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Abstract 22 

Single-cell RNA-seq (scRNA-seq) studies have profiled over 100 million human cells across 23 

diseases, developmental stages, and perturbations to date. A singular view of this vast and growing 24 

expression landscape could help reveal novel associations between cell states and diseases, 25 

discover cell states in unexpected tissue contexts, and relate in vivo cells to in vitro models. 26 

However, these require a common, scalable representation of cell profiles from across the body, a 27 

general measure of their similarity, and an efficient way to query these data. Here, we present 28 

SCimilarity, a metric learning framework to learn and search a unified and interpretable 29 

representation that annotates cell types and instantaneously queries for a cell state across tens of 30 

millions of profiles. We demonstrate SCimilarity on a 22.7 million cell corpus assembled across 31 

399 published scRNA-seq studies, showing accurate integration, annotation and querying. We 32 

experimentally validated SCimilarity by querying across tissues for a macrophage subset originally 33 

identified in interstitial lung disease, and showing that cells with similar profiles are found in other 34 

fibrotic diseases, tissues, and a 3D hydrogel system, which we then repurposed to yield this cell 35 

state in vitro. SCimilarity serves as a foundational model for single cell gene expression data and 36 

enables researchers to query for similar cellular states across the entire human body, providing a 37 

powerful tool for generating novel biological insights from the growing Human Cell Atlas.  38 

 39 

  40 
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INTRODUCTION 41 

Characterizing the contexts in which cells employ different expression programs is critical for 42 

deciphering their functional role in health and disease. To date, well over 100 million individual 43 

cells have been profiled using single-cell or single-nucleus RNA-seq (sc/snRNA-seq) across 44 

homeostatic, disease, and perturbed conditions1. Individually, even the largest multi-tissue 45 

scRNA-seq atlases2–4 capture only a relatively small portion of cell states across human tissues; 46 

collectively, these atlases provide a vast, pan-human view of cell and disease biology that has the 47 

potential to address fundamental questions about human biology1. By aggregating across atlases, 48 

we may uncover biological insights and enable investigations into cell states that are common 49 

across multiple studies of the same organ and conditions (e.g., similar neural progenitor 50 

populations across independent studies of brain development), different organs and conditions 51 

(e.g., inflammatory fibroblasts in both ulcerative colitis and cancer); or between the human body 52 

and in vitro lab models (e.g., regulatory T cells genetically perturbed to recapitulate in vivo cells 53 

from diseased tissue).  54 

 55 

Despite this promise and the rapid growth in data, our ability to realize the potential of cross-56 

datasets, pan-body, analyses remains limited and hampered by the need for laborious manual 57 

curation, harmonization, and dataset aggregation by expert analysts, as well as the painstaking 58 

process of selecting datasets, standardizing cell type annotations, and finding a common low-59 

dimensional representation. As a result, most aggregation efforts have been limited in their 60 

biological scope and number of datasets, with some recent notable exceptions focused on genes 61 

rather than cell representation5–8.  62 

 63 
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To leverage and query the massive scale and richness of available single-cell atlases, we need both 64 

(1) a foundational model of cell states with an effective representation for single-cell profiles 65 

across different cell types and conditions that can be used across many applications without 66 

retraining; and (2) a measure of cell similarity that is robust to technical noise, scales to hundreds 67 

of millions of cells, and accurately generalizes to datasets and cell states not observed in the 68 

training. Established unsupervised methods to learn low dimensional representations of scRNA-69 

seq profiles, such as Principal Component Analysis (PCA) or autoencoders3,9–11, faithfully preserve 70 

information from the input3,9–11 and may even eliminate technical variation for explicitly defined 71 

batches. However, they do not learn general features that encode relationships between cells 72 

needed to represent and query new data sets in the context of cross-study, pan-tissue biological 73 

variation. 74 

 75 

Machine learning methods, metric learning in particular, have successfully learned representations 76 

for diverse entities and a measure of similarity between them, especially in image analysis. For 77 

example, metric learning models for facial recognition are explicitly trained to embed images of 78 

the same person closer together than images of different people, by exploiting visual features that 79 

are critical to distinguish individuals12. Once trained, images are embedded into a low-dimensional 80 

space, where distances between images represent a measure of similarity based on the learned 81 

features. Users can then query with an image not in the training set to find additional similar images 82 

that are nearby in the latent space and depict the same person. We reasoned that, analogously, 83 

metric learning could provide a meaningful representation of and similarity metric for cell profiles. 84 

By training a model using annotated scRNA-seq data, we can learn a low dimensional 85 

representation that places similar cells near each other and dissimilar cells farther apart. If learned 86 
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from a sufficient diversity of cell profiles, such a representation would, in turn, provide a 87 

foundational model of cells and would allow efficient searches for cells with similar expression 88 

states (Fig. 1a).  89 

 90 

Here, we introduce SCimilarity, a class of deep metric learning models that quantify similarity 91 

between single-cell expression profiles (SCimilarity score) and provide a single-cell gene 92 

expression foundational reference model to systematically query for comparable cell states across 93 

tissues and diseases. SCimilarity uses a training set of diverse author-annotated cell profiles to 94 

learn a universal representation and distance metric that facilitates efficient searches across a 95 

massive reference meta-atlas for the most expression-similar cells. To train a foundational model 96 

that can be broadly applied to many applications across tissues and studies, we built a 97 

programmatic pipeline for massive data import and automated standardized curation and used it to 98 

assemble a corpus of 22,699,774 cells from 399 datasets spanning a broad range of organs, systems 99 

and conditions across the human body. After training and testing on a subset of 66 studies and 100 

7.9M single-cell profiles, the learned models generalize well, representing and quantifying 101 

similarities between 14.9M cells from another 347 studies excluded from training. By tuning a 102 

single parameter during SCimilarity’s training, we yield models optimized for either data 103 

integration and visualization of millions of cells across hundreds of studies, or for fast and efficient 104 

(millisecond) queries of a new cell state across tens of millions of cells. Finally, we illustrate the 105 

power of SCimilarity by querying for a fibrosis-associated macrophage (FMΦ) subset previously 106 

identified in interstitial lung disease (ILD), finding comparable cell populations (but with different 107 

annotated names and signatures) in other ILD studies, as well as in new contexts, including 108 

COVID-19, different tumors including pancreatic ductal adenocarcinoma (PDAC), and even 109 
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healthy lung (at low abundance). Surprisingly, SCimilarity recovered FMΦ-like cells among 110 

PMBCs cultured and stimulated in a 3D hydrogel system in vitro, which we experimentally 111 

validated, producing an FMΦ-like in vitro cell system for future functional studies of a tissue-112 

resident cell state. Overall, SCimilarity preserves expression diversity across cells in an integrated 113 

foundational model of a human cell atlas, and allows a novel scaled cell search across organs, 114 

systems, and conditions, as a powerful framework for generating biological insights and 115 

experimentally testable hypotheses. 116 

 117 

RESULTS 118 

SCimilarity: novel similarity metrics and representations for single-cell expression profiles  119 

SCimilarity is a family of models that blend unsupervised representation learning and supervised 120 

metric learning, through simultaneously optimizing two objectives : (1) a supervised triplet loss 121 

function, which is used to embed expression profiles from matching cell types close together, 122 

effectively integrating cells of the same type across studies13–15, and (2) an unsupervised mean 123 

squared error (MSE) reconstruction loss function, which encourages the model to preserve 124 

variation from the input expression profiles, capturing subtler differences in expression patterns 125 

within cells of the same type, such as those related to tissue residency of immune cells (Fig. 1b, 126 

Methods). The balance of these two objectives, set by a single hyperparameter, β, determines the 127 

properties of the representation (Methods). Increasing the relative weight of the triplet loss 128 

function improves dataset integration, while increasing the relative weight of the reconstruction 129 

loss improves querying performance. Therefore, different loss function weightings within the same 130 

model architecture can address different applications. 131 
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 132 

We train SCimilarity with tens of millions of cell triplets sampled from data with author-provided 133 

standardized cell type annotations from the Cell Ontology16 (Fig. 1b, Methods). Specifically, each 134 

training triplet consists of similar anchor and positive cells (i.e., same cell type) from different 135 

studies, while anchor and negative cells are dissimilar (i.e., distinct cell types; from the same or a 136 

different study). However, even with standardized Cell Ontology terms, some cell type 137 

comparisons are ambiguous due to arbitrary differences in annotation granularity across studies 138 

(e.g., it is ambiguous if cells annotated as “T cell” in one study and “CD4+ T cell” in another are 139 

similar or dissimilar). To address this, SCimilarity excludes cell pairings with such vertical 140 

ancestor-descendant Cell Ontology relationships from training triplets, and learns only from cells 141 

that are either explicitly similar or unambiguously dissimilar (Fig. 1b, Methods). By sampling 142 

only unambiguous triplets we eliminate the need to manually flatten or harmonize every cell type 143 

annotation and are able to seamlessly scale the training set across dozens of studies.  144 

 145 

A learned SCimilarity representation of 22.7M cells across dozens of tissues and disease 146 

datasets collated by an automated curation and processing pipeline  147 

To test SCimilarity models, we assembled a compendium of sc/snRNA-seq datasets across human 148 

biology. We focused on studies generated with one experimental platform (10x Genomics 149 

Chromium droplet-based scRNA-seq) and data publicly available on the Gene Expression 150 

