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The complexity of neural circuits makes it challenging to de-
cipher the brain’s algorithms of intelligence. Recent break-
throughs in deep learning have produced models that accurately
simulate brain activity, enhancing our understanding of the
brain’s computational objectives and neural coding. However,
these models struggle to generalize beyond their training distri-
bution, limiting their utility. The emergence of foundation mod-
els, trained on vast datasets, has introduced a new Al paradigm
with remarkable generalization capabilities. We collected large
amounts of neural activity from visual cortices of multiple mice
and trained a foundation model to accurately predict neuronal
responses to arbitrary natural videos. This model generalized to
new mice with minimal training and successfully predicted re-
sponses across various new stimulus domains, such as coherent
motion and noise patterns. It could also be adapted to new tasks
beyond neural prediction, accurately predicting anatomical cell
types, dendritic features, and neuronal connectivity within the
MICrONS functional connectomics dataset. Our work is a cru-
cial step toward building foundation brain models. As neu-
roscience accumulates larger, multi-modal datasets, foundation
models will uncover statistical regularities, enabling rapid adap-
tation to new tasks and accelerating research.

Visual cortex | Foundation model | Generalization | Artificial Intelligence
Correspondence: astolias@bcm.edu

Introduction

Recently, deep artificial neural networks (ANNs) have
sparked a new era in building functional models of the brain
that simulate brain activity based on sensory input, behavior,
and internal states. For example, these models have set a new
standard for functional models of the visual cortex (Yamins
et al., 2014a; Cadieu et al., 2014; Antolik et al., 2016; Batty
et al., 2017; MclIntosh et al., 2016; Klindt et al., 2017; Kindel
et al.,, 2017; Cadena et al., 2019; Burg et al., 2021; Lurz
et al., 2020; Bashiri et al., 2021; Christensen and Zylber-
berg, 2020; Cowley and Pillow, 2020; Ecker et al., 2018;
Sinz et al., 2018; Bakhtiari et al., 2021; Nayebi et al., 2021;
Willeke et al., 2022). When these models are trained to op-
timize specific tasks such as object classification, next image
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prediction, or next word prediction, their hidden representa-
tions match those observed in the brain, providing a norma-
tive representational-level modeling approach to understand-
ing the brain (Yamins et al., 2014b). With the collection of
larger datasets in neuroscience, data-driven models have be-
gun to outperform task-driven models (Pierzchlewicz et al.,
2024). Whether they are data or task-driven, accurate func-
tional models of the brain enable large-scale in silico exper-
iments to be performed to systematically characterize neu-
ronal representations and decipher principles that govern in-
formation processing in the brain. Because these models are
differentiable, they allow for experiments like applying im-
age synthesis methods, which are extremely difficult to per-
form in the brain without a model. For example, in vision,
this approach can identify the most exciting stimulus for in-
dividual neurons (Bashivan et al., 2019; Walker et al., 2019;
Ponce et al., 2019; Franke et al., 2022; Hofling et al., 2022),
determine what individual neurons are selective for, charac-
terize contextual modulation, explore how brain states affect
tuning functions under natural stimulus conditions (Walker
et al., 2019; Bashivan et al., 2019; Franke et al., 2022; Fu
et al., 2023), and ascertain what they are invariant to (Ding
et al., 2023b), aiming to move toward an interpretable under-
standing of the neural code. The resulting predictions can
then be tested through in vivo closed-loop experiments, such
as the inception loops paradigm (Walker et al., 2019; Franke
et al., 2022; Bashivan et al., 2019). This in silico—in vivo
approach addresses the inherent challenges of studying neu-
ronal representations, including the high dimensionality of
the input space, the nonlinear nature of information process-
ing in the brain, and the limited availability of time for con-
ducting in vivo experiments.

However, a challenge in neural network modeling is predict-
ing new stimulus domains outside the original training distri-
bution (Hendrycks and Dietterich, 2019). For instance, when
models are trained to generate responses to natural movies,
they perform well at predicting unseen natural movies but
exhibit a substantial decrease in prediction performance on
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other domains such as synthetic or parametric stimuli (Sinz
et al., 2018; Vystrcilova et al., 2024). However, to build upon
the long history of using parametric stimuli for visual psy-
chophysics and neurophysiology (Britten et al., 1992; Salz-
man et al., 1990; Marshel et al., 2019) and to increase their
usefulness for in silico experiments, it is crucial to develop
functional models that generalize well to novel stimulus do-
mains, such that tuning functions can be characterized in
silico, e.g., with parametric stimuli (Ustyuzhaninov et al.,
2022). Recently, so called foundation models (Bommasani
et al., 2021) in artificial intelligence, characterized by their
ability to train on massive amounts of data and build ro-
bust representations of their modeling domain, have demon-
strated remarkable generalization and capabilities in down-
stream tasks (Brown et al., 2020; Radford et al., 2021). For
example, foundation models of language are trained on vast
quantities of text encompassing much of human knowledge.
Trained to predict the next sub-word in text, these founda-
tion models capture robust language and knowledge repre-
sentations that can be transferred to new tasks with relatively
little data. These tasks include answering unstructured ques-
tions and even passing medical licensing exams (Kung et al.,
2023).

Inspired by these breakthroughs, we sought to develop a
foundation model of the mouse visual cortex trained on ex-
tensive quantities of data to predict neural activity from dy-
namic video and behavior as inputs. We collected the re-
sponses to ecological video stimuli from ~135,000 neurons
across multiple areas of the visual cortex from a total of 14
awake, behaving mice. Using a highly optimized deep neu-
ral network trained on a subset of these data from 8 mice,
we learned a common, data-driven “foundation core” that
effectively captured the shared latent representations of all
recorded neurons which accurately predicted neuronal re-
sponses across many mice and visual cortical areas. New
models utilizing the foundation core demonstrated the ability
to be rapidly and accurately fitted to new mice with minimal
amounts of data, surpassing the performance of individual-
ized models that were trained end-to-end for each mouse in-
dividually. These models excelled not only in predicting neu-
ronal responses to new natural movies (in-domain) but also
generalized to accurately predict responses to various out-of-
domain stimuli, including random moving dots, flashing dots,
Gabor patches, coherent moving noise, and static natural im-
ages.

To test whether our foundation model could also be adapted
to perform well in new tasks beyond neural activity predic-
tion, we evaluated its performance in predicting morphologi-
cally defined cell types. We found that this model could accu-
rately predict the anatomically defined cell type class of exci-
tatory neurons from L.2-5 in the multi-area MICrONS dataset
(The MICrONSs Consortium et al., 2023), which contains over
70,000 neurons within a ~Imm? cortical volume spanning
multiple visual areas, featuring both nanoscale-level anatom-
ical structure and responses to natural movies. Moreover,
our model also predicted more specific morphological fea-
tures of neurons, such as the dendritic bias of layer 4 exci-
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tatory neurons (Weis et al., 2022). Importantly, our model
enabled a detailed analysis to characterize the relationship
between synaptic level connectivity and the functional prop-
erties of neurons (Ding et al., 2023a), including tuning in-
variance (Ding et al., 2023b) and contextual modulation (Fu
et al., 2023).

As extensive multi-modal neuroscience datasets accumu-
late, we anticipate the emergence of powerful foundational
brain models, akin to large language models. These models
will unveil statistical patterns spanning sensory, behavioral,
and activity modalities. By integrating with molecular and
anatomical foundation models, they will not only advance
fundamental neuroscience but also pave the way for innova-
tive disease treatments.

Results

State-of-the-art dynamic functional model of the mouse vi-
sual cortex. To model the dynamic neuronal responses of
the mouse visual cortex, we developed an ANN that was
comprised of four modules: perspective, modulation, core,
and readout (Fig. 1). The modular design enabled the ANN
to accommodate diverse tasks and inputs. For instance, eye
movements and different positioning of a mouse’s head rel-
ative to the monitor can result in different perspectives of
the same stimulus, despite best efforts to limit experimen-
tal variability. To account for this, the perspective module
of our ANN uses ray tracing and eye tracking data to infer
the perspective of the mouse from the presented stimulus on
the monitor (Extended Data Fig. 1). To account for behav-
ioral factors that modulate the activity of the visual cortex
(Reimer et al., 2014), the modulation module transforms be-
havioral inputs (locomotion, pupil dilation) to produce dy-
namic representations of the mouse’s behavioral and attentive
state (Extended Data Fig. 2). The perspective and modulation
modules provide visual and behavioral inputs, respectively,
to the core module of the ANN. Composed of feedforward
(3D convolution layers) and recurrent (long-short term mem-
ory) components, the core contains the majority of the ANN’s
modeling capacity and produces nonlinear representations of
vision that are modulated by behavior. These representations
are mapped onto the activity of individual neurons by the
readout module, which performs a linear combination of the
features generated by the core at one specific location, the
neuron’s receptive field. All four modules of the ANN (per-
spective, modulation, core, and readout) were trained end-
to-end to predict time series of neuronal responses to natural
movies (for details of model architecture and training, see
Methods).

