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Abstract Arm movements in our daily lives have to be adjusted for several factors in response
to the demands of the environment, for example, speed, direction or distance. Previously, we
had shown that arm movement kinematics is optimally tuned to take advantage of gravity effects
and minimize muscle effort in various pointing directions and gravity contexts (Gaveau et al.,
2016). Here we build upon these results and focus on muscular adjustments. We used Machine
Learning to analyze the ensemble activities of multiple muscles recorded during pointing in
various directions. The advantage of such a technique would be the observation of patterns in
collective muscular activity that may not be noticed using univariate statistics. By providing an
index of multimuscle activity, the Machine Learning analysis brought to light several features of
tuning for pointing direction. In attempting to trace tuning curves, all comparisons were done
with respects to pointing in the horizontal, gravity free plane. We demonstrated that tuning for
direction does not take place in a uniform fashion but in a modular manner in which some
muscle groups play a primary role. The antigravity muscles were more finely tuned to pointing
direction than the gravity muscles. Of note, was their tuning during the first half of downward
pointing. As the antigravity muscles were deactivated during this phase, it supported the idea
that deactivation is not an on-off function but is tuned to pointing direction. Further support for
the tuning of the portions of the phasic EMG containing only negative activity was provided by
progressively improving classification accuracies with increasing angular distance from the
horizontal. Overall, these results show that the motor system tunes muscle commands to exploit
gravity effects and reduce muscular effort. It quantitatively demonstrates that phasic EMG
negativity is an essential feature of muscle control.

Introduction

How the brain plans and executes movements is a challenging question in the field of motor neuro-
science. The well-known ‘problem of redundancy’ (Bernshtein, 1967; Latash, 2012), implies that a
large number of joints and muscles must be coordinated to produce adaptive movements that ad-
vantageously interact with our environment (Franklin and Wolpert, 2011; Farshchian et al., 2018).
A fundamental aspect of this environment is the presence of gravity acceleration. Until now, the
neural control of movement has been mostly investigated using tasks where the mechanical ef-
fects of gravity were canceled (for example, moving in a constrained horizontal plane). However,
living organisms must continuously produce adaptable movements that interact with gravity. In
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attempting to gain knowledge that can apply to real life situations, it is paramount to understand
gravity-related movement control. Previously, we demonstrated that the brain plans arm move-
ments whose kinematics are optimally tuned to take advantage of gravity effects and minimize
muscle effort (Gaveau et al., 2016). Across varied directions and gravity levels, ratios of accelera-
tion versus deceleration well supported our optimal integration of gravity hypothesis and falsified
the pre-existing hypothesis according to which the brain would use a tonic torque to compensate
for gravity effects (Hollerbach and Flash, 1982; Atkeson and Hollerbach, 1985; Flanders and Her-
rmann, 1992). However, as noticed by reviewers, an important caveat in our investigation and
claims was the lack of support from muscle activation patterns (see reviewers comments in the
Decision letter for Gaveau et al. (2076)). Since many different muscle contractions can give rise to
the same kinematics (Burdet et al., 2001; Hagen and Valero-Cuevas, 2017), whether muscle effort
truly incorporates the benefits to be obtained from gravity effects remained to be seen.

A qualitative demonstration of a muscular integration of gravity effects for effort minimization
was later provided in our study on monkeys and humans (Gaveau et al., 2021). Scrutinizing the
phasic activations of antigravity muscles i.e. the remaining activity after subtracting the part that
compensates for gravity torque (Flanders and Herrmann, 1992; Flanders et al., 1996) - we observed
that antigravity muscles systematically exhibited negative phases. These negative portions on pha-
sic muscle EMGs indicated that there was less activity in the muscle pattern than what is required
to compensate for gravity torque. Importantly, these negative phases happen when gravity is able
to help produce the arm motion i.e. during the acceleration of downward movements and during
the deceleration of upward movements (Gaveau et al., 20217). Analyzing the negativity of phasic
muscle activations has since helped to understand the effect of laterality on sensorimotor control
(Poirier et al., 2022) as well as its modification with increasing age (Poirier et al., 2023).

