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Abstract

Single-cell RNA-seq (scRNA-seq) studies have profiled over 100 million human cells across
diseases, developmental stages, and perturbations to date. A singular view of this vast and growing
expression landscape could help reveal novel associations between cell states and diseases,
discover cell states in unexpected tissue contexts, and relate in vivo cells to in vitro models.
However, these require a common, scalable representation of cell profiles from across the body, a
general measure of their similarity, and an efficient way to query these data. Here, we present
SCimilarity, a metric learning framework to learn and search a unified and interpretable
representation that annotates cell types and instantaneously queries for a cell state across tens of
millions of profiles. We demonstrate SCimilarity on a 22.7 million cell corpus assembled across
399 published scRNA-seq studies, showing accurate integration, annotation and querying. We
experimentally validated SCimilarity by querying across tissues for a macrophage subset originally
identified in interstitial lung disease, and showing that cells with similar profiles are found in other
fibrotic diseases, tissues, and a 3D hydrogel system, which we then repurposed to yield this cell
state in vitro. SCimilarity serves as a foundational model for single cell gene expression data and
enables researchers to query for similar cellular states across the entire human body, providing a

powerful tool for generating novel biological insights from the growing Human Cell Atlas.
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INTRODUCTION

Characterizing the contexts in which cells employ different expression programs is critical for
deciphering their functional role in health and disease. To date, well over 100 million individual
cells have been profiled using single-cell or single-nucleus RNA-seq (sc/snRNA-seq) across
homeostatic, disease, and perturbed conditions'. Individually, even the largest multi-tissue
scRNA-seq atlases>* capture only a relatively small portion of cell states across human tissues;
collectively, these atlases provide a vast, pan-human view of cell and disease biology that has the
potential to address fundamental questions about human biology!. By aggregating across atlases,
we may uncover biological insights and enable investigations into cell states that are common
across multiple studies of the same organ and conditions (e.g., similar neural progenitor
populations across independent studies of brain development), different organs and conditions
(e.g., inflammatory fibroblasts in both ulcerative colitis and cancer); or between the human body
and in vitro lab models (e.g., regulatory T cells genetically perturbed to recapitulate in vivo cells

from diseased tissue).

Despite this promise and the rapid growth in data, our ability to realize the potential of cross-
datasets, pan-body, analyses remains limited and hampered by the need for laborious manual
curation, harmonization, and dataset aggregation by expert analysts, as well as the painstaking
process of selecting datasets, standardizing cell type annotations, and finding a common low-
dimensional representation. As a result, most aggregation efforts have been limited in their
biological scope and number of datasets, with some recent notable exceptions focused on genes

rather than cell representation®®.
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To leverage and query the massive scale and richness of available single-cell atlases, we need both
(1) a foundational model of cell states with an effective representation for single-cell profiles
across different cell types and conditions that can be used across many applications without
retraining; and (2) a measure of cell similarity that is robust to technical noise, scales to hundreds
of millions of cells, and accurately generalizes to datasets and cell states not observed in the
training. Established unsupervised methods to learn low dimensional representations of SCRNA-
seq profiles, such as Principal Component Analysis (PCA) or autoencoders®? !, faithfully preserve

information from the input>*-!!

and may even eliminate technical variation for explicitly defined
batches. However, they do not learn general features that encode relationships between cells

needed to represent and query new data sets in the context of cross-study, pan-tissue biological

variation.

Machine learning methods, metric learning in particular, have successfully learned representations
for diverse entities and a measure of similarity between them, especially in image analysis. For
example, metric learning models for facial recognition are explicitly trained to embed images of
the same person closer together than images of different people, by exploiting visual features that
are critical to distinguish individuals'?. Once trained, images are embedded into a low-dimensional
space, where distances between images represent a measure of similarity based on the learned
features. Users can then query with an image not in the training set to find additional similar images
that are nearby in the latent space and depict the same person. We reasoned that, analogously,
metric learning could provide a meaningful representation of and similarity metric for cell profiles.
By training a model using annotated scRNA-seq data, we can learn a low dimensional

representation that places similar cells near each other and dissimilar cells farther apart. If learned
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87 from a sufficient diversity of cell profiles, such a representation would, in turn, provide a
88  foundational model of cells and would allow efficient searches for cells with similar expression
89  states (Fig. 1a).
90
91  Here, we introduce SCimilarity, a class of deep metric learning models that quantify similarity
92  between single-cell expression profiles (SCimilarity score) and provide a single-cell gene
93  expression foundational reference model to systematically query for comparable cell states across
94  tissues and diseases. SCimilarity uses a training set of diverse author-annotated cell profiles to
95 learn a universal representation and distance metric that facilitates efficient searches across a
96  massive reference meta-atlas for the most expression-similar cells. To train a foundational model
97 that can be broadly applied to many applications across tissues and studies, we built a
98 programmatic pipeline for massive data import and automated standardized curation and used it to
99 assemble a corpus 0f 22,699,774 cells from 399 datasets spanning a broad range of organs, systems
100  and conditions across the human body. After training and testing on a subset of 66 studies and
101  7.9M single-cell profiles, the learned models generalize well, representing and quantifying
102  similarities between 14.9M cells from another 347 studies excluded from training. By tuning a
103  single parameter during SCimilarity’s training, we yield models optimized for either data
104  integration and visualization of millions of cells across hundreds of studies, or for fast and efficient
105  (millisecond) queries of a new cell state across tens of millions of cells. Finally, we illustrate the
106  power of SCimilarity by querying for a fibrosis-associated macrophage (FM®) subset previously
107  identified in interstitial lung disease (ILD), finding comparable cell populations (but with different
108 annotated names and signatures) in other ILD studies, as well as in new contexts, including

109 COVID-19, different tumors including pancreatic ductal adenocarcinoma (PDAC), and even
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110  healthy lung (at low abundance). Surprisingly, SCimilarity recovered FM®-like cells among
111 PMBCs cultured and stimulated in a 3D hydrogel system in vitro, which we experimentally
112  validated, producing an FM®-like in vitro cell system for future functional studies of a tissue-
113  resident cell state. Overall, SCimilarity preserves expression diversity across cells in an integrated
114  foundational model of a human cell atlas, and allows a novel scaled cell search across organs,
115  systems, and conditions, as a powerful framework for generating biological insights and
116  experimentally testable hypotheses.

117

118  RESULTS

119  SCimilarity: novel similarity metrics and representations for single-cell expression profiles

120  SCimilarity is a family of models that blend unsupervised representation learning and supervised
121 metric learning, through simultaneously optimizing two objectives : (1) a supervised triplet loss
122  function, which is used to embed expression profiles from matching cell types close together,

123  effectively integrating cells of the same type across studies! 13

, and (2) an unsupervised mean
124  squared error (MSE) reconstruction loss function, which encourages the model to preserve
125  variation from the input expression profiles, capturing subtler differences in expression patterns
126  within cells of the same type, such as those related to tissue residency of immune cells (Fig. 1b,
127  Methods). The balance of these two objectives, set by a single hyperparameter, (3, determines the
128  properties of the representation (Methods). Increasing the relative weight of the triplet loss
129  function improves dataset integration, while increasing the relative weight of the reconstruction

130  loss improves querying performance. Therefore, different loss function weightings within the same

131 model architecture can address different applications.
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132

133  We train SCimilarity with tens of millions of cell triplets sampled from data with author-provided
134  standardized cell type annotations from the Cell Ontology'® (Fig. 1b, Methods). Specifically, each
135  training triplet consists of similar anchor and positive cells (i.e., same cell type) from different
136  studies, while anchor and negative cells are dissimilar (i.e., distinct cell types; from the same or a
137  different study). However, even with standardized Cell Ontology terms, some cell type
138  comparisons are ambiguous due to arbitrary differences in annotation granularity across studies
139  (e.g., it is ambiguous if cells annotated as “T cell” in one study and “CD4" T cell” in another are
140  similar or dissimilar). To address this, SCimilarity excludes cell pairings with such vertical
141  ancestor-descendant Cell Ontology relationships from training triplets, and learns only from cells
142  that are either explicitly similar or unambiguously dissimilar (Fig. 1b, Methods). By sampling
143  only unambiguous triplets we eliminate the need to manually flatten or harmonize every cell type
144  annotation and are able to seamlessly scale the training set across dozens of studies.