First, we evaluated the predictive accuracy of our ANN
model architecture when trained on on individual recording
sessions lasting ~1 hour. Predictive accuracy was measured
by the correlation between the recorded and the predicted re-
sponses to a novel set of stimuli that were not included in
model training. To account for in vivo noise, the correlation
was normalized by an estimated upper bound on the perfor-
mance that could be achieved by a perfect model (Schoppe
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Fig. 1. ANN model of the visual cortex. The left panel (green) depicts an in vivo recording session of excitatory neurons from several areas (V1, LM, RL, AL) and layers
(L2/3, L4, L5) of the mouse visual cortex. The right panel (blue) shows the architecture of the ANN model and the flow of information from inputs (visual stimulus, eye position,
locomotion, and pupil size) to outputs (neural activity). Underlined labels denote the four main modules of the ANN: perspective, modulation, core, and readout. For the
modulation and core, the stacked planes represent feature maps. For the readout, the blue boxes represent the core’s output features at the readout position of the neuron,
and the fanning black lines represent readout feature weights. The top of the schematic displays the neural activity for a sampled set of neurons. For two example neurons,

in vivo and in silico responses are shown (green and blue, respectively).

et al., 2016). Using this normalized correlation coefficient
190 (C'Chorm) as the metric of predictive accuracy, we compared
our model to the previous best-performing dynamic model of
the mouse visual cortex (Sinz et al., 2018). Trained and tested
on the same data from that study (dynamic V1 responses to
natural movies), our model had a 25-46% increase in predic-
195 tive accuracy on held-out test data across the three recording
sessions used in Sinz et al. 2018 (Fig. 2a). This level of in-
crease in performance is substantial for predictive models of
the visual cortex. We also evaluated the predictive accuracy
of our model on newly collected data that contained multiple
200 visual areas (Fig. 2b). Interestingly, we found that the per-
formance of our model for higher visual areas (LM, RL, AL)
was similar to V1 (Fig. 2c), despite the increased complex-
ity of neuronal tuning to more complex features exhibited by
higher visual areas (Siegle et al., 2021; Goltstein et al., 2021).
205 Next, we performed lesion studies to determine the effect that
individual components of the model had on predictive accu-
racy (Extended Data Fig. 3). Removing either of the two
behavioral modules resulted in a modest but significant re-
duction in reduced predictive accuracy: 2.3% reduction for
210 the perspective module (Extended Data Fig. 3a—e) and 2.8%
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for modulation module (Extended Data Fig. 3f—j). For the
core component, we found that using 3D convolutions in the
feedforward component significantly improved performance
compared to 2D convolutions, although the difference was
small at 0.88% (Extended Data Fig. 3k—o0). We also evalu-
ated the objective function used for training and found that
the Poisson negative log likelihood loss significantly outper-
formed mean squared error loss, with a performance differ-
ence of 9.6% (Extended Data Fig. 3p-t). In summary, our
new ANN model sets new standards for predicting dynamic
neuronal responses of the visual cortex, with individual com-
ponents contributing modest but significant improvements.
Importantly, the main driver of increased performance is the
much larger dataset used for training, aligning with scaling
laws observed in Al research - a property exhibited by ANNs
in general where performance improves with increased data
(Fig. 2b).

Foundation models generalize to new subjects and stimu-
lus domains. The remarkable performance of foundation
models in other domains—e.g., natural language (Brown
et al., 2020) and image generation (Radford et al., 2021)—
originates from their vast quantities of training data. How-
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Fig. 2. Predictive accuracy of models trained on individual recording sessions. a, Predictive accuracy (median C'Cyorm across neurons, see Methods for details) of
our model vs. the previous state-of-the-art dynamic model of the mouse visual cortex by Sinz et al. (2018). We trained and tested our model on the same set of data from
Sinz et al. (2018): V1 neuronal responses to natural movies from 3 mice. n = number of neurons per mouse. ** = paired two-way t-test, t=14.53, p < 0.01, df=2. b, Predictive
accuracy of our models by the amount of data used for training for 4 new recording sessions and mice. For each recording session, training data was partitioned in to 7
fractions ranging from 4 to 76 minutes. Separate models (diamonds) were trained on the differing fractions of training data, but tested on the same held-out testing data.
Models of the same mice are connected by lines. ¢, Predictive accuracy by visual area, from models that were trained on the full data. We did not find a statistically significant
relationship between predictive accuracy and visual areas (linear mixed effects model (Lindstrom and Bates, 1988), n.s. = Wald test, p = 0.45, df=3).

ever, collecting large amounts of neuronal data from indi-
vidual neurons and animals presents challenges. Individual
recording sessions are limited in duration by experimental
factors such as attentiveness and recording device stability.
To overcome this limitation, we combined data from multi-
ple recording sessions, totaling over 900 minutes of natural
movie responses from 8 mice, 6 visual areas (V1, LM, AL,
RL, AM, PM), and ~66,000 neurons. This data was used
to train a single, shared ANN core (Fig. 3a) with the goal
of capturing common representations of vision that under-
lie the dynamic neuronal response of the visual cortex for a
representative set of neurons and a group of mice. This rep-
resentation could then be used to fit models of new mice to
improve their performance with limited data. Here we refer
to the representative group of 8 mice as the “foundation co-
hort”, the trained ANN component as the “foundation core”,
and ANNs derived from the foundation core as “foundation
models”.

To evaluate the representation of the visual cortex captured by
the foundation core, we froze its parameters and transferred
it to ANNs with new perspective, modulation, and readout
components fitted to new mice (Fig. 3a). Each new mouse
was shown an assortment of stimuli, designated for either
model training or testing. The training stimuli consisted of
natural movies, and we used different portions of this, span-
ning from 4 to 76 minutes, to fit ANN components to the
new mice. This approach aimed to examine the relationship
between the models’ performance and the amount of training
data for each new mouse. The testing stimuli included natural
movies that were not part of the training set (Fig. 3b’), and
new stimulus domains like static natural images (Fig. 3c’),
and 4 types of parametric stimuli (Fig. 3d’—g’), consisting of
drifting Gabor filters, flashing Gaussian dots, directional pink
noise, and random dot kinematograms. To test the role of the
foundation core in prediction performance, we trained a set
of control models that differed from the foundation models
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only by the core component. For these controls or “individ-
ual models”, all four components—core, perspective, mod-
ulation, and readout—were trained end-to-end using train-
ing data from a single recording session. For the foundation
models, training data from the new mice were only used to
fit the perspective, modulation, and readout components, and
the core was trained on the foundation cohort as described
above and was frozen (Fig. 3a).

When tested on natural movies, foundation models outper-
formed individual models and required less training data
from the new mice to achieve high levels of predictive accu-
racy (Fig. 3b). For instance, individual models required more
than an hour of training data to surpass a median C'C,, oy, Of
0.65 for all mice, whereas foundation models required less
than half an hour (Fig. 3b). This performance gain was ob-
served across all tested stimulus domains, including those
that were in new stimulus domains (Fig. 3c’-g’), i.e., out-
of-distribution (OOD) from the training domain of natural
movies (Fig. 3b’). Importantly, no stimuli from the OOD
domains were used to train any component of the models, in-
cluding the foundation core. Nevertheless, foundation mod-
els were more accurate at predicting responses to new stim-
ulus domains while requiring substantially less training data
from the new mice (Fig. 3c—g). For example, when predict-
ing drifting Gabor filters, the foundation models were able to
achieve a performance of median C'C), oy, > 0.55 using only
16 minutes of natural movie training data. In contrast, the in-
dividual models required more than an hour of training data
to reach the same performance level (Fig. 3d). This high-
lights the significant difference in the data efficiency of these
models, i.e., the amount of training data (sample complexity)
required from new subjects to accurately fit their neuronal
responses. Thus, training a foundation dynamic core on nat-
ural movie data pooled from multiple cortical layers, areas,
and animals produces a robust and transferable representa-
tion of the visual cortex that generalizes to new animals and

Wang etal. | Foundation model of neural activity
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improves model performance for not only natural movies but

