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Abstract Arm movements in our daily lives have to be adjusted for several factors in response9

to the demands of the environment, for example, speed, direction or distance. Previously, we10

had shown that arm movement kinematics is optimally tuned to take advantage of gravity effects11

and minimize muscle effort in various pointing directions and gravity contexts (Gaveau et al.,12

2016). Here we build upon these results and focus on muscular adjustments. We used Machine13

Learning to analyze the ensemble activities of multiple muscles recorded during pointing in14

various directions. The advantage of such a technique would be the observation of patterns in15

collective muscular activity that may not be noticed using univariate statistics. By providing an16

index of multimuscle activity, the Machine Learning analysis brought to light several features of17

tuning for pointing direction. In attempting to trace tuning curves, all comparisons were done18

with respects to pointing in the horizontal, gravity free plane. We demonstrated that tuning for19

direction does not take place in a uniform fashion but in a modular manner in which some20

muscle groups play a primary role. The antigravity muscles were more finely tuned to pointing21

direction than the gravity muscles. Of note, was their tuning during the first half of downward22

pointing. As the antigravity muscles were deactivated during this phase, it supported the idea23

that deactivation is not an on-off function but is tuned to pointing direction. Further support for24

the tuning of the portions of the phasic EMG containing only negative activity was provided by25

progressively improving classification accuracies with increasing angular distance from the26

horizontal. Overall, these results show that the motor system tunes muscle commands to exploit27

gravity effects and reduce muscular effort. It quantitatively demonstrates that phasic EMG28

negativity is an essential feature of muscle control.29

30

Introduction31

How the brain plans and executesmovements is a challenging question in the field ofmotor neuro-32

science. The well-known ‘problem of redundancy’ (Bernshtein, 1967; Latash, 2012), implies that a33

large number of joints and muscles must be coordinated to produce adaptive movements that ad-34

vantageously interact with our environment (Franklin and Wolpert, 2011; Farshchian et al., 2018).35

A fundamental aspect of this environment is the presence of gravity acceleration. Until now, the36

neural control of movement has been mostly investigated using tasks where the mechanical ef-37

fects of gravity were canceled (for example, moving in a constrained horizontal plane). However,38

living organisms must continuously produce adaptable movements that interact with gravity. In39
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attempting to gain knowledge that can apply to real life situations, it is paramount to understand40

gravity-related movement control. Previously, we demonstrated that the brain plans arm move-41

ments whose kinematics are optimally tuned to take advantage of gravity effects and minimize42

muscle effort (Gaveau et al., 2016). Across varied directions and gravity levels, ratios of accelera-43

tion versus deceleration well supported our optimal integration of gravity hypothesis and falsified44

the pre-existing hypothesis according to which the brain would use a tonic torque to compensate45

for gravity effects (Hollerbach and Flash, 1982; Atkeson and Hollerbach, 1985; Flanders and Her-46

rmann, 1992). However, as noticed by reviewers, an important caveat in our investigation and47

claims was the lack of support from muscle activation patterns (see reviewers comments in the48

Decision letter for Gaveau et al. (2016)). Since many different muscle contractions can give rise to49

the same kinematics (Burdet et al., 2001; Hagen and Valero-Cuevas, 2017), whether muscle effort50

truly incorporates the benefits to be obtained from gravity effects remained to be seen.51

A qualitative demonstration of a muscular integration of gravity effects for effort minimization52

was later provided in our study on monkeys and humans (Gaveau et al., 2021). Scrutinizing the53

phasic activations of antigravity muscles i.e. the remaining activity after subtracting the part that54

compensates for gravity torque (Flanders andHerrmann, 1992; Flanders et al., 1996) –weobserved55

that antigravity muscles systematically exhibited negative phases. These negative portions on pha-56

sic muscle EMGs indicated that there was less activity in the muscle pattern than what is required57

to compensate for gravity torque. Importantly, these negative phases happen when gravity is able58

to help produce the arm motion i.e. during the acceleration of downward movements and during59

the deceleration of upward movements (Gaveau et al., 2021). Analyzing the negativity of phasic60

muscle activations has since helped to understand the effect of laterality on sensorimotor control61

(Poirier et al., 2022) as well as its modification with increasing age (Poirier et al., 2023).62

