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Abstract

Despite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend
speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable
speech-in-noise comprehension remain to be elucidated. The present study investigated the neural tracking
of acoustic and semantic speech information during noisy naturalistic speech comprehension. Participants
listened to narrative audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio
(SNR) levels (no noise, 3 dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded.
A temporal response function (TRF) method was employed to derive event-related-like responses to the
continuous speech stream at both the acoustic and the semantic levels. Whereas the amplitude envelope of
the naturalistic speech was taken as the acoustic feature, word entropy and word surprisal were extracted
via the natural language processing method as two semantic features. Theta-band frontocentral TRF
responses to the acoustic feature were observed at around 400 ms following speech fluctuation onset over
all three SNR levels, and the response latencies were more delayed with increasing noise. Delta-band frontal
TRF responses to the semantic feature of word entropy were observed at around 200 to 600 ms leading to
speech fluctuation onset over all three SNR levels. The response latencies became more leading with
increasing noise and were correlated with comprehension performance and perceived speech intelligibility.
While the following responses to speech acoustics were consistent with previous studies, our study revealed
the robustness of leading responses to speech semantics, which suggests a possible predictive mechanism

at the semantic level for maintaining reliable speech comprehension in noisy environments.

Keywords: speech-in-noise comprehension, semantic processing, neural tracking, temporal response

function, EEG
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3
Highlights
1. Leading responses were observed in the semantic-level neural tracking, with more leading latencies as
noise increased.
2. Following responses were observed in the acoustic-level neural tracking, with more delayed latencies as
noise increased.
3. Semantic-level neural tracking is correlated with comprehension performance and perceived
intelligibility.

4. Distinct frequency bands were involved in speech semantic and acoustic processing.
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1 Introduction

Noise is an inevitable part of daily life, from car horns on the streets to background music at parties,
and it presents a significant challenge to verbal communication. Reliable speech comprehension in noisy
environments is crucial in various situations such as education or emergency service. Despite the distortion
of auditory information, individuals with normal hearing can comprehend speech with ease. Understanding
the adaptive neural mechanisms that enable robust speech-in-noise comprehension is essential for clinical
intervention for hearing/language-impaired groups and for developing hearing-aid techniques.

Neurophysiological studies have revealed important insights into how noise affects speech processing.
Using the event-related techniques, cortical auditory evoked potentials (CAEP) elicited by auditory and
speech stimuli have been found to show delayed latencies and reduced amplitudes under adverse conditions,
including the early component P1-N1-P2 complex related to primary sound processing (Billings et al., 2009,
2011), and the later components such as the N2 component related to phonological analysis (Billings et al.,
2009; Martin & Stapells, 2005; Toméet al., 2015; Whiting et al., 1998) and the P3 component related to
speech discrimination (Kaplan-Neeman et al., 2006; Koerner et al., 2017; Martin & Stapells, 2005; Whiting
etal., 1998). In recent years, studies have focused more on the neural tracking of continuous speeches. i.e.,
the alignment between neural activities and the quasi-rhythmic fluctuations of continuous speech (see
reviews, Brodbeck & Simon, 2020; Ding & Simon, 2014; Giraud & Poeppel, 2012; Lakatos et al., 2019;
Obleser & Kayser, 2019). Specific temporal dynamics of neural tracking can be described via system
identification methods such as the temporal response function (TRF; Crosse et al., 2016, 2021) by relating
neural signals with speech features such as acoustic envelope. Neural tracking has been found to remain
stable under mild and moderate noise, and it is regarded as an essential tool for segregating speech from
the noisy background (Ding & Simon, 2013). Nevertheless, the TRF-based studies have also reported
delayed latencies and/or reduced amplitudes of the neural tracking in noisy conditions (Gillis, Decruy, et
al., 2022; Mirkovic et al., 2019; Muncke et al., 2022; Zou et al., 2019), similar to previous event-related
studies. These results suggest an impaired acoustic processing efficiency in noisy environments (Gillis,
Decruy, et al., 2022; Kaplan-Neeman et al., 2006). In addition to auditory processing, semantic processing

