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Abstract

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host
metabolism, immune regulation, and integrity of the intestinal epithelium. However, the
production of SCFAs can vary widely between individuals consuming the same diet, with lower
levels often associated with disease. A systems-scale mechanistic understanding of this
heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM)
approach to predict individual-specific SCFA production profiles. We assess the quantitative
accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM
SCFA predictions are significantly associated with blood-derived clinical chemistries, including
cardiometabolic and immunological health markers, across a large human cohort. Finally, we
demonstrate how MCMMSs can be leveraged to design personalized dietary, prebiotic, and
probiotic interventions that optimize SCFA production in the gut. Our results represent an
important advance in engineering gut microbiome functional outputs for precision health and
nutrition.
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The human gut microbiota serves many functions: maintaining intestinal barrier function,
regulating peripheral and systemic inflammation, and breaking down indigestible dietary
components and host substrates into a wide range of bioactive compounds 2. One of the
primary mechanisms by which the gut microbiota impacts human health is through the
production of small molecules that enter the circulation and are absorbed and transformed by
host tissues *°. Approximately half of the metabolites detected in human blood are significantly
associated with cross-sectional variation in gut microbiome composition °.

Short chain fatty acids (SCFAs) are among the most abundant metabolic byproducts
produced by the gut microbiota, largely through the fermentation of indigestible dietary fibers
and resistant starches, with acetate, propionate and butyrate being the most abundant SCFAs "~
°. Deficits in SCFA production, specifically butyrate and propionate, have been repeatedly
associated with disease, including inflammatory bowel disease and colorectal cancer ***°.
Therefore, SCFA production is a crucial ecosystem service that the gut microbiota provides to

its host, with extensive impacts on health »**°'"_ However, different human gut microbiota

18,19’ and

provided with identical dietary substrates can show variable SCFA production profiles
predicting this heterogeneity remains a fundamental challenge to the microbiome field.
Measuring SCFA abundances in blood or feces is rarely informative of in situ production rates,
due to the volatility of SCFAs, cross-feeding among microbes, and the rapid consumption and
transformation of these metabolites by the colonic epithelium *?*?' | Furthermore, SCFA
production fluxes (i.e., the amount of a metabolite produced over a given period of time) within
an individual can vary longitudinally, depending upon dietary inputs and the availability of host
substrates ?%. In order to account for this inter- and intra-individual heterogeneity, we propose
the use of microbial community-scale metabolic models (MCMMSs), which mechanistically
account for metabolic interactions between gut microbes, host substrates, and dietary inputs, to

estimate personalized, context-specific SCFA production profiles.
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Statistical modeling and machine-learning approaches for predicting metabolic output
from the microbiome have shown promising results in recent years. For example, postprandial
blood glucose responses can be predicted by machine-learning algorithms trained on large
human cohorts ****. Nevertheless, machine-learning methods are limited by the measurements
and interventions represented within the training data ?°>. Mechanistic models like MCMMs, on
the other hand, do not rely on training data and can provide causal insights *. Metabolic
modeling of individual commensal taxa has been used to predict plasma concentrations of
microbially derived metabolites % hut these methods have not been extended to diverse, real-
world microbiomes. MCMMs can be constructed using existing knowledge bases, including
curated genome-scale metabolic models (GEMs) of individual taxa ?’. MCMMs are limited by
the availability of well-curated GEMs for abundant taxa present within every individual in a
population and by information on individual-specific dietary variation. These limitations are
further exacerbated in human populations that are generally underrepresented in microbiome
research, where our databases are also less representative 2 However, as our knowledge
bases grow, so too will the power and scope of MCMMs. Overall, MCMMs have the potential to
serve as powerful, transparent, knowledge-driven tools for predicting community-specific
responses to a wide array of interventions or perturbations.

Here, we demonstrate the utility of MCMMs for the prediction of personalized SCFA
production profiles in the context of different dietary, prebiotic, and probiotic inputs. We first
validate our modeling platform using diverse synthetic in vitro gut microbial communities (N =
1,387) and ex vivo stool incubation assays (N = 29). Next, we investigate the relevance of this
modeling strategy in vivo using data from a 10-week high-fiber dietary intervention cohort (N =
18), where individuals showed a variety of immune responses. We assess the clinical
significance of these precision SCFA predictions by looking at associations between predicted

SCFA production on an average European diet and a panel of blood-based clinical lab tests in a
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95 large human cohort (N = 2,687). Finally, we demonstrate the potential power of MCMMs in

96 designing personalized prebiotic, probiotic, and dietary interventions that optimize predictions

97 for individual-specific butyrate production rates.

98

99 Results
100 MCMMs capture SCFA production rates in vitro
101  Details on the origin and composition of each dataset used in these analyses can be found in
102  the supplement (Table S1).
103 We sought to investigate whether MCMMs can predict production rates of the major
104 SCFAs (i.e., acetate, propionate, and butyrate) under controlled experimental conditions (Fig.
105 1). Growth media, matching the environmental context of each experiment, were constructed
106  and applied as bounds on metabolic import to MCMMs (Fig. 1A), which were concurrently
107  constructed by combining manually-curated GEMs from the AGORA database * using MICOM
108 2!, constraining taxon abundances using 16S amplicon or shotgun metagenomic sequencing
109 relative abundance estimates (Fig. 1B). Sample-specific metabolic models were then solved
110 using cooperative tradeoff flux balance analysis (ctFBA), a previously-reported two-step
111  quadratic optimization strategy that yields empirically-validated estimates of the steady state
112  growth rates and metabolic uptake and secretion fluxes for each taxon in the model * (Fig. 1C,
113  see Materials and Methods). Models constructed from 16S amplicon sequencing data were
114 summarized at the genus level, which was the finest level of phylogenetic resolution that the
115 data allowed for. When shotgun metagenomic sequencing data were available, models were
116  constructed at the species level. Models constructed from both 16S and shotgun metagenomic
117  data at the species and genus levels showed highly consistent results (Fig. S1). Measured

118 SCFA production profiles from synthetic in vitro community and stool ex vivo experiments (Fig.
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1D) were compared to paired SCFA flux predictions from MCMMs to validate the accuracy of
the models.

First, we looked at published data from synthetically constructed communities of
bacterial commensals isolated from the human gut *. This data set included endpoint
measurements of relative microbial abundances, derived from 16S amplicon sequencing,
measured endpoint butyrate concentrations, and the overall optical density for each of 1,387
independent co-cultures (Fig. 2A). Cultures varied in richness from 1-25 strains. MCMMs were
constructed for each co-culture as described above, simulating growth of each of the models
using a defined medium mapped to a database of metabolic constituents, matching the
composition of the medium used in the in vitro experiments (see Materials and Methods).
Model-predicted butyrate fluxes were compared with calculated butyrate production rates
(endpoint butyrate divided by culturing time, assuming no butyrate at the start of growth,
normalized to total biomass using OD600), stratifying results into low richness (1-5 genera) and
high richness (10-25 genera) communities. Model predictions for butyrate production fluxes
were significantly correlated with measured butyrate production fluxes across all communities
(Pearson’s correlation; Low Richness: r = 0.17, p < 0.001; High Richness: r = 0.53, p < 0.001),
but the predictions were more accurate in the higher richness communities (Fig. 2B-C).