also novel stimulus domains. 335

When combining functional studies of the brain with other
modalities like anatomy, there is typically a limited amount of
time available for in vivo recordings before destructive histo-
logical analysis is performed. While traditionally this would
limit the number of functional studies that can be performed
in vivo, predictive models allow essentially unlimited scans to
be performed in silico, even after tissue has been destroyed.
To enable this for the MICrONS project, responses to nat-
ural movies were collected for the purpose of model train-
ing. Due to the challenge of completing all 14 scans in the
same animal in as short a period as possible, the amount of
training data collected from each experiment (mean 42 min-
utes, range 33-53 minutes, depending on optical quality and
animal behavioral profile) was less than the other recording
sessions in this paper. With the available amount of data,
individual models—with all components trained on a single
experiment—achieved a median C'Cl,o;py, 0of 0.48-0.65, when
tested on a held-out set of natural movies. By applying our
foundation modeling paradigm—transferring the foundation
core and fitting only the perspective, modulation, and readout
components on a single experiment—the median C'Chorpy in-
creased to 0.58-0.76 (Extended Data Fig. 4). This highlights
the advantage of the foundation modeling approach when
there is a limited amount of data available for training.
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Foundation models enable classical studies of paramet-
ric tuning By leveraging the foundation core and transfer
learning, we were able to create accurate foundation mod-
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els for individual mice (Fig. 3). These models enable es-
sentially unlimited in silico experiments for studying repre-
sentations, testing theories, and generating novel hypotheses
that can be verified in vivo. Here we assessed the precision
with which classical tuning properties of the visual cortex
could be replicated at the individual neuronal level in our
foundation model. We presented mice—not part of the foun-
dation cohort—with natural movie stimuli in order to train
their ANN counterparts (Fig. 4a). Additionally, we presented
parametric stimuli (Fig. 4b’—c’) to measure the orientation,
direction and spatial tuning of the recorded neurons. Sub-
sequently, we presented the same parametric stimuli to the
corresponding in silico neurons and measured their proper-
ties for comparison (Fig. 4b—c). This was done for 3 mice
and ~30,000 neurons from 4 visual areas (V1, LM, AL, RL).
To measure orientation and direction tuning, we presented
directional pink noise (Fig. 4b’), which encoded coherent
motion of different directions (0-360°) and orientations (0—
180°). First, we computed the strength of orientation and di-
rection tuning via selectivity indices for orientation (OSI) and
direction (DSI). There was a high correspondence between in
vivo and in silico estimates for both OSI (Fig. 4d) and DSI
(Fig. 4f), which validated the foundation model’s estimates
of tuning strength for orientation and direction. Next, we es-
timated the preferred angles of orientation and direction of
neurons by fitting a directional parametric model (mixture of
von Mises distributions) to the responses. For strongly tuned
neurons, the in vivo and in silico estimates of preferred angles
of orientation and direction were closely matched (Fig. 4e,g).
For example, for strongly orientation-tuned neurons with an
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Fig. 4. Parametric tuning from the foundation model. a, Schematic of the exper-
imental paradigm: foundation models of new mice (n=3) were trained with natural
movies, and estimates of parametric tuning were computed from in vivo and in sil-
ico responses to synthetic stimuli (b’, directional pink noise; ¢’, flashing Gaussian
dots). b,c, In vivo and in silico estimates of an example neuron’s parametric tun-
ing to orientation/direction (b) and spatial location (¢). d,f,h, Binned scatter plots
of in vivo and in silico estimates of selectivity indices (Sl) for orientation (d, OSI),
direction (f, DSI), and spatial (h, SSI). The color indicates the number of neurons
(n) in each bin. e,g,i, Density histograms of differences between in vivo and in silico
estimates of preferred orientation (e), direction (g), and spatial location (i). In each
panel, histograms containing increasingly selective groups of neurons, thresholded
by in silico OSI (e) / DSI (g) / SSI (i), are stacked from top to bottom. The density
histograms were produced via kernel density estimation using Scott’s bandwidth.

in silico OSI > 0.5 (11% of neurons), the median difference
between the in vivo and in silico estimates of preferred orien-
tation was 4°, and with a lower OSI threshold of > 0.3 (43%
of neurons), the median difference was 7°(Fig. 4e).

To measure spatial tuning, we presented flashing Gaussian
dots (Fig. 4¢’) to the neurons described above. We computed
a spike-triggered average (STA) of the stimulus, which was
used to estimate: 1) the strength of spatial tuning for Gaus-
sian dots (non-uniformity of the STA) via the spatial selec-
tivity index (SSI); and 2) the preferred location (peak of the
STA) via least squares fitting of the STA to a spatial para-
metric model (2D Gaussian distribution). Although using the
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Gaussian dot stimulus did not elicit strong SSI for the ma-
jority of neurons, for those neurons that were strongly tuned
in silico, we observed a close match between in vivo and in
silico estimates of spatial tuning strength, measured by SSI
(Fig. 4h). For instance, for strongly tuned neurons with in
silico SSI > 8, the median distance between the in vivo and
in silico estimates of the preferred location was 0.02 of the
monitor width (Fig. 4i), approximately 2° in visual space.

Together, these results demonstrate the accuracy of estimat-
ing tuning parameters for classical functional properties from
our foundation model with no prior training on parametric
stimuli. Therefore, rather than presenting parametric stimuli
in vivo, parametric tuning can be performed in silico with an
accurate and validated foundation model, freeing up valuable
in vivo experimental time for other purposes.

Foundation model predicts structural properties of neurons
in the MICrONS dataset The function of the neocortex
mechanistically emerges from its circuit structure. The MI-
CrONS project, a landmark dataset in neuroscience, provides
unprecedented scale and resolution, combining millimeter-
scale functional data with structural data that spans a similar
volume but at nanometer resolution, across multiple visual
cortical areas of a single mouse. In the MICrONS mouse,
the responses of over 70,000 excitatory neurons to natural
movies were measured across 14 sequential scans, encom-
passing a 1 cubic millimeter volume spanning V1, LM, AL,
and RL visual areas. This volume was subsequently sub-
jected to serial electron microscopy (EM) and dense morpho-
logical reconstruction (Fig. 5b), resulting in detailed struc-
tures of approximately 60,000 excitatory neurons and 500
million synapses, representing the largest integrated study
of neocortical structure and function to date (The MICrONs
Consortium et al., 2023).

We employed the foundation modeling paradigm to the MI-
CrONS dataset to model the function of excitatory neurons
within the 1 cubic millimeter volume. The model’s read-
out module maps the foundation core’s output onto individ-
ual neuronal responses. Each neuron’s readout parameters
consist of two components: readout position and readout fea-
ture weights (Fig. 5a). We trained readout parameters for
all excitatory neurons recorded in the MICrONS volume, and
we investigated whether these parameters would be useful for
studying the structure-function relationship of the brain.

We first examined the readout position, which consists of two
parameters per neuron: azimuthal (x) and altitudinal (y) lo-
cations, specifying the center of the receptive field learned
by the model for each neuron. Analysis of the readout po-
sitions revealed that they accurately captured the retinotopic
organization of the visual cortex (Fig. 5c). In V1, readout
X positions aligned with the medial-lateral axis, and y posi-
tions aligned with the rostral-caudal axis. At the border of
V1 and LM/RL, there was an inversion of the axis for the
x readout position, demarcating the transition zone between
these areas. This organization of readout positions accord-
ing to anatomical locations aligns well with prior studies of
retinotopic organization in the mouse visual cortex (Garrett

Wang etal. | Foundation model of neural activity
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Fig. 5. The foundation model of the MICrONS volume relates neuronal function to structure and anatomy. a, Schematic of a foundation model of the MICrONS mouse,
trained on excitatory neuronal responses to natural movies. At the bottom, the readout at a single time point is depicted, showing the readout positions and feature weights for
two example neurons. b, Meshes of two example neurons, reconstructed from serial electron microscopy. The zoom-in cutout shows a synapse between these two neurons,
with the pre-synaptic axon in black and post-synaptic dendrite in silver. ¢, Colored scatter plots of readout positions of all neurons from a recording session of the MICrONS
mouse, overlayed on top-down a view of the recording window with annotated visual areas (V1, LM, RL, AL) and boundaries. The left and right plots are colored by the x and
y coordinates of the readout positions, respectively. d, Confusion matrix of MICrONS visual areas predicted from readout feature weights, normalized per row. The diagonal
represents the recall for each visual area. e, Confusion matrix of MICrONS excitatory neuron cell types predicted from readout feature weights, normalized per row. The
excitatory neuron cell types are from Schneider-Mizell et al. 2023. The diagonal represents the recall for each cell type. f, Morphologies of different types excitatory neurons.

Two example neurons are shown for each excitatory neuron cell type.

et al., 2014; Zhuang et al., 2017).

Next, we investigated how the readout weights, a 512-
dimensional vector per neuron, could be used to predict
anatomical properties such as the visual area and morpho-
logically defined cell types. These readout weights serve as
a functional barcode, encoding the neuron’s tuning to visual
features produced by the core module at its readout position.
We found that these functional barcodes captured differences
between visual areas (V1, LM, AL, RL). Using logistic re-
gression, the readout weights could predict visual areas with
a balanced accuracy of 68%, exceeding the chance level of
25% (Fig. 5d). We further explored the possibility of pre-
dicting 11 morphologically defined excitatory cell types from
L2 to LS5 (Fig. 5f) identified by Schneider-Mizell et al. 2023.
Again, employing logistic regression, we achieved a balanced
accuracy of 32% for cell type prediction, outperforming the
chance baseline of 9% (Fig. 5e). Because these cell types
are fairly well separated across cortical depth (Fig. 5f), it is
possible that the classifier has learned to predict depth di-
rectly from the depth-varying signal-to-noise ratio of two-
photon (2p) imaging. To control for this potential confound,
we trained a classifier to predict cell types from 2p depth (re-
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duced model) and compared to a second classifier provided
with both 2p depth and readout feature weights (full model).
We found that the full model significantly outperformed the
reduced model in predicting cell types (likelihood ratio test,
p < 107?), indicating that the readout feature weights con-
tribute to classifier performance. Collectively, these results
demonstrate that our foundation model captures both func-
tional and structural properties of neurons, making it a valu-
able tool for analyzing structure-function relationships within
the MICrONS volume and studying mechanisms of compu-
tation within the visual cortex.

Our foundation model was employed in a companion pa-
per (Ding et al.,, 2023a) to investigate the wiring rules
of mouse visual cortex. The model’s ability to factorize
each neuron’s visual tuning into spatial (‘where’) and fea-
ture (‘what’) components—encoded by readout position and
readout weights, respectively—enabled a novel analysis of
function-connectivity relationships. Their study revealed that
the feature component, rather than the spatial component,
was predictive of synaptic connectivity between neurons.
This approach extends beyond previous studies that relied
on signal correlation, as our model separates feature selectiv-
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ity and receptive field location from underlying visual scene
statistics. Consequently, it provides a more nuanced under-
standing of how specific neuronal characteristics influence
connectivity patterns in the visual cortex. In another compan-
ion study, it was used to investigate a unique morphological
variation of neurons in layer 4 of the MICrONS dataset (Weis
et al., 2022). This study discovered a subset of excitatory
neurons at the base of layer 4 with restricted dendritic reach,
quantified by a basal dendritic bias metric. Remarkably, our
functional barcodes accurately predicted this basal dendritic
bias (Weis et al., 2022). This capability bridges the tradi-
tional divide between functional properties and morphologi-
cal traits in neuroscience, enabling exploration of structure-
function relationships in cortical circuits. Thus, our founda-
tion model and the functional digital twin of the MICrONS
mouse represent a significant advance in linking neuronal
anatomy and physiology.