also plays a vital role in speech-in-noise comprehension and has been paid substantial emphasis.
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Semantic processing could be a crucial factor in robust speech comprehension against noisy
environments. Numerous research has shown that coherent semantic context enabling anticipating
upcoming stimuli contributes to an effective understanding of degraded speech (Miller et al., 1951; Obleser
& Kotz, 2010, 2011; Sohoglu et al., 2012; Zekveld et al., 2011). For example, Miller et al. (1951) found
that words in coherent sentences had higher intelligibility compared with the same words in unrelated word
lists during speech-in-noise comprehension. Regarding the influence of noise on semantic processing, such
as the N400 component (Kutas & Federmeier, 2011; Kutas & Hillyard, 1984), several studies have reported
robust or increased amplitude of N400 under mild degradation, which might be related to additional
cognitive effort (Jamison et al., 2016; Romei et al., 2011; Zendel et al., 2015), while other studies reported
reduced/delayed N400 for degraded speech, which might be related to damaged signal quality (Aydelott et
al., 2006; Connolly et al., 1992; Daltrozzo et al., 2012; Obleser & Kotz, 2011; Strauf3et al., 2013). These
mixed results provided valuable information on the complex relationship between noise and semantic
processing. Moreover, it was discovered that semantic processing includes early responses before the onset
of the stimulus, which was considered to be associated with semantic prediction (Grisoni et al., 2017, 2021;
PulvermUler & Grisoni, 2020). Nevertheless, it is still unknown how this pre-onset response is modulated
by noise at various signal-to-ratios (SNRs). These inconsistent results and inadequate explorations of noise
effect on semantic processing may be due to limitations inherent in the event-related design. This design
typically uses highly-controlled and short-duration speech units, such as individual words (e.g., Romei et
al., 2011) or disconnected sentences (e.g., Strauf3 et al., 2013), which only contain limited
semantic/contextual information.

The recent rise of the naturalistic speech paradigm is expected to expand our knowledge of the neural
mechanisms of semantic processing during speech-in-noise comprehension (Z. Li & Zhang, 2023).
Compared to the highly-controlled and short-duration speech units, continuous naturalistic speech stimuli
provide a better resemblance to our daily communications because of a longer duration, more flexible
content, and less deliberate semantic violations (Alday, 2019; Alexandrou et al., 2020; Hartley & Poeppel,
2020; Sonkusare et al., 2019; Willems et al., 2020; W&tmann et al., 2017). Most of all, the continuous
naturalistic speech stimuli provide rich context-based semantic information (Alday, 2019; Alexandrou et

al., 2020; Hamilton & Huth, 2020; Sonkusare et al., 2019), which is indispensable for semantic prediction
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and reliable speech comprehension in chaotic daily environments. In addition, via state-of-art
computational linguistic models, the semantic information of naturalistic speech can be quantified, and the
semantic-level neural tracking can be directly measured (Broderick et al., 2018, 2019, 2021; Gillis et al.,
2021; Koskinen et al., 2020; Mesik et al., 2021; Weissbart et al., 2020), presenting a powerful tool to
investigating how semantic processing is affected by noise at different SNRs.

The two frequently adopted semantic features in speech-related neuroscience research are entropy and
surprisal derived from information theory (Brodbeck et al., 2022; Donhauser & Baillet, 2020; Goldstein et
al., 2022; Heilbron et al., 2022), which respectively measures the semantic uncertainty of the upcoming
stimuli and the unexpectedness of the current stimulus (Pickering & Gambi, 2018; Willems et al., 2016).
The word surprisal was found to be associated with the superior temporal gyrus and inferior frontal sulcus,
etc. (Willems et al., 2016), and is linked to an N400-like neural response, i.e., negativity at around 400 ms
within the central-parietal electrodes (Broderick et al., 2021; Gillis et al., 2021; Heilbron et al., 2022). The
word entropy was associated with neural activities within the left ventral premotor cortex, left middle
frontal gyrus and right inferior frontal gyrus, etc. (Willems et al., 2016). Furthermore, Goldstein et al. (2022)
derived word entropy from deep language models (GPT-2) and correlated them with electrocorticography
(ECoG) signals. The results indicated that entropy was related to neural activities in the left-lateralized
channels at several hundred milliseconds before the word onset. This pre-onset response is consistent with
the semantic prediction potential (SPP) in event-related studies as a direct neural signature for semantic
prediction (Grisoni et al., 2021; Pulvermiler & Grisoni, 2020). A recent study by Yasmin et al. (2023)
discovered that the N40O0-like response in semantic-level neural tracking remained robust under mild and
moderate noise conditions and declined abruptly at the high-noise level (SNR = -3 dB). However, the noise
effect on the pre-onset response in semantic-level neural tracking is still unexplored.

