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Abstract 22 

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host 23 

metabolism, immune regulation, and integrity of the intestinal epithelium. However, the 24 

production of SCFAs can vary widely between individuals consuming the same diet, with lower 25 

levels often associated with disease. A systems-scale mechanistic understanding of this 26 

heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) 27 

approach to predict individual-specific SCFA production profiles. We assess the quantitative 28 

accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM 29 

SCFA predictions are significantly associated with blood-derived clinical chemistries, including 30 

cardiometabolic and immunological health markers, across a large human cohort. Finally, we 31 

demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and 32 

probiotic interventions that optimize SCFA production in the gut. Our results represent an 33 

important advance in engineering gut microbiome functional outputs for precision health and 34 

nutrition.  35 

 36 

Keywords 37 

gut microbiome, short chain fatty acids, flux balance analysis, metabolic model, precision 38 

nutrition 39 

 40 

 41 

  42 

 43 

Introduction 44 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.02.28.530516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530516
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

The human gut microbiota serves many functions: maintaining intestinal barrier function, 45 

regulating peripheral and systemic inflammation, and breaking down indigestible dietary 46 

components and host substrates into a wide range of bioactive compounds 1,2. One of the 47 

primary mechanisms by which the gut microbiota impacts human health is through the 48 

production of small molecules that enter the circulation and are absorbed and transformed by 49 

host tissues 3–5. Approximately half of the metabolites detected in human blood are significantly 50 

associated with cross-sectional variation in gut microbiome composition 6.  51 

Short chain fatty acids (SCFAs) are among the most abundant metabolic byproducts 52 

produced by the gut microbiota, largely through the fermentation of indigestible dietary fibers 53 

and resistant starches, with acetate, propionate and butyrate being the most abundant SCFAs 7–
54 

9. Deficits in SCFA production, specifically butyrate and propionate, have been repeatedly 55 

associated with disease, including inflammatory bowel disease and colorectal cancer 10–15. 56 

Therefore, SCFA production is a crucial ecosystem service that the gut microbiota provides to 57 

its host, with extensive impacts on health 1,11,16,17. However, different human gut microbiota 58 

provided with identical dietary substrates can show variable SCFA production profiles 18,19, and 59 

predicting this heterogeneity remains a fundamental challenge to the microbiome field. 60 

Measuring SCFA abundances in blood or feces is rarely informative of in situ production rates, 61 

due to the volatility of SCFAs, cross-feeding among microbes, and the rapid consumption and 62 

transformation of these metabolites by the colonic epithelium 10,20,21 . Furthermore, SCFA 63 

production fluxes (i.e., the amount of a metabolite produced over a given period of time) within 64 

an individual can vary longitudinally, depending upon dietary inputs and the availability of host 65 

substrates 22. In order to account for this inter- and intra-individual heterogeneity, we propose 66 

the use of microbial community-scale metabolic models (MCMMs), which mechanistically 67 

account for metabolic interactions between gut microbes, host substrates, and dietary inputs, to 68 

estimate personalized, context-specific SCFA production profiles.  69 
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Statistical modeling and machine-learning approaches for predicting metabolic output 70 

from the microbiome have shown promising results in recent years. For example, postprandial 71 

blood glucose responses can be predicted by machine-learning algorithms trained on large 72 

human cohorts 23,24. Nevertheless, machine-learning methods are limited by the measurements 73 

and interventions represented within the training data 25. Mechanistic models like MCMMs, on 74 

the other hand, do not rely on training data and can provide causal insights 21. Metabolic 75 

modeling of individual commensal taxa has been used to predict plasma concentrations of 76 

microbially derived metabolites 26, but these methods have not been extended to diverse, real-77 

world microbiomes. MCMMs can be constructed using existing knowledge bases, including 78 

curated genome-scale metabolic models (GEMs) of individual taxa 27. MCMMs are limited by 79 

the availability of well-curated GEMs for abundant taxa present within every individual in a 80 

population and by information on individual-specific dietary variation. These limitations are 81 

further exacerbated in human populations that are generally underrepresented in microbiome 82 

research, where our databases are also less representative 28. However, as our knowledge 83 

bases grow, so too will the power and scope of MCMMs. Overall, MCMMs have the potential to 84 

serve as powerful, transparent, knowledge-driven tools for predicting community-specific 85 

responses to a wide array of interventions or perturbations.  86 

Here, we demonstrate the utility of MCMMs for the prediction of personalized SCFA 87 

production profiles in the context of different dietary, prebiotic, and probiotic inputs. We first 88 

validate our modeling platform using diverse synthetic in vitro gut microbial communities (N = 89 

1,387) and ex vivo stool incubation assays (N = 29). Next, we investigate the relevance of this 90 

modeling strategy in vivo using data from a 10-week high-fiber dietary intervention cohort (N = 91 

18), where individuals showed a variety of immune responses. We assess the clinical 92 

significance of these precision SCFA predictions by looking at associations between predicted 93 

SCFA production on an average European diet and a panel of blood-based clinical lab tests in a 94 
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large human cohort (N = 2,687). Finally, we demonstrate the potential power of MCMMs in 95 

designing personalized prebiotic, probiotic, and dietary interventions that optimize predictions 96 

for individual-specific butyrate production rates.  97 

 98 

Results 99 

MCMMs capture SCFA production rates in vitro 100 

Details on the origin and composition of each dataset used in these analyses can be found in 101 

the supplement (Table S1). 102 

We sought to investigate whether MCMMs can predict production rates of the major 103 

SCFAs (i.e., acetate, propionate, and butyrate) under controlled experimental conditions (Fig. 104 

1). Growth media, matching the environmental context of each experiment, were constructed 105 

and applied as bounds on metabolic import to MCMMs (Fig. 1A), which were concurrently 106 

constructed by combining manually-curated GEMs from the AGORA database 29 using MICOM 107 

21, constraining taxon abundances using 16S amplicon or shotgun metagenomic sequencing 108 

relative abundance estimates (Fig. 1B). Sample-specific metabolic models were then solved 109 

using cooperative tradeoff flux balance analysis (ctFBA), a previously-reported two-step 110 

quadratic optimization strategy that yields empirically-validated estimates of the steady state 111 

growth rates and metabolic uptake and secretion fluxes for each taxon in the model 21 (Fig. 1C, 112 

see Materials and Methods). Models constructed from 16S amplicon sequencing data were 113 

summarized at the genus level, which was the finest level of phylogenetic resolution that the 114 

data allowed for. When shotgun metagenomic sequencing data were available, models were 115 

constructed at the species level. Models constructed from both 16S and shotgun metagenomic 116 

data at the species and genus levels showed highly consistent results (Fig. S1). Measured 117 

SCFA production profiles from synthetic in vitro community and stool ex vivo experiments (Fig. 118 
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1D) were compared to paired SCFA flux predictions from MCMMs to validate the accuracy of 119 

the models.  120 

First, we looked at published data from synthetically constructed communities of 121 

bacterial commensals isolated from the human gut 30. This data set included endpoint 122 

measurements of relative microbial abundances, derived from 16S amplicon sequencing, 123 

measured endpoint butyrate concentrations, and the overall optical density for each of 1,387 124 

independent co-cultures (Fig. 2A). Cultures varied in richness from 1-25 strains. MCMMs were 125 

constructed for each co-culture as described above, simulating growth of each of the models 126 

using a defined medium mapped to a database of metabolic constituents, matching the 127 

composition of the medium used in the in vitro experiments (see Materials and Methods). 128 