145

146 A learned SCimilarity representation of 22.7M cells across dozens of tissues and disease

147  datasets collated by an automated curation and processing pipeline

148  To test SCimilarity models, we assembled a compendium of sc/snRNA-seq datasets across human
149  biology. We focused on studies generated with one experimental platform (10x Genomics
150  Chromium droplet-based scRNA-seq) and data publicly available on the Gene Expression
151  Omnibus (GEO)!” or CELLXxGENE'®. These data capture much of the published scRNA-seq data,
152  and were generated with similar library preparation protocols and computational pipelines!®. There
153  were 753 human sc/snRNA-seq datasets matching our search criteria and keywords as of March

154 23 2021 (with Biopython Entrez?’, Methods). The number of samples and cells matching our
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155  criteria has at least doubled every 6 months between December 2018 and March 2021; (Extended
156  Data Fig. 1a,b). We programmatically downloaded 13,401,599 cell profiles from 333 of the
157  identified studies with their respective GEO metadata and unnormalized gene count matrices
158 (Methods, Extended Data Table 1). We manually ingested another 66 well-annotated studies
159  from either the CELLXGENE portal'® or from large studies and consortia not available through
160  GEO that passed the same dataset filtering criteria (Methods). Overall, we assembled a corpus of
161 399 studies comprising 22,699,774 cells from 33,815 tissue samples with 184 unique Tissue
162  Ontology terms?!, 132 Disease Ontology terms??, and 204 Cell Ontology cell type terms'®, with
163  each Cell Ontology term appearing in at least two separate datasets (Fig. 2a, Extended Data Fig.
164 1c, Extended Data Table 1).

165

166  We trained SCimilarity models with a training set of 7,913,892 single-cell profiles from 52 studies
167  with Cell Ontology author annotations that reflected a diversity of conditions and tissues
168 (Extended Data Fig. 1d, Extended Data Table 1), sampling 50,000,000 of the most informative
169 triplets (Methods). We withheld 14 studies comprising 1,384,283 cells with Cell Ontology
170  annotations for testing the learned representation and metric (Fig. 2a). We excluded tumor, cell
171 lines, and iPSC-derived samples from the training and test sets, because cell identity of tumor cells
172  and cell lines can be ambiguous.

173

174  Tuning of SCimilarity’s reconstruction and triplet loss functions yields models optimized for
175  integration vs. cell search tasks

176  We examined six different blends for SCimilarity’s objective function, varying the relative

177  weighting of the reconstruction and triplet loss functions, and finding that the two loss function
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178  components gave rise to different behaviors in a trained model. Briefly, we assessed the models
179  on two tasks — data integration and searching for cells similar to a query profile — using studies
180 entirely held out from training. To evaluate data integration, we quantified how coherently cells of
181  each type are clustered and how distinct each cell type cluster is from other clusters. To this end,
182  we created an ontology-aware variation of average silhouette width?® to quantify integration
183  capabilities across datasets without harmonizing cell type annotations (Methods). To evaluate our
184  cell search distance metric, we compared searches with SCimilarity to gene signature scoring
185  (Methods). The higher the correlation between these two quantities, the more our similarity metric
186  corresponds to traditional signature-based similarity to represent a cell state of interest.

187

188  Models with higher triplet loss weighting scored higher on integration benchmarks, while models
189  with higher reconstruction loss weighting encoded distances between cells in a manner better
190  correlated with differences in representative expression signature scores (Extended Data Fig.
191  2a,b). Pure triplet loss, which is calculated at the level of cell type labels, does not reliably preserve
192  subtle cell state differences, such as tissue specificity or disease response within cells of the same
193  type. Mean squared error reconstruction loss complements this by preserving more subtle gene
194  expression patterns, while the triplet loss ensures that cells of the same type are embedded closely
195  together. Based on the biological question, a user can tune this balance to yield the highest utility.
196  We thus pursued two SCimilarity models: an integration model, optimized for the task of learning
197  alow dimensional representation that groups cells by type rather than by study; and a cell search
198  model that is optimized for the task of retrieving cells with an expression state similar to that of a
199  query cell across hundreds or thousands of scRNA-seq datasets (Extended Data Fig. 2a,

200 Methods).
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201  SCimilarity’s latent space representation filters outlier cells and integrates test datasets

202  without batch correction

203  We next benchmarked if SCimilarity’s latent space representation from the integration model
204  generalizes well to cells from entire datasets held out of training compared to other methods. In a
205 low-dimensional embedding, unannotated cell profiles from nine lung studies (7 training set, 2 test
206  set) visually intermix well when embedded into SCimilarity’s learned 128-dimensional space
207 (Extended Data Fig. 2a). SCimilarity’s data integration model scored higher than Harmony, scVI,
208 and scArches on integration tasks by the ontology-adjusted ASW measure of cluster coherence,
209  but scored lower for normalized mutual information (NMI) and adjusted rand index (ARI), which
210  measure the extent of study mixing within each cluster (Extended Data Fig. 2b). Thus, without
211 directly training on the full data set or performing additional batch correction, the integration
212 model clusters cells by type rather than study at a level that is competitive with existing methods
213  trained directly on the data. This demonstrates that the triplet loss learns features that capture
214  meaningful biology, while reducing technical sources of noise and avoiding overfitting to the
215  training set.

216

217  SCimilarity quantifies a confidence level for each cell’s representation, providing both outlier
218  detection and an assessment of the representation’s relevance in the context of new data. When
219  computing the representation of a new cell, the further outside the scope of model training it is,
220  the harder it is for the model to accurately represent it. Using SCimilarity’s score to quantify how
221  distant a query cell is from the training data distribution provides a heuristic about the quality and
222 scope of the representation — a cell scoring as highly similar to cells seen during training can be

223  confidently represented by the model. Overall, 79.5% of in vivo holdout cells had high

10
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224  representation confidence. Tissue samples with particularly low representation confidence, such
225  as stomach (n = 0 training studies), fetal gut (n=1), and bladder (n=0) were either absent or poorly
226  represented in training (Methods, Extended Data Fig. 2¢), suggesting that more labeled training
227  datasets from those tissues could improve the model’s representation. Similarly, 43.8% of in vitro
228  cell profiles were considered low confidence due to poor matching to the training set (which
229  excluded in vitro samples).

230

231  We combined SCimilarity’s ability to generalize to new datasets and its confidence-based filtering
232  to systematically generate meta-atlases for 21 different human tissues without labor-intensive
233  dataset harmonization and no additional training (Fig. 2b). If datasets have already been embedded
234  using SCimilarity, this task only requires concatenation of cells of interest and standard

235  visualization workflows.

236

237  SCimilarity assigns an unannotated query cell to a cell type by finding similar cells in a

238 labeled reference

239  We next used SCimilarity to find the cells in the annotated reference that are most similar to an
240  unannotated query cell profile, and then annotate the query cell accordingly (Fig. 3a, Methods).
241 This approach is distinct from established annotation methods in that it (1) relies on a large, pan-
242  human annotated cell repository, (2) employs a measure of expression similarity, and (3) classifies
243  at the single cell rather than cluster level, providing greater transparency into the classification
244  itself. Thus, users can see which individual cells, studies, and tissues are driving the classification

245  decision. Moreover, since each cell is annotated independently, no clustering or associated

11
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246  parameter selection, such as the number and resolution of clusters, are required. A user can choose
247  to annotate a cell’s profile by comparing it either to a desired subset of cell types (e.g., for a tissue-
248  specific query) or to the entire annotated cell reference. Because SCimilarity is built using metric
249  learning, finding the most similar cells is the same as retrieving the query cell’s nearest neighbors.
250  This operation is extremely efficient with the hnswlib algorithm?#, where searching a precomputed
251  approximate nearest neighbor index of all the annotated reference cells in SCimilarity’s latent
252  space takes just 20 milliseconds (Methods). Low SCimilarity scores to reference cells flag an
253  outlier query cell, which may be either a cell type that is not within the reference or a query cell of
254  low quality.

255

256  SCimilarity quickly and accurately assigned cell types for entire datasets held out from training,
257  aswell as for the rest of the 22.7M cell corpus. When limiting potential cell types to author-selected
258 labels, 94.5% of SCimilarity’s predicted labels from healthy kidney samples? match the author-
259  provided cell type annotations (Fig. 3b-d, Methods). In some cases, where SCimilarity’s
260 predictions did not match author-provided annotations, SCimilarity’s predictions were more
261  accurate or granular. For example, 94% of the cells that the authors?> annotated as CD4" T cells
262  but SCimilarity annotated as CD8" T cells express CD84 or CD8B (and none express CD4),
263  supporting SCimilarity’s annotation (Fig. 3e-h). Separately, when allowing cells to be annotated
264  as any cell type in the repository, 6.3% of the author-annotated CD4" T cells were reannotated by
265  SCimilarity as regulatory T cells (Trwgs) (Extended Data Fig. 3a), most of which (85.2%)
266  expressed at least one Trg marker (FOXP3, IL2RA, or IKZF2, Extended Data Fig. 3b-d).
267  Similarly, 1.8% of author-annotated mesenchymal stem cells (Fig. 3b) were reassigned by

268 SCimilarity as myofibroblasts (Extended Data Fig. 3a) and 93% of those express the

12
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269 myofibroblast-associated gene ACTA2 (Extended Data Fig. 3e). Cell type prediction was rapid,
270  taking 3-5 seconds to embed and annotate 10,000 cells from a dataset. Overall, across all 14 test
271  datasets spanning 78 Cell Ontology terms, 71% of the cell populations had high agreement (>85%
272 of the cell population) between author and SCimilarity annotations (Fig. 3i). SCimilarity
273  performed poorly on one dataset (Cano-Gomez et al.2%), due to fine granularity and redundancy of
274  author labels (e.g., CD4" aff T cells, helper T cell, memory T cell, naive T cell, and regulatory T
275  cell).