The current study aimed to investigate the neural mechanisms of speech-in-noise comprehension by
simultaneously focusing on both the acoustic and semantic levels as well as both the pre-onset and the post-
onset stages. A naturalistic speech comprehension paradigm was employed, as the naturalistic speech
stimuli were expected to provide better ecological validity and contextual information (Alday, 2019;
Sonkusare et al., 2019). 60-channel EEGs were recorded while the participants listened to spoken narratives

at three SNRs (no noise, 3 dB, -3 dB). Following previous studies, the amplitude envelopes of the speech
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stimuli were extracted as the acoustic feature (Di Liberto et al., 2015; O’Sullivan et al., 2015). Two typical
semantic features were calculated by a Chinese NLP model, i.e., word entropy and word surprisal (Gillis et
al., 2021; Weissbart et al., 2020; Willems et al., 2016; Koskinen et al., 2020; Mesik et al., 2021; Broderick
et al., 2021). The neural responses to the acoustic and semantic features were estimated using the TRF
method (Crosse et al., 2016), which yields the spatiotemporal dynamics of how our brain tracks these
features in naturalistic speeches. The pre-onset and post-onset responses in the current study were defined
as significant TRF responses with negative and positive time lags, respectively. Especially, we conducted
TRF analyses and detected significant TRF responses separately at different SNR levels to capture all
potential neural signatures. We hypothesize that the acoustic-level TRF could be related to delayed peak
latencies or reduced amplitudes under noisy conditions as in previous studies (Gillis, Decruy, et al., 2022;
Mirkovic et al., 2019; Muncke et al., 2022; Zou et al., 2019). As for the semantic-level TRF, we hypothesize
that both the pre-onset and post-onset response could show resilience against noise (Yasmin et al., 2023).
By exploring the pre-onset and post-onset temporal dynamics of low- and high-level processing, this study
hopes to gain a more complete overview of the noise effect on neural processing during naturalistic speech

comprehension.
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146 2 Methods
147 2.1 Participants
148 Twenty college students (10 females, ages ranging from 19 to 28 years old) participated in the study.

149  The sample size was determined to be sufficient by reference to previous TRF-based studies on the human
150  speech processing (e.g., Broderick et al., 2018; Di Liberto et al., 2015). One male participant was excluded
151  due to technical problems during data recording. The data of the remaining nineteen participants (age: mean
152  +£SD = 21.79 £1.99) were included in the subsequent analyses. All participants were native Chinese
153  speakers, right-handed, with normal hearing and normal or corrected-to-normal vision by self-report. The
154  study was conducted in accordance with the Declaration of Helsinki and was approved by the local Ethics
155  Committee of Tsinghua University. Written informed consent was obtained from all participants.

156

157 2.2 Materials

158 Thirty narrative audio recordings from our previous studies (Z. Li et al., 2021, 2022) were used as
159  stimuli. These audio recordings were recorded from six native Chinese speakers with professional training
160  in broadcasting. The participants were unfamiliar with the content of these narrative audio recordings,
161  which were about speakers’ personal experiences on daily-life topics adapted from the National Mandarin
162  Proficiency Test. Each narrative audio recording lasted for around 90 s and was recorded by a regular
163  microphone at a sampling rate of 44,100 Hz in a sound-attenuated room.