Omnibus (GEO)17 or CELLxGENE18. These data capture much of the published scRNA-seq data, 151 

and were generated with similar library preparation protocols and computational pipelines19. There 152 

were 753 human sc/snRNA-seq datasets matching our search criteria and keywords as of March 153 

23rd, 2021 (with Biopython Entrez20, Methods). The number of samples and cells matching our 154 
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criteria has at least doubled every 6 months between December 2018 and March 2021; (Extended 155 

Data Fig. 1a,b). We programmatically downloaded 13,401,599 cell profiles from 333 of the 156 

identified studies with their respective GEO metadata and unnormalized gene count matrices 157 

(Methods, Extended Data Table 1). We manually ingested another 66 well-annotated studies 158 

from either the CELLxGENE portal18 or from large studies and consortia not available through 159 

GEO that passed the same dataset filtering criteria (Methods). Overall, we assembled a corpus of 160 

399 studies comprising 22,699,774 cells from 33,815 tissue samples with 184 unique Tissue 161 

Ontology terms21, 132 Disease Ontology terms22, and 204 Cell Ontology cell type terms16, with 162 

each Cell Ontology term appearing in at least two separate datasets (Fig. 2a, Extended Data Fig. 163 

1c, Extended Data Table 1).  164 

 165 

We trained SCimilarity models with a training set of 7,913,892 single-cell profiles from 52 studies 166 

with Cell Ontology author annotations that reflected a diversity of conditions and tissues 167 

(Extended Data Fig. 1d, Extended Data Table 1), sampling 50,000,000 of the most informative 168 

triplets (Methods). We withheld 14 studies comprising 1,384,283 cells with Cell Ontology 169 

annotations for testing the learned representation and metric (Fig. 2a). We excluded tumor, cell 170 

lines, and iPSC-derived samples from the training and test sets, because cell identity of tumor cells 171 

and cell lines can be ambiguous.  172 

 173 

Tuning of SCimilarity’s reconstruction and triplet loss functions yields models optimized for 174 

integration vs. cell search tasks 175 

We examined six different blends for SCimilarity’s objective function, varying the relative 176 

weighting of the reconstruction and triplet loss functions, and finding that the two loss function 177 
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components gave rise to different behaviors in a trained model. Briefly, we assessed the models 178 

on two tasks – data integration and searching for cells similar to a query profile – using studies 179 

entirely held out from training. To evaluate data integration, we quantified how coherently cells of 180 

each type are clustered and how distinct each cell type cluster is from other clusters. To this end, 181 

we created an ontology-aware variation of average silhouette width23 to quantify integration 182 

capabilities across datasets without harmonizing cell type annotations (Methods). To evaluate our 183 

cell search distance metric, we compared searches with SCimilarity to gene signature scoring 184 

(Methods). The higher the correlation between these two quantities, the more our similarity metric 185 

corresponds to traditional signature-based similarity to represent a cell state of interest. 186 

 187 

Models with higher triplet loss weighting scored higher on integration benchmarks, while models 188 

with higher reconstruction loss weighting encoded distances between cells in a manner better 189 

correlated with differences in representative expression signature scores (Extended Data Fig. 190 

2a,b). Pure triplet loss, which is calculated at the level of cell type labels, does not reliably preserve 191 

subtle cell state differences, such as tissue specificity or disease response within cells of the same 192 

type. Mean squared error reconstruction loss complements this by preserving more subtle gene 193 

expression patterns, while the triplet loss ensures that cells of the same type are embedded closely 194 

together. Based on the biological question, a user can tune this balance to yield the highest utility. 195 

We thus pursued two SCimilarity models: an integration model, optimized for the task of learning 196 

a low dimensional representation that groups cells by type rather than by study; and a cell search 197 

model that is optimized for the task of retrieving cells with an expression state similar to that of a 198 

query cell across hundreds or thousands of scRNA-seq datasets (Extended Data Fig. 2a, 199 

Methods).  200 
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SCimilarity’s latent space representation filters outlier cells and integrates test datasets 201 

without batch correction  202 

We next benchmarked if SCimilarity’s latent space representation from the integration model 203 

generalizes well to cells from entire datasets held out of training compared to other methods. In a 204 

low-dimensional embedding, unannotated cell profiles from nine lung studies (7 training set, 2 test 205 

set) visually intermix well when embedded into SCimilarity’s learned 128-dimensional space 206 

(Extended Data Fig. 2a). SCimilarity’s data integration model scored higher than Harmony, scVI, 207 

and scArches on integration tasks by the ontology-adjusted ASW measure of cluster coherence, 208 

but scored lower for normalized mutual information (NMI) and adjusted rand index (ARI), which 209 

measure the extent of study mixing within each cluster (Extended Data Fig. 2b). Thus, without 210 

directly training on the full data set or performing additional batch correction, the integration 211 

model clusters cells by type rather than study at a level that is competitive with existing methods 212 

trained directly on the data. This demonstrates that the triplet loss learns features that capture 213 

meaningful biology, while reducing technical sources of noise and avoiding overfitting to the 214 

training set.  215 

 216 

SCimilarity quantifies a confidence level for each cell’s representation, providing both outlier 217 

detection and an assessment of the representation’s relevance in the context of new data. When 218 

computing the representation of a new cell, the further outside the scope of model training it is, 219 

the harder it is for the model to accurately represent it. Using SCimilarity’s score to quantify how 220 

distant a query cell is from the training data distribution provides a heuristic about the quality and 221 

scope of the representation – a cell scoring as highly similar to cells seen during training can be 222 

confidently represented by the model. Overall, 79.5% of in vivo holdout cells had high 223 
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representation confidence. Tissue samples with particularly low representation confidence, such 224 

as stomach (n = 0 training studies), fetal gut (n=1), and bladder (n=0) were either absent or poorly 225 

represented in training (Methods, Extended Data Fig. 2c), suggesting that more labeled training 226 

datasets from those tissues could improve the model’s representation. Similarly, 43.8% of in vitro 227 

cell profiles were considered low confidence due to poor matching to the training set (which 228 

excluded in vitro samples). 229 

 230 

We combined SCimilarity’s ability to generalize to new datasets and its confidence-based filtering 231 

to systematically generate meta-atlases for 21 different human tissues without labor-intensive 232 

dataset harmonization and no additional training (Fig. 2b). If datasets have already been embedded 233 

using SCimilarity, this task only requires concatenation of cells of interest and standard 234 

visualization workflows.  235 

 236 

SCimilarity assigns an unannotated query cell to a cell type by finding similar cells in a 237 

labeled reference  238 

We next used SCimilarity to find the cells in the annotated reference that are most similar to an 239 

unannotated query cell profile, and then annotate the query cell accordingly (Fig. 3a, Methods). 240 

This approach is distinct from established annotation methods in that it (1) relies on a large, pan-241 

human annotated cell repository, (2) employs a measure of expression similarity, and (3) classifies 242 

at the single cell rather than cluster level, providing greater transparency into the classification 243 

itself. Thus, users can see which individual cells, studies, and tissues are driving the classification 244 

decision. Moreover, since each cell is annotated independently, no clustering or associated 245 
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parameter selection, such as the number and resolution of clusters, are required. A user can choose 246 

to annotate a cell’s profile by comparing it either to a desired subset of cell types (e.g., for a tissue-247 

specific query) or to the entire annotated cell reference. Because SCimilarity is built using metric 248 

learning, finding the most similar cells is the same as retrieving the query cell’s nearest neighbors. 249 

This operation is extremely efficient with the hnswlib algorithm24, where searching a precomputed 250 

approximate nearest neighbor index of all the annotated reference cells in SCimilarity’s latent 251 

space takes just 20 milliseconds (Methods). Low SCimilarity scores to reference cells flag an 252 

outlier query cell, which may be either a cell type that is not within the reference or a query cell of 253 

low quality.  254 

 255 

SCimilarity quickly and accurately assigned cell types for entire datasets held out from training, 256 

as well as for the rest of the 22.7M cell corpus. When limiting potential cell types to author-selected 257 

labels, 94.5% of SCimilarity’s predicted labels from healthy kidney samples25 match the author-258 

provided cell type annotations (Fig. 3b-d, Methods). In some cases, where SCimilarity’s 259 

predictions did not match author-provided annotations, SCimilarity’s predictions were more 260 

accurate or granular. For example, 94% of the cells that the authors25 annotated as CD4+ T cells 261 

but SCimilarity annotated as CD8+ T cells express CD8A or CD8B (and none express CD4), 262 

supporting SCimilarity’s annotation (Fig. 3e-h). Separately, when allowing cells to be annotated 263 

as any cell type in the repository, 6.3% of the author-annotated CD4+ T cells were reannotated by 264 

SCimilarity as regulatory T cells (Tregs) (Extended Data Fig. 3a), most of which (85.2%) 265 

expressed at least one Tregs marker (FOXP3, IL2RA, or IKZF2, Extended Data Fig. 3b-d). 266 

Similarly, 1.8% of author-annotated mesenchymal stem cells (Fig. 3b) were reassigned by 267 

