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Abstract 18 

Despite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend 19 

speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable 20 

speech-in-noise comprehension remain to be elucidated. The present study investigated the neural tracking 21 

of acoustic and semantic speech information during noisy naturalistic speech comprehension. Participants 22 

listened to narrative audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio 23 

(SNR) levels (no noise, 3 dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded. 24 

A temporal response function (TRF) method was employed to derive event-related-like responses to the 25 

continuous speech stream at both the acoustic and the semantic levels. Whereas the amplitude envelope of 26 

the naturalistic speech was taken as the acoustic feature, word entropy and word surprisal were extracted 27 

via the natural language processing method as two semantic features. Theta-band frontocentral TRF 28 

responses to the acoustic feature were observed at around 400 ms following speech fluctuation onset over 29 

all three SNR levels, and the response latencies were more delayed with increasing noise. Delta-band frontal 30 

TRF responses to the semantic feature of word entropy were observed at around 200 to 600 ms leading to 31 

speech fluctuation onset over all three SNR levels. The response latencies became more leading with 32 

increasing noise and were correlated with comprehension performance and perceived speech intelligibility. 33 

While the following responses to speech acoustics were consistent with previous studies, our study revealed 34 

the robustness of leading responses to speech semantics, which suggests a possible predictive mechanism 35 

at the semantic level for maintaining reliable speech comprehension in noisy environments. 36 

 37 

Keywords: speech-in-noise comprehension, semantic processing, neural tracking, temporal response 38 

function, EEG  39 
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Highlights 40 

1. Leading responses were observed in the semantic-level neural tracking, with more leading latencies as 41 

noise increased. 42 

2. Following responses were observed in the acoustic-level neural tracking, with more delayed latencies as 43 

noise increased. 44 

3. Semantic-level neural tracking is correlated with comprehension performance and perceived 45 

intelligibility. 46 

4. Distinct frequency bands were involved in speech semantic and acoustic processing.  47 
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1 Introduction 48 

Noise is an inevitable part of daily life, from car horns on the streets to background music at parties, 49 

and it presents a significant challenge to verbal communication. Reliable speech comprehension in noisy 50 

environments is crucial in various situations such as education or emergency service. Despite the distortion 51 

of auditory information, individuals with normal hearing can comprehend speech with ease. Understanding 52 

the adaptive neural mechanisms that enable robust speech-in-noise comprehension is essential for clinical 53 

intervention for hearing/language-impaired groups and for developing hearing-aid techniques.  54 

Neurophysiological studies have revealed important insights into how noise affects speech processing. 55 

Using the event-related techniques, cortical auditory evoked potentials (CAEP) elicited by auditory and 56 

speech stimuli have been found to show delayed latencies and reduced amplitudes under adverse conditions, 57 

including the early component P1-N1-P2 complex related to primary sound processing (Billings et al., 2009, 58 

2011), and the later components such as the N2 component related to phonological analysis (Billings et al., 59 

2009; Martin & Stapells, 2005; Tomé et al., 2015; Whiting et al., 1998) and the P3 component related to 60 

speech discrimination (Kaplan-Neeman et al., 2006; Koerner et al., 2017; Martin & Stapells, 2005; Whiting 61 

et al., 1998). In recent years, studies have focused more on the neural tracking of continuous speeches. i.e., 62 

the alignment between neural activities and the quasi-rhythmic fluctuations of continuous speech (see 63 

reviews, Brodbeck & Simon, 2020; Ding & Simon, 2014; Giraud & Poeppel, 2012; Lakatos et al., 2019; 64 

Obleser & Kayser, 2019). Specific temporal dynamics of neural tracking can be described via system 65 

identification methods such as the temporal response function (TRF; Crosse et al., 2016, 2021) by relating 66 

neural signals with speech features such as acoustic envelope. Neural tracking has been found to remain 67 

stable under mild and moderate noise, and it is regarded as an essential tool for segregating speech from 68 

the noisy background (Ding & Simon, 2013). Nevertheless, the TRF-based studies have also reported 69 

delayed latencies and/or reduced amplitudes of the neural tracking in noisy conditions (Gillis, Decruy, et 70 

al., 2022; Mirkovic et al., 2019; Muncke et al., 2022; Zou et al., 2019), similar to previous event-related 71 

studies. These results suggest an impaired acoustic processing efficiency in noisy environments (Gillis, 72 

Decruy, et al., 2022; Kaplan-Neeman et al., 2006). In addition to auditory processing, semantic processing 73 

also plays a vital role in speech-in-noise comprehension and has been paid substantial emphasis.  74 
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Semantic processing could be a crucial factor in robust speech comprehension against noisy 75 

environments. Numerous research has shown that coherent semantic context enabling anticipating 76 

upcoming stimuli contributes to an effective understanding of degraded speech (Miller et al., 1951; Obleser 77 

& Kotz, 2010, 2011; Sohoglu et al., 2012; Zekveld et al., 2011). For example, Miller et al. (1951) found 78 

that words in coherent sentences had higher intelligibility compared with the same words in unrelated word 79 

lists during speech-in-noise comprehension. Regarding the influence of noise on semantic processing, such 80 

as the N400 component (Kutas & Federmeier, 2011; Kutas & Hillyard, 1984), several studies have reported 81 

robust or increased amplitude of N400 under mild degradation, which might be related to additional 82 

cognitive effort (Jamison et al., 2016; Romei et al., 2011; Zendel et al., 2015), while other studies reported 83 

reduced/delayed N400 for degraded speech, which might be related to damaged signal quality (Aydelott et 84 

al., 2006; Connolly et al., 1992; Daltrozzo et al., 2012; Obleser & Kotz, 2011; Strauß et al., 2013). These 85 

mixed results provided valuable information on the complex relationship between noise and semantic 86 

processing. Moreover, it was discovered that semantic processing includes early responses before the onset 87 

of the stimulus, which was considered to be associated with semantic prediction (Grisoni et al., 2017, 2021; 88 

Pulvermüller & Grisoni, 2020). Nevertheless, it is still unknown how this pre-onset response is modulated 89 

by noise at various signal-to-ratios (SNRs). These inconsistent results and inadequate explorations of noise 90 

effect on semantic processing may be due to limitations inherent in the event-related design. This design 91 

typically uses highly-controlled and short-duration speech units, such as individual words (e.g., Romei et 92 

al., 2011) or disconnected sentences (e.g., Strauß et al., 2013), which only contain limited 93 

semantic/contextual information.  94 

The recent rise of the naturalistic speech paradigm is expected to expand our knowledge of the neural 95 

mechanisms of semantic processing during speech-in-noise comprehension (Z. Li & Zhang, 2023). 96 

Compared to the highly-controlled and short-duration speech units, continuous naturalistic speech stimuli 97 

provide a better resemblance to our daily communications because of a longer duration, more flexible 98 

content, and less deliberate semantic violations (Alday, 2019; Alexandrou et al., 2020; Hartley & Poeppel, 99 

2020; Sonkusare et al., 2019; Willems et al., 2020; Wöstmann et al., 2017). Most of all, the continuous 100 

naturalistic speech stimuli provide rich context-based semantic information (Alday, 2019; Alexandrou et 101 

al., 2020; Hamilton & Huth, 2020; Sonkusare et al., 2019), which is indispensable for semantic prediction 102 
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and reliable speech comprehension in chaotic daily environments. In addition, via state-of-art 103 

computational linguistic models, the semantic information of naturalistic speech can be quantified, and the 104 

semantic-level neural tracking can be directly measured (Broderick et al., 2018, 2019, 2021; Gillis et al., 105 

2021; Koskinen et al., 2020; Mesik et al., 2021; Weissbart et al., 2020), presenting a powerful tool to 106 

investigating how semantic processing is affected by noise at different SNRs. 107 