Next, we compared MCMM predictions to anaerobic ex vivo incubations of human stool
samples from a small number of individuals (N = 29), cultured after supplementation with sterile
PBS buffer or with different dietary fibers across four independent studies. Study A contained
samples from two donors cultured for 7 hours with a final dilution of 1:5, Study B *® contained
samples from 10 donors cultured for 24 hours diluted 1:19, Study C contained samples from 8
donors cultured for 4 hours diluted 1:5, and Study D contained samples from 9 donors cultured
for 6 hours diluted 1:3. Fecal ex vivo assays allow for the direct measurement of bacterial SCFA

production fluxes without interference from the host. For all three studies, ex vivo incubations
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144  were performed by homogenizing fecal material in sterile buffer under anaerobic conditions,
145  adding control or fiber interventions to replicate fecal slurries, and measuring the resulting SCFA
146  production rates in vitro at 37°C (see Materials and Methods). Metagenomic (Studies A, C and
147 D) or 16S amplicon (Study B) sequencing data from these ex vivo cultures were used to

148  construct MCMMs, using relative abundances as a proxy for relative biomass for each bacterial
149  taxon (see Materials and Methods). MCMMs were simulated using a diluted standardized

150 European diet (i.e., to approximate residual dietary substrates still present in the stool slurry),
151  with or without specific fiber amendments, matching the experimental treatments (see Material
152  and Methods). Within studies, the divergence in measured SCFA production between control
153 samples and fiber-treated samples seemed to be highly dependent upon the final dilution of the
154  exvivo cultures (Fig. S2). This was accounted for by matching the dilution of residual fiber

155  (starch, cellulose and dextrin) in the medium used for growth simulation to the corresponding
156  study. For instance, Study A was diluted 1:5, so the residual fiber in the medium used to

157  simulate growth for these samples was diluted by a factor of 5. The resulting SCFA flux

158  predictions were then compared to the measured fluxes. MCMM fluxes are given in units of
159  mmol/gDW/h, while measured production fluxes are given in mmol/L/h. Without knowledge of
160 the live-cell biomass within the fecal homogenates, it was not possible to normalize the units
161  across the two axes, but the predicted and measured values were expected to be proportional.
162  To overcome study-specific differences in protocols and allow for comparison of results across
163  studies, we Z-scored both measured and predicted SCFA production fluxes within each data set
164 (Fig. 2D-F). We observed a similar degree of agreement between MCMM-predicted and

165 measured production fluxes for butyrate and propionate across all four ex vivo data sets (Fig.
166 2E-F). The model was notably less capable of accurately predicting differences in acetate

167  production between individuals, with no significant association seen (Fig. 2-3). Significant

168 agreement was observed between measured and predicted production fluxes of butyrate and
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propionate within each individual data set (r =0.41-0.97, Pearson test, p<0.05) with the
exception of propionate in Study A, which had a very limited sample size (N = 2) (Fig. 3E-L).
Notably, the correlation coefficient (Pearson r) for these associations was similar to that seen in
the high-richness in vitro cultures (Fig. 2C). As previously seen, the prediction of acetate was
worse, most notably in studies C and D, where no significant prediction was observed. In
studies A and B, acetate production was more readily predicted, likely due to a strong
treatment-effect (Fig. 3A-D). Within treatment groups, similar correlations were observed,
though statistical power was severely limited by the smaller sample sizes (Table S2).
Predictions from models built with shotgun metagenomic sequencing data showed slightly better
results when constructed at the species level, as compared to building at the genus level (Fig.
S3). To test whether SCFA production was impacted by sample diversity, we compared
measured butyrate and propionate against Shannon index for each sample in each study (Fig.
S4). A weak significant signal was seen in only one of the four studies (Study D). In summary,
we observed agreement between MCMM predicted and measured in vitro production rates of
butyrate and propionate in the presence or absence of fiber supplementation, with better
agreement in more diverse communities and over longer experimental incubation times (Fig. 2-
3). As acetate was not well predicted by the MCMMs (i.e., acetate was not strongly coupled to
biomass production, and predictions could vary widely for the same biomass optimum), we

focused our downstream predictions and analyses on the SCFAs butyrate and propionate.

MCMM predictions correspond with variable immunological responses to a 10-week high-fiber
dietary intervention

We next investigated whether MCMM-predicted SCFA production rates could be leveraged to

help explain inter-individual differences in phenotypic response following a dietary intervention.

Specifically, we looked at data from 18 individuals who were placed on a high-fiber diet for ten
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194  weeks . These individuals fell into three distinct immunological response groups: one in which
195 high inflammation was observed over the course of the intervention (high-inflammation group),
196 and two other distinct response groups that both exhibited lower levels of inflammation (low-
197 inflammation groups | and Il; Fig. 4A). We hypothesized that these immune response groups
198 could be explained, in part, by differences in MCMM-predicted production rates of anti-

199 inflammatory SCFAs. Using 16S amplicon sequencing data from seven time points collected
200 from each of these 18 individuals over the 10-week intervention, we built MCMMs for each study
201  participant at each time point. Growth was then simulated for each model using a standardized
202  high-fiber diet, rich in resistant starch (see Material and Methods). Throughout the study, a
203 trend of decreasing propionate production was observed in high-inflammation individuals (r =
204  0.39, Pearson test, p = 0.019), showing less production as the intervention went on, despite the
205 high fiber content of the diets consumed by participants (Fig. 4B). Individuals in the high-

206 inflammation group showed significantly lower predicted propionate production, on average,
207  compared to the individuals in each of the low-inflammation groups (High vs. Low |: 131.9 + 5.8
208 vs 158.1 £ 5.7 mmol/(gDW h), Mann-Whitney p = 0.0053; High vs. Low II: 131.9 + 5.8 vs

209 163.08.3 £ 6.5 mmol/(gDW h), Mann-Whitney p = 0.0017; Fig. 4C). Butyrate showed no such
210 significant effects across immune response groups (Fig. 4D, 4E). To investigate whether

211  sample alpha-diversity was sufficient to explain the differences between the immune response
212 groups, we calculated the alpha diversity for each sample at each timepoint during the study.
213  Across all seven time points tested, only one significant difference in alpha diversity was seen,
214  between the two low inflammation groups at time point 2 (Mann-Whitney U-test, p < 0.05),

215 leading us to determine that differences in SCFA production throughout the intervention were
216  not the result of differences in diversity. (Fig. S4).