SCimilarity as myofibroblasts (Extended Data Fig. 3a) and 93% of those express the 268 
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myofibroblast-associated gene ACTA2 (Extended Data Fig. 3e). Cell type prediction was rapid, 269 

taking 3-5 seconds to embed and annotate 10,000 cells from a dataset. Overall, across all 14 test 270 

datasets spanning 78 Cell Ontology terms, 71% of the cell populations had high agreement (>85% 271 

of the cell population) between author and SCimilarity annotations (Fig. 3i). SCimilarity 272 

performed poorly on one dataset (Cano-Gomez et al.26), due to fine granularity and redundancy of 273 

author labels (e.g., CD4+ ɑβ T cells, helper T cell, memory T cell, naive T cell, and regulatory T 274 

cell).  275 

 276 

We used SCimilarity’s cell type assignment to rapidly annotate all 22.7M cell profiles in one 277 

common model, newly-annotating 13,401,599 profiles and reannotating 9,298,175 author-278 

annotated profiles (Methods) to a single set spanning 74 cell type labels (21 coarser lineages) from 279 

25 simplified tissue categories (Fig. 4a,b, Extended Data Fig. 3f). A consistent annotation across 280 

datasets facilitates cross-study and cross-tissue analyses of one cell type or lineage, as SCimilarity 281 

can extract cells from hundreds of studies, aggregating vast biological diversity across one cell 282 

type. For example, we readily aggregated 1,172,325 fibroblasts and myofibroblasts (Extended 283 

Data Fig. 3g) and 2,507,879 monocytes and macrophages (Extended Data Fig. 3h) from 284 

hundreds of studies profiling different primary tissue samples.  285 

 286 

SCimilarity’s representations comprise of interpretable biological features 287 

To interpret SCimilarity’s annotations, we quantified the importance of each gene for cell type 288 

annotations assigned by the foundational query model using Integrated Gradients, a method that 289 

identifies the impact on model predictions of small disturbances to the input expression profiles 290 

(Methods). For example, the top gene attributions that distinguish lung alveolar type 2 (AT2) cells 291 
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are surfactant genes SFTPA2, SFTPA1, SFTPB, and SFTPC, consistent with known AT2 cell 292 

function27. SCimilarity learned these without prior knowledge of cell type specific genes, 293 

signatures, or highly variable genes. Overall, SCimilarity’s top importance genes agreed well with 294 

differentially expressed marker genes for 17 different matched types3 with the exception of rare 295 

neuroendocrine cells (average AUC=0.84, Extended Data Table 2, Extended Data Fig. 3i). 296 

Thus, SCimilarity’s representation captured known and validated biological markers within its 297 

features. 298 

 299 

Cell search identifies fibrosis-associated macrophages across tissues and diseases  300 

With a single representation and common definition of cell types, we hypothesized that 301 

SCimilarity could help elucidate the role of tissue-resident immune cells. As a case study, we 302 

focused on macrophages, given their remarkable plasticity in cell states and their important 303 

specialized roles in tissue repair, regeneration, and fibrosis28,29. Recent scRNA-seq studies in 304 

fibrotic diseases, including lung fibrosis, cancer, obesity, and COVID-19 have reported seemingly-305 

similar SPP1+ fibrosis-associated macrophage (FMΦ) populations30–38. However, because each 306 

study identified them independently, using different nomenclatures and marker gene signatures to 307 

define subsets, it is unclear how similar these cell states are. Moreover, it is unknown how broadly 308 

associated such cell states are with other diseases, especially those with prominent fibrosis. We 309 

reasoned that SCimilarity’s cell search should allow us to query our corpus with an FMΦ cell 310 

profile from one study to identify similar cells across other tissues and conditions, thereby 311 

clarifying the cell identity of similarly-described cells and the conditions in which FMΦ arise (Fig. 312 

5a).  313 

 314 
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We queried our model with the FMΦ cell profile, searching for similar cells across 2,578,221 cells 315 

annotated by SCimilarity as monocytes or macrophages in the 22.7M cell corpus (Fig. 5a). 316 

SCimilarity queries can use either an individual cell profile or a centroid of multiple cell profiles. 317 

Here, we input the centroid profile of a macrophage cell subset from Adams et al.30 that we defined 318 

using a gene signature consisting of the extracellular matrix remodeling and fibrosis-associated 319 

genes SPP1, TREM2, GPNMB, MMP9, CHIT1, and CHI3L1 (Methods). In two seconds, 320 

SCimilarity exhaustively computed the pairwise similarity of our query profile to each of the 2.6M 321 

in vivo profiles of the cells it annotated as monocytes or macrophages in our corpus (Fig. 5b and 322 

Extended Data Fig. 4a). Alternatively, simply identifying the 10,000 cells with the highest 323 

SCimilarity score takes 0.05 seconds (Methods). By comparison, a more conventional approach 324 

that scores each cell in the corpus with a literature-defined FMΦ gene signature took 2 hours and 325 

46 minutes (Extended Data Fig. 4b). The gene signature and SCimilarity scores are broadly 326 

correlated (𝑟 = 0.50, 𝑝 < 10!300, Extended Data Fig. 4a-c), showing that the granular cell state, 327 

not just the cell type, is well-represented in SCimilarity query score and embedding. 328 

 329 

The SCimilarity search showed that FMΦs are common in ILD lung samples in our compendium, 330 

as well as present in some cancers, including uveal melanoma, pancreatic ductal adenocarcinoma 331 

(PDAC), and colon cancer (Fig. 5c-e, Extended Data Table 3). Of the top 1% of monocytes and 332 

macrophages most similar to our query, 99.1% were from lung tissue and 87.2% from ILD and 333 

COVID-19 lung samples. The prevalence of FMΦ-like cells in the lung varied by disease: the 334 

proportion of monocytes and macrophages that were FMΦ-like was 20% and 4% in two systemic 335 

sclerosis (SSc) studies, 6.1% on average (SE = 1.4%) across 13 ILD studies (excluding SSc), 1.2% 336 

on average across seven COVID-19 lung studies (SE = 0.5%, 0% in non-lung COVID-19 data) 337 
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and 0.4% in 19 studies annotated as “healthy”, “normal” or with no disease annotation (SE = 338 

0.2%). While abundant in SSc lung, FMΦ-like cells were much rarer (0.14% of myeloid cells) in 339 

SSc skin39. There were some FMΦ-like cells in other fibrotic diseases and tissues, such as one 340 

primary pancreatic ductal adenocarcinoma (PDAC) tumor40 (0.85% of 1,171 myeloid cells) and 341 

one liver metastasis41 of PDAC (0.5% of 1,199 cells). Thus, while our query FMΦ profile was 342 

derived from IPF samples, it uncovered FMΦ-like cells in many contexts, including SSc-ILD, 343 

COVID-19 lung and PDAC. These results confirm previous observations of FMΦs in lung 344 

injury38,42 and suggest a role for FMΦ-like cells across other organs and diseases.  345 

Integrated gradients analysis reveals commonalities between SCimilarity score and 346 

established gene signatures 347 

Because FMΦ-like cells are detected by SCimilarity across many ILD studies, we hypothesized 348 

that the cells captured by different marker genes and nomenclature in different studies refer to the 349 

same biological cell state. To test this, we applied integrated gradients to quantify each gene’s 350 

importance when SCimilarity distinguishes FMΦs from randomly sampled monocytes and 351 

macrophages (Methods). The genes identified as important for distinguishing FMΦs are enriched 352 

in key fibrotic processes, including extracellular matrix remodeling (MMP7, MMP9, FN1, SDC2, 353 

SPARC, SPP1), lipid metabolism and lipoprotein clearance (APOC1, APOE, LPL, LIPA), and 354 

damage-associated molecular pattern recognition (MARCO, MSR1) (Fig. 5f, Extended Data Fig. 355 

4d,e, Extended Data Table 4). While SCimilarity found many FMΦ marker genes that were 356 

already discussed in the literature, such as TREM2 (Extended Data Fig. 4f), it also identified 357 

novel genes elevated in FMΦs such as HLA-DQA1 and RGS1 (Extended Data Fig. 4g,h).  358 

 359 
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The genes with the highest importance scores in the SCimilarity embedding of FMΦs significantly 360 

overlap (p<6.7x10-13) with published gene signatures describing similar macrophage populations 361 

or with genes whose differential expression defined each study’s macrophage population of 362 

interest (Extended Data Table 5). While cell signatures from IPF lung had a high signature match 363 

(AUC ≥ 0.95), the negative control signatures of M1 and M2 macrophages43 had lower ones at the 364 

bottom three (AUC = 0.85 (2.65x10-2) and AUC=0.92 (p<4.92x10-6), respectively; Fig. 5f, 365 

Extended Data Fig. 4d).  366 

 367 

FMΦ-like cells identified among ex vivo stimulated peripheral blood mononuclear cells 368 

(PBMCs) help establish a novel human cell model  369 

Research to understand the role of a novel cell state or subtype in disease, such as FMΦs, benefits 370 

greatly from the ability to model, perturb, and study the cells in vitro. However, there is currently 371 

no systematic way to identify in vitro culture conditions that generate cells that match cells 372 

identified in vivo. To accelerate development of an in vitro FMΦ system, we used SCimilarity to 373 

search for FMΦ-like cells across in vitro stimulated samples with the goal of identifying previously 374 

employed experimental conditions that might resemble the tissue cell state. We filtered our full 375 

reference cell collection for in vitro and ex vivo studies containing at least 50 monocytes or 376 

macrophages, resulting in 41,926 monocytes and macrophages across 40 samples from 17 such 377 

studies. These span diverse and complex conditions, such as lung organoids infected with SARS-378 