The two frequently adopted semantic features in speech-related neuroscience research are entropy and 108 

surprisal derived from information theory (Brodbeck et al., 2022; Donhauser & Baillet, 2020; Goldstein et 109 

al., 2022; Heilbron et al., 2022), which respectively measures the semantic uncertainty of the upcoming 110 

stimuli and the unexpectedness of the current stimulus (Pickering & Gambi, 2018; Willems et al., 2016). 111 

The word surprisal was found to be associated with the superior temporal gyrus and inferior frontal sulcus, 112 

etc. (Willems et al., 2016), and is linked to an N400-like neural response, i.e., negativity at around 400 ms 113 

within the central-parietal electrodes (Broderick et al., 2021; Gillis et al., 2021; Heilbron et al., 2022). The 114 

word entropy was associated with neural activities within the left ventral premotor cortex, left middle 115 

frontal gyrus and right inferior frontal gyrus, etc. (Willems et al., 2016). Furthermore, Goldstein et al. (2022) 116 

derived word entropy from deep language models (GPT-2) and correlated them with electrocorticography 117 

(ECoG) signals. The results indicated that entropy was related to neural activities in the left-lateralized 118 

channels at several hundred milliseconds before the word onset. This pre-onset response is consistent with 119 

the semantic prediction potential (SPP) in event-related studies as a direct neural signature for semantic 120 

prediction (Grisoni et al., 2021; Pulvermüller & Grisoni, 2020). A recent study by Yasmin et al. (2023) 121 

discovered that the N400-like response in semantic-level neural tracking remained robust under mild and 122 

moderate noise conditions and declined abruptly at the high-noise level (SNR = -3 dB). However, the noise 123 

effect on the pre-onset response in semantic-level neural tracking is still unexplored. 124 

The current study aimed to investigate the neural mechanisms of speech-in-noise comprehension by 125 

simultaneously focusing on both the acoustic and semantic levels as well as both the pre-onset and the post-126 

onset stages. A naturalistic speech comprehension paradigm was employed, as the naturalistic speech 127 

stimuli were expected to provide better ecological validity and contextual information (Alday, 2019; 128 

Sonkusare et al., 2019). 60-channel EEGs were recorded while the participants listened to spoken narratives 129 

at three SNRs (no noise, 3 dB, -3 dB). Following previous studies, the amplitude envelopes of the speech 130 
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stimuli were extracted as the acoustic feature (Di Liberto et al., 2015; O’Sullivan et al., 2015). Two typical 131 

semantic features were calculated by a Chinese NLP model, i.e., word entropy and word surprisal (Gillis et 132 

al., 2021; Weissbart et al., 2020; Willems et al., 2016; Koskinen et al., 2020; Mesik et al., 2021; Broderick 133 

et al., 2021). The neural responses to the acoustic and semantic features were estimated using the TRF 134 

method (Crosse et al., 2016), which yields the spatiotemporal dynamics of how our brain tracks these 135 

features in naturalistic speeches. The pre-onset and post-onset responses in the current study were defined 136 

as significant TRF responses with negative and positive time lags, respectively. Especially, we conducted 137 

TRF analyses and detected significant TRF responses separately at different SNR levels to capture all 138 

potential neural signatures. We hypothesize that the acoustic-level TRF could be related to delayed peak 139 

latencies or reduced amplitudes under noisy conditions as in previous studies (Gillis, Decruy, et al., 2022; 140 

Mirkovic et al., 2019; Muncke et al., 2022; Zou et al., 2019). As for the semantic-level TRF, we hypothesize 141 

that both the pre-onset and post-onset response could show resilience against noise (Yasmin et al., 2023). 142 

By exploring the pre-onset and post-onset temporal dynamics of low- and high-level processing, this study 143 

hopes to gain a more complete overview of the noise effect on neural processing during naturalistic speech 144 

comprehension.  145 
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2 Methods  146 

2.1 Participants 147 

Twenty college students (10 females, ages ranging from 19 to 28 years old) participated in the study. 148 

The sample size was determined to be sufficient by reference to previous TRF-based studies on the human 149 

speech processing (e.g., Broderick et al., 2018; Di Liberto et al., 2015). One male participant was excluded 150 

due to technical problems during data recording. The data of the remaining nineteen participants (age: mean 151 

± SD = 21.79 ± 1.99) were included in the subsequent analyses. All participants were native Chinese 152 

speakers, right-handed, with normal hearing and normal or corrected-to-normal vision by self-report. The 153 

study was conducted in accordance with the Declaration of Helsinki and was approved by the local Ethics 154 

Committee of Tsinghua University. Written informed consent was obtained from all participants. 155 

 156 

2.2 Materials 157 

Thirty narrative audio recordings from our previous studies (Z. Li et al., 2021, 2022) were used as 158 

stimuli. These audio recordings were recorded from six native Chinese speakers with professional training 159 

in broadcasting. The participants were unfamiliar with the content of these narrative audio recordings, 160 

which were about speakers’ personal experiences on daily-life topics adapted from the National Mandarin 161 

Proficiency Test. Each narrative audio recording lasted for around 90 s and was recorded by a regular 162 

microphone at a sampling rate of 44,100 Hz in a sound-attenuated room.  163 

These speech stimuli were further processed into three versions at three different SNR levels: no-noise 164 

(NN), low-noise (SNR = 3 dB), and high-noise (SNR = -3 dB), where speech intensity percentage was 165 

100%, 60%, and 40%, respectively. This procedure was achieved by adding spectrally matched stationary 166 

noise, which was generated based on a 50th-order linear predictive coding (LPC) model estimated from the 167 

original speech recording (Broderick et al., 2018). The SNR levels were selected following previous studies 168 

(Ding & Simon, 2013), and were produced by varying the noise intensity while keeping the intensity of 169 

original speech (measured by its root mean square) constant (Ding & Simon, 2013).  170 

For each narrative audio recording, two four-choice questions were prepared by the experimenters to 171 

assess one’s speech comprehension performance. These questions and the corresponding choices were 172 

targeted at detailed narrative contents that would demand significant attentional efforts. For instance, one 173 
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 9 

question following a narrative audio recording about one’s major was, “What is the speaker’s most likely 174 

major as a graduate student? (说话人的研究生专业最可能是什么？)” and the four choices were 1) Social 175 

science, 2) International politics, 3) Pedagogy and 4) Psychology (1. 社会科学, 2. 国际政治, 3. 教育学 and 176 

4. 心理学).  177 

 178 

2.3 Procedure 179 

Before the start of the experiment, the participants had one practice trial to get familiar with the 180 

procedure, with an additional narrative audio recording at the no-noise level not used in the formal 181 

experiment. The formal experiment consisted of 30 trials, with 10 trials per SNR level. In each trial, the 182 

participants listened to narrative audio recordings at one of the three SNR levels. The participants were 183 

required to maintain visual fixation on a fixation cross displayed on the computer screen in front of them 184 

and to minimize eye blinks and all other motor activities during listening. The order of the narrative audio 185 

recordings and their assigned SNR levels was randomized for each participant.  186 

After each trial, the participants were instructed to answer two four-choice questions about the content 187 

of the narrative audio recording using the computer keyboard. The averaged accuracies across all trials 188 

(separately for each SNR level) were used to reflect the participants’ comprehension performance. After 189 

completing these questions, the participants were instructed to rate the perceived clarity and intelligibility 190 

of the narrative audio recording on a 100-point rating scale and rested for at least 5 s before moving on to 191 

the next trial. No feedback was given to the participants about their comprehension performance during the 192 

experiment. 193 

 The experimental procedure was programmed in MATLAB using the Psychophysics Toolbox 3.0 194 