217
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MCMM-predicted SCFA profiles are associated with a wide range of blood-based clinical
markers

To further evaluate the clinical relevance of personalized MCMMs, we generated SCFA
production rate predictions from stool 16S amplicon sequencing data for 2,687 individuals in a
deeply phenotyped, generally-healthy cohort from the West Coast of the United States (i.e., the
Arivale cohort) *. Baseline MCMMs were built for each individual assuming the same dietary
input (i.e., an average European diet) in order to compare SCFA production rate differences,
independent of background dietary variation. MCMM-predicted SCFA fluxes were then
regressed against a panel of 128 clinical chemistries and health metrics collected from each
individual, adjusting for a standard set of common covariates (i.e., age, sex, and microbiome
sequencing vendor; Fig. 5A). After FDR correction, 20 markers were significantly associated
with the predicted production rate of butyrate (Fig. 5B). Predicted butyrate production showed
significant positive associations with only 3 markers, including the health-associated hormone
adiponectin, and significant negative associations with 17 markers linked to disease, including
C-reactive protein (CRP), low-density lipoprotein (LDL), and blood pressure (mean arterial
pressure; P < 0.05, FDR-corrected t-test). Propionate showed no significant associations after
covariate adjustment and multiple comparison correction (Fig. 5B). Total combined propionate
and butyrate production was significantly associated with 16 clinical markers, all overlapping
with those associated with butyrate. Predicted butyrate production was significantly negatively
associated with BMI (8 = -0.10, t-test, p < 0.001), while propionate was not (Fig. 5 C-D).
Covariate-adjusted p-values and beta coefficients for all clinical markers included in the analysis

can be found in the supplementary material (Table S3).

Leveraging MCMMs to design precision dietary, prebiotic, and probiotic interventions
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242  As a proof-of-concept for in silico engineering of the metabolic outputs of the human gut

243  microbiome, we screened a set of potential interventions designed to increase SCFA production
244 for individuals from the Arivale cohort (Fig. 6A). MCMMs were built using two different dietary
245  contexts: an average European diet, and a vegan, high-fiber diet rich in resistant starch (see
246  Material and Methods). As expected, models grown on a high-fiber diet showed higher average
247  predicted butyrate production: 87.78 £ 0.67 mmol/(gDW h) vs 16.29 + 0.13 mmol/(gDW h), t-
248  test, t=104.3, p <0.001 (Fig. 6B). However, this increase in butyrate production between the
249  European and high-fiber diets was not uniform across individuals. On the high-fiber diet, some
250 individual gut microbiota compositions showed very large increases in butyrate production,

251 some showed little-to-no change, and a small subset of samples actually showed a decrease in

252  butyrate production, relative to the European diet. We identified a set of ‘non-responders’ (N =

[mmi
Ood=0

253  9) who produced less than 15 of butyrate on the European diet and showed an increase

254  in butyrate production of less than 20% on the high-fiber diet (Fig. 6C). We also identified a set
255  of ‘regressors’ (N = 7) who showed decreased butyrate production on the high-fiber diet when
256 compared to the European diet (Fig. 6D). We then simulated a handful of simple prebiotic and
257  probiotic interventions across these individuals, to identify optimal combinatorial interventions
258 for each individual (Fig. 6C-E). MCMMs for each subset of individuals were simulated with

259  prebiotic and probiotic interventions in the context of either the European or the high-fiber diet.
260  Specifically, diets were supplemented with the dietary fiber inulin, with the dietary fiber pectin, or
261  with a simulated probiotic intervention that consisted of introducing 10% relative abundance of
262  the butyrate-producing genus Faecalibacterium to the MCMM. In general, optimal combinatorial
263 interventions significantly increased the population-level butyrate production well above either
264  dietary intervention alone (Fig. 6C-D).

265 For 15/16 individuals in the regressors or non-responders groups, supplementation of

266  the background diet with a specific prebiotic or probiotic increased the butyrate production rate
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267  (Fig. 6C-E). For both regressors and non-responders, the optimal intervention showed

268  substantial increases over the standard European diet (+290+£80% for non-responders;

269  +239+102% for regressors). The exact intervention that yielded the highest butyrate production
270  for any given individual across both populations varied widely (Fig. 6E). For example, the

271  probiotic intervention was more successful in raising predictions for butyrate production in non-
272  responders than it was in regressors (Fig. 6E). Overall, no single combinatorial intervention was
273  optimal for every individual in the population.

274

275  Discussion

276  The objective of this study was to experimentally validate personalized MCMM SCFA

277  predictions. Predictions of butyrate production in synthetically constructed in vitro co-cultures
278  showed significant agreement between measured and predicted butyrate fluxes (Fig. 2), a first
279  step toward validation. Interestingly, better agreement was observed in richer communities,

280 indicating increased model complexity benefitted predictions. Decreasing accuracy of butyrate
281 predictions as community richness declined may reflect a limitation of building models at the
282  genus-level, as reconstructions contain a summarized aggregation of the metabolic capability of
283 the genus as a whole, without species- or strain-level resolution. Furthermore, we are

284  leveraging database models, which do not reflect the exact strains present in a given sample.
285  Consequently, pathways included in the metabolic models are not a perfect match to the reality
286  of what is present in a sample. In high richness models, predictions of SCFAs became more
287  accurate, suggesting this mismatch gets averaged out as species richness increases, likely due
288  to functional redundancies across organisms that can mask the inaccuracies of any single taxon
289  model. Alternatively, there could be some unknown biological reason for why SCFA production
290 s less variable in higher richness communities, which would affect our ability to make accurate

291 MCMM predictions. Overall, the observed increase in accuracy with community diversity
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292  benefits modeling of real-world microbiomes, which are often more species-rich than synthetic
293  in vitro communities **3*. As our model databases grow to better-reflect the metabolic diversity
294  of real-world ecosystems, we expect MCMMs to become more and more accurate, independent
295  of community diversity.

296 Further validation of MCMM predictions was observed from ex vivo anaerobic fecal

297  incubations. We saw good agreement between SCFA flux predictions and measurements,

298 especially for butyrate and propionate, across four independent studies (Fig. 3). Acetate is

299  known to act as an overflow metabolite 6

, with a wide range of possible fluxes for a given
300 biomass optimum, so it is perhaps not surprising that the predictions for this metabolite tended
301 to be less accurate across studies and within treatment groups. Butyrate and propionate,

302 however, showed a narrower range of possible fluxes for a given biomass optimum, suggesting
303 that the production of these molecules is more strongly coupled to biomass production. The
304 dilution level of the ex vivo stool incubations had a sizable effect on the results, where the in
305 vitro prebiotic treatment effect was dampened in less dilute fecal homogenates, likely due to the
306 presence of residual dietary fibers in stool. The more accurate predictions of acetate production
307 in the more dilute fecal homogenates is likely due to the fact that total SCFA production was
308 more strongly coupled to in vitro prebiotic treatment in these samples. Accounting for this

309 dilution factor in the construction of the in silico media improves predictions and returns more
310 accurate results for butyrate and propionate production.