The above studies supporting the optimal integration of gravity hypothesis at the muscular
level remain rather coarse-grained. They investigated a limited number of muscles during purely
vertical and horizontal movements (Gaveau et al., 2021; Poirier et al., 2022, 2023). A better under-
standing of the integration of gravity in motor control requires a finer-grained investigation where
more directions and muscles are examined. In a previous study, we had reported on the kinemat-
ics of pointing movements performed in seventeen different directions (Gaveau et al., 2016). In
this same investigation, we had also recorded the activation patterns of nine muscles for eleven
participants but did not exploit the muscle activation results. The present study takes advantage
of this EMG dataset to provide a fine-grained analysis of phasic EMGs and examine how they may
incorporate the beneficial contribution of gravity for muscle effort minimization. An important
caveat in the existing literature is that no study has specifically quantified the importance of the
phasic EMG negativity in the overall muscle activation pattern. Whether this negativity represents
an important part of the neural signals producing body limb movements is still unknown. In addi-
tion, recent reports in the domain of muscle synergies have emphasized the need to develop tools
that allow investigating such negative signals (Scano et al., 2022; Brambilla and Scano, 2022; Scano
et al., 2023).

As mentioned in the previous paragraph, the experiments for the study from Gaveau et al.
(2016) were accompanied by the simultaneous recording of muscular activity. As we had recorded
EMG activities from 9 muscles of 11 participants performing 12 pointings trials in 17 directions,
we ended up with 20196 EMG traces (recorded at 2000Hz). As in the case of many motor control
experiments, this constituted a big data base. Consequently, we employed a Machine Learning
(ML) technique to draw benefits from a multimuscle approach. By the latter, we refer to situations
in which patterns or clearer effects are seen with muscle groups rather than single muscles. The
specific approach used was one of binary classification in which EMG time series were automati-
cally classified as coming from a horizontal movement or from another angle. We have previously
used binary classification successfully to provide insight into Whole Body Pointing (Tolambiya et al.,
2011, 2012) and gait (Nair et al., 2010; Laroche et al., 2014). Classification accuracy provides an in-
dicator of data separation. Poor separation in the EMGs would lead to poor classification accuracy
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Figure 1. a) lllustration of the task (adapted from ©2016, Gaveau et al.). b) Shoulder muscles from which the
EMGs are recorded.

while EMGs that are very different would lead to higher accuracy. The main Machine Learning clas-
sification technique used in the present study was Linear Discriminant Analysis. This algorithm
utilizes information on the mean and variance of each category to build a representation of the
group (Grimm and Yarnold, 2000; Johnson and Wichern, 2007; Izenman, 2008). One of the rea-
sons for choosing LDA is the greater ease for finding the factors which are critical in classification
success. This is in keeping with the spirit of explainable artificial intelligence (XAl) (Murdoch et al.,
2019; Arrieta et al., 2020). Algorithms like Support Vector Machines are more powerful classifiers
but harder to probe for the combination of features which are the most critical to classification
accuracy (Thomas et al., 2023). Nevertheless, as our previous studies have shown that they can
be successfully applied to the analysis of EMG data (Tolambiya et al., 2011, 2012), we used the
technique as a supplementary method to reinforce the conclusions made using LDA.

Method

Subject, task and recording

The data used in the current investigation comes from a previous study by Gaveau et al. (2016). To
briefly summarize the task: 11 adults were asked to execute a pointing task. Participants started at
an initial position (shoulder elevation 90°, shoulder abduction 0°, arm completely stretched) then
proceeded to rapidly point at specific directions (every 15°) rotating only the shoulder (see Fig-
ure 1a). The EMGs from nine muscles were recorded during the pointing tasks (see Figure 1b). The
EMGs were then processed to extract the phasic part of the movement (Flanders and Herrmann,
1992; Flanders et al., 1996; Gaveau et al., 2016; Poirier et al., 2022). To do so, EMG signals were
integrated from 1 to 0.5s before movement onset and from 0.5 to 1s after movement stop and
averaged. The linear interpolation between those two values was used as an estimate of the tonic
component, which was removed from the integrated EMG to keep only the phasic component.
Then, all the trials were normalized in duration to 1000 points using linear interpolation.

The next step consisted of normalizing EMG amplitude to prepare the input signals for the LDA
algorithm. The EMG signals were normalized using a Z-score transformation. It was done sepa-
rately for each individual. This reduced the variability which would be caused by inter individual
differences in EMG amplitudes. It was also done separately for each muscle, hence ensuring that
muscles with small EMG amplitudes were not eliminated from playing a role in classification. Finally,
a normalization was done for each angle. This normalization removed information on differences
in EMG amplitudes for pointing direction. It was an important step as the differences in amplitude
could reflect differences in tonic activity for pointing direction rather than provide information on
adjustments in phasic activation.