(Brainard, 1997). The speech stimuli were delivered to listeners seated in a sound-attenuated room via an 195 

air-tube earphone (Etymotic ER2, Etymotic Research, Elk Grove Village, IL, USA) to avoid environmental 196 

noise and equipment electromagnetic interference. The volume of the audio stimuli was adjusted 197 
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 10 

individually for each participant to a comfortable level, and it was kept consistent across trials. The 198 

experimental procedure is illustrated in Figure 1.  199 

Figure 1. Experimental procedure. The participants listened to 30 naturalistic narrative audio recordings 200 

which each lasted around 90 s. These audio recordings were mixed with three levels of spectrally matched 201 

stationary noise: no-noise (NN), low-noise (SNR = 3 dB), and high-noise (SNR = -3 dB). The 60-channel 202 

EEG signals were recorded during listening. After listening to each narrative audio recording, the 203 

participants were required to complete a comprehension test and report the clarity and intelligibility rating. 204 

In the comprehension test, two four-choice questions per audio recording based on the narrative content 205 

were used.  206 

2.4 EEG recording and preprocessing 207 

EEG signals were recorded from 60 channels with a NeuroScan amplifier (SynAmp II, NeuroScan, 208 

Compumedics, USA) at a sampling rate of 1000 Hz. Electrodes were positioned according to the 209 

international 10–20 system, including FP1/2, FPZ, AF3/4, F7/8, F5/6, F3/4, F1/2, FZ, FT7/8, FC5/6, FC3/4, 210 

FC1/2, FCZ, T7/8, C5/6, C3/4, C1/2, CZ, TP7/8, CP5/6, CP3/4, CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ, 211 

PO7/8, PO5/6, PO3/4, POZ, Oz, O1/2, referenced to an electrode between CZ and CPZ with a forehead 212 

ground at FZ. Electrode impedances were kept below 10 kOhm for all electrodes throughout the experiment. 213 

The recorded EEG data were first notch filtered to remove the 50 Hz powerline noise. Independent 214 

Component Analysis (ICA) was performed to remove artifacts such as eye blinks and eye movements based 215 

on visual inspection. Around 4–12 independent components (ICs; mean = 6.6) were removed per participant. 216 

The remaining ICs were then back-projected onto the scalp EEG channels to reconstruct the artifact-free 217 

EEG signals. The EEG signals were then re-referenced to the average of all scalp channels and 218 

downsampled to 128 Hz. Afterward, EEG signals were filtered into the delta (1–4 Hz) and theta (4–8 Hz) 219 

Break

> 5 s

END
Comprehension test

Clarity/Intelligibility rating

Practice

1 trial

30 trials

Listen

~ 90 s

spectrally matched stationary noise

SNR = NN, 3 dB, -3 dB

+

10 trials per noise level× 3 levels
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bands, which have been previously reported to be important for speech neural tracking (Ding et al., 2014; 220 

Etard & Reichenbach, 2019; Keitel et al., 2017; Koskinen et al., 2020; J. Li et al., 2023; Peelle et al., 2013). 221 

For comprehensiveness, we also included the alpha (8−12 Hz) and beta (12−30 Hz) bands into analyses. 222 

Causal FIR (Finite Impulse Response) filters were employed to ensure that the filtered EEG signals were 223 

determined only by the current and previous data samples, which was important for the present study 224 

focusing on the fine-grained time course, particularly considering the pre-onset neural responses (de 225 

Cheveigné & Nelken, 2019).  226 

These preprocessed EEG signals were segmented into 30 trials, from 5 to 90 s (duration = 85 s), 227 

relative to the speech onsets of each trial to avoid possible onset and offset effects. All preprocessing was 228 

conducted offline using MATLAB and the Fieldtrip toolbox (Oostenveld et al., 2011).  229 

 230 

2.5 Feature extraction 231 

Three types of features were extracted to represent the acoustic (amplitude envelope) and semantic 232 

(word entropy, word surprisal) information for each narrative audio recording. An example of these speech 233 

features is illustrated in Figure 2A. 234 

Acoustic feature. The amplitude envelope for each narrative audio recording was calculated as the 235 

absolute values after a Hilbert transform and then downsampled to the sampling rate of 128 Hz to match 236 

that of the EEG signals. 237 

Semantic features. Before feature extraction, the narrative audio recordings were converted to text by 238 

Iflyrec software (Iflytek Co., Ltd, Hefei, Anhui) and then segmented into words based on the THU Lexical 239 

Analyzer for Chinese (THULAC) toolbox (Sun et al., 2016).  240 

Two semantic features, word entropy and word surprisal, were extracted. Word entropy measures the 241 

uncertainty of predicting the upcoming word based on the context so far and was calculated as equation (1):  242 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡)  =   − ∑ 𝑃(𝑤𝑡+1|𝑤1, … , 𝑤𝑡)𝑙𝑜𝑔𝑃(𝑤𝑡+1|𝑤1, … , 𝑤𝑡)

𝑤𝑡+1

(1) 243 

Word surprisal measures how surprising the current word is given the previously encountered words and 244 

was calculated as equation (2): 245 

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑡)  =   − 𝑙𝑜𝑔𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1) (2) 246 
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Where 𝑤1, … , 𝑤𝑡−1 are the existing word sequence and 𝑃(𝑤𝑡|𝑤1, … , 𝑤𝑡−1) is the conditional probability of 247 

next word (Willems et al., 2016). These NLP calculations were conducted by ADAM, a widely accepted 248 

Long-Short Term Memory (LSTM) Neural Network model (Kingma & Ba, 2015). The model was trained 249 

on the corpora corpus of the People’s Daily with 534,246 Chinese words. See Supplementary Table S1 for 250 

more information about the model and Supplementary Table S2 for more information about the descriptive 251 

statistics of semantic features.  252 

After extracting the semantic features of each word, the word onset timings were estimated via Iflyrec 253 

software. Impulses at the word onset time were manipulated with corresponding semantic feature values to 254 

generate one-dimensional “semantic vectors” (e.g., Broderick et al., 2018; Gillis et al., 2021). The sampling 255 

rate of the semantic vectors was 128 Hz to match the EEG signals. 256 

Figure 2. Speech feature extraction and Temporal Response Function analyses. (A) Three types of speech 257 

features were extracted, including one acoustic feature (amplitude envelope) and two semantic features 258 
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(word entropy and word surprisal). The two semantic features were derived from a computational linguistic 259 

model and one-dimensional vectors were generated with impulses manipulated with semantic feature values 260 

at the corresponding word onsets time. (B) Forward modeling. TRFs were extracted by regressing each of 261 

the three types of speech features against the EEG signals separately. The significance of these TRFs was 262 

estimated by comparing them with the corresponding control TRFs, which were modeled based on EEG 263 

signals and shuffled speech features. The resulting spatiotemporal ranges were identified as regions of 264 

interest (ROIs) and time lags of interest (TOIs). (C) Backward modeling. These three types of speech 265 

features were separately reconstructed through backward TRF models, and the reconstruction accuracy 266 

(Pearson’s r) depicted the strength of neural tracking. Control backward models were constructed with EEG 267 

signals and shuffled features.  268 

2.6 Modeling of the stimulus-response relationship 269 

The Temporal Response Function (TRF) modeling method based on ridge regression was adopted to 270 

explore the relationship between the neural activities and the three types of stimulus features (Crosse et al., 271 

2016, 2021). Forward modeling was first used to illustrate the specific spatiotemporal response patterns 272 

and identify key electrodes and time lags in TRF responses of the corresponding speech feature, and then 273 

backward modeling was adopted to verify the possible contribution of these identified neural correlates 274 