276

277  We used SCimilarity’s cell type assignment to rapidly annotate all 22.7M cell profiles in one
278 common model, newly-annotating 13,401,599 profiles and reannotating 9,298,175 author-
279  annotated profiles (Methods) to a single set spanning 74 cell type labels (21 coarser lineages) from
280 25 simplified tissue categories (Fig. 4a,b, Extended Data Fig. 3f). A consistent annotation across
281  datasets facilitates cross-study and cross-tissue analyses of one cell type or lineage, as SCimilarity
282  can extract cells from hundreds of studies, aggregating vast biological diversity across one cell
283  type. For example, we readily aggregated 1,172,325 fibroblasts and myofibroblasts (Extended
284 Data Fig. 3g) and 2,507,879 monocytes and macrophages (Extended Data Fig. 3h) from
285  hundreds of studies profiling different primary tissue samples.

286

287  SCimilarity’s representations comprise of interpretable biological features

288  To interpret SCimilarity’s annotations, we quantified the importance of each gene for cell type
289  annotations assigned by the foundational query model using Integrated Gradients, a method that
290 identifies the impact on model predictions of small disturbances to the input expression profiles

291  (Methods). For example, the top gene attributions that distinguish lung alveolar type 2 (AT2) cells

13
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292  are surfactant genes SFTPA2, SFTPAI, SFTPB, and SFTPC, consistent with known AT2 cell
293  function?’. SCimilarity learned these without prior knowledge of cell type specific genes,
294  signatures, or highly variable genes. Overall, SCimilarity’s top importance genes agreed well with
295  differentially expressed marker genes for 17 different matched types® with the exception of rare
296 neuroendocrine cells (average AUC=0.84, Extended Data Table 2, Extended Data Fig. 3i).
297  Thus, SCimilarity’s representation captured known and validated biological markers within its
298  features.

299

300 Cell search identifies fibrosis-associated macrophages across tissues and diseases

301  With a single representation and common definition of cell types, we hypothesized that
302  SCimilarity could help elucidate the role of tissue-resident immune cells. As a case study, we
303 focused on macrophages, given their remarkable plasticity in cell states and their important
304  specialized roles in tissue repair, regeneration, and fibrosis?®?°. Recent scRNA-seq studies in
305 fibrotic diseases, including lung fibrosis, cancer, obesity, and COVID-19 have reported seemingly-
306 similar SPPI" fibrosis-associated macrophage (FM®) populations®’8, However, because each
307  study identified them independently, using different nomenclatures and marker gene signatures to
308  define subsets, it is unclear how similar these cell states are. Moreover, it is unknown how broadly
309 associated such cell states are with other diseases, especially those with prominent fibrosis. We
310  reasoned that SCimilarity’s cell search should allow us to query our corpus with an FM® cell
311 profile from one study to identify similar cells across other tissues and conditions, thereby
312 clarifying the cell identity of similarly-described cells and the conditions in which FM® arise (Fig.
313  5a).

314
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315  We queried our model with the FM® cell profile, searching for similar cells across 2,578,221 cells
316  annotated by SCimilarity as monocytes or macrophages in the 22.7M cell corpus (Fig. 5a).
317  SCimilarity queries can use either an individual cell profile or a centroid of multiple cell profiles.
318  Here, we input the centroid profile of a macrophage cell subset from Adams et al.*° that we defined
319  using a gene signature consisting of the extracellular matrix remodeling and fibrosis-associated
320 genes SPPI, TREM2, GPNMB, MMPY9, CHITI, and CHI3L] (Methods). In two seconds,
321  SCimilarity exhaustively computed the pairwise similarity of our query profile to each of the 2.6M
322  in vivo profiles of the cells it annotated as monocytes or macrophages in our corpus (Fig. 5b and
323 Extended Data Fig. 4a). Alternatively, simply identifying the 10,000 cells with the highest
324  SCimilarity score takes 0.05 seconds (Methods). By comparison, a more conventional approach
325  that scores each cell in the corpus with a literature-defined FM® gene signature took 2 hours and
326 46 minutes (Extended Data Fig. 4b). The gene signature and SCimilarity scores are broadly
327  correlated (r = 0.50,p < 107" Extended Data Fig. 4a-c), showing that the granular cell state,
328  not just the cell type, is well-represented in SCimilarity query score and embedding.

329

330 The SCimilarity search showed that FM®s are common in ILD lung samples in our compendium,
331  as well as present in some cancers, including uveal melanoma, pancreatic ductal adenocarcinoma
332 (PDAC), and colon cancer (Fig. 5c-e, Extended Data Table 3). Of the top 1% of monocytes and
333  macrophages most similar to our query, 99.1% were from lung tissue and 87.2% from ILD and
334 COVID-19 lung samples. The prevalence of FM®-like cells in the lung varied by disease: the
335  proportion of monocytes and macrophages that were FM®-like was 20% and 4% in two systemic
336  sclerosis (SSc) studies, 6.1% on average (SE = 1.4%) across 13 ILD studies (excluding SSc), 1.2%

337  on average across seven COVID-19 lung studies (SE = 0.5%, 0% in non-lung COVID-19 data)
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338 and 0.4% in 19 studies annotated as “healthy”, “normal” or with no disease annotation (SE =
339  0.2%). While abundant in SSc lung, FM®-like cells were much rarer (0.14% of myeloid cells) in
340  SSc skin®®. There were some FM®-like cells in other fibrotic diseases and tissues, such as one
341  primary pancreatic ductal adenocarcinoma (PDAC) tumor*’ (0.85% of 1,171 myeloid cells) and
342  one liver metastasis*! of PDAC (0.5% of 1,199 cells). Thus, while our query FM® profile was
343  derived from IPF samples, it uncovered FM®-like cells in many contexts, including SSc-ILD,
344 COVID-19 lung and PDAC. These results confirm previous observations of FM®s in lung

38,42

345  injury’®** and suggest a role for FM®-like cells across other organs and diseases.

346  Integrated gradients analysis reveals commonalities between SCimilarity score and

347  established gene signatures

348  Because FM®-like cells are detected by SCimilarity across many ILD studies, we hypothesized
349  that the cells captured by different marker genes and nomenclature in different studies refer to the
350 same biological cell state. To test this, we applied integrated gradients to quantify each gene’s
351  importance when SCimilarity distinguishes FM®s from randomly sampled monocytes and
352  macrophages (Methods). The genes identified as important for distinguishing FM®s are enriched
353  in key fibrotic processes, including extracellular matrix remodeling (MMP7, MMPY, FN1, SDC?2,
354  SPARC, SPPI), lipid metabolism and lipoprotein clearance (4APOCI, APOE, LPL, LIPA), and
355  damage-associated molecular pattern recognition (MARCO, MSR1) (Fig. 5f, Extended Data Fig.
356 4d,e, Extended Data Table 4). While SCimilarity found many FM® marker genes that were
357 already discussed in the literature, such as TREM2 (Extended Data Fig. 4f), it also identified
358 novel genes elevated in FM®s such as HLA-DQA1 and RGS1 (Extended Data Fig. 4g,h).

359
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360  The genes with the highest importance scores in the SCimilarity embedding of FM®s significantly
361  overlap (p<6.7x10°'%) with published gene signatures describing similar macrophage populations
362  or with genes whose differential expression defined each study’s macrophage population of
363 interest (Extended Data Table 5). While cell signatures from IPF lung had a high signature match
364 (AUC >0.95), the negative control signatures of M1 and M2 macrophages* had lower ones at the
365 Dbottom three (AUC = 0.85 (2.65x102) and AUC=0.92 (p<4.92x107%), respectively; Fig. 5f,
366 Extended Data Fig. 4d).