The above studies supporting the optimal integration of gravity hypothesis at the muscular63

level remain rather coarse-grained. They investigated a limited number of muscles during purely64

vertical and horizontal movements (Gaveau et al., 2021; Poirier et al., 2022, 2023). A better under-65

standing of the integration of gravity in motor control requires a finer-grained investigation where66

more directions and muscles are examined. In a previous study, we had reported on the kinemat-67

ics of pointing movements performed in seventeen different directions (Gaveau et al., 2016). In68

this same investigation, we had also recorded the activation patterns of nine muscles for eleven69

participants but did not exploit the muscle activation results. The present study takes advantage70

of this EMG dataset to provide a fine-grained analysis of phasic EMGs and examine how they may71

incorporate the beneficial contribution of gravity for muscle effort minimization. An important72

caveat in the existing literature is that no study has specifically quantified the importance of the73

phasic EMG negativity in the overall muscle activation pattern. Whether this negativity represents74

an important part of the neural signals producing body limb movements is still unknown. In addi-75

tion, recent reports in the domain of muscle synergies have emphasized the need to develop tools76

that allow investigating such negative signals (Scano et al., 2022; Brambilla and Scano, 2022; Scano77

et al., 2023).78

As mentioned in the previous paragraph, the experiments for the study from Gaveau et al.79

(2016) were accompanied by the simultaneous recording of muscular activity. As we had recorded80

EMG activities from 9 muscles of 11 participants performing 12 pointings trials in 17 directions,81

we ended up with 20196 EMG traces (recorded at 2000Hz). As in the case of many motor control82

experiments, this constituted a big data base. Consequently, we employed a Machine Learning83

(ML) technique to draw benefits from a multimuscle approach. By the latter, we refer to situations84

in which patterns or clearer effects are seen with muscle groups rather than single muscles. The85

specific approach used was one of binary classification in which EMG time series were automati-86

cally classified as coming from a horizontal movement or from another angle. We have previously87

used binary classification successfully to provide insight intoWhole Body Pointing (Tolambiya et al.,88

2011, 2012) and gait (Nair et al., 2010; Laroche et al., 2014). Classification accuracy provides an in-89

dicator of data separation. Poor separation in the EMGs would lead to poor classification accuracy90
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Figure 1. a) Illustration of the task (adapted from ©2016, Gaveau et al.). b) Shoulder muscles from which theEMGs are recorded.

while EMGs that are very different would lead to higher accuracy. The main Machine Learning clas-91

sification technique used in the present study was Linear Discriminant Analysis. This algorithm92

utilizes information on the mean and variance of each category to build a representation of the93

group (Grimm and Yarnold, 2000; Johnson and Wichern, 2007; Izenman, 2008). One of the rea-94

sons for choosing LDA is the greater ease for finding the factors which are critical in classification95

success. This is in keeping with the spirit of explainable artificial intelligence (XAI) (Murdoch et al.,96

2019; Arrieta et al., 2020). Algorithms like Support Vector Machines are more powerful classifiers97

but harder to probe for the combination of features which are the most critical to classification98

accuracy (Thomas et al., 2023). Nevertheless, as our previous studies have shown that they can99

be successfully applied to the analysis of EMG data (Tolambiya et al., 2011, 2012), we used the100

technique as a supplementary method to reinforce the conclusions made using LDA.101

Method102

Subject, task and recording103

The data used in the current investigation comes from a previous study by Gaveau et al. (2016). To104

briefly summarize the task: 11 adults were asked to execute a pointing task. Participants started at105

an initial position (shoulder elevation 90°, shoulder abduction 0°, arm completely stretched) then106

proceeded to rapidly point at specific directions (every 15°) rotating only the shoulder (see Fig-107

ure 1a). The EMGs from nine muscles were recorded during the pointing tasks (see Figure 1b). The108

EMGs were then processed to extract the phasic part of the movement (Flanders and Herrmann,109

1992; Flanders et al., 1996; Gaveau et al., 2016; Poirier et al., 2022). To do so, EMG signals were110

integrated from 1 to 0.5s before movement onset and from 0.5 to 1s after movement stop and111

averaged. The linear interpolation between those two values was used as an estimate of the tonic112

component, which was removed from the integrated EMG to keep only the phasic component.113

Then, all the trials were normalized in duration to 1000 points using linear interpolation.114

The next step consisted of normalizing EMG amplitude to prepare the input signals for the LDA115

algorithm. The EMG signals were normalized using a Z-score transformation. It was done sepa-116

rately for each individual. This reduced the variability which would be caused by inter individual117

differences in EMG amplitudes. It was also done separately for each muscle, hence ensuring that118

muscleswith small EMGamplitudeswere not eliminated fromplaying a role in classification. Finally,119

a normalization was done for each angle. This normalization removed information on differences120

in EMG amplitudes for pointing direction. It was an important step as the differences in amplitude121

could reflect differences in tonic activity for pointing direction rather than provide information on122

adjustments in phasic activation.123

Linear Discriminant Analysis124

Linear discriminant algorithm (LDA) is a classification algorithm which tries to find the best linear125

hyperplane (hence the name) in the feature space to separate different classes of objects (Grimm126
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and Yarnold, 2000; Johnson andWichern, 2007; Izenman, 2008). This then permits the classification127

of new observations depending on which side of the hyperplane they are on. Traditionally, LDA128

was reduced to an eigenvector problem, with the objective of finding a subspace in the original129

data space that maximize the separability between classes along the first axis of this subspace.130