(e.g., Broderick et al., 2019; Etard & Reichenbach, 2019). The overall procedure of the modeling analyses 275 

is shown in Figure 2B and 2C.  276 

Forward modeling. With a forward modeling approach, we described neural response patterns to 277 

different speech features by linear spatiotemporal filters called TRFs, which measure how neural signals 278 

from different regions are modulated by stimulus features at different time lags (Crosse et al., 2016). The 279 

estimated TRF together with the corresponding speech feature was used to predict the EEG responses from 280 

each electrode. The prediction accuracy measured as the Pearson’s correlation between the actual and 281 

predicted EEG signals represents the performance of the forward model. The TRF, w, is measured by 282 

equation (3): 283 

𝑤  =  (𝑆𝑇𝑆  +  𝜆𝐼)−1𝑆𝑇𝑟 (3) 284 

Where S is the lagged time series of the stimulus features, r is the neural signals, and I is the identity 285 

matrix. The time lags for forward modeling were chosen to cover a relatively broad time range, from -1000 286 

to 1000 ms (Goldstein et al., 2022; J. Li et al., 2021, 2023). The λ is the regularization parameter used to 287 

prevent overfitting and ranged between 0.1 and 1000 in steps of the powers of 10 empirically (Gillis, Van 288 
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Canneyt, et al., 2022). The cross-validation procedure was implemented in a leave-one-trial-out procedure 289 

within each participant: each time, the model was trained based on 9 trials and tested on the left-out trial, 290 

which was repeated for each of the 10 trials at three SNR levels separately. The λ value that produced the 291 

highest prediction accuracy averaged across trials after cross-validation was selected as the regularization 292 

parameter for all trials at a certain SNR level per participant. TRF amplitudes were further transformed into 293 

z-scores before statistical analyses (Ding et al., 2014; Gillis et al., 2021; J. Li et al., 2021).  294 

The statistical significance of the estimated TRFs was estimated by constructing control TRF models 295 

(Weissbart et al., 2020). We built control models by constructing TRF models using shuffled stimulus 296 

features and the EEG recordings in the same way as for the computation of the actual TRFs. The shuffled 297 

amplitude envelope was constructed by randomly shuffling the feature value within a trial while keeping 298 

the timing of the quiet fragments. The shuffled word entropy and word surprisal were constructed by 299 

randomly shuffling the feature value within a trial while keeping the timing of impulses. Therefore the 300 

speech features that described acoustic and linguistic word onsets were not altered and thus left no impact 301 

on TRFs’ significance (Weissbart et al., 2020). The shuffling was repeated 1,000 times and resulted in 302 

1,000 control TRFs for a corresponding actual TRF. 303 

A nonparametric cluster-based permutation test was applied to account for multiple comparisons 304 

(Maris & Oostenveld, 2007). For each electrode-time bin in the actual and control TRFs, a one-sample t-305 

test was used to examine whether the TRF amplitudes significantly differed from 0. Then neighboring 306 

electrode-time bins with an uncorrected p-value less than 0.01 were combined into clusters. The minimum 307 

number of neighboring significant channels that was required for inclusion in a cluster was 2. For each 308 

cluster, the sum of the t-statistics was obtained. A null distribution was created from the 1,000 control test 309 

statistics, i.e., the maximum cluster-level t-statistics. The corrected p-value for each cluster was calculated 310 

as the proportion of control test statistics greater than the actual cluster-level t-statistics. Clusters with p-311 

values below 0.05 were selected for further analyses. We implemented the same statistical analyses 312 

procedure for each of the 18 TRFs (3 stimulus features × 2 frequency bands × 3 SNR levels). The EEG 313 

electrodes and time lags from significant clusters were regarded as ROIs/TOIs. Then peaks were estimated 314 

within these ROIs/TOIs, and the peak amplitudes and peak latencies were compared across different SNRs.  315 
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Backward modeling. With a backward modeling approach, we simultaneously took neural signals from 316 

several electrodes to reconstruct stimulus features with a decoder. The reconstruction accuracy was 317 

measured as the Pearson’s correlation between the actual and reconstructed stimulus features. The decoder, 318 

g, is calculated by equation (4), where R is the lagged time series of the EEG data. The reconstructed feature, 319 

𝑠̂(𝑡), is calculated by equation (5) where n is the EEG electrodes, and 𝜏 is the time lags (Broderick et al., 320 

2019). 321 

𝑔  =  (𝑅𝑇𝑅  +  𝜆𝐼)−1𝑅𝑇𝑠 (4) 322 

𝑠̂(𝑡)  =   ∑ ∑ 𝑟𝑛(𝑡 + 𝜏)𝑔𝑛(𝜏)

𝜏𝑛

(5) 323 

Only the exact ROIs/TOIs from significant clusters found in the forward modeling were included in 324 

the backward modeling. The EEG signals and stimulus features were downsampled to 64 Hz for better 325 

computational efficiency. The same leave-one-trial-out cross-validation procedure as in the forward 326 

modeling approach was conducted to obtain the optimal regularization parameter and calculate the 327 

reconstruction accuracy. We also estimated the control decoders using the same shuffling methods in 328 

forward modeling. The reconstruction accuracies from the 1,000 control decoders were averaged and 329 

compared with the actual decoder via a one-tailed paired t-test, and the p values of clusters were corrected 330 

via the false discovery rate (FDR) method (Benjamini & Hochberg, 1995).  331 

In sum, the analyses of neural tracking followed two main steps. (1) We calculated the actual forward 332 

model and control forward models and identified ROIs/TOIs according to clusters with significant 333 

differences between them. (2) We estimated the reconstruction accuracy based on these ROIs/TOIs. This 334 

procedure resulted in (1) the specific spatiotemporal TRF response pattern and (2) the strength of neural 335 

tracking (reconstruction accuracy) for analyses.  336 

Given that the neural signatures of speech processing could exhibit different spatiotemporal patterns 337 

at various SNR levels (e.g., Bidelman & Howell, 2016; Billings et al., 2009; Strauß et al., 2013), we 338 

conducted separate statistical tests for identifying significant clusters in the TRF responses at different SNR 339 

levels, in order to capture all potentially significant results without missing anything. 340 

We classified these significant clusters into two types based on their spatiotemporal dynamics: those 341 

with largely overlapped spatiotemporal patterns across all SNR levels, which could represent a reliable 342 

response across all SNR levels, and those with unique patterns at a certain SNR level, which might signify 343 
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distinct processing mechanisms under certain circumstances. This was achieved by visual inspection and 344 

calculating a similarity index, which derived from the average of the temporal and spatial similarity. See 345 

Supplementary Figure S2 for more information. The consistent clusters were compared to explore how the 346 

commonly shared neural signature adapted to noise, while the unique clusters received less attention in 347 

subsequent analyses. Linear-mixed effect (LME) models and Spearman’s correlation was conducted to 348 

examine the relationship between neural tracking and behavioral performance. 349 

Before modeling, the three types of stimulus features across all trials and EEG signals across all 350 

channels were z-scored as recommended to ensure consistent scaling (Crosse et al., 2016, 2021). Modeling 351 

and analyses for different stimulus features were conducted independently. Considering we focused on the 352 

neural tracking of underlying hierarchical information in speech rather than physical stimulus, we adopted 353 

the same stimulus features of no-noise speech for the other two SNR levels (Ding & Simon, 2013; Fuglsang 354 

et al., 2017). The forward and backward modeling was conducted in MATLAB using the Multivariate 355 

Temporal Response Function (mTRF) toolbox (Crosse et al., 2016). The cluster-based permutation test was 356 

conducted in the FieldTrip toolbox (Oostenveld et al., 2011). Other statistical analyses were conducted via 357 

MATLAB functions and IBM SPSS Statistics software (IBM corp., 2019).  358 
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3 Results 359 