367

368 FM®-like cells identified among ex vivo stimulated peripheral blood mononuclear cells

369  (PBMC:s) help establish a novel human cell model

370  Research to understand the role of a novel cell state or subtype in disease, such as FM®s, benefits
371  greatly from the ability to model, perturb, and study the cells in vitro. However, there is currently
372  no systematic way to identify in vitro culture conditions that generate cells that match cells
373  identified in vivo. To accelerate development of an in vitro FM® system, we used SCimilarity to
374  search for FM®-like cells across in vitro stimulated samples with the goal of identifying previously
375 employed experimental conditions that might resemble the tissue cell state. We filtered our full
376  reference cell collection for in vitro and ex vivo studies containing at least 50 monocytes or
377  macrophages, resulting in 41,926 monocytes and macrophages across 40 samples from 17 such
378  studies. These span diverse and complex conditions, such as lung organoids infected with SARS-
379  CoV-2*, ex vivo treated acute myeloid leukemia samples*, or PBMCs stimulated with morphine
380 and lipopolysaccharide*.

381
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382  The cells most similar to our query FM® expression profile were monocytes grown as part of a
383  heterogenous PBMC culture for 5 days in a 3D hydrogel culture system that was designed for
384  expansion of hematopoietic stem cells (HSCs) from PBMCs*” (Fig. 6a, Extended Data Table 6).
385  This study is unrelated to lung biology and its authors did not report any results for myeloid cells.
386  Nevertheless, while no FM®-like cells were present among myeloid cells on day 0, 15% of cells
387  grown for five or more days in this system were highly similar to FM®s (SCimilarity score >25)
388  and expressed TREM2, GPNMB, CCL18 and MMP9 (Fig. 6b-e). This was a surprising result,
389  because of the seeming irrelevance of the study to fibrosis or macrophage biology and the rarity
390 of FM®-like cells in PBMC samples in vivo.

391

392  To validate SCimilarity’s prediction of an FM®-like cell culture condition, we used a similar
393  protocol to replicate the 3D hydrogel system?*’, followed by scRNA-seq to assess the yield of
394  FM®-like cells (Fig. 6b,c,f). While relative cellular abundances differed between the original day
395 5 data (Xu et al, 2022) and our day 8 replication of the same conditions (Methods), 10.1% of all
396 cells in the Day 8 experiment were predicted as HSCs by SCimilarity (Fig. 6g). Moreover, 41.5%
397  of the myeloid cells in day 8 validation experiments from three donors were predicted as FM®-
398 like macrophages (Fig. 6b.f, 37.1%, 42.5%, and 44.9%; SCimilarity score > 25). Furthermore,
399 FM® hallmark genes, such as CCLI18, GPNMB, SPP1, and TREM?2, were enriched in the myeloid
400 compartment of our replicate experiment compared to day 0 conditions (Fig. 6¢). This experiment
401  validates that an FM®-like population can be generated from PBMCs in culture conditions. Taken
402  together, these results demonstrate SCimilarity’s ability to interrogate publicly available data at
403  scale, query a reference of in vivo and in vitro data for biologically similar conditions, and help

404  identify experimental conditions to reproduce those results in laboratory settings.
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405

406  DISCUSSION

407  To date, more than a hundred million human cells have been profiled across tissues in health and
408  disease, and such data continue to grow exponentially. This growing human cell atlas should be
409 the starting point for researchers aiming to readily search, query and compare cell states of interest
410 across different protocols, treatments, tissues, and diseases.

411

412  SCimilarity systematically annotates and repurposes tens of millions of expression profiles from
413  hundreds of studies, to create an integrated, searchable and queryable foundational model of pan-
414  human cellular diversity. SCimilarity is comprised of three key features: (1) a 22.7M cell human
415  scRNA-seq data repository (at present), (2) a foundational model for single cell gene expression
416  with a generalizable embedding and similarity metric (which could readily be retrained for larger
417  datasets), and (3) methods to efficiently query across this entire pan-body human cell atlas.
418  Together, these provide new context, capabilities, and workflows for extracting insights from new
419 and existing scRNA-seq datasets in the human cell atlas and other atlases. SCimilarity’s
420 framework architecture can easily accommodate quick updates as data continue to grow.

421

422  Because SCimilarity can generalize to cells and datasets not seen in the training, cell profiles can
423  be added as entirely new studies or removed by applying new cell filters without recomputing the
424  low dimensional representations. This flexibility allows us to change the analysis’ scope at any
425 point without redoing work, enabling modularized workflows for scRNA-seq analysis.
426  Downstream tasks, such as cell type annotation, cell queries, and gene signature derivation all are

427  simplified using SCimilarity’s generalized low dimensional representation and can be applied to
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428  cells not seen during training without informing the model about the importance or variability of
429  specific genes during training. Outlier detection helps both filter out technical errors and highlight
430 potentially novel cell subsets. Although generalized models that do not require recomputing low
431  dimensional representations would alleviate time and expertise barriers that currently impede
432  researchers, to the best of our knowledge, generalization has rarely been optimized in single-cell
433  expression analysis.

434

435 There is no single objective measure of similarity, or dissimilarity, between cellular profiles.
436  Curated gene signatures are useful when a small number of explanatory genes are sufficient to
437  define a cell state. SCimilarity uses the full expression profile of a cell as its query, defined by
438 either a single representative cell or the centroid of a set of cell profiles. Thus, SCimilarity’s cell-
439  Dbased search bypasses the manual curation requirements and biases inherent in defining a gene
440 signature. In cases where such a gene signature is desired, SCimilarity can compute a robust
441  signature for a cell state across studies.

442

443  Exploration of transcriptionally-similar populations across a vast atlas of human scRNA-seq data
444  provides critical context to a cell population of interest. First, observing a query population across
445  many similar studies shows that the original observation was reproducible, a key for subsequent
446  scientific research®®. Second, SCimilarity queries can connect results from independent studies.
447  While one study may find a cell population in a disease, another may show similar cells with
448  functional characterization, allowing us to formulate a new hypothesis on the functional properties
449  of disease-associated cells.

450
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451  This is illustrated by how SCimilarity allowed us to search for and identify FM®-like cells across
452  tissues and disease states, construct a cross-study set of explanatory marker genes, and uncover a
453  cell culture system that elicits a similar FM®-like state in vitro. Modeling FM®s from readily
454  available PBMCs is exceptionally valuable, because isolation of cells from human lung explants
455 is prohibitive for many functional assays. Surprisingly, in addition to fibrotic lung, FM®s were
456  present in multiple tumor types, particularly PDAC, a heavily fibrotic cancer, where macrophages
457 play an important role in mediating the associated fibrosis and have been linked to tumor
458  progression®. The identification of a common FM® state across fibrosis, cancer, and infection
459  suggests a broader role for these cells in the damage response and tissue remodeling processes
460 across diseases. Moreover, SCimilarity’s search identified FM®-like cells in an in vitro study— an
461  observation that could not have been gleaned by reviewing the paper or based on the description
462  of the culture system — but that we validated in the lab. The variations we observed between the
463  original and replicate in vitro experiment may be attributed to differences in culture duration, cell
464  extraction from the hydrogel, lymphocyte proportions, or other batch effects. Furthermore, these
465 results invite new hypotheses, such as whether the 3D hydrogel provides key ECM-like
466  environmental cues that promote an FM®-like state and induction of remodeling genes, such as
467  MMP9 and SPP1, and which factors can be added to drive an even stronger FM® phenotype. Thus,
468  SCimilarity provides a powerful framework to iteratively generate and validate such experimental
469  hypotheses.

470

471  SCimilarity is not appropriate for all applications and will need further improvements to continue
472  to scale with exponential data growth and to more comprehensively span human biology as the

473  Human Cell Atlas continues to grow. Training SCimilarity requires Cell Ontology labels.
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474  Fortunately, sScRNA-seq data sharing practices are increasingly relying on using the Cell Ontology
475  for standardization. However, the Cell Ontology itself is a large, yet incomplete, effort. Cell states
476  are only considered in training if they are recognized in the Cell Ontology, and the number of these
477  states is growing rapidly. Furthermore, while we trained SCimilarity on vast amounts of data,
478  cancer cells and cell lines were deliberately withheld from training due to lack of clear cell type
479  identity and therefore may not be well represented. In addition, in our experience, we see poor
480 performance on fetal samples, likely due to most of the training data being sourced from adult
481  tissues.

482

483  The current data integration and cell search models provide generalizable representations of 22.7M
484  single-cell profiles across the human body, and include a Python API for querying cell profiles of
485 interest. Future improvements to SCimilarity could include pre-training on the massive amounts
486  ofunlabeled data, effectively exposing the model to more cell states and more technical variability
487  during training. With effective representations we can more easily combine embeddings to include
488  other species or data modalities. We believe that SCimilarity brings a new framework to single-
489  cell genomics, enabling re-use of rich public data resources through instantaneous queries and
490  demonstrates how this can be used to provide novel biological insights.