However, computational power allows for a more direct approach to classify new data.131

To achieve this, the algorithm is used to estimate the probability distributions of the different132

classes, following certain assumptions about these distributions — that both classes follow Gaus-133

sian distributions with the same variance, but different means. Knowing this information, it is134

then possible to infer the probability of a new observation to belong to a certain class thanks to135

Bayes’ theorem. This probability is weighted by a cost function to bias the results for particular136

applications if needed. In practice, the class 𝑦̂ of a new observation is determined by the following137

equation:138

𝑦̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑦=1,...,𝐾

𝐾
∑

𝑘=1
𝑃 (𝑘|𝑥)𝐶(𝑦|𝑘) (1)

with 𝑦 and 𝑘 being class numbers among the 𝐾 different classes of object.139

Thus Equation (1) tries to determine, for anobservation 𝑥, the class 𝑘 thatmaximizes𝑃 (𝑘|𝑥)𝐶(𝑦|𝑘)140

as it is the probability of the observation 𝑥 to belong to class 𝑘. It is determined thanks to the Bayes’141

theorem :142

𝑃 (𝑘|𝑥) =
𝑃 (𝑥|𝑘)𝑃 (𝑘)

𝑃 (𝑥)
(2)

𝑃 (𝑘) is the prior probability and is determined empirically using the labels distribution from the143

training set. What the algorithm learn from the data are actually the likelihood distributions 𝑃 (𝑥|𝑘).144

In the case of LDA, those distributions are assumed to be multivariate Gaussian distributions, all145

with the same variance matrices. Thus, the main part of the computation is to find the variance146

matrix and class means. As the distributions are Gaussian, 𝑃 (𝑥|𝑘) is entirely determined by the147

Mahalanobis distance of 𝑥 for class 𝑘. Finally, 𝑃 (𝑥) is the normalization factor calculated pooling all148

the estimated 𝑃 (𝑥|𝑘) distributions :149

𝑃 (𝑥) =
𝐾
∑

𝑘=1
𝑃 (𝑥|𝑘) (3)

In Equation (1), 𝐶(𝑦|𝑘) represent the cost function, i.e. how much is penalized the misclassification150

of an observation. This function can be tweaked for particular usage (e.g. to increase sensitivity151

of the algorithm at the expanse of specificity). Here, we do not apply a bias in favor of one class,152

which then translates to the following cost function :153

𝐶(𝑦|𝑘) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑦 = 𝑘

1 if 𝑦 ≠ 𝑘
(4)

meaning that all classes are equally penalized for misclassification, hence, the hyperplane sep-154

arating both classes will maximize the separability between the classes and corresponds to the155

hyperplane that would be obtain through the traditional approach of LDA.156

Having all the elements needed, 𝑦̂ can then be determined for any new observation using Equa-157

tion (1).158

Additionally, as we did in Thomas et al. (2023), we computed the LDAdistance as further indicator159

of the separation of the data. We defined this value as the Euclidean distance between the means160

of the Gaussian distributions representing the classes161

Support Vector Machine162

Like LDA, Support Vector Machines (SVM) are used to find the hyperplane that maximize the sepa-163

rability between two classes (Cristianini and Shawe-Taylor, 2000; Hastie et al., 2009). In our study,164

we used a linear kernel. However, contrary to LDA which takes into account all the sample of a165

class, SVM is only interested in the samples from a class that are the closest from the samples of166
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the other class (the so-called support vectors). A margin demarcates each class and the objective167

of SVM is to maximize the separation between these margins. The optimal separation hyperplane168

is the one in the middle of the largest margin.169

This optimal hyperplane can be defined by its orthogonal vector 𝛽 and a bias vector 𝑏 so that :170

𝑓 (𝑥) = 𝑥𝑇 𝛽 + 𝑏 = 0 (5)
with 𝑥 being an observation. The objective at this point is tominimize ||𝛽||. However, this approach171

only works if the two classes are perfectly separable, which may not be the case here, hence we172

introduce so-called ’slack variables’ which will penalize the margin size for each support vector on173

the wrong side of the separation hyperplane. Thus, the objective becomes to minimize :174