3.1 Behavioral performance 360 

The speech comprehension performance was measured as the averaged response accuracy of the four-361 

choice questions and was found to be significantly different among the three SNR levels (rmANOVA, F(2, 362 

36) = 6.74, p = .003). The speech comprehension performance was 95.26 ± 1.05%, 90.79 ± 2.10%, and 363 

85.26 ± 2.63% (mean ± SE) at the no-noise level, low-noise level, and high-noise level, respectively. The 364 

comprehension performance at the high-noise level was significantly lower than that at the no-noise level 365 

(post-hoc t-test, p = .006, Bonferroni corrected). In addition, it should be noted that the comprehension 366 

performance was still well above chance level even at the high-noise level (one-tailed t-test, t(18) = 22.88, 367 

p < .001).  368 

The subjective ratings of clarity and intelligibility showed a similar pattern with significant differences 369 

among the SNR levels (rmANOVA, F(2, 36) = 148.32 and 35.31, ps < .001). The normalized clarity rating 370 

scores were 0.94 ± 0.01, 0.66 ± 0.04, and 0.35 ± 0.04 (mean ± SE), and the normalized intelligibility rating 371 

scores were 0.93 ± 0.01, 0.88 ± 0.02, and 0.73 ± 0.03 (mean ± SE) at the no-noise, low-noise, and high-372 

noise level, respectively. Post hoc t-tests revealed significant pairwise differences for all possible 373 

comparisons (ps < .01, Bonferroni corrected). The behavioral performance is illustrated in Figure 3. These 374 

results suggested that the effect of noise on speech comprehension and perception was effectively 375 

manipulated.  376 

Figure 3. Behavioral results. Black dots indicate data points from each participant. Error bars denote the 377 

standard error. *: p < .05, **: p < .01, ***: p < .001. 378 
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3.2 Summary of all significant clusters in the acoustic- and semantic-level TRF responses 380 

We summarized all significant clusters in the acoustic- and semantic-level TRF responses in Figure 4. 381 

Significant clusters were only found in the delta/theta bands but not alpha/beta bands (see Supplementary 382 

Figure S1 for more information). The specific time lags of TOIs of clusters were listed in Supplementary 383 

Table S3-4. According to visual inspection and the similarity index (shown in Supplementary Figure S2), 384 

these significant clusters were classified into responses that exhibited relative consistency across different 385 

SNR levels, as well as distinctive response at a certain SNR level.  386 

Clusters with largely overlapped spatiotemporal patterns across all SNR levels were found in theta-387 

band acoustic-level TRFs (i.e., A1, A2, A3) and delta-band entropy-based semantic-level TRFs (i.e., E1, 388 

E2, E3). Detailed analyses of them are demonstrated in the section 3.3 and 3.4, respectively. Several clusters 389 

with similar spatiotemporal patterns shared by certain SNR levels, such as the acoustic-level TRF response 390 

within the occipital electrodes (i.e., A4 and A5) and the post-onset entropy-based semantic-level TRF 391 

responses within the central electrodes (i.e., E5 and E6). Analyses of them are demonstrated in 392 

Supplementary Figure S3 and S4. No further analysis was done for the other unique clusters at the no-noise 393 

level. No significant TRF responses to word surprisal were found. 394 
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Figure 4. Significant clusters in TRF responses to (A) amplitude envelope, (B) word entropy, and (C) word 395 

surprisal at different SNR levels and frequency bands. Significant clusters are numbered A1−A5 and E1−E8. 396 

Clusters with similar spatiotemporal patterns are organized in the same row. ROIs of clusters are shown as 397 

black dots in the corresponding topography. The colored curves are the mean of TRFs averaged among 398 

ROIs across participants. The shaded areas denote the standard error of TRFs. The colored horizontal line 399 

below the TRF curve indicates the TOIs of the cluster. The a and b refer to clusters with the same ROIs but 400 

different TOIs. n.s.: no significant cluster was found. 401 

3.3 Acoustic-level TRF responses with delayed latencies as noise increases 402 

Significant acoustic-level TRF responses in the theta band were found at all SNR levels and showed a 403 

similar positivity within central electrodes at around 300500 ms (i.e., A1, A2a, A3b), as demonstrated in 404 

Figure 5A. At the no-noise level, the TRF showed positivity in the central electrodes with a latency of 405 

around 400 ms (cluster-level p < .01). At the low-noise and high-noise levels, the TRF showed similar 406 

positivity in the central electrodes with a latency of around 430 (cluster-level p < .01) and 440 ms (cluster-407 

level p < .01). We estimated the peak amplitude and peak latency for the positive peak at each SNR level. 408 

The peak latencies were significantly different among the three SNR levels (rmANOVA, F(2, 36) = 21.42, 409 

p < .001), and post-hoc t-tests revealed significantly delayed peak latencies as noise increased (ps < .05, 410 

Bonferroni corrected), as shown in Figure 5C. No significant differences were found in the peak amplitudes 411 

(rmANOVA, F(2, 36) = 0.64, p = .535).  412 
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The reconstruction accuracies from the corresponding ROIs/TOIs were significantly higher in the 413 

actual decoders than in the control decoders (ps < .01, FDR corrected, Figure 5B). Comparing the 414 

reconstruction accuracies revealed significant differences among the three SNR levels (rmANOVA, F(2, 415 

36) = 6.19, p = .010 with Greenhouse-Geisser correction), and post-hoc t-tests revealed significantly 416 

weakened neural tracking at the high-noise level compared with the no-noise level and the low-noise level 417 

(ps < .05, Bonferroni corrected, Figure 5C). 418 

Figure 5. Acoustic-level TRF responses in the theta band at different SNR levels. (A) The bold curves in 419 

different shades of red are the mean of TRFs averaged among ROIs across participants at the three SNR 420 

levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored horizontal line 421 
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at the bottom of each plot indicates TOIs over which TRFs differed significantly from the control models. 422 

Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy calculated from 423 

the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise effect on the peak 424 

amplitude, peak latency, and reconstruction accuracy. Grey dots indicate data points from each participant. 425 

Error bars denote the standard error. n.s.: not significant, *: p < .05, **: p < .01, ***: p < .001.  426 

3.4 Semantic-level TRF responses with earlier latencies as noise increases 427 

Significant semantic-level TRF responses to word entropy in the delta band were found at all SNR 428 

levels. They showed similar negativity at around 200600 ms leading to speech fluctuation onset, as 429 

demonstrated in Figure 6A. The time lags of pre-onset processing to word entropy showed a gradual 430 

advanced trend as noise increased. The time lag was approximately from around -300 ms to -180 ms at the 431 

no-noise level (cluster-level p < .05) and was from around -400 ms to -250 ms at the low-noise level 432 

(cluster-level p < .05), from around -630 ms to -360 ms at the high-noise level (cluster-level p < .01). We 433 

estimated the peak amplitude and peak latency for the pre-onset negative peak at each SNR level. The peak 434 

latencies were significantly different among the three SNR levels (rmANOVA, F(2, 36) = 58.08, p < .001), 435 

and post-hoc t-tests revealed that as noise increased the peak latencies were gradually earlier (ps < .05, 436 

Bonferroni corrected), as shown in Figure 6C. No significant differences were found in the peak amplitudes 437 

(rmANOVA, F(2, 36) = 0.63, p = .538).  438 

The pre-onset TRF responses to word entropy exhibited different spatiotemporal patterns at three SNR 439 

levels. At the no-noise level, the ROIs included frontal-parietal electrodes and exhibited obvious left 440 

lateralization. At the low-noise level, the ROIs showed similar left-lateralized topological distribution but 441 

included more electrodes, while at the high-noise level, no obvious lateralization was observed in the 442 

frontal-parietal ROIs.  443 
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The reconstruction accuracies from corresponding ROIs/TOIs were significantly higher in the actual 444 

decoders than in the control decoders at both the low-noise level (p < .05, FDR corrected) and the high-445 

noise level (p < .001, FDR corrected), but only marginally significant at the no-noise level (p = .073, FDR 446 

corrected), as shown in Figure 6B. Comparing the reconstruction accuracies among different SNR levels 447 

revealed no significant differences (rmANOVA, F(2, 36) = 1.64, p = .208, Figure 6C).  448 