491
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Methods

SCimilarity model architecture and loss function

Model architecture

The SCimilarity model consists of one fully connected encoder and one decoder stage and reuses
the same encoding network three times per training triplet, such that updates to the model after
each batch are shared equally for each subsequent batch of training triplets. The decoder stage is
not part of the conventional triplet loss architecture, but is included to compute a mean squared

error (MSE) reconstruction loss.

Expression profiles are reduced through an encoder network, starting from 28,231 genes through
three hidden layers with dimensions 1,024, 1,024, and 128. The 128-dimensional outputs are unit
length normalized, forcing all low dimensional cell representations to lie on the surface of a
hypersphere. During training, the input layer is subjected to 40% dropout, zeroing out many gene
expression values at random, and each hidden layer is subjected to 50% dropout rates for
maximum regularization '.

While hyperspheric spaces have been infrequently used for representation of single-cell profiles
2. the triplet loss model often uses hypersphere embeddings to ensure consistency between the
model hyperparameters *. During triplet loss training, the objective is to place cells of different
types sufficiently far apart. The minimum desired distance between cells of different types is

called the margin. By fixing the volume of the embedding space to the surface of a unit length

1
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64-dimensional hypersphere, the margin is interpreted consistently between model runs. Without
normalization, cells can be placed up to an infinite distance apart, rendering the margin

meaningless.

Triplet loss training

To learn features that place data points considered similar near each other, the loss function
depends on distances between data points embedded in a learned low dimensional latent space,
described with:
2
dx,y) = llIf(x) = fWII,
where x and y are two high dimensional vectors (here, cell profiles), passed through a neural

network encoder f().

The triplet loss model learns from three vectors at a time: the anchor (x?), positive (xf) and

negative (xl_). The anchor and positive vectors are considered similar, whereas the anchor and

negative are dissimilar.

The model parameters are iteratively updated to decrease the number of triplets where the
distance between the anchor and negative data vectors is insufficiently large relative to the

distance between the anchor and the positive points, thus minimizing the triplet loss function:

N
Zmax(d(x;l,x?) - d(x?x?) +q, 0)

i

triplet N
where o is the margin, which denotes how much further the negatives should be from the anchor

than the positives, and i is the index of the triplet.
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Reconstruction loss training

The reconstruction loss is computed on the anchor cell only, because each anchor cell is used
only once as an anchor within a batch. The reconstruction loss is defined as:
N 4 @ 2
3| —a ||
— i 2

MSE N
where N is the number of anchor cells in a batch, set to N=1000 in SCimilarity, and g() is the

function learned by the neural network decoder stage.

Combined loss function

Adding a reconstruction loss to classification models has been shown to improve generalization *
through a regularization effect. The SCimilarity loss function combines the triplet loss and

reconstruction loss functions as follows:

J— — k *
L= (1 B) LMSE + B Ltriplet

where 8 is a weighting term in [0, 1]. = O corresponds to a conventional autoencoder, and
B = 1 corresponds to a pure triplet loss model. Empirically, B = 0.001 performed best on the
cell search task (query model) and = 1 performed best on batch integration (integration

model) (Extended Data Fig. 2a).

Use of Cell Ontology terms and relationships

Authors may annotate cell types at different granularities, which confounds triplet sampling by
introducing cell type annotations with hierarchical relationships that cannot be unambiguously
defined as either similar or dissimilar. As such, cell type annotations used for training are defined

using standardized Cell Ontology terms and valid triplets are restricted to cells without vertical
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Cell Ontology relationships between members of the triplet. A vertical relationship is defined as
any directed path of one or more ancestor-descendant relationships in the Cell Ontology network.
Thus, there are three binary relations defined for annotation: (1) similar pairs with identical
annotations (e.g., “T cell” and “T cell”), (2) dissimilar pairs with non-vertical ontology
relationships (e.g., “CD4-positive, alpha-beta T cell” and “CD8-positive, alpha-beta T cell””), and
(3) ambiguous pairs with vertical relationships (e.g., “T cell” and “CD4-positive, alpha-beta T
cell”). Positives are drawn from cells similar to the anchor, negatives are drawn from cells

dissimilar to the anchor, and cells that are ambiguous to the anchor are excluded from sampling.

GEO data aggregation

334 human scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO)’.
Multiple filtering steps were used to restrict the datasets analyzed to samples from human tissue,
that were generated using the 10x Chromium platform, and which reported unnormalized gene
count data that could be automatically processed. To select appropriate datasets, search criteria
were designed for the Biopython Entrez search tool (Cock et al., 2019) to find GEO studies that
had specific properties, such as metadata keywords, file formats, and species. Then, using
GEOparse®, the GEO text metadata was downloaded for each sample and searched for
blacklisted words in the metadata or download URLs (e.g., “smartseq”, “trizol”, and “fasta”) to
further filter out samples that were not generated using 10x Chromium. Data for samples and
corresponding download links that passed the metadata filter stage were automatically

downloaded. No datasets were realigned. 753 studies were identified for download. A set of

import functions was designed for the most common file type formats (.mtx, .h5ad, and gene
4
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expression matrices in .tsv or .csv). Any dataset that could not be successfully downloaded or
read in was discarded. Once read in, each sample was automatically tested for count data and
gene names that match a reference gene list or gene name mapper before saving each file in a
uniform h5ad format for later processing. This resulted in a total of 334 published studies that

were not duplicates of studies found in CELLXGENE 7 for use in our analysis.

Data preprocessing

All UMI count data were natural log normalized per-cell with a scaling factor of 10,000 using the

scanpy.pp.normalize to target(adata, 10000) and scanpy.pp.loglp(adata) functions from scanpy?”.

Manual data aggregation, normalization and filtering

Datasets with author-provided cell type annotations used for training were obtained from Tabula
Sapiens’, 10x Genomics'’, the single nucleus cross-tissue atlas'', and the human lung cell atlas'
and subjected to the same preprocessing procedures as programmatically-downloaded datasets.
Cell type annotations were manually converted into terms contained within the Cell Ontology.
Cells that with annotations that did not clearly map to the Cell Ontology were not included in

training.
Cell profiles previously annotated as doublets, scored as doublets by infer doublets from
Pegasus'®, had >20% total UMI counts aligned to mitochondrial genes, or had <500 total genes

detected were removed.

Preparation of training and test data
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Training and test sets were chosen such that entire studies were held out of training (rather than
holding out a subset of cells from each dataset) (Extended Data Table 1); there were 52 and 14
datasets in the training and test sets, respectively. This presents a harder generalization challenge
and reflects how users are likely to use SCimilarity. Test datasets were selected to reflect the

tissue diversity within the training sets.

Selection of Cell Ontology terms for training

Cell Ontology terms were selected for training if they were observed in at least two separate
studies in the training set. Terms that appeared in only one study were not used because
SCimilarity is trained by comparing cells across studies. To rescue single-study terms, the
immediate parent terms were inspected across studies. If a single-study term’s parent was
observed in at least two other datasets then the original cell type annotation was replaced with
the coarser parent term (Extended Data Table 1). Otherwise, all cells with this annotation were
removed from training. As the size or annotation quality of training data grows, the number of

Cell Ontology terms meeting the inclusion criteria are expected to increase.

Triplet sampling and semi-hard triplet mining

During training, batches of 1,024 cells are sampled from the training datasets. This sampling is
weighted by study and cell type to have a similar number of observations per cell type from each

study per batch.
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Because of the maximum operation within the loss function, not all viable triplets contribute to
the gradient, and are categorized as easy, semi-hard or hard, based on their contribution to the

gradient.

Easy negatives are defined as:

2 2
Jred = rad| < flrad - redy|| + «

Easy negatives provide no information to the gradient because the distances between the cells in

the low dimensional embedding already satisfy the objective, such that the maximum operation

returns 0 to the triplet loss sum. Because there are many easy triplets after training a small

number of batches, randomly sampling triplets does not train models effectively. To accelerate

training, triplets are mined to search for training triplets that are especially informative for model

training’.
Hard negatives are defined as:

2 2

ey = s > [Jredy = ey + «
Hard negatives contribute the largest quantity to the loss function, because they do not fit and are
far from fitting the desired latent relationships. In practice, hard triplets are rarely useful for
training, because they contribute to model collapse during training®'*. Hard negatives may be

enriched for incorrectly annotated cells.