164 These speech stimuli were further processed into three versions at three different SNR levels: no-noise
165  (NN), low-noise (SNR = 3 dB), and high-noise (SNR = -3 dB), where speech intensity percentage was
166  100%, 60%, and 40%, respectively. This procedure was achieved by adding spectrally matched stationary
167  noise, which was generated based on a 50th-order linear predictive coding (LPC) model estimated from the
168  original speech recording (Broderick et al., 2018). The SNR levels were selected following previous studies
169 (Ding & Simon, 2013), and were produced by varying the noise intensity while keeping the intensity of
170  original speech (measured by its root mean square) constant (Ding & Simon, 2013).

171 For each narrative audio recording, two four-choice questions were prepared by the experimenters to
172  assess one’s speech comprehension performance. These questions and the corresponding choices were

173  targeted at detailed narrative contents that would demand significant attentional efforts. For instance, one
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question following a narrative audio recording about one’s major was, “What is the speaker’s most likely
major as a graduate student? (515 A8 4 Ll i AT BE /2414 ? ) and the four choices were 1) Social
science, 2) International politics, 3) Pedagogy and 4) Psychology (1. #:2xFl2%, 2. EFREGA, 3. 25 % and

4. LI,

2.3 Procedure

Before the start of the experiment, the participants had one practice trial to get familiar with the
procedure, with an additional narrative audio recording at the no-noise level not used in the formal
experiment. The formal experiment consisted of 30 trials, with 10 trials per SNR level. In each trial, the
participants listened to narrative audio recordings at one of the three SNR levels. The participants were
required to maintain visual fixation on a fixation cross displayed on the computer screen in front of them
and to minimize eye blinks and all other motor activities during listening. The order of the narrative audio
recordings and their assigned SNR levels was randomized for each participant.

After each trial, the participants were instructed to answer two four-choice questions about the content
of the narrative audio recording using the computer keyboard. The averaged accuracies across all trials
(separately for each SNR level) were used to reflect the participants’ comprehension performance. After
completing these questions, the participants were instructed to rate the perceived clarity and intelligibility
of the narrative audio recording on a 100-point rating scale and rested for at least 5 s before moving on to
the next trial. No feedback was given to the participants about their comprehension performance during the
experiment.

The experimental procedure was programmed in MATLAB using the Psychophysics Toolbox 3.0
(Brainard, 1997). The speech stimuli were delivered to listeners seated in a sound-attenuated room via an
air-tube earphone (Etymotic ER2, Etymotic Research, Elk Grove Village, IL, USA) to avoid environmental

noise and equipment electromagnetic interference. The volume of the audio stimuli was adjusted
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198 individually for each participant to a comfortable level, and it was kept consistent across trials. The
199  experimental procedure is illustrated in Figure 1.

30 trials
10 trials per noise level X 3 levels

A

Listen
~90s
i Comprehension test
Practice | | W W*“ p | [Break [[| enp
1 trial +' Clarity/Intelligibility rating >Eg

spectrally matched stationary noise

SNR =NN, 3dB, -3dB

200  Figure 1. Experimental procedure. The participants listened to 30 naturalistic narrative audio recordings
201 which each lasted around 90 s. These audio recordings were mixed with three levels of spectrally matched
202  stationary noise: no-noise (NN), low-noise (SNR = 3 dB), and high-noise (SNR = -3 dB). The 60-channel
203  EEG signals were recorded during listening. After listening to each narrative audio recording, the
204  participants were required to complete a comprehension test and report the clarity and intelligibility rating.
205  In the comprehension test, two four-choice questions per audio recording based on the narrative content

206  were used.

207 2.4 EEG recording and preprocessing

208 EEG signals were recorded from 60 channels with a NeuroScan amplifier (SynAmp 1l, NeuroScan,
209  Compumedics, USA) at a sampling rate of 1000 Hz. Electrodes were positioned according to the
210 international 10-20 system, including FP1/2, FPZ, AF3/4, F7/8, F5/6, F3/4, F1/2, FZ, FT7/8, FC5/6, FC3/4,
211  FC1/2,FCZ, T7/8, C5/6, C3/4, C1/2, CZ, TP7/8, CP5/6, CP3/4, CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ,
212  PO7/8, PO5/6, PO3/4, POZ, Oz, O1/2, referenced to an electrode between CZ and CPZ with a forehead
213  ground at FZ. Electrode impedances were kept below 10 kOhm for all electrodes throughout the experiment.
214 The recorded EEG data were first notch filtered to remove the 50 Hz powerline noise. Independent
215  Component Analysis (ICA) was performed to remove artifacts such as eye blinks and eye movements based
216  onvisual inspection. Around 4-12 independent components (ICs; mean = 6.6) were removed per participant.
217  The remaining ICs were then back-projected onto the scalp EEG channels to reconstruct the artifact-free
218 EEG signals. The EEG signals were then re-referenced to the average of all scalp channels and