Figure 6. Semantic-level TRF responses to word entropy in the delta band at different SNR levels. (A) The 449 

bold curves in different shades of green are the mean of TRFs averaged among ROIs across participants at 450 

the three SNR levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored 451 

horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly from the 452 

control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy 453 
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calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise 454 

effect on the peak amplitude, peak latency, and reconstruction accuracy. Grey dots indicate data points from 455 

each participant. Error bars denote the standard error. n.s.: not significant, †: p < .1, *: p < .05, **: p < .01, 456 

***: p < .001.  457 

3.5 Correlation between TRF responses and behavioral performance 458 

As the peak latencies of both the post-onset positive peak of acoustic-level TRFs and the pre-onset 459 

negative peak of semantic-level TRFs showed significant differences among SNR levels, we then created 460 

linear mixed effect models to explore whether these peak latencies were sensitive predictors of the 461 

behavioral performance with the following general formula:  462 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒~𝑆𝑁𝑅(+𝑃𝑒𝑎𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦)(+𝑆𝑁𝑅: 𝑃𝑒𝑎𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦) + 𝑅𝑎𝑛𝑑𝑜𝑚  (6) 463 

where “Behavioral performance” refers to the comprehension performance, clarity, or intelligibility ratings. 464 

“SNR” takes the values of speech intensity percentage, i.e., 100%, 60%, and 40%. “Peak latency” refers to 465 

the peak latencies of either the acoustic-level post-onset TRFs or the semantic-level pre-onset TRFs, 466 

depending on the specific model being investigated. “SNR:Peak latency” refers to the interaction between 467 

them. A random intercept per participant was included in the model. “Peak latency” and “SNR:Peak latency” 468 

were added between brackets to the general formula because these factors were included only if they led to 469 

a lower Akaike Information Criterion (AIC) which indicated a better fitting (Verschueren et al., 2022). 470 

Results showed that overall, the behavioral performance was correlated with SNR levels, which echoed the 471 

behavioral results in the section 3.1. More importantly, the earlier peak latencies of semantic-level pre-472 

onset TRF response were correlated with the decreasing comprehension performance (LME, β = 2.61×10-473 

4, t(52.64) = 1.853, p = .069) and the decreasing perceived intelligibility (LME, β = 9.26×10-4, t(40.48) = 474 

3.497, p = .001). And the correlation with intelligibility was more prominent as noise increased (LME 475 

interaction, β = -7.69×10-4, t(45.80) = -1.987, p = .053), as illustrated in Table 1 and Figure 7. The 476 

relationships between the reconstruction accuracies and the behavioral performance were also examined 477 

through Spearman’s correlation and summarized in Supplementary Table S5 and Table S6. 478 
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Table 1. LME models of the behavioral performance as a function of SNR and peak latency. Each row 479 

indicates a different model. The SNR was given as a percentage (100%, 60%, 40%). 480 

Figure 7. Correlation between the peak latencies of the semantic-level pre-onset TRFs and (A) the 481 

comprehension performance and (B) the perceived intelligibility. Colored dots indicate data points from 482 

each participant at different SNR levels.  483 
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TRFsemantic -1.34×10-1 -1.147 .257  9.26×10-4 3.497 .001  -7.69×10-4 -1.987 .053 

 

No-noise

Low-noise

High-noise

(A) (B)

No-noise

Low-noise

High-noise
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4 Discussion 484 

The current study investigated the neural tracking of hierarchical features of naturalistic speech in 485 

noisy situations using a TRF-based technique. Significant post-onset acoustic-level TRF responses were 486 

found within the central electrodes at around 400 ms, and the peak latencies were delayed as noise increased. 487 

Significant pre-onset semantic-level TRF responses were found within the frontal electrodes at around -488 

600-200 ms. The peak latencies showed a gradually advanced trend as noise increased, and increased 489 

advancement was correlated with decreasing comprehension performance and intelligibility. These findings 490 

indicated that noise differently modulates acoustic and semantic processing and suggested that robust and 491 

adaptive semantic pre-activation could play a vital role in reliable speech comprehension in noisy 492 

environments. 493 

The delayed peak latency in the acoustic-level TRF responses as noise increased was in line with 494 

several previous studies, suggesting an impaired efficiency in challenging conditions with background 495 

noise (Gillis, Decruy, et al., 2022; Mirkovic et al., 2019; Muncke et al., 2022; Yasmin et al., 2023; Zou et 496 

al., 2019). As the frontally and centrally distributed channels (corresponding to the primary auditory cortex, 497 

superior temporal gyrus, premotor cortex, etc.) have been frequently reported to be related to the processing 498 

of speech acoustics (e.g., Bidelman & Howell, 2016; Broderick et al., 2019; Hickok & Poeppel, 2007; Zou 499 

et al., 2019), the present TRF results would imply similar recruitment of these brain regions for acoustic-500 

level processing for naturalistic speech under various SNR levels. However, the post-onset 400-ms latency 501 

was later compared to the commonly reported latency of < 300 ms in previous studies (Gillis, Decruy, et 502 

al., 2022; Yasmin et al., 2023). This discrepancy could be due to the causal filter used for EEG signal 503 

preprocessing in the present study, possibly resulting in a delayed TRF compared to previous studies using 504 

noncausal filters, similar as reported by Etard and Reichenbach (2019). Alternatively, it could be possible 505 

that the latency modulation started earlier but only reached significance later for the present dataset, as the 506 

observed TRF responses exhibited an oscillatory pattern starting much earlier than 400 ms (Figure 5C). 507 

While an impaired processing efficiency has been associated with both amplitude and latency modulation 508 

by noise in previous studies (Muncke et al., 2022; Zion Golumbic et al., 2013; Zou et al., 2019), the present 509 

study together with a series of other studies reporting latency-only results would suggest latency as a more 510 
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sensitive candidate for noisy speech processing (Ding & Simon, 2013; Kaplan-Neeman et al., 2006; 511 

Whiting et al., 1998). 512 

At the semantic level, our findings on the pre-onset response to word entropy were consistent with 513 

recent studies, in which the neural responses to entropy have been reported to involve neural activities 514 

within the left hemisphere at up to 800 ms before onset (Goldstein et al., 2022; Weissbart et al., 2020; 515 

Willems et al., 2016). This pre-onset prediction mechanism for the upcoming stimuli was regarded as a 516 

fundamental computational principle in the human language processing (Goldstein et al., 2022). Our results 517 

echo these findings and highlight the potential of entropy as a promising index for exploring forward-518 

looking prediction mechanisms.  519 

More importantly, our results extend the present understanding of the predictive mechanism with the 520 

manipulation of the SNR levels and suggest a distinct mechanism for speech-in-noise comprehension at the 521 

semantic level. The significant pre-onset response to word entropy appeared at all SNR levels, which would 522 

imply that such a forward-looking prediction was robust against noise. In addition, we found that the peak 523 

latencies of the pre-onset responses became earlier with increasing noise, and that increased forward shift 524 

trend at each SNR level was correlated with poorer perceived intelligibility as well as decreasing 525 

comprehension performance. One possible explanation for this phenomenon is that our brain could adjust 526 

the timing of predictive processing in response to adverse environments. As semantic prediction can 527 

facilitate speech comprehension (Mattys et al., 2012; Miller et al., 1951; Obleser & Kotz, 2010; Pickering 528 