Linear Discriminant Analysis
Linear discriminant algorithm (LDA) is a classification algorithm which tries to find the best linear
hyperplane (hence the name) in the feature space to separate different classes of objects (Grimm
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and Yarnold, 2000; Johnson and Wichern, 2007; Izenman, 2008). This then permits the classification
of new observations depending on which side of the hyperplane they are on. Traditionally, LDA
was reduced to an eigenvector problem, with the objective of finding a subspace in the original
data space that maximize the separability between classes along the first axis of this subspace.
However, computational power allows for a more direct approach to classify new data.

To achieve this, the algorithm is used to estimate the probability distributions of the different
classes, following certain assumptions about these distributions — that both classes follow Gaus-
sian distributions with the same variance, but different means. Knowing this information, it is
then possible to infer the probability of a new observation to belong to a certain class thanks to
Bayes' theorem. This probability is weighted by a cost function to bias the results for particular
applications if needed. In practice, the class y of a new observation is determined by the following

equation:
K

y=arg m;‘(n Z ﬁ(k|x)C(y|k) (M

y=1,..., k=1
with y and k being class numbers among the K different classes of object.
Thus Equation (1) tries to determine, for an observation x, the class k that maximizes P(k|x)C(y|k)
as itis the probability of the observation x to belong to class k. It is determined thanks to the Bayes'

theorem:
P(x|k)P(k)

P(x)

P(k) is the prior probability and is determined empirically using the labels distribution from the
training set. What the algorithm learn from the data are actually the likelihood distributions P(x|k).
In the case of LDA, those distributions are assumed to be multivariate Gaussian distributions, all
with the same variance matrices. Thus, the main part of the computation is to find the variance
matrix and class means. As the distributions are Gaussian, P(x|k) is entirely determined by the
Mahalanobis distance of x for class k. Finally, P(x) is the normalization factor calculated pooling all
the estimated P(x|k) distributions :

P(k|x) = )

K
P(x) = 2 P(x|k) (3)
k=1

In Equation (1), C(y|k) represent the cost function, i.e. how much is penalized the misclassification
of an observation. This function can be tweaked for particular usage (e.g. to increase sensitivity
of the algorithm at the expanse of specificity). Here, we do not apply a bias in favor of one class,
which then translates to the following cost function :

0 ify=k
Cylk) = . (4)
1 ify#k

meaning that all classes are equally penalized for misclassification, hence, the hyperplane sep-
arating both classes will maximize the separability between the classes and corresponds to the
hyperplane that would be obtain through the traditional approach of LDA.

Having all the elements needed, y can then be determined for any new observation using Equa-
tion (1).

Additionally, as we did in Thomas et al. (2023), we computed the LDA i .nce @s further indicator
of the separation of the data. We defined this value as the Euclidean distance between the means
of the Gaussian distributions representing the classes

Support Vector Machine

Like LDA, Support Vector Machines (SVM) are used to find the hyperplane that maximize the sepa-
rability between two classes (Cristianini and Shawe-Taylor, 2000; Hastie et al., 2009). In our study,
we used a linear kernel. However, contrary to LDA which takes into account all the sample of a
class, SVM is only interested in the samples from a class that are the closest from the samples of
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the other class (the so-called support vectors). A margin demarcates each class and the objective
of SVM is to maximize the separation between these margins. The optimal separation hyperplane
is the one in the middle of the largest margin.

This optimal hyperplane can be defined by its orthogonal vector g and a bias vector b so that :

f@)=x"p+b=0 (5)

with x being an observation. The objective at this point is to minimize ||8||. However, this approach
only works if the two classes are perfectly separable, which may not be the case here, hence we
introduce so-called 'slack variables’ which will penalize the margin size for each support vector on
the wrong side of the separation hyperplane. Thus, the objective becomes to minimize :

05IAIP+C )¢ (6)

with respect to g, b and ¢; subject to y,f(x;) > 1-¢; and ¢, > 0 for all j = 1,...,n. y; is the label of
the observation j (either —1 or 1) and C is a positive scalar called 'box constraint’ that regularizes
the penalty assigned to errors. To optimize the objective function presented in Equation (6), we
use the Lagrange multipliers method. This method introduce a series of coefficients a, ..., @, which
allow the transformation of the objective into maximizing :

O.SZZajakyjykijxk - Zaj (7)
=1 k=1 =1

with respect to «,, ..., a, subject to :

Zajyj =0

0<a,<C

aly, f(x)=1+¢]1=0
((C—a)=0

for all j =1, ..., n. Finally, a new observation z is assigned to a class following the equation :

sign(f(z)) = sign(z &jyjoxj +b) (9)

=1

where b is the estimate of the bias and a;isthe j™ estimate of the vector &. Once classification was

done, we used —2_ a5 an estimate of the size of the margin separating the data.