Model-predicted butyrate fluxes were compared with calculated butyrate production rates 129 

(endpoint butyrate divided by culturing time, assuming no butyrate at the start of growth, 130 

normalized to total biomass using OD600), stratifying results into low richness (1-5 genera) and 131 

high richness (10-25 genera) communities. Model predictions for butyrate production fluxes 132 

were significantly correlated with measured butyrate production fluxes across all communities 133 

(Pearson’s correlation; Low Richness: r = 0.17, p < 0.001; High Richness: r = 0.53, p < 0.001), 134 

but the predictions were more accurate in the higher richness communities (Fig. 2B-C).  135 

Next, we compared MCMM predictions to anaerobic ex vivo incubations of human stool 136 

samples from a small number of individuals (N = 29), cultured after supplementation with sterile 137 

PBS buffer or with different dietary fibers across four independent studies. Study A contained 138 

samples from two donors cultured for 7 hours with a final dilution of 1:5, Study B 18 contained 139 

samples from 10 donors cultured for 24 hours diluted 1:19, Study C contained samples from 8 140 

donors cultured for 4 hours diluted 1:5, and Study D contained samples from 9 donors cultured 141 

for 6 hours diluted 1:3. Fecal ex vivo assays allow for the direct measurement of bacterial SCFA 142 

production fluxes without interference from the host. For all three studies, ex vivo incubations 143 
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were performed by homogenizing fecal material in sterile buffer under anaerobic conditions, 144 

adding control or fiber interventions to replicate fecal slurries, and measuring the resulting SCFA 145 

production rates in vitro at 37°C (see Materials and Methods). Metagenomic (Studies A, C and 146 

D) or 16S amplicon (Study B) sequencing data from these ex vivo cultures were used to 147 

construct MCMMs, using relative abundances as a proxy for relative biomass for each bacterial 148 

taxon (see Materials and Methods). MCMMs were simulated using a diluted standardized 149 

European diet (i.e., to approximate residual dietary substrates still present in the stool slurry), 150 

with or without specific fiber amendments, matching the experimental treatments (see Material 151 

and Methods). Within studies, the divergence in measured SCFA production between control 152 

samples and fiber-treated samples seemed to be highly dependent upon the final dilution of the  153 

ex vivo cultures (Fig. S2). This was accounted for by matching the dilution of residual fiber 154 

(starch, cellulose and dextrin) in the medium used for growth simulation to the corresponding 155 

study. For instance, Study A was diluted 1:5, so the residual fiber in the medium used to 156 

simulate growth for these samples was diluted by a factor of 5.  The resulting SCFA flux 157 

predictions were then compared to the measured fluxes. MCMM fluxes are given in units of 158 

mmol/gDW/h, while measured production fluxes are given in mmol/L/h. Without knowledge of 159 

the live-cell biomass within the fecal homogenates, it was not possible to normalize the units 160 

across the two axes, but the predicted and measured values were expected to be proportional. 161 

To overcome study-specific differences in protocols and allow for comparison of results across 162 

studies, we Z-scored both measured and predicted SCFA production fluxes within each data set 163 

(Fig. 2D-F). We observed a similar degree of agreement between MCMM-predicted and 164 

measured production fluxes for butyrate and propionate across all four ex vivo data sets (Fig. 165 

2E-F). The model was notably less capable of accurately predicting differences in acetate 166 

production between individuals, with no significant association seen (Fig. 2-3). Significant 167 

agreement was observed between measured and predicted production fluxes of butyrate and 168 
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propionate within each individual data set (r =0.41-0.97, Pearson test, p<0.05) with the 169 

exception of propionate in Study A, which had a very limited sample size (N = 2) (Fig. 3E-L). 170 

Notably, the correlation coefficient (Pearson r) for these associations was similar to that seen in 171 

the high-richness in vitro cultures (Fig. 2C). As previously seen, the prediction of acetate was 172 

worse, most notably in studies C and D, where no significant prediction was observed. In 173 

studies A and B, acetate production was more readily predicted, likely due to a strong 174 

treatment-effect (Fig. 3A-D). Within treatment groups, similar correlations were observed, 175 

though statistical power was severely limited by the smaller sample sizes (Table S2). 176 

Predictions from models built with shotgun metagenomic sequencing data showed slightly better 177 

results when constructed at the species level, as compared to building at the genus level (Fig. 178 

S3). To test whether SCFA production was impacted by sample diversity, we compared 179 

measured butyrate and propionate against Shannon index for each sample in each study (Fig. 180 

S4). A weak significant signal was seen in only one of the four studies (Study D). In summary, 181 

we observed agreement between MCMM predicted and measured in vitro production rates of 182 

butyrate and propionate in the presence or absence of fiber supplementation, with better 183 

agreement in more diverse communities and over longer experimental incubation times (Fig. 2-184 

3). As acetate was not well predicted by the MCMMs (i.e., acetate was not strongly coupled to 185 

biomass production, and predictions could vary widely for the same biomass optimum), we 186 

focused our downstream predictions and analyses on the SCFAs butyrate and propionate.  187 

 188 

MCMM predictions correspond with variable immunological responses to a 10-week high-fiber 189 

dietary intervention 190 

We next investigated whether MCMM-predicted SCFA production rates could be leveraged to 191 

help explain inter-individual differences in phenotypic response following a dietary intervention. 192 

Specifically, we looked at data from 18 individuals who were placed on a high-fiber diet for ten 193 
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weeks 31. These individuals fell into three distinct immunological response groups: one in which 194 

high inflammation was observed over the course of the intervention (high-inflammation group), 195 

and two other distinct response groups that both exhibited lower levels of inflammation (low-196 

inflammation groups I and II; Fig. 4A). We hypothesized that these immune response groups 197 

could be explained, in part, by differences in MCMM-predicted production rates of anti-198 

inflammatory SCFAs. Using 16S amplicon sequencing data from seven time points collected 199 

from each of these 18 individuals over the 10-week intervention, we built MCMMs for each study 200 

participant at each time point. Growth was then simulated for each model using a standardized 201 

high-fiber diet, rich in resistant starch (see Material and Methods).  Throughout the study, a 202 

trend of decreasing propionate production was observed in high-inflammation individuals (r = 203 

0.39, Pearson test, p = 0.019), showing less production as the intervention went on, despite the 204 

high fiber content of the diets consumed by participants (Fig. 4B). Individuals in the high-205 

inflammation group showed significantly lower predicted propionate production, on average, 206 

compared to the individuals in each of the low-inflammation groups (High vs. Low I: 131.9 ± 5.8 207 

vs 158.1 ± 5.7 mmol/(gDW h), Mann-Whitney p = 0.0053; High vs. Low II: 131.9 ± 5.8 vs 208 

163.08.3 ± 6.5 mmol/(gDW h), Mann-Whitney p = 0.0017; Fig. 4C). Butyrate showed no such 209 

significant effects across immune response groups (Fig. 4D, 4E). To investigate whether 210 

sample alpha-diversity was sufficient to explain the differences between the immune response 211 

groups, we calculated the alpha diversity for each sample at each timepoint during the study. 212 