& Gambi, 2018; Zekveld et al., 2011), the brain relies on it more heavily as noise increases to counteract 529 

distorted auditory input. Nevertheless, noise can increase the processing load and decrease the processing 530 

efficiency (Gillis, Decruy, et al., 2022; Kaplan-Neeman et al., 2006; Kong et al., 2014; Mirkovic et al., 531 

2019). To compensate for the interference, the neural system initiates the pre-onset response earlier and 532 

extends it for a longer duration, giving our brain more time for the preparation of the upcoming speech 533 

information. The more degraded the speech, the greater the need for this kind of “early-bird” compensation. 534 

Another possible explanation is that in noisy environments our brain relies more on longer-range prediction 535 

based on higher-level context information to enhance speech comprehension. According to a recent study 536 

based on GPT-2 and functional Magnetic Resonance Imaging (fMRI) (Caucheteux et al., 2023), the 537 

forward-looking prediction involved hierarchical representations and multiple time scales, with the 538 
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maximum of forecast distance reaching 8 words (corresponding to approximately 3.15s). Future studies 539 

could employ local and context-unified entropy (e.g., Brodbeck et al., 2022) and longer time windows to 540 

further elucidate the noise effect on the forward-looking prediction. Overall, our findings suggest that the 541 

brain has a robust and adaptive prediction mechanism for reliable speech comprehension in noisy 542 

environments. As such a pre-onset signature was not observed at the acoustic level, our results suggest the 543 

predictive mechanism might be mainly focused at the semantic level (Goldstein et al., 2022; Grisoni et al., 544 

2021), where the speech information is expected to be more abstract and more robust against noise (Yasmin 545 

et al., 2023).  546 

Interestingly, the spatial patterns of TRF responses to word entropy showed left-lateralization at the 547 

no-and low-noise levels and recruited bilateral hemispheres at the high-noise level. The left-lateralization 548 

has been reported in studies on speech-in-noise comprehension (Z. Li et al., 2021) and was found to be 549 

sensitive to linguistic content (Peelle et al., 2013), word entropy (Willems et al., 2016), and semantic 550 

expectancy (Golestani et al., 2013; Obleser & Kotz, 2010). Our results would support the left-lateralized 551 

brain regions for predictive speech processing at the semantic level. Meanwhile, research has reported that 552 

regions within the right hemisphere, such as the right inferior frontal gyrus, are sensitive to semantic 553 

features such as entropy (Willems et al., 2016) and that the involvement of the right hemisphere increased 554 

under degraded conditions (Bidelman & Howell, 2016), which was hypothesized as the possible 555 

recruitment of additional regions for compensation (Shtyrov et al., 1998, 1999). Accordingly, our results 556 

suggest that the involvement of bilateral hemispheric in adverse environments might reflect a semantic-557 

related compensation mechanism. 558 

Our results suggested the specificity of the frequency band for processing different levels of speech 559 

information. Specifically, acoustic-level TRF response was primarily associated with the theta band 560 

whereas semantic-level TRF neural response was dominated by the delta band (Figure 4). This could be 561 

explained as that theta- and delta-band neural tracking have different functional roles: the former is related 562 

to acoustic processing while the latter is related to sematic/syntactic processing (Dai et al., 2022; Ding et 563 

al., 2014; Etard & Reichenbach, 2019; Kösem & van Wassenhove, 2017; J. Li et al., 2023). Alternatively, 564 

this distinction could be related to the intrinsic temporal properties of the speech features (Lalor, 2018), 565 

that is, a faster acoustic-level fluctuation at the theta rhythm and a slower semantic-level fluctuation at the 566 
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word rate similar to the delta rhythm. Further studies could employ careful experimental manipulation to 567 

clarify whether this frequency-specific neural tracking is the result of intrinsic neural oscillations or 568 

stimulus-evoked responses (see a review, Obleser & Kayser, 2019). For instance, researchers could 569 

manipulate the speech rate (Oganian et al., 2023) and examine whether the frequency characteristics of 570 

neural tracking at the semantic level change in response to the varying word rates.  571 

The present study has some limitations to be noted. First, there were several significant TRF responses 572 

to word entropy not included in the above analyses and discussions, which were primarily observed at the 573 

no-noise level. As the focus of the present study was speech-in-noise comprehension, these responses were 574 

not further discussed. Nevertheless, they also reflected speech information processing that would deserve 575 

investigations in future studies. Second, while the present study only adopted word entropy and word 576 

surprisal as two semantic-level features (Gillis et al., 2021; Goldstein et al., 2022; Heilbron et al., 2022; 577 

Weissbart et al., 2020; Willems et al., 2016), the rapid development in NLP methods especially the large 578 

language models (LLMs) present us with a broader range of options such as semantic embedding (Heilbron 579 

et al., 2022). Future studies could employ additional indexes to fully demonstrate the adaptation mechanism 580 

of speech-in-noise comprehension. Furthermore, beyond feature extraction, the LLMs also could serve as 581 

brain-aligned agents which could be compared with humans and help unveil shared (or unique) mechanisms 582 

in the human brain (Caucheteux et al., 2023; Goldstein et al., 2022; Mahowald et al., 2023; Schrimpf et al., 583 

2020). In sum, future studies could employ the promising NLP-based approach to further extend our 584 

understanding of language processing. Third, despite the advantage of the high temporal resolution of EEG 585 

in exploring temporal dynamics, the relatively poor spatial resolution limits the ability to investigate brain 586 

regions involved in predictive mechanisms. A more fine-grained analysis of the spatiotemporal dynamics 587 

of semantic prediction would require techniques such as fMRI, ECoG, or multimodal approaches.  588 

In summary, the current study investigated how noise affected acoustic and semantic processing during 589 

naturalistic speech comprehension. With increasing noise, acoustic processing became increasingly delayed 590 

whereas semantic processing became increasingly advanced. Our results suggest that, while the efficiency 591 

of brain processing of speech information is indeed impaired by noise, the brain could compensate for the 592 

associated effects through active prediction at the semantic level. Overall, the present findings are expected 593 
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to contribute to the growing research on the neural mechanisms of naturalistic speech comprehension in 594 

noisy environments.  595 
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5 Supplementary materials 897 

Figure S1. Clusters in TRF responses for different speech features at different SNR levels in the (A) 898 

delta/theta and (B) alpha/beta bands. The grey histograms show the distribution of the cluster-level test 899 

statistics from 1,000 permutations. The colored lines indicate significant clusters, and the black lines 900 

indicate nonsignificant clusters. n.c.: no cluster is formed. *: p < .05, **: p < .01, ***: p < .001.   901 
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Figure S2. Similarity index of acoustic-level and semantic-level clusters. The similarity index was 902 

calculated as the following formula: 903 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
1

2
 (𝑆𝑇𝑅𝐹𝑠 + 𝑆𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑒𝑠) 904 

Where 𝑆𝑇𝑅𝐹𝑠 refers to the temporal similarity, which derived from the Pearson’s correlation between the 905 

averaged TRFs within the ROIs, and 𝑆𝑡𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑒𝑠 refers to the spatial similarity, which derived from the 906 

cosine similarity between topographies of the peak of clusters. Black rectangles indicate the visually 907 

identified clusters with similar spatiotemporal patterns.   908 
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Figure S3. Cluster A4a and A5b of the acoustic-level TRF responses in the theta band. (A) The bold curves 909 

in different shades of red are the mean of TRFs averaged among ROIs across participants at the low- and 910 

high-noise levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored 911 

horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly from the 912 

control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy 913 

calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise 914 

effect on the peak amplitude, peak latency, and reconstruction accuracy. Peak latencies were significantly 915 

longer at the high-noise level than that at the low-noise level (paired-samples t-test, t(18) = 4.72, p < .001). 916 