1Al

Data Organization for Machine Learning

All analyses were performed offline using custom Matlab scripts (MATLAB, 2022). The input data
was constructed by concatenating the processed EMG signals of the nine muscles. This gave us
one vector of 9000 points (1000 normalized time points multiplied by 9 muscles) per trial. Thus, the
algorithms were trained on the entire EMG waveforms of all the muscles simultaneously. Further
analyses involved focusing on certain parts of the signal. Portions of this vector were isolated as
necessary when analyses only involved some muscle subsets (e.g. only the gravity muscles).

The training of the algorithms was done using binary classification i.e. the algorithm was trained
to discriminate between EMGs of two directions. One of the movement directions was always the
horizontal plane (90°, gravity neutral, taken as reference) while the other class was any of the other
angles.

To ensure the generalization of the results, a stratified five-fold cross-validation method was
used. The data set was separated into training and testing sets using the known labels of the
samples to ensure that both directions were equally represented in each training and testing set.
The cross-validation approach allowed a better estimation of the efficacy of the algorithm by testing
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it on multiple data sets. Thus, we were able compute an average accuracy of the algorithm on
several testing sets.

From each trained LDA algorithm, we extracted the means of the two P(x|k) distributions as
well as the testing accuracy. Then, we computed the LDA i, Measuring the separation between
the mean vectors of each class. For SVM algorithms, we extracted the vector orthogonal to the
separation hyperplane and computed the width of the margin.

Statistical analysis

The significance of results was obtained using non-parametric tests, namely the Wilcoxon rank
sum test when comparing two conditions and the Friedman test to compare effects across multiple
conditions. Results were considered to be significant for p < 0.05.

Results

The processed phasic EMGs from the recorded nine muscles for every pointing angle can be seen
in Figure 2. We will start the result section with a presentation of a grid displaying the classification
accuracies of individual muscles versus the accuracy obtained from all the muscles. The main pur-
pose of this would be to illustrate the higher accuracies obtained from using the combined muscle
information. We will then continue examining the classification obtained using all the muscles si-
multaneously in order to trace the nature of collective muscular tuning for pointing direction. The
nature of this tuning will be further analyzed using the LDAitance- From using input vectors which
contain the information from all the muscles, we will then turn to analyzing specific groups of mus-
cles. Once again, classification accuracies will be used as an indicator of adaptation for pointing
direction, hence allowing us to trace tuning curves for particular muscle groups. Finally, as one
of the major points of this paper is that the negative portions of the phasic EMGs are a result of
gravity effort optimization, we will use classification to see if this portion of the EMG is tuned to
pointing direction. Results obtained using LDA will also be reinforced using the SVM as an alternate
Machine Learning algorithm.

Advantage of a multimuscle approach

The aim of this section is to demonstrate some of the benefits of a multimuscle approach. In
Figure 3 we display a grid with the classification accuracies of individual muscles for each pointing
angle as well as the accuracy using all the muscles simultaneously (last line of grid). For almost
all directions, the classification accuracy using all the muscles is higher than those obtained with
individual muscles. This demonstrates that information concerning differences in muscular activity
for pointing in different directions may be found at the level of the muscle population even when
it may not be significantly present at the level of individual muscles.

Other features of note in this figure are that some muscles like the anterior deltoid, have rel-
atively high accuracies when pointing at 0° as well as at 180°, hence indicating an important role
in adaptation for both directions. This is not the case for a muscle like the medial deltoid which
displays high accuracies for pointing at 180°, but not for 0°. The short triceps has low accuracies
in discriminating for any angle, hence showing that it does not have a prominent role in adapting
for direction.