219  downsampled to 128 Hz. Afterward, EEG signals were filtered into the delta (1-4 Hz) and theta (4-8 Hz)
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220  bands, which have been previously reported to be important for speech neural tracking (Ding et al., 2014;
221  Etard & Reichenbach, 2019; Keitel et al., 2017; Koskinen et al., 2020; J. Li et al., 2023; Peelle et al., 2013).
222  For comprehensiveness, we also included the alpha (8—12 Hz) and beta (12—-30 Hz) bands into analyses.
223  Causal FIR (Finite Impulse Response) filters were employed to ensure that the filtered EEG signals were
224 determined only by the current and previous data samples, which was important for the present study
225  focusing on the fine-grained time course, particularly considering the pre-onset neural responses (de
226  Cheveigné& Nelken, 2019).

227 These preprocessed EEG signals were segmented into 30 trials, from 5 to 90 s (duration = 85 s),
228  relative to the speech onsets of each trial to avoid possible onset and offset effects. All preprocessing was
229  conducted offline using MATLAB and the Fieldtrip toolbox (Oostenveld et al., 2011).

230

231 2.5 Feature extraction

232 Three types of features were extracted to represent the acoustic (amplitude envelope) and semantic
233 (word entropy, word surprisal) information for each narrative audio recording. An example of these speech
234  features is illustrated in Figure 2A.

235 Acoustic feature. The amplitude envelope for each narrative audio recording was calculated as the
236  absolute values after a Hilbert transform and then downsampled to the sampling rate of 128 Hz to match
237  that of the EEG signals.

238 Semantic features. Before feature extraction, the narrative audio recordings were converted to text by
239  |Iflyrec software (Iflytek Co., Ltd, Hefei, Anhui) and then segmented into words based on the THU Lexical
240  Analyzer for Chinese (THULAC) toolbox (Sun et al., 2016).

241 Two semantic features, word entropy and word surprisal, were extracted. Word entropy measures the

242  uncertainty of predicting the upcoming word based on the context so far and was calculated as equation (1):

243 Entropy(t) = — Z P(Wey1lwy, .., w)logP(Wei 1wy, ..., wy) €Y

Wet1

244 Word surprisal measures how surprising the current word is given the previously encountered words and
245  was calculated as equation (2):

246 Surprisal(t) = —logP(wW¢|wy, ..., w;_1) (2)
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247  Where wy, ..., w;_, are the existing word sequence and P (w;|wy, ..., w;_;) is the conditional probability of
248  next word (Willems et al., 2016). These NLP calculations were conducted by ADAM, a widely accepted
249  Long-Short Term Memory (LSTM) Neural Network model (Kingma & Ba, 2015). The model was trained
250  on the corpora corpus of the People’s Daily with 534,246 Chinese words. See Supplementary Table S1 for
251  more information about the model and Supplementary Table S2 for more information about the descriptive
252  statistics of semantic features.

253 After extracting the semantic features of each word, the word onset timings were estimated via Iflyrec
254 software. Impulses at the word onset time were manipulated with corresponding semantic feature values to
255  generate one-dimensional “semantic vectors” (e.g., Broderick et al., 2018; Gillis et al., 2021). The sampling

256 rate of the semantic vectors was 128 Hz to match the EEG signals.

(A) “t # T F#E £ pEH 8 E

“She did a lot of field research”

CDT—’

g time " . I . | ' 'I ‘ 'l

Acoustic feature

Amplitude envelope N e .