Reconstruction accuracies were significantly lower at the high-noise level than that at the low-noise level 917 

(paired-samples t-test, t(18) = 2.54, p < .05). No significant differences were found in the peak amplitudes 918 

(paired-samples t-test, t(18) = 0.60, p = .558). Grey dots indicate data points from each participant. Error 919 

bar denotes the standard error. n.s.: not significant, *: p < .05, **: p < .01, ***: p < .001.  920 
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Figure S4. Cluster E5 and E6 of the semantic-level TRF responses to word entropy in the delta band. (A) 921 

The bold curves in different shades of green are the mean of TRFs averaged among ROIs across participants 922 

at the no- and low-noise levels. The grey curves are TRFs averaged among the ROIs of each participant. 923 

The colored horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly 924 

from the control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction 925 

accuracy calculated from the ROIs/TOIs (A), AM means actual models. CM means control models. (C) 926 

Noise effect on the peak amplitude, peak latency, and reconstruction accuracy. No significant differences 927 

were found in the peak amplitudes (paired-samples t-test, t(18) = 0.02, p = .981), peak latencies (paired-928 

samples t-test, t(18) = -0.21, p = .834), and reconstruction accuracies (paired-samples t-test, t(18) = 0.95, p 929 

= .357). Grey dots indicate data points from each participant. Error bar denotes the standard error. n.s.: not 930 

significant, *: p < .05, **: p < .01, ***: p < .001.  931 

NN

3 dB

Group-level TRF

Individual TRF

Group-level TRF

Individual TRF

(A) (B)

**

*

(C)
n.s. n.s. n.s.
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Table S1. Details of the Natural Language Processing model used to extract semantic features.  932 

Type Parameter 

Model type Long-Short Term Memory (LSTM) 

Embedding size 200 

Hidden units per layer 200 

Number of layers 2 

Initial learning rate 3 

Gradient clipping 0.25 

Sequence length 35 

Drop out 0.2 

Epoch 50 

Batch size 3 
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Table S2. Descriptive statistics of semantic features. Std. means standard deviation.   933 

 
Number 

of words 

Word entropy  Word surprisal 

Mean Range Std.  Mean Range Std. 

Story1 213 6.56 9.31 2.17  6.12 16.98 3.22 

Story2 245 6.41 9.77 2.16  5.56 17.02 3.38 

Story3 247 6.53 9.77 2.24  5.49 13.37 2.96 

Story4 249 6.68 10.28 2.32  6.17 15.25 3.31 

Story5 240 6.90 10.27 2.24  6.05 13.68 3.23 

Story6 228 6.59 10.00 2.16  6.08 15.80 3.18 

Story7 281 6.52 9.96 2.41  5.84 17.05 3.04 

Story8 245 6.53 9.47 2.31  5.86 13.34 3.13 

Story9 254 6.48 9.88 2.39  6.35 16.62 3.27 

Story10 244 6.56 9.84 2.35  5.82 17.03 3.26 

Story11 231 6.41 9.60 2.24  6.53 18.55 3.81 

Story12 271 6.41 10.01 2.29  6.23 17.65 3.59 

Story13 317 6.57 10.22 2.30  5.91 17.74 3.49 

Story14 243 6.93 10.10 2.35  6.47 16.95 3.42 

Story15 305 6.24 9.45 2.17  5.66 17.37 3.1 

Story16 303 6.57 9.70 2.32  6.33 17.19 3.36 

Story17 344 6.53 9.46 2.09  5.98 15.66 3.06 

Story18 251 6.69 9.71 2.01  6.06 14.75 3.33 

Story19 266 6.35 9.58 2.14  5.67 13.77 3.04 

Story20 274 6.45 9.69 2.12  5.87 14.36 3.08 

Story21 248 6.27 9.54 2.36  5.34 15.96 3.11 

Story22 274 6.40 10.15 2.45  5.82 17.36 3.45 

Story23 272 6.32 9.75 2.29  5.57 15.25 2.93 

Story24 264 6.67 9.88 2.23  6.04 16.43 3.29 

Story25 271 6.53 9.53 2.16  6.02 17.32 3.14 

Story26 253 6.54 9.62 2.17  6.41 15.85 3.19 

Story27 261 6.44 9.41 2.03  6.17 17.82 3.15 

Story28 236 6.75 10.02 2.41  6.03 13.41 3.36 

Story29 282 6.65 9.89 2.04  6.27 15.88 3.09 

Story30 235 6.71 9.78 2.28  6.31 18.16 3.48 
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Table S3. Time lags of interests (TOIs) of each cluster in the acoustic-level TRF responses.  934 

Cluster Time lags of interests (TOIs) 

A1 383 ~ 483 ms 

A2a 406 ~ 453 ms 

A2b 484 ~ 539 ms 

A3a 344 ~ 383 ms 

A3b 414 ~ 469 ms 

A4a 406 ~ 445 ms 

A4b 484 ~ 531 ms 

A5a 336 ~ 383 ms 

A5b 414 ~ 469 ms 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2023. ; https://doi.org/10.1101/2023.02.26.529776doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.26.529776
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

Table S4. Time lags of interests (TOIs) of each cluster in the semantic-level TRF responses.  935 

Cluster Time lags of interests (TOIs) 

E1 -297 ~ -195 ms 

E2 -398 ~ -250 ms 

E3 -625 ~ -359 ms 

E4 -8 ~ 141 ms 

E5 250 ~ 406 ms 

E6 273 ~ 398 ms 

E7 602 ~ 961 ms 

E8 563 ~ 727 ms 
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Table S5. Spearman’s correlation between the reconstruction accuracies of each cluster in acoustic-level 936 

TRF responses and the behavioral performance. Significant correlation results are bolded (uncorrected).   937 

 Comprehension 

Performance 

Clarity 

Ratings 

Intelligibility 

Ratings 

A1 r = .11, p = .647 r = -.11, p = .662 r = .10, p = .694 

A2a r = .05, p = .831 r = -.46, p = .047 r = -.04, p = .858 

A2b r = .25, p = .309 r = -.50, p = .032 r = .02, p = .926 

A3a r = .09, p = .702 r = -.52, p = .025 r = .05, p = .854 

A3b r = -.002, p = .994 r = -.51, p = .028 r = -.06, p = .798 

A4a r = .08, p = .757 r = -.47, p = .043 r = -.08, p = .734 

A4b r = .18, p = .465 r = -.42, p = .071 r = .004, p = .986 

A5a r = .03, p = .918 r = -.46, p = .048 r = .002, p = .997 

A5b r = .22, p = .361 r = -.52, p = .026 r = .15, p = .541 
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Table S6. Spearman’s correlation between the reconstruction accuracies of each cluster in semantic-level 938 

TRF responses and the behavioral performance. Significant correlation results are bolded (uncorrected). 939 

 Comprehension 

Performance 

Clarity 

Ratings 

Intelligibility 

Ratings 

E1 r = -.09, p = .714 r = -.21, p = .394 r = .14, p = .560 

E2 r = .11, p = .668 r = .23, p = .339 r = -.07, p = .762 

E3 r = -.01, p = .997 r = -.30, p = .206 r = -.31, p = .203 

E4 r = -.02, p = .928 r = -.24, p = .332 r = .09, p = .721 

E5 r = .51, p = .027 r = .15, p = .527 r = .37, p = .121 

E6 r = .13, p = .594 r = -.22, p = .365 r = -.30, p = .215 

E7 r = .20, p = .404 r = .04, p = .881 r = .15, p = .551 

E8 r = .20, p = .411 r = -.28, p = .237 r = -.14, p = .575 
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