Binary classification with all muscles for pointing direction

The aim of this section is to follow the nature of multimuscle adaptation for pointing in each of the
seventeen directions described in the Methods section. Using all the muscles, LDA was used to
detect if pointing had taken place horizontally or at another pointing direction. Figure 4 displays
the accuracies from this classification of 90° (horizontal pointing) versus another angle displayed
on the x-axis. Poor classification accuracies reflect small separation between data groups while a
good accuracy is indicative of clear separation. The EMG tuning curves using this technique display
adjustments which are mostly linear until approximately 60° from horizontal direction. Following
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Figure 2. Example of EMG recordings (averaged among all trials from one participant). Data was normalized by the highest recorded phasic activity of the participant.
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Medial deltoid 90
Trapezius
Biceps brachii 80
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Binary classification angle (90° vs X°)

Figure 3. Average binary accuracy of individual and all muscles for different angles compared to 90°, using
LDA for classification. The muscles are ordered by their type (anti-gravity, gravity and neutral) and lines
separate the different types of muscles.
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90 |
E []
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‘
60 | ' .
% !

40 ' ' :
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Binary classification angle (90° vs X°)

LDA accuracy (%)

Figure 4. Accuracy of the binary classification between 90° and the other angles, using the EMGs from all
muscles for LDA classification. Error bars indicate standard error. Arrows indicate pointing directions
considering as origin the horizontal axis (90°). The colors indicate pointing directions as in Figure 1a.
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LDA distance

0 1 | ! 1 1
0 30 60 90 120 150 180

Binary classification angle (90° vs X°)

Figure 5. LDAistance cOMputed from the models of each category constructed by the classification algorithm
for binary discrimination between 90° and the other angles using all muscles (see Methods). Error bars
indicate standard error. Gray dashed lines show the linear regressions performed for comparing upward
versus downward tuning. The colors indicate pointing directions as in Figure 1a.

this, classification accuracies took a non-linear trend. Similar trends were observed when perform-
ing the same classification with the SVM (Supplementary Figure S1).

The non-linearity in binary classification may not be due to actual non-linear muscular modifi-
cation but due to saturation in classification capacities (see Supplementary Figure S9). Verification
as to whether this was the case, was done by further examining the model used by LDA to perform
the classification.

The multivariate mean of each category is an important piece of information used by LDA to
create representations of each category. The distance between these means can be exploited
to measure muscular tuning for pointing direction. Figure 5 displays how this distance changes
as a function of pointing direction. The figure confirms a linear trend in collective muscular tun-
ing for pointing direction until about 60° from horizontal. However, unlike classification accuracy,
LDAistance iS NOt subject to the effects of classification saturation. Muscular modification as re-
flected in the LDAjisianceS CONtinue increasing with a slightly nonlinear trend both upwards to 0°
and downwards to 180°.

The LDAgitance also revealed an intriguing aspect of muscular tuning for pointing direction. It
showed that adjustments for downward pointing are bigger than those for upward pointing when
compared to pointing in the horizontal direction. The LDAyance fOr pointing at 0° upward was
found to be significantly lower than the distance for pointing at 180° downward (Wilcoxon rank
sum W = 0, p = 0,008). Differences in the gain for tuning were also revealed by fitting a regres-
sion line for both sides of the EMG tuning curves. They revealed a value of 0.2839 (R?> = 0.9852)
for upward pointing and 0.4257 (R? = 0.9795) for downward movements indicating once again that
counter to intuition, movements were more finely tuned in the downward direction. Further confir-
mation of this difference in upward and downward adaptation can be seen in the Supplementary
Figure S2 where we measure the distance from both groups using another classification algorithm,
the Support Vector Machine (SVM, Wilcoxon rank sum W = 0, p = 0,008).
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Figure 6. Classification accuracy using only the EMGs from either gravity or antigravity muscles during the
acceleration or deceleration phase of the movement, using LDA for classification.

Modular EMG tuning for pointing direction

As the system adapts for tuning in various directions, what is the nature of this tuning? Does
the entire system undergo modifications to bring the arm to a new direction i.e. a uniform tuning?
Or is adaptation for pointing to the new direction primarily accomplished by a few muscles at
particular moments, i.e. modular tuning? To answer this question, we examined the classification
capacities of different groups of muscle at different moments. The muscle groups were the gravity
and antigravity muscles. A finer grained analysis of modularity was obtained by examining the
acceleration and deceleration halves for the aforementioned muscle groups. The gravity muscles
in this study are the posterior deltoid, the latissimus dorsi and long triceps. The antigravity muscles
are the anterior deltoid, medial deltoid, trapezius and biceps brachii. Figure 6 below demonstrates
the classification accuracy of these muscle groupings. Taking the case of the acceleration phase it
can be seen that the antigravity muscles achieved a significantly superior performance at predicting
pointing direction when compared to the gravity muscles (Friedman test, y*(1) = 26.35, p < 0.001).