Discussion

We introduce a major step towards a foundation model for
the mouse visual cortex that achieves state-of-the-art perfor-
mance at predicting dynamic neuronal responses across mul-
tiple visual areas, marking significant progress towards an ac-
curate functional digital twin of the mouse visual system.

Beyond excelling in the natural movie domain on which it
was trained, it accurately predicted responses to new stimulus
domains, including coherent random moving dots, dynamic
Gabor patches, flashing dots, directional pink noise, and nat-
ural static images. The model’s generalization performance
on new stimulus domains highlights its ability to capture non-
linear transformations from image space to neuronal activity
in the mouse visual cortex. The foundation core enabled ac-
curate models of new mice to be fitted with limited training
data, outperforming models with cores that were individually
trained for each mouse underscoring the inter-individual sim-
ilarity between individual mice (Lurz et al., 2021).

Importantly, we also demonstrate the utility of our model for
making predictions beyond neural activity—for example, in
tasks related to anatomy and connectivity—which greatly en-
hances its utility as a foundation model of the brain (Bom-
masani et al., 2021). Specifically, using the foundation core
of our model, we built a functional digital twin of the MI-
CrONS mouse functional connectomics dataset. No anatom-
ical information from EM data was used to build this model.
The functional digital twin enabled us to extract a functional
barcode—a vector embedding that describes the input-output
function of each neuron. Using these functional barcodes,
we show that our model could predict the cell type identity of
these neurons, which were defined by morphological and EM
characteristics in a companion paper analyzing the MICrONS
anatomical data (Schneider-Mizell et al., 2023). Moreover,
in an additional companion paper characterizing the morpho-
logical landscape of the MICrONS dataset, our model was
used to predict specific features of the dendritic morphology
of layer 4 pyramidal neurons (Weis et al., 2022).

In a companion paper, our digital twin of the MICrONS
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mouse was used to analyze the relationship between neu-
ronal function and connectivity (Ding et al., 2023a). This was
made possible by the architecture of the foundational model,
which allowed the tuning properties of each simulated neuron
to be represented as a functional barcode (indicating what the
neuron responds to) and a spatial component (indicating the
position of the neuron’s receptive field). This factorization
of the neuronal tuning functions was then leveraged by Ding
et al. 2023a to examine the relationship between the func-
tional properties of neurons and their synaptic connectivity
at an unprecedented level of detail. The key finding from
this study was that the feature component of neuronal tuning,
but not the spatial component, predicted which neurons were
connected at the fine synaptic scale.

Another important utility of our foundation model of the
mouse visual cortex, and the digital twin built from the MI-
CrONS dataset, is that the digital twin effectively “immor-
talizes” the functional properties of the recorded neurons in
the study. If the foundation core can demonstrate general-
ization to novel stimulus domains of interest, the digitally
twinned neurons can be characterized using these new stim-
uli that were not presented at the time of the in vivo data col-
lection. Here, we demonstrate that models trained on natural
movies indeed generalize to novel stimulus domains such as
coherent random dots, noise patterns and static natural im-
ages. Naturally, conducting new animal validation experi-
ments, similar to those presented in this study, will be nec-
essary to confirm that the foundation core indeed generalizes
to other animals and new stimulus domains of interest. With
proper validation, a foundation model enhances the utility of
the MICrONS dataset for broader impact since one can study
specific functional properties of interest and determine how
they are related to the microcircuit and anatomy of the neo-
cortex.

To this end, Fu et al. 2023 performed extensive validation of
our MICrONS model and utilized image synthesis to study
the circuit wiring that could explain center-surround recep-
tive field properties of neurons. They found that neurons
neurons with similar feature selectivity, measured with our
functional barcodes, were equally likely to form excitatory
synapses, regardless of whether their receptive fields signifi-
cantly overlapped or had minimal overlap. Deciphering this
relationship between neuronal function and connectivity was
made possible with our foundation model.

In summary, the results presented here and in the compan-
ion papers (Ding et al., 2023a; Weis et al., 2022; Fu et al.,
2023) utilizing our model demonstrate the power of the foun-
dation modeling approach for neuroscience research. In ad-
dition to achieving excellent neural predictions for not only
new mice but also new stimulus domains, our model enabled
the discovery of more nuanced synaptic connectivity rules
and the prediction of morphological cell types, dendritic fea-
tures, and related center-surround contextual modulation to
local circuit wiring—all from the functional barcodes of our
foundational model. This ability to uncover subtle patterns
in neural organization showcases the model’s potential for
driving new insights in neuroscience. In large projects like

Wang etal. | Foundation model of neural activity
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MICrONS, where dataset longevity is highly desirable, the
strong generalization capabilities of foundation models and
their ability to perform tasks beyond their original training
offer clear benefits. This enables researchers to explore ques-
tions that were not necessarily designed into the original ex-
periment, extending the utility of the dataset beyond its initial
scope and facilitating novel discoveries in neural circuit orga-
nization.

Our work was inspired by recent breakthroughs in artificial
intelligence, where foundation models (Bommasani et al.,
2021), trained on massive data volumes, have demonstrated
remarkable generalization in many downstream tasks. For
example, models trained on next sub-word prediction (Brown
et al., 2020) can be transferred to downstream tasks—e.g.,
conversing naturally with humans, or passing professional
licensing exams (Kung et al., 2023)—with relatively small
amounts of new data. Applied to neuroscience, the foun-
dation modeling paradigm overcomes a major limitation of
previous common approaches where models are individually
trained using data from a single experiment. The limited
amount of data hinders the accuracy of models as they try to
learn from scratch the complex non-linearities of the brain,
even though there is a great deal of similarity in how visual
neurons respond. By contrast, foundation models combine
data from multiple experiments, including data from many
brain areas and subjects under high entropy natural condi-
tions, giving them access to a much larger and richer set
of data; only the specific idiosyncrasies of each individual
mouse and its neurons must be learned separately. In other
words, the similarities between neurons and subjects can be
leveraged to identify common features of the brain, produc-
ing a more unified and accurate model of the brain that is
informed by multiple subjects rather than one.

In neuroscience, previous work (Lurz et al., 2021) has shown
that static models of the visual cortex benefit from pre-
training on large amounts of data pooled from multiple sub-
jects. In our current study, we not only demonstrate that data
pooling and transfer learning can extend to a dynamic model,
but we also crucially show that our model predicts neuronal
responses to new stimulus domains (e.g., random dots and
noise patterns) and new tasks such as anatomical features and
connectivity, which are significant extensions over previous
work. These findings and capabilities of large data-driven
models of the brain underscore the potential of brain founda-
tion models to study complex biological systems such as the
brain.

Our present foundation model merely scratches the surface,
as it only models parts of the mouse visual system under
passive viewing conditions. By expanding this approach
to encompass complex, natural behaviors in freely-moving
subjects, incorporating additional brain regions, diverse cell
types, and creating foundation models for other species could
be a paradigm shift in neuroscience. Foundation models can
be employed to study vision, cognition and motor control
during intricate, unconstrained natural behaviors in which
identical conditions rarely occur twice. For instance, we
can conduct comprehensive in silico experiments to explore
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relationships between the high dimensional neuronal activ-
ity and behavioral spaces to generate hypotheses and to de-
sign simpler experiments to run in vivo, such as inception
loops (Walker et al., 2019; Franke et al., 2022).

Moreover, by considerably reducing the neuron-hours re-
quired to model new individuals and behaviors, founda-
tion models facilitate more efficient and cost-effective neu-
roscience experiments. For example, we can establish high-
throughput research platforms that, with minimal new data,
generate predictions of individual subjects’ neuronal activity
and behavior. When causal manipulations are incorporated in
the foundation model, such as pharmacological interventions,
we could then swiftly screen drugs tailored for a desired phe-
notypic neuronal or behavioral outcome.

Ultimately, the development of multimodal foundation
neuroscience models offers a powerful new approach to
deciphering the algorithms underpinning natural intelli-
gence. As we accumulate more diverse multimodal
data—encompassing sensory inputs, behaviors, and neural
activity across various scales, modalities and species—we
will build powerful foundation models. This approach holds
the promise of cracking the neural code of natural intelli-
gence, providing unprecedented insights into the fundamen-
tal principles of cognition.
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Methods

Neurophysiological experiments MICrONS data in Fig. 5
was collected as described in The MICrONs Consortium
et al. 2023, and data in Fig. 2a was collected as described
in Sinz et al. 2018. Data collection for all other figures is
described below.

All procedures were approved by the Institutional Animal
Care and Use Committee of Baylor College of Medicine.
Fourteen mice (Mus musculus, 6 females, 8 males, age 2.2-
4 months) expressing GCaMP6s in excitatory neurons via
Slc17a7-Cre and Ail62 transgenic lines (recommended and
generously shared by Hongkui Zeng at Allen Institute for
Brain Science; JAX stock 023527 and 031562, respectively)
were anesthetized and a 4 mm craniotomy was made over the
visual cortex of the right hemisphere as described previously
(Reimer et al., 2014; Froudarakis et al., 2014). Animals were
allowed at least 5 days to recover before experimental scans.