Across all seven time points tested, only one significant difference in alpha diversity was seen, 213 

between the two low inflammation groups at time point 2 (Mann-Whitney U-test, p < 0.05), 214 

leading us to determine that differences in SCFA production throughout the intervention were 215 

not the result of differences in diversity.   (Fig. S4).  216 

 217 
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MCMM-predicted SCFA profiles are associated with a wide range of blood-based clinical 218 

markers 219 

To further evaluate the clinical relevance of personalized MCMMs, we generated SCFA 220 

production rate predictions from stool 16S amplicon sequencing data for 2,687 individuals in a 221 

deeply phenotyped, generally-healthy cohort from the West Coast of the United States (i.e., the 222 

Arivale cohort) 32. Baseline MCMMs were built for each individual assuming the same dietary 223 

input (i.e., an average European diet) in order to compare SCFA production rate differences, 224 

independent of background dietary variation. MCMM-predicted SCFA fluxes were then 225 

regressed against a panel of 128 clinical chemistries and health metrics collected from each 226 

individual, adjusting for a standard set of common covariates (i.e., age, sex, and microbiome 227 

sequencing vendor; Fig. 5A). After FDR correction, 20 markers were significantly associated 228 

with the predicted production rate of butyrate (Fig. 5B). Predicted butyrate production showed 229 

significant positive associations with only 3 markers, including the health-associated hormone 230 

adiponectin, and significant negative associations with 17 markers linked to disease, including 231 

C-reactive protein (CRP), low-density lipoprotein (LDL), and blood pressure (mean arterial 232 

pressure; P < 0.05, FDR-corrected t-test). Propionate showed no significant associations after 233 

covariate adjustment and multiple comparison correction (Fig. 5B). Total combined propionate 234 

and butyrate production was significantly associated with 16 clinical markers, all overlapping 235 

with those associated with butyrate. Predicted butyrate production was significantly negatively 236 

associated with BMI (β = -0.10, t-test, p < 0.001), while propionate was not (Fig. 5 C-D). 237 

Covariate-adjusted p-values and beta coefficients for all clinical markers included in the analysis 238 

can be found in the supplementary material (Table S3). 239 

 240 

Leveraging MCMMs to design precision dietary, prebiotic, and probiotic interventions 241 
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As a proof-of-concept for in silico engineering of the metabolic outputs of the human gut 242 

microbiome, we screened a set of potential interventions designed to increase SCFA production 243 

for individuals from the Arivale cohort (Fig. 6A). MCMMs were built using two different dietary 244 

contexts: an average European diet, and a vegan, high-fiber diet rich in resistant starch (see 245 

Material and Methods). As expected, models grown on a high-fiber diet showed higher average 246 

predicted butyrate production: 87.78 ± 0.67 mmol/(gDW h) vs 16.29 ± 0.13 mmol/(gDW h), t-247 

test, t = 104.3, p < 0.001 (Fig. 6B). However, this increase in butyrate production between the 248 

European and high-fiber diets was not uniform across individuals. On the high-fiber diet, some 249 

individual gut microbiota compositions showed very large increases in butyrate production, 250 

some showed little-to-no change, and a small subset of samples actually showed a decrease in 251 

butyrate production, relative to the European diet. We identified a set of ‘non-responders’ (N = 252 

9) who produced less than 15 
����

�����
 of butyrate on the European diet and showed an increase 253 

in butyrate production of less than 20% on the high-fiber diet (Fig. 6C). We also identified a set 254 

of ‘regressors’ (N = 7) who showed decreased butyrate production on the high-fiber diet when 255 

compared to the European diet (Fig. 6D). We then simulated a handful of simple prebiotic and 256 

probiotic interventions across these individuals, to identify optimal combinatorial interventions 257 

for each individual (Fig. 6C-E). MCMMs for each subset of individuals were simulated with 258 

prebiotic and probiotic interventions in the context of either the European or the high-fiber diet. 259 

Specifically, diets were supplemented with the dietary fiber inulin, with the dietary fiber pectin, or 260 

with a simulated probiotic intervention that consisted of introducing 10% relative abundance of 261 

the butyrate-producing genus Faecalibacterium to the MCMM. In general, optimal combinatorial 262 

interventions significantly increased the population-level butyrate production well above either 263 

dietary intervention alone (Fig. 6C-D). 264 

For 15/16 individuals in the regressors or non-responders groups, supplementation of 265 

the background diet with a specific prebiotic or probiotic increased the butyrate production rate 266 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.02.28.530516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530516
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

(Fig. 6C-E). For both regressors and non-responders, the optimal intervention showed 267 

substantial increases over the standard European diet (+290±80% for non-responders; 268 

+239±102% for regressors). The exact intervention that yielded the highest butyrate production 269 

for any given individual across both populations varied widely (Fig. 6E). For example, the 270 

probiotic intervention was more successful in raising predictions for butyrate production in non-271 

responders than it was in regressors (Fig. 6E). Overall, no single combinatorial intervention was 272 

optimal for every individual in the population. 273 

 274 

Discussion 275 

The objective of this study was to experimentally validate personalized MCMM SCFA 276 

predictions. Predictions of butyrate production in synthetically constructed in vitro co-cultures 277 

showed significant agreement between measured and predicted butyrate fluxes (Fig. 2), a first 278 

step toward validation. Interestingly, better agreement was observed in richer communities, 279 

indicating increased model complexity benefitted predictions. Decreasing accuracy of butyrate 280 

predictions as community richness declined may reflect a limitation of building models at the 281 

genus-level, as reconstructions contain a summarized aggregation of the metabolic capability of 282 

the genus as a whole, without species- or strain-level resolution. Furthermore, we are 283 

leveraging database models, which do not reflect the exact strains present in a given sample. 284 

Consequently, pathways included in the metabolic models are not a perfect match to the reality 285 

of what is present in a sample. In high richness models, predictions of SCFAs became more 286 

accurate, suggesting this mismatch gets averaged out as species richness increases, likely due 287 

to functional redundancies across organisms that can mask the inaccuracies of any single taxon 288 

model. Alternatively, there could be some unknown biological reason for why SCFA production 289 

is less variable in higher richness communities, which would affect our ability to make accurate 290 

MCMM predictions. Overall, the observed increase in accuracy with community diversity 291 
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benefits modeling of real-world microbiomes, which are often more species-rich than synthetic 292 

in vitro communities 33,34. As our model databases grow to better-reflect the metabolic diversity 293 

of real-world ecosystems, we expect MCMMs to become more and more accurate, independent 294 

of community diversity.  295 

Further validation of MCMM predictions was observed from ex vivo anaerobic fecal 296 

incubations. We saw good agreement between SCFA flux predictions and measurements, 297 

especially for butyrate and propionate, across four independent studies (Fig. 3). Acetate is 298 

known to act as an overflow metabolite  35,36, with a wide range of possible fluxes for a given 299 

biomass optimum, so it is perhaps not surprising that the predictions for this metabolite tended 300 

to be less accurate across studies and within treatment groups. Butyrate and propionate, 301 

however, showed a narrower range of possible fluxes for a given biomass optimum, suggesting 302 

that the production of these molecules is more strongly coupled to biomass production. The 303 

dilution level of the ex vivo stool incubations had a sizable effect on the results, where the in 304 

vitro prebiotic treatment effect was dampened in less dilute fecal homogenates, likely due to the 305 

presence of residual dietary fibers in stool. The more accurate predictions of acetate production 306 

in the more dilute fecal homogenates is likely due to the fact that total SCFA production was 307 

more strongly coupled to in vitro prebiotic treatment in these samples. Accounting for this 308 

dilution factor in the construction of the in silico media improves predictions and returns more 309 

accurate results for butyrate and propionate production.  310 

We were interested in seeing how 16S- and metagenomic-based models compared at a 311 

similar taxonomic level, and how genus and species level predictions compared, in order to 312 

assess how applicable our modeling strategy could be to different data types. Using paired 16S 313 

and shotgun metagenomic sequencing data from Study C, we saw strong agreement between 314 

models constructed at the genus level for both 16S and metagenomic data (Fig. S1).  315 

