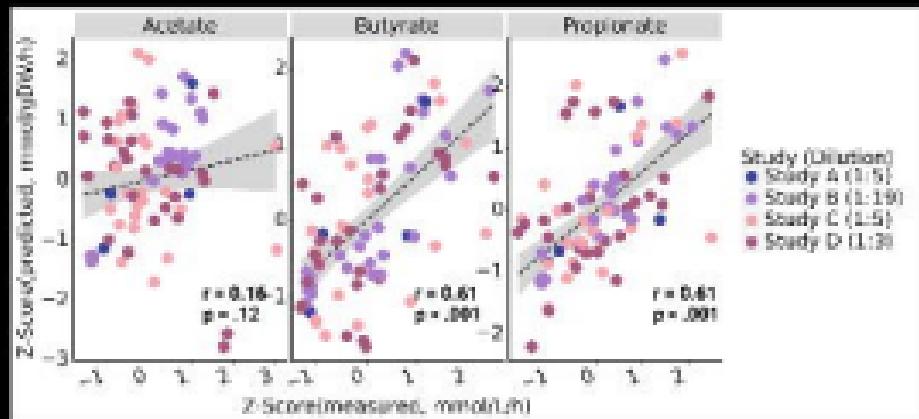
980
981 **Figure S3. MCMMs built from shotgun metagenomic sequencing data perform better**
982 **when constructed at the species level, as compared to the genus level.** MCMMs from ex
983 vivo studies A, C and D were constructed at the (A) genus and (B) species level. Prediction
984 production rate of butyrate and propionate more closely matched measured production rate in
985 the species level model as compared to the genus level model. The black line denotes a linear
986 regression line and the gray area denotes the 95% confidence interval of the regression. Color
987 encoding indicates the specific treatment from which Pearson r and associated p -value were
988 calculated for each panel.
989
990

