

1 **Scalable querying of human cell atlases via a foundational model reveals**  
2 **commonalities across fibrosis-associated macrophages**

3  
4

5 Graham Heimberg<sup>1,2,\*</sup>, , Tony Kuo<sup>3,\*</sup>, Daryle DePianto<sup>4</sup>, Tobias Heigl<sup>5</sup>, Nathaniel Diamant<sup>2</sup>, Omar  
6 Salem<sup>3</sup>, Gabriele Scalia<sup>2</sup>, Tommaso Biancalani<sup>2</sup>, Shannon Turley<sup>4,5</sup>, Jason Rock<sup>5</sup>, Héctor Corrada Bravo<sup>6</sup>,  
7 Josh Kaminker<sup>1,§</sup>, , Jason A. Vander Heiden<sup>1,4,§</sup>, , Aviv Regev<sup>7,§</sup>, 

8

9 **Affiliations:**

10 <sup>1</sup> Department of OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA.

11 <sup>2</sup> Department of Machine Learning for Biology, Genentech, South San Francisco, CA 94080,  
12 USA.

13 <sup>3</sup> Roche Informatics, F. Hoffmann-La Roche Ltd., Mississauga, Canada

14 <sup>4</sup> Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA.

15 <sup>5</sup> Department of Regenerative Medicine, Genentech, South San Francisco, CA 94080, USA.

16 <sup>6</sup> Data Science and Statistical Computing, Genentech, South San Francisco, CA 94080, USA.

17 <sup>7</sup> Research and Early Development, Genentech, South San Francisco, CA 94080, USA.

18 \* These authors contributed equally

19 § These authors contributed equally

20  email: [heimberg@gene.com](mailto:heimberg@gene.com), [regev.aviv@gene.com](mailto:regev.aviv@gene.com), [vanderheiden.jason@gene.com](mailto:vanderheiden.jason@gene.com),  
21 [kaminker@gene.com](mailto:kaminker@gene.com)

22 **Abstract**

23 Single-cell RNA-seq (scRNA-seq) studies have profiled over 100 million human cells across  
24 diseases, developmental stages, and perturbations to date. A singular view of this vast and growing  
25 expression landscape could help reveal novel associations between cell states and diseases,  
26 discover cell states in unexpected tissue contexts, and relate *in vivo* cells to *in vitro* models.  
27 However, these require a common, scalable representation of cell profiles from across the body, a  
28 general measure of their similarity, and an efficient way to query these data. Here, we present  
29 SCimilarity, a metric learning framework to learn and search a unified and interpretable  
30 representation that annotates cell types and instantaneously queries for a cell state across tens of  
31 millions of profiles. We demonstrate SCimilarity on a 22.7 million cell corpus assembled across  
32 399 published scRNA-seq studies, showing accurate integration, annotation and querying. We  
33 experimentally validated SCimilarity by querying across tissues for a macrophage subset originally  
34 identified in interstitial lung disease, and showing that cells with similar profiles are found in other  
35 fibrotic diseases, tissues, and a 3D hydrogel system, which we then repurposed to yield this cell  
36 state *in vitro*. SCimilarity serves as a foundational model for single cell gene expression data and  
37 enables researchers to query for similar cellular states across the entire human body, providing a  
38 powerful tool for generating novel biological insights from the growing Human Cell Atlas.

39

40

## 41 INTRODUCTION

42 Characterizing the contexts in which cells employ different expression programs is critical for  
43 deciphering their functional role in health and disease. To date, well over 100 million individual  
44 cells have been profiled using single-cell or single-nucleus RNA-seq (sc/snRNA-seq) across  
45 homeostatic, disease, and perturbed conditions<sup>1</sup>. Individually, even the largest multi-tissue  
46 scRNA-seq atlases<sup>2-4</sup> capture only a relatively small portion of cell states across human tissues;  
47 collectively, these atlases provide a vast, pan-human view of cell and disease biology that has the  
48 potential to address fundamental questions about human biology<sup>1</sup>. By aggregating across atlases,  
49 we may uncover biological insights and enable investigations into cell states that are common  
50 across multiple studies of the same organ and conditions (e.g., similar neural progenitor  
51 populations across independent studies of brain development), different organs and conditions  
52 (e.g., inflammatory fibroblasts in both ulcerative colitis and cancer); or between the human body  
53 and *in vitro* lab models (e.g., regulatory T cells genetically perturbed to recapitulate *in vivo* cells  
54 from diseased tissue).

55

56 Despite this promise and the rapid growth in data, our ability to realize the potential of cross-  
57 datasets, pan-body, analyses remains limited and hampered by the need for laborious manual  
58 curation, harmonization, and dataset aggregation by expert analysts, as well as the painstaking  
59 process of selecting datasets, standardizing cell type annotations, and finding a common low-  
60 dimensional representation. As a result, most aggregation efforts have been limited in their  
61 biological scope and number of datasets, with some recent notable exceptions focused on genes  
62 rather than cell representation<sup>5-8</sup>.

63

64 To leverage and query the massive scale and richness of available single-cell atlases, we need both  
65 (1) a foundational model of cell states with an effective representation for single-cell profiles  
66 across different cell types and conditions that can be used across many applications without  
67 retraining; and (2) a measure of cell similarity that is robust to technical noise, scales to hundreds  
68 of millions of cells, and accurately generalizes to datasets and cell states not observed in the  
69 training. Established unsupervised methods to learn low dimensional representations of scRNA-  
70 seq profiles, such as Principal Component Analysis (PCA) or autoencoders<sup>3,9–11</sup>, faithfully preserve  
71 information from the input<sup>3,9–11</sup> and may even eliminate technical variation for explicitly defined  
72 batches. However, they do not learn general features that encode relationships between cells  
73 needed to represent and query new data sets in the context of cross-study, pan-tissue biological  
74 variation.

75

76 Machine learning methods, metric learning in particular, have successfully learned representations  
77 for diverse entities and a measure of similarity between them, especially in image analysis. For  
78 example, metric learning models for facial recognition are explicitly trained to embed images of  
79 the same person closer together than images of different people, by exploiting visual features that  
80 are critical to distinguish individuals<sup>12</sup>. Once trained, images are embedded into a low-dimensional  
81 space, where distances between images represent a measure of similarity based on the learned  
82 features. Users can then query with an image not in the training set to find additional similar images  
83 that are nearby in the latent space and depict the same person. We reasoned that, analogously,  
84 metric learning could provide a meaningful representation of and similarity metric for cell profiles.  
85 By training a model using annotated scRNA-seq data, we can learn a low dimensional  
86 representation that places similar cells near each other and dissimilar cells farther apart. If learned

87 from a sufficient diversity of cell profiles, such a representation would, in turn, provide a  
88 foundational model of cells and would allow efficient searches for cells with similar expression  
89 states (**Fig. 1a**).  
90

91 Here, we introduce SCimilarity, a class of deep metric learning models that quantify similarity  
92 between single-cell expression profiles (SCimilarity score) and provide a single-cell gene  
93 expression foundational reference model to systematically query for comparable cell states across  
94 tissues and diseases. SCimilarity uses a training set of diverse author-annotated cell profiles to  
95 learn a universal representation and distance metric that facilitates efficient searches across a  
96 massive reference meta-atlas for the most expression-similar cells. To train a foundational model  
97 that can be broadly applied to many applications across tissues and studies, we built a  
98 programmatic pipeline for massive data import and automated standardized curation and used it to  
99 assemble a corpus of 22,699,774 cells from 399 datasets spanning a broad range of organs, systems  
100 and conditions across the human body. After training and testing on a subset of 66 studies and  
101 7.9M single-cell profiles, the learned models generalize well, representing and quantifying  
102 similarities between 14.9M cells from another 347 studies excluded from training. By tuning a  
103 single parameter during SCimilarity's training, we yield models optimized for either data  
104 integration and visualization of millions of cells across hundreds of studies, or for fast and efficient  
105 (millisecond) queries of a new cell state across tens of millions of cells. Finally, we illustrate the  
106 power of SCimilarity by querying for a fibrosis-associated macrophage (FMΦ) subset previously  
107 identified in interstitial lung disease (ILD), finding comparable cell populations (but with different  
108 annotated names and signatures) in other ILD studies, as well as in new contexts, including  
109 COVID-19, different tumors including pancreatic ductal adenocarcinoma (PDAC), and even

110 healthy lung (at low abundance). Surprisingly, SCimilarity recovered FMΦ-like cells among  
111 PMBCs cultured and stimulated in a 3D hydrogel system *in vitro*, which we experimentally  
112 validated, producing an FMΦ-like *in vitro* cell system for future functional studies of a tissue-  
113 resident cell state. Overall, SCimilarity preserves expression diversity across cells in an integrated  
114 foundational model of a human cell atlas, and allows a novel scaled cell search across organs,  
115 systems, and conditions, as a powerful framework for generating biological insights and  
116 experimentally testable hypotheses.

117

## 118 RESULTS

119 **SCimilarity: novel similarity metrics and representations for single-cell expression profiles**  
120 SCimilarity is a family of models that blend unsupervised representation learning and supervised  
121 metric learning, through simultaneously optimizing two objectives : (1) a supervised triplet loss  
122 function, which is used to embed expression profiles from matching cell types close together,  
123 effectively integrating cells of the same type across studies<sup>13–15</sup>, and (2) an unsupervised mean  
124 squared error (MSE) reconstruction loss function, which encourages the model to preserve  
125 variation from the input expression profiles, capturing subtler differences in expression patterns  
126 within cells of the same type, such as those related to tissue residency of immune cells (**Fig. 1b**,  
127 **Methods**). The balance of these two objectives, set by a single hyperparameter,  $\beta$ , determines the  
128 properties of the representation (**Methods**). Increasing the relative weight of the triplet loss  
129 function improves dataset integration, while increasing the relative weight of the reconstruction  
130 loss improves querying performance. Therefore, different loss function weightings within the same  
131 model architecture can address different applications.

132

133 We train SCimilarity with tens of millions of cell triplets sampled from data with author-provided  
134 standardized cell type annotations from the Cell Ontology<sup>16</sup> (**Fig. 1b, Methods**). Specifically, each  
135 training triplet consists of similar anchor and positive cells (*i.e.*, same cell type) from different  
136 studies, while anchor and negative cells are dissimilar (*i.e.*, distinct cell types; from the same or a  
137 different study). However, even with standardized Cell Ontology terms, some cell type  
138 comparisons are ambiguous due to arbitrary differences in annotation granularity across studies  
139 (*e.g.*, it is ambiguous if cells annotated as “T cell” in one study and “CD4<sup>+</sup> T cell” in another are  
140 similar or dissimilar). To address this, SCimilarity excludes cell pairings with such vertical  
141 ancestor-descendant Cell Ontology relationships from training triplets, and learns only from cells  
142 that are either explicitly similar or unambiguously dissimilar (**Fig. 1b, Methods**). By sampling  
143 only unambiguous triplets we eliminate the need to manually flatten or harmonize every cell type  
144 annotation and are able to seamlessly scale the training set across dozens of studies.

145

146 **A learned SCimilarity representation of 22.7M cells across dozens of tissues and disease**  
147 **datasets collated by an automated curation and processing pipeline**

148 To test SCimilarity models, we assembled a compendium of sc/snRNA-seq datasets across human  
149 biology. We focused on studies generated with one experimental platform (10x Genomics  
150 Chromium droplet-based scRNA-seq) and data publicly available on the Gene Expression  
151 Omnibus (GEO)<sup>17</sup> or CELLxGENE<sup>18</sup>. These data capture much of the published scRNA-seq data,  
152 and were generated with similar library preparation protocols and computational pipelines<sup>19</sup>. There  
153 were 753 human sc/snRNA-seq datasets matching our search criteria and keywords as of March  
154 23<sup>rd</sup>, 2021 (with Biopython Entrez<sup>20</sup>, **Methods**). The number of samples and cells matching our

155 criteria has at least doubled every 6 months between December 2018 and March 2021; (**Extended**  
156 **Data Fig. 1a,b**). We programmatically downloaded 13,401,599 cell profiles from 333 of the  
157 identified studies with their respective GEO metadata and unnormalized gene count matrices  
158 (**Methods, Extended Data Table 1**). We manually ingested another 66 well-annotated studies  
159 from either the CELLxGENE portal<sup>18</sup> or from large studies and consortia not available through  
160 GEO that passed the same dataset filtering criteria (**Methods**). Overall, we assembled a corpus of  
161 399 studies comprising 22,699,774 cells from 33,815 tissue samples with 184 unique Tissue  
162 Ontology terms<sup>21</sup>, 132 Disease Ontology terms<sup>22</sup>, and 204 Cell Ontology cell type terms<sup>16</sup>, with  
163 each Cell Ontology term appearing in at least two separate datasets (**Fig. 2a, Extended Data Fig.**  
164 **1c, Extended Data Table 1**).

165  
166 We trained SCimilarity models with a training set of 7,913,892 single-cell profiles from 52 studies  
167 with Cell Ontology author annotations that reflected a diversity of conditions and tissues  
168 (**Extended Data Fig. 1d, Extended Data Table 1**), sampling 50,000,000 of the most informative  
169 triplets (**Methods**). We withheld 14 studies comprising 1,384,283 cells with Cell Ontology  
170 annotations for testing the learned representation and metric (**Fig. 2a**). We excluded tumor, cell  
171 lines, and iPSC-derived samples from the training and test sets, because cell identity of tumor cells  
172 and cell lines can be ambiguous.

173  
174 **Tuning of SCimilarity’s reconstruction and triplet loss functions yields models optimized for**  
175 **integration vs. cell search tasks**  
176 We examined six different blends for SCimilarity’s objective function, varying the relative  
177 weighting of the reconstruction and triplet loss functions, and finding that the two loss function

178 components gave rise to different behaviors in a trained model. Briefly, we assessed the models  
179 on two tasks – data integration and searching for cells similar to a query profile – using studies  
180 entirely held out from training. To evaluate data integration, we quantified how coherently cells of  
181 each type are clustered and how distinct each cell type cluster is from other clusters. To this end,  
182 we created an ontology-aware variation of average silhouette width<sup>23</sup> to quantify integration  
183 capabilities across datasets without harmonizing cell type annotations (**Methods**). To evaluate our  
184 cell search distance metric, we compared searches with SCimilarity to gene signature scoring  
185 (**Methods**). The higher the correlation between these two quantities, the more our similarity metric  
186 corresponds to traditional signature-based similarity to represent a cell state of interest.

187  
188 Models with higher triplet loss weighting scored higher on integration benchmarks, while models  
189 with higher reconstruction loss weighting encoded distances between cells in a manner better  
190 correlated with differences in representative expression signature scores (**Extended Data Fig.**  
191 **2a,b**). Pure triplet loss, which is calculated at the level of cell type labels, does not reliably preserve  
192 subtle cell state differences, such as tissue specificity or disease response within cells of the same  
193 type. Mean squared error reconstruction loss complements this by preserving more subtle gene  
194 expression patterns, while the triplet loss ensures that cells of the same type are embedded closely  
195 together. Based on the biological question, a user can tune this balance to yield the highest utility.  
196 We thus pursued two SCimilarity models: an integration model, optimized for the task of learning  
197 a low dimensional representation that groups cells by type rather than by study; and a cell search  
198 model that is optimized for the task of retrieving cells with an expression state similar to that of a  
199 query cell across hundreds or thousands of scRNA-seq datasets (**Extended Data Fig. 2a**,  
200 **Methods**).

201 **SCimilarity's latent space representation filters outlier cells and integrates test datasets**  
202 **without batch correction**

203 We next benchmarked if SCimilarity's latent space representation from the integration model  
204 generalizes well to cells from entire datasets held out of training compared to other methods. In a  
205 low-dimensional embedding, unannotated cell profiles from nine lung studies (7 training set, 2 test  
206 set) visually intermix well when embedded into SCimilarity's learned 128-dimensional space  
207 (**Extended Data Fig. 2a**). SCimilarity's data integration model scored higher than Harmony, scVI,  
208 and scArches on integration tasks by the ontology-adjusted ASW measure of cluster coherence,  
209 but scored lower for normalized mutual information (NMI) and adjusted rand index (ARI), which  
210 measure the extent of study mixing within each cluster (**Extended Data Fig. 2b**). Thus, without  
211 directly training on the full data set or performing additional batch correction, the integration  
212 model clusters cells by type rather than study at a level that is competitive with existing methods  
213 trained directly on the data. This demonstrates that the triplet loss learns features that capture  
214 meaningful biology, while reducing technical sources of noise and avoiding overfitting to the  
215 training set.