CoV-244, ex vivo treated acute myeloid leukemia samples45, or PBMCs stimulated with morphine 379 

and lipopolysaccharide46. 380 

 381 
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The cells most similar to our query FMΦ expression profile were monocytes grown as part of a 382 

heterogenous PBMC culture for 5 days in a 3D hydrogel culture system that was designed for 383 

expansion of hematopoietic stem cells (HSCs) from PBMCs47 (Fig. 6a, Extended Data Table 6). 384 

This study is unrelated to lung biology and its authors did not report any results for myeloid cells. 385 

Nevertheless, while no FMΦ-like cells were present among myeloid cells on day 0, 15% of cells 386 

grown for five or more days in this system were highly similar to FMΦs (SCimilarity score >25) 387 

and expressed TREM2, GPNMB, CCL18 and MMP9 (Fig. 6b-e). This was a surprising result, 388 

because of the seeming irrelevance of the study to fibrosis or macrophage biology and the rarity 389 

of FMΦ-like cells in PBMC samples in vivo.  390 

 391 

To validate SCimilarity’s prediction of an FMΦ-like cell culture condition, we used a similar 392 

protocol to replicate the 3D hydrogel system47, followed by scRNA-seq to assess the yield of 393 

FMΦ-like cells (Fig. 6b,c,f). While relative cellular abundances differed between the original day 394 

5 data (Xu et al, 2022) and our day 8 replication of the same conditions (Methods), 10.1% of all 395 

cells in the Day 8 experiment were predicted as HSCs by SCimilarity (Fig. 6g). Moreover, 41.5% 396 

of the myeloid cells in day 8 validation experiments from three donors were predicted as FMΦ-397 

like macrophages (Fig. 6b,f, 37.1%, 42.5%, and 44.9%; SCimilarity score > 25). Furthermore, 398 

FMΦ hallmark genes, such as CCL18, GPNMB, SPP1, and TREM2, were enriched in the myeloid 399 

compartment of our replicate experiment compared to day 0 conditions (Fig. 6c). This experiment 400 

validates that an FMΦ-like population can be generated from PBMCs in culture conditions. Taken 401 

together, these results demonstrate SCimilarity’s ability to interrogate publicly available data at 402 

scale, query a reference of in vivo and in vitro data for biologically similar conditions, and help 403 

identify experimental conditions to reproduce those results in laboratory settings. 404 
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 405 

DISCUSSION 406 

To date, more than a hundred million human cells have been profiled across tissues in health and 407 

disease, and such data continue to grow exponentially. This growing human cell atlas should be 408 

the starting point for researchers aiming to readily search, query and compare cell states of interest 409 

across different protocols, treatments, tissues, and diseases.  410 

 411 

SCimilarity systematically annotates and repurposes tens of millions of expression profiles from 412 

hundreds of studies, to create an integrated, searchable and queryable foundational model of pan-413 

human cellular diversity. SCimilarity is comprised of three key features: (1) a 22.7M cell human 414 

scRNA-seq data repository (at present), (2) a foundational model for single cell gene expression 415 

with a generalizable embedding and similarity metric (which could readily be retrained for larger 416 

datasets), and (3) methods to efficiently query across this entire pan-body human cell atlas. 417 

Together, these provide new context, capabilities, and workflows for extracting insights from new 418 

and existing scRNA-seq datasets in the human cell atlas and other atlases. SCimilarity’s 419 

framework architecture can easily accommodate quick updates as data continue to grow. 420 

 421 

Because SCimilarity can generalize to cells and datasets not seen in the training, cell profiles can 422 

be added as entirely new studies or removed by applying new cell filters without recomputing the 423 

low dimensional representations. This flexibility allows us to change the analysis’ scope at any 424 

point without redoing work, enabling modularized workflows for scRNA-seq analysis. 425 

Downstream tasks, such as cell type annotation, cell queries, and gene signature derivation all are 426 

simplified using SCimilarity’s generalized low dimensional representation and can be applied to 427 
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cells not seen during training without informing the model about the importance or variability of 428 

specific genes during training. Outlier detection helps both filter out technical errors and highlight 429 

potentially novel cell subsets. Although generalized models that do not require recomputing low 430 

dimensional representations would alleviate time and expertise barriers that currently impede 431 

researchers, to the best of our knowledge, generalization has rarely been optimized in single-cell 432 

expression analysis.  433 

 434 

There is no single objective measure of similarity, or dissimilarity, between cellular profiles. 435 

Curated gene signatures are useful when a small number of explanatory genes are sufficient to 436 

define a cell state. SCimilarity uses the full expression profile of a cell as its query, defined by 437 

either a single representative cell or the centroid of a set of cell profiles. Thus, SCimilarity’s cell-438 

based search bypasses the manual curation requirements and biases inherent in defining a gene 439 

signature. In cases where such a gene signature is desired, SCimilarity can compute a robust 440 

signature for a cell state across studies.  441 

 442 

Exploration of transcriptionally-similar populations across a vast atlas of human scRNA-seq data 443 

provides critical context to a cell population of interest. First, observing a query population across 444 

many similar studies shows that the original observation was reproducible, a key for subsequent 445 

scientific research48. Second, SCimilarity queries can connect results from independent studies. 446 

While one study may find a cell population in a disease, another may show similar cells with 447 

functional characterization, allowing us to formulate a new hypothesis on the functional properties 448 

of disease-associated cells.  449 

 450 
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This is illustrated by how SCimilarity allowed us to search for and identify FMΦ-like cells across 451 

tissues and disease states, construct a cross-study set of explanatory marker genes, and uncover a 452 

cell culture system that elicits a similar FMΦ-like state in vitro. Modeling FMΦs from readily 453 

available PBMCs is exceptionally valuable, because isolation of cells from human lung explants 454 

is prohibitive for many functional assays. Surprisingly, in addition to fibrotic lung, FMΦs were 455 

present in multiple tumor types, particularly PDAC, a heavily fibrotic cancer, where macrophages 456 

play an important role in mediating the associated fibrosis and have been linked to tumor 457 

progression49. The identification of a common FMΦ state across fibrosis, cancer, and infection 458 

suggests a broader role for these cells in the damage response and tissue remodeling processes 459 

across diseases. Moreover, SCimilarity’s search identified FMΦ-like cells in an in vitro study– an 460 

observation that could not have been gleaned by reviewing the paper or based on the description 461 

of the culture system – but that we validated in the lab. The variations we observed between the 462 

original and replicate in vitro experiment may be attributed to differences in culture duration, cell 463 

extraction from the hydrogel, lymphocyte proportions, or other batch effects. Furthermore, these 464 

results invite new hypotheses, such as whether the 3D hydrogel provides key ECM-like 465 

environmental cues that promote an FMΦ-like state and induction of remodeling genes, such as 466 

MMP9 and SPP1, and which factors can be added to drive an even stronger FMΦ phenotype. Thus, 467 

SCimilarity provides a powerful framework to iteratively generate and validate such experimental 468 

hypotheses. 469 

 470 

SCimilarity is not appropriate for all applications and will need further improvements to continue 471 

to scale with exponential data growth and to more comprehensively span human biology as the 472 

Human Cell Atlas continues to grow. Training SCimilarity requires Cell Ontology labels. 473 
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Fortunately, scRNA-seq data sharing practices are increasingly relying on using the Cell Ontology 474 

for standardization. However, the Cell Ontology itself is a large, yet incomplete, effort. Cell states 475 

are only considered in training if they are recognized in the Cell Ontology, and the number of these 476 

states is growing rapidly. Furthermore, while we trained SCimilarity on vast amounts of data, 477 

cancer cells and cell lines were deliberately withheld from training due to lack of clear cell type 478 

identity and therefore may not be well represented. In addition, in our experience, we see poor 479 

performance on fetal samples, likely due to most of the training data being sourced from adult 480 

tissues. 481 

 482 

The current data integration and cell search models provide generalizable representations of 22.7M 483 

single-cell profiles across the human body, and include a Python API for querying cell profiles of 484 

interest. Future improvements to SCimilarity could include pre-training on the massive amounts 485 

of unlabeled data, effectively exposing the model to more cell states and more technical variability 486 

during training. With effective representations we can more easily combine embeddings to include 487 

other species or data modalities. We believe that SCimilarity brings a new framework to single-488 

cell genomics, enabling re-use of rich public data resources through instantaneous queries and 489 

demonstrates how this can be used to provide novel biological insights. 490 

 491 
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Methods

SCimilarity model architecture and loss function

Model architecture

The SCimilarity model consists of one fully connected encoder and one decoder stage and reuses

the same encoding network three times per training triplet, such that updates to the model after

each batch are shared equally for each subsequent batch of training triplets. The decoder stage is

not part of the conventional triplet loss architecture, but is included to compute a mean squared

error (MSE) reconstruction loss.

Expression profiles are reduced through an encoder network, starting from 28,231 genes through

three hidden layers with dimensions 1,024, 1,024, and 128. The 128-dimensional outputs are unit

length normalized, forcing all low dimensional cell representations to lie on the surface of a

hypersphere. During training, the input layer is subjected to 40% dropout, zeroing out many gene

expression values at random, and each hidden layer is subjected to 50% dropout rates for

maximum regularization 1.