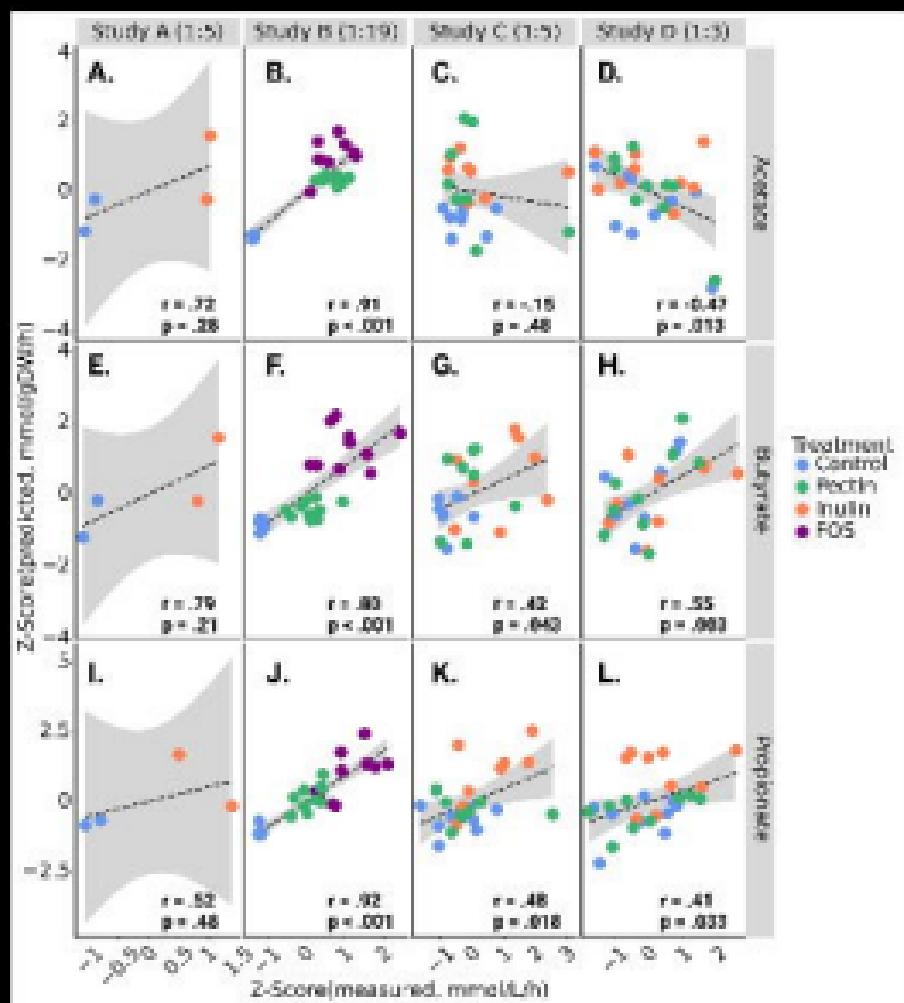


991
992

993 **Figure S4. Alpha diversity of communities does not account for differences in SCFA**
 994 **production.** We compared Shannon index, a measure of alpha diversity, against SCFA
 995 production in ex vivo communities, as well as between immune response groups in a
 996 longitudinal high fiber study. **(A)** Propionate production in four ex vivo datasets was not
 997 consistently explained by alpha diversity. In study D, a significant relationship was observed as
 998 determined by t-test ($p < 0.05$), but this was not consistent between datasets. The black line
 999 denotes a linear regression line and the gray area denotes the 95% confidence interval of the
 1000 regression. Color encoding denotes the specific fiber treatment that was given to each sample
 1001 **(B)** Butyrate production also showed no consistent correlation with alpha diversity, although a
 1002 significant difference was again observed within Study D as determined by t-test ($p < 0.05$). **(C)**
 1003 No consistent pattern emerged with regard to alpha diversity between immune response groups
 1004 throughout the course of the high fiber dietary intervention, as determined by Mann Whitney U
 1005 test for significance. In C, * = $p < 0.05$.



A.

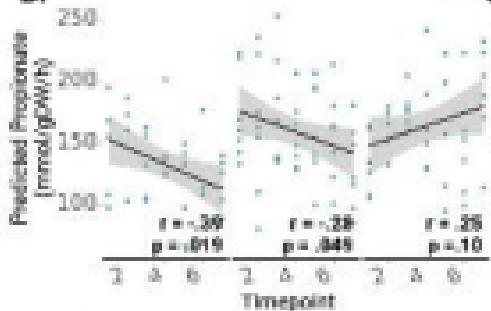
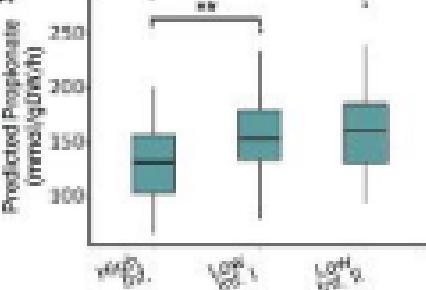
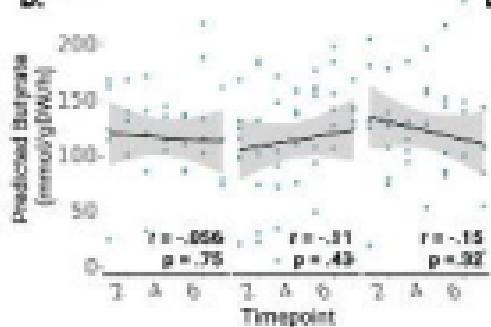
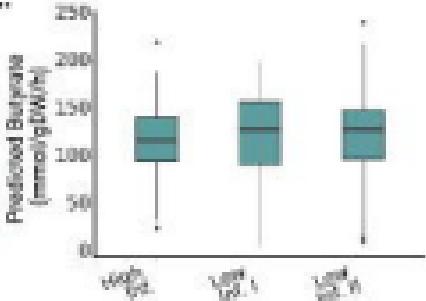