311 We were interested in seeing how 16S- and metagenomic-based models compared at a
312  similar taxonomic level, and how genus and species level predictions compared, in order to
313  assess how applicable our modeling strategy could be to different data types. Using paired 16S
314  and shotgun metagenomic sequencing data from Study C, we saw strong agreement between

315 models constructed at the genus level for both 16S and metagenomic data (Fig. S1).

316  Furthermore, we saw robust agreement between predictions at the genus and species levels
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317  across metagenomic data sets (Fig. S5). Interestingly, predictions from Studies A, C and D
318 showed marginally better agreement with measured values when constructed at the species
319 level vs. the genus level, indicating that higher specificity in model construction is desirable

320 when possible (Fig. S5). Across the in vitro and ex vivo studies, our results strongly support the
321  use of MCMMs for predicting personalized butyrate and propionate production rates in response
322 to prebiotic, probiotic, and dietary interventions.

323 In vivo validation via direct measurement of SCFA production is not easily accomplished,
324  due to the rapid consumption of these metabolites by the colonic epithelium and noisy

325 measurements in either stool or serum %" 3. However, higher SCFA production rates are known
326 toinfluence the phenotype of the host in a number of ways, including a reduction in systemic
327 inflammation and improvements in cardiometabolic health *"#*3°%°_ Wastyk et al. found that
328 among 18 individuals given a 10-week high fiber dietary intervention, one third showed an

329 increase in inflammation over the course of the intervention and two thirds showed a decline in
330 systemic markers of inflammation *'. In the original paper, there was no clear mechanism for
331 explaining these variable immune response groups *'. We found that propionate production, a
332  strong inhibitor of inflammation through activation of FFA2 and FFA3***? was predicted to be
333  significantly lower in individuals who showed the high inflammation response (Fig. 4B-C) .
334  Wihile it is impossible to say whether or not our propionate flux predictions are underlying these
335 dietary response phenotypes, the observed immune response groups and propionate

336  production fluxes could not be explained by differences in alpha-diversity between groups (Fig.
337 S4). We also had access to blood-based clinical labs and microbiome data for a cohort of 2,687
338  Americans. We built MCMMs for this cohort, assuming a standard European diet, and predicted
339  butyrate and propionate production. We found that butyrate was negatively associated with

340 systemic inflammation, LDL cholesterol, and insulin resistance, blood pressure, and BMI (Fig.

341 5). These results are consistent with what is known about how butyrate is protective against
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342 inflammation, cardiovascular disease, obesity, and metabolic syndrome *"?#3%4%43 (Fig. 5B),
343  and they provide us with further confidence in the predictive power of our MCMM approach.
344  Dietary interventions have long been known to elicit variable responses, but a mechanistic

345  framework for predicting this microbiome-mediated heterogeneity has not been available until
346  now.

347 Given this set of promising associations between SCFA predictions and host phenotypic
348 variation, we sought to demonstrate the potential for leveraging MCMMs for designing precision
349  prebiotic, probiotic, and dietary interventions. Using the Arivale cohort, we identified two classes
350 of individuals that responded differently to an in silico high-fiber dietary intervention: non-

351 responders and regressors (Fig. 6). We designed combinatorial interventions that added either
352  aprebiotic or a probiotic to the background diets, to see if we could rescue these non-responder
353  and regressor phenotypes. We found significant heterogeneity in which combinatorial

354  intervention was optimal across individuals from each of these response groups (Fig. 6E).

355  Given that the non-responders had low baseline levels of butyrate production to begin with and
356 did not respond to a high-fiber diet, this result underscores the importance of personalized

357  predictions for those who tend not to respond well to population-scale interventions. These

358 results also suggest that butyrate production in some individuals is limited by composition of the
359  microbiota, indicating that probiotic interventions would be necessary to induce meaningful

360 increases in production.

361 This study had several limitations that should be considered. First, we were limited by
362 the availability of high-quality fluxomic data sets for model validation. For example, we had

363 limited sample sizes in the ex vivo fecal studies presented above, due to the cost and difficulty
364  of generating these kinds of data for larger cohorts. Additionally, the human cohort data

365 presented here only provided indirect support for our MCMM predictions (Figs. 4-5). Second,

366 predictions are dependent on the availability of GEMs. Obtaining large numbers of GEMs that
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367 faithfully recapitulate the full metabolic capacities of each organism in a sample is a challenging
368 task. We used the publicly available AGORA model database *. While AGORA models have
369 gone through some degree of manual curation, many of these models are not fully validated and
370 have been shown to include infeasible and missing reactions *. Nevertheless, these GEMs

371  appear to work well in the context of butyrate and propionate flux predictions. SCFA production
372  pathways are fairly phylogenetically conserved and adjacent to central metabolism, so we might
373  expect these reactions to be robust to strain- or species-level variation and variation in model
374  quality. However, predictions for metabolites that are peripheral to central metabolism will likely
375 be much noisier in the absence of well-curated models that closely match the organisms within
376 agiven sample. Third, model building is dependent on accurate taxonomic assignment of

377  sequencing reads. For 16S amplicon sequencing, reads can only be confidently assigned at the
378 genus level, limiting the specificity of a model to the genera present in the original samples.

379 However, as model databases grow and shotgun metagenomic sequencing becomes more

380 common, we anticipate this limitation will be resolved. Finally, the lack of individual-specific

381 dietary constraints limits the accuracy of our predictions. For ex vivo fecal fermentations, as well
382 asinvivo analysis, participant dietary information was not available, and so a standard

383  European diet was used across all models. Detailed knowledge of dietary intake should

384 increase the accuracy of MCMM predictions. Despite these limitations, MCMMs were able to
385 explain 25-35% of the variance in butyrate and propionate production across individuals, and we
386  expect that advances in model curation, pathway annotation, and personalized dietary

387  constraints will only improve upon the accuracy of this approach over time.

388

389 Conclusion

390 Here we present an approach for the rational prediction of personalized SCFA production rates

391 from the human gut microbiome, validated using in vitro, ex vivo and in vivo experimental data.
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392  Additional analysis demonstrated a clear relationship between SCFA predictions and

393 physiological responses in the host, including lower inflammation and improved cardiometabolic
394  health. SCFA predictions were also significantly associated with variable immune responses to
395 ahigh fiber dietary intervention. Finally, we showed how MCMMs could be used to rapidly

396 design and test combinatorial prebiotic, probiotic and dietary interventions in silico for a large
397  human population. Personalized prediction of SCFA production profiles from human gut

398 MCMNMs represents an important technological step forward in leveraging computational

399 systems biology for precision nutrition. Mechanistic modeling allowed us to translate the

400 ecological composition of the gut microbiome into concrete, individual-specific metabolic

401  outputs, in response to particular interventions “*¢. MCMMs are transparent models that do not
402  require training data, with clear causal and mechanistic explanations behind each prediction.
403  The clinical relevance of these predictions is evident, due to the widespread physiological

404  effects of SCFAs on the human body *"*%. A rational framework for engineering the production
405  or consumption rates of these metabolites has broad potential applications in precision nutrition
406  and personalized healthcare.