0.5||𝛽||2 + 𝐶
∑

𝜁𝑗 (6)
with respect to 𝛽, 𝑏 and 𝜁𝑗 subject to 𝑦𝑖𝑓 (𝑥𝑗) ≥ 1 − 𝜁𝑗 and 𝜁𝑗 ≥ 0 for all 𝑗 = 1, ..., 𝑛. 𝑦𝑗 is the label of175

the observation 𝑗 (either −1 or 1) and 𝐶 is a positive scalar called ’box constraint’ that regularizes176

the penalty assigned to errors. To optimize the objective function presented in Equation (6), we177

use the Lagrange multipliers method. This method introduce a series of coefficients 𝛼1, ..., 𝛼𝑛 which178

allow the transformation of the objective into maximizing :179

0.5
𝑛
∑

𝑗=1

𝑛
∑

𝑘=1
𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘𝑥

𝑇
𝑗 𝑥𝑘 −

𝑛
∑

𝑗=1
𝛼𝑗 (7)

with respect to 𝛼1, ..., 𝛼𝑛 subject to :180

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

𝛼𝑗𝑦𝑗 = 0

0 ≤ 𝛼𝑗 ≤ 𝐶

𝛼𝑗[𝑦𝑖𝑓 (𝑥𝑗) − 1 + 𝜁𝑗] = 0

𝜁𝑗(𝐶 − 𝛼𝑗) = 0

(8)

for all 𝑗 = 1, ..., 𝑛. Finally, a new observation 𝑧 is assigned to a class following the equation :181

𝑠𝑖𝑔𝑛(𝑓 (𝑧)) = 𝑠𝑖𝑔𝑛(
𝑛
∑

𝑗=1
𝛼̂𝑗𝑦𝑗𝑧

𝑇𝑥𝑗 + 𝑏̂) (9)
where 𝑏̂ is the estimate of the bias and 𝛼̂𝑗 is the 𝑗𝑡ℎ estimate of the vector 𝛼̂. Once classification was182

done, we used 2
||𝛽||

as an estimate of the size of the margin separating the data.183

Data Organization for Machine Learning184

All analyses were performed offline using custom Matlab scripts (MATLAB, 2022). The input data185

was constructed by concatenating the processed EMG signals of the nine muscles. This gave us186

one vector of 9000 points (1000 normalized time pointsmultiplied by 9muscles) per trial. Thus, the187

algorithms were trained on the entire EMG waveforms of all the muscles simultaneously. Further188

analyses involved focusing on certain parts of the signal. Portions of this vector were isolated as189

necessary when analyses only involved some muscle subsets (e.g. only the gravity muscles).190

The training of the algorithmswas done using binary classification i.e. the algorithmwas trained191

to discriminate between EMGs of two directions. One of the movement directions was always the192

horizontal plane (90°, gravity neutral, taken as reference) while the other class was any of the other193

angles.194

To ensure the generalization of the results, a stratified five-fold cross-validation method was195

used. The data set was separated into training and testing sets using the known labels of the196

samples to ensure that both directions were equally represented in each training and testing set.197

The cross-validation approach allowed abetter estimation of the efficacy of the algorithmby testing198
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it on multiple data sets. Thus, we were able compute an average accuracy of the algorithm on199

several testing sets.200

From each trained LDA algorithm, we extracted the means of the two 𝑃 (𝑥|𝑘) distributions as201

well as the testing accuracy. Then, we computed the LDAdistance measuring the separation between202

the mean vectors of each class. For SVM algorithms, we extracted the vector orthogonal to the203

separation hyperplane and computed the width of the margin.204

Statistical analysis205

The significance of results was obtained using non-parametric tests, namely the Wilcoxon rank206

sum test when comparing two conditions and the Friedman test to compare effects acrossmultiple207

conditions. Results were considered to be significant for 𝑝 < 0.05.208

Results209

The processed phasic EMGs from the recorded nine muscles for every pointing angle can be seen210

in Figure 2. We will start the result section with a presentation of a grid displaying the classification211

accuracies of individual muscles versus the accuracy obtained from all the muscles. The main pur-212

pose of this would be to illustrate the higher accuracies obtained from using the combinedmuscle213

information. We will then continue examining the classification obtained using all the muscles si-214

multaneously in order to trace the nature of collective muscular tuning for pointing direction. The215

nature of this tuning will be further analyzed using the LDAdistance. From using input vectors which216

contain the information from all the muscles, we will then turn to analyzing specific groups of mus-217

cles. Once again, classification accuracies will be used as an indicator of adaptation for pointing218

direction, hence allowing us to trace tuning curves for particular muscle groups. Finally, as one219

of the major points of this paper is that the negative portions of the phasic EMGs are a result of220

gravity effort optimization, we will use classification to see if this portion of the EMG is tuned to221

pointing direction. Results obtained using LDAwill also be reinforced using the SVM as an alternate222

Machine Learning algorithm.223

Advantage of a multimuscle approach224

The aim of this section is to demonstrate some of the benefits of a multimuscle approach. In225