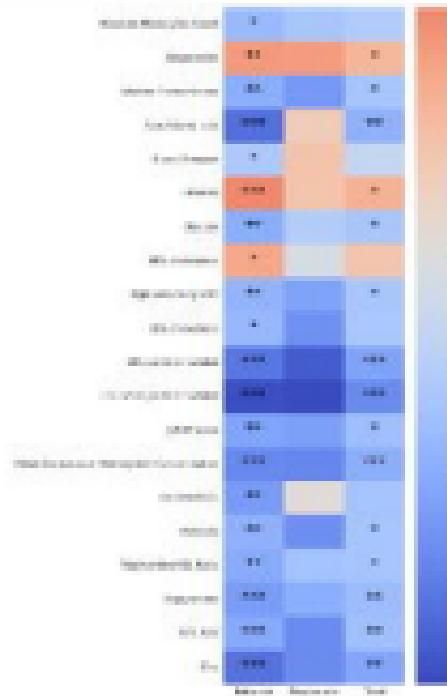
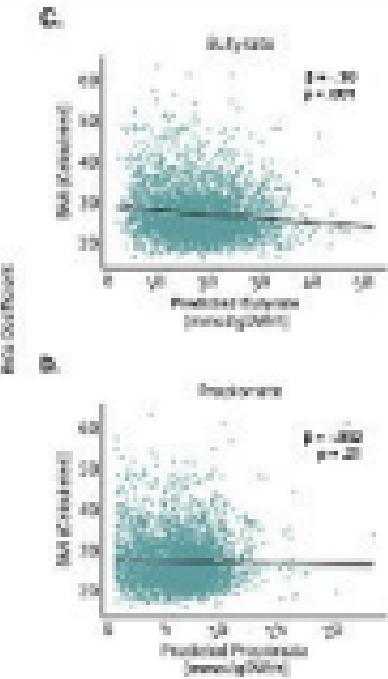
A.

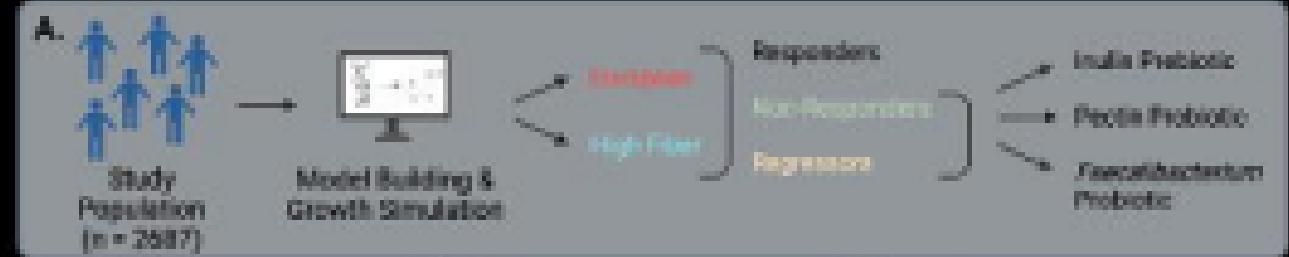
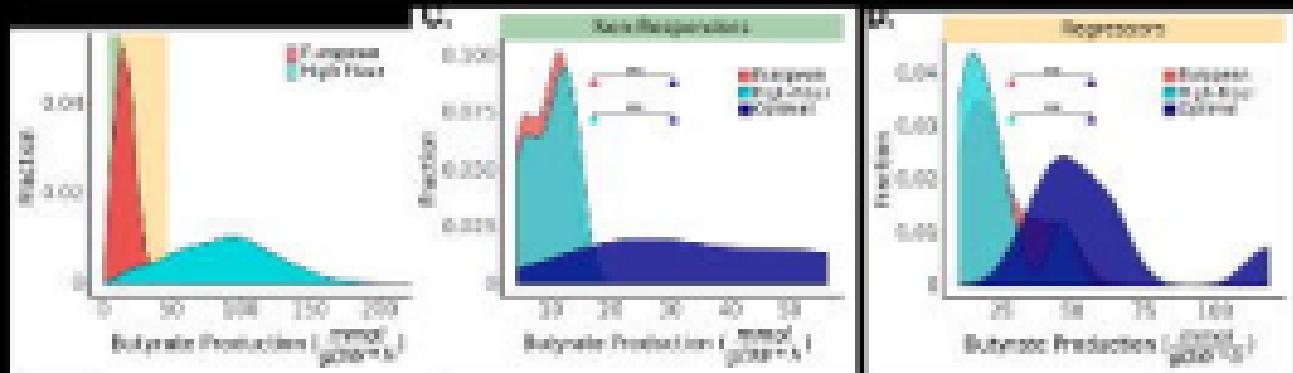
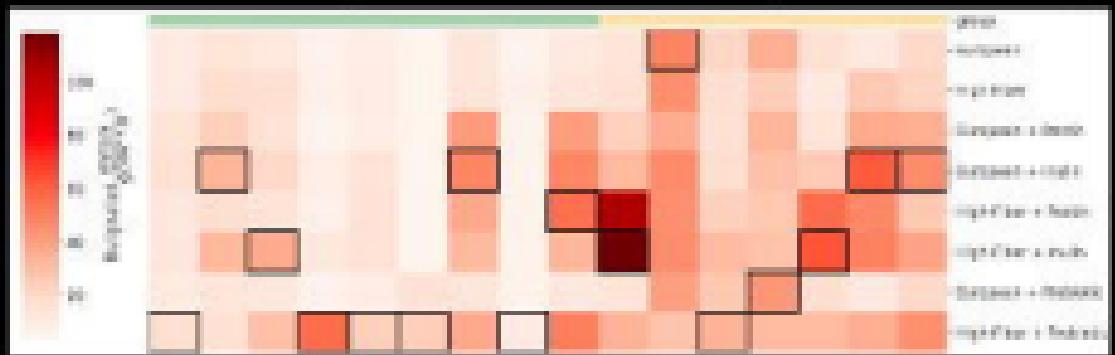
10 week high-fiber
dietary intervention