While hyperspheric spaces have been infrequently used for representation of single-cell profiles

2, the triplet loss model often uses hypersphere embeddings to ensure consistency between the

model hyperparameters 3. During triplet loss training, the objective is to place cells of different

types sufficiently far apart. The minimum desired distance between cells of different types is

called the margin. By fixing the volume of the embedding space to the surface of a unit length

1
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64-dimensional hypersphere, the margin is interpreted consistently between model runs. Without

normalization, cells can be placed up to an infinite distance apart, rendering the margin

meaningless.

Triplet loss training

To learn features that place data points considered similar near each other, the loss function

depends on distances between data points embedded in a learned low dimensional latent space,

described with:

𝑑 𝑥, 𝑦( ) = 𝑓(𝑥) − 𝑓(𝑦)| || |
2
2

where and are two high dimensional vectors (here, cell profiles), passed through a neural𝑥 𝑦

network encoder .𝑓()

The triplet loss model learns from three vectors at a time: the anchor ( ), positive ( ) and𝑥
𝑖
𝑎 𝑥

𝑖
𝑝

negative ( ). The anchor and positive vectors are considered similar, whereas the anchor and𝑥
𝑖
𝑛

negative are dissimilar.

The model parameters are iteratively updated to decrease the number of triplets where the

distance between the anchor and negative data vectors is insufficiently large relative to the

distance between the anchor and the positive points, thus minimizing the triplet loss function:

𝐿
𝑡𝑟𝑖𝑝𝑙𝑒𝑡

= 𝑖

𝑁

∑𝑚𝑎𝑥 𝑑 𝑥
𝑖
𝑎,𝑥

𝑖
𝑝( ) − 𝑑 𝑥

𝑖
𝑎,𝑥

𝑖
𝑛( ) + α, 0( )

𝑁

where is the margin, which denotes how much further the negatives should be from the anchorα

than the positives, and i is the index of the triplet.

2
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Reconstruction loss training

The reconstruction loss is computed on the anchor cell only, because each anchor cell is used

only once as an anchor within a batch. The reconstruction loss is defined as:

𝐿
𝑀𝑆𝐸

= 𝑖

𝑁

∑ 𝑥
𝑖
𝑎 −𝑔(𝑓(𝑥

𝑖
𝑎))|||

|||
|||

|||
2

2

𝑁  

where N is the number of anchor cells in a batch, set to N=1000 in SCimilarity, and is the𝑔()

function learned by the neural network decoder stage.

Combined loss function

Adding a reconstruction loss to classification models has been shown to improve generalization 4

through a regularization effect. The SCimilarity loss function combines the triplet loss and

reconstruction loss functions as follows:

𝐿 = (1 − β) * 𝐿
𝑀𝑆𝐸

 + β * 𝐿
𝑡𝑟𝑖𝑝𝑙𝑒𝑡

 

where is a weighting term in [0, 1]. corresponds to a conventional autoencoder, andβ β = 0 

corresponds to a pure triplet loss model. Empirically, performed best on theβ = 1 β = 0. 001

cell search task (query model) and performed best on batch integration (integrationβ = 1

model) (Extended Data Fig. 2a).

Use of Cell Ontology terms and relationships

Authors may annotate cell types at different granularities, which confounds triplet sampling by

introducing cell type annotations with hierarchical relationships that cannot be unambiguously

defined as either similar or dissimilar. As such, cell type annotations used for training are defined

using standardized Cell Ontology terms and valid triplets are restricted to cells without vertical

3
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Cell Ontology relationships between members of the triplet. A vertical relationship is defined as

any directed path of one or more ancestor-descendant relationships in the Cell Ontology network.

Thus, there are three binary relations defined for annotation: (1) similar pairs with identical

annotations (e.g., “T cell” and “T cell”), (2) dissimilar pairs with non-vertical ontology

relationships (e.g., “CD4-positive, alpha-beta T cell” and “CD8-positive, alpha-beta T cell”), and

(3) ambiguous pairs with vertical relationships (e.g., “T cell” and “CD4-positive, alpha-beta T

cell”). Positives are drawn from cells similar to the anchor, negatives are drawn from cells

dissimilar to the anchor, and cells that are ambiguous to the anchor are excluded from sampling.

GEO data aggregation

334 human scRNA-seq datasets were obtained from the Gene Expression Omnibus (GEO)5.

Multiple filtering steps were used to restrict the datasets analyzed to samples from human tissue,

that were generated using the 10x Chromium platform, and which reported unnormalized gene

count data that could be automatically processed. To select appropriate datasets, search criteria

were designed for the Biopython Entrez search tool (Cock et al., 2019) to find GEO studies that

had specific properties, such as metadata keywords, file formats, and species. Then, using

GEOparse6, the GEO text metadata was downloaded for each sample and searched for

blacklisted words in the metadata or download URLs (e.g., “smartseq”, “trizol”, and “fasta”) to

further filter out samples that were not generated using 10x Chromium. Data for samples and

corresponding download links that passed the metadata filter stage were automatically

downloaded. No datasets were realigned. 753 studies were identified for download. A set of

import functions was designed for the most common file type formats (.mtx, .h5ad, and gene
4
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expression matrices in .tsv or .csv). Any dataset that could not be successfully downloaded or

read in was discarded. Once read in, each sample was automatically tested for count data and

gene names that match a reference gene list or gene name mapper before saving each file in a

uniform h5ad format for later processing. This resulted in a total of 334 published studies that

were not duplicates of studies found in CELLxGENE 7 for use in our analysis.

Data preprocessing

All UMI count data were natural log normalized per-cell with a scaling factor of 10,000 using the

scanpy.pp.normalize_to_target(adata, 10000) and scanpy.pp.log1p(adata) functions from scanpy8.

Manual data aggregation, normalization and filtering

Datasets with author-provided cell type annotations used for training were obtained from Tabula

Sapiens9, 10x Genomics10, the single nucleus cross-tissue atlas11, and the human lung cell atlas12

and subjected to the same preprocessing procedures as programmatically-downloaded datasets.

Cell type annotations were manually converted into terms contained within the Cell Ontology.

Cells that with annotations that did not clearly map to the Cell Ontology were not included in

training.

Cell profiles previously annotated as doublets, scored as doublets by infer_doublets from

Pegasus13, had >20% total UMI counts aligned to mitochondrial genes, or had <500 total genes

detected were removed.

Preparation of training and test data

5
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Training and test sets were chosen such that entire studies were held out of training (rather than

holding out a subset of cells from each dataset) (Extended Data Table 1); there were 52 and 14

datasets in the training and test sets, respectively. This presents a harder generalization challenge

and reflects how users are likely to use SCimilarity. Test datasets were selected to reflect the

tissue diversity within the training sets.

Selection of Cell Ontology terms for training

Cell Ontology terms were selected for training if they were observed in at least two separate

studies in the training set. Terms that appeared in only one study were not used because

SCimilarity is trained by comparing cells across studies. To rescue single-study terms, the

immediate parent terms were inspected across studies. If a single-study term’s parent was

observed in at least two other datasets then the original cell type annotation was replaced with

the coarser parent term (Extended Data Table 1). Otherwise, all cells with this annotation were

removed from training. As the size or annotation quality of training data grows, the number of

Cell Ontology terms meeting the inclusion criteria are expected to increase.

Triplet sampling and semi-hard triplet mining

During training, batches of 1,024 cells are sampled from the training datasets. This sampling is

weighted by study and cell type to have a similar number of observations per cell type from each

study per batch.

6
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Because of the maximum operation within the loss function, not all viable triplets contribute to

the gradient, and are categorized as easy, semi-hard or hard, based on their contribution to the

gradient.

Easy negatives are defined as:

𝑓(𝑥
𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑝)|||

|||
|||

|||
2

2
<  𝑓(𝑥

𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑛))|||

|||
|||

|||
2

2
 +  α

Easy negatives provide no information to the gradient because the distances between the cells in

the low dimensional embedding already satisfy the objective, such that the maximum operation

returns 0 to the triplet loss sum. Because there are many easy triplets after training a small

number of batches, randomly sampling triplets does not train models effectively. To accelerate

training, triplets are mined to search for training triplets that are especially informative for model

training3.

Hard negatives are defined as:

𝑓(𝑥
𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑝)|||

|||
|||

|||
2

2
>  𝑓(𝑥

𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑛))|||

|||
|||

|||
2

2
 +  α

Hard negatives contribute the largest quantity to the loss function, because they do not fit and are

far from fitting the desired latent relationships. In practice, hard triplets are rarely useful for

training, because they contribute to model collapse during training3,14. Hard negatives may be

enriched for incorrectly annotated cells.

Semi-hard negatives are defined as:

𝑓(𝑥
𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑛))|||

|||
|||

|||
2

2
 −  𝑓(𝑥

𝑖
𝑎) − 𝑓(𝑥

𝑖
𝑝)|||

|||
|||

|||
2

2

<  α
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Semi-hard negatives contribute small amounts to the loss function because they nearly satisfy the

desired distances between cells in low dimensional space. Meaning, the negative cell profile is

further from the anchor cell than the positive cell, but by a less than desired distance . Semihardα

negatives are often used in triplet loss models3.

Overall, we chose to train SCimilarity using only semi-hard negative triplets.

Explainability framework and marker gene identification

An explainability framework was used to identify genes whose variation leads to the most

significant variations of the learned features and, in turn, affects the relative distance between

different cells.