216

217 SCimilarity quantifies a confidence level for each cell's representation, providing both outlier  
218 detection and an assessment of the representation's relevance in the context of new data. When  
219 computing the representation of a new cell, the further outside the scope of model training it is,  
220 the harder it is for the model to accurately represent it. Using SCimilarity's score to quantify how  
221 distant a query cell is from the training data distribution provides a heuristic about the quality and  
222 scope of the representation – a cell scoring as highly similar to cells seen during training can be  
223 confidently represented by the model. Overall, 79.5% of *in vivo* holdout cells had high

224 representation confidence. Tissue samples with particularly low representation confidence, such  
225 as stomach (n = 0 training studies), fetal gut (n=1), and bladder (n=0) were either absent or poorly  
226 represented in training (**Methods, Extended Data Fig. 2c**), suggesting that more labeled training  
227 datasets from those tissues could improve the model’s representation. Similarly, 43.8% of *in vitro*  
228 cell profiles were considered low confidence due to poor matching to the training set (which  
229 excluded *in vitro* samples).

230

231 We combined SCimilarity’s ability to generalize to new datasets and its confidence-based filtering  
232 to systematically generate meta-atlases for 21 different human tissues without labor-intensive  
233 dataset harmonization and no additional training (**Fig. 2b**). If datasets have already been embedded  
234 using SCimilarity, this task only requires concatenation of cells of interest and standard  
235 visualization workflows.

236

237 **SCimilarity assigns an unannotated query cell to a cell type by finding similar cells in a  
238 labeled reference**

239 We next used SCimilarity to find the cells in the annotated reference that are most similar to an  
240 unannotated query cell profile, and then annotate the query cell accordingly (**Fig. 3a, Methods**).  
241 This approach is distinct from established annotation methods in that it (1) relies on a large, pan-  
242 human annotated cell repository, (2) employs a measure of expression similarity, and (3) classifies  
243 at the single cell rather than cluster level, providing greater transparency into the classification  
244 itself. Thus, users can see which individual cells, studies, and tissues are driving the classification  
245 decision. Moreover, since each cell is annotated independently, no clustering or associated

246 parameter selection, such as the number and resolution of clusters, are required. A user can choose  
247 to annotate a cell's profile by comparing it either to a desired subset of cell types (e.g., for a tissue-  
248 specific query) or to the entire annotated cell reference. Because SCimilarity is built using metric  
249 learning, finding the most similar cells is the same as retrieving the query cell's nearest neighbors.  
250 This operation is extremely efficient with the hnswlib algorithm<sup>24</sup>, where searching a precomputed  
251 approximate nearest neighbor index of all the annotated reference cells in SCimilarity's latent  
252 space takes just 20 milliseconds (**Methods**). Low SCimilarity scores to reference cells flag an  
253 outlier query cell, which may be either a cell type that is not within the reference or a query cell of  
254 low quality.

255

256 SCimilarity quickly and accurately assigned cell types for entire datasets held out from training,  
257 as well as for the rest of the 22.7M cell corpus. When limiting potential cell types to author-selected  
258 labels, 94.5% of SCimilarity's predicted labels from healthy kidney samples<sup>25</sup> match the author-  
259 provided cell type annotations (**Fig. 3b-d, Methods**). In some cases, where SCimilarity's  
260 predictions did not match author-provided annotations, SCimilarity's predictions were more  
261 accurate or granular. For example, 94% of the cells that the authors<sup>25</sup> annotated as CD4<sup>+</sup> T cells  
262 but SCimilarity annotated as CD8<sup>+</sup> T cells express *CD8A* or *CD8B* (and none express *CD4*),  
263 supporting SCimilarity's annotation (**Fig. 3e-h**). Separately, when allowing cells to be annotated  
264 as any cell type in the repository, 6.3% of the author-annotated CD4<sup>+</sup> T cells were reannotated by  
265 SCimilarity as regulatory T cells (T<sub>regs</sub>) (**Extended Data Fig. 3a**), most of which (85.2%)  
266 expressed at least one T<sub>regs</sub> marker (FOXP3, IL2RA, or IKZF2, **Extended Data Fig. 3b-d**).  
267 Similarly, 1.8% of author-annotated mesenchymal stem cells (**Fig. 3b**) were reassigned by  
268 SCimilarity as myofibroblasts (**Extended Data Fig. 3a**) and 93% of those express the

269 myofibroblast-associated gene *ACTA2* (**Extended Data Fig. 3e**). Cell type prediction was rapid,  
270 taking 3-5 seconds to embed and annotate 10,000 cells from a dataset. Overall, across all 14 test  
271 datasets spanning 78 Cell Ontology terms, 71% of the cell populations had high agreement (>85%  
272 of the cell population) between author and SCimilarity annotations (**Fig. 3i**). SCimilarity  
273 performed poorly on one dataset (Cano-Gomez et al.<sup>26</sup>), due to fine granularity and redundancy of  
274 author labels (e.g., CD4<sup>+</sup>  $\alpha\beta$  T cells, helper T cell, memory T cell, naive T cell, and regulatory T  
275 cell).

276

277 We used SCimilarity's cell type assignment to rapidly annotate all 22.7M cell profiles in one  
278 common model, newly-annotating 13,401,599 profiles and reannotating 9,298,175 author-  
279 annotated profiles (**Methods**) to a single set spanning 74 cell type labels (21 coarser lineages) from  
280 25 simplified tissue categories (**Fig. 4a,b, Extended Data Fig. 3f**). A consistent annotation across  
281 datasets facilitates cross-study and cross-tissue analyses of one cell type or lineage, as SCimilarity  
282 can extract cells from hundreds of studies, aggregating vast biological diversity across one cell  
283 type. For example, we readily aggregated 1,172,325 fibroblasts and myofibroblasts (**Extended**  
284 **Data Fig. 3g**) and 2,507,879 monocytes and macrophages (**Extended Data Fig. 3h**) from  
285 hundreds of studies profiling different primary tissue samples.

286

## 287 **SCimilarity's representations comprise of interpretable biological features**

288 To interpret SCimilarity's annotations, we quantified the importance of each gene for cell type  
289 annotations assigned by the foundational query model using Integrated Gradients, a method that  
290 identifies the impact on model predictions of small disturbances to the input expression profiles  
291 (**Methods**). For example, the top gene attributions that distinguish lung alveolar type 2 (AT2) cells

292 are surfactant genes *SFTPA2*, *SFTPA1*, *SFTPB*, and *SFTPC*, consistent with known AT2 cell  
293 function<sup>27</sup>. SCimilarity learned these without prior knowledge of cell type specific genes,  
294 signatures, or highly variable genes. Overall, SCimilarity's top importance genes agreed well with  
295 differentially expressed marker genes for 17 different matched types<sup>3</sup> with the exception of rare  
296 neuroendocrine cells (average AUC=0.84, **Extended Data Table 2**, **Extended Data Fig. 3i**).  
297 Thus, SCimilarity's representation captured known and validated biological markers within its  
298 features.

299

### 300 **Cell search identifies fibrosis-associated macrophages across tissues and diseases**

301 With a single representation and common definition of cell types, we hypothesized that  
302 SCimilarity could help elucidate the role of tissue-resident immune cells. As a case study, we  
303 focused on macrophages, given their remarkable plasticity in cell states and their important  
304 specialized roles in tissue repair, regeneration, and fibrosis<sup>28,29</sup>. Recent scRNA-seq studies in  
305 fibrotic diseases, including lung fibrosis, cancer, obesity, and COVID-19 have reported seemingly-  
306 similar *SPP1*<sup>+</sup> fibrosis-associated macrophage (FMΦ) populations<sup>30-38</sup>. However, because each  
307 study identified them independently, using different nomenclatures and marker gene signatures to  
308 define subsets, it is unclear how similar these cell states are. Moreover, it is unknown how broadly  
309 associated such cell states are with other diseases, especially those with prominent fibrosis. We  
310 reasoned that SCimilarity's cell search should allow us to query our corpus with an FMΦ cell  
311 profile from one study to identify similar cells across other tissues and conditions, thereby  
312 clarifying the cell identity of similarly-described cells and the conditions in which FMΦ arise (**Fig.**  
313 **5a**).

314

315 We queried our model with the FMΦ cell profile, searching for similar cells across 2,578,221 cells  
316 annotated by SCimilarity as monocytes or macrophages in the 22.7M cell corpus (**Fig. 5a**).  
317 SCimilarity queries can use either an individual cell profile or a centroid of multiple cell profiles.  
318 Here, we input the centroid profile of a macrophage cell subset from Adams *et al.*<sup>30</sup> that we defined  
319 using a gene signature consisting of the extracellular matrix remodeling and fibrosis-associated  
320 genes *SPPI*, *TREM2*, *GPNMB*, *MMP9*, *CHIT1*, and *CHI3L1* (**Methods**). In two seconds,  
321 SCimilarity exhaustively computed the pairwise similarity of our query profile to each of the 2.6M  
322 *in vivo* profiles of the cells it annotated as monocytes or macrophages in our corpus (**Fig. 5b** and  
323 **Extended Data Fig. 4a**). Alternatively, simply identifying the 10,000 cells with the highest  
324 SCimilarity score takes 0.05 seconds (**Methods**). By comparison, a more conventional approach  
325 that scores each cell in the corpus with a literature-defined FMΦ gene signature took 2 hours and  
326 46 minutes (**Extended Data Fig. 4b**). The gene signature and SCimilarity scores are broadly  
327 correlated ( $r = 0.50$ ,  $p < 10^{-300}$ , **Extended Data Fig. 4a-c**), showing that the granular cell state,  
328 not just the cell type, is well-represented in SCimilarity query score and embedding.

329  
330 The SCimilarity search showed that FMΦs are common in ILD lung samples in our compendium,  
331 as well as present in some cancers, including uveal melanoma, pancreatic ductal adenocarcinoma  
332 (PDAC), and colon cancer (**Fig. 5c-e, Extended Data Table 3**). Of the top 1% of monocytes and  
333 macrophages most similar to our query, 99.1% were from lung tissue and 87.2% from ILD and  
334 COVID-19 lung samples. The prevalence of FMΦ-like cells in the lung varied by disease: the  
335 proportion of monocytes and macrophages that were FMΦ-like was 20% and 4% in two systemic  
336 sclerosis (SSc) studies, 6.1% on average (SE = 1.4%) across 13 ILD studies (excluding SSc), 1.2%  
337 on average across seven COVID-19 lung studies (SE = 0.5%, 0% in non-lung COVID-19 data)

338 and 0.4% in 19 studies annotated as “healthy”, “normal” or with no disease annotation (SE =  
339 0.2%). While abundant in SSc lung, FMΦ-like cells were much rarer (0.14% of myeloid cells) in  
340 SSc skin<sup>39</sup>. There were some FMΦ-like cells in other fibrotic diseases and tissues, such as one  
341 primary pancreatic ductal adenocarcinoma (PDAC) tumor<sup>40</sup> (0.85% of 1,171 myeloid cells) and  
342 one liver metastasis<sup>41</sup> of PDAC (0.5% of 1,199 cells). Thus, while our query FMΦ profile was  
343 derived from IPF samples, it uncovered FMΦ-like cells in many contexts, including SSc-ILD,  
344 COVID-19 lung and PDAC. These results confirm previous observations of FMΦs in lung  
345 injury<sup>38,42</sup> and suggest a role for FMΦ-like cells across other organs and diseases.

346 **Integrated gradients analysis reveals commonalities between SCimilarity score and**  
347 **established gene signatures**

348 Because FMΦ-like cells are detected by SCimilarity across many ILD studies, we hypothesized  
349 that the cells captured by different marker genes and nomenclature in different studies refer to the  
350 same biological cell state. To test this, we applied integrated gradients to quantify each gene’s  
351 importance when SCimilarity distinguishes FMΦs from randomly sampled monocytes and  
352 macrophages (**Methods**). The genes identified as important for distinguishing FMΦs are enriched  
353 in key fibrotic processes, including extracellular matrix remodeling (*MMP7*, *MMP9*, *FNI*, *SDC2*,  
354 *SPARC*, *SPPI*), lipid metabolism and lipoprotein clearance (*APOC1*, *APOE*, *LPL*, *LIPA*), and  
355 damage-associated molecular pattern recognition (*MARCO*, *MSRI*) (**Fig. 5f, Extended Data Fig.**  
356 **4d,e, Extended Data Table 4**). While SCimilarity found many FMΦ marker genes that were  
357 already discussed in the literature, such as TREM2 (**Extended Data Fig. 4f**), it also identified  
358 novel genes elevated in FMΦs such as HLA-DQA1 and RGS1 (**Extended Data Fig. 4g,h**).

359

360 The genes with the highest importance scores in the SCimilarity embedding of FMΦs significantly  
361 overlap ( $p < 6.7 \times 10^{-13}$ ) with published gene signatures describing similar macrophage populations  
362 or with genes whose differential expression defined each study's macrophage population of  
363 interest (**Extended Data Table 5**). While cell signatures from IPF lung had a high signature match  
364 ( $AUC \geq 0.95$ ), the negative control signatures of M1 and M2 macrophages<sup>43</sup> had lower ones at the  
365 bottom three ( $AUC = 0.85$  ( $2.65 \times 10^{-2}$ ) and  $AUC = 0.92$  ( $p < 4.92 \times 10^{-6}$ ), respectively; **Fig. 5f**,  
366 **Extended Data Fig. 4d**).

367

368 **FMΦ-like cells identified among *ex vivo* stimulated peripheral blood mononuclear cells**  
369 **(PBMCs) help establish a novel human cell model**

370 Research to understand the role of a novel cell state or subtype in disease, such as FMΦs, benefits  
371 greatly from the ability to model, perturb, and study the cells *in vitro*. However, there is currently  
372 no systematic way to identify *in vitro* culture conditions that generate cells that match cells  
373 identified *in vivo*. To accelerate development of an *in vitro* FMΦ system, we used SCimilarity to  
374 search for FMΦ-like cells across *in vitro* stimulated samples with the goal of identifying previously  
375 employed experimental conditions that might resemble the tissue cell state. We filtered our full  
376 reference cell collection for *in vitro* and *ex vivo* studies containing at least 50 monocytes or  
377 macrophages, resulting in 41,926 monocytes and macrophages across 40 samples from 17 such  
378 studies. These span diverse and complex conditions, such as lung organoids infected with SARS-  
379 CoV-2<sup>44</sup>, *ex vivo* treated acute myeloid leukemia samples<sup>45</sup>, or PBMCs stimulated with morphine  
380 and lipopolysaccharide<sup>46</sup>.

381

382 The cells most similar to our query FMΦ expression profile were monocytes grown as part of a  
383 heterogenous PBMC culture for 5 days in a 3D hydrogel culture system that was designed for  
384 expansion of hematopoietic stem cells (HSCs) from PBMCs<sup>47</sup> (**Fig. 6a, Extended Data Table 6**).  
385 This study is unrelated to lung biology and its authors did not report any results for myeloid cells.  
386 Nevertheless, while no FMΦ-like cells were present among myeloid cells on day 0, 15% of cells  
387 grown for five or more days in this system were highly similar to FMΦs (SCimilarity score >25)  
388 and expressed *TREM2*, *GPNMB*, *CCL18* and *MMP9* (**Fig. 6b-e**). This was a surprising result,  
389 because of the seeming irrelevance of the study to fibrosis or macrophage biology and the rarity  
390 of FMΦ-like cells in PBMC samples *in vivo*.

391  
392 To validate SCimilarity's prediction of an FMΦ-like cell culture condition, we used a similar  
393 protocol to replicate the 3D hydrogel system<sup>47</sup>, followed by scRNA-seq to assess the yield of  
394 FMΦ-like cells (**Fig. 6b,c,f**). While relative cellular abundances differed between the original day  
395 5 data (Xu et al, 2022) and our day 8 replication of the same conditions (**Methods**), 10.1% of all  
396 cells in the Day 8 experiment were predicted as HSCs by SCimilarity (**Fig. 6g**). Moreover, 41.5%  
397 of the myeloid cells in day 8 validation experiments from three donors were predicted as FMΦ-  
398 like macrophages (**Fig. 6b,f**, 37.1%, 42.5%, and 44.9%; SCimilarity score > 25). Furthermore,  
399 FMΦ hallmark genes, such as *CCL18*, *GPNMB*, *SPP1*, and *TREM2*, were enriched in the myeloid  
400 compartment of our replicate experiment compared to day 0 conditions (**Fig. 6c**). This experiment  
401 validates that an FMΦ-like population can be generated from PBMCs in culture conditions. Taken  
402 together, these results demonstrate SCimilarity's ability to interrogate publicly available data at  
403 scale, query a reference of *in vivo* and *in vitro* data for biologically similar conditions, and help  
404 identify experimental conditions to reproduce those results in laboratory settings.

405

406 **DISCUSSION**

407 To date, more than a hundred million human cells have been profiled across tissues in health and  
408 disease, and such data continue to grow exponentially. This growing human cell atlas should be  
409 the starting point for researchers aiming to readily search, query and compare cell states of interest  
410 across different protocols, treatments, tissues, and diseases.