Furthermore, we saw robust agreement between predictions at the genus and species levels 316 
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across metagenomic data sets (Fig. S5). Interestingly, predictions from Studies A, C and D 317 

showed marginally better agreement with measured values when constructed at the species 318 

level vs. the genus level, indicating that higher specificity in model construction is desirable 319 

when possible (Fig. S5). Across the in vitro and ex vivo studies, our results strongly support the 320 

use of MCMMs for predicting personalized butyrate and propionate production rates in response 321 

to prebiotic, probiotic, and dietary interventions.  322 

In vivo validation via direct measurement of SCFA production is not easily accomplished, 323 

due to the rapid consumption of these metabolites by the colonic epithelium and noisy 324 

measurements in either stool or serum 37 38. However, higher SCFA production rates are known 325 

to influence the phenotype of the host in a number of ways, including a reduction in systemic 326 

inflammation and improvements in cardiometabolic health 17,22,39,40. Wastyk et al. found that 327 

among 18 individuals given a 10-week high fiber dietary intervention, one third showed an 328 

increase in inflammation over the course of the intervention and two thirds showed a decline in 329 

systemic markers of inflammation 31. In the original paper, there was no clear mechanism for 330 

explaining these variable immune response groups 31. We found that propionate production, a 331 

strong inhibitor of inflammation through activation of FFA2 and FFA341,42, was predicted to be 332 

significantly lower in individuals who showed the high inflammation response (Fig. 4B-C) 31. 333 

While it is impossible to say whether or not our propionate flux predictions are underlying these 334 

dietary response phenotypes, the observed immune response groups and propionate 335 

production fluxes could not be explained by differences in alpha-diversity between groups (Fig. 336 

S4). We also had access to blood-based clinical labs and microbiome data for a cohort of 2,687 337 

Americans. We built MCMMs for this cohort, assuming a standard European diet, and predicted 338 

butyrate and propionate production. We found that butyrate was negatively associated with 339 

systemic inflammation, LDL cholesterol, and insulin resistance, blood pressure, and BMI (Fig. 340 

5). These results are consistent with what is known about how butyrate is protective against 341 
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inflammation, cardiovascular disease, obesity, and metabolic syndrome 17,22,39,40,43 (Fig. 5B), 342 

and they provide us with further confidence in the predictive power of our MCMM approach. 343 

Dietary interventions have long been known to elicit variable responses, but a mechanistic 344 

framework for predicting this microbiome-mediated heterogeneity has not been available until 345 

now.  346 

Given this set of promising associations between SCFA predictions and host phenotypic 347 

variation, we sought to demonstrate the potential for leveraging MCMMs for designing precision 348 

prebiotic, probiotic, and dietary interventions. Using the Arivale cohort, we identified two classes 349 

of individuals that responded differently to an in silico high-fiber dietary intervention: non-350 

responders and regressors (Fig. 6). We designed combinatorial interventions that added either 351 

a prebiotic or a probiotic to the background diets, to see if we could rescue these non-responder 352 

and regressor phenotypes. We found significant heterogeneity in which combinatorial 353 

intervention was optimal across individuals from each of these response groups (Fig. 6E). 354 

Given that the non-responders had low baseline levels of butyrate production to begin with and 355 

did not respond to a high-fiber diet, this result underscores the importance of personalized 356 

predictions for those who tend not to respond well to population-scale interventions. These 357 

results also suggest that butyrate production in some individuals is limited by composition of the 358 

microbiota, indicating that probiotic interventions would be necessary to induce meaningful 359 

increases in production. 360 

This study had several limitations that should be considered. First, we were limited by 361 

the availability of high-quality fluxomic data sets for model validation. For example, we had 362 

limited sample sizes in the ex vivo fecal studies presented above, due to the cost and difficulty 363 

of generating these kinds of data for larger cohorts. Additionally, the human cohort data 364 

presented here only provided indirect support for our MCMM predictions (Figs. 4-5). Second, 365 

predictions are dependent on the availability of GEMs. Obtaining large numbers of GEMs that 366 
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faithfully recapitulate the full metabolic capacities of each organism in a sample is a challenging 367 

task. We used the publicly available AGORA model database 29. While AGORA models have 368 

gone through some degree of manual curation, many of these models are not fully validated and 369 

have been shown to include infeasible and missing reactions 44. Nevertheless, these GEMs 370 

appear to work well in the context of butyrate and propionate flux predictions. SCFA production 371 

pathways are fairly phylogenetically conserved and adjacent to central metabolism, so we might 372 

expect these reactions to be robust to strain- or species-level variation and variation in model 373 

quality. However, predictions for metabolites that are peripheral to central metabolism will likely 374 

be much noisier in the absence of well-curated models that closely match the organisms within 375 

a given sample. Third, model building is dependent on accurate taxonomic assignment of 376 

sequencing reads. For 16S amplicon sequencing, reads can only be confidently assigned at the 377 

genus level, limiting the specificity of a model to the genera present in the original samples. 378 

However, as model databases grow and shotgun metagenomic sequencing becomes more 379 

common, we anticipate this limitation will be resolved. Finally, the lack of individual-specific 380 

dietary constraints limits the accuracy of our predictions. For ex vivo fecal fermentations, as well 381 

as in vivo analysis, participant dietary information was not available, and so a standard 382 

European diet was used across all models. Detailed knowledge of dietary intake should 383 

increase the accuracy of MCMM predictions. Despite these limitations, MCMMs were able to 384 

explain 25-35% of the variance in butyrate and propionate production across individuals, and we 385 

expect that advances in model curation, pathway annotation, and personalized dietary 386 

constraints will only improve upon the accuracy of this approach over time.  387 

 388 

Conclusion 389 

Here we present an approach for the rational prediction of personalized SCFA production rates 390 

from the human gut microbiome, validated using in vitro, ex vivo and in vivo experimental data.  391 
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Additional analysis demonstrated a clear relationship between SCFA predictions and 392 

physiological responses in the host, including lower inflammation and improved cardiometabolic 393 

health. SCFA predictions were also significantly associated with variable immune responses to 394 

a high fiber dietary intervention. Finally, we showed how MCMMs could be used to rapidly 395 

design and test combinatorial prebiotic, probiotic and dietary interventions in silico for a large 396 

human population.  Personalized prediction of SCFA production profiles from human gut 397 

MCMMs represents an important technological step forward in leveraging computational 398 

systems biology for precision nutrition. Mechanistic modeling allowed us to translate the 399 

ecological composition of the gut microbiome into concrete, individual-specific metabolic 400 

outputs, in response to particular interventions 45,46. MCMMs are transparent models that do not 401 

require training data, with clear causal and mechanistic explanations behind each prediction. 402 

The clinical relevance of these predictions is evident, due to the widespread physiological 403 

effects of SCFAs on the human body 47,48.  A rational framework for engineering the production 404 

or consumption rates of these metabolites has broad potential applications in precision nutrition 405 

and personalized healthcare.  406 

 407 

Materials and Methods 408 

In vitro culturing 409 

Culturing of the synthetically assembled gut microbial communities is described in Clark et al., 410 