Figure 3 we display a grid with the classification accuracies of individual muscles for each pointing226

angle as well as the accuracy using all the muscles simultaneously (last line of grid). For almost227

all directions, the classification accuracy using all the muscles is higher than those obtained with228

individualmuscles. This demonstrates that information concerning differences inmuscular activity229

for pointing in different directions may be found at the level of the muscle population even when230

it may not be significantly present at the level of individual muscles.231

Other features of note in this figure are that some muscles like the anterior deltoid, have rel-232

atively high accuracies when pointing at 0° as well as at 180°, hence indicating an important role233

in adaptation for both directions. This is not the case for a muscle like the medial deltoid which234

displays high accuracies for pointing at 180°, but not for 0°. The short triceps has low accuracies235

in discriminating for any angle, hence showing that it does not have a prominent role in adapting236

for direction.237

Binary classification with all muscles for pointing direction238

The aim of this section is to follow the nature of multimuscle adaptation for pointing in each of the239

seventeen directions described in the Methods section. Using all the muscles, LDA was used to240

detect if pointing had taken place horizontally or at another pointing direction. Figure 4 displays241

the accuracies from this classification of 90° (horizontal pointing) versus another angle displayed242

on the x-axis. Poor classification accuracies reflect small separation between data groups while a243

good accuracy is indicative of clear separation. The EMG tuning curves using this technique display244

adjustments which are mostly linear until approximately 60° from horizontal direction. Following245
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Figure 3. Average binary accuracy of individual and all muscles for different angles compared to 90°, usingLDA for classification. The muscles are ordered by their type (anti-gravity, gravity and neutral) and linesseparate the different types of muscles.

Figure 4. Accuracy of the binary classification between 90° and the other angles, using the EMGs from allmuscles for LDA classification. Error bars indicate standard error. Arrows indicate pointing directionsconsidering as origin the horizontal axis (90°). The colors indicate pointing directions as in Figure 1a.
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Figure 5. LDAdistance computed from the models of each category constructed by the classification algorithmfor binary discrimination between 90° and the other angles using all muscles (see Methods). Error barsindicate standard error. Gray dashed lines show the linear regressions performed for comparing upwardversus downward tuning. The colors indicate pointing directions as in Figure 1a.

this, classification accuracies took a non-linear trend. Similar trends were observed when perform-246

ing the same classification with the SVM (Supplementary Figure S1).247

The non-linearity in binary classification may not be due to actual non-linear muscular modifi-248

cation but due to saturation in classification capacities (see Supplementary Figure S9). Verification249

as to whether this was the case, was done by further examining themodel used by LDA to perform250

the classification.251

The multivariate mean of each category is an important piece of information used by LDA to252

create representations of each category. The distance between these means can be exploited253

to measure muscular tuning for pointing direction. Figure 5 displays how this distance changes254

as a function of pointing direction. The figure confirms a linear trend in collective muscular tun-255

ing for pointing direction until about 60° from horizontal. However, unlike classification accuracy,256

LDAdistance is not subject to the effects of classification saturation. Muscular modification as re-257

flected in the LDAdistances continue increasing with a slightly nonlinear trend both upwards to 0°258

and downwards to 180°.259

The LDAdistance also revealed an intriguing aspect of muscular tuning for pointing direction. It260

showed that adjustments for downward pointing are bigger than those for upward pointing when261

compared to pointing in the horizontal direction. The LDAdistance for pointing at 0° upward was262

found to be significantly lower than the distance for pointing at 180° downward (Wilcoxon rank263

sum 𝑊 = 0, 𝑝 = 0, 008). Differences in the gain for tuning were also revealed by fitting a regres-264

sion line for both sides of the EMG tuning curves. They revealed a value of 0.2839 (𝑅2 = 0.9852)265

for upward pointing and 0.4257 (𝑅2 = 0.9795) for downward movements indicating once again that266

counter to intuition, movements weremore finely tuned in the downward direction. Further confir-267

mation of this difference in upward and downward adaptation can be seen in the Supplementary268

Figure S2 where wemeasure the distance from both groups using another classification algorithm,269

the Support Vector Machine (SVM, Wilcoxon rank sum𝑊 = 0, 𝑝 = 0, 008).270
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Figure 6. Classification accuracy using only the EMGs from either gravity or antigravity muscles during theacceleration or deceleration phase of the movement, using LDA for classification.