411

412 SCimilarity systematically annotates and repurposes tens of millions of expression profiles from  
413 hundreds of studies, to create an integrated, searchable and queryable foundational model of pan-  
414 human cellular diversity. SCimilarity is comprised of three key features: (1) a 22.7M cell human  
415 scRNA-seq data repository (at present), (2) a foundational model for single cell gene expression  
416 with a generalizable embedding and similarity metric (which could readily be retrained for larger  
417 datasets), and (3) methods to efficiently query across this entire pan-body human cell atlas.  
418 Together, these provide new context, capabilities, and workflows for extracting insights from new  
419 and existing scRNA-seq datasets in the human cell atlas and other atlases. SCimilarity's  
420 framework architecture can easily accommodate quick updates as data continue to grow.

421

422 Because SCimilarity can generalize to cells and datasets not seen in the training, cell profiles can  
423 be added as entirely new studies or removed by applying new cell filters without recomputing the  
424 low dimensional representations. This flexibility allows us to change the analysis' scope at any  
425 point without redoing work, enabling modularized workflows for scRNA-seq analysis.  
426 Downstream tasks, such as cell type annotation, cell queries, and gene signature derivation all are  
427 simplified using SCimilarity's generalized low dimensional representation and can be applied to

428 cells not seen during training without informing the model about the importance or variability of  
429 specific genes during training. Outlier detection helps both filter out technical errors and highlight  
430 potentially novel cell subsets. Although generalized models that do not require recomputing low  
431 dimensional representations would alleviate time and expertise barriers that currently impede  
432 researchers, to the best of our knowledge, generalization has rarely been optimized in single-cell  
433 expression analysis.

434

435 There is no single objective measure of similarity, or dissimilarity, between cellular profiles.  
436 Curated gene signatures are useful when a small number of explanatory genes are sufficient to  
437 define a cell state. SCimilarity uses the full expression profile of a cell as its query, defined by  
438 either a single representative cell or the centroid of a set of cell profiles. Thus, SCimilarity's cell-  
439 based search bypasses the manual curation requirements and biases inherent in defining a gene  
440 signature. In cases where such a gene signature is desired, SCimilarity can compute a robust  
441 signature for a cell state across studies.

442

443 Exploration of transcriptionally-similar populations across a vast atlas of human scRNA-seq data  
444 provides critical context to a cell population of interest. First, observing a query population across  
445 many similar studies shows that the original observation was reproducible, a key for subsequent  
446 scientific research<sup>48</sup>. Second, SCimilarity queries can connect results from independent studies.  
447 While one study may find a cell population in a disease, another may show similar cells with  
448 functional characterization, allowing us to formulate a new hypothesis on the functional properties  
449 of disease-associated cells.

450

451 This is illustrated by how SCimilarity allowed us to search for and identify FMΦ-like cells across  
452 tissues and disease states, construct a cross-study set of explanatory marker genes, and uncover a  
453 cell culture system that elicits a similar FMΦ-like state *in vitro*. Modeling FMΦs from readily  
454 available PBMCs is exceptionally valuable, because isolation of cells from human lung explants  
455 is prohibitive for many functional assays. Surprisingly, in addition to fibrotic lung, FMΦs were  
456 present in multiple tumor types, particularly PDAC, a heavily fibrotic cancer, where macrophages  
457 play an important role in mediating the associated fibrosis and have been linked to tumor  
458 progression<sup>49</sup>. The identification of a common FMΦ state across fibrosis, cancer, and infection  
459 suggests a broader role for these cells in the damage response and tissue remodeling processes  
460 across diseases. Moreover, SCimilarity’s search identified FMΦ-like cells in an *in vitro* study – an  
461 observation that could not have been gleaned by reviewing the paper or based on the description  
462 of the culture system – but that we validated in the lab. The variations we observed between the  
463 original and replicate *in vitro* experiment may be attributed to differences in culture duration, cell  
464 extraction from the hydrogel, lymphocyte proportions, or other batch effects. Furthermore, these  
465 results invite new hypotheses, such as whether the 3D hydrogel provides key ECM-like  
466 environmental cues that promote an FMΦ-like state and induction of remodeling genes, such as  
467 *MMP9* and *SPP1*, and which factors can be added to drive an even stronger FMΦ phenotype. Thus,  
468 SCimilarity provides a powerful framework to iteratively generate and validate such experimental  
469 hypotheses.

470

471 SCimilarity is not appropriate for all applications and will need further improvements to continue  
472 to scale with exponential data growth and to more comprehensively span human biology as the  
473 Human Cell Atlas continues to grow. Training SCimilarity requires Cell Ontology labels.

474 Fortunately, scRNA-seq data sharing practices are increasingly relying on using the Cell Ontology  
475 for standardization. However, the Cell Ontology itself is a large, yet incomplete, effort. Cell states  
476 are only considered in training if they are recognized in the Cell Ontology, and the number of these  
477 states is growing rapidly. Furthermore, while we trained SCimilarity on vast amounts of data,  
478 cancer cells and cell lines were deliberately withheld from training due to lack of clear cell type  
479 identity and therefore may not be well represented. In addition, in our experience, we see poor  
480 performance on fetal samples, likely due to most of the training data being sourced from adult  
481 tissues.

482

483 The current data integration and cell search models provide generalizable representations of 22.7M  
484 single-cell profiles across the human body, and include a Python API for querying cell profiles of  
485 interest. Future improvements to SCimilarity could include pre-training on the massive amounts  
486 of unlabeled data, effectively exposing the model to more cell states and more technical variability  
487 during training. With effective representations we can more easily combine embeddings to include  
488 other species or data modalities. We believe that SCimilarity brings a new framework to single-  
489 cell genomics, enabling re-use of rich public data resources through instantaneous queries and  
490 demonstrates how this can be used to provide novel biological insights.

491

492

493 **Contributions:**

494 GH conceived of the method with input from AR, JVH, HCB, and JK. GH and TK performed  
495 data ingest and model implementation with input from JVH, ND, GS, TB, JK and AR. Python  
496 API was developed by TK with help from JVH, OS, and GH. Interpretability was developed by

497 ND and GS with input from HCB and TB. JVH conceived of biological application of method  
498 with input from GH, ST, JR and DD. DD and TH performed experimental validation with  
499 guidance from JR and ST. GH wrote the manuscript with input from JVH, JK, AR and HCB.

500

501 **Acknowledgements:**

502 We thank Anupriya Tripathi for coming up with the name “SCimilarity” and Jenna Collier,  
503 Gokcen Eraslan, John Marioni, and Jake Freimer for their suggestions that strengthened the  
504 manuscript.

505

506 **Competing interests:**

507 All authors are employees of Genentech or Roche. A.R. is a co-founder and equity holder of  
508 Celsius Therapeutics, an equity holder in Immunitas, and until July 31, 2020 was an S.A.B.  
509 member of Thermo Fisher Scientific, Syros Pharmaceuticals, Neogene Therapeutics and  
510 Asimov.

511

512

513 **References**

514

- 515 1. Rood, J.E., Maartens, A., Hupalowska, A., Teichmann, S.A., and Regev, A. (2022). Impact  
516 of the Human Cell Atlas on medicine. *Nat. Med.* 28, 2486–2496.
- 517 2. Domínguez Conde, C., Xu, C., Jarvis, L.B., Rainbow, D.B., Wells, S.B., Gomes, T., Howlett,  
518 S.K., Suchanek, O., Polanski, K., King, H.W., et al. (2022). Cross-tissue immune cell analysis  
519 reveals tissue-specific features in humans. *Science* 376, eabl5197.
- 520 3. Eraslan, G., Droklyansky, E., Anand, S., Fiskin, E., Subramanian, A., Slyper, M., Wang, J.,  
521 Van Wittenberghe, N., Rouhana, J.M., Waldman, J., et al. (2022). Single-nucleus cross-tissue  
522 molecular reference maps toward understanding disease gene function. *Science* 376,  
523 eabl4290.

524 4. Tabula Sapiens Consortium\*, Jones, R.C., Karkanias, J., Krasnow, M.A., Pisco, A.O., Quake,  
525 S.R., Salzman, J., Yosef, N., Bulthaup, B., Brown, P., et al. (2022). The Tabula Sapiens: A  
526 multiple-organ, single-cell transcriptomic atlas of humans. *Science* *376*, eabl4896.

527 5. Rosen, Y., Brbić, M., Roohani, Y., Swanson, K., Li, Z., and Leskovec, J. (2023). Towards  
528 Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with  
529 SATURN. *bioRxiv*. 10.1101/2023.02.03.526939.

530 6. Cui, H., Wang, C., Maan, H., Pang, K., Luo, F., and Wang, B. (2023). scGPT: Towards  
531 Building a Foundation Model for Single-Cell Multi-omics Using Generative AI. *bioRxiv*,  
532 2023.04.30.538439. 10.1101/2023.04.30.538439.

533 7. Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo,  
534 H., Brydon, E.M., Zeng, Z., Liu, X.S., et al. (2023). Transfer learning enables predictions in  
535 network biology. *Nature*. 10.1038/s41586-023-06139-9.

536 8. Shen, H., Shen, X., Hu, J., Liu, J., Zhang, C., Wu, D., Feng, M., Yang, M., Li, Y., Yang, Y.,  
537 et al. (2022). Generative pretraining from large-scale transcriptomes: Implications for single-  
538 cell deciphering and clinical translation. *bioRxiv*, 2022.01.31.478596.  
539 10.1101/2022.01.31.478596.

540 9. Heimberg, G., Bhatnagar, R., El-Samad, H., and Thomson, M. (2016). Low Dimensionality  
541 in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs from  
542 Shallow Sequencing. *Cell Systems* *2*, 239–250.

543 10. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep generative  
544 modeling for single-cell transcriptomics. *Nat. Methods* *15*, 1053–1058.

545 11. Lotfollahi, M., Naghipourfar, M., Luecken, M.D., Khajavi, M., Büttner, M., Wagenstetter,  
546 M., Avsec, Ž., Gayoso, A., Yosef, N., Interlandi, M., et al. (2022). Mapping single-cell data  
547 to reference atlases by transfer learning. *Nat. Biotechnol.* *40*, 121–130.

548 12. Schroff, F., Kalenichenko, D., and Philbin, J. (6/2015). FaceNet: A Unified Embedding for  
549 Face Recognition and Clustering. *2015 IEEE Conference on Computer Vision and Pattern  
550 Recognition (CVPR)*, 815–823.

551 13. Simon, L., Wang, Y.-Y., and Zhao, Z. (2021). Integration of millions of transcriptomes using  
552 batch-aware triplet neural networks. *Nature Machine Intelligence* *3*, 1–11.

553 14. Yang, M., Yang, Y., Xie, C., Ni, M., Liu, J., Yang, H., Mu, F., and Wang, J. (2022).  
554 Contrastive learning enables rapid mapping to multimodal single-cell atlas of multimillion  
555 scale. *Nature Machine Intelligence* *4*, 696–709.

556 15. Yu, X., Xu, X., Zhang, J., and Li, X. (2023). Batch alignment of single-cell transcriptomics  
557 data using deep metric learning. *Nat. Commun.* *14*, 960.

558 16. Diehl, A.D., Meehan, T.F., Bradford, Y.M., Brush, M.H., Dahdul, W.M., Dougall, D.S., He,  
559 Y., Osumi-Sutherland, D., Ruttenberg, A., Sarntivijai, S., et al. (2016). The Cell Ontology

560 2016: enhanced content, modularization, and ontology interoperability. *J. Biomed. Semantics*  
561 7, 44.

562 17. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene  
563 expression and hybridization array data repository. *Nucleic Acids Res.* 30, 207–210.

564 18. Chan Zuckerberg CELLxGENE Discover (2022). Cellxgene Data Portal.

565 19. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B.,  
566 Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital  
567 transcriptional profiling of single cells. *Nat. Commun.* 8, 14049.

568 20. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I.,  
569 Hamelryck, T., and Kauff, F. (2009). Biopython: freely available Python tools for  
570 computational molecular biology and bioinformatics. *Bioinformatics*.

571 21. Gremse, M., Chang, A., Schomburg, I., Grote, A., Scheer, M., Ebeling, C., and Schomburg,  
572 D. (2011). The BRENDA Tissue Ontology (BTO): the first all-integrating ontology of all  
573 organisms for enzyme sources. *Nucleic Acids Res.* 39, D507–13.

574 22. Schriml, L.M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle, L., Felix, V., Jeng, L.,  
575 Bearer, C., Lichenstein, R., et al. (2019). Human Disease Ontology 2018 update:  
576 classification, content and workflow expansion. *Nucleic Acids Res.* 47, D955–D962.

577 23. Luecken, M.D., Büttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F.,  
578 Strobl, D.C., Zappia, L., Dugas, M., Colomé-Tatché, M., et al. (2022). Benchmarking atlas-  
579 level data integration in single-cell genomics. *Nat. Methods* 19, 41–50.

580 24. Malkov, Y.A., and Yashunin, D.A. (2020). Efficient and Robust Approximate Nearest  
581 Neighbor Search Using Hierarchical Navigable Small World Graphs. *IEEE Trans. Pattern  
582 Anal. Mach. Intell.* 42, 824–836.

583 25. Young, M.D., Mitchell, T.J., Custers, L., Margaritis, T., Morales-Rodriguez, F., Kwakwa, K.,  
584 Khabirova, E., Kildisiute, G., Oliver, T.R.W., de Krijger, R.R., et al. (2021). Single cell  
585 derived mRNA signals across human kidney tumors. *Nat. Commun.* 12, 3896.

586 26. Cano-Gamez, E., Soskic, B., Roumeliotis, T.I., So, E., Smyth, D.J., Baldridge, M., Willé, D.,  
587 Nakic, N., Esparza-Gordillo, J., Larminie, C.G.C., et al. (2020). Single-cell transcriptomics  
588 identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. *Nat.  
589 Commun.* 11, 1801.

590 27. Beers, M.F., and Moodley, Y. (2017). When Is an Alveolar Type 2 Cell an Alveolar Type 2  
591 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine. *Am. J. Respir.  
592 Cell Mol. Biol.* 57, 18–27.

593 28. Wynn, T.A., and Vannella, K.M. (2016). Macrophages in Tissue Repair, Regeneration, and  
594 Fibrosis. *Immunity* 44, 450–462.

595 29. Lis-López, L., Bauset, C., Seco-Cervera, M., and Cosín-Roger, J. (2021). Is the Macrophage  
596 Phenotype Determinant for Fibrosis Development? *Biomedicines* 9.  
597 10.3390/biomedicines9121747.

598 30. Adams, T.S., Schupp, J.C., Poli, S., Ayaub, E.A., Neumark, N., Ahangari, F., Chu, S.G.,  
599 Raby, B.A., DeLuliis, G., Januszyk, M., et al. (2020). Single-cell RNA-seq reveals ectopic  
600 and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. *Science  
601 Advances* 6, eaba1983.

602 31. Ayaub, E.A., Poli, S., Ng, J., Adams, T., Schupp, J., Quesada-Arias, L., Poli, F., Cosme, C.,  
603 Robertson, M., Martinez-Manzano, J., et al. (2021). Single Cell RNA-seq and Mass  
604 Cytometry Reveals a Novel and a Targetable Population of Macrophages in Idiopathic  
605 Pulmonary Fibrosis. 10.1101/2021.01.04.425268.

606 32. Jaitin, D.A., Adlung, L., Thaiss, C.A., Weiner, A., Li, B., Descamps, H., Lundgren, P.,  
607 Bleriot, C., Liu, Z., Deczkowska, A., et al. (2019). Lipid-Associated Macrophages Control  
608 Metabolic Homeostasis in a Trem2-Dependent Manner. *Cell* 178, 686-698.e14.

609 33. Morse, C., Tabib, T., Sembrat, J., Buschur, K.L., Bittar, H.T., Valenzi, E., Jiang, Y., Kass,  
610 D.J., Gibson, K., Chen, W., et al. (2019). Proliferating SPP1/MERTK-expressing  
611 macrophages in idiopathic pulmonary fibrosis. *Eur. Respir. J.* 54. 10.1183/13993003.02441-  
612 2018.

613 34. Mulder, K., Patel, A.A., Kong, W.T., Piot, C., Halitzki, E., Dunsmore, G., Khalilnezhad, S.,  
614 Irac, S.E., Dubuisson, A., Chevrier, M., et al. (2021). Cross-tissue single-cell landscape of  
615 human monocytes and macrophages in health and disease. *Immunity* 54, 1883-1900.e5.

616 35. Ramachandran, P., Dobie, R., Wilson-Kanamori, J.R., Dora, E.F., Henderson, B.E.P., Luu,  
617 N.T., Portman, J.R., Matchett, K.P., Brice, M., Marwick, J.A., et al. (2019). Resolving the  
618 fibrotic niche of human liver cirrhosis at single-cell level. *Nature* 575, 512–518.