407

408 Materials and Methods

409  In vitro culturing

410  Culturing of the synthetically assembled gut microbial communities is described in Clark et al.,
411 2021 *. Culturing of ex vivo samples in Study A was done using the methodology described
412  below. Culturing of ex vivo samples in Study B is described in Cantu-Jungles et al., 2021

413  Culturing of ex vivo samples in Study C was conducted by co-author Dr. Thomas Gurry, using
414  the methodology described below.

415

416 In vitro culturing of fecal-derived microbial communities (Study A)
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417  Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the
418  Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number
419 5722) and transferred into an large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen,
420 20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 20

421  minutes of defecation. All further processing and incubation was then run inside the anaerobic
422  chamber. 50 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks (Nasco, USA)
423  with sterile PBS + 0.1% L-cysteine at a 1:2.5 w/v ratio and homogenized with a Stomacher

424  Biomaster (Seward, USA) for 15 minutes. After homogenization, each sample was transferred
425 into three sterile 250 mL serum bottles and another 2.5 parts of PBS + 0.1% L-cysteine was
426  added to bring the final dilution to 1:5 in PBS. 87 ug/mL inulin or an equal volume of sterile PBS
427  buffer were added to treatment or control bottles, respectively. Samples were immediately

428  pipetted onto sterile round-bottom 2 mL 96-well plates in triplicates. Baseline samples were
429  aliquoted into sterile 1.5 mL Eppendorf tubes and the plates were covered with Breathe-Easy
430 films (USA Scientific Inc., USA). Plates were incubated for 7 h at 37°C and gently vortexed

431  every hour within the chamber. Final samples were aliquoted into 1.5 mL Eppendorf tubes at the
432  end of incubation. Baseline and 7 h samples were kept on ice and immediately processed after
433  sampling. 500 uL of each sample were aliquoted for metagenomics and kept frozen at -80°C
434  before and during transfer to the commercial sequencing service (Diversigen, Inc). The

435 remaining sample was transferred to a table-top centrifuge (Fisher Scientific accuSpin, USA)
436  and spun at 1,500 rpm for 10 minutes. The supernatant was then transferred to collection tubes
437  kepton dry ice and transferred to the commercial metabolomics provider Metabolon, USA, for
438 targeted SCFA quantification.

439

440 In vitro culturing of fecal-derived microbial communities (Study C)
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441 Homogenized fecal samples in this study again underwent anaerobic culturing at 37°C, as

442  described above, but with a shorter culturing time of 4 hours. The slurry was diluted 2.5x in

443  0.1% L-cysteine PBS buffer solution. Cultures were supplemented with the dietary fibers pectin
444  orinulin to a final concentration of 10g/L, or a sterile PBS buffer control treatment. Aliquots were
445  taken at Oh and 4h and further processed for measurement of SCFA concentrations, which were
446  used to estimate experimental production flux (concentration[4h] - concentration[Oh]/4h). SCFA
447  concentrations were measured using GC-FID. Briefly, the pH of the aliquots was adjusted to 2-3
448  with 1% aqueous sulfuric acid solution, after which they were vortexed for 10 minutes and

449  centrifuged for 10 minutes at 10,000 rpm. 200 uL aliquots of clear supernatant were transferred
450 to vials containing 200 uL of MeCN and 100 uL of a 0.1% v/v 2-methyl pentanoic acid solution.
451  The resulting solutions were analyzed by GC-FID on a Perkin Elmer Clarus 500 equipped with a
452  DB-FFAP column (30m, 0.250mm diameter, 0.25um film) and a flame ionization detector.

453

454 In vitro culturing of fecal-derived microbial communities (Study D)

455  Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the
456  Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number
457  10961) and transferred into a large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen,
458  20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 30

459  minutes of sample receipt. All further processing and incubation was then run inside the

460 anaerobic chamber. 30 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks
461  (Nasco, USA) with 90 mL sterile PBS + 0.1% L-cysteine + 0.0001% resazurin and homogenized
462  with a Stomacher Biomaster (Seward, USA) for 5 minutes. For each individual fecal sample,
463 triplicate baseline samples of 1500uL slurry were transferred to a deep 96-well place (Fisher
464  Scientific, USA), sealed and centrifuged at 4000rpm for 10 minutes. 300uL of the supernatant

465  were transferred to collection tubes and immediately frozen at -80°C. An additional 1800uL of
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466  fecal slurry was transferred into a 2mL Eppendorf tube and frozen at -80°C for metagenomic
467  shotgun sequencing. Interventions of 100uL inulin at 625mg/L, pectin at 750mg/L or PBS were
468 transferred to in duplicate to a new deep 96-well plate, topped with 1500uL fecal slurry each,
469 and immediately sealed with Breathe-Easy films (USA Scientific Inc., USA). Plates were

470 incubated for 6 h at 37°C and gently vortexed every 2 hours within the chamber. After

471  incubation, plates were immediately centrifuged at 4000rpm for 10 minutes at room temperature
472  and 300uL of the supernatant was again transferred to collection tubes and kept at -80°C. The
473  frozen slurry sample for metagenomic shotgun sequencing was transferred to a commercial
474  sequencing service (Diversigen, Inc) on dry ice. The remaining supernatant samples were kept
475 ondryice and transferred to the commercial metabolomics provider (Metabolon, USA) for

476  targeted SCFA quantification.

477

478  Metagenomic sequencing and analysis

479  For Study A, shallow metagenomic sequencing was performed by the sequencing vendor

480 Diversigen, USA (i.e., their BoosterShot service). In brief, DNA was extracted from the fecal
481  slurries with the DNeasy PowerSoil Pro Kit on a QiaCube HT (Qiagen, Germany) and quantified
482  using the Qiant-iT Picogreen dsDNA Assay (Invitrogen, USA). Library preparation was

483  performed with a proprietary protocol based on the Nextera Library Prep kit (lllumina, USA) and
484  the generated libraries were sequenced on a NovaSeq (lllumina, USA) with a single-end 100bp
485  protocol. Demultiplexing was performed using lllumina BaseSpace to generate the final FASTQ
486 files used during analysis. For Study D, DNA extraction was performed under the same protocol
487  as Study A. Libraries for Study D were prepared with the Nextera XT Library Prep kit (Illumina,
488 USA) and sequenced with a paired-end 2x150bp protocol on a NovaSeq 6000 (lllumina, USA)

489 yielding at least 70M reads/sample.
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490 Preprocessing of raw sequencing reads from Study A and D was performed using

491  FASTP *. The first 5bp on the 5" end of each read were trimmed, and the 3’ end was trimmed
492  using a sliding window quality filter that would trim the read as soon as the average window
493  quality fell below 20. Reads containing ambiguous base calls or with a length of less than 15bp
494  after trimming were removed from the analysis.