Modular EMG tuning for pointing direction271

As the system adapts for tuning in various directions, what is the nature of this tuning? Does272

the entire system undergo modifications to bring the arm to a new direction i.e. a uniform tuning?273

Or is adaptation for pointing to the new direction primarily accomplished by a few muscles at274

particular moments, i.e. modular tuning? To answer this question, we examined the classification275

capacities of different groups of muscle at different moments. Themuscle groups were the gravity276

and antigravity muscles. A finer grained analysis of modularity was obtained by examining the277

acceleration and deceleration halves for the aforementioned muscle groups. The gravity muscles278

in this study are the posterior deltoid, the latissimus dorsi and long triceps. The antigravitymuscles279

are the anterior deltoid, medial deltoid, trapezius and biceps brachii. Figure 6 below demonstrates280

the classification accuracy of these muscle groupings. Taking the case of the acceleration phase it281

canbe seen that the antigravitymuscles achieved a significantly superior performance at predicting282

pointing direction when compared to the gravity muscles (Friedman test, 𝜒2(1) = 26.35, 𝑝 < 0.001).283

As there were 4 antigravity muscles but only 3 gravity muscles, it was necessary to verify that284

the higher classification accuracies observed in the antigravity muscles was not due to more infor-285

mation. To do this, we repeated the classification tests after having removed the biceps brachii286

from the group of antigravity muscles (this muscle showed the poorest tuning among the group287

of antigravity muscles, see Figure 3). The prediction capacities of the antigravity muscles remain288

significantly higher than those of the gravity muscles (Friedman test, 𝜒2(1) = 10.39, 𝑝 = 0.001, see289

Supplementary Figure S4).290

Table 1a shows the values for the slopes of these lines for each groupofmuscles for upward and291

downward pointing in Figure 6. They reveal higher slopes for the antigravity muscles at all phases292

of upward and downward pointing. Of note, are the slopes of the antigravity muscles during the293

acceleration phase of downward movement and the deceleration phase of upward movement.294

As these are phases during which the antigravity muscles have lowered activity, it indicates that295

the deactivation in these muscles is not an all-or-nothing function, but one that is graduated as a296

function of pointing direction. The lower values of the slopes for the gravity muscles demonstrate297

relatively smaller adjustments by this group of muscles for pointing angles.298
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(a) Acceleration phase
Upward movements Downward movements

Antigravity muscles 0.3306 (𝑅2 = 0.80) 0.2910 (𝑅2 = 0.90)
Gravity muscles 0.0041 (𝑅2 = 0.001) 0.0315 (𝑅2 = 0.051)

(b) Deceleration phase
Upward movements Downward movements

Antigravity muscles 0.2895 (𝑅2 = 0.93) 0.233 (𝑅2 = 0.67)
Gravity muscles 0.0183 (𝑅2 = 0.02) 0.0983 (𝑅2 = 0.49)

Table 1. Slope coefficients of the linear regressions for the classification accuracy of the different musclegroups from Figure 6.

All these results were further confirmed using another classification algorithm, the SVM. These299

results can be seen in Supplementary Figure S5.300

Tuning with the negative portions of the antigravity muscles301

An important tenet of the gravity effort-optimization hypothesis is that the muscles are able to re-302

duce their activity in conditions where gravity is able to replace their role. In the case of EMG phasic303

activity, this would especially be seen during the negative phases of this activity, primarily at the304

latter half of upward movement (deceleration) and the first half of downward movement (acceler-305

ation). Figure 6 which examines tuning in the group of antigravity muscles for the acceleration and306

deceleration halves of pointing already hints at the likelihood of tuning in this phase. Neverthe-307

less, the acceleration and deceleration phases of the antigravity muscles still contain portions of308

the EMG which are positive. In this section we zone in further to examine the tuning capacities of309

the portions of the phasic EMGs for the antigravity muscles which are exclusively negative. Figure 7310

contains the results of these tests. Once again, the increasing classification accuracy of this por-311

tion of the phasic EMG as a function of pointing direction, indicates adjustments as a function of312

pointing direction. Further confirmation of tuning in this negative portion of the EMGwas obtained313

using the SVM classification algorithm (Supplementary Figure S7).314

Discussion315

In this study we examined themanner in which phasic activity of shouldermuscles are adjusted for316

arm pointing movements in different directions. This extends previous results demonstrating that317

arm kinematics is tuned to pointing direction (Gaveau et al., 2016). The researchers had demon-318

strated that effort optimization leads to clear differences in phasic muscular activity for vertically319

upward and downward pointing. The authors had also showed qualitatively that this integration320

can be seen at the muscular level (Gaveau et al., 2021). The current study extends on these two321

previous studies by providing a much finer grained, quantitative picture of phasic muscular tuning322

for pointing direction. More specifically, through the use of relatively recent quantitative tools, it323

analyzes the information content in the negative portions of the phasic EMG.324

A key finding of the study is that the negative portion of the phasic EMGs contains information325

concerning pointing direction. Many previous studies had set aside this part of the EMG as unim-326

portant and the inevitable result of the computation required to extract phasic activity (d’Avella327

et al., 2008; Russo et al., 2014). The presence of information in this section of the EMG is especially328

clear from Figure 7 (and Supplementary Figure S7) where Machine Learning was used to automati-329

cally detect if the unlabeled negative portions of the EMGs of antigravity muscles could be used to330

predict whether a subject had performed horizontal pointing or pointing at some other specified331

angle. The figure shows that in many cases, accuracy was above chance levels. It also shows that332

the classification accuracy changed as a function of pointing direction. As explained in the Intro-333
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Figure 7. Classification accuracy using only the negative part of the EMGs from antigravity muscles during theacceleration or deceleration phase of the movement, using LDA for classification.