619 36. Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S.,  
620 Fernandez, R., Akbarpour, M., Chen, C.-I., Ren, Z., et al. (2019). Single-Cell Transcriptomic  
621 Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. *Am.  
622 J. Respir. Crit. Care Med.* 199, 1517–1536.

623 37. Wendisch, D., Dietrich, O., Mari, T., von Stillfried, S., Ibarra, I.L., Mittermaier, M., Mache,  
624 C., Chua, R.L., Knoll, R., Timm, S., et al. (2021). SARS-CoV-2 infection triggers profibrotic  
625 macrophage responses and lung fibrosis. *Cell* 184, 6243-6261.e27.

626 38. Gao, X., Jia, G., Guttman, A., DePianto, D.J., Morshead, K.B., Sun, K.-H., Ramamoorthi, N.,  
627 Vander Heiden, J.A., Modrusan, Z., Wolters, P.J., et al. (2020). Osteopontin Links Myeloid  
628 Activation and Disease Progression in Systemic Sclerosis. *Cell Reports Medicine* 1, 100140.

629 39. Mirizio, E., Tabib, T., Wang, X., Chen, W., Liu, C., Lafyatis, R., Jacobe, H., and Torok, K.S.  
630 (2020). Single-cell transcriptome conservation in a comparative analysis of fresh and  
631 cryopreserved human skin tissue: pilot in localized scleroderma. *Arthritis Res. Ther.* 22, 263.

632 40. Lin, W., Noel, P., Borazanci, E.H., Lee, J., Amini, A., Han, I.W., Heo, J.S., Jameson, G.S.,  
633 Fraser, C., Steinbach, M., et al. (2020). Single-cell transcriptome analysis of tumor and  
634 stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic  
635 lesions. *Genome Med.* 12, 80.

636 41. Kemp, S.B., Steele, N.G., Carpenter, E.S., Donahue, K.L., Bushnell, G.G., Morris, A.H., The,  
637 S., Orbach, S.M., Sirihorachai, V.R., Nwosu, Z.C., et al. (2021). Pancreatic cancer is marked  
638 by complement-high blood monocytes and tumor-associated macrophages. *Life Science  
639 Alliance* 4, e202000935.

640 42. Bhattacharya, M. (2022). Insights from Transcriptomics: CD163+ Profibrotic Lung  
641 Macrophages in COVID-19. *Am. J. Respir. Cell Mol. Biol.* 67, 520–527.

642 43. Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional Profiling  
643 of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules  
644 and Patterns of Gene Expression1. *The Journal of Immunology* 177, 7303–7311.

645 44. Salahudeen, A.A., Choi, S.S., Rustagi, A., Zhu, J., van Unen, V., de la O, S.M., Flynn, R.A.,  
646 Margalef-Català, M., Santos, A.J.M., Ju, J., et al. (2020). Progenitor identification and SARS-  
647 CoV-2 infection in human distal lung organoids. *Nature* 588, 670–675.

648 45. Duy, C., Li, M., Teater, M., Meydan, C., Garrett-Bakelman, F.E., Lee, T.C., Chin, C.R.,  
649 Durmaz, C., Kawabata, K.C., Dhimolea, E., et al. (2021). Chemotherapy Induces Senescence-  
650 Like Resilient Cells Capable of Initiating AML Recurrence. *Cancer Discov.* 11, 1542–1561.

651 46. Karagiannis, T.T., Cleary, J.P., Gok, B., Henderson, A.J., Martin, N.G., Yajima, M., Nelson,  
652 E.C., and Cheng, C.S. (2020). Single cell transcriptomics reveals opioid usage evokes  
653 widespread suppression of antiviral gene program. *Nat. Commun.* 11, 2611.

654 47. Xu, Y., Zeng, X., Zhang, M., Wang, B., Guo, X., Shan, W., Cai, S., Luo, Q., Li, H., Li, X., et  
655 al. (2022). Efficient expansion of rare human circulating hematopoietic stem/progenitor cells  
656 in steady-state blood using a polypeptide-forming 3D culture. *Protein Cell.* 10.1007/s13238-  
657 021-00900-4.

658 48. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B.,  
659 Campbell, P., Carninci, P., Clatworthy, M., et al. (2017). The Human Cell Atlas. *Elife* 6,  
660 e27041.

661 49. Liou, G.-Y. (2017). Inflammatory Cytokine Signaling during Development of Pancreatic and  
662 Prostate Cancers. *J Immunol Res* 2017, 7979637.

## Methods

### SCimilarity model architecture and loss function

#### Model architecture

The SCimilarity model consists of one fully connected encoder and one decoder stage and reuses the same encoding network three times per training triplet, such that updates to the model after each batch are shared equally for each subsequent batch of training triplets. The decoder stage is not part of the conventional triplet loss architecture, but is included to compute a mean squared error (MSE) reconstruction loss.

Expression profiles are reduced through an encoder network, starting from 28,231 genes through three hidden layers with dimensions 1,024, 1,024, and 128. The 128-dimensional outputs are unit length normalized, forcing all low dimensional cell representations to lie on the surface of a hypersphere. During training, the input layer is subjected to 40% dropout, zeroing out many gene expression values at random, and each hidden layer is subjected to 50% dropout rates for maximum regularization <sup>1</sup>.

While hyperspheric spaces have been infrequently used for representation of single-cell profiles <sup>2</sup>, the triplet loss model often uses hypersphere embeddings to ensure consistency between the model hyperparameters <sup>3</sup>. During triplet loss training, the objective is to place cells of different types sufficiently far apart. The minimum desired distance between cells of different types is called the margin. By fixing the volume of the embedding space to the surface of a unit length

64-dimensional hypersphere, the margin is interpreted consistently between model runs. Without normalization, cells can be placed up to an infinite distance apart, rendering the margin meaningless.

### Triplet loss training

To learn features that place data points considered similar near each other, the loss function depends on distances between data points embedded in a learned low dimensional latent space, described with:

$$d(x, y) = \left\| f(x) - f(y) \right\|_2^2$$

where  $x$  and  $y$  are two high dimensional vectors (here, cell profiles), passed through a neural network encoder  $f()$ .

The triplet loss model learns from three vectors at a time: the anchor ( $x_i^a$ ), positive ( $x_i^p$ ) and negative ( $x_i^n$ ). The anchor and positive vectors are considered similar, whereas the anchor and negative are dissimilar.

The model parameters are iteratively updated to decrease the number of triplets where the distance between the anchor and negative data vectors is insufficiently large relative to the distance between the anchor and the positive points, thus minimizing the triplet loss function:

$$L_{triplet} = \frac{\sum_i^N \max\left(d(x_i^a, x_i^p) - d(x_i^a, x_i^n) + \alpha, 0\right)}{N}$$

where  $\alpha$  is the margin, which denotes how much further the negatives should be from the anchor than the positives, and  $i$  is the index of the triplet.

## Reconstruction loss training

The reconstruction loss is computed on the anchor cell only, because each anchor cell is used only once as an anchor within a batch. The reconstruction loss is defined as:

$$L_{MSE} = \frac{\sum_i^N \left\| x_i^a - g(f(x_i^a)) \right\|_2^2}{N}$$

where  $N$  is the number of anchor cells in a batch, set to  $N=1000$  in SCimilarity, and  $g()$  is the function learned by the neural network decoder stage.

## Combined loss function

Adding a reconstruction loss to classification models has been shown to improve generalization <sup>4</sup> through a regularization effect. The SCimilarity loss function combines the triplet loss and reconstruction loss functions as follows:

$$L = (1 - \beta) * L_{MSE} + \beta * L_{triplet}$$

where  $\beta$  is a weighting term in  $[0, 1]$ .  $\beta = 0$  corresponds to a conventional autoencoder, and  $\beta = 1$  corresponds to a pure triplet loss model. Empirically,  $\beta = 0.001$  performed best on the cell search task (query model) and  $\beta = 1$  performed best on batch integration (integration model) (**Extended Data Fig. 2a**).

## Use of Cell Ontology terms and relationships

Authors may annotate cell types at different granularities, which confounds triplet sampling by introducing cell type annotations with hierarchical relationships that cannot be unambiguously defined as either similar or dissimilar. As such, cell type annotations used for training are defined using standardized Cell Ontology terms and valid triplets are restricted to cells without vertical

Cell Ontology relationships between members of the triplet. A vertical relationship is defined as any directed path of one or more ancestor-descendant relationships in the Cell Ontology network. Thus, there are three binary relations defined for annotation: (1) similar pairs with identical annotations (e.g., “T cell” and “T cell”), (2) dissimilar pairs with non-vertical ontology relationships (e.g., “CD4-positive, alpha-beta T cell” and “CD8-positive, alpha-beta T cell”), and (3) ambiguous pairs with vertical relationships (e.g., “T cell” and “CD4-positive, alpha-beta T cell”). Positives are drawn from cells similar to the anchor, negatives are drawn from cells dissimilar to the anchor, and cells that are ambiguous to the anchor are excluded from sampling.

## **GEO data aggregation**

334 human scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO)<sup>5</sup>. Multiple filtering steps were used to restrict the datasets analyzed to samples from human tissue, that were generated using the 10x Chromium platform, and which reported unnormalized gene count data that could be automatically processed. To select appropriate datasets, search criteria were designed for the Biopython Entrez search tool (Cock et al., 2019) to find GEO studies that had specific properties, such as metadata keywords, file formats, and species. Then, using GEOparse<sup>6</sup>, the GEO text metadata was downloaded for each sample and searched for blacklisted words in the metadata or download URLs (e.g., “smartseq”, “trizol”, and “fasta”) to further filter out samples that were not generated using 10x Chromium. Data for samples and corresponding download links that passed the metadata filter stage were automatically downloaded. No datasets were realigned. 753 studies were identified for download. A set of import functions was designed for the most common file type formats (.mtx, .h5ad, and gene

expression matrices in .tsv or .csv). Any dataset that could not be successfully downloaded or read in was discarded. Once read in, each sample was automatically tested for count data and gene names that match a reference gene list or gene name mapper before saving each file in a uniform h5ad format for later processing. This resulted in a total of 334 published studies that were not duplicates of studies found in CELLxGENE<sup>7</sup> for use in our analysis.

## **Data preprocessing**

All UMI count data were natural log normalized per-cell with a scaling factor of 10,000 using the `scanpy.pp.normalize_to_target(adata, 10000)` and `scanpy.pp.log1p(adata)` functions from scanpy<sup>8</sup>.

## **Manual data aggregation, normalization and filtering**

Datasets with author-provided cell type annotations used for training were obtained from Tabula Sapiens<sup>9</sup>, 10x Genomics<sup>10</sup>, the single nucleus cross-tissue atlas<sup>11</sup>, and the human lung cell atlas<sup>12</sup> and subjected to the same preprocessing procedures as programmatically-downloaded datasets. Cell type annotations were manually converted into terms contained within the Cell Ontology. Cells that with annotations that did not clearly map to the Cell Ontology were not included in training.

Cell profiles previously annotated as doublets, scored as doublets by `infer_doublets` from Pegasus<sup>13</sup>, had >20% total UMI counts aligned to mitochondrial genes, or had <500 total genes detected were removed.

## **Preparation of training and test data**

Training and test sets were chosen such that entire studies were held out of training (rather than holding out a subset of cells from each dataset) (**Extended Data Table 1**); there were 52 and 14 datasets in the training and test sets, respectively. This presents a harder generalization challenge and reflects how users are likely to use SCimilarity. Test datasets were selected to reflect the tissue diversity within the training sets.

### **Selection of Cell Ontology terms for training**

Cell Ontology terms were selected for training if they were observed in at least two separate studies in the training set. Terms that appeared in only one study were not used because SCimilarity is trained by comparing cells across studies. To rescue single-study terms, the immediate parent terms were inspected across studies. If a single-study term's parent was observed in at least two other datasets then the original cell type annotation was replaced with the coarser parent term (**Extended Data Table 1**). Otherwise, all cells with this annotation were removed from training. As the size or annotation quality of training data grows, the number of Cell Ontology terms meeting the inclusion criteria are expected to increase.

### **Triplet sampling and semi-hard triplet mining**

During training, batches of 1,024 cells are sampled from the training datasets. This sampling is weighted by study and cell type to have a similar number of observations per cell type from each study per batch.

Because of the *maximum* operation within the loss function, not all viable triplets contribute to the gradient, and are categorized as easy, semi-hard or hard, based on their contribution to the gradient.

Easy negatives are defined as:

$$\left\| f(x_i^a) - f(x_i^p) \right\|_2^2 < \left\| f(x_i^a) - f(x_i^n) \right\|_2^2 + \alpha$$

Easy negatives provide no information to the gradient because the distances between the cells in the low dimensional embedding already satisfy the objective, such that the *maximum* operation returns 0 to the triplet loss sum. Because there are many easy triplets after training a small number of batches, randomly sampling triplets does not train models effectively. To accelerate training, triplets are mined to search for training triplets that are especially informative for model training<sup>3</sup>.

Hard negatives are defined as:

$$\left\| f(x_i^a) - f(x_i^p) \right\|_2^2 > \left\| f(x_i^a) - f(x_i^n) \right\|_2^2 + \alpha$$

Hard negatives contribute the largest quantity to the loss function, because they do not fit and are far from fitting the desired latent relationships. In practice, hard triplets are rarely useful for training, because they contribute to model collapse during training<sup>3,14</sup>. Hard negatives may be enriched for incorrectly annotated cells.

Semi-hard negatives are defined as:

$$\left\| f(x_i^a) - f(x_i^n) \right\|_2^2 - \left\| f(x_i^a) - f(x_i^p) \right\|_2^2 < \alpha$$

Semi-hard negatives contribute small amounts to the loss function because they nearly satisfy the desired distances between cells in low dimensional space. Meaning, the negative cell profile is further from the anchor cell than the positive cell, but by a less than desired distance  $\alpha$ . Semihard negatives are often used in triplet loss models<sup>3</sup>.

Overall, we chose to train SCimilarity using only semi-hard negative triplets.

### Explainability framework and marker gene identification

An explainability framework was used to identify genes whose variation leads to the most significant variations of the learned features and, in turn, affects the relative distance between different cells.

An explanation for a pair of cells is defined as those genes which have the greatest impact on the relative distance between those cells in latent space. Given  $d(x, y) = \|\mathbf{f}(x) - \mathbf{f}(y)\|_2^2$ , the distance between two cell profiles  $x$  and  $y$  in latent space  $f$ , the integrated gradient approach ([Sundararajan et al. 2017](#)) was extended to compute the importance of each gene  $i$  in the comparison between cell profiles  $x$  and  $y$  as:

$$\text{Importance}_i(x) = \left| \max((x_i - y_i, 0) \times \int_{\alpha=0}^1 \frac{\partial d(y + \alpha \times (x - y), y)}{\partial x_i} \right|$$

High values of  $\text{Importance}_i(x)$  correspond to genes that are highly expressed in  $x$ , and their modification (i.e., gradient) affects  $d(x, y)$  more. Intuitively, the expression of each gene in  $y$  is gradually increased to match  $x$  along the trajectory from  $x$  to  $y$ . Through this trajectory, the rate

of change of  $d(x, y)$  is computed for each gene, aggregating the results. The score is scaled by  $(x_i - y_i)$ . In order to identify genes that are up regulated in a subset of interest, genes  $i$  with expression  $x_i < y_i$  are ignored.

This approach differs in several key ways from the standard integrated gradient approach, because: (1) gradients are computed with respect to a learned distance instead of output features, (2) attributions where  $x_i < y_i$  are ignored and (3) the sign of the integral is ignored due to the complex interactions between features.

To identify important genes for a cell type  $t$ , a set of cells  $T \in \{t_1, \dots, t_N\}$  with cell type  $t$  and a set of cells  $B \in \{b_1, \dots, b_N\}$  with cell types different from  $t$  are randomly sampled. Pairwise importances are computed for each pair of cells  $t_i$  in  $T$  and  $b_j$  in  $B$  and aggregated to obtain a signature that characterizes cell type  $t$  as:

$$\text{Signature}_i(t) = \frac{1}{N} \sum_{c=1}^N \text{Importance}_i(t_c, b_c)$$

Since the pairwise comparisons are averaging relative comparisons, the sampling of  $\{b_1, \dots, b_N\}$  impacts the signature scoring. To obtain general cell type markers, a background of all cell types is sampled. To obtain a cell state specific signature, a background of cells in other states of the same type are sampled. Confidence intervals for each gene  $i$  are computed as the standard error of the mean. This results in an attribution score for each gene.

## Training and evaluation metrics

### SCimilarity score

The SCimilarity score is defined as the inverse of the cosine distance of two embedded cell profiles:

$$SCimilarity score = \frac{1}{1 - c_i \cdot c_j}$$

where  $c_i$  and  $c_j$  are the embeddings of the  $i^{\text{th}}$  and  $j^{\text{th}}$  cell profiles with unit length, respectively and  $i \neq j$ . The threshold for similarity varies in practice by question and cell types.