495 Bacterial species abundances were quantified using Kraken2 v2.0.8 and Bracken v2.2
496  using the Kraken2 default database which was based on Refseq release 94, retaining only
497  those species with at least 10 assigned reads ***'. The analysis pipeline can be found at

498 https://qgithub.com/Gibbons-Lab/pipelines/tree/master/shallow shotqun.

499

500 Metabolomics

501 Targeted metabolomics were performed using Metabolon’s high-performance liquid

502 chromatography (HPLC)-mass spectrometry (MS) platform, as described before *2. In brief,
503 fecal supernatants were thawed on ice, proteins were removed using aqueous methanol

504  extraction, and organic solvents were removed with a TurboVap (Zymark, USA). Mass

505  spectroscopy was performed using a Waters ACQUITY ultra-performance liquid

506 chromatography (UPLC) and Thermo Scientific Q-Exactive high resolution/accuracy mass

507  spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an Orbitrap
508 mass analyzer operated at 35,000 mass resolution. For targeted metabolomics ultra-pure

509 standards of the desired short-chain fatty acids were used for absolute quantification. Fluxes for
510 individual metabolites were estimated as the rate of change of individual metabolites during the
511 incubation period (concentration[7h] - concentration[Oh]/7h).

512

513 Model Construction
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514  Taxonomic abundance data inferred from 16S amplicon sequencing was summarized to the
515 genus level (as in in vitro cultures, ex vivo study B, fiber intervention samples, and samples from
516 the Arivale cohort), or to the species level when shotgun metagenomic sequencing was

517 available (as in ex vivo studies A, C and D). Abundances were used to construct all MCMMs in
518 this analysis using the community-scale metabolic modeling platform MICOM v0.32.5 #. Models
519  were built using the MICOM build() function with a relative abundance threshold of 0.001,

520 omitting taxa that made up less than 0.1% relative abundance. The AGORA database (v1.03) of
521  taxonomic reconstructions summarized to the genus level for 16S data or the species level for
522  metagenomic sequencing data was used to collect genome-scale metabolic models for taxa
523  present in each model. Building models at the genus level for metagenomic sequencing data
524  was explored, but was outperformed by species level models. In silico media were applied to
525  the grow() function, defining the bounds for metabolic imports by the MCMM. Medium

526  composition varied between analyses (see Media Construction). Steady state growth rates and
527 metabolic fluxes for all samples were then inferred using cooperative tradeoff flux balance

528  analysis (ctFBA). In brief, this is a two-step optimization scheme, where the first step finds the
529  maximal biomass production rate for the full microbial community and the second step infers
530 taxon-specific growth rates and fluxes, while maintaining community growth within a suboptimal
531 fraction of the theoretical maximum (i.e., the tradeoff parameter), thus balancing individual

532  growth rates and the community-wide growth rate #. All models in the manuscript used a

533 tradeoff parameter of 0.7. This parameter value was chosen through cooperative tradeoff

534  analysis in MICOM. Multiple tradeoff parameters were tested, and the highest parameter value
535 (i.e. the value closest to the maximal community growth rate at 1.0) that allowed most (>90%) of
536 taxato grow was chosen (i.e., 0.7). Predicted growth rates from the simulation were analyzed to
537 validate correct behavior of the models. All models were found to grow with minimum

538  community growth rate of 0.3 h™. Predicted values for export fluxes of SCFAs were collected
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539  from each MCMM using the production_rates() function, which calculates the overall production
540 from the community that would be accessible to the colonic epithelium.

541

542  Media Construction

543  Individual media were constructed based on the context of each individual analysis. For the
544  synthetic in vitro cultures conducted by Clark et al. (2021), a defined medium (DM38) was used
545  that supported growth of all taxa used in the experiments, excluding Faecalibacterium

546  prausnitzii. Manually mapping each component to the Virtual Metabolic Human database, we
547  constructed an in silico medium with flux bounds scaled to component concentration. All

548 metabolites were found in the database. Using the MICOM fix_medium() function, a minimal set
549  of metabolites necessary for all models to grow to a minimum community growth rate of 0.3 h
550 was added to the medium - here, only iron(lll) was added (in silico medium available here:

551 https://github.com/Gibbons-Lab/scfa predictions/tree/main/media).

552 To mimic the medium used in ex vivo cultures of fecally-derived microbial communities,
553  acarbon-stripped version of a standard European diet was used. First, a standard European

554 diet was collected from the Virtual Metabolic Human database (www.vmh.life/#nutrition) >3,

555  Components in the medium which could be imported by the host, as defined by an existing

556  uptake reaction in the Recon3D model >*

, were diluted to 20% of their original flux, to adjust for
557  absorption in the small intestine®. Additionally, host-supplied metabolites such as mucins and
558 Dbile acids were added to the medium. The medium was augmented with a minimal set of

559 metabolites required for growth of all taxa in the model database using the

560 complete_db_medium() function within MICOM. As most carbon sources are consumed in the
561 body and are likely not present in high concentrations in stool, this diet was then manually

562  stripped of carbon sources by removing metabolites identified to be carbon sources for

563  microbes. All components in the media were then diluted to 10% of their original flux to mimic
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564 the fecal microenvironment. Residual dietary fiber not easily digested including resistant starch,
565 dextrin and cellulose, was not removed from the medium during carbon removal. The amount of
566 this residual fiber was scaled to the dilution factor of samples in each study prior to culturing. To
567 simulate fiber supplementation, single fiber additions were made to the medium, either pectin,
568 inulin or fructo-oligosaccharide (1.0 mmol/gDW*h for pectin, 10.0 mmol/gDW*h for inulin, 100
569 mmol/gDW*h for FOS, based on carbon content reported for each).

570 For in vivo modeling, two diets were used: a high-fiber diet containing high levels of

571 resistant starch, and a standard European diet 53,55, Again, both diets were collected from the

572  Virtual Metabolic Human database (www.vmbh.life/#nutrition). Each medium was subsequently

573  adjusted to account for absorption in the small intestine by diluting metabolite flux as described
574  previously. Additionally, host-supplied metabolites such as mucins and bile acids were added to
575 the medium, to match the composition of the medium in vivo. Finally, the

576  complete_db_medium() function was again used to augment the medium, as described above.
577 Prebiotic interventions were designed by supplementing the high-fiber or average

578 European diet with single fiber additions, either pectin or inulin, as described previously.

579

580  Probiotic Intervention

581 To model a probiotic intervention, 5% relative abundance of the genus Faecalibacterium, a
582  known butyrate-producing taxon *°, was added to the MCMMs by adding a pan-genus model of
583 the taxon derived from the AGORA database (v1.03). Measured taxonomic abundances were
584  scaled to 95% of their initial values, after which Faecalibacterium was artificially added to the
585 model.

586

587 External Data Collection
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Data containing taxonomic abundance, optical density, and endpoint butyrate concentration for
synthetically-constructed in vitro microbial cultures were collected from Clark et al. (2021) *°.
Endpoint taxonomic abundance data, calculated from fractional read counts collected via 16S
amplicon sequencing, was used to construct individual MCMMs for each co-culture (see Model
Construction). Resulting models ranged in taxonomic richness from 1 to 25 taxa.