Semi-hard negatives are defined as:

|HERRENAER)

2 2
|2 - |Jfeh - red|| < «
2
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Semi-hard negatives contribute small amounts to the loss function because they nearly satisfy the
desired distances between cells in low dimensional space. Meaning, the negative cell profile is
further from the anchor cell than the positive cell, but by a less than desired distance a. Semihard

negatives are often used in triplet loss models’.

Overall, we chose to train SCimilarity using only semi-hard negative triplets.

Explainability framework and marker gene identification

An explainability framework was used to identify genes whose variation leads to the most
significant variations of the learned features and, in turn, affects the relative distance between

different cells.

An explanation for a pair of cells is defined as those genes which have the greatest impact on the
relative distance between those cells in latent space. Given d(x,y) = ||f(x) — f (y)||§ , the

distance between two cell profiles x and y in latent space f, the integrated gradient approach

(Sundararajan et al. 2017) was extended to compute the importance of each gene i in the

comparison between cell profiles x and y as:

1
Importancei (x) = | max ((xi — yi)' 0% [ dd(y + a;x(x—y). )

a=0 t

High values of Importancei (x) correspond to genes that are highly expressed in x, and their

modification (i.e., gradient) affects d(x, y) more. Intuitively, the expression of each gene in y is

gradually increased to match x along the trajectory from x to y. Through this trajectory, the rate

8
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of change of d(x,y) is computed for each gene, aggregating the results. The score is scaled by

(xl_ — yl,). In order to identify genes that are up regulated in a subset of interest, genes i with

expression x <y, are ignored.

This approach differs in several key ways from the standard integrated gradient approach,
because: (1) gradients are computed with respect to a learned distance instead of output features,

(2) attributions where x <y, are ignored and (3) the sign of the integral is ignored due to the

complex interactions between features.

To identify important genes for a cell type t, a set of cells TE{tl, - tN} with cell type t and a set
of cells Be{bl, - bN} with cell types different from t are randomly sampled. Pairwise
importances are computed for each pair of cells t, in T and bj in B and aggregated to obtain a

signature that characterizes cell type t as:

N
Signaturei(t) = %Z Importancei(tc, bc)

c=1

Since the pairwise comparisons are averaging relative comparisons, the sampling of {b p o b N}

impacts the signature scoring. To obtain general cell type markers, a background of all cell types
is sampled. To obtain a cell state specific signature, a background of cells in other states of the
same type are sampled. Confidence intervals for each gene i are computed as the standard error

of the mean. This results in an attribution score for each gene.
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Training and evaluation metrics

SCimilarity score

The SCimilarity score is defined as the inverse of the cosine distance of two embedded cell

profiles:

1
1—cec.
i

SCimilarity score =

where c, and ¢, are the embeddings of the i™ and /™ cell profiles with unit length, respectively and

i # J. The threshold for similarity varies in practice by question and cell types.

Ontology-aware modified average silhouette width

Average silhouette width (ASW) has been used to assess the performance of data integration
tasks on multiple scRNA-seq studies' by quantifying how coherently grouped each cell type is
across studies. The silhouette width of cell profile i of cell type t typically compares the average
intra-cell type distances a(i) and the average inter-cell type distances b(i) between cells of type t

and cells of the nearest cell type, defined as:

a(i>=ml_—1 Y d@i))

JEC,i#]

b N — . 1 d .’.

® min -m:jezc )
]

where, typically, C1 is the set of cells of author-annotated type t and C] are the cells of all other

cell types.
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However, the ASW as typically formulated does not account for differences in granularity of cell

type annotations across studies. To address those, a modified formulation is used where C[
contains cell type label t and all of its ontological descendants and C ; is the set of all other cell

types, except cells of type t and any of its ontological descendants or ancestors. For example, if
computing a(i) for a T cell, distances between all types of T cell terms (“CD4-positive”,
“alpha-beta T cell”, “CD8-positive”, “alpha-beta T cell and CD4-positive”, “CD25-positive”,
“alpha-beta regulatory T cell”, etc) are members of the “T cell” term. Ancestor terms of T cells,
such as the term “Lymphocytes”, are not members of the T cell class (nor a T cell subset) but are

excluded from the summation indices in the calculations of a(i) and b(i).

Correlation to predefined gene signatures

To test how the SCimilarity distance represents distance between predefined cell states, a

signature-based definition of cell state was correlated with the SCimilarity score (above).

For each cell in the test set, both the signature score'® and a SCimilarity score vs. the cell query
are calculated, yielding two vectors, and Pearson’s correlation coefficient is calculated between

the vectors.

Selection of models for downstream analysis

Models were run in triplicate along 6 different  parameters ranging from [0,1] and one query
model and one integration model were selected based on two criteria. First, query performance
was tested by how well cell similarities to a query FM® profile correlated with a signature

defining that same state (TREM2, GPNMB, SPP1, CCL18, MMP9, CTSK, APOE, CHITI, LIPA,
11
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CHI3L1, CD14, APOCI). Second, ontology aware ASW was used to quantify how well the cells
of the same type from different studies intermixed in SCimilarity’s representation. The query
model was selected as the model with the highest query test performance. The integration model
was selected from the f=1 models. Since the three replicates had nearly identical integration
scores, we picked the model with the highest query test score as it performed much better on the
query task than the other high integration models. (Extended Data Fig. 2a). The selected
integration model had more study mixing than the query model according to the study (NMI) and

study adjusted rand index (ARI)".

Benchmarking vs. integration methods

SCimilarity's integration and cell search models were each compared to three batch integration
methods: Harmony'’, scVI', and scArches". A test dataset of 34,713 cells was created by
sampling cells from lung tissue studies with uniform probability across studies. The modified
ASW (above), adjusted Rand index (ARI) and normalized mutual information (NMI) were
calculated as integration benchmark metrics. Harmony was run using the wrapper in Pegasus'’

following the workflow described in

https://pegasus-tutorials.readthedocs.io/en/latest/_static/tutorials/batch_correction.html. scVI and

scArches were run using the scvi-tools workflow described in
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/harmonization.html and

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scarches_scvi_tools.html,  respectively.

As the scArches workflow requires a reference dataset, 101,133 cell profiles were sampled

across all training datasets with uniform probability across studies for use as the reference.
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Cell type annotation

Cell type assignments were performed by k-nearest neighbors (k-NN) classification combined
with an annotated reference set. SCimilarity's reduced dimensionality latent space was used to
determine k=50 nearest neighbors in the reference data set to a query cell 7, and the query cell

was annotated either by tallying votes based each cell’s annotation with either equal weights,

Celltype (t) = arg max (Z %)
t

iEt

or with weights by distance in SCimilarity's reduced dimensionality latent space:

B 1
Celltype (t) = arg max ( yie:t d(xy) )

To allow users to annotate new datasets from a restricted list of cell types of interest, excluding
(blocklisting) or limiting to (safelisting) specified cell type annotations is used, and is
recommended when feasible to improve interpretability and reduce spurious annotations.
However, extensive blocklisting or safelisting can slow the annotation process significantly,

because the pre-built k&-NN indices are not optimized for a modified target cell type list.

kNN parameters for annotation and querying

Two separate ANN indices were used for efficient and accurate queries. For cell type annotation,
a 7.9M cell kNN index was built using hnswlib* with ef construction = 1000 and M = 80.
Searching this &-NN found the 50 nearest neighbors (default behavior) for cell type annotation

(k=50) and ef=100.

13
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Cell query relied on a separate 22.7M cell £-NN index also built using hnswlib. This index was
constructed with the following parameters: ef construction=400 and M=50. The search
parameters are set by the user’s request for how many similar cells to return. Default behavior is

set to £=1000 and ef=k, but in practice k can vary widely depending on the use case.

Outlier filtering

To filter outlier cells prior to visualization and downstream analysis, SCimilarity’s score is used
to flag cells that are out of distribution. Cells with a SCimilarity score < 50 from the nearest cell
in the training set were removed prior to further analysis. Many of these cells were from
immortalized cell lines, and reflect their difference from primary cells (and absence in the
training). Note that if out of distribution cells are not removed, these cells won’t be accurately

annotated and can confound visualization.

Macrophage query preprocessing

To prepare a cell query for FM® cells, a public dataset’ (GSE136831 and

https://www.ipfcellatlas.com) was preprocessed with the same steps for all ingested data and

scored use Scanpy’s scanpy.tl.score genes function with a gene signature of SPPI, TREM2,
GPNMB, MMP9, CHITI, and CHI3LI Scanpy®. The average profile of the top 50 scoring cell
was embedded using SCimilarity and used as the input query to SCimilarity’s cell search model

and used throughout analyses in Fig. 5 and 6.
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Important genes and pathway enrichment

Important genes were identified using SCimilarity’s attribution score method. This method
requires two cell groups to compare, identifying which genes differ between them. Here we used
1,000 cells that were considered similar to the average FM® profile calculated from Adams et al.
as the FM®-like group. This query excluded any cells from the Adams et al. dataset. To compare
to the FM®-like group comparison, 1,000 dissimilar monocytes and macrophages were
randomly sampled (any monocyte or macrophage that was not within the top 10,000 most FM®

similar results).