duction section, classification accuracy is an indicator of data separability. The increasing classifi-334

cation accuracy with increasing angular separation from horizontal indicates that the deactivation335

in these negative phases were not on-off functions but scaled in accordance with pointing angle.336

An on-off deactivation function that does not change with pointing angle would have given similar337

classification accuracies (perhaps above chance) for all pointing angles. A better idea of the infor-338

mation content in the negative portions of the phasic EMGs can also be obtained by examining the339

classification accuracies obtained using the positive portions of the phasic EMGs (Supplementary340

Figure S8). It can be see here that the tuning curves do not attain classification accuracies that are341

higher than those of the negative portions.342

Another original aspect of the study is the use of Machine Learning in order to obtain an en-343

semble view of muscle activation patterns. Tuning of muscles for different pointing directions was344

analysed in terms of classification accuracy. The prediction of task constraints usingMachine Learn-345

ing algorithm was done with combined muscular activity as input. This approach is interesting in346

view of the synergistic manner in which muscles achieve task goals. The term synergistic refers347

to the fact that movement is the result of the combined activities of several muscles in which the348

role of any one muscle in the group need not remain constant as others can compensate for this349

inconsistency and still achieve the original goal. The term Motor Equivalence also refers to this350

idea (Lashley, 1933; Morasso, 2022). An ensemble analysis therefore has the potential to provide351

insight into group properties which may not be present at the single muscle level or worse yet,352

at the level of a single EMG parameter such as amplitude or onset delay. A single variable of this353

sort may not have sufficient power to reach statistical significance. This is clearly demonstrated in354

Figure 3 where the last line displays the classification accuracy obtained from the combination of355

all themuscles recorded during the experiments. It is darker than any of the preceding lines hence356

indicating a higher discrimination power for the muscle population.357

Themainmachine learning technique used for the study was LDA. This technique was primarily358
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chosen because of its simplicity and ease of understanding the features which are critical to the359

classification (Thomas et al., 2023). As a techniquewhich is not as powerful asmethods which were360

developed later (Statnikov et al., 2008;Nair et al., 2010; Heung et al., 2016; Han et al., 2018; Uddin361

et al., 2019), there was also a lower risk of classification saturation (see Supplementary Figure S9).362

By this we mean high classification accuracies from very small differences, leading to poor infor-363

mation concerning differences in data separability for different pointing angles. We address this364

problem in Figure 5 where LDAdistance was used to probe data separation in situations where clas-365

sification accuracy had reached a plateau of close to 100%. Our fears on this question turned out366

to be unfounded when we used the SVM with a linear kernel for the supplementary figures of the367

current study (Supplementary Figures S1, S2, S5, S6, S7). True to its reputation as a more powerful368

classifier, the SVM did indeed provide generally higher accuracies but displayed tuning curves with369

patterns similar to those obtained using the LDA algorithm, hence backing up the results obtained370

with LDA.371

Figure 5 (and Supplementary Figure S2) presents the intriguing result that the EMG separation372

is higher in the downward direction than upward. One possible explanation of this may be that373

both upward and horizontal pointing follow the classical triphasic burst pattern (Hallett et al., 1975;374

Virji-Babul et al., 1994). In contrast to this, Gaveau et al had predicted (2016) and demonstrated375

(2021) a very different pattern of muscular activity for downward pointing. In accordance with the376

effort optimisation hypothesis they showed that the antigravity muscles phasic activity becomes377

negative during the first half of downward pointing, hence leading to an activity pattern which is378

quite different from what is seen for horizontal pointing.379

A similar explanation could be used to explain the differences in the tuning curves of Figure 6380

(and Supplementary Figure S5). The tuning curves of these figures and Table 1 display a sharper381

tuning for pointing direction in the antigravity muscles than for the gravity muscles (higher slopes382

in accuracy as a function of pointing direction). This difference in tuning may be due to the fact383

that the negative portions of the phasic EMGs are not present in the gravity muscles. The poorer384

tuning of the gravity muscles may be due to this absence and hence underscores the important385

role played by the negative portions of the phasic EMGs in adjusting for pointing direction.386