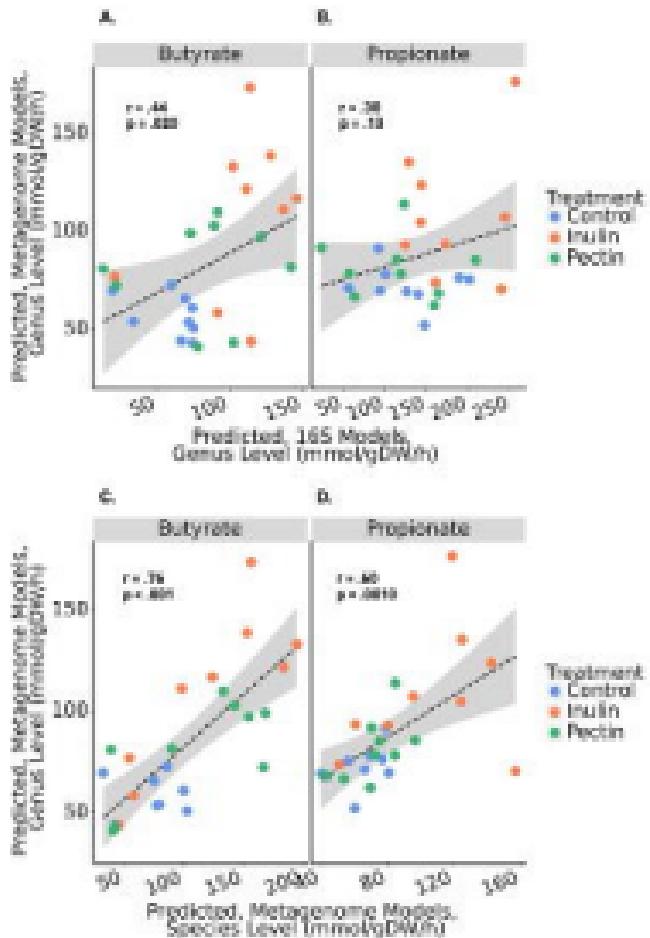
- Inflammatory cytokines
- Cell signaling markers
- 16S sequencing