An explanation for a pair of cells is defined as those genes which have the greatest impact on the

relative distance between those cells in latent space. Given , the𝑑 𝑥, 𝑦( ) = 𝑓(𝑥) − 𝑓(𝑦)| || |
2
2

distance between two cell profiles x and y in latent space f, the integrated gradient approach

(Sundararajan et al. 2017) was extended to compute the importance of each gene in the𝑖

comparison between cell profiles and as:𝑥 𝑦

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑖 
(𝑥) = max ((𝑥

𝑖
− 𝑦

𝑖
), 0)×

α=0

1

∫ ∂𝑑(𝑦 + α × (𝑥 − 𝑦), 𝑦)
∂𝑥

𝑖

|
|
|
|

|
|
|
|
 

High values of correspond to genes that are highly expressed in , and their𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑖 
(𝑥) 𝑥

modification (i.e., gradient) affects more. Intuitively, the expression of each gene in is𝑑 𝑥, 𝑦( ) 𝑦

gradually increased to match along the trajectory from to . Through this trajectory, the rate𝑥 𝑥 𝑦
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of change of is computed for each gene, aggregating the results. The score is scaled by𝑑 𝑥, 𝑦( )

. In order to identify genes that are up regulated in a subset of interest, genes with(𝑥
𝑖

− 𝑦
𝑖
) 𝑖

expression are ignored. 𝑥
𝑖

< 𝑦
𝑖

This approach differs in several key ways from the standard integrated gradient approach,

because: (1) gradients are computed with respect to a learned distance instead of output features,

(2) attributions where are ignored and (3) the sign of the integral is ignored due to the𝑥
𝑖

< 𝑦
𝑖

complex interactions between features.

To identify important genes for a cell type , a set of cells with cell type and a set𝑡 𝑇∈{𝑡
1
,  …,  𝑡

𝑁
} 𝑡

of cells with cell types different from are randomly sampled. Pairwise𝐵∈{𝑏
1
,  …,  𝑏

𝑁
} 𝑡

importances are computed for each pair of cells in and in and aggregated to obtain a𝑡
𝑖

𝑇 𝑏
𝑗

𝐵

signature that characterizes cell type as:𝑡

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
𝑖
(𝑡) = 1

𝑁
𝑐=1

𝑁

∑ 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒
𝑖
(𝑡

𝑐
, 𝑏

𝑐
) 

Since the pairwise comparisons are averaging relative comparisons, the sampling of {𝑏
1
,  …,  𝑏

𝑁
}

impacts the signature scoring. To obtain general cell type markers, a background of all cell types

is sampled. To obtain a cell state specific signature, a background of cells in other states of the

same type are sampled. Confidence intervals for each gene are computed as the standard error𝑖

of the mean. This results in an attribution score for each gene.
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Training and evaluation metrics

SCimilarity score

The SCimilarity score is defined as the inverse of the cosine distance of two embedded cell

profiles:

𝑆𝐶𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 1
1−𝑐

𝑖
•𝑐

𝑗

where and are the embeddings of the ith and jth cell profiles with unit length, respectively and𝑐
𝑖

𝑐
𝑗

. The threshold for similarity varies in practice by question and cell types.𝑖 ≠ 𝑗

Ontology-aware modified average silhouette width

Average silhouette width (ASW) has been used to assess the performance of data integration

tasks on multiple scRNA-seq studies15 by quantifying how coherently grouped each cell type is

across studies. The silhouette width of cell profile of cell type typically compares the average 𝑖 𝑡

intra-cell type distances and the average inter-cell type distances between cells of type𝑎(𝑖) 𝑏 𝑖( ) 𝑡

and cells of the nearest cell type, defined as:

𝑎(𝑖) = 1
𝐶

𝐼| |−1
𝑗∈𝐶

𝐼
,𝑖≠𝑗

∑ 𝑑(𝑖, 𝑗)

𝑏(𝑖) =
𝐽≠𝐼

min 1
𝐶

𝐽| |−1
𝑗∈𝐶

𝐽

∑ 𝑑(𝑖, 𝑗)

where, typically, is the set of cells of author-annotated type and are the cells of all other𝐶
𝐼
 𝑡 𝐶

𝐽

cell types.
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However, the ASW as typically formulated does not account for differences in granularity of cell

type annotations across studies. To address those, a modified formulation is used where 𝐶
𝐼
 

contains cell type label and all of its ontological descendants and is the set of all other cell𝑡 𝐶
𝐽

types, except cells of type and any of its ontological descendants or ancestors. For example, if𝑡

computing for a T cell, distances between all types of T cell terms (“CD4-positive”,𝑎(𝑖)

“alpha-beta T cell”, “CD8-positive”, “alpha-beta T cell and CD4-positive”, “CD25-positive”,

“alpha-beta regulatory T cell”, etc) are members of the “T cell” term. Ancestor terms of T cells,

such as the term “Lymphocytes”, are not members of the T cell class (nor a T cell subset) but are

excluded from the summation indices in the calculations of and .𝑎(𝑖) 𝑏(𝑖)

Correlation to predefined gene signatures

To test how the SCimilarity distance represents distance between predefined cell states, a

signature-based definition of cell state was correlated with the SCimilarity score (above).

For each cell in the test set, both the signature score16 and a SCimilarity score vs. the cell query

are calculated, yielding two vectors, and Pearson’s correlation coefficient is calculated between

the vectors.

Selection of models for downstream analysis

Models were run in triplicate along 6 different β parameters ranging from [0,1] and one query

model and one integration model were selected based on two criteria. First, query performance

was tested by how well cell similarities to a query FMΦ profile correlated with a signature

defining that same state (TREM2, GPNMB, SPP1, CCL18, MMP9, CTSK, APOE, CHIT1, LIPA,
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CHI3L1, CD14, APOC1). Second, ontology aware ASW was used to quantify how well the cells

of the same type from different studies intermixed in SCimilarity’s representation. The query

model was selected as the model with the highest query test performance. The integration model

was selected from the β=1 models. Since the three replicates had nearly identical integration

scores, we picked the model with the highest query test score as it performed much better on the

query task than the other high integration models. (Extended Data Fig. 2a). The selected

integration model had more study mixing than the query model according to the study (NMI) and

study adjusted rand index (ARI)15.

Benchmarking vs. integration methods

SCimilarity's integration and cell search models were each compared to three batch integration

methods: Harmony17, scVI18, and scArches19. A test dataset of 34,713 cells was created by

sampling cells from lung tissue studies with uniform probability across studies. The modified

ASW (above), adjusted Rand index (ARI) and normalized mutual information (NMI) were

calculated as integration benchmark metrics. Harmony was run using the wrapper in Pegasus13

following the workflow described in

https://pegasus-tutorials.readthedocs.io/en/latest/_static/tutorials/batch_correction.html. scVI and

scArches were run using the scvi-tools workflow described in

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/harmonization.html and

https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scarches_scvi_tools.html, respectively.

As the scArches workflow requires a reference dataset, 101,133 cell profiles were sampled

across all training datasets with uniform probability across studies for use as the reference.
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Cell type annotation

Cell type assignments were performed by k-nearest neighbors (k-NN) classification combined

with an annotated reference set. SCimilarity's reduced dimensionality latent space was used to

determine k=50 nearest neighbors in the reference data set to a query cell t, and the query cell

was annotated either by tallying votes based each cell’s annotation with either equal weights,

Celltype ( )𝑡 = arg
𝑡

max
𝑖∈𝑡
∑ 1

𝑛( )
or with weights by distance in SCimilarity's reduced dimensionality latent space:

Celltype ( ) =𝑡 arg
𝑡

max
𝑦∈𝑡
∑ 1

𝑑 𝑥,𝑦( )( )
To allow users to annotate new datasets from a restricted list of cell types of interest, excluding

(blocklisting) or limiting to (safelisting) specified cell type annotations is used, and is

recommended when feasible to improve interpretability and reduce spurious annotations.

However, extensive blocklisting or safelisting can slow the annotation process significantly,

because the pre-built k-NN indices are not optimized for a modified target cell type list.

kNN parameters for annotation and querying

Two separate kNN indices were used for efficient and accurate queries. For cell type annotation,

a 7.9M cell k-NN index was built using hnswlib20 with ef_construction = 1000 and M = 80.

Searching this k-NN found the 50 nearest neighbors (default behavior) for cell type annotation

(k=50) and ef=100.
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Cell query relied on a separate 22.7M cell k-NN index also built using hnswlib. This index was

constructed with the following parameters: ef_construction=400 and M=50. The search

parameters are set by the user’s request for how many similar cells to return. Default behavior is

set to k=1000 and ef=k, but in practice k can vary widely depending on the use case.

Outlier filtering

To filter outlier cells prior to visualization and downstream analysis, SCimilarity’s score is used

to flag cells that are out of distribution. Cells with a SCimilarity score < 50 from the nearest cell

in the training set were removed prior to further analysis. Many of these cells were from

immortalized cell lines, and reflect their difference from primary cells (and absence in the

training). Note that if out of distribution cells are not removed, these cells won’t be accurately

annotated and can confound visualization.