### Ontology-aware modified average silhouette width

Average silhouette width (ASW) has been used to assess the performance of data integration tasks on multiple scRNA-seq studies<sup>15</sup> by quantifying how coherently grouped each cell type is across studies. The silhouette width of cell profile  $i$  of cell type  $t$  typically compares the average intra-cell type distances  $a(i)$  and the average inter-cell type distances  $b(i)$  between cells of type  $t$  and cells of the nearest cell type, defined as:

$$a(i) = \frac{1}{|C_t|-1} \sum_{j \in C_t, i \neq j} d(i, j)$$

$$b(i) = \min_{J \neq t} \frac{1}{|C_J|-1} \sum_{j \in C_J} d(i, j)$$

where, typically,  $C_t$  is the set of cells of author-annotated type  $t$  and  $C_J$  are the cells of all other cell types.

However, the ASW as typically formulated does not account for differences in granularity of cell type annotations across studies. To address those, a modified formulation is used where  $C_I$  contains cell type label  $t$  and all of its ontological descendants and  $C_J$  is the set of all other cell types, except cells of type  $t$  and any of its ontological descendants or ancestors. For example, if computing  $a(i)$  for a T cell, distances between all types of T cell terms (“CD4-positive”, “alpha-beta T cell”, “CD8-positive”, “alpha-beta T cell and CD4-positive”, “CD25-positive”, “alpha-beta regulatory T cell”, etc) are members of the “T cell” term. Ancestor terms of T cells, such as the term “Lymphocytes”, are not members of the T cell class (nor a T cell subset) but are excluded from the summation indices in the calculations of  $a(i)$  and  $b(i)$ .

### Correlation to predefined gene signatures

To test how the SCimilarity distance represents distance between predefined cell states, a signature-based definition of cell state was correlated with the SCimilarity score (above).

For each cell in the test set, both the signature score<sup>16</sup> and a SCimilarity score *vs.* the cell query are calculated, yielding two vectors, and Pearson’s correlation coefficient is calculated between the vectors.

### Selection of models for downstream analysis

Models were run in triplicate along 6 different  $\beta$  parameters ranging from [0,1] and one query model and one integration model were selected based on two criteria. First, query performance was tested by how well cell similarities to a query FMΦ profile correlated with a signature defining that same state (*TREM2*, *GPNMB*, *SPPI*, *CCL18*, *MMP9*, *CTSK*, *APOE*, *CHIT1*, *LIPA*,

*CHI3L1, CD14, APOC1*). Second, ontology aware ASW was used to quantify how well the cells of the same type from different studies intermixed in SCimilarity's representation. The query model was selected as the model with the highest query test performance. The integration model was selected from the  $\beta=1$  models. Since the three replicates had nearly identical integration scores, we picked the model with the highest query test score as it performed much better on the query task than the other high integration models. (**Extended Data Fig. 2a**). The selected integration model had more study mixing than the query model according to the study (NMI) and study adjusted rand index (ARI)<sup>15</sup>.

### Benchmarking vs. integration methods

SCimilarity's integration and cell search models were each compared to three batch integration methods: Harmony<sup>17</sup>, scVI<sup>18</sup>, and scArches<sup>19</sup>. A test dataset of 34,713 cells was created by sampling cells from lung tissue studies with uniform probability across studies. The modified ASW (above), adjusted Rand index (ARI) and normalized mutual information (NMI) were calculated as integration benchmark metrics. Harmony was run using the wrapper in Pegasus<sup>13</sup> following the workflow described in [https://pegasus-tutorials.readthedocs.io/en/latest/\\_static/tutorials/batch\\_correction.html](https://pegasus-tutorials.readthedocs.io/en/latest/_static/tutorials/batch_correction.html). scVI and scArches were run using the scvi-tools workflow described in <https://docs.scvi-tools.org/en/stable/tutorials/notebooks/harmonization.html> and [https://docs.scvi-tools.org/en/stable/tutorials/notebooks/searches\\_scvi\\_tools.html](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/searches_scvi_tools.html), respectively. As the scArches workflow requires a reference dataset, 101,133 cell profiles were sampled across all training datasets with uniform probability across studies for use as the reference.

## Cell type annotation

Cell type assignments were performed by  $k$ -nearest neighbors ( $k$ -NN) classification combined with an annotated reference set. SCimilarity's reduced dimensionality latent space was used to determine  $k=50$  nearest neighbors in the reference data set to a query cell  $t$ , and the query cell was annotated either by tallying votes based each cell's annotation with either equal weights,

$$\text{Celltype}(t) = \arg \max_t \left( \sum_{i \in t} \frac{1}{n} \right)$$

or with weights by distance in SCimilarity's reduced dimensionality latent space:

$$\text{Celltype}(t) = \arg \max_t \left( \sum_{y \in t} \frac{1}{d(x,y)} \right)$$

To allow users to annotate new datasets from a restricted list of cell types of interest, excluding (blocklisting) or limiting to (safelisting) specified cell type annotations is used, and is recommended when feasible to improve interpretability and reduce spurious annotations. However, extensive blocklisting or safelisting can slow the annotation process significantly, because the pre-built  $k$ -NN indices are not optimized for a modified target cell type list.

## $k$ NN parameters for annotation and querying

Two separate  $k$ NN indices were used for efficient and accurate queries. For cell type annotation, a 7.9M cell  $k$ -NN index was built using hnswlib<sup>20</sup> with ef\_construction = 1000 and M = 80. Searching this  $k$ -NN found the 50 nearest neighbors (default behavior) for cell type annotation ( $k=50$ ) and ef=100.

Cell query relied on a separate 22.7M cell  $k$ -NN index also built using hnswlib. This index was constructed with the following parameters: `ef_construction=400` and `M=50`. The search parameters are set by the user's request for how many similar cells to return. Default behavior is set to  $k=1000$  and  $ef=k$ , but in practice  $k$  can vary widely depending on the use case.

## Outlier filtering

To filter outlier cells prior to visualization and downstream analysis, SCimilarity's score is used to flag cells that are out of distribution. Cells with a SCimilarity score  $< 50$  from the nearest cell in the training set were removed prior to further analysis. Many of these cells were from immortalized cell lines, and reflect their difference from primary cells (and absence in the training). Note that if out of distribution cells are not removed, these cells won't be accurately annotated and can confound visualization.

## Macrophage query preprocessing

To prepare a cell query for FMΦ cells, a public dataset<sup>21</sup> (GSE136831 and <https://www.ipfcellatlas.com>) was preprocessed with the same steps for all ingested data and scored use Scanpy's `scanpy.tl.score_genes` function with a gene signature of *SPP1*, *TREM2*, *GPNMB*, *MMP9*, *CHIT1*, and *CHI3L1* Scanpy<sup>8</sup>. The average profile of the top 50 scoring cell was embedded using SCimilarity and used as the input query to SCimilarity's cell search model and used throughout analyses in **Fig. 5** and **6**.

## Important genes and pathway enrichment

Important genes were identified using SCimilarity's attribution score method. This method requires two cell groups to compare, identifying which genes differ between them. Here we used 1,000 cells that were considered similar to the average FMΦ profile calculated from Adams et al. as the FMΦ-like group. This query excluded any cells from the Adams et al. dataset. To compare to the FMΦ-like group comparison, 1,000 dissimilar monocytes and macrophages were randomly sampled (any monocyte or macrophage that was not within the top 10,000 most FMΦ similar results).

Reactome pathways enriched for the 100 genes with the top importance scores for FMΦ were determined using the method provided in the ReactomePA<sup>22</sup> R package, with multiple hypothesis correction using the Benjamini-Hochberg method and the background gene universe restricted to the ~28,000 genes included in SCimilarity. Pathways were considered significant if they met the criteria of adjusted p-value (Q)  $\leq 0.05$  and gene count  $\geq 5$ .

## 3DCS culture of PBMC

Peripheral blood was sourced from healthy volunteers at Genentech that were consented as per IRB. Samples were collected in heparin collection tubes and subsequently diluted 1:1 with a solution of PBS containing 2% FBS and 1mM EDTA. 30 ml of diluted blood was overlayed onto 15 ml of Lymphoprep (STEMCELL Technologies) in a 50ml tube and centrifuged at 3,000 rpm for 20 minutes at 4°C. PBMCs were isolated from the interphase after centrifugation and diluted

with PBS containing 2% FBS and 1 mM EDTA and centrifuged at 300 x g for 10 minutes at 4°C. Cell pellet was washed again with PBS containing 2% FBS and 1mM EDTA. Red blood cell lysis was performed on the cell pellet by resuspending in RBC Lysis Buffer (Cell Signaling Technology) for 5 minutes at room temperature, followed by inactivation with addition of RPMI media containing 10% FBS. Cells were pelleted by centrifugation at 300 x g for 10 minutes at 4°C and subsequently washed with PBS containing 2% FBS and 1 mM EDTA. Cells were then resuspended in a 10% sucrose solution at a concentration of 2 x 10<sup>6</sup> cells/ml right before plating into 3D hydrogel culture. Puramatrix hydrogel (Corning) was vortexed for 30 seconds and diluted 1:1 with a 20% sucrose solution. 250 µl of diluted Puramatrix hydrogel was mixed with 250 µl of resuspended PBMCs and plated in a 24-well tissue culture plate. To induce gelation, RPMI media was overlaid onto the hydrogel/PBMC mixture and incubated for 5 minutes in a 37°C incubator with 5% CO<sub>2</sub>. Overlayed media was aspirated off of the 3D hydrogel and washed twice with RPMI media, after which 600 µl of 3DCS media, formulated as previously described (Xu, Y. et al., Protein & Cell 2022, 13:808-824) was overlaid onto the hydrogel. Cells were cultured in a 37°C incubator with 5% CO<sub>2</sub> for 8 days, with media exchanges every other day. On day 8, culture cells were recovered from the 3D hydrogel for scRNA-seq.

### **Single cell RNA-Seq from 3DCS cultures**

Wells of 3D hydrogel culture were washed with PBS, followed by recovery of the hydrogel and cells by gentle pipetting in PBS buffer. This solution was centrifuged for 5 minutes at 750 x g and the hydrogel/PBMC pellet was resuspended in TrypLE solution (ThermoFisher Scientific) and incubated at 37°C for 10 minutes. RPMI media with 10% FBS was added and the solution was centrifuged for 5 minutes at 750 x g. The resultant pellet was washed twice with PBS to

remove hydrogel matrix debris. PBMCs were resuspended in PBS and passed through a 40  $\mu$ M filter, pelleted by centrifugation at 300 x g for 5 minutes, and resuspended in RPMI media with 10% FBS. The cell solution was subjected to FACS to isolate cells from any remaining hydrogel debris and recovered cells were concentrated to 1,000 cells/ $\mu$ l in RPMI media with 10% FBS for downstream profiling by scRNA-seq.

ScRNA-seq was performed using the Chromium Single Cell 3' Library and Gel bead kit v3 (10x Genomics), following manufacturer's user guide. Briefly, cell density and viability of single-cell suspension were determined by Vi-CELL XR cell counter (Beckman Coulter). Cell density was used to impute the volume of single cell suspension needed in the reverse transcription (RT) master mix, aiming to achieve ~10,000 cells per sample. cDNAs and libraries were prepared following the manufacturer's user guide (10x Genomics). Libraries were profiled by Bioanalyzer High Sensitivity DNA kit (Agilent Technologies) and quantified using Kapa Library Quantification Kit (Kapa Biosystems). Libraries were sequenced on a NovaSeq 6000 (Illumina) following the manufacturer's specifications with 28+90 bp paired-end reads at a depth of 101M mate-pair reads. Sequencing reads were aligned to the GENCODE 27 Basic gene model on the human genome assembly GRCh38 using Cell Ranger v6.0 (10x Genomics, Pleasanton, CA, USA).

Individual samples were genetically demultiplexing using the singularity container provided with Souporcell 2.0 <sup>23</sup>. No genotype information was provided to the pipeline. Since PBMCs were provided from 3 donors, a k of 3 was used to cluster the samples into 3 genotypes. These samples

were pre-processed consistently with the previously ingested samples and then embedded using SCimilarity to enable direct comparisons to Xu et al as well as the rest of the public datasets.

SCimilarity cell type classification was applied to both public and validation cells using SCimilarity with the following safelist: B cell, CD4-positive, alpha-beta T cell, CD8-positive, alpha-beta T cell, conventional dendritic cell, hematopoietic stem cell, macrophage, monocyte, natural killer cell, plasma cell, plasmacytoid dendritic cell.

### **Code performance benchmarking**

Benchmarks were run on servers with 8 Intel Xeon E5-2650 v4 CPUs with 2.20GHz cores and a total of 128 GB of RAM.

Query runtimes, using the pre-built approximate  $k$ -NN index<sup>20</sup> to find the top  $n$  most similar cells, had an average runtime of 50 milliseconds. Some API functions use the query and summarize the metadata within one function call. That function timing is dominated by summarizing metadata and computing statistics from the query results, which requires an additional 3.3 seconds. This performance differs from an exhaustive comparison (**Fig. 5b**), where the query was directly compared against 2.58M monocytes and macrophages with a runtime of 2 seconds.

Cell signatures were calculated using `scanpy.tl.score_genes`. The `scanpy score_genes` function was applied to the already normalized data. This runtime totalled 2 hours, 46 minutes and 20

seconds when it was applied across each h5ad file (one file per tissue sample). Even though h5ad files were not stored with any compression, file reading was a dominant factor in runtime.

## Code availability

Code and tutorials are available at <https://github.com/Genentech/scimilarity>.

## Licensing

- Code license: Apache 2.0
- Pretrained model weights, kNN and pre-built indices license: CC-BY-SA 4.0

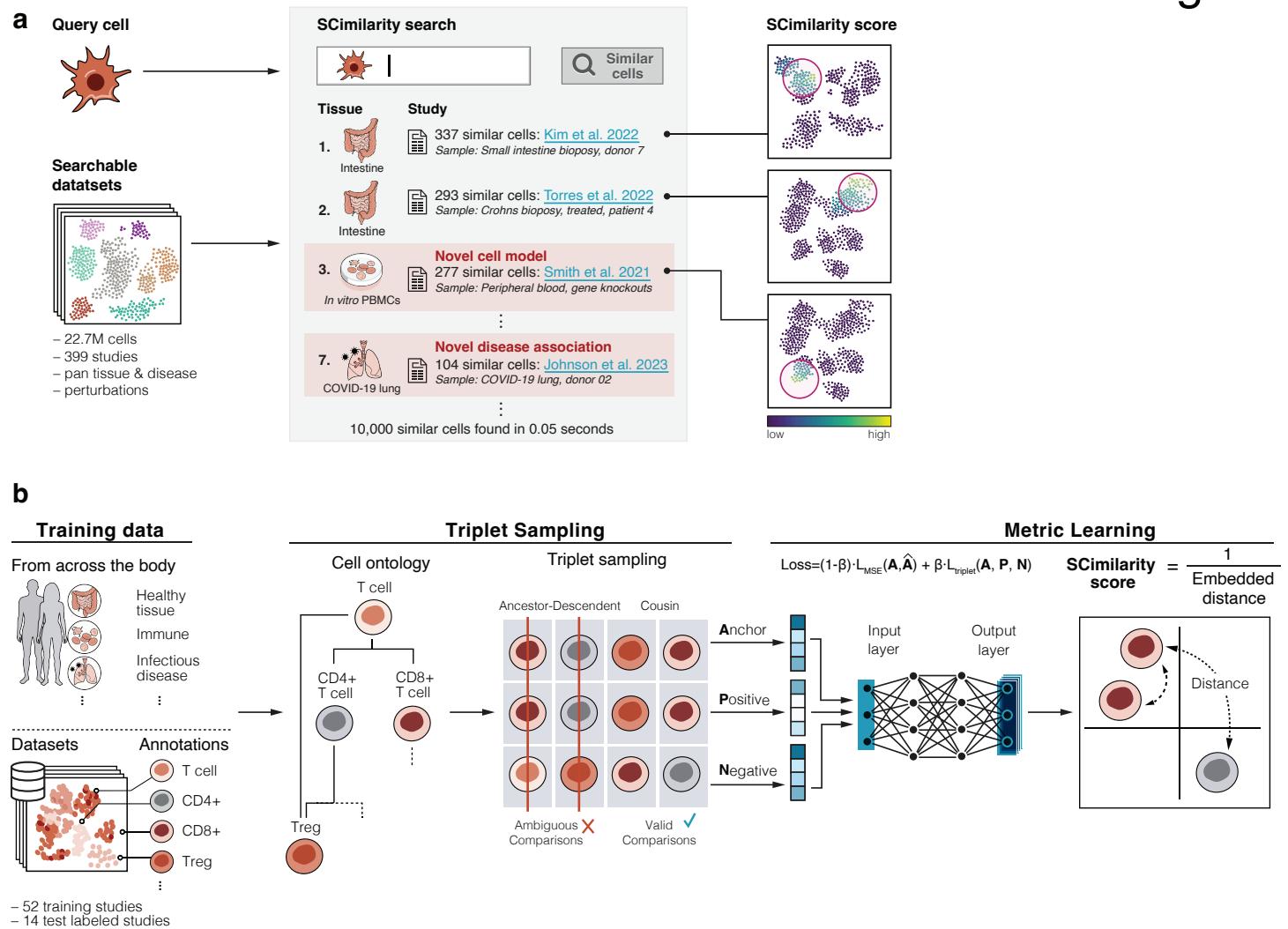
## References

1. Baldi, P., and Sadowski, P. (2013). Understanding dropout. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2 NIPS'13. (Curran Associates Inc.), pp. 2814–2822.
2. Ding, J., and Regev, A. (2021). Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. *Nat. Commun.* 12, 2554.
3. Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and Clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823.
4. Le, L., Patterson, A., and White, M. (2018). Supervised autoencoders: improving generalization performance with unsupervised regularizers. In Proceedings of the 32nd International Conference on Neural Information Processing Systems NIPS'18. (Curran Associates Inc.), pp. 107–117.
5. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. *Nucleic Acids Res.* 30, 207–210.