Data from ex vivo studies A and D, containing shotgun metagenomic sequencing and
SCFA metabolomics, was collected and processed as described previously. Taxonomic
abundance data was used to construct MCMMs for each individual (see Model Construction).

From a study by Cantu-Jungles et al. (2021) *® (ex vivo Study B), preprocessed
taxonomic abundance and SCFA metabolomics data was collected. Homogenized fecal
samples in this study underwent a similar culturing process, with a culturing time of 24 hours.
Cultures were supplemented with the dietary fiber pectin, or a PBS control. Initial and endpoint
metabolomic SCFA measurements were used to estimate experimental production flux
(concentration[24h] - concentration[Oh]/24h). Taxonomic abundance data was used to construct
MCMMs for each individual .

Data from a third (Study C) was collected from the Pharmaceutical Biochemistry Group
at the University of Geneva, Switzerland, under study protocol 2019-00632, containing
sequencing data in FASTQ format and targeted metabolomics SCFA measurements.

Data was collected from Wastyk, et al 2021 **, which provided 16S amplicon sequencing
data at 9 timepoints spanning 14 weeks, along with immunological phenotyping, for 18
participants undergoing a high-fiber dietary intervention. Only 7 timepoints spanning 10 weeks
were included in subsequent analysis, as the last 2 timepoints were taken after the conclusion
of the dietary intervention. MCMMSs were constructed for each participant at each timepoint at
the genus level (see Model Construction). Mean total butyrate and propionate production were

compared between immune response groups.
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613 De-identified data was obtained from a former scientific wellness program run by Arivale,
614  Inc. (Seattle, WA) *. Arivale closed its operations in 2019. Taxonomic abundances, inferred
615 from 16S amplicon sequencing data, for 2,687 research-consenting individuals were collected
616 and used to construct MCMMs. 128 paired blood-based clinical chemistries taken within 30

617 days of fecal sampling were also collected and used to find associations between MCMM SCFA
618 predictions on a standard European diet and clinical markers. Blood pressure and BMI for each
619 individual were also collected. Metadata for each sample including age, sex, and microbiome
620 sequencing vendor were included in the analysis as confounders.

621

622  Statistical analysis

623  Statistical analysis was performed using SciPy (v1.9.1) and statsmodels (v0.14.0) in Python
624  (v3.8.13). Pearson correlation coefficients and p-values were calculated between measured and
625 predicted SCFA production fluxes in in vitro and ex vivo cultures, as well as for predicted SCFA
626  production fluxes across timepoints for an in vivo high-fiber intervention. Significance in SCFA
627  production between immune response groups in the high-fiber dietary intervention was

628 determined by non-parametric pairwise Mann-Whitney U test for butyrate, propionate, and

629 combined butyrate and propionate production. Association of MCMM-predicted SCFA

630 production flux with paired blood-based clinical labs was tested using OLS regression, adjusting
631 for age, sex, microbiome sequencing vendor, and tested for significance by two-sided t-test.
632 BMI was not included as a confounder in the analysis because it was itself negatively correlated
633  with butyrate production *®. Multiple comparison correction for p-values was done using the

634  Benjamini-Yekutieli method for adjusting the False Discovery Rate (FDR) °’. Comparison of
635  butyrate production between dietary interventions was tested using paired Student’s t-tests. In
636 all analyses, significance was considered at the p<0.05 threshold.

637
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638 Data, Software, and Code Availability
639 Code used to run analysis and create figures for this manuscript can be found at

640 https://github.com/Gibbons-Lab/scfa_predictions.

641  Processed data for synthetically constructed cultures can be found at

642 https://github.com/RyanLincolnClark/DesignSyntheticGutMicrobiomeAssemblyFunction. Raw

643  sequencing data can be found at https://doi.org/10.5281/zenodo.4642238.

644

645 Raw sequencing data for Study A can be found in the NCBI SRA under accession number
646 PRJINA937304.

647  Processed data for ex vivo Study B can be found at

648  https://github.com/ThaisaJungles/fiber_specificity. Raw sequencing data can be found in the

649  NCBI SRA under accession number PRINA640404.

650 Raw sequencing data for ex vivo Study C can be found in the NCBI SRA under accession
651 number PRINA939256.

652  Raw sequencing data for ex vivo Study D can be found in the NCBI SRA under accession
653 number PRINA1033794.

654  Processed data for the longitudinal high-fiber intervention study can be found at

655 https://github.com/SonnenburgLab/fiber-fermented-study/.

656  Qualified researchers can access the full Arivale deidentified dataset supporting the findings in
657 this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to

658 access the data can be made at data-access@isbscience.org and will be responded to within 7

659  business days.
660 Illustrations were created with BioRender.com.
661
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Figure 1. Microbial community-scale metabolic models (MCMMSs) predict personalized SCFA
production profiles. Schematic of our workflow for validating MCMM-based personalized predictions
for SCFA production. (A) Prior to modeling, an in silico medium is constructed, containing a matched
diet mapped to its constituent metabolic components. The medium is depleted in compounds absorbed
by the host in the small intestine and augmented with other host-supplied compounds, in addition to
adding a minimal set of metabolites required for growth. (B) MCMMs are constructed, combining
abundance and taxonomic data with pre-curated GEMs into a community model. (C) Growth in the
MCMM is simulated through cooperative tradeoff flux balance analysis (ctFBA), yielding predicted
growth rates and SCFA production fluxes. (D) To validate predicted levels of SCFA production fluxes,
measured production fluxes are collected from in vitro communities of human gut commensals and
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fecal samples cultured anaerobically ex vivo at 37°C over time. (E) Predicted and measured SCFA
production fluxes are compared to assess the accuracy of the model.
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841

842  Figure 2. Relationship between predicted and measured butyrate production rates in in vitro and
843  exvivo co-cultures. Butyrate production flux predictions from MCMMs are shown on the y-axes and
844  measured values are shown on the x-axes, along with R? and p-values from a Pearson’s correlation (A)
845  Invitro or ex vivo communities were cultured anaerobically. Endpoint butyrate concentration was used
846 to calculate production flux and compared with MCMM-predicted flux. (B) Predicted and measured

847  butyrate fluxes in models of low richness synthetic communities (1-5 genera per model, N = 882). (C)
848  Predicted and measured butyrate fluxes in models of high richness synthetic communities (10-25

849 genera, N = 697). (D-F) Z-scored predicted and measured fluxes for acetate, butyrate and propionate,
850 across four independent ex vivo studies. The label in the figure legend indicates the final dilution level
851  of cultures in each study (dilution = 1:x). In (B-F) the dashed line denotes a linear model fit to the data,
852  with the surrounding shaded region indicating the 95% confidence interval.