2021 30. Culturing of ex vivo samples in Study A was done using the methodology described 411 

below. Culturing of ex vivo samples in Study B is described in Cantu-Jungles et al., 202118. 412 

Culturing of ex vivo samples in Study C was conducted by co-author Dr. Thomas Gurry, using 413 

the methodology described below.  414 

 415 

In vitro culturing of fecal-derived microbial communities (Study A) 416 
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Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the 417 

Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number 418 

5722) and transferred into an large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen, 419 

20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 20 420 

minutes of defecation. All further processing and incubation was then run inside the anaerobic 421 

chamber. 50 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks (Nasco, USA) 422 

with sterile PBS + 0.1% L-cysteine at a 1:2.5 w/v ratio and homogenized with a Stomacher 423 

Biomaster (Seward, USA) for 15 minutes. After homogenization, each sample was transferred 424 

into three sterile 250 mL serum bottles and another 2.5 parts of PBS + 0.1% L-cysteine was 425 

added to bring the final dilution to 1:5 in PBS. 87 ug/mL inulin or an equal volume of sterile PBS 426 

buffer were added to treatment or control bottles, respectively. Samples were immediately 427 

pipetted onto sterile round-bottom 2 mL 96-well plates in triplicates. Baseline samples were 428 

aliquoted into sterile 1.5 mL Eppendorf tubes and the plates were covered with Breathe-Easy 429 

films (USA Scientific Inc., USA). Plates were incubated for 7 h at 37°C and gently vortexed 430 

every hour within the chamber. Final samples were aliquoted into 1.5 mL Eppendorf tubes at the 431 

end of incubation. Baseline and 7 h samples were kept on ice and immediately processed after 432 

sampling. 500 uL of each sample were aliquoted for metagenomics and kept frozen at -80°C 433 

before and during transfer to the commercial sequencing service (Diversigen, Inc). The 434 

remaining sample was transferred to a table-top centrifuge (Fisher Scientific accuSpin, USA) 435 

and spun at 1,500 rpm for 10 minutes. The supernatant was then transferred to collection tubes 436 

kept on dry ice and transferred to the commercial metabolomics provider Metabolon, USA, for 437 

targeted SCFA quantification. 438 

 439 

In vitro culturing of fecal-derived microbial communities (Study C) 440 
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Homogenized fecal samples in this study again underwent anaerobic culturing at 37°C, as 441 

described above, but with a shorter culturing time of 4 hours. The slurry was diluted 2.5x in 442 

0.1% L-cysteine PBS buffer solution. Cultures were supplemented with the dietary fibers pectin 443 

or inulin to a final concentration of 10g/L, or a sterile PBS buffer control treatment. Aliquots were 444 

taken at 0h and 4h and further processed for measurement of SCFA concentrations, which were 445 

used to estimate experimental production flux (concentration[4h] - concentration[0h]/4h). SCFA 446 

concentrations were measured using GC-FID. Briefly, the pH of the aliquots was adjusted to 2-3 447 

with 1% aqueous sulfuric acid solution, after which they were vortexed for 10 minutes and 448 

centrifuged for 10 minutes at 10,000 rpm. 200 uL aliquots of clear supernatant were transferred 449 

to vials containing 200 uL of MeCN and 100 uL of a 0.1% v/v 2-methyl pentanoic acid solution. 450 

The resulting solutions were analyzed by GC-FID on a Perkin Elmer Clarus 500 equipped with a 451 

DB-FFAP column (30m, 0.250mm diameter, 0.25um film) and a flame ionization detector.  452 

 453 

In vitro culturing of fecal-derived microbial communities (Study D) 454 

Fecal samples were collected in 1200 mL 2-piece specimen collectors (Medline, USA) in the 455 

Public Health Science Division of the Fred Hutchinson Cancer Center (IRB Protocol number 456 

10961) and transferred into a large vinyl anaerobic chamber (Coy, USA, 37°C, 5% hydrogen, 457 

20% carbon dioxide, balanced with nitrogen) at the Institute for Systems Biology within 30 458 

minutes of sample receipt. All further processing and incubation was then run inside the 459 

anaerobic chamber. 30 g of fecal material was transferred into sterile 50 oz Filter Whirl-Paks 460 

(Nasco, USA) with 90 mL sterile PBS + 0.1% L-cysteine + 0.0001% resazurin and homogenized 461 

with a Stomacher Biomaster (Seward, USA) for 5 minutes. For each individual fecal sample, 462 

triplicate baseline samples of 1500uL slurry were transferred to a deep 96-well place (Fisher 463 

Scientific, USA), sealed and centrifuged at 4000rpm for 10 minutes. 300uL of the supernatant 464 

were  transferred to collection tubes and immediately frozen at -80°C. An additional 1800uL of 465 
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fecal slurry was transferred into a 2mL Eppendorf tube and frozen at -80°C for metagenomic 466 

shotgun sequencing. Interventions of 100uL inulin at 625mg/L, pectin at 750mg/L or PBS were 467 

transferred to in duplicate to a new deep 96-well plate, topped with 1500uL fecal slurry each, 468 

and immediately sealed with Breathe-Easy films (USA Scientific Inc., USA). Plates were 469 

incubated for 6 h at 37°C and gently vortexed every 2 hours within the chamber. After 470 

incubation, plates were immediately centrifuged at 4000rpm for 10 minutes at room temperature 471 

and 300uL of the supernatant was again transferred to collection tubes and kept at -80°C. The 472 

frozen slurry sample for metagenomic shotgun sequencing was transferred to a commercial 473 

sequencing service (Diversigen, Inc) on dry ice. The remaining supernatant samples were kept 474 

on dry ice and transferred to the commercial metabolomics provider (Metabolon, USA) for 475 

targeted SCFA quantification. 476 

 477 

Metagenomic sequencing and analysis 478 

For Study A, shallow metagenomic sequencing was performed by the sequencing vendor 479 

Diversigen, USA (i.e., their BoosterShot service). In brief, DNA was extracted from the fecal 480 

slurries with the DNeasy PowerSoil Pro Kit on a QiaCube HT (Qiagen, Germany) and quantified 481 

using the Qiant-iT Picogreen dsDNA Assay (Invitrogen, USA). Library preparation was 482 

performed with a proprietary protocol based on the Nextera Library Prep kit (Illumina, USA) and 483 

the generated libraries were sequenced on a NovaSeq (Illumina, USA) with a single-end 100bp 484 

protocol. Demultiplexing was performed using Illumina BaseSpace to generate the final FASTQ 485 

files used during analysis. For Study D, DNA extraction was performed under the same protocol 486 

as Study A. Libraries for Study D were prepared with the Nextera XT Library Prep kit (Illumina, 487 

USA) and sequenced with a paired-end 2x150bp protocol on a NovaSeq 6000 (Illumina, USA) 488 

yielding at least 70M reads/sample.  489 
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Preprocessing of raw sequencing reads from Study A and D was performed using 490 