6. Gumienny, R. GEOParse: Python library to access Gene Expression Omnibus Database (GEO).
7. Chan Zuckerberg CELLxGENE Discover (2022). Cellxgene Data Portal.
8. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol.* 19, 15.
9. Tabula Sapiens Consortium\*, Jones, R.C., Karkanias, J., Krasnow, M.A., Pisco, A.O., Quake, S.R., Salzman, J., Yosef, N., Bulthaup, B., Brown, P., et al. (2022). The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. *Science* 376, eabl4896.
10. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.* 8, 14049.
11. Eraslan, G., Drokhlyansky, E., Anand, S., Fiskin, E., Subramanian, A., Slyper, M., Wang, J., Van Wittenberghe, N., Rouhana, J.M., Waldman, J., et al. (2022). Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. *Science* 376, eabl4290.
12. Travaglini, K.J., Nabhan, A.N., Penland, L., Sinha, R., Gillich, A., Sit, R.V., Chang, S., Conley, S.D., Mori, Y., Seita, J., et al. (2020). A molecular cell atlas of the human lung from single-cell RNA sequencing. *Nature* 587, 619–625.
13. Li, B., Gould, J., Yang, Y., Sarkizova, S., Tabaka, M., Ashenberg, O., Rosen, Y., Slyper, M., Kowalczyk, M.S., Villani, A.-C., et al. (2020). Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. *Nat. Methods* 17, 793–798.
14. Wu, C.-Y., Manmatha, R., Smola, A.J., and Krähenbühl, P. (2017). Sampling Matters in Deep Embedding Learning. *arXiv* [cs.CV].
15. Luecken, M.D., Büttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colomé-Tatché, M., et al. (2022). Benchmarking atlas-level data integration in single-cell genomics. *Nat. Methods* 19, 41–50.
16. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. *Nat. Biotechnol.* 33, 495–502.
17. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. *Nat. Methods* 16, 1289–1296.
18. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep generative modeling for single-cell transcriptomics. *Nat. Methods* 15, 1053–1058.

19. Lotfollahi, M., Naghipourfar, M., Luecken, M.D., Khajavi, M., Büttner, M., Wagenstetter, M., Avsec, Ž., Gayoso, A., Yosef, N., Interlandi, M., et al. (2022). Mapping single-cell data to reference atlases by transfer learning. *Nat. Biotechnol.* 40, 121–130.
20. Malkov, Y.A., and Yashunin, D.A. (2020). Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. *IEEE Trans. Pattern Anal. Mach. Intell.* 42, 824–836.
21. Adams, T.S., Schupp, J.C., Poli, S., Ayaub, E.A., Neumark, N., Ahangari, F., Chu, S.G., Raby, B.A., Deluliis, G., Januszyk, M., et al. (2020). Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. *Science Advances* 6, eaba1983.
22. Yu, G., and He, Q.-Y. (2016). ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. *Mol. Biosyst.* 12, 477–479.
23. Heaton, H., Talman, A.M., Knights, A., Imaz, M., Gaffney, D.J., Durbin, R., Hemberg, M., and Lawniczak, M.K.N. (2020). Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. *Nat. Methods* 17, 615–620.

# Figure 1



# Figure 2

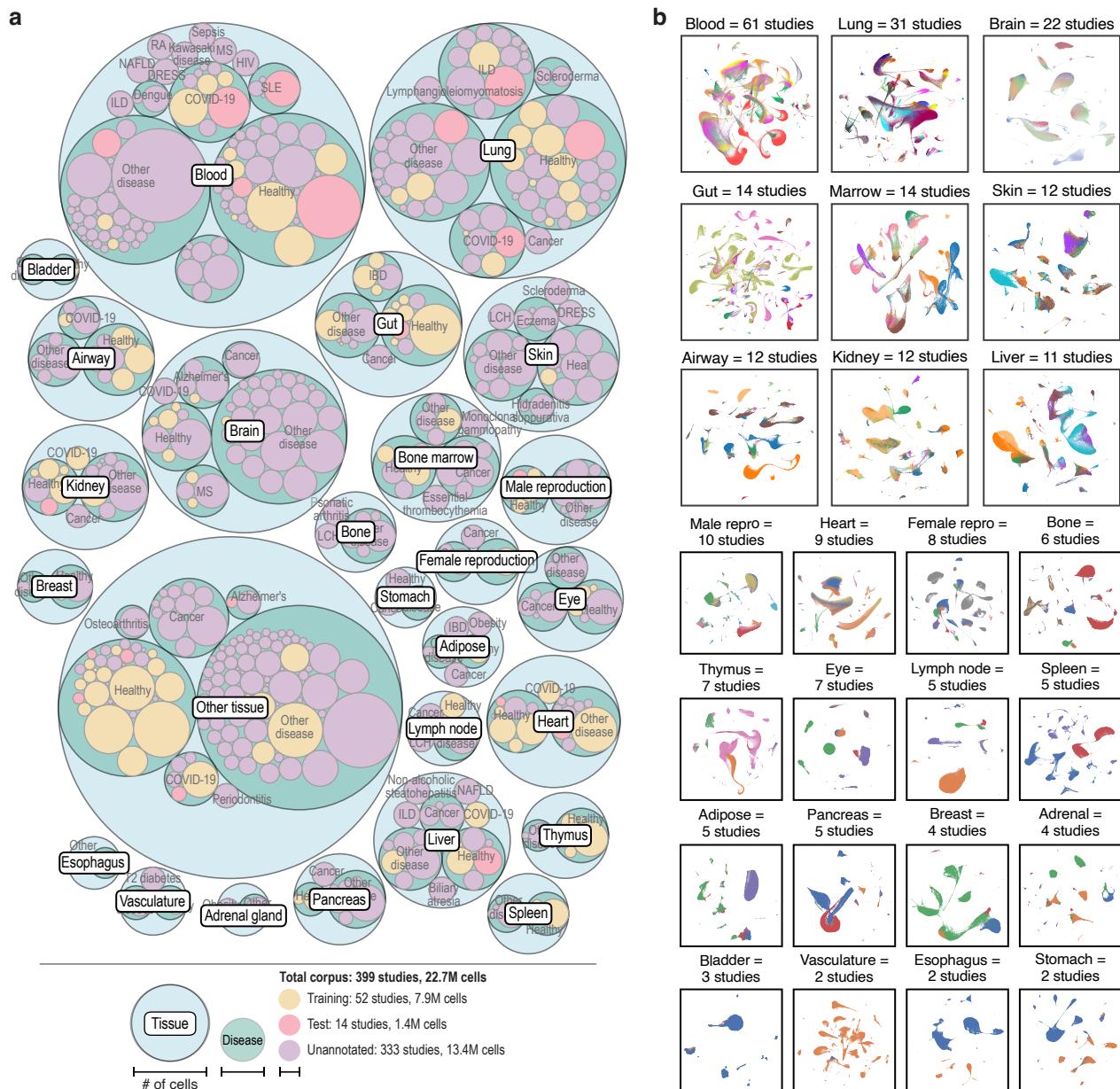
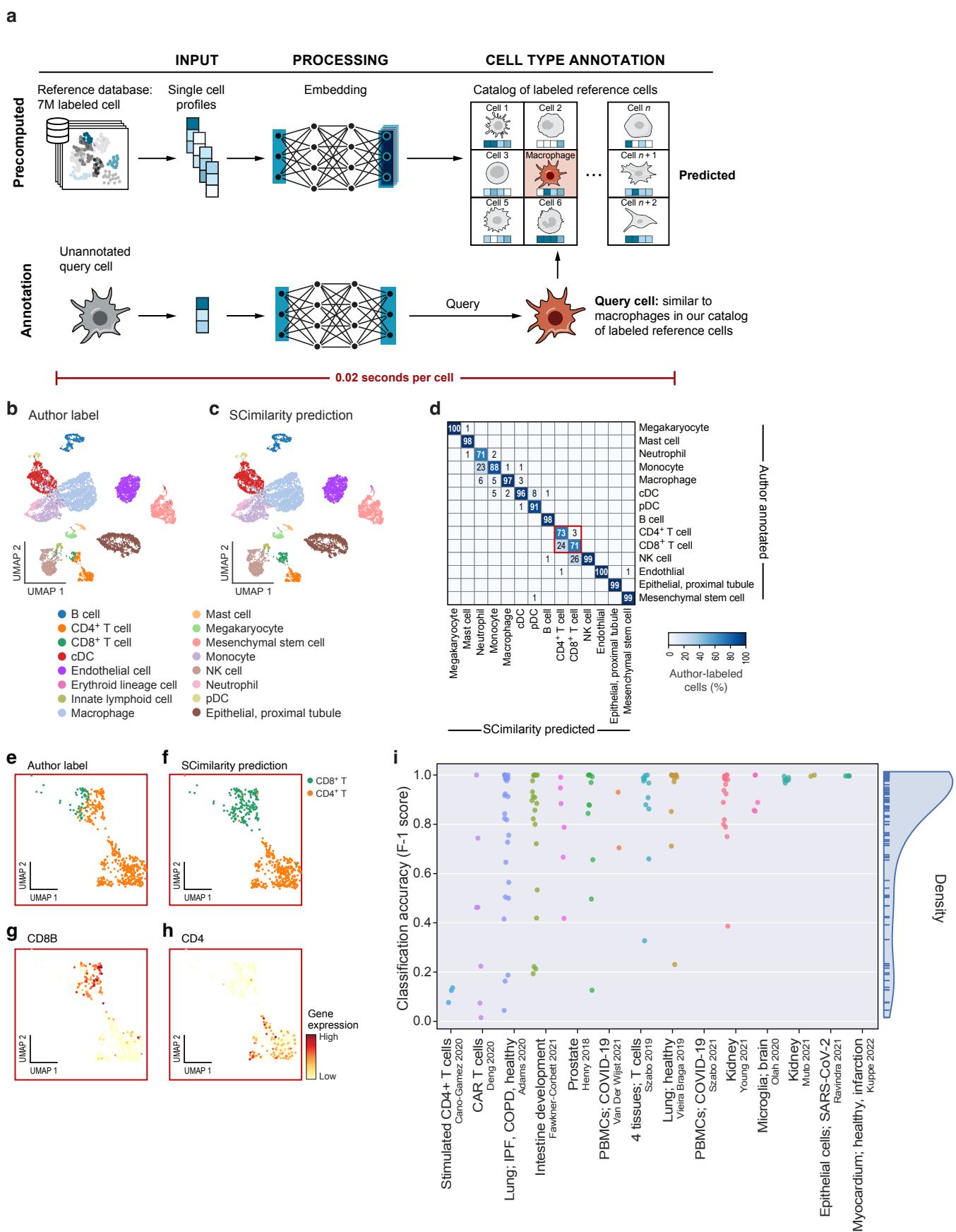
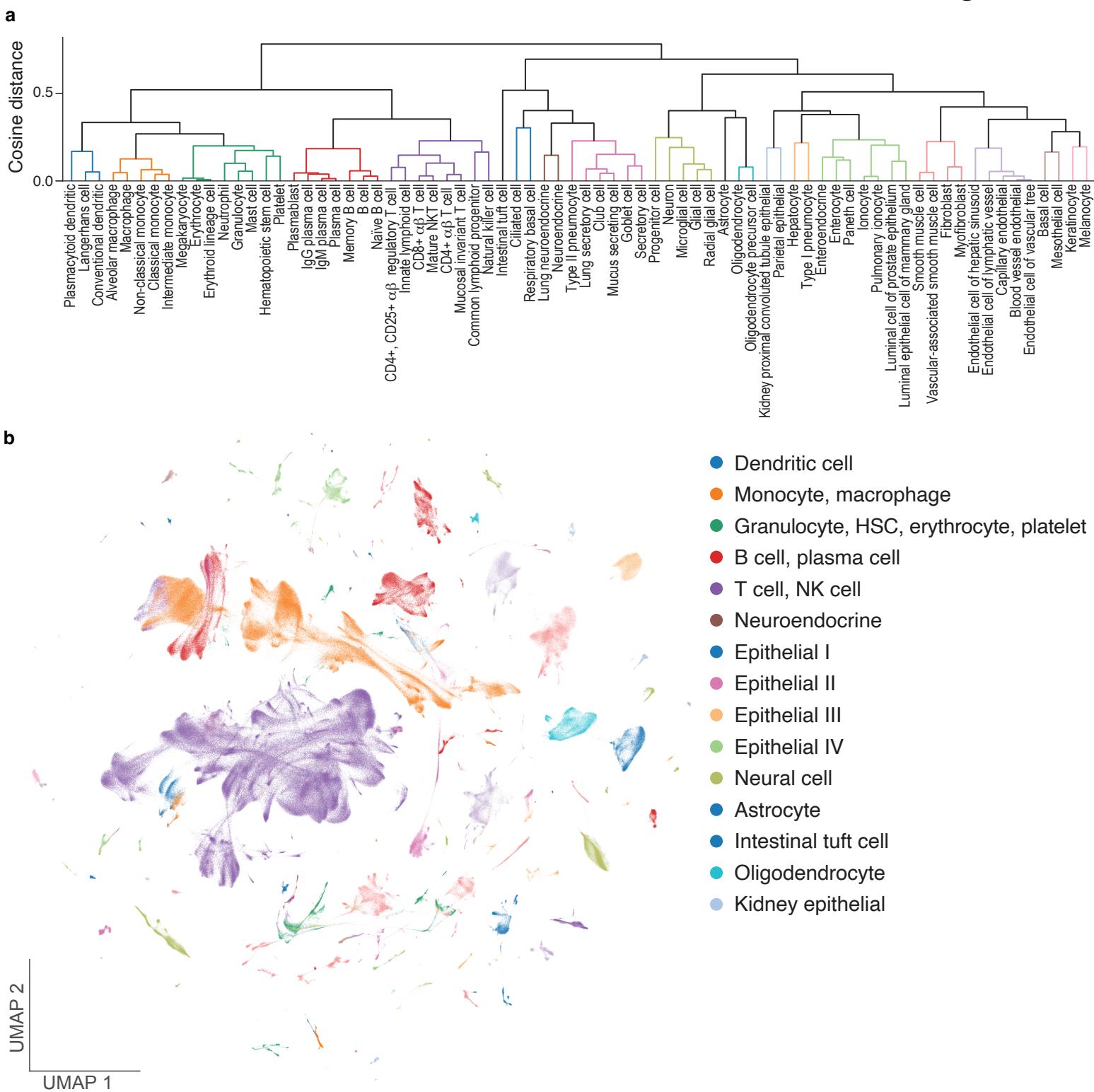