Mice were head-mounted above a cylindrical treadmill
and two-photon calcium imaging was performed using
Chameleon Ti-Sapphire laser (Coherent) tuned to 920 nm
and a large field of view mesoscope (Sofroniew et al., 2016)
equipped with a custom objective (excitation NA 0.6, col-
lection NA 1.0, 21 mm focal length). Laser power after the
objective was increased exponentially as a function of depth
from the surface according to: P = Py X e(#/L2) where P is
the laser power used at target depth z, PO is the power used
at the surface (not exceeding 20 mW), and Lz is the depth
constant (220 um). The greatest laser output of 100 mW was
used at approximately 420 um from the surface.

The craniotomy window was leveled with regards to the ob-
jective with six degrees of freedom. Pixel-wise responses
from an ROI spanning the cortical window (>2400 x 2400
um, 2-5 um/px, between 100-220 um from surface, >2.47
Hz) to drifting bar stimuli were used to generate a sign
map for delineating visual areas (Garrett et al., 2014). Area
boundaries on the sign map were manually annotated.

For eleven out of fifteen scans (including four of the founda-
tion cohort scans), our target imaging site was a 1200 x 1100
pmz area spanning L2-L5 at the conjunction of lateral pri-
mary visual cortex (V1) and three lateral higher visual areas:
anterolateral (AL), lateromedial (LM), and rostrolateral (RL).
This resulted in an imaging volume that was roughly 50% V1
and 50% higher visual area. This target was chosen in order
to mimic the area membership and functional property distri-
bution in the MICrONS animal (The MICrONs Consortium
et al., 2023) Each scan was performed at 6.3 Hz, collecting
eight 620 x 1100 um? fields per frame at 2.5 um/px Xy res-
olution to tile a 1200-1220 x 1100 um? FOV at four depths
(two planes per depth, 20-40 um overlap between coplanar
fields. The four imaging planes were distributed across layers
with at least 45 um spacing, with two planes in L2/3 (depths:
170-200 ym and 215-250 ym), one in L4 (300-325 ym), and
one in L5 (390-420 pum).
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For the remaining 4 foundation cohort scans, our target imag-
ing site was a single plane in L2/3 (depths 210-220 ym),
spanning all visual cortex visible in the cortical window (typ-
ically including V1, LM, AL, RL, PM, and AM). Each scan
was performed at 6.8-6.9 Hz, collecting four 630 um width
adjacent fields (spanning 2430 yum ROI, with 90 ym total
overlap). Each field was a custom height (2010-3000 um) in
order to encapsulate visual cortex within that field. Imaging
was performed at 3 um/px.

Movie of the animal’s eye and face was captured throughout
the experiment. A hot mirror (Thorlabs FM02) positioned be-
tween the animal’s left eye and the stimulus monitor was used
to reflect an IR image onto a camera (Genie Nano C1920M,
Teledyne Dalsa) without obscuring the visual stimulus. The
position of the mirror and camera were manually calibrated
per session and focused on the pupil. Field of view was man-
ually cropped for each session. The field of view contained
the left eye in its entirety, and was captured at ~20 Hz. Frame
times were time stamped in the behavioral clock for align-
ment to the stimulus and scan frame times. Video was com-
pressed using Labview’s MJPEG codec with quality constant
of 600 and stored the frames in AVI file.

Light diffusing from the laser during scanning through the
pupil was used to capture pupil diameter and eye movements.
A DeepLabCut model (Mathis et al., 2018) was trained on
17 manually labeled samples from 11 animals to label each
frame of the compressed eye video (intraframe only H.264
compression, CRF:17) with 8 eyelid points and 8 pupil points
at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 72-99% of frames per scan) were fit
with the smallest enclosing circle, and the radius and center
of this circle was extracted. Frames with < 3 pupil points
with likelihood >0.9 (<1.2% frames per scan), or producing
a circle fit with outlier > 5.5 standard deviations from the
mean in any of the three parameters (center x, center y, ra-
dius, <0.2% frames per scan) were discarded (total <1.2%
frames per scan). Gaps of <= 10 discarded frames were re-
placed by linear interpolation. Trials affected by remaining
gaps were discarded (<18 trials per scan, <0.015%).

The mouse was head-restrained during imaging but could
walk on a treadmill. Rostro-caudal treadmill movement
was measured using a rotary optical encoder (Accu-Coder
15T-01SF-2000NV1ROC-F03-S1) with a resolution of 8000
pulses per revolution, and was recorded at ~100 Hz in order
to extract locomotion velocity. The treadmill recording was
low-pass filtered with a Hamming window to remove high-
frequency noise.

Monitor positioning and calibration Visual stimuli were
presented with Psychtoolbox in MATLAB to the left eye with
a31.0 x 55.2 cm (height x width) monitor (ASUS PB258Q)
with a resolution of 1080 x 1920 pixels positioned 15 cm
away from the eye. When the monitor is centered on and
perpendicular to the surface of the eye at the closest point,
this corresponds to a visual angle of 3.8 °/cm at the nearest
point and 0.7 °/cm at the most remote corner of the moni-
tor. As the craniotomy coverslip placement during surgery

Wang etal. | Foundation model of neural activity
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and the resulting mouse positioning relative to the objective
is optimized for imaging quality and stability, uncontrolled
variance in animal skull position relative to the washer used
for head-mounting was compensated with tailored monitor
positioning on a six dimensional monitor arm. The pitch of
the monitor was kept in the vertical position for all animals,
while the roll was visually matched to the roll of the animal’s
head beneath the headbar by the experimenter. In order to
optimize the translational monitor position for centered vi-
sual cortex stimulation with respect to the imaging field of
view, we used a dot stimulus with a bright background (max-
imum pixel intensity) and a single dark square dot (minimum
pixel intensity). Randomly ordered dot locations drawn from
either a 5 x 8 grid tiling the screen (20 repeats) or a 10 x
10 grid tiling a central square (approx 90 degrees width and
height, 10 repeats), with each dot presentation lasting 200
ms. For five scans (four foundation cohort scans, 1 scan from
Fig. 4), this dot-mapping scan targeted the V1/RL/AL/LM
conjunction, and the final monitor position for each animal
was chosen in order to maximize inclusion of the population
receptive field peak response in cortical locations spanning
the scan FOV. In the remaining scans, the procedure was the
same, but the scan FOV spanned all of V1 and some adja-
cent higher visual areas, and thus the final monitor position
for each animal was chosen in order to maximize inclusion
of the population receptive field peak response in cortical lo-
cations corresponding to the extremes of the retinotopic map.
In both cases, the yaw of the monitor visually matched to be
perpendicular to and 15 cm from the nearest surface of the
eye at that position.

A photodiode (TAOS TSL253) was sealed to the top left cor-
ner of the monitor, and the voltage was recorded at 10 KHz
and timestamped with a 10 MHz behavior clock. Simulta-
neous measurement with a luminance meter (LS-100 Kon-
ica Minolta) perpendicular to and targeting the center of the
monitor was used to generate a lookup table for linear inter-
polation between photodiode voltage and monitor luminance
in cd/m? for 16 equidistant values from 0-255, and one base-
line value with the monitor unpowered.

At the beginning of each experimental session, we collected
photodiode voltage for 52 full-screen pixel values from 0 to
255 for one second trials. The mean photodiode voltage for
each trial was collected with an 800 ms boxcar window with
200 ms offset. The voltage was converted to luminance using
previously measured relationship between photodiode volt-
age and luminance and the resulting luminance vs. voltage
curve was fit with the function L = B+ A - PY where L is
the measured luminance for pixel value P, and the median ~
of the monitor was fit as 1.73 (range 1.58 - 1.74). All stimuli
were shown without linearizing the monitor (i.e. with moni-
tor in normal gamma mode).

During the stimulus presentation, display frame sequence in-
formation was encoded in a 3 level signal, derived from the
photodiode, according to the binary encoding of the display
frame (flip) number assigned in-order. This signal under-
went a sine convolution, allowing for local peak detection
to recover the binary signal together with its behavioral time
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stamps. The encoded binary signal was reconstructed for
>96% of the flips. Each flip was time stamped by a stimulus
clock (MasterClock PCIe-OSC-HSO-2 card). A linear fit was
applied to the flip timestamps in the behavioral and stimulus
clocks, and the parameters of that fit were used to align stim-
ulus display frames with scanner and camera frames. The
mean photodiode voltage of the sequence encoding signal at
pixel values O and 255 was used to estimate the luminance
range of the monitor during the stimulus, with minimum val-
ues of approximately 0.005 - 1 cd/m? and maximum values
of approximately 8.0 - 11.5 cd/m?.

Scan and behavioral data preprocessing Scan images
were processed with the CAIMAN pipeline (Giovannucci
et al., 2019), as described in (The MICrONs Consortium
et al., 2023), to produce the spiking activity neurons at the
scan rate of 6.3—6.9 Hz. The neuronal and behavioral (pupil
and treadmill) activity were resampled via linear interpola-
tion to 29.967 Hz, to match the presentation times of the
stimulus video frames.

Stimulus composition We used dynamic libraries of natu-
ral movies and directional pink noise ("Monet") as described
in The MICrONs Consortium et al. 2023, and the static natu-
ral image library as described in Walker et al. 2019.