As there were 4 antigravity muscles but only 3 gravity muscles, it was necessary to verify that
the higher classification accuracies observed in the antigravity muscles was not due to more infor-
mation. To do this, we repeated the classification tests after having removed the biceps brachii
from the group of antigravity muscles (this muscle showed the poorest tuning among the group
of antigravity muscles, see Figure 3). The prediction capacities of the antigravity muscles remain
significantly higher than those of the gravity muscles (Friedman test, (1) = 10.39, p = 0.001, see
Supplementary Figure S4).

Table 1a shows the values for the slopes of these lines for each group of muscles for upward and
downward pointing in Figure 6. They reveal higher slopes for the antigravity muscles at all phases
of upward and downward pointing. Of note, are the slopes of the antigravity muscles during the
acceleration phase of downward movement and the deceleration phase of upward movement.
As these are phases during which the antigravity muscles have lowered activity, it indicates that
the deactivation in these muscles is not an all-or-nothing function, but one that is graduated as a
function of pointing direction. The lower values of the slopes for the gravity muscles demonstrate
relatively smaller adjustments by this group of muscles for pointing angles.
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(a) Acceleration phase

Upward movements | Downward movements
Antigravity muscles 0.3306 (R? = 0.80) 0.2910 (R? = 0.90)
Gravity muscles 0.0041 (R* = 0.001) 0.0315 (R? = 0.051)

(b) Deceleration phase

Upward movements | Downward movements
Antigravity muscles 0.2895 (R? = 0.93) 0.233 (R? = 0.67)
Gravity muscles 0.0183 (R? = 0.02) 0.0983 (R? = 0.49)

Table 1. Slope coefficients of the linear regressions for the classification accuracy of the different muscle
groups from Figure 6.

All these results were further confirmed using another classification algorithm, the SVM. These
results can be seen in Supplementary Figure S5.

Tuning with the negative portions of the antigravity muscles

An important tenet of the gravity effort-optimization hypothesis is that the muscles are able to re-
duce their activity in conditions where gravity is able to replace their role. In the case of EMG phasic
activity, this would especially be seen during the negative phases of this activity, primarily at the
latter half of upward movement (deceleration) and the first half of downward movement (acceler-
ation). Figure 6 which examines tuning in the group of antigravity muscles for the acceleration and
deceleration halves of pointing already hints at the likelihood of tuning in this phase. Neverthe-
less, the acceleration and deceleration phases of the antigravity muscles still contain portions of
the EMG which are positive. In this section we zone in further to examine the tuning capacities of
the portions of the phasic EMGs for the antigravity muscles which are exclusively negative. Figure 7
contains the results of these tests. Once again, the increasing classification accuracy of this por-
tion of the phasic EMG as a function of pointing direction, indicates adjustments as a function of
pointing direction. Further confirmation of tuning in this negative portion of the EMG was obtained
using the SVM classification algorithm (Supplementary Figure S7).

Discussion

In this study we examined the manner in which phasic activity of shoulder muscles are adjusted for
arm pointing movements in different directions. This extends previous results demonstrating that
arm kinematics is tuned to pointing direction (Gaveau et al., 2016). The researchers had demon-
strated that effort optimization leads to clear differences in phasic muscular activity for vertically
upward and downward pointing. The authors had also showed qualitatively that this integration
can be seen at the muscular level (Gaveau et al., 2021). The current study extends on these two
previous studies by providing a much finer grained, quantitative picture of phasic muscular tuning
for pointing direction. More specifically, through the use of relatively recent quantitative tools, it
analyzes the information content in the negative portions of the phasic EMG.

A key finding of the study is that the negative portion of the phasic EMGs contains information
concerning pointing direction. Many previous studies had set aside this part of the EMG as unim-
portant and the inevitable result of the computation required to extract phasic activity (d’Avella
et al., 2008; Russo et al., 2014). The presence of information in this section of the EMG is especially
clear from Figure 7 (and Supplementary Figure S7) where Machine Learning was used to automati-
cally detect if the unlabeled negative portions of the EMGs of antigravity muscles could be used to
predict whether a subject had performed horizontal pointing or pointing at some other specified
angle. The figure shows that in many cases, accuracy was above chance levels. It also shows that
the classification accuracy changed as a function of pointing direction. As explained in the Intro-
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Figure 7. Classification accuracy using only the negative part of the EMGs from antigravity muscles during the
acceleration or deceleration phase of the movement, using LDA for classification.