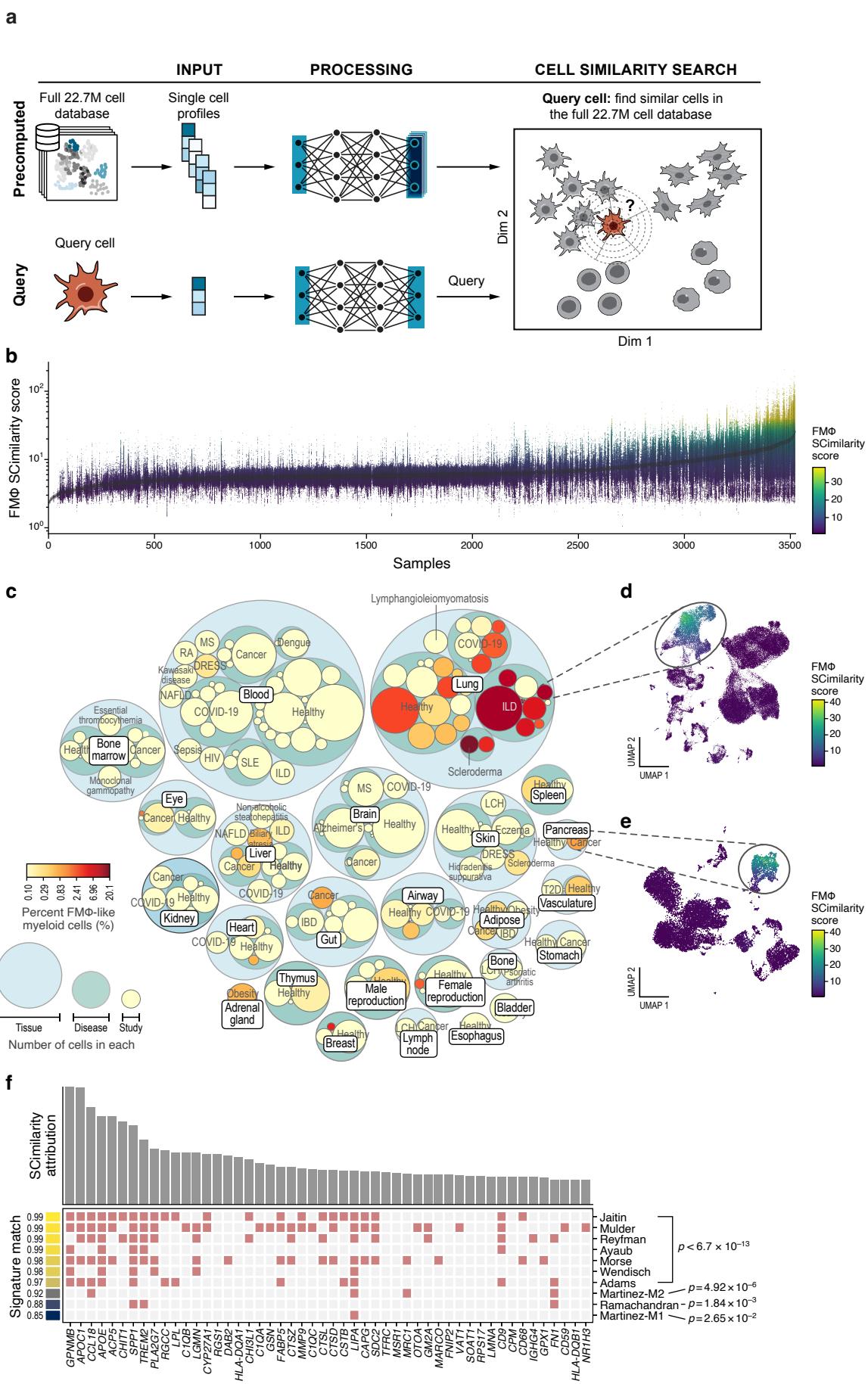
Figure 3



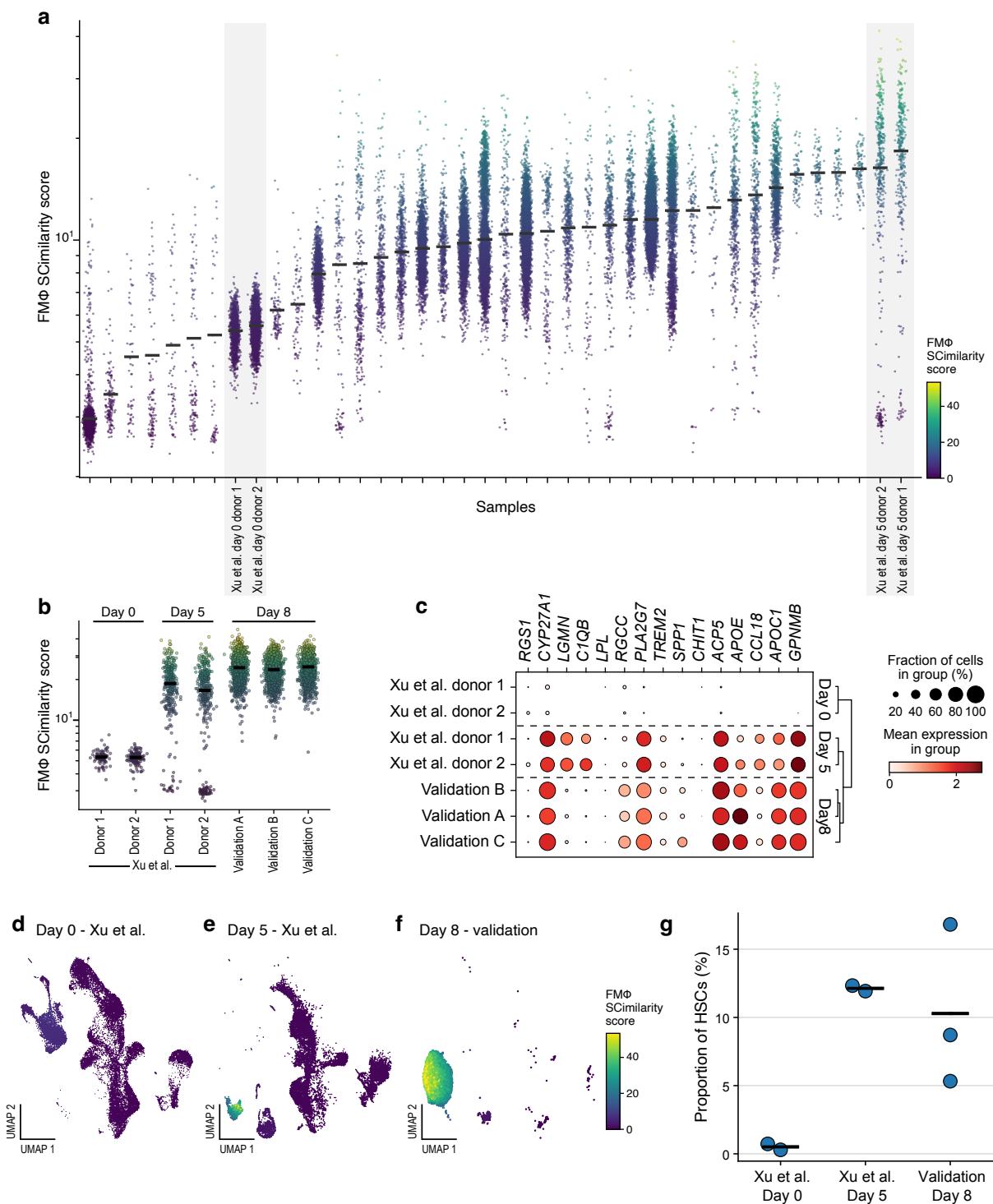
# Figure 4



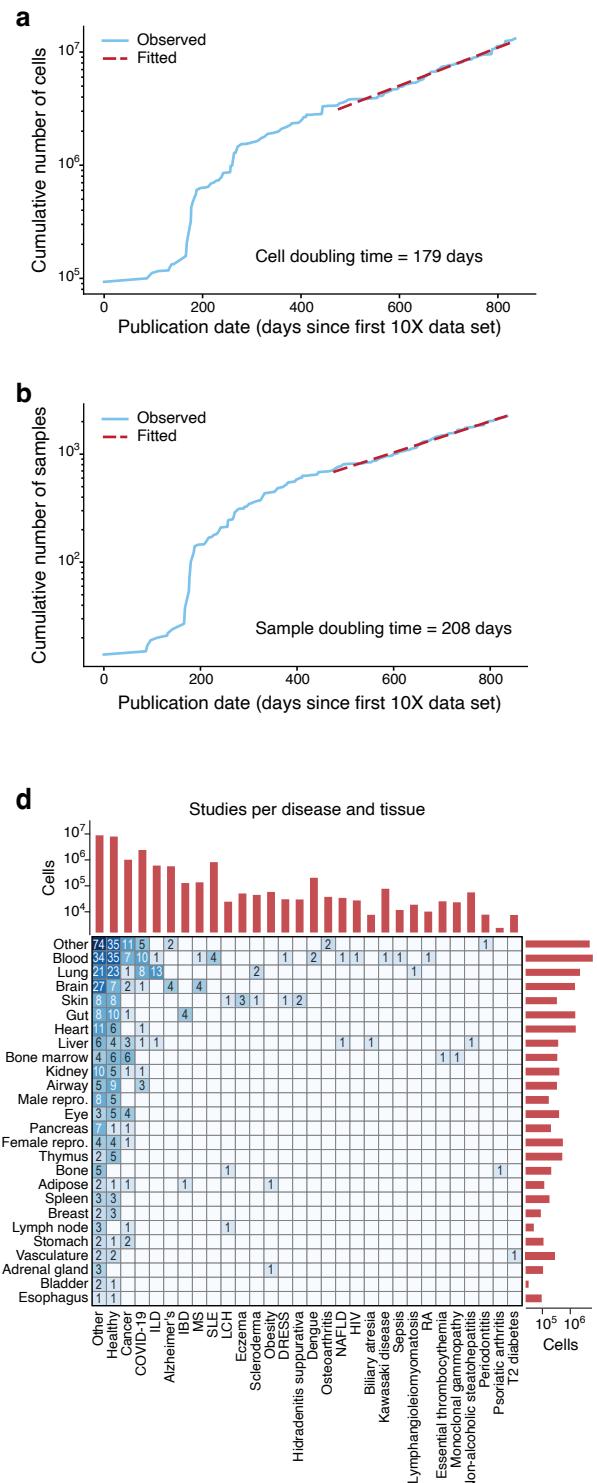
# Figure 5



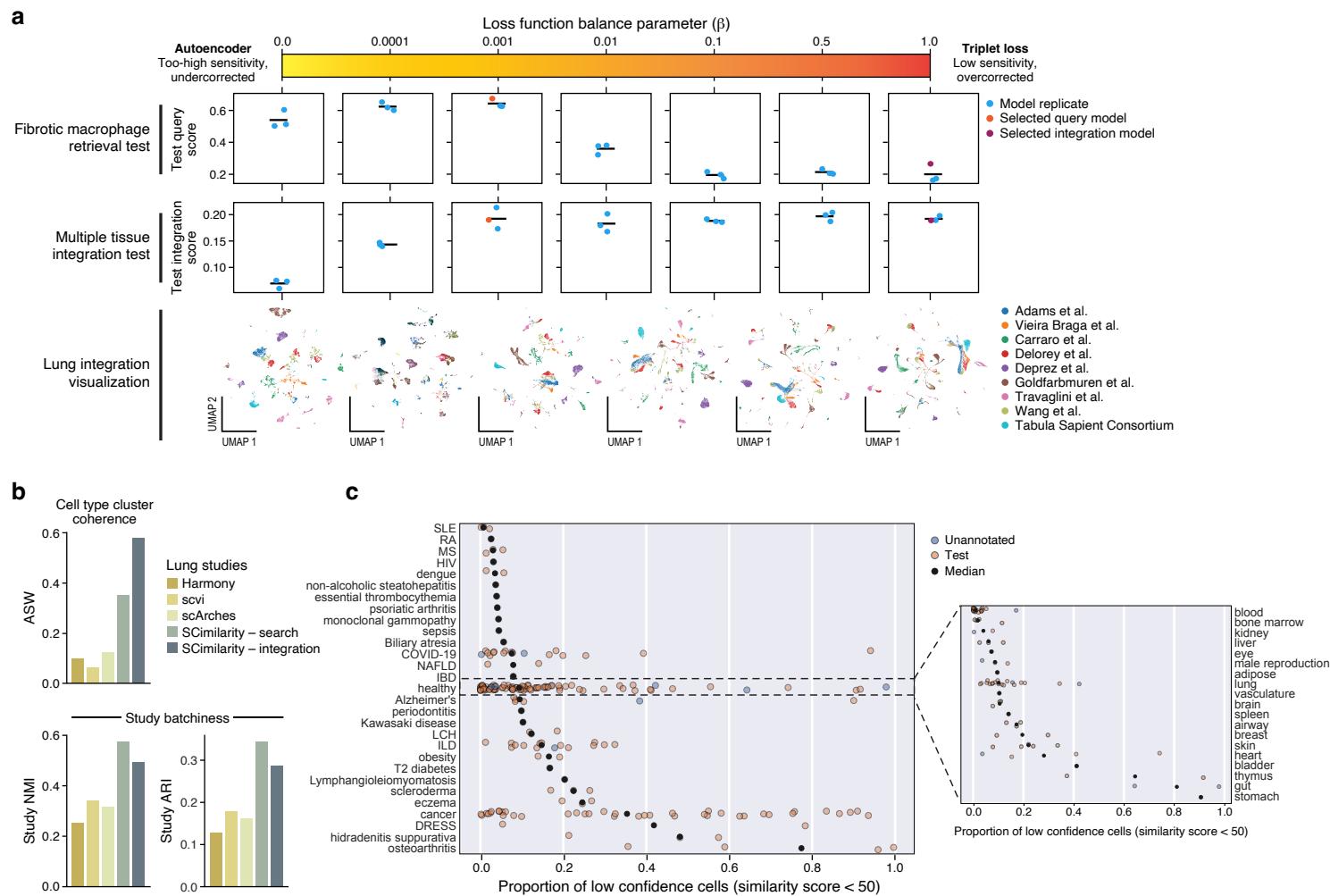
# Figure 6



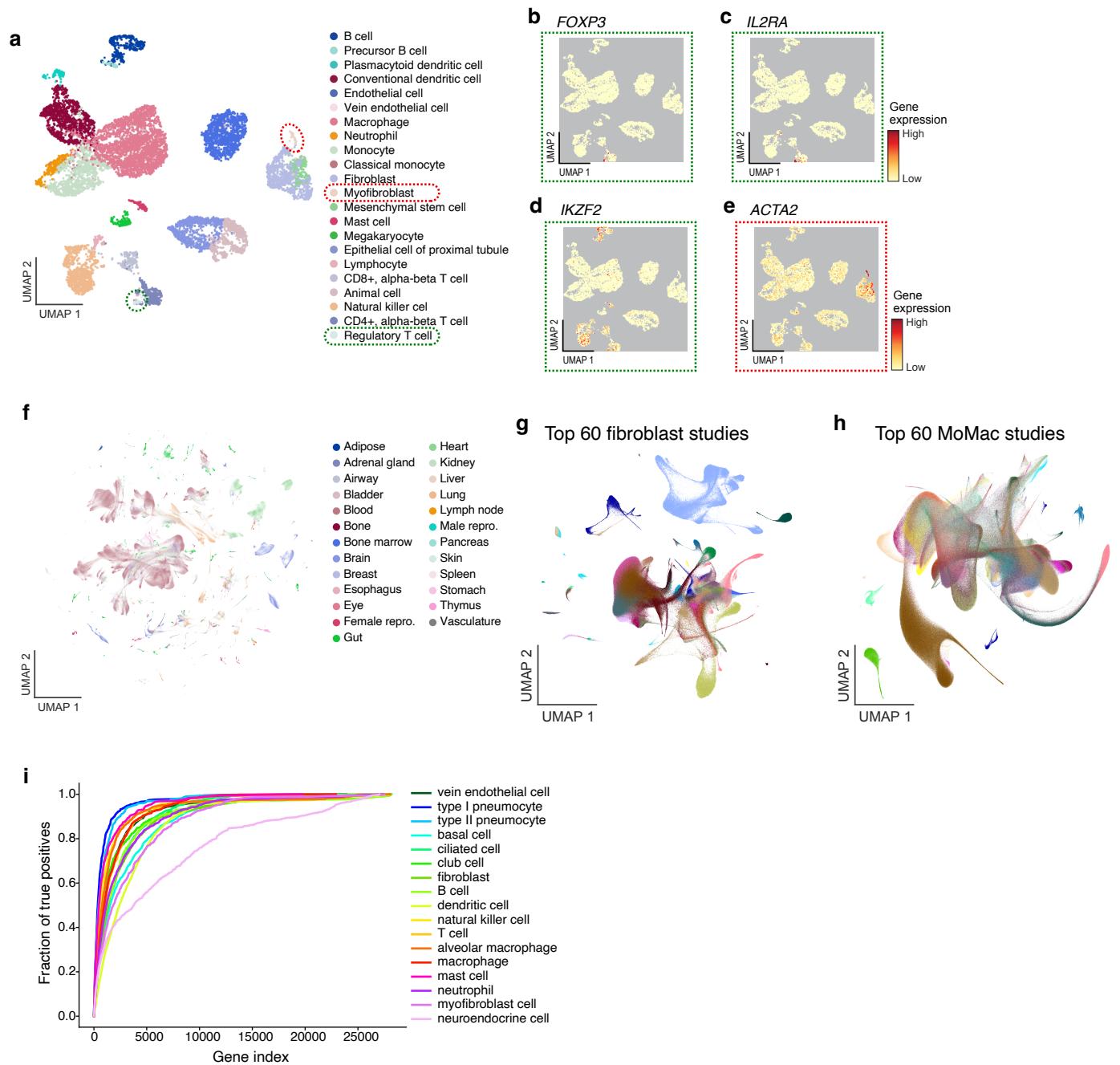
## Extended Data Fig. 1



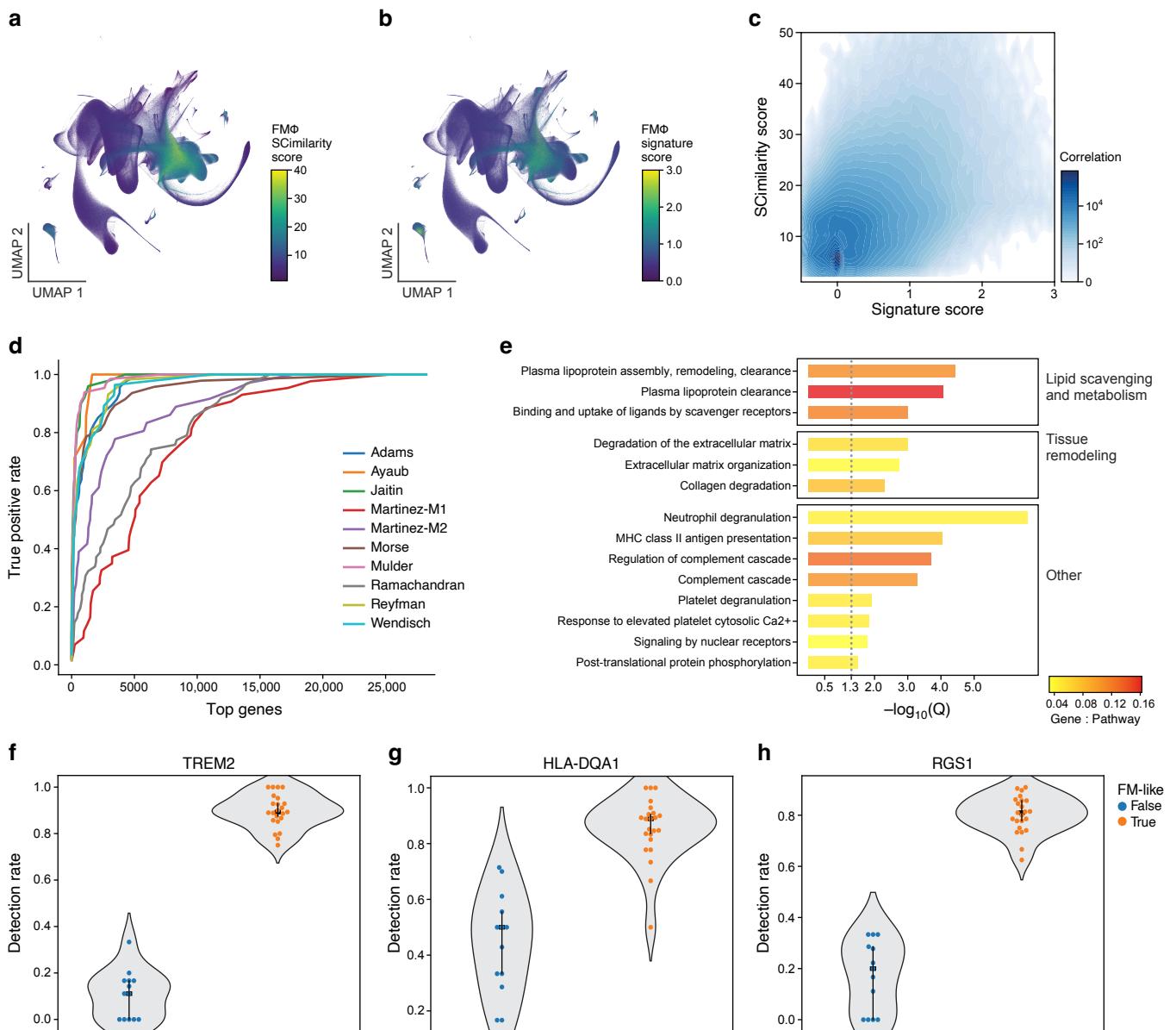
## Extended Data Fig. 2



# Extended data Fig. 3



# Extended data Fig. 4



1 **Fig. 1. SCimilarity metric learning enables cell search in large human scale atlases.**

2 **a**, Cell Querying with SCimilarity. Left: A query cell profile is compared to a searchable reference  
3 collection of 22.7M profiles from 399 studies. Center: Sample with similar cells are identified and  
4 returned with information about the original sample conditions, including unexpected tissue, *in*  
5 *vitro* or diseases contexts. Right: A SCimilarity score is computed between the query cell and each  
6 cell within a tissue sample. **b**, Triplet loss training. From left: 52 training and 14 test annotated (by  
7 the Cell Ontology) datasets from across the body are sampled for cell triplets (an anchor, a  
8 “positive” (anchor-similar), and a “negative” (anchor-dissimilar) cell; based on Cell Ontology  
9 annotations) to train a neural network that embeds similar cells closer than dissimilar ones  
10 **(Methods)**.

1 **Fig. 2. SCimilarity learns a universal representation that generalizes to new datasets.**

2 **a**, A large-scale reference database of public gene expression datasets across tissues and diseases.

3 Number of cells (circle size) across tissues (outermost light blue circles) and disease states (middle

4 green circles) across individual studies (innermost circles) in the training (gold), test (pink) or

5 unannotated (purple) datasets. **b**, Integration between studies without feature selection or batch

6 correction. Uniform manifold approximation and projection (UMAP) embedding of cell profiles

7 (dots) generated on a 128-dimensional latent space from SCimilarity's integration model

8 (**Methods**) for cells from 21 tissues (panels) and 239 unique studies (color code). For tissues with

9 more than a million cell profiles, the UMAP embedding was computed on a random uniform

10 subsampling of 1 million cells from the studies for that tissue.

1 **Fig. 3. SCimilarity accurately annotates cell types across the human body**

2 **a**, SCimilarity cell annotation. A new unannotated cell (red, bottom left) is embedded in  
3 SCimilarity's common low-dimensional space and compared against the precomputed reference  
4 for cell type annotation (0.02 seconds per cell). **b-d**, SCimilarity annotation of a kidney scRNA-  
5 seq dataset. **(b,c)** UMAP embedding of cell profiles (dots) from SCimilarity's latent representation  
6 of a held out kidney dataset<sup>1</sup> colored by author provided **(b)** or SCimilarity predicted **(c)** cell type  
7 annotations. **(d)** Percentage (color bar and number) of author-annotated cells (columns) with each  
8 SCimilarity annotation (rows). **e-h**, SCimilarity-corrected author annotations. UMAP embedding  
9 of cell profiles (dots) from SCimilarity's latent representation for cells either author-annotated or  
10 predicted as CD4<sup>+</sup> or CD8<sup>+</sup> T cells, colored by author **(e)** or SCimilarity **(f)** annotations, and by  
11 *CD8A* **(g)** or *CD4* **(h)** expression. **i**, Classification performance. F1 score (y axis) for SCimilarity  
12 vs. author annotation for each cell population (dot) from each of 14 held out datasets (x axis).  
13 Right: Distribution of F1 scores.

1 **Fig. 4. SCimilarity annotations scale to tens of millions of cells from hundreds of datasets**

2 **a,b** Predicted cell types group by biologically-accurate lineages. **a**, Hierarchical clustering  
3 dendrogram of centroids of predicted cell types (leaves) in SCimilarity latent space, colored by  
4 lineage. Clustering was performed using cosine distance and average linkage. **b**, UMAP of  
5 2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored by clusters (as  
6 labeled in **a**).

1 **Fig. 5. SCimilarity cell search reveals FMΦs across ILD and other diseases**

2 **a**, SCimilarity cell search. A query cell profile (bottom left) is embedded into the learned  
3 SCimilarity representation along with the reference of 22.7M cells, and its nearest neighbors,  
4 determined by distance from the embedded query in the low dimensional space, are tabulated by  
5 study, tissue and disease. **b-e**, Identification of FMΦs across tissues by SCimilarity cell search. **(b)**  
6 SCimilarity scores (y axis, log<sub>10</sub> scale, and color bar) against a FMΦ query profile for each  
7 annotated monocyte or macrophage (dot) from 1,041 *in vivo* tissue samples from 143 studies (x  
8 axis), ordered by mean SCimilarity score. **(c)** Number of cells (circle size) across tissues  
9 (outermost light blue circles), disease states (middle green circles), and individual studies  
10 (innermost circles, colored by fraction of monocytes and macrophages with SCimilarity scores  
11 >95<sup>th</sup> percentile of all FMΦ SCimilarity scores (log scaled color bar)). Circle size for disease and  
12 individual study are scaled relative to other diseases in the same tissue, or studies in the same  
13 disease. **(d,e)** UMAP embeddings of cell profiles (dots) from the SCimilarity representation (query  
14 model) from an ILD<sup>2</sup> **(d)** and PDAC<sup>3</sup> **(e)** studies, colored by FMΦ query SCimilarity scores (color  
15 bar). **f**, Identification of FMΦs associated genes by importance. Integrated gradients attribution  
16 scores (y axis, top) for the genes (x axis top, and columns, bottom) with top 50 scores for FMΦs  
17 *vs.* lung macrophages (**Methods**), and their membership (red: presence; grey: absence) in  
18 published macrophage signatures (bottom, rows). Left color bar: AUC of the ranking of each  
19 published signature in SCimilarity attribution scores (AUC=1: all  $n$  signature genes are listed as  
20 the top  $n$  genes by SCimilarity attribution scores for distinguishing FMΦ). Martinez-M1 and -M2:  
21 macrophage states expected to be different from FMΦs. P-value: hypergeometric test

1 **Fig. 6. SCimilarity cell search identifies *in vitro* cells matching an *in vivo* FMΦ state and a**  
2 **novel *in vitro* disease model.**

3 **a**, Identification of FMΦs-like cells across *in vitro* samples by SCimilarity cell search. SCimilarity  
4 scores (y axis,  $\log_{10}$  scale, and color bar) against a FMΦ query profile for each annotated myeloid  
5 cell (dot) from 40 *in vitro* samples (x axis) (from 17 studies), ordered by mean SCimilarity score.  