Semantic feature I I I I I I I
Word entropy

Semantic feature
Word surprisal I .J |

(B) (C)

Forward Modeling Backward Modeling

MMMM ROIs/TOIs

N

Speech Feature reconstruction
features TN\ { A A A 14
M gl

s | RS

257  Figure 2. Speech feature extraction and Temporal Response Function analyses. (A) Three types of speech

258  features were extracted, including one acoustic feature (amplitude envelope) and two semantic features
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(word entropy and word surprisal). The two semantic features were derived from a computational linguistic
model and one-dimensional vectors were generated with impulses manipulated with semantic feature values
at the corresponding word onsets time. (B) Forward modeling. TRFs were extracted by regressing each of
the three types of speech features against the EEG signals separately. The significance of these TRFs was
estimated by comparing them with the corresponding control TRFs, which were modeled based on EEG
signals and shuffled speech features. The resulting spatiotemporal ranges were identified as regions of
interest (ROIs) and time lags of interest (TOIls). (C) Backward modeling. These three types of speech
features were separately reconstructed through backward TRF models, and the reconstruction accuracy
(Pearson’s r) depicted the strength of neural tracking. Control backward models were constructed with EEG
signals and shuffled features.

2.6 Modeling of the stimulus-response relationship

The Temporal Response Function (TRF) modeling method based on ridge regression was adopted to
explore the relationship between the neural activities and the three types of stimulus features (Crosse et al.,
2016, 2021). Forward modeling was first used to illustrate the specific spatiotemporal response patterns
and identify key electrodes and time lags in TRF responses of the corresponding speech feature, and then
backward modeling was adopted to verify the possible contribution of these identified neural correlates
(e.g., Broderick et al., 2019; Etard & Reichenbach, 2019). The overall procedure of the modeling analyses
is shown in Figure 2B and 2C.

Forward modeling. With a forward modeling approach, we described neural response patterns to
different speech features by linear spatiotemporal filters called TRFs, which measure how neural signals
from different regions are modulated by stimulus features at different time lags (Crosse et al., 2016). The
estimated TRF together with the corresponding speech feature was used to predict the EEG responses from
each electrode. The prediction accuracy measured as the Pearson’s correlation between the actual and
predicted EEG signals represents the performance of the forward model. The TRF, w, is measured by
equation (3):

w = (TS + AD~1STr 3

Where S is the lagged time series of the stimulus features, r is the neural signals, and | is the identity
matrix. The time lags for forward modeling were chosen to cover a relatively broad time range, from -1000

to 1000 ms (Goldstein et al., 2022; J. Li et al., 2021, 2023). The 4 is the regularization parameter used to

prevent overfitting and ranged between 0.1 and 1000 in steps of the powers of 10 empirically (Gillis, Van
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Canneyt, et al., 2022). The cross-validation procedure was implemented in a leave-one-trial-out procedure
within each participant: each time, the model was trained based on 9 trials and tested on the left-out trial,
which was repeated for each of the 10 trials at three SNR levels separately. The A value that produced the
highest prediction accuracy averaged across trials after cross-validation was selected as the regularization
parameter for all trials at a certain SNR level per participant. TRF amplitudes were further transformed into
z-scores before statistical analyses (Ding et al., 2014; Gillis et al., 2021; J. Li et al., 2021).

The statistical significance of the estimated TRFs was estimated by constructing control TRF models
(Weissbart et al., 2020). We built control models by constructing TRF models using shuffled stimulus
features and the EEG recordings in the same way as for the computation of the actual TRFs. The shuffled
amplitude envelope was constructed by randomly shuffling the feature value within a trial while keeping
the timing of the quiet fragments. The shuffled word entropy and word surprisal were constructed by
randomly shuffling the feature value within a trial while keeping the timing of impulses. Therefore the
speech features that described acoustic and linguistic word onsets were not altered and thus left no impact
on TRFs’ significance (Weissbart et al., 2020). The shuffling was repeated 1,000 times and resulted in
1,000 control TRFs for a corresponding actual TRF.