Dynamic Gabor filters were generated as described in Petkov
and Subramanian 2007. We used a spatial envelope that had
a standard deviation of approximately 16.4° in the center of
the monitor. A 10-second trial consisted of 10 Gabor filters
(each lasting 1 second) with randomly sampled spatial posi-
tions, directions of motion, phases, spatial and temporal fre-
quencies.

Random dot kinematograms were generated as described in
Morrone et al. 2000. The radius of the dots was approxi-
mately 2.6° in the center of the monitor. Each 10-second
trial contained 5 patterns of optical flow, each lasting 2 sec-
onds. The patterns were randomly sampled in terms of type
of optical flow (translation: up/down/right/left, radial: in/out,
rotation: clockwise/anticlockwise), and coherence of random
dots (50%, 100%).

The stimulus compositions of the MICrONS recording ses-
sions is described in The MICrONs Consortium et al. (2023).
For all other recording session, the stimulus compositions are
listed in table 1.

Neural network architecture Our model of the visual cor-
tex is an artificial neural network composed of four modules:
perspective, behavior, core, and readout. These modules are
described in the following sections.

Perspective module  The perspective module uses ray trac-
ing to infer the perspective or retinal activation of a mouse
at discrete time points from two input variables: stimulus
(movie frame) and eye position (estimated center of pupil,
extracted from the eye tracking camera). To perform ray trac-
ing, we modeled the following physical entities: 1) topogra-
phy and light ray trajectories of the retina; 2) rotation of the
retina; 3) position of the monitor relative to the retina; 4) in-
tersection of the light rays of the retina and the monitor.
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1) We modeled the retina as a uniform 2D grid mapped onto a
3D sphere via an azimuthal equidistant projection (Extended
Data Fig. 1a). Let 6 and ¢ denote the polar coordinates (ra-
dial and angular, respectively) of the 2D grid. The following
mapping produces a 3D light ray for point (6, ¢) of the mod-
eled retina:

0 sinf cos ¢
1(0,9) : [ } — |sinfsing
¢ cost

2) We used pupil tracking data to infer the rotation of the oc-
cular globe and the retina. At each time point ¢, a multilayer
perceptron (MLP with 3 layers and 8 hidden units per layer)
is used to map the pupil position onto the 3 ocular angles of
rotation:

xt

> )

)

MLP : [p”} — |0,

Dyt

D
N

t

where the py,py: are the x,y coordinates of the pupil
center in the frame of the tracking camera at time ¢, and
é\xh §yt7 @t are the estimated angles of rotation of about the
z (adduction/abduction), y (elevation/depression), z (intor-
sion/extorsion) axes of the occular globe at time .

LetR;, Ry, R, € R3*3 denote rotation matrices about x, 7, z
axes. Each light ray of the retina 1(6,¢) is rotated by the
occular angles of rotation:

1(0,6.t) = Ro(024) Ry (Byt) Ro (020 )1(0, 6)

producing A(H, #,t) € R3, the ray of light for point (,¢) of
the retina at time ¢, which accounts for the animal’s gaze and
the rotation of the occular globe.

3) We modeled the monitor as a plane with 6 degrees of free-
dom: 3 for translation and 3 for rotation. Translation of
the monitor plane relative to the retina is parameterized by
mg € R3. Rotation is parameterized by angles 6., §y7 0.

(m, m, m.]=R.(0.)R,(0,)R.(0,),

where m,, my, m, € R? are the horizontal, vertical, and nor-
mal unit vectors of the monitor, respectively.

4) We computed the line-plane intersection between the mon-
itor plane and 1(6, ¢,t), the gaze-corrected trajectory of light
for point ¢j of the retina at time ¢:

mogp-1m;

0 =—2"" 1
1’1’1( 7¢?t) 1(9,¢,t)mz ( 7¢7t)a

where m(6, ¢,t) is the point of intersection between the mon-

itor plane and the light ray 1(,¢,t). This is projected onto
the monitor’s horizontal and vertical unit vectors:

mx(07¢at) = (m(03¢7t) 7m0) My,
my(07¢at) = (m(G,qS,t) _mO) T1my, ,

yielding m®(0,,t) and m¥ (0, ¢,t), the horizontal and ver-
tical displacements from the center of the monitor/stimulus
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(Extended Data Fig. 1b). To produce inferred activation of
the retinal grid at (6,¢,t), we performed bilinear interpola-
tion of the stimulus at the four pixels surrounding the line-
plane intersection at m® (6, ¢,t), m¥(0,¢,t).

Modulation module The modulation module is a small
LSTM network (Hochreiter and Schmidhuber, 1997) that
transforms behavioral variables, i.e., locomotion and pupil
size, and previous states of the network, to produce dynamic
representations of the behavioral state and arousal of the
mouse.
Tt
LSTM: |ps
P
where r is the running/treadmill speed, p is the pupil diam-
eter, p’ is the instantaneous change in pupil diameter, and
h™,c™ € R® are the "hidden" and "cell" state vectors of the
modulation LSTM network.

The hidden state vector h™ is tiled across space to produce
modulation feature maps H":

h" e RY — Hy" e ROV

m m m m
ht et = ht e

where C, H,WW denote channel, height, and width, respec-
tively, of the feature maps. These feature maps H}" serve as
the modulatory inputs into the recurrent portion of the core
module at time ¢.

Core module  The core module—comprised of feedforward
and recurrent components—transforms the inputs from the
perspective and modulation modules to produce feature rep-
resentations of vision modulated by behavior.

First, the feedforward module transforms the visual input
provided by the perspective module. For this we used
DenseNet architecture (Huang et al., 2018) with 3 blocks.
Each block contains 2 layers of 3D (spatiotemporal) convo-
lutions followed by a GeLU nonlinearity ((Hendrycks and
Gimpel, 2020)) and dense connections between layers. Af-
ter each block, spatial pooling was performed to reduce the
height and width dimensions of the feature maps. To enforce
causality, we shifted the 3D convolutions along the temporal
dimension, such that no inputs from future time points con-
tributed to the output of the feedforward module.

Next, the recurrent module transforms the visual and behav-
ioral information provided by the feedforward and modula-
tion modules, respectively, through a group of recurrent cells.
We used a convolutional LSTM (Conv-LSTM, SHI et al.
2015) as the architecture for each recurrent cell. For each
cell ¢, the formulation of the Conv-LSTM is shown below:

X6 = Wy« Hf + Wy «H + 3, Wy +HE | |
If =0 (WsxX§+ W3+ Hf_; + bf) ,

Of =0 (W3 X{ + W3 +Hj_; +bg) ,

F} =0 (Ws+X{+W3+H{_; +b})

G{ = tanh (W3 X§ + W3+ Hf_; + bf) ,
CE=FoCS , +I50 GE,

HY ¢® tanh (CY) ,
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where o denotes the sigmoid function, ® denotes the Hadar-
mard product, and Wy denotes a 2D spatial convolution
with a k x k kernel. HY , H;" are the feedforward and modu-
lation outputs, respectively, at time ¢, and Hfl,l is the hidden
state of an external cell ¢’ at time ¢ — 1. For cell ¢ at time

t, X¢, Cf, H are the input, cell, and hidden states, respec-
tively, and If, Of , F¢ , G¢ are the input, output, forget, and
cell gates.

To produce the output of the core network, the hidden fea-
ture maps of the recurrent cells are concatenated along the
channel dimension:

H; = Concatenate(HS™! HS™2, ) .

Given the recent popularity and success of transformer net-
works (Vaswani et al., 2023), we explored if adding the at-
tention mechanism to our network would improve perfor-
mance. We modified the Conv-Lstm architecture to incor-
porate the attention mechanism from the convolutional vi-
sion transformer (CvT, Wu et al. 2021). This recurrent trans-
former architecture, which we name CvT-Lstm, is described
as follows:

X¢=Wy«H + W «H" +Y, Wy «HS |,
Z§:W3*X§+W3*Hg_1,

Qi = Wi+Zi,

Kf=W;xZ7,

V6 =Wy 2 |

Af = Attention (Qf ,K¢{,VY) ,

¢ = 0 (W1 < A+ Wy +Z5 + bE) |
Of =0 (W1 xAf+ W1 xZ{+ bf) ,
F{ =0 (Wi A7+ Wy *Z7 + b?) ,

G{ = tanh (W1 Af + W1 % Z¢ + b)) |
C{=F;oC{_+I{0 Gf,
H{ = Of ® tanh (CY) ,

where attention is performed over query Qf, key K¢, and
value V¥ spatial tokens, which are produced by convolutions
of the feature map Z¢. The technique of using convolutions
with the attention mechanism was introduced with CvT (Wu
et al., 2021), and here we extend it by incorporating it into a
recurrent Lstm architecture (CvT-Lstm).

We compare the performance of Conv-Lstm vs CvT-Lstm re-
current architecture in Extended Data Fig 5. When trained
on the full amount of data, Conv-Lstm performs very simi-
larly to CvT-Lstm. However, Conv-Lstm outperforms CvT-
Lstm when trained on restricted data (e.g. 4 minutes of nat-
ural movies). This was consistent for all stimulus domains
that were used to test model accuracy — natural movies (Ex-
tended Data Fig 5a), natural images (b), drifting gabor filters
(c), flashing gaussian dots (d), directional pink noise (e), and
random dot kinematograms (e). The performance difference
under data constraints may be due a better inductive bias of
the Conv-Lstm. Alternatively, it could be due to a lack of op-
timization of the CvI-Lstm hyperparameters, and a more ex-
tensive hyperparameter search may yield better performance.
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Readout module  The readout module maps the core’s out-
puts onto the activity of individual neurons. For each neuron,
the readout parameters are factorized into two components:
spatial position and feature weights. For a neuron n, let
p" € R? denote the spatial position (x,y), and let w”* € RC
denote the feature weights for that neuron, with C' = 512 be-
ing the number channels in the core module’s output. To pro-
duce the response of that neuron n at time ¢, the following
readout operation is performed:

7 = Interpolate(H;, p"),

rp = exp(hy - w" +0") |

where h’ € R® is a feature vector that is produced via
bilinear interpolation of the core network’s output H; €
RE*HXW (channels, height, width), interpolated at the spa-
tial position p™. The feature vector h} is then combined with
the feature weights w” and a scalar bias b" to produce the re-
sponse ;" of neuron 7 at time ¢.