duction section, classification accuracy is an indicator of data separability. The increasing classifi-
cation accuracy with increasing angular separation from horizontal indicates that the deactivation
in these negative phases were not on-off functions but scaled in accordance with pointing angle.
An on-off deactivation function that does not change with pointing angle would have given similar
classification accuracies (perhaps above chance) for all pointing angles. A better idea of the infor-
mation content in the negative portions of the phasic EMGs can also be obtained by examining the
classification accuracies obtained using the positive portions of the phasic EMGs (Supplementary
Figure S8). It can be see here that the tuning curves do not attain classification accuracies that are
higher than those of the negative portions.

Another original aspect of the study is the use of Machine Learning in order to obtain an en-
semble view of muscle activation patterns. Tuning of muscles for different pointing directions was
analysed in terms of classification accuracy. The prediction of task constraints using Machine Learn-
ing algorithm was done with combined muscular activity as input. This approach is interesting in
view of the synergistic manner in which muscles achieve task goals. The term synergistic refers
to the fact that movement is the result of the combined activities of several muscles in which the
role of any one muscle in the group need not remain constant as others can compensate for this
inconsistency and still achieve the original goal. The term Motor Equivalence also refers to this
idea (Lashley, 1933; Morasso, 2022). An ensemble analysis therefore has the potential to provide
insight into group properties which may not be present at the single muscle level or worse yet,
at the level of a single EMG parameter such as amplitude or onset delay. A single variable of this
sort may not have sufficient power to reach statistical significance. This is clearly demonstrated in
Figure 3 where the last line displays the classification accuracy obtained from the combination of
all the muscles recorded during the experiments. It is darker than any of the preceding lines hence
indicating a higher discrimination power for the muscle population.

The main machine learning technique used for the study was LDA. This technique was primarily
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chosen because of its simplicity and ease of understanding the features which are critical to the
classification (Thomas et al., 2023). As a technique which is not as powerful as methods which were
developed later (Statnikov et al., 2008; Nair et al., 2010; Heung et al., 2016; Han et al., 2018; Uddin
et al., 2019), there was also a lower risk of classification saturation (see Supplementary Figure S9).
By this we mean high classification accuracies from very small differences, leading to poor infor-
mation concerning differences in data separability for different pointing angles. We address this
problem in Figure 5 where LDAj.nce Was Used to probe data separation in situations where clas-
sification accuracy had reached a plateau of close to 100%. Our fears on this question turned out
to be unfounded when we used the SVM with a linear kernel for the supplementary figures of the
current study (Supplementary Figures S1, S2, S5, S6, S7). True to its reputation as a more powerful
classifier, the SVM did indeed provide generally higher accuracies but displayed tuning curves with
patterns similar to those obtained using the LDA algorithm, hence backing up the results obtained
with LDA.

Figure 5 (and Supplementary Figure S2) presents the intriguing result that the EMG separation
is higher in the downward direction than upward. One possible explanation of this may be that
both upward and horizontal pointing follow the classical triphasic burst pattern (Hallett et al., 1975;
Virji-Babul et al., 1994). In contrast to this, Gaveau et al had predicted (2016) and demonstrated
(2021) a very different pattern of muscular activity for downward pointing. In accordance with the
effort optimisation hypothesis they showed that the antigravity muscles phasic activity becomes
negative during the first half of downward pointing, hence leading to an activity pattern which is
quite different from what is seen for horizontal pointing.

A similar explanation could be used to explain the differences in the tuning curves of Figure 6
(and Supplementary Figure S5). The tuning curves of these figures and Table 1 display a sharper
tuning for pointing direction in the antigravity muscles than for the gravity muscles (higher slopes
in accuracy as a function of pointing direction). This difference in tuning may be due to the fact
that the negative portions of the phasic EMGs are not present in the gravity muscles. The poorer
tuning of the gravity muscles may be due to this absence and hence underscores the important
role played by the negative portions of the phasic EMGs in adjusting for pointing direction.