A nonparametric cluster-based permutation test was applied to account for multiple comparisons
(Maris & Oostenveld, 2007). For each electrode-time bin in the actual and control TRFs, a one-sample t-
test was used to examine whether the TRF amplitudes significantly differed from 0. Then neighboring
electrode-time bins with an uncorrected p-value less than 0.01 were combined into clusters. The minimum
number of neighboring significant channels that was required for inclusion in a cluster was 2. For each
cluster, the sum of the t-statistics was obtained. A null distribution was created from the 1,000 control test
statistics, i.e., the maximum cluster-level t-statistics. The corrected p-value for each cluster was calculated
as the proportion of control test statistics greater than the actual cluster-level t-statistics. Clusters with p-
values below 0.05 were selected for further analyses. We implemented the same statistical analyses
procedure for each of the 18 TRFs (3 stimulus features x 2 frequency bands <3 SNR levels). The EEG
electrodes and time lags from significant clusters were regarded as ROIs/TOIs. Then peaks were estimated

within these ROIs/TOls, and the peak amplitudes and peak latencies were compared across different SNRs.
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316 Backward modeling. With a backward modeling approach, we simultaneously took neural signals from
317  several electrodes to reconstruct stimulus features with a decoder. The reconstruction accuracy was
318  measured as the Pearson’s correlation between the actual and reconstructed stimulus features. The decoder,
319 g, iscalculated by equation (4), where R is the lagged time series of the EEG data. The reconstructed feature,

320  $(t), is calculated by equation (5) where n is the EEG electrodes, and 7 is the time lags (Broderick et al.,

321  2019).

322 g = (RTR + AD7RTs (4)
323 O = D) R+ D@ (5)
n T
324 Only the exact ROIs/TOls from significant clusters found in the forward modeling were included in

325  the backward modeling. The EEG signals and stimulus features were downsampled to 64 Hz for better
326  computational efficiency. The same leave-one-trial-out cross-validation procedure as in the forward
327  modeling approach was conducted to obtain the optimal regularization parameter and calculate the
328  reconstruction accuracy. We also estimated the control decoders using the same shuffling methods in
329  forward modeling. The reconstruction accuracies from the 1,000 control decoders were averaged and
330  compared with the actual decoder via a one-tailed paired t-test, and the p values of clusters were corrected
331  viathe false discovery rate (FDR) method (Benjamini & Hochberg, 1995).

332 In sum, the analyses of neural tracking followed two main steps. (1) We calculated the actual forward
333 model and control forward models and identified ROIs/TOIs according to clusters with significant
334  differences between them. (2) We estimated the reconstruction accuracy based on these ROIs/TOls. This
335  procedure resulted in (1) the specific spatiotemporal TRF response pattern and (2) the strength of neural
336  tracking (reconstruction accuracy) for analyses.

337 Given that the neural signatures of speech processing could exhibit different spatiotemporal patterns
338  at various SNR levels (e.g., Bidelman & Howell, 2016; Billings et al., 2009; Strauf3et al., 2013), we
339  conducted separate statistical tests for identifying significant clusters in the TRF responses at different SNR
340  levels, in order to capture all potentially significant results without missing anything.

341 We classified these significant clusters into two types based on their spatiotemporal dynamics: those
342  with largely overlapped spatiotemporal patterns across all SNR levels, which could represent a reliable

343  response across all SNR levels, and those with unique patterns at a certain SNR level, which might signify
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distinct processing mechanisms under certain circumstances. This was achieved by visual inspection and
calculating a similarity index, which derived from the average of the temporal and spatial similarity. See
Supplementary Figure S2 for more information. The consistent clusters were compared to explore how the
commonly shared neural signature adapted to noise, while the unique clusters received less attention in
subsequent analyses. Linear-mixed effect (LME) models and Spearman’s correlation was conducted to
examine the relationship between neural tracking and behavioral performance.