Figure 3 displays the accuracies of each muscle for pointing in different directions individually.387

The accuracy patterns of the anterior deltoid show that it is tuned in both directions. The trapez-388

ius shows a similar pattern of classification accuracies, though their smaller values would indicate389

smaller adjustments than the anterior deltoid. In contrast to the two aforementionedmuscles, the390

phasic activity of the medial and posterior deltoids are more tuned for downward pointing, show-391

ing higher accuracies for distinguishing downward than upward pointing angles. The importance392

of all these muscles in pointing have been highlighted by various studies (Flanders, 1991; Flanders393

et al., 1994, 1996; Mira et al., 2021; Tokuda et al., 2016). In contrast to the previous studies, the394

use of classification accuracy allows for a greater ease in comparing and contrasting the roles of395

individual muscles. A direct comparison with the previous studies is not possible, as the pointing396

protocols were often different, involving for example, mobility around the elbow joint. In contrast397

to the previously mentioned muscles, the short triceps displays poor classification accuracies at398

all angles in both directions. Once again, this does not necessarily mean that the muscle is not399

active, but that it is poorly distinguishable from its activity for horizontal pointing, and hence does400

not play an important role in tuning for direction. This is not unexpected as this mono-articular401

muscle is involved in keeping the elbow joint extended but not in rotating the shoulder joint.402

No discussion on ensemble methods would be complete without talking about matrix factor-403

ization methods. These techniques have been very useful in demonstrating that the panoply of404

EMG recordings from the arm during pointing under different constraints can be simplified by us-405

ing a small number of basis functions which can then be adapted for multiple constraints (d’Avella406

et al., 2008;Muceli et al., 2010; d’Avella and Lacquaniti, 2013). The techniquewhichwas frequently407

applied was non negativematrix factorization (NNMF). Therein lies the problem for analyzing a por-408

tion of the phasic EMG which this study has found to be important – the negative portion. Since409
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it is a technique with non-negativity constraints, NNMF is not adapted to the study of the nega-410

tive portions of the phasic EMG. This problem has recently been addressed with the mixed matrix411

factorization method (MMF) (Scano et al., 2022, 2023). Even though, like Machine Learning, these412

matrix factorization methods are ensemble methods taking into account global properties of big413

collections of data, they have a very different focus when compared to Machine Learning classifica-414

tion. Their emphasis is on finding commonalities between the collection of EMG trajectories while415

Machine Learning classification centers on finding differences. The two methods are therefore416

complementary to each other. It should be noted that in many fields, the two methods are some-417

times used sequentially. Matrix factorization is often used in the feature extraction step to first418

reduce spatial dimensionality before then going on to apply Machine Learning (Duda, 2000). This419

step was not taken in our study as it would have complicated the process of trying to understand420

the features which were critical to classification.421

In conclusion, we will say that Machine Learning classification shows that the antigravity mus-422

cles are better tuned to pointing direction than the gravity muscles. Focusing on the deactivation423

portions of these phasic EMGs, our study demonstrates that they are modified for pointing direc-424

tion. Previous studies by Gaveau et al. (2021) supported the hypothesis that this negativity would425

result from integrating gravity for optimized motor control. They had not however, studied the426

nature of this muscular adjustment in fine detail. Using the EMG patterns from nine muscles and427

pointing in 17 directions, the current study shows that the deactivation of the antigravity muscles428

is not an on-off function, but is adjusted as a function of pointing direction.429
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Figure S1. Accuracy of the binary classification when using EMGs from all the muscles. Classification wasdone for pointing between between 90° and the other angles, using SVM for classification. Error bars indicatestandard error. The colors indicate pointing directions as in Figure 1a.

Figure S2. Size of the estimated SVM margin using EMGs from all muscles. Error bars indicate standard error.The colors indicate pointing directions as in Figure 1a.
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Figure S4. Classification accuracy using only the EMGs from either gravity or antigravity muscles. Contrary toFigure 6, the biceps brachii is not included in the antigravity muscles here, using LDA for classification.

Figure S5. Classification accuracy using only the EMGs from either gravity or antigravity muscles during theacceleration phase of the movement or the deceleration phase, using SVM for classification.
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Figure S6. Classification accuracy using only the EMGs from either gravity or antigravity muscles during theacceleration phase of the movement or the deceleration phase, using SVM for classification. Contrary toFigure S5, the biceps brachii is not included in the antigravity muscles here.

Figure S7. Classification accuracy using only the negative part of the EMGs from antigravity muscles duringthe acceleration phase of the movement or the deceleration phase, using SVM for classification.
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Figure S8. Classification accuracy using only the positive part of the EMGs from antigravity muscles, usingLDA for classification.

Figure S9. Accuracy as a function of the LDAdistance.
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