FASTP 49. The first 5bp on the 5’ end of each read were trimmed, and the 3’ end was trimmed 491 

using a sliding window quality filter that would trim the read as soon as the average window 492 

quality fell below 20. Reads containing ambiguous base calls or with a length of less than 15bp 493 

after trimming were removed from the analysis. 494 

Bacterial species abundances were quantified using Kraken2 v2.0.8 and Bracken v2.2 495 

using the Kraken2 default database which was based on Refseq release 94, retaining only 496 

those species with at least 10 assigned reads 50,51. The analysis pipeline can be found at 497 

https://github.com/Gibbons-Lab/pipelines/tree/master/shallow_shotgun.  498 

 499 

Metabolomics 500 

Targeted metabolomics were performed using Metabolon’s high-performance liquid 501 

chromatography (HPLC)–mass spectrometry (MS) platform, as described before 52. In brief, 502 

fecal supernatants were thawed on ice, proteins were removed using aqueous methanol 503 

extraction, and organic solvents were removed with a TurboVap (Zymark, USA). Mass 504 

spectroscopy was performed using a Waters ACQUITY ultra-performance liquid 505 

chromatography (UPLC) and Thermo Scientific Q-Exactive high resolution/accuracy mass 506 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an Orbitrap 507 

mass analyzer operated at 35,000 mass resolution. For targeted metabolomics ultra-pure 508 

standards of the desired short-chain fatty acids were used for absolute quantification. Fluxes for 509 

individual metabolites were estimated as the rate of change of individual metabolites during the 510 

incubation period (concentration[7h] - concentration[0h]/7h). 511 

 512 

Model Construction 513 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.02.28.530516doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.28.530516
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

Taxonomic abundance data inferred from 16S amplicon sequencing was summarized to the 514 

genus level (as in in vitro cultures, ex vivo study B, fiber intervention samples, and samples from 515 

the Arivale cohort), or to the species level when shotgun metagenomic sequencing was 516 

available (as in ex vivo studies A, C and D). Abundances were used to construct all MCMMs in 517 

this analysis using the community-scale metabolic modeling platform MICOM v0.32.5 21. Models 518 

were built using the MICOM build() function with a relative abundance threshold of 0.001, 519 

omitting taxa that made up less than 0.1% relative abundance. The AGORA database (v1.03) of 520 

taxonomic reconstructions summarized to the genus level for 16S data or the species level for 521 

metagenomic sequencing data was used to collect genome-scale metabolic models for taxa 522 

present in each model. Building models at the genus level for metagenomic sequencing data 523 

was explored, but was outperformed by species level models. In silico media were applied to 524 

the grow() function, defining the bounds for metabolic imports by the MCMM. Medium 525 

composition varied between analyses (see Media Construction). Steady state growth rates and 526 

metabolic fluxes for all samples were then inferred using cooperative tradeoff flux balance 527 

analysis (ctFBA). In brief, this is a two-step optimization scheme, where the first step finds the 528 

maximal biomass production rate for the full microbial community and the second step infers 529 

taxon-specific growth rates and fluxes, while maintaining community growth within a suboptimal 530 

fraction of the theoretical maximum (i.e., the tradeoff parameter), thus balancing individual 531 

growth rates and the community-wide growth rate 21. All models in the manuscript used a 532 

tradeoff parameter of 0.7. This parameter value was chosen through cooperative tradeoff 533 

analysis in MICOM. Multiple tradeoff parameters were tested, and the highest parameter value 534 

(i.e. the value closest to the maximal community growth rate at 1.0) that allowed most (>90%) of 535 

taxa to grow was chosen (i.e., 0.7). Predicted growth rates from the simulation were analyzed to 536 

validate correct behavior of the models. All models were found to grow with minimum 537 

community growth rate of 0.3 h-1. Predicted values for export fluxes of SCFAs were collected 538 
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from each MCMM using the production_rates() function, which calculates the overall production 539 

from the community that would be accessible to the colonic epithelium.  540 

 541 

Media Construction 542 

Individual media were constructed based on the context of each individual analysis. For the 543 

synthetic in vitro cultures conducted by Clark et al. (2021), a defined medium (DM38) was used 544 

that supported growth of all taxa used in the experiments, excluding Faecalibacterium 545 

prausnitzii. Manually mapping each component to the Virtual Metabolic Human database, we 546 

constructed an in silico medium with flux bounds scaled to component concentration. All 547 

metabolites were found in the database. Using the MICOM fix_medium() function, a minimal set 548 

of metabolites necessary for all models to grow to a minimum community growth rate of 0.3 h-1 549 

was added to the medium - here, only iron(III) was added (in silico medium available here: 550 

https://github.com/Gibbons-Lab/scfa_predictions/tree/main/media). 551 

To mimic the medium used in ex vivo cultures of fecally-derived microbial communities, 552 

a carbon-stripped version of a standard European diet was used. First, a standard European 553 

diet was collected from the Virtual Metabolic Human database (www.vmh.life/#nutrition) 53. 554 

Components in the medium which could be imported by the host, as defined by an existing 555 

uptake reaction in the Recon3D model 54, were diluted to 20% of their original flux, to adjust for 556 

absorption in the small intestine54.  Additionally, host-supplied metabolites such as mucins and 557 

bile acids were added to the medium. The medium was augmented with a minimal set of 558 

metabolites required for growth of all taxa in the model database using the 559 

complete_db_medium() function within MICOM. As most carbon sources are consumed in the 560 

body and are likely not present in high concentrations in stool, this diet was then manually 561 

stripped of carbon sources by removing metabolites identified to be carbon sources for 562 

microbes. All components in the media were then diluted to 10% of their original flux to mimic 563 
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the fecal microenvironment. Residual dietary fiber not easily digested including resistant starch, 564 

dextrin and cellulose, was not removed from the medium during carbon removal. The amount of 565 

this residual fiber was scaled to the dilution factor of samples in each study prior to culturing. To 566 

simulate fiber supplementation, single fiber additions were made to the medium, either pectin, 567 

inulin or fructo-oligosaccharide (1.0 mmol/gDW*h for pectin, 10.0 mmol/gDW*h for inulin, 100 568 

mmol/gDW*h for FOS, based on carbon content reported for each).  569 

For in vivo modeling, two diets were used: a high-fiber diet containing high levels of 570 

resistant starch, and a standard European diet 53,55. Again, both diets were collected from the 571 

Virtual Metabolic Human database (www.vmh.life/#nutrition). Each medium was subsequently 572 

adjusted to account for absorption in the small intestine by diluting metabolite flux as described 573 

previously. Additionally, host-supplied metabolites such as mucins and bile acids were added to 574 

the medium, to match the composition of the medium in vivo. Finally, the 575 

complete_db_medium() function was again used to augment the medium, as described above. 576 

Prebiotic interventions were designed by supplementing the high-fiber or average 577 

European diet with single fiber additions, either pectin or inulin, as described previously.  578 

 579 

Probiotic Intervention 580 

To model a probiotic intervention, 5% relative abundance of the genus Faecalibacterium, a 581 

known butyrate-producing taxon 56, was added to the MCMMs by adding a pan-genus model of 582 

the taxon derived from the AGORA database (v1.03). Measured taxonomic abundances were 583 

scaled to 95% of their initial values, after which Faecalibacterium was artificially added to the 584 

model.  585 

 586 

External Data Collection 587 
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Data containing taxonomic abundance, optical density, and endpoint butyrate concentration for 588 

synthetically-constructed in vitro microbial cultures were collected from Clark et al. (2021) 30. 589 

Endpoint taxonomic abundance data, calculated from fractional read counts collected via 16S 590 

amplicon sequencing, was used to construct individual MCMMs for each co-culture (see Model 591 

Construction). Resulting models ranged in taxonomic richness from 1 to 25 taxa. 592 