Reactome pathways enriched for the 100 genes with the top importance scores for FM® were
determined using the method provided in the ReactomePA* R package, with multiple hypothesis
correction using the Benjamini-Hochberg method and the background gene universe restricted to
the ~28,000 genes included in SCimilarity. Pathways were considered significant if they met the

criteria of adjusted p-value (Q) < 0.05 and gene count > 5.

3DCS culture of PBMC

Peripheral blood was sourced from healthy volunteers at Genentech that were consented as per
IRB. Samples were collected in heparin collection tubes and subsequently diluted 1:1 with a
solution of PBS containing 2% FBS and 1mM EDTA. 30 ml of diluted blood was overlayed onto
15 ml of Lymphoprep (STEMCELL Technologies) in a 50ml tube and centrifuged at 3,000 rpm

for 20 minutes at 4°C. PBMCs were isolated from the interphase after centrifugation and diluted
15
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with PBS containing 2% FBS and 1 mM EDTA and centrifuged at 300 x g for 10 minutes at 4°C.
Cell pellet was washed again with PBS containing 2% FBS and ImM EDTA. Red blood cell
lysis was performed on the cell pellet by resuspending in RBC Lysis Buffer (Cell Signaling
Technology) for 5 minutes at room temperature, followed by inactivation with addition of RPMI
media containing 10% FBS. Cells were pelleted by centrifugation at 300 x g for 10 minutes at
4°C and subsequently washed with PBS containing 2% FBS and 1 mM EDTA. Cells were then
resuspended in a 10% sucrose solution at a concentration of 2 x 106 cells/ml right before plating
into 3D hydrogel culture. Puramatrix hydrogel (Corning) was vortexed for 30 seconds and
diluted 1:1 with a 20% sucrose solution. 250 pl of diluted Puramatrix hydrogel was mixed with
250 ul of resuspended PBMCs and plated in a 24-well tissue culture plate. To induce gelation,
RPMI media was overlaid onto the hydrogel/PBMC mixture and incubated for 5 minutes in a
37°C incubator with 5% CO,. Overlayed media was aspirated off of the 3D hydrogel and washed
twice with RPMI media, after which 600 pl of 3DCS media, formulated as previously described
(Xu, Y. et al., Protein & Cell 2022, 13:808-824) was overlaid onto the hydrogel. Cells were
cultured in a 37°C incubator with 5% CO?2 for 8 days, with media exchanges every other day. On

day 8, culture cells were recovered from the 3D hydrogel for scRNA-seq.

Single cell RNA-Seq from 3DCS cultures

Wells of 3D hydrogel culture were washed with PBS, followed by recovery of the hydrogel and
cells by gentle pipetting in PBS buffer. This solution was centrifuged for 5 minutes at 750 x g
and the hydrogel/PBMC pellet was resuspended in TrypLE solution (ThermoFisher Scientific)
and incubated at 37°C for 10 minutes. RPMI media with 10% FBS was added and the solution

was centrifuged for 5 minutes at 750 x g. The resultant pellet was washed twice with PBS to
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remove hydrogel matrix debris. PBMCs were resuspended in PBS and passed through a 40 uM
filter, pelleted by centrifugation at 300 x g for 5 minutes, and resuspended in RPMI media with
10% FBS. The cell solution was subjected to FACS to isolate cells from any remaining hydrogel
debris and recovered cells were concentrated to 1,000 cells/ul in RPMI media with 10% FBS for

downstream profiling by scRNA-seq.

ScRNA-seq was performed using the Chromium Single Cell 3’ Library and Gel bead kit v3 (10x
Genomics), following manufacturer’s user guide. Briefly, cell density and viability of single-cell
suspension were determined by Vi-CELL XR cell counter (Beckman Coulter). Cell density was
used to impute the volume of single cell suspension needed in the reverse transcription (RT)
master mix, aiming to achieve ~10,000 cells per sample. cDNAs and libraries were prepared
following the manufacturer’s user guide (10x Genomics). Libraries were profiled by Bioanalyzer
High Sensitivity DNA kit (Agilent Technologies) and quantified using Kapa Library
Quantification Kit (Kapa Biosystems). Libraries were sequenced on a NovaSeq 6000 (Illumina)
following the manufacturer’s specifications with 28+90 bp paired-end reads at a depth of 101M
mate-pair reads. Sequencing reads were aligned to the GENCODE 27 Basic gene model on the
human genome assembly GRCh38 using Cell Ranger v6.0 (10x Genomics, Pleasanton, CA,

USA).

Individual samples were genetically demultiplexing using the singularity container provided with
Souporcell 2.0 *. No genotype information was provided to the pipeline. Since PBMCs were

provided from 3 donors, a k of 3 was used to cluster the samples into 3 genotypes. These samples

17


https://paperpile.com/c/VXPfRH/kB5i
https://doi.org/10.1101/2023.07.18.549537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.18.549537; this version posted August 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

were pre-processed consistently with the previously ingested samples and then embedded using

SCimilarity to enable direct comparisons to Xu et al as well as the rest of the public datasets.

SCimilarity cell type classification was applied to both public and validation cells using
SCimilarity with the following safelist: B cell, CD4-positive, alpha-beta T cell, CD8-positive,
alpha-beta T cell, conventional dendritic cell, hematopoietic stem cell, macrophage, monocyte,

natural killer cell, plasma cell, plasmacytoid dendritic cell.

Code performance benchmarking
Benchmarks were run on servers with 8 Intel Xeon E5-2650 v4 CPUs with 2.20GHz cores and a

total of 128 GB of RAM.

Query runtimes, using the pre-built approximate A~-NN index”” to find the top » most similar
cells, had an average runtime of 50 milliseconds. Some API functions use the query and
summarize the metadata within one function call. That function timing is dominated by
summarizing metadata and computing statistics from the query results, which requires an
additional 3.3 seconds. This performance differs from an exhaustive comparison (Fig. 5b), where
the query was directly compared against 2.58M monocytes and macrophages with a runtime of 2

seconds.

Cell signatures were calculated using scanpy.tl.score genes. The scanpy score genes function

was applied to the already normalized data. This runtime totalled 2 hours, 46 minutes and 20
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seconds when it was applied across each h5ad file (one file per tissue sample). Even though h5ad

files were not stored with any compression, file reading was a dominant factor in runtime.

Code availability

Code and tutorials are available at https:/github.com/Genentech/scimilarity.

Licensing

e Code license: Apache 2.0

e Pretrained model weights, KNN and pre-built indices license: CC-BY-SA 4.0
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended data Fig. 3
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Fig. 1. SCimilarity metric learning enables cell search in large human scale atlases.

2 a,Cell Querying with SCimilarity. Left: A query cell profile is compared to a searchable reference
3 collection of 22.7M profiles from 399 studies. Center: Sample with similar cells are identified and
4  returned with information about the original sample conditions, including unexpected tissue, in
5  vitro or diseases contexts. Right: A SCimilarity score is computed between the query cell and each
cell within a tissue sample. b, Triplet loss training. From left: 52 training and 14 test annotated (by
the Cell Ontology) datasets from across the body are sampled for cell triplets (an anchor, a
8  “positive” (anchor-similar), and a “negative” (anchor-dissimilar) cell; based on Cell Ontology
9 annotations) to train a neural network that embeds similar cells closer than dissimilar ones

(Methods).
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Fig. 2. SCimilarity learns a universal representation that generalizes to new datasets.

a, A large-scale reference database of public gene expression datasets across tissues and diseases.
Number of cells (circle size) across tissues (outermost light blue circles) and disease states (middle
green circles) across individual studies (innermost circles) in the training (gold), test (pink) or
5 unannotated (purple) datasets. b, Integration between studies without feature selection or batch
correction. Uniform manifold approximation and projection (UMAP) embedding of cell profiles
(dots) generated on a 128-dimensional latent space from SCimilarity’s integration model
8  (Methods) for cells from 21 tissues (panels) and 239 unique studies (color code). For tissues with
more than a million cell profiles, the UMAP embedding was computed on a random uniform

subsampling of 1 million cells from the studies for that tissue.
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Fig. 3. SCimilarity accurately annotates cell types across the human body

a, SCimilarity cell annotation. A new unannotated cell (red, bottom left) is embedded in
SCimilarity’s common low-dimensional space and compared against the precomputed reference
for cell type annotation (0.02 seconds per cell). b-d, SCimilarity annotation of a kidney scRNA-
seq dataset. (b,c) UMAP embedding of cell profiles (dots) from SCimilarity’s latent representation
of a held out kidney dataset' colored by author provided (b) or SCimilarity predicted (c¢) cell type
annotations. (d) Percentage (color bar and number) of author-annotated cells (columns) with each
SCimilarity annotation (rows). e-h, SCimilarity-corrected author annotations. UMAP embedding
of cell profiles (dots) from SCimilarity’s latent representation for cells either author-annotated or
predicted as CD4" or CD8" T cells, colored by author (e) or SCimilarity (f) annotations, and by
CD8A4 (g) or CD4 (h) expression. i, Classification performance. F1 score (y axis) for SCimilarity
vs. author annotation for each cell population (dot) from each of 14 held out datasets (x axis).