Due to the bilinear interpolation at a single position, each
neuron only reads out from the core’s output feature maps
within a 2 x 2 spatial window. While this adheres to the func-
tional property of spatial selectivity exhibited by neurons in
the visual cortex, the narrow window limits exploration of
the full spatial extent of features during model training. To
facilitate the spatial exploration of the core’s feature maps
during training, for each neuron n, we sampled the readout
position from a 2D Gaussian distribution: p™ ~ N (u™, 3™).
The parameters of the distribution p™, X" (mean, covari-
ance) were learned via the reparameterization trick (Kingma
and Welling, 2013). We observed empirically that the co-
variance X" naturally decreased to small values by the end
of training, meaning that the readout converged on a specific
spatial position. After training, and for all testing purposes,
we used the mean of the learned distribution @™ as the single
readout position p” for neuron n.

Model training The perspective, behavior, core, and read-
out modules were assembled together to form a model that
was trained to match the recorded dynamic neuronal re-
sponses from the training dataset. Let y} be the recorded in
vivo response, and let 7 be the predicted in silico response
of neuron ¢ at time ¢t. The ANN was trained to minimize
the Poisson negative log likelihood loss, >, ri — yilog(r}),
via stochastic gradient descent with Nesterov momentum
(Sutskever et al., 2013). The ANN was trained for 200 epochs
with a learning rate schedule that consisted of a linear warm-
up in the first 10 epochs, cosine decay (Loshchilov and Hut-
ter, 2016) for 90 epochs, followed by a warm restart and co-
sine decay for the remaining 100 epochs. Each epoch con-
sisted of 512 training iterations / gradient descent steps. We
used a batch size of 5, and each sample of the batch con-
sisted of 70 frames (2.33 seconds) of stimulus, neuronal, and
behavioral data.

Model hyperparameters We used a grid search to identify
architecture and training hyperparameters. Model perfor-
mances for different hyperparameters were evaluated using a
preliminary set of mice. After optimal hyperparameters were
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identified, we used the same hyperparameters to train models
on a separate set of mice, from which the figures and results
were produced. There was no overlap in the mice and ex-
periments used for hyperparameter search and the mice and
experiments used for the final models, results, and figures.
This was done to prevent overfitting and to ensure that model
performance did not depend on hyperparameters that were fit
specifically for certain mice.

Model testing We generated model predictions of re-
sponses to stimuli that were included in the experimental
recordings but excluded from model training. To evaluate
the accuracy of model predictions, for each neuron we com-
puted the correlation between the mean in silico and in vivo
responses, averaged over stimulus repeats. The average in
vivo response aims to estimate the true expected response of
the neuron. However, when the in vivo response is highly
variable and there are a limited number of repeats, this es-
timate becomes noisy. To account for this, we normalized
the correlation by an upper bound proposed by Schoppe et al.
2016. Using ~ to denote average over trials/stimulus repeats,
the normalized correlation C'Ch o is defined as follows:

CVc’abs

C’Cvnorm = S~
CCmax
OO = Cov(7,7)

/Var(7)Var(7) '

| NVar(y) — Var(y)
CCmax = \/ (N —1)Var(y) ’

where r is the in silico response, y is the in vivo response,
and N is the number of trials. C'Cyy is the Pearson corre-
lation coefficient between the average in silico and in vivo
responses. C'C,qz 18 the upper bound of achievable perfor-
mance given the the in vivo variability of the neuron and the
number of trials.

Parametric tuning To estimate parametric tuning, we pre-
sented parametric stimuli to the mice and the models. Specif-
ically, we used directional pink noise parameterized by direc-
tion/orientation and flashing Gaussian blobs parameterized
by spatial location. Orientation, direction, and spatial tuning
were computed from the recorded responses from the mice
and the predicted responses from the models. This resulted
in analogous in vivo and in silico estimates of parametric tun-
ing for each neuron. The methods for measuring the tuning
to orientation, direction, and spatial location are explained in
the following sections.

Orientation and Direction tuning We presented 16 an-
gles of directional pink noise, uniformly distributed between
[0,27). Let Tg be the mean response of a neuron to the angle
0, averaged over repeated presentations of the angle. The ori-
entation and direction selectivity indices (OSI and DSI) were
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computed as

= 26
oTo

[YgToe”]

DSI —
2070

i.e., the normalized magnitude of the first and second Fourier
components.

To determine the parameters for orientation and direction tun-
ing, we used the following parametric model:

f(e | Ky ﬁ7a7577) = aencos(@—u) + BGKCOS(G_H—H‘—) +7,

which is a mixture of two von Mises functions with ampli-
tudes a and g3, preferred directions o and p + 7, and disper-
sion k, plus a baseline offset of . The preferred orientation is
the angle that is orthogonal to i between [0, 7], i.e., (u+7/2)
mod 7. To estimate the parameters j, k «, 3,y that best fit the
neuronal response, we performed least squares optimization,
minimizing >_, (f(0|p, kv, B,7) —19)>.

Parameters were estimated via least square optimization for
both the in vivo and in silico responses. Let 11,7z be the an-
gles of preferred directions estimated from in vivo, in silico
responses, respectively. The angular distances between the
in vivo and in silico estimates of preferred direction (Fig. 4g)
and orientation (Fig. 4e) were computed as follows:

ADirection = arccos (cos (ji — 1)) ,

AOrientation = arccos (cos (211 — 211)) /2 .

Spatial tuning To measure spatial tuning, we presented
“on” and “off” (white and black), flashing (300 ms) Gaus-
sian dots. The dots were isotropically shaped, with a standard
deviation of approximately 8 visual degrees in the center of
the monitor. The position of each dot was randomly sampled
from a 17 x 29 grid tiling the height and width monitor. We
observed a stronger neuronal response for “off” compared
to “on”, and therefore we used only the “off” Gaussian dots
to perform spatial tuning from the in vivo and in silico re-
sponses.

To measure spatial tuning, we first computed the spike trig-
gered average (STA) of the stimulus. Let x € R? denote the
spatial location (height and width) in pixels. The value of the
STA at location x was computed as follows:

3. — Zt |sxt — solrt

X :5:: ; s

where 7 is the response of the neuron, sx; is the value of the
stimulus at location x and time ¢, and sq is the blank or gray
value of the monitor.

To measure the spatial selectivity of a neuron, we computed

the covariance matrix or dispersion of the STA. Again using
x € R? denote the spatial location (height and width) in pix-
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els:

Sx

Z <X/ z,

ZSTA—ZE x—X)(x—-X)T/z.
X

X =

The spatial selectivity index, or strength of spatial tuning,
was defined as the negative log determinant of the covariance
matrix:

SSI = — log |ZSTA| .

To determine the parameters of spatial tuning, we used least
squares to fit the STA to the following parametric model:

ol 009) = aexp (-5 (- WTE T x-0)) +7.

which is a 2D Gaussian component with amplitude c, mean
1, and covariance 3, plus a baseline offset of ~.

From the in vivo and in silico responses, we estimated two
sets of spatial tuning parameters. Let fi, x be the means (pre-
ferred spatial locations) estimated from in vivo and in silico
responses. To measure the difference between the preferred
locations (Fig. 4i), we computed the Euclidean distance:

ALocation = ||z — | -

Anatomical predictions from functional weights. To
predict brain areas from readout feature weights, we used all
functional units in the MICrONS data from XX scans that
had readout feature weights in the model. We trained a clas-
sifier to predict brain areas from feature weights using logis-
tic regression with nested cross validation. For each of the
10 folds, 90% of the data was used to train the model with
another round of 10 fold cross validation to select the best L2
regularization weight. The best performing model was used
to test on the held-out 10% of data. Finally, all of the predic-
tions were concatenated and used to test the performance of
the classifier (balanced accuracy) and generate the confusion
matrix. The confusion matrix was normalized such that all
rows sum to 1, thus the diagonal values represent the recall
of each class. To measure the performance of V1 vs HVA’s,
the balanced accuracy was measured after reclassifying the
LM, RL, and AL labels in both the target and prediction as
HVA.

To predict cell types, the same functional data source was
used as in the brain area predictions. Cell types were obtained
from CAVEclient initialized with ‘minnie65_public* and ta-
ble ‘aibs_metamodel_mtypes_v661_v2°‘. To associate a neu-
ron’s functional data with its cell type, we merged the cell
types to the combined manual and automatic coregistration
described in (The MICrONs Consortium et al., 2023). Lastly,
because each neuron could be scanned more than once, and
thus could have more than one functional readout weight, we
subset the data such that each neuron only had one readout
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weight according to its highest cc_max. Following this pro-
cedure, n=16,561 unique EM neurons remained. Out of the
20 cell classes, all excitatory neuron classes in L2-5 were
chosen (except LSNP, which had comparably fewer coregis-
tered cells), leaving 11 classes: "L2a", "L2b", "L2c", "L3a",
"L3b", "L4a", "L4b", "L4c", "L5a", "L5b", "L5ET". To train
the classifier using readout weights to predict cell types, lo-
gistic regression was used with the same nested cross vali-
dation procedure and performance metric as described in the
brain area predictions.