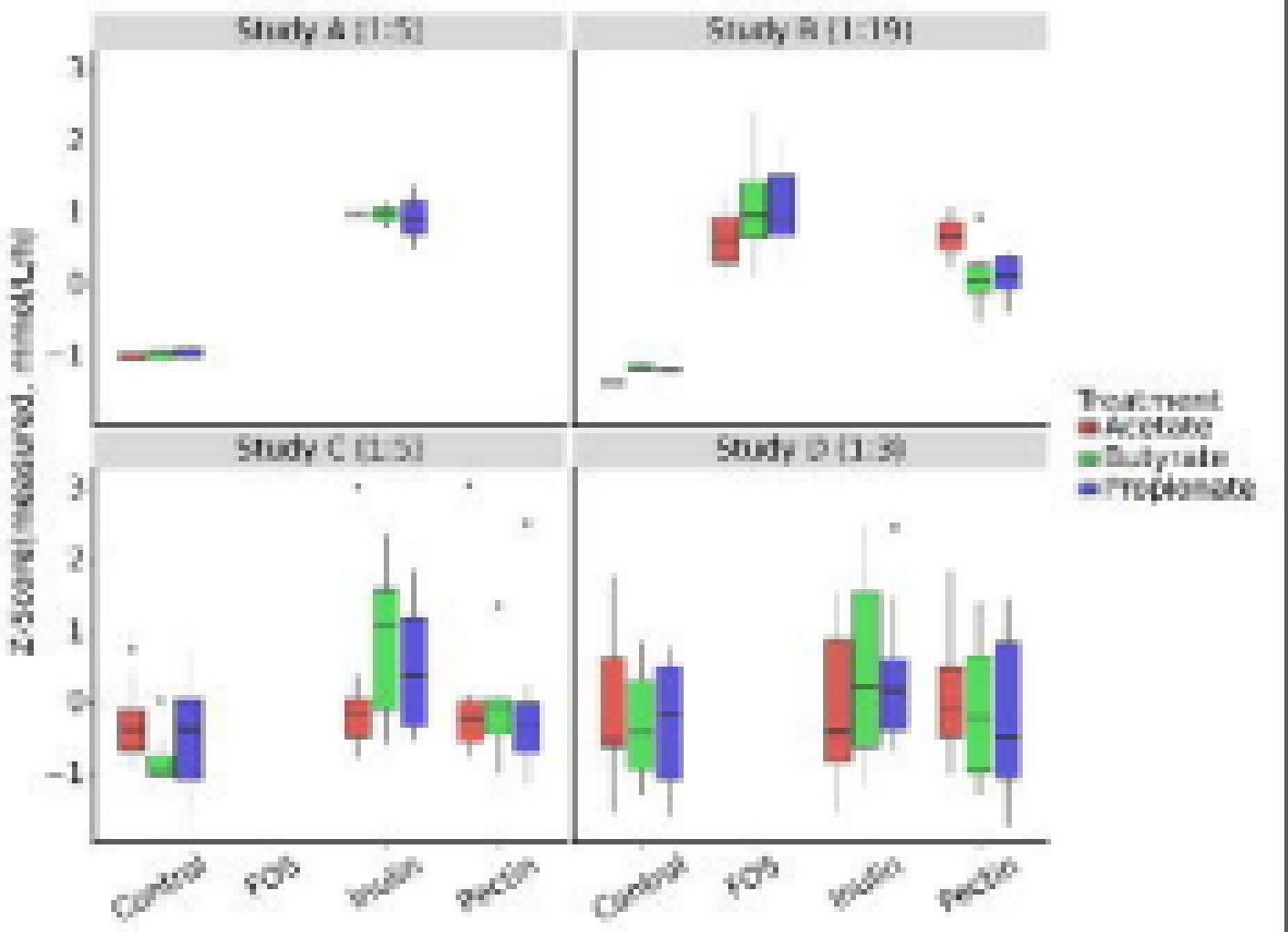
Health Outcome Cluster

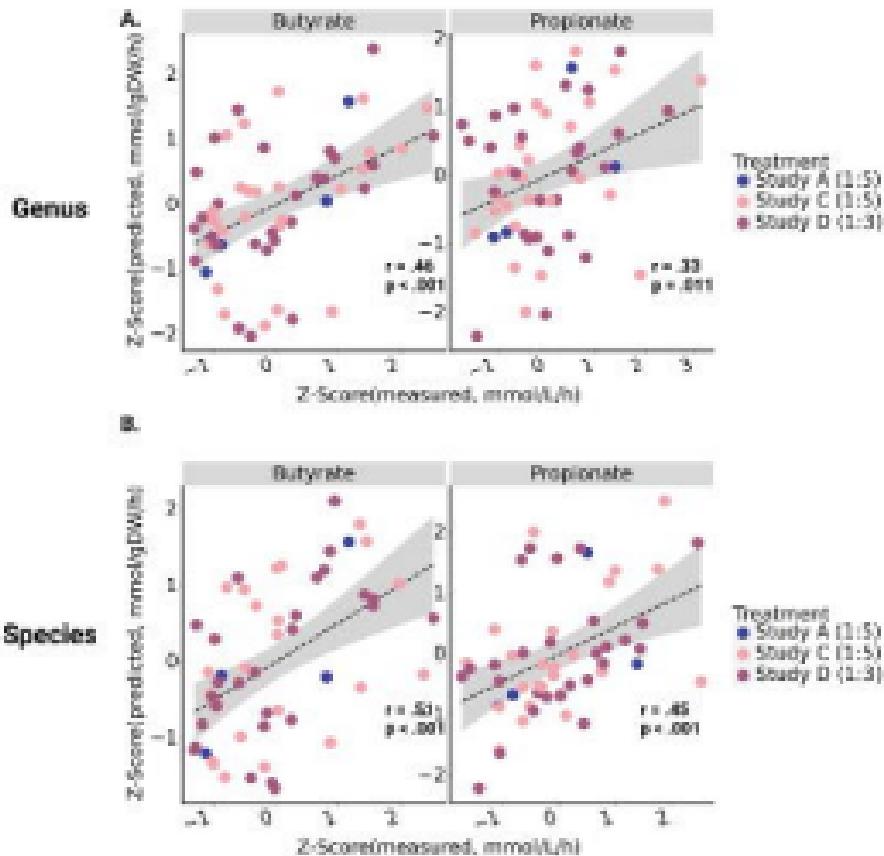
B.**C.****D.****E.**