6 Gray boxes: Day 0 and Day 5 samples from a 3D-hydrogel culture system<sup>4</sup>. **b-f**, 3D conditions  
7 yield FMΦ-like cells *in vitro* in validation experiments. **b**, SCimilarity scores (y axis,  $\log_{10}$  scale,  
8 and color bar) against a FMΦ query profile for each annotated myeloid cell (dot) from the original  
9 3D-hydrogel culture system dataset<sup>4</sup> and from 3 donors in the validation experiment (x axis). **c**,  
10 Mean expression (dot color) and proportion of expressing cells (dot size) of genes (rows) with high  
11 SCimilarity attribution score for distinguishing FMΦs *in vivo* (as in **Fig. 5f**) for myeloid cells in  
12 the original 3D-hydrogel culture system<sup>4</sup> and the validation experiment (columns). **d-f**, UMAP  
13 embedding from SCimilarity's query model latent space of cell profiles (dots) from day 0 (**d**) or  
14 day 5 (**e**) of the original 3D-hydrogel culture system<sup>4</sup> or from day 8 of the replication experiment  
15 (**f**), colored by FMΦ SCimilarity score (color bar). **g**, replication of Xu et al.'s original finding of  
16 HSC expansion. Proportion of HSCs between Xu et al.'s day 0, day 5 and our validation day 8  
17 time points.

1 **Extended Data figure legends**

2 **Extended Data Fig. 1. Data compendium to assemble a pan-human reference.**

3 **a,b**, Cumulative number of cells (**a**, y axis) and samples (**b**, y axis) profiled by sc/snRNA-seq (and  
4 matching our filters; **Methods**) over time (x axis). Doubling time is calculated based on the  
5 publication date from the most recent 150 data points (dashed red line). **c**, Author-annotated cell  
6 types used in training. Number of author-annotated cells (color bar) from each Cell Ontology type  
7 (rows) and study (columns) used for SCimilarity model training. **d**, Tissues and diseases used in  
8 training. Number of studies (heatmap tiles, text and color bar) and cells (margins, y or x axis) used  
9 for model training from each tissue (rows, right y-axis) and disease (columns, top x-axis).

1 **Extended Data Fig. 2. SCimilarity training details and hyperparameter search.**

2 **a**, Impact of triplet and autoencoder loss mixing on model performance, where the leftmost column  
3 is a traditional autoencoder and the rightmost column is exclusively triplet loss. The FMΦ retrieval  
4 test quantifies how much correlation there is between signature scoring of FMΦs and SCimilarity  
5 score to FMΦ. The multiple tissue integration test quantifies an ontology-aware average silhouette  
6 width where a higher score denotes more coherent clusters for each cell type. The bottom row  
7 shows UMAPs for each loss function mix for nine lung scRNA-seq datasets, colored by study. **b**,  
8 Benchmarking SCimilarity to established data integration models. Ontology-aware average  
9 silhouette width (ASW, y axis, top), normalized mutual information (NMI, y axis, bottom left) and  
10 adjusted Rand index (ARI, y axis, bottom right) for SCimilarity's integration and search models  
11 and for scVI, scArches, and Harmony (x axis), each applied to nine lung datasets. **c**, Outlier cells  
12 from different types and tissues. Fraction (x axis) of cells from different disease (left) or healthy  
13 (right) tissue samples with low similarity (SCimilarity score <50) to training data.

14

1 **Extended Data Fig. 3. Validation of large-scale integration and annotation.**  
2 **a**, Unconstrained cell annotation. UMAP embedding of single cell profiles (dots) from  
3 SCimilarity's latent representation of the held out scRNA-Seq kidney data<sup>1</sup> (as in **Fig. 3b,c**,  
4 colored by cell annotation without constraining target labels to the scope of author-provided labels  
5 in this study or by expression of select marker genes of regulatory T cells (**b-d**) or myofibroblasts  
6 (**e**). **f**, UMAP of 2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored  
7 by tissue (as in **Fig. 4b**). **g,h**, UMAP embedding of cell profiles predicted by SCimilarity as  
8 fibroblast/myofibroblast (**g**) or monocytes/macrophages (**h**), colored by study (for the 60 studies  
9 contributing most cells). **i**, SCimilarity cell-type important genes match cell-type specific  
10 signatures. Fraction of cell type-specific differentially expressed genes (from Eraslan *et al.*<sup>5</sup>) (y  
11 axis) captured by top-n important genes (x axis) for that cell type by SCimilarity's integrated  
12 gradients attribution analysis.

1 **Extended Data Fig. 4. FMΦs among monocytes and macrophages.**

2 **a-c**, Agreement between SCimilarity and traditional FMΦ cell scores. **a,b** UMAP embedding of  
3 2,578,221 monocyte and macrophage cell profiles (dots) from SCimilarity's latent space  
4 representation colored by SCimilarity score using a prototypical FMΦ cellular profile defined from  
5 Adams *et al.*<sup>6</sup> (**a**) or Scanpy's signature score for FMΦ associated genes (**b**). (**c**) Scanpy FMΦ gene  
6 signature score (x axis) and FMΦ SCimilarity score (y axis) for each cell (shown as density). **d**,  
7 Agreement between SCimilarity FMΦ important genes and published FMΦ signatures. ROC curve  
8 of the fraction of each study's gene sets (y axis) captured within the top genes by SCimilarity  
9 attribution ranking (x axis). **e**, FMΦ important genes are enriched for relevant pathways. False  
10 discovery rate (-log<sub>10</sub>(q value), hypergeometric test, x axis) for enrichment of Reactome pathways  
11 (y axis, Q ≤ 0.05 and gene count ≥ 5) with the 100 genes with the top integrated gradients  
12 attribution scores for the FMΦ query (ranked by score). Color: ratio of important genes within a  
13 Reactome pathway to the total size of the pathway. **f-h**, Expression of known and novel genes  
14 associated with FMΦs. Pseudobulked gene expression values for ILD tissue samples for known  
15 marker TREM2 (**f**) and enriched genes not previously described (**g,h**).

- 1 1. Young, M. D. *et al.* Single cell derived mRNA signals across human kidney tumors. *Nat. Commun.* **12**, 3896 (2021).
- 2 2. Morse, C. *et al.* Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. *Eur. Respir. J.* **54**, (2019).
- 3 3. Lin, W. *et al.* Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. *Genome Med.* **12**, 80 (2020).
- 4 4. Xu, Y. *et al.* Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture. *Protein Cell* (2022) doi:10.1007/s13238-021-00900-4.
- 5 5. Eraslan, G. *et al.* Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. *Science* **376**, eabl4290 (2022).
- 6 6. Adams, T. S. *et al.* Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. *Science Advances* **6**, eaba1983 (2020).