 Data from ex vivo studies A and D, containing shotgun metagenomic sequencing and 593 

SCFA metabolomics, was collected and processed as described previously. Taxonomic 594 

abundance data was used to construct MCMMs for each individual (see Model Construction).  595 

From a study by Cantu-Jungles et al. (2021) 18 (ex vivo Study B), preprocessed 596 

taxonomic abundance and SCFA metabolomics data was collected. Homogenized fecal 597 

samples in this study underwent a similar culturing process, with a culturing time of 24 hours. 598 

Cultures were supplemented with the dietary fiber pectin, or a PBS control. Initial and endpoint 599 

metabolomic SCFA measurements were used to estimate experimental production flux 600 

(concentration[24h] - concentration[0h]/24h). Taxonomic abundance data was used to construct 601 

MCMMs for each individual .  602 

Data from a third (Study C) was collected from the Pharmaceutical Biochemistry Group 603 

at the University of Geneva, Switzerland, under study protocol 2019-00632, containing 604 

sequencing data in FASTQ format and targeted metabolomics SCFA measurements.  605 

Data was collected from Wastyk, et al 2021 31, which provided 16S amplicon sequencing 606 

data at 9 timepoints spanning 14 weeks, along with immunological phenotyping, for 18 607 

participants undergoing a high-fiber dietary intervention. Only 7 timepoints spanning 10 weeks 608 

were included in subsequent analysis, as the last 2 timepoints were taken after the conclusion 609 

of the dietary intervention. MCMMs were constructed for each participant at each timepoint at 610 

the genus level (see Model Construction). Mean total butyrate and propionate production were 611 

compared between immune response groups. 612 
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De-identified data was obtained from a former scientific wellness program run by Arivale, 613 

Inc. (Seattle, WA) 32. Arivale closed its operations in 2019. Taxonomic abundances, inferred 614 

from 16S amplicon sequencing data, for 2,687 research-consenting individuals were collected 615 

and used to construct MCMMs. 128 paired blood-based clinical chemistries taken within 30 616 

days of fecal sampling were also collected and used to find associations between MCMM SCFA 617 

predictions on a standard European diet and clinical markers. Blood pressure and BMI for each 618 

individual were also collected. Metadata for each sample including age, sex, and microbiome 619 

sequencing vendor were included in the analysis as confounders.  620 

 621 

Statistical analysis 622 

Statistical analysis was performed using SciPy (v1.9.1) and statsmodels (v0.14.0) in Python 623 

(v3.8.13). Pearson correlation coefficients and p-values were calculated between measured and 624 

predicted SCFA production fluxes in in vitro and ex vivo cultures, as well as for predicted SCFA 625 

production fluxes across timepoints for an in vivo high-fiber intervention. Significance in SCFA 626 

production between immune response groups in the high-fiber dietary intervention was 627 

determined by non-parametric pairwise Mann-Whitney U test for butyrate, propionate, and 628 

combined butyrate and propionate production. Association of MCMM-predicted SCFA 629 

production flux with paired blood-based clinical labs was tested using OLS regression, adjusting 630 

for age, sex, microbiome sequencing vendor, and tested for significance by two-sided t-test. 631 

BMI was not included as a confounder in the analysis because it was itself negatively correlated 632 

with butyrate production 43. Multiple comparison correction for p-values was done using the 633 

Benjamini–Yekutieli method for adjusting the False Discovery Rate (FDR) 57. Comparison of 634 

butyrate production between dietary interventions was tested using paired Student’s t-tests. In 635 

all analyses, significance was considered at the p<0.05 threshold.  636 

 637 
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Data, Software, and Code Availability 638 

Code used to run analysis and create figures for this manuscript can be found at 639 

https://github.com/Gibbons-Lab/scfa_predictions.  640 

Processed data for synthetically constructed cultures can be found at 641 

https://github.com/RyanLincolnClark/DesignSyntheticGutMicrobiomeAssemblyFunction. Raw 642 

sequencing data can be found at https://doi.org/10.5281/zenodo.4642238.  643 

 644 

Raw sequencing data for Study A can be found in the NCBI SRA under accession number 645 

PRJNA937304. 646 

Processed data for ex vivo Study B can be found at 647 

https://github.com/ThaisaJungles/fiber_specificity. Raw sequencing data can be found in the 648 

NCBI SRA under accession number PRJNA640404. 649 

Raw sequencing data for ex vivo Study C can be found in the NCBI SRA under accession 650 

number PRJNA939256. 651 

Raw sequencing data for ex vivo Study D can be found in the NCBI SRA under accession 652 

number PRJNA1033794. 653 

Processed data for the longitudinal high-fiber intervention study can be found at 654 

https://github.com/SonnenburgLab/fiber-fermented-study/.  655 

Qualified researchers can access the full Arivale deidentified dataset supporting the findings in 656 

this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to 657 

access the data can be made at data-access@isbscience.org and will be responded to within 7 658 

business days. 659 

Illustrations were created with BioRender.com. 660 
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 820 

 821 

 822 

Figures and Figure Captions 823 

 824 

825 

Figure 1. Microbial community-scale metabolic models (MCMMs) predict personalized SCF826 

production profiles. Schematic of our workflow for validating MCMM-based personalized predic827 

for SCFA production. (A) Prior to modeling, an in silico medium is constructed, containing a matc828 

diet mapped to its constituent metabolic components. The medium is depleted in compounds abs829 

by the host in the small intestine and augmented with other host-supplied compounds, in addition830 

adding a minimal set of metabolites required for growth. (B) MCMMs are constructed, combining831 

abundance and taxonomic data with pre-curated GEMs into a community model. (C) Growth in th832 

MCMM is simulated through cooperative tradeoff flux balance analysis (ctFBA), yielding predicte833 

growth rates and SCFA production fluxes. (D) To validate predicted levels of SCFA production flu834 

measured production fluxes are collected from in vitro communities of human gut commensals an835 
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fecal samples cultured anaerobically ex vivo at 37°C over time. (E) Predicted and measured SCFA 836 

production fluxes are compared to assess the accuracy of the model.  837 

 838 
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 841 

Figure 2. Relationship between predicted and measured butyrate production rates in in vitro and 842 

ex vivo co-cultures. Butyrate production flux predictions from MCMMs are shown on the y-axes and 843 

measured values are shown on the x-axes, along with R2 and p-values from a Pearson’s correlation (A) 844 

In vitro or ex vivo communities were cultured anaerobically. Endpoint butyrate concentration was used 845 

to calculate production flux and compared with MCMM-predicted flux. (B) Predicted and measured 846 

butyrate fluxes in models of low richness synthetic communities (1-5 genera per model, N = 882). (C) 847 

Predicted and measured butyrate fluxes in models of high richness synthetic communities (10-25 848 

genera, N = 697). (D-F) Z-scored predicted and measured fluxes for acetate, butyrate and propionate, 849 

across four independent ex vivo studies. The label in the figure legend indicates the final dilution level 850 

of cultures in each study (dilution = 1:x). In (B-F) the dashed line denotes a linear model fit to the data, 851 

with the surrounding shaded region indicating the 95% confidence interval.  852 
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Figure 3. Human stool ex vivo assays show quantitative agreement between measured 855 

and predicted SCFA production fluxes within and across fiber treatment groups. Z-scored 856 