Macrophage query preprocessing

To prepare a cell query for FMΦ cells, a public dataset21 (GSE136831 and

https://www.ipfcellatlas.com) was preprocessed with the same steps for all ingested data and

scored use Scanpy’s scanpy.tl.score_genes function with a gene signature of SPP1, TREM2,

GPNMB, MMP9, CHIT1, and CHI3L1 Scanpy8. The average profile of the top 50 scoring cell

was embedded using SCimilarity and used as the input query to SCimilarity’s cell search model

and used throughout analyses in Fig. 5 and 6.
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Important genes and pathway enrichment

Important genes were identified using SCimilarity’s attribution score method. This method

requires two cell groups to compare, identifying which genes differ between them. Here we used

1,000 cells that were considered similar to the average FMΦ profile calculated from Adams et al.

as the FMΦ-like group. This query excluded any cells from the Adams et al. dataset. To compare

to the FMΦ-like group comparison, 1,000 dissimilar monocytes and macrophages were

randomly sampled (any monocyte or macrophage that was not within the top 10,000 most FMΦ

similar results).

Reactome pathways enriched for the 100 genes with the top importance scores for FMΦ were

determined using the method provided in the ReactomePA22 R package, with multiple hypothesis

correction using the Benjamini-Hochberg method and the background gene universe restricted to

the ~28,000 genes included in SCimilarity. Pathways were considered significant if they met the

criteria of adjusted p-value (Q) ≤ 0.05 and gene count ≥ 5.

3DCS culture of PBMC

Peripheral blood was sourced from healthy volunteers at Genentech that were consented as per

IRB. Samples were collected in heparin collection tubes and subsequently diluted 1:1 with a

solution of PBS containing 2% FBS and 1mM EDTA. 30 ml of diluted blood was overlayed onto

15 ml of Lymphoprep (STEMCELL Technologies) in a 50ml tube and centrifuged at 3,000 rpm

for 20 minutes at 4°C. PBMCs were isolated from the interphase after centrifugation and diluted
15
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with PBS containing 2% FBS and 1 mM EDTA and centrifuged at 300 x g for 10 minutes at 4°C.

Cell pellet was washed again with PBS containing 2% FBS and 1mM EDTA. Red blood cell

lysis was performed on the cell pellet by resuspending in RBC Lysis Buffer (Cell Signaling

Technology) for 5 minutes at room temperature, followed by inactivation with addition of RPMI

media containing 10% FBS. Cells were pelleted by centrifugation at 300 x g for 10 minutes at

4°C and subsequently washed with PBS containing 2% FBS and 1 mM EDTA. Cells were then

resuspended in a 10% sucrose solution at a concentration of 2 x 106 cells/ml right before plating

into 3D hydrogel culture. Puramatrix hydrogel (Corning) was vortexed for 30 seconds and

diluted 1:1 with a 20% sucrose solution. 250 µl of diluted Puramatrix hydrogel was mixed with

250 µl of resuspended PBMCs and plated in a 24-well tissue culture plate. To induce gelation,

RPMI media was overlaid onto the hydrogel/PBMC mixture and incubated for 5 minutes in a

37°C incubator with 5% CO2. Overlayed media was aspirated off of the 3D hydrogel and washed

twice with RPMI media, after which 600 µl of 3DCS media, formulated as previously described

(Xu, Y. et al., Protein & Cell 2022, 13:808-824) was overlaid onto the hydrogel. Cells were

cultured in a 37°C incubator with 5% CO2 for 8 days, with media exchanges every other day. On

day 8, culture cells were recovered from the 3D hydrogel for scRNA-seq.

Single cell RNA-Seq from 3DCS cultures

Wells of 3D hydrogel culture were washed with PBS, followed by recovery of the hydrogel and

cells by gentle pipetting in PBS buffer. This solution was centrifuged for 5 minutes at 750 x g

and the hydrogel/PBMC pellet was resuspended in TrypLE solution (ThermoFisher Scientific)

and incubated at 37°C for 10 minutes. RPMI media with 10% FBS was added and the solution

was centrifuged for 5 minutes at 750 x g. The resultant pellet was washed twice with PBS to
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remove hydrogel matrix debris. PBMCs were resuspended in PBS and passed through a 40 µM

filter, pelleted by centrifugation at 300 x g for 5 minutes, and resuspended in RPMI media with

10% FBS. The cell solution was subjected to FACS to isolate cells from any remaining hydrogel

debris and recovered cells were concentrated to 1,000 cells/µl in RPMI media with 10% FBS for

downstream profiling by scRNA-seq.

ScRNA-seq was performed using the Chromium Single Cell 3’ Library and Gel bead kit v3 (10x

Genomics), following manufacturer’s user guide. Briefly, cell density and viability of single-cell

suspension were determined by Vi-CELL XR cell counter (Beckman Coulter). Cell density was

used to impute the volume of single cell suspension needed in the reverse transcription (RT)

master mix, aiming to achieve ~10,000 cells per sample. cDNAs and libraries were prepared

following the manufacturer’s user guide (10x Genomics). Libraries were profiled by Bioanalyzer

High Sensitivity DNA kit (Agilent Technologies) and quantified using Kapa Library

Quantification Kit (Kapa Biosystems). Libraries were sequenced on a NovaSeq 6000 (Illumina)

following the manufacturer’s specifications with 28+90 bp paired-end reads at a depth of 101M

mate-pair reads. Sequencing reads were aligned to the GENCODE 27 Basic gene model on the

human genome assembly GRCh38 using Cell Ranger v6.0 (10x Genomics, Pleasanton, CA,

USA).

Individual samples were genetically demultiplexing using the singularity container provided with

Souporcell 2.0 23. No genotype information was provided to the pipeline. Since PBMCs were

provided from 3 donors, a k of 3 was used to cluster the samples into 3 genotypes. These samples
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were pre-processed consistently with the previously ingested samples and then embedded using

SCimilarity to enable direct comparisons to Xu et al as well as the rest of the public datasets.

SCimilarity cell type classification was applied to both public and validation cells using

SCimilarity with the following safelist: B cell, CD4-positive, alpha-beta T cell, CD8-positive,

alpha-beta T cell, conventional dendritic cell, hematopoietic stem cell, macrophage, monocyte,

natural killer cell, plasma cell, plasmacytoid dendritic cell.

Code performance benchmarking

Benchmarks were run on servers with 8 Intel Xeon E5-2650 v4 CPUs with 2.20GHz cores and a

total of 128 GB of RAM.

Query runtimes, using the pre-built approximate k-NN index20 to find the top n most similar

cells, had an average runtime of 50 milliseconds. Some API functions use the query and

summarize the metadata within one function call. That function timing is dominated by

summarizing metadata and computing statistics from the query results, which requires an

additional 3.3 seconds. This performance differs from an exhaustive comparison (Fig. 5b), where

the query was directly compared against 2.58M monocytes and macrophages with a runtime of 2

seconds.

Cell signatures were calculated using scanpy.tl.score_genes. The scanpy score_genes function

was applied to the already normalized data. This runtime totalled 2 hours, 46 minutes and 20

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.07.18.549537doi: bioRxiv preprint 

https://paperpile.com/c/VXPfRH/9s9F
https://doi.org/10.1101/2023.07.18.549537
http://creativecommons.org/licenses/by-nc-nd/4.0/


seconds when it was applied across each h5ad file (one file per tissue sample). Even though h5ad

files were not stored with any compression, file reading was a dominant factor in runtime.

Code availability

Code and tutorials are available at https://github.com/Genentech/scimilarity.

Licensing

● Code license: Apache 2.0

● Pretrained model weights, kNN and pre-built indices license: CC-BY-SA 4.0
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Figure 6
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended data Fig. 3
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Extended data Fig. 4
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Fig. 1. SCimilarity metric learning enables cell search in large human scale atlases. 1 

a, Cell Querying with SCimilarity. Left: A query cell profile is compared to a searchable reference 2 

collection of 22.7M profiles from 399 studies. Center: Sample with similar cells are identified and 3 

returned with information about the original sample conditions, including unexpected tissue, in 4 

vitro or diseases contexts. Right: A SCimilarity score is computed between the query cell and each 5 

cell within a tissue sample. b, Triplet loss training. From left: 52 training and 14 test annotated (by 6 

the Cell Ontology) datasets from across the body are sampled for cell triplets (an anchor, a 7 

“positive” (anchor-similar), and a “negative” (anchor-dissimilar) cell; based on Cell Ontology 8 

annotations) to train a neural network that embeds similar cells closer than dissimilar ones 9 

(Methods).   10 
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Fig. 2. SCimilarity learns a universal representation that generalizes to new datasets. 1 

a, A large-scale reference database of public gene expression datasets across tissues and diseases. 2 

Number of cells (circle size) across tissues (outermost light blue circles) and disease states (middle 3 

green circles) across individual studies (innermost circles) in the training (gold), test (pink) or 4 

unannotated (purple) datasets. b, Integration between studies without feature selection or batch 5 

correction. Uniform manifold approximation and projection (UMAP) embedding of cell profiles 6 

(dots) generated on a 128-dimensional latent space from SCimilarity’s integration model 7 

(Methods) for cells from 21 tissues (panels) and 239 unique studies (color code). For tissues with 8 

more than a million cell profiles, the UMAP embedding was computed on a random uniform 9 

subsampling of 1 million cells from the studies for that tissue.  10 
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Fig. 3. SCimilarity accurately annotates cell types across the human body 1 

a, SCimilarity cell annotation. A new unannotated cell (red, bottom left) is embedded in 2 

SCimilarity’s common low-dimensional space and compared against the precomputed reference 3 

for cell type annotation (0.02 seconds per cell). b-d, SCimilarity annotation of a kidney scRNA-4 

seq dataset. (b,c) UMAP embedding of cell profiles (dots) from SCimilarity’s latent representation 5 

of a held out kidney dataset1 colored by author provided (b) or SCimilarity predicted (c) cell type 6 

annotations. (d) Percentage (color bar and number) of author-annotated cells (columns) with each 7 