853
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855  Figure 3. Human stool ex vivo assays show gquantitative agreement between measured
856 and predicted SCFA production fluxes within and across fiber treatment groups. Z-scored
857  SCFA production flux predictions from MCMMs are shown on the y-axes and Z-scored

858 measured values are shown on the x-axes. Pearson’s r and associated p-value are calculated
859 for all points in a given plot. Color encoding indicates the specific fiber treatment given to each
860 sample. The dashed line denotes a linear regression line and the gray area denotes the 95%
861 confidence interval of the regression. Residual fiber in the media used to simulate growth of
862  each study was scaled according to the dilution factor, shown next to the study name in each
863  column (A-D) Z-scored predictions compared with z-scored measurements of acetate

864  production across all four studies. (E-H) Z-scored predictions compared with z-scored

865 measurements of butyrate production across all four studies. (I-L) Z-scored predictions

866 compared with z-scored measurements of propionate production across all four studies.
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868 Figure 4. Predicted SCFA production profiles were associated with variable immune

869 response groups following a high-fiber dietary intervention. (A) Summary of the study from
870  Wastyk et al.**, where a cohort of 18 individuals participated in a 10-week high-fiber dietary

871 intervention. Immune profiling based on circulating inflammatory cytokines and immune cells
872  clustered individuals into three groups: two low-inflammation groups and one high-inflammation
873  group. (B) Total predicted propionate production at each timepoint across the three immune-
874  response groups identified in the original study. (C) Average predicted propionate production
875 rates, stratified by immune response group (D) Total predicted butyrate production at each

876 timepoint across the three immune-response groups identified in the original study. (E) Average
877  predicted butyrate production rates, stratified by immune response group. In (B-E) stars denote
878  significance under a Mann-Whitney U-test, * = p<0.05, ** = p< 0.01, ** = p<0.001.
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881  Figure 5. SCFA flux predictions are significantly associated with blood-derived clinical
882 markers. (A) MCMMs were constructed for 2,687 Arivale participants, assuming an average
883  European diet, to predict SCFA production profiles. SCFA predictions were regressed against a
884  set of 128 blood-based clinical labs and health markers, with sex, age, and sequencing vendor
885 as covariates in the regressions. (B) Heatmap showing the 20 significant associations (FDR-
886  corrected t-test p<0.05) between measured blood markers and predicted SCFA production

887 rates. (C-D) Predictions for butyrate were significantly correlated with reported BMI
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measurements for respective participants, but not for propionate. Each dot denotes an individual
model reconstructed for a single sample in the Arivale study (N = 2,687). The black line denotes
a linear regression line and the gray area denotes the 95% confidence interval of the

regression. B-coefficients were calculated from multiple regression accounting for age, sex and
microbiome sequencing vendor.
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Figure 6. Microbial MCMMs can be used to design and select personalized prebiotic,
probiotic, and dietary interventions aimed at optimizing SCFA production profiles. (A)
MCMMs built from the Arivale cohort (N = 2,687) were used to test personalized responses to
dietary interventions. Personalized models were simulated on an average European diet, as
well as on a high-fiber diet, and divided into responders, non-responders, and regressors, based
on the changes in predicted butyrate production in response to increasing dietary fiber. Non-

responders were defined as individuals who produced less than 15 of butyrate on the

European diet and showed an increase of less than 20% in butyrate production on the high-fiber
diet. Regressors were defined as individuals who showed a decline in butyrate production on
the high-fiber diet when compared to the European diet. Single-fiber and probiotic interventions
were applied to non-responders and regressors. (B) Distribution of butyrate production rates on
two different diets simulated for all participants in the study. Butyrate production ranges that
contain non-responders (N = 9) and regressors (N = 7) are highlighted in green and yellow
shaded areas, respectively. (C) Distributions of butyrate production rates for the non-responder
group (N = 9). The optimal intervention resulting in the highest butyrate production is shown in
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912  Dblue. (D) Butyrate production rates for the regressor group (N = 7). The optimal intervention that
913  resulted in the highest butyrate production is shown in blue. (E) Heatmap of butyrate production
914  rates across simulated interventions for the individuals in the non-responder and regressor
915 groups. Rows denotes specific interventions, columns denote individuals in the response groups
916 (N =16). Cell shading (white-to-red) denotes butyrate production rate. Added interventions
917 tested on both non-responders and regressors included probiotic supplementation (inulin or
918 pectin) as well as prebiotic supplementation (5% relative abundance Faecalibacterium). The
919  most successful intervention for each individual is denoted by a black border around that cell in
920 the corresponding column.
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Figure S1. Predictions of SCFA production using 16S amplicon sequencing or shotgun
metagenomic sequencing data show concordance. Data from Study C included 16S
amplicon sequencing as well as shotgun metagenomic sequencing. The black line denotes a
linear regression line and the gray area denotes the 95% confidence interval of the regression.
Color encoding indicates the specific fiber treatment given to each sample. (A-B) Predictions for
butyrate and propionate between models summarized to the genus level from 16S amplicon
sequencing data and shotgun metagenome data. (C-D) Predictions for butyrate and propionate
from models built using shotgun metagenome data at the genus level and species level.
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972
973  Figure S2. Divergence in SCFA production between controls and fiber-treated samples is
974  related to culture dilution. Four independent ex vivo studies were used to validate predictions
975 of MCMMs. Each study used a different dilution for the final culture, changing the scale of

976  substrates available to the microbial communities. lllustrated here, the dilution factor, shown
977 nextto the study name, seems to show agreement with the divergence in SCFA production

978  between control samples and fiber-treated samples. This was accounted for by diluting the

979 residual fiber available to the microbial communities in the in silico medium.
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Figure S3. MCMMs built from shotgun metagenomic sequencing data perform better
when constructed at the species level, as compared to the genus level. MCMMs from ex
vivo studies A, C and D were constructed at the (A) genus and (B) species level. Prediction
production rate of butyrate and propionate more closely matched measured production rate in
the species level model as compared to the genus level model. The black line denotes a linear
regression line and the gray area denotes the 95% confidence interval of the regression. Color
encoding indicates the specific treatment from which Pearson r and associated p-value were
calculated for each panel.
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Figure S4. Alpha diversity of communities does not account for differences in SCFA
production. We compared Shannon index, a measure of alpha diversity, against SCFA
production in ex vivo communities, as well as between immune response groups in a
longitudinal high fiber study. (A) Propionate production in four ex vivo datasets was not
consistently explained by alpha diversity. In study D, a significant relationship was observed as
determined by t-test (p < 0.05), but this was not consistent between datasets. The black line
denotes a linear regression line and the gray area denotes the 95% confidence interval of the
regression. Color encoding denotes the specific fiber treatment that was given to each sample
(B) Butyrate production also showed no consistent correlation with alpha diversity, although a
significant difference was again observed within Study D as determined by t-test (p < 0.05). (C)
No consistent pattern emerged with regard to alpha diversity between immune response groups
throughout the course of the high fiber dietary intervention, as determined by Mann Whitney U
test for significance. In C, * = p < 0.05.
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