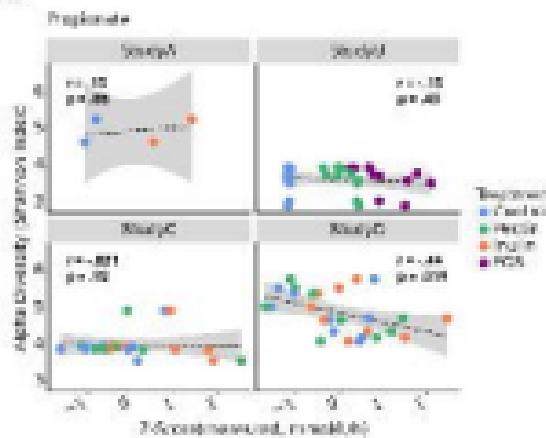
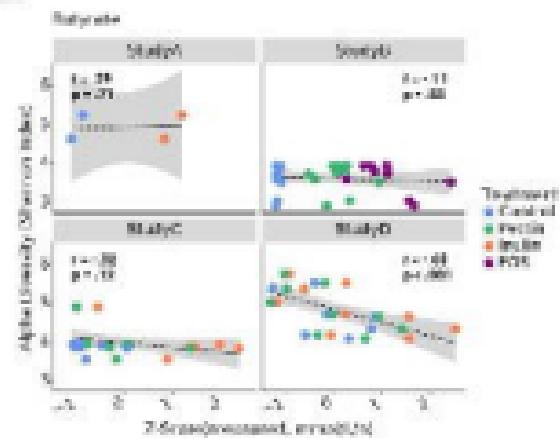
A.**B.**









A.**B.****C.**