SCimilarity annotation (rows). e-h, SCimilarity-corrected author annotations. UMAP embedding 8 

of cell profiles (dots) from SCimilarity’s latent representation for cells either author-annotated or 9 

predicted as CD4+ or CD8+ T cells, colored by author (e) or SCimilarity (f) annotations, and by 10 

CD8A (g) or CD4 (h) expression. i, Classification performance. F1 score (y axis) for SCimilarity 11 

vs. author annotation for each cell population (dot) from each of 14 held out datasets (x axis). 12 

Right: Distribution of F1 scores.  13 
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Fig. 4. SCimilarity annotations scale to tens of millions of cells from hundreds of datasets 1 

a,b Predicted cell types group by biologically-accurate lineages. a, Hierarchical clustering 2 

dendrogram of centroids of predicted cell types (leaves) in SCimilarity latent space, colored by 3 

lineage. Clustering was performed using cosine distance and average linkage. b, UMAP of 4 

2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored by clusters (as 5 

labeled in a).  6 
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Fig. 5. SCimilarity cell search reveals FMΦs across ILD and other diseases 1 

a, SCimilarity cell search. A query cell profile (bottom left) is embedded into the learned 2 

SCimilarity representation along with the reference of 22.7M cells, and its nearest neighbors, 3 

determined by distance from the embedded query in the low dimensional space, are tabulated by 4 

study, tissue and disease. b-e, Identification of FMΦs across tissues by SCimilarity cell search. (b) 5 

SCimilarity scores (y axis, log10 scale, and color bar) against a FMΦ query profile for each 6 

annotated monocyte or macrophage (dot) from 1,041 in vivo tissue samples from 143 studies (x 7 

axis), ordered by mean SCimilarity score. (c) Number of cells (circle size) across tissues 8 

(outermost light blue circles), disease states (middle green circles), and individual studies 9 

(innermost circles, colored by fraction of monocytes and macrophages with SCimilarity scores 10 

>95th percentile of all FMΦ SCimilarity scores (log scaled color bar)). Circle size for disease and 11 

individual study are scaled relative to other diseases in the same tissue, or studies in the same 12 

disease. (d,e) UMAP embeddings of cell profiles (dots) from the SCimilarity representation (query 13 

model) from an ILD2 (d) and PDAC3 (e) studies, colored by FMΦ query SCimilarity scores (color 14 

bar). f, Identification of FMΦs associated genes by importance. Integrated gradients attribution 15 

scores (y axis, top) for the genes (x axis top, and columns, bottom) with top 50 scores for FMΦs 16 

vs. lung macrophages (Methods), and their membership (red: presence; grey: absence) in 17 

published macrophage signatures (bottom, rows). Left color bar: AUC of the ranking of each 18 

published signature in SCimilarity attribution scores (AUC=1: all n signature genes are listed as 19 

the top n genes by SCimilarity attribution scores for distinguishing FMΦ). Martinez-M1 and -M2: 20 

macrophage states expected to be different from FMΦs. P-value: hypergeometric test  21 
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Fig. 6. SCimilarity cell search identifies in vitro cells matching an in vivo FMΦ state and a 1 

novel in vitro disease model. 2 

a, Identification of FMΦs-like cells across in vitro samples by SCimilarity cell search. SCimilarity 3 

scores (y axis, log10 scale, and color bar) against a FMΦ query profile for each annotated myeloid 4 

cell (dot) from 40 in vitro samples (x axis) (from 17 studies), ordered by mean SCimilarity score. 5 

Gray boxes: Day 0 and Day 5 samples from a 3D-hydrogel culture system4. b-f, 3D conditions 6 

yield FMΦ-like cells in vitro in validation experiments. b, SCimilarity scores (y axis, log10 scale, 7 

and color bar) against a FMΦ query profile for each annotated myeloid cell (dot) from the original 8 

3D-hydrogel culture system dataset4 and from 3 donors in the validation experiment (x axis). c, 9 

Mean expression (dot color) and proportion of expressing cells (dot size) of genes (rows) with high 10 

SCimilarity attribution score for distinguishing FMΦs in vivo (as in Fig. 5f) for myeloid cells in 11 

the original 3D-hydrogel culture system4 and the validation experiment (columns). d-f, UMAP 12 

embedding from SCimilarity’s query model latent space of cell profiles (dots) from day 0 (d) or 13 

day 5 (e) of the original 3D-hydrogel culture system4 or from day 8 of the replication experiment 14 

(f), colored by FMΦ SCimilarity score (color bar). g, replication of Xu et al.’s original finding of 15 

HSC expansion. Proportion of HSCs between Xu et al.’s day 0, day 5 and our validation day 8 16 

time points.   17 
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Extended Data figure legends 1 

Extended Data Fig. 1. Data compendium to assemble a pan-human reference. 2 

a,b, Cumulative number of cells (a, y axis) and samples (b, y axis) profiled by sc/snRNA-seq (and 3 

matching our filters; Methods) over time (x axis). Doubling time is calculated based on the 4 

publication date from the most recent 150 data points (dashed red line). c, Author-annotated cell 5 

types used in training. Number of author-annotated cells (color bar) from each Cell Ontology type 6 

(rows) and study (columns) used for SCimilarity model training. d, Tissues and diseases used in 7 

training. Number of studies (heatmap tiles, text and color bar) and cells (margins, y or x axis) used 8 

for model training from each tissue (rows, right y-axis) and disease (columns, top x-axis).   9 
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Extended Data Fig. 2. SCimilarity training details and hyperparameter search. 1 

a, Impact of triplet and autoencoder loss mixing on model performance, where the leftmost column 2 

is a traditional autoencoder and the rightmost column is exclusively triplet loss. The FMΦ retrieval 3 

test quantifies how much correlation there is between signature scoring of FMΦs and SCimilarity 4 

score to FMΦ. The multiple tissue integration test quantifies an ontology-aware average silhouette 5 

width where a higher score denotes more coherent clusters for each cell type. The bottom row 6 

shows UMAPs for each loss function mix for nine lung scRNA-seq datasets, colored by study. b, 7 

Benchmarking SCimilarity to established data integration models. Ontology-aware average 8 

silhouette width (ASW, y axis, top), normalized mutual information (NMI, y axis, bottom left) and 9 

adjusted Rand index (ARI, y axis, bottom right) for SCimilarity’s integration and search models 10 

and for scVI, scArches, and Harmony (x axis), each applied to nine lung datasets. c, Outlier cells 11 

from different types and tissues. Fraction (x axis) of cells from different disease (left) or healthy 12 

(right) tissue samples with low similarity (SCimilarity score <50) to training data. 13 

14 
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Extended Data Fig. 3. Validation of large-scale integration and annotation. 1 
a, Unconstrained cell annotation. UMAP embedding of single cell profiles (dots) from 2 

SCimilarity’s latent representation of the held out scRNA-Seq kidney data1 (as in Fig. 3b,c, 3 

colored by cell annotation without constraining target labels to the scope of author-provided labels 4 

in this studyor by expression of select marker genes of regulatory T cells (b-d) or myofibroblasts 5 

(e). f, UMAP of 2,000,000 embedded cells uniformly sampled from the 22.7M reference, colored 6 

by tissue (as in Fig. 4b). g,h, UMAP embedding of cell profiles predicted by SCimilarity as 7 

fibroblast/myofibroblast (g) or monocytes/macrophages (h), colored by study (for the 60 studies 8 

contributing most cells). i, SCimilarity cell-type important genes match cell-type specific 9 

signatures. Fraction of cell type-specific differentially expressed genes (from Eraslan et al.5) (y 10 

axis) captured by top-n important genes (x axis) for that cell type by SCimilarity’s integrated 11 

gradients attribution analysis.   12 
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Extended Data Fig. 4. FMΦs among monocytes and macrophages. 1 

a-c, Agreement between SCimilarity and traditional FMΦ cell scores. a,b UMAP embedding of 2 

2,578,221 monocyte and macrophage cell profiles (dots) from SCimilarity’s latent space 3 

representation colored by SCimilarity score using a prototypical FMΦ cellular profile defined from 4 

Adams at el.6 (a) or Scanpy’s signature score for FMΦ associated genes (b). (c) Scanpy FMΦ gene 5 

signature score (x axis) and FMΦ SCimilarity score (y axis) for each cell (shown as density). d, 6 

Agreement between SCimilarity FMΦ important genes and published FMΦ signatures. ROC curve 7 

of the fraction of each study’s gene sets (y axis) captured within the top genes by SCimilarity 8 

attribution ranking (x axis). e, FMΦ important genes are enriched for relevant pathways. False 9 

discovery rate (-log10(q value), hypergeometric test, x axis) for enrichment of Reactome pathways 10 

(y axis, Q ≤ 0.05 and gene count ≥ 5) with the 100 genes with the top integrated gradients 11 

attribution scores for the FMΦ query (ranked by score). Color: ratio of important genes within a 12 

Reactome pathway to the total size of the pathway. f-h, Expression of known and novel genes 13 

associated with FMΦs. Pseudobulked gene expression values for ILD tissue samples for known 14 

marker TREM2 (f) and enriched genes not previously described (g,h).  15 
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