Right: Distribution of F1 scores.
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Fig. 4. SCimilarity annotations scale to tens of millions of cells from hundreds of datasets

a,b Predicted cell types group by biologically-accurate lineages. a, Hierarchical clustering
dendrogram of centroids of predicted cell types (leaves) in SCimilarity latent space, colored by
lineage. Clustering was performed using cosine distance and average linkage. b, UMAP of
2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored by clusters (as

labeled in a).
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Fig. 5. SCimilarity cell search reveals FM®s across ILD and other diseases

a, SCimilarity cell search. A query cell profile (bottom left) is embedded into the learned
SCimilarity representation along with the reference of 22.7M cells, and its nearest neighbors,
determined by distance from the embedded query in the low dimensional space, are tabulated by
study, tissue and disease. b-e, Identification of FM®s across tissues by SCimilarity cell search. (b)
SCimilarity scores (y axis, logio scale, and color bar) against a FM® query profile for each
annotated monocyte or macrophage (dot) from 1,041 in vivo tissue samples from 143 studies (x
axis), ordered by mean SCimilarity score. (¢) Number of cells (circle size) across tissues
(outermost light blue circles), disease states (middle green circles), and individual studies
(innermost circles, colored by fraction of monocytes and macrophages with SCimilarity scores
>95' percentile of all FM® SCimilarity scores (log scaled color bar)). Circle size for disease and
individual study are scaled relative to other diseases in the same tissue, or studies in the same
disease. (d,e) UMAP embeddings of cell profiles (dots) from the SCimilarity representation (query
model) from an ILD? (d) and PDAC? (e) studies, colored by FM® query SCimilarity scores (color
bar). f, Identification of FM®s associated genes by importance. Integrated gradients attribution
scores (y axis, top) for the genes (x axis top, and columns, bottom) with top 50 scores for FM®s
vs. lung macrophages (Methods), and their membership (red: presence; grey: absence) in
published macrophage signatures (bottom, rows). Left color bar: AUC of the ranking of each
published signature in SCimilarity attribution scores (AUC=1: all n signature genes are listed as
the top n genes by SCimilarity attribution scores for distinguishing FM®). Martinez-M1 and -M2:

macrophage states expected to be different from FM®s. P-value: hypergeometric test
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Fig. 6. SCimilarity cell search identifies in vitro cells matching an in vivo FM® state and a
novel in vitro disease model.

a, Identification of FM®s-like cells across in vitro samples by SCimilarity cell search. SCimilarity
scores (y axis, logio scale, and color bar) against a FM® query profile for each annotated myeloid
cell (dot) from 40 in vitro samples (x axis) (from 17 studies), ordered by mean SCimilarity score.
Gray boxes: Day 0 and Day 5 samples from a 3D-hydrogel culture system®*. b-f, 3D conditions
yield FM®-like cells in vitro in validation experiments. b, SCimilarity scores (y axis, logio scale,
and color bar) against a FM® query profile for each annotated myeloid cell (dot) from the original
3D-hydrogel culture system dataset* and from 3 donors in the validation experiment (x axis). ¢,
Mean expression (dot color) and proportion of expressing cells (dot size) of genes (rows) with high
SCimilarity attribution score for distinguishing FM®s in vivo (as in Fig. 5f) for myeloid cells in
the original 3D-hydrogel culture system* and the validation experiment (columns). d-f, UMAP
embedding from SCimilarity’s query model latent space of cell profiles (dots) from day 0 (d) or
day 5 (e) of the original 3D-hydrogel culture system* or from day 8 of the replication experiment
(f), colored by FM® SCimilarity score (color bar). g, replication of Xu et al.’s original finding of
HSC expansion. Proportion of HSCs between Xu et al.’s day 0, day 5 and our validation day 8

time points.
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Extended Data figure legends

Extended Data Fig. 1. Data compendium to assemble a pan-human reference.

a,b, Cumulative number of cells (a, y axis) and samples (b, y axis) profiled by sc/snRNA-seq (and
matching our filters; Methods) over time (x axis). Doubling time is calculated based on the
5  publication date from the most recent 150 data points (dashed red line). ¢, Author-annotated cell
types used in training. Number of author-annotated cells (color bar) from each Cell Ontology type
(rows) and study (columns) used for SCimilarity model training. d, Tissues and diseases used in
training. Number of studies (heatmap tiles, text and color bar) and cells (margins, y or x axis) used

for model training from each tissue (rows, right y-axis) and disease (columns, top x-axis).
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Extended Data Fig. 2. SCimilarity training details and hyperparameter search.

a, Impact of triplet and autoencoder loss mixing on model performance, where the leftmost column
is a traditional autoencoder and the rightmost column is exclusively triplet loss. The FM® retrieval
test quantifies how much correlation there is between signature scoring of FM®s and SCimilarity
score to FM®. The multiple tissue integration test quantifies an ontology-aware average silhouette
width where a higher score denotes more coherent clusters for each cell type. The bottom row
shows UMAPs for each loss function mix for nine lung scRNA-seq datasets, colored by study. b,
Benchmarking SCimilarity to established data integration models. Ontology-aware average
silhouette width (ASW, y axis, top), normalized mutual information (NMI, y axis, bottom left) and
adjusted Rand index (ARI, y axis, bottom right) for SCimilarity’s integration and search models
and for scVI, scArches, and Harmony (x axis), each applied to nine lung datasets. ¢, Outlier cells
from different types and tissues. Fraction (x axis) of cells from different disease (left) or healthy

(right) tissue samples with low similarity (SCimilarity score <50) to training data.
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Extended Data Fig. 3. Validation of large-scale integration and annotation.
a, Unconstrained cell annotation. UMAP embedding of single cell profiles (dots) from

SCimilarity’s latent representation of the held out scRNA-Seq kidney data' (as in Fig. 3b,c,
colored by cell annotation without constraining target labels to the scope of author-provided labels
in this studyor by expression of select marker genes of regulatory T cells (b-d) or myofibroblasts
(e). f, UMAP of 2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored
by tissue (as in Fig. 4b). g,h, UMAP embedding of cell profiles predicted by SCimilarity as
fibroblast/myofibroblast (g) or monocytes/macrophages (h), colored by study (for the 60 studies
contributing most cells). i, SCimilarity cell-type important genes match cell-type specific
signatures. Fraction of cell type-specific differentially expressed genes (from Eraslan et al.”) (y
axis) captured by top-n important genes (x axis) for that cell type by SCimilarity’s integrated

gradients attribution analysis.
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Extended Data Fig. 4. FM®s among monocytes and macrophages.

a-c, Agreement between SCimilarity and traditional FM® cell scores. a,b UMAP embedding of
2,578,221 monocyte and macrophage cell profiles (dots) from SCimilarity’s latent space
representation colored by SCimilarity score using a prototypical FM® cellular profile defined from
Adams at el.® (a) or Scanpy’s signature score for FM® associated genes (b). (¢) Scanpy FM® gene
signature score (x axis) and FM® SCimilarity score (y axis) for each cell (shown as density). d,
Agreement between SCimilarity FM® important genes and published FM® signatures. ROC curve
of the fraction of each study’s gene sets (y axis) captured within the top genes by SCimilarity
attribution ranking (x axis). e, FM® important genes are enriched for relevant pathways. False
discovery rate (-logio(q value), hypergeometric test, x axis) for enrichment of Reactome pathways
(y axis, Q < 0.05 and gene count > 5) with the 100 genes with the top integrated gradients
attribution scores for the FM® query (ranked by score). Color: ratio of important genes within a
Reactome pathway to the total size of the pathway. f-h, Expression of known and novel genes
associated with FM®s. Pseudobulked gene expression values for ILD tissue samples for known

marker TREM?2 (f) and enriched genes not previously described (g,h).
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