Figure 3 displays the accuracies of each muscle for pointing in different directions individually.
The accuracy patterns of the anterior deltoid show that it is tuned in both directions. The trapez-
ius shows a similar pattern of classification accuracies, though their smaller values would indicate
smaller adjustments than the anterior deltoid. In contrast to the two aforementioned muscles, the
phasic activity of the medial and posterior deltoids are more tuned for downward pointing, show-
ing higher accuracies for distinguishing downward than upward pointing angles. The importance
of all these muscles in pointing have been highlighted by various studies (Flanders, 1991; Flanders
et al., 1994, 1996; Mira et al., 2021; Tokuda et al., 2016). In contrast to the previous studies, the
use of classification accuracy allows for a greater ease in comparing and contrasting the roles of
individual muscles. A direct comparison with the previous studies is not possible, as the pointing
protocols were often different, involving for example, mobility around the elbow joint. In contrast
to the previously mentioned muscles, the short triceps displays poor classification accuracies at
all angles in both directions. Once again, this does not necessarily mean that the muscle is not
active, but that it is poorly distinguishable from its activity for horizontal pointing, and hence does
not play an important role in tuning for direction. This is not unexpected as this mono-articular
muscle is involved in keeping the elbow joint extended but not in rotating the shoulder joint.

No discussion on ensemble methods would be complete without talking about matrix factor-
ization methods. These techniques have been very useful in demonstrating that the panoply of
EMG recordings from the arm during pointing under different constraints can be simplified by us-
ing a small number of basis functions which can then be adapted for multiple constraints (d’Avella
et al., 2008; Muceli et al., 2010; d’Avella and Lacquaniti, 2013). The technique which was frequently
applied was non negative matrix factorization (NNMF). Therein lies the problem for analyzing a por-
tion of the phasic EMG which this study has found to be important - the negative portion. Since
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it is a technique with non-negativity constraints, NNMF is not adapted to the study of the nega-
tive portions of the phasic EMG. This problem has recently been addressed with the mixed matrix
factorization method (MMF) (Scano et al., 2022, 2023). Even though, like Machine Learning, these
matrix factorization methods are ensemble methods taking into account global properties of big
collections of data, they have a very different focus when compared to Machine Learning classifica-
tion. Their emphasis is on finding commonalities between the collection of EMG trajectories while
Machine Learning classification centers on finding differences. The two methods are therefore
complementary to each other. It should be noted that in many fields, the two methods are some-
times used sequentially. Matrix factorization is often used in the feature extraction step to first
reduce spatial dimensionality before then going on to apply Machine Learning (Duda, 2000). This
step was not taken in our study as it would have complicated the process of trying to understand
the features which were critical to classification.

In conclusion, we will say that Machine Learning classification shows that the antigravity mus-
cles are better tuned to pointing direction than the gravity muscles. Focusing on the deactivation
portions of these phasic EMGs, our study demonstrates that they are modified for pointing direc-
tion. Previous studies by Gaveau et al. (2021) supported the hypothesis that this negativity would
result from integrating gravity for optimized motor control. They had not however, studied the
nature of this muscular adjustment in fine detail. Using the EMG patterns from nine muscles and
pointing in 17 directions, the current study shows that the deactivation of the antigravity muscles
is not an on-off function, but is adjusted as a function of pointing direction.
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Figure S1. Accuracy of the binary classification when using EMGs from all the muscles. Classification was
done for pointing between between 90° and the other angles, using SVM for classification. Error bars indicate
standard error. The colors indicate pointing directions as in Figure 1a.
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Figure S2. Size of the estimated SVM margin using EMGs from all muscles. Error bars indicate standard error.
The colors indicate pointing directions as in Figure 1a.
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Figure S3. Average of the EMG recordings from all participants. Data was normalized by the highest recorded phasic activity of each participant.
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Figure S4. Classification accuracy using only the EMGs from either gravity or antigravity muscles. Contrary to
Figure 6, the biceps brachii is not included in the antigravity muscles here, using LDA for classification.
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Figure S5. Classification accuracy using only the EMGs from either gravity or antigravity muscles during the
acceleration phase of the movement or the deceleration phase, using SVM for classification.
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Figure S6. Classification accuracy using only the EMGs from either gravity or antigravity muscles during the
acceleration phase of the movement or the deceleration phase, using SVM for classification. Contrary to
Figure S5, the biceps brachii is not included in the antigravity muscles here.
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Figure S7. Classification accuracy using only the negative part of the EMGs from antigravity muscles during
the acceleration phase of the movement or the deceleration phase, using SVM for classification.
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Figure S8. Classification accuracy using only the positive part of the EMGs from antigravity muscles, using

LDA for classification.
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