SCFA production flux predictions from MCMMs are shown on the y-axes and Z-scored 857 

measured values are shown on the x-axes. Pearson’s r and associated p-value are calculated 858 

for all points in a given plot. Color encoding indicates the specific fiber treatment given to each 859 

sample. The dashed line denotes a linear regression line and the gray area denotes the 95% 860 

confidence interval of the regression. Residual fiber in the media used to simulate growth of 861 

each study was scaled according to the dilution factor, shown next to the study name in each 862 

column (A-D) Z-scored predictions compared with z-scored measurements of acetate 863 

production across all four studies. (E-H) Z-scored predictions compared with z-scored 864 

measurements of butyrate production across all four studies. (I-L) Z-scored predictions 865 

compared with z-scored measurements of propionate production across all four studies.  866 
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Figure 4. Predicted SCFA production profiles were associated with variable immune 868 

response groups following a high-fiber dietary intervention. (A) Summary of the study from 869 

Wastyk et al.31, where a cohort of 18 individuals participated in a 10-week high-fiber dietary 870 

intervention. Immune profiling based on circulating inflammatory cytokines and immune cells 871 

clustered individuals into three groups: two low-inflammation groups and one high-inflammation 872 

group. (B) Total predicted propionate production at each timepoint across the three immune-873 

response groups identified in the original study. (C)  Average predicted propionate production 874 

rates, stratified by immune response group (D) Total predicted butyrate production at each 875 

timepoint across the three immune-response groups identified in the original study. (E)  Average 876 

predicted butyrate production rates, stratified by immune response group. In (B-E) stars denote 877 

significance under a Mann-Whitney U-test, * = p<0.05, ** = p< 0.01, *** = p<0.001. 878 

 879 

 880 

Figure 5. SCFA flux predictions are significantly associated with blood-derived clinical 881 

markers. (A) MCMMs were constructed for 2,687 Arivale participants, assuming an average 882 

European diet, to predict SCFA production profiles. SCFA predictions were regressed against a 883 

set of 128 blood-based clinical labs and health markers, with sex, age, and sequencing vendor 884 

as covariates in the regressions. (B) Heatmap showing the 20 significant associations (FDR-885 

corrected t-test p<0.05) between measured blood markers and predicted SCFA production 886 

rates. (C-D) Predictions for butyrate were significantly correlated with reported BMI 887 
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measurements for respective participants, but not for propionate. Each dot denotes an individual888 

model reconstructed for a single sample in the Arivale study (N = 2,687). The black line denotes 889 

a linear regression line and the gray area denotes the 95% confidence interval of the 890 

regression. β-coefficients were calculated from multiple regression accounting for age, sex and 891 

microbiome sequencing vendor.  892 

 893 

 894 

 895 

896 

Figure 6. Microbial MCMMs can be used to design and select personalized prebiotic, 897 

probiotic, and dietary interventions aimed at optimizing SCFA production profiles. (A) 898 

MCMMs built from the Arivale cohort (N = 2,687) were used to test personalized responses to 899 

dietary interventions. Personalized models were simulated on an average European diet, as 900 

well as on a high-fiber diet, and divided into responders, non-responders, and regressors, based901 

on the changes in predicted butyrate production in response to increasing dietary fiber. Non-902 

responders were defined as individuals who produced less than 15  of butyrate on the 903 

European diet and showed an increase of less than 20% in butyrate production on the high-fiber 904 

diet. Regressors were defined as individuals who showed a decline in butyrate production on 905 

the high-fiber diet when compared to the European diet. Single-fiber and probiotic interventions 906 

were applied to non-responders and regressors. (B) Distribution of butyrate production rates on 907 

two different diets simulated for all participants in the study. Butyrate production ranges that 908 

contain non-responders (N = 9) and regressors (N = 7) are highlighted in green and yellow 909 

shaded areas, respectively. (C) Distributions of butyrate production rates for the non-responder 910 

group (N = 9). The optimal intervention resulting in the highest butyrate production is shown in 911 
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blue. (D) Butyrate production rates for the regressor group (N = 7). The optimal intervention that 912 

resulted in the highest butyrate production is shown in blue. (E) Heatmap of butyrate production 913 

rates across simulated interventions for the individuals in the non-responder and regressor 914 

groups. Rows denotes specific interventions, columns denote individuals in the response groups 915 

(N = 16). Cell shading (white-to-red) denotes butyrate production rate. Added interventions 916 

tested on both non-responders and regressors included probiotic supplementation (inulin or 917 

pectin) as well as prebiotic supplementation (5% relative abundance Faecalibacterium). The 918 

most successful intervention for each individual is denoted by a black border around that cell in 919 

the corresponding column.  920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

Supplemental Figures and Captions 961 
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 962 

Figure S1. Predictions of SCFA production using 16S amplicon sequencing or shotgun 963 

metagenomic sequencing data show concordance. Data from Study C included 16S 964 

amplicon sequencing as well as shotgun metagenomic sequencing. The black line denotes a 965 

linear regression line and the gray area denotes the 95% confidence interval of the regression. 966 

Color encoding indicates the specific fiber treatment given to each sample. (A-B) Predictions for 967 

butyrate and propionate between models summarized to the genus level from 16S amplicon 968 

sequencing data and shotgun metagenome data. (C-D) Predictions for butyrate and propionate 969 

from models built using shotgun metagenome data at the genus level and species level.  970 

 971 
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 972 

Figure S2. Divergence in SCFA production between controls and fiber-treated samples is 973 

related to culture dilution. Four independent ex vivo studies were used to validate predictions 974 

of MCMMs. Each study used a different dilution for the final culture, changing the scale of 975 

substrates available to the microbial communities. Illustrated here, the dilution factor, shown 976 

next to the study name, seems to show agreement with the divergence in SCFA production 977 

between control samples and fiber-treated samples. This was accounted for by diluting the 978 

residual fiber available to the microbial communities in the in silico medium.  979 
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 980 

Figure S3. MCMMs built from shotgun metagenomic sequencing data perform better 981 

when constructed at the species level, as compared to the genus level. MCMMs from ex 982 

vivo studies A, C and D were constructed at the (A) genus and (B) species level. Prediction 983 

production rate of butyrate and propionate more closely matched measured production rate in 984 

the species level model as compared to the genus level model. The black line denotes a linear 985 

regression line and the gray area denotes the 95% confidence interval of the regression. Color 986 

encoding indicates the specific treatment from which Pearson r and associated p-value were 987 

calculated for each panel.  988 
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991 

 992 

Figure S4. Alpha diversity of communities does not account for differences in SCFA 993 

production.  We compared Shannon index, a measure of alpha diversity, against SCFA 994 

production in ex vivo communities, as well as between immune response groups in a 995 

longitudinal high fiber study.  (A)  Propionate production in four ex vivo datasets was not 996 

consistently explained by alpha diversity. In study D, a significant relationship was observed as 997 

determined by t-test (p < 0.05), but this was not consistent between datasets. The black line 998 

denotes a linear regression line and the gray area denotes the 95% confidence interval of the 999 

regression. Color encoding denotes the specific fiber treatment that was given to each sample 1000 

(B) Butyrate production also showed no consistent correlation with alpha diversity, although a 1001 

significant difference was again observed within Study D as determined by t-test (p < 0.05). (C) 1002 

No consistent pattern emerged with regard to alpha diversity between immune response groups 1003 

throughout the course of the high fiber dietary intervention, as determined by Mann Whitney U 1004 

test for significance. In C, * = p < 0.05. 1005 
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