For testing whether readout weights contributed to cell type
predictons beyond imaging depth, the 2p depth of each func-
tional unit was obtained from a 2p structural stack (stack ses-
sion 9, stack idx 19) wherein all imaging planes were regis-
tered (The MICrONs Consortium et al., 2023). This provided
a common reference frame for all functional units. The two
logistic regression models (depth vs depth + readout weights)
were trained with all of the data, and the predicted probabil-
ities and coefficients from the models were used to run the
likelihood ratio test, where a p-value less than 0.05 was cho-
sen as the threshold for statistical significance.

Data availability. All MICrONS data have already been
released on BossDB (https://bossdb.org/project/microns-
minnie, please  also  see  https://www.microns-
explorer.org/cortical-mm3 for details).  Additional data
including foundation model architecture, hyperparameters,
and weights will be released upon publication.

Code availability. All code will be released on github upon
publication.
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Extended Data Fig. 1. ANN perspective. Schematic of the modeled perspective the animal. a, The retina is modeled as points on a sphere receiving light rays that trace
through the origin. An example light ray with polar angle 6 and azimuthal angle ¢ is shown in red. b, The light ray is traced to a point m®, mY on the monitor. Bilinear
interpolation of the four pixels on the monitor surrounding m®, mY produces the activation of a point 6, ¢ on the modeled retina. ¢, 9 examples of the modeled perspective
from the left eye of an animal, with 3 horizontal rotations of the optical globe (abduction/adduction) x 3 vertical rotations (elevation/depression). The concentric circles indicate
visual angles in degrees. (See Methods for details on the perspective network.)
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Extended Data Fig. 2. ANN modulation. Visualization of the modulation network’s output, projected onto 2 dimensions via UMAP. a, b show the same data from an example
recording session and modulation network. Each point on the plot indicates a point in time from the recording session. The colors indicate measurements of pupil size (a)
and treadmill speed (b) at the respective points in time. (See Methods for details on the modulation network.)

Mouse 1 Mouse 2 Mouse 3 Mouse 4
—, .a b .. C . d e
2 1.0 1 2 1.0 1 2 1.0 1 c£14O-
3 § § g W =48 p<i0’®
@ @ @ @ / =33, p<10°18
& o & & & t=34, p<10"1S
5 0.5 1 S 0.5 1 S 0.5 1 S 0.5 =94, p
P - -15
€ g < s B t=41,p<10
0.0 T ] 0.0 T ] 0.0 T ] 0.0 T 1 T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 -0.2 0.0 0.2
CCabs (W/ Perspective) CCabs (W/ Perspective) CCabs (W/ Perspective) CCaps (W/ Perspective) CCapbs (W/ Perspective) - CCaps (W/0 Perspective)
i .
c1.04 ?1.0-9 = 1.0 q 104 J
kel kel kel o
] 1 S S _ 15
% % % % [ | t:42, p<10715
§ § § § t=33, p<10 .
= 0.5 < 0.5 S 0.5 = 0.5 t=30, p<10
: B z B W t=46,p<10"®
o g o o o
0.0 T 1 0.0 T 1 0.0 T 1 0.0 -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 -0.2 0.0 0.2
CCaps (W/ Modulation) CCabs (W/ Modulation) CCabs (W/ Modulation) CCaps (W/ Modulation) CCabs (W/ Modulation) - CCaps (W/o Modulation)
m n (o]
1.0 q 1.0 q 1.0 q
g g g 3] B =12, p<107S
z i z z z t=14, p<10°1
I} S I} S _ 15
€ 05+ € 05+ S 054 e =14, pet0” -
S S 3 S B =20, p<10
s} o 8} o
0.0 #2 . . 0.0 . . 0.0 . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 -0.2 0.0 0.2
CCaps (Conv3d) CCaps (Conv3d) CCaps (Conv3d) CCaps (Conv3d) CCaps (Conv3d) - CCaps (Conv2d)
r s t
1.0P 1.0q 1.0 1 1.0
- -15
3 3 3 . B i o
= s s =5 e o s
%05 A % 0.5 % 0.5 % 0.5 B t=69, p<10
S 5 S S S £ i B t=66,p<10"®
s} Ve o ) o i
0.0 £ : . 0.0 . . 0.0 . . 0.0 . . . ! .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 -0.2 0.0 0.2
CCaps (Poisson NLL) CCas (Poisson NLL) CCas (Poisson NLL) CCaps (Poisson NLL) CCabs (Poisson NLL) - CCaps (MSE)

Extended Data Fig. 3. Neural network lesion studies. To determine the effect that various components of the model have on predictive accuracy, we performed lesion
studies, where we altered individual components of model and evaluated the effect that the alteration had on model performance (CCy1s). The left 4 columns (a-d, f-i,
k-n, p-s) are scatterplots of reference vs lesioned model performance, with each column corresponding to different mouse and each point corresponding to a neuron. The
right-most column (e, j, o, t) displays density histograms of the performance difference between the reference and the lesioned models, plotted separately for each mouse,
as well as the t-statistic and p-values of paired two-sided t-tests. The first row (a-e) shows the effect of the perspective module on model performance, the second row (f-)
shows the effect of the modulation module, the third row (k-0) shows the effect of the convolution type — 2D vs 3D — of the feedforward module, and the fourth row (p-t) shows
the effect of the loss function — Poisson negative log likelihood (Poission NLL) vs mean square error (MSE).
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Extended Data Fig. 4. ANN performance: Individual vs. Foundation. Predictive accuracy (median C'C), . across neurons) of foundation models (with the foundation
core) vs. individual models (with cores trained on individual recording sessions). For the 4 mice in the 4 left columns, 1 recording session was performed, and that data was
partitioned into 7 training/validation splits, which were used to train separate individual/foundation models. The predictive accuracy of those models (diamonds) is reported for
6 testing stimulus domains (rows). For the MICrONS mouse, 14 recording sessions were performed, for each recording session, a model was trained using nearly all (99%)
of the data available for training/validation. The MICrONS models were only tested on the natural movies, due to the lack of the other stimuli in the recording sessions. All
models were trained only using natural movies.
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Extended Data Fig. 5. Recurrent architecture: Conv-Lstm vs. CvT-Lstm. We evaluated the performance of two different types of recurrent architectures for the core
module: Conv-Lstm (blue) and CvT-Lstm (tan). For each architecture, a core was trained on 8 mice and then transferred to 4 new mice. For each of the new mice, 7 models
were trained using varying amounts of natural movies, ranging from 4 to 76 minutes. The predictive accuracy (C'C,,om) Of these models was evaluated on 6 different
stimulus domains: natural movies (a), natural images (b), drifting gabor filter (¢), flashing Gaussian dots (d), directional pink noise (e), random dot kinematograms (f). Blue
diamonds indicate models with the Conv-Lstm core, and tan diamonds indicate models with the CvT-Lstm core. For each architecture, models of the same mouse are
connected by lines.
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Extended Data Fig. 6. Reliability of in vivo and in silico direction and orientation tuning. a: Direction selectivity index (DSI) of neurons measured in two different in vivo
experiments (i.e., recording sessions). Each point represents a single neuron measured in the two in vivo experiments. b: DSI measured in two different in silico experiments
(i.e., model of a recording session). Each point represents a single neuron measured in the two in silico experiments. c¢: Distribution of the absolute differences between two

measurements of DSI from in vivo (dashed) and insilico (solid) experiments. d-f: Same as a-c, but for orientation selectivity index (OSI). g-i: Same as a-c, but for preferred
direction. j-I: Same as a-c, but for preferred orientation.
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Extended Data Fig. 7. Pairwise similarities of readout feature weights of neurons from the MICrONS volume. Here we examine the similarities of readout weights of
same or different neurons, from same or different scans (recording sessions). In panels a—c, the similarities of readout weights are plotted for the following groups: same
neuron from different scan (y-axis of a), same neuron from same scan (y-axis of b), different neuron from different scan (x-axis of a, x-axis of ¢), different neuron from same
scan (x-axis of b and y-axis of ¢). The similarity between readout weights was measured inversely via angular distance £ := arccos ((x-y)/(||x|||ly|])) /7 , where x,y
is a pair of readout weights. A similar pair of readout weights will exhibit a small £, and vice versa. The scatterplots a—c are colored by the C'C,ax, Which is an inverse
measure of neuronal noise, i.e., the estimated maximum correlation coefficient that a model could achieve at predicting the mean response the neuron (see Methods for
details). For each neuron N, the "different" neuron N” was restricted to be < 100 pum apart from each other in terms of soma distance, and the distribution of the number of
"different" neurons is shown in d (from different scans) and e (from the same scan). f and g (corresponding to d and e, respectively) show the fraction of the nearby neurons
N’ that are more similar to N in terms of readout weights than N is to itself across different scans. f, For 919 out of the 1013 neurons N, less than 0.05 of nearby neurons
N’ from different scans had more similar readout weights. g, For 840 out of the 1013 neurons N, less than 0.05 of nearby neurons N’ from the same scan had more similar
readout weights.
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