Before modeling, the three types of stimulus features across all trials and EEG signals across all
channels were z-scored as recommended to ensure consistent scaling (Crosse et al., 2016, 2021). Modeling
and analyses for different stimulus features were conducted independently. Considering we focused on the
neural tracking of underlying hierarchical information in speech rather than physical stimulus, we adopted
the same stimulus features of no-noise speech for the other two SNR levels (Ding & Simon, 2013; Fuglsang
et al., 2017). The forward and backward modeling was conducted in MATLAB using the Multivariate
Temporal Response Function (MTRF) toolbox (Crosse et al., 2016). The cluster-based permutation test was
conducted in the FieldTrip toolbox (Oostenveld et al., 2011). Other statistical analyses were conducted via

MATLAB functions and IBM SPSS Statistics software (IBM corp., 2019).
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359 3 Results
360 3.1 Behavioral performance
361 The speech comprehension performance was measured as the averaged response accuracy of the four-

362  choice questions and was found to be significantly different among the three SNR levels (rmANOVA, F(2,
363 36) =6.74, p = .003). The speech comprehension performance was 95.26 +1.05%, 90.79 +2.10%, and
364  85.26 +2.63% (mean £SE) at the no-noise level, low-noise level, and high-noise level, respectively. The
365  comprehension performance at the high-noise level was significantly lower than that at the no-noise level
366  (post-hoc t-test, p = .006, Bonferroni corrected). In addition, it should be noted that the comprehension
367  performance was still well above chance level even at the high-noise level (one-tailed t-test, t(18) = 22.88,
368 p<.001).

369 The subjective ratings of clarity and intelligibility showed a similar pattern with significant differences
370  among the SNR levels (rmANOVA, F(2, 36) = 148.32 and 35.31, ps < .001). The normalized clarity rating
371  scores were 0.94 £0.01, 0.66 £0.04, and 0.35 0.04 (mean =SE), and the normalized intelligibility rating
372 scores were 0.93 +£0.01, 0.88 £0.02, and 0.73 +0.03 (mean =+ SE) at the no-noise, low-noise, and high-
373  noise level, respectively. Post hoc t-tests revealed significant pairwise differences for all possible
374 comparisons (ps < .01, Bonferroni corrected). The behavioral performance is illustrated in Figure 3. These
375  results suggested that the effect of noise on speech comprehension and perception was effectively

376  manipulated.
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377  Figure 3. Behavioral results. Black dots indicate data points from each participant. Error bars denote the
378  standard error. *: p < .05, **: p <.01, ***: p < .001.

379
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380 3.2 Summary of all significant clusters in the acoustic- and semantic-level TRF responses
381 We summarized all significant clusters in the acoustic- and semantic-level TRF responses in Figure 4.
382  Significant clusters were only found in the delta/theta bands but not alpha/beta bands (see Supplementary
383  Figure S1 for more information). The specific time lags of TOls of clusters were listed in Supplementary
384  Table S3-4. According to visual inspection and the similarity index (shown in Supplementary Figure S2),
385  these significant clusters were classified into responses that exhibited relative consistency across different
386  SNR levels, as well as distinctive response at a certain SNR level.

387 Clusters with largely overlapped spatiotemporal patterns across all SNR levels were found in theta-
388  band acoustic-level TRFs (i.e., Al, A2, A3) and delta-band entropy-based semantic-level TRFs (i.e., E1,
389  E2, E3). Detailed analyses of them are demonstrated in the section 3.3 and 3.4, respectively. Several clusters
390  with similar spatiotemporal patterns shared by certain SNR levels, such as the acoustic-level TRF response
391  within the occipital electrodes (i.e., A4 and A5) and the post-onset entropy-based semantic-level TRF
392  responses within the central electrodes (i.e., E5 and E6). Analyses of them are demonstrated in
393  Supplementary Figure S3 and S4. No further analysis was done for the other unique clusters at the no-noise

394  level. No significant TRF responses to word surprisal were found.
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Figure 4. Significant clusters in TRF responses to (A) amplitude envelope, (B) word entropy, and (C) word
surprisal at different SNR levels and frequency bands. Significant clusters are numbered A1-A5 and E1-ES8.
Clusters with similar spatiotemporal patterns are organized in the same row. ROIs of clusters are shown as
black dots in the corresponding topography. The colored curves are the mean of TRFs averaged among
ROls across participants. The shaded areas denote the standard error of TRFs. The colored horizontal line
below the TRF curve indicates the TOlIs of the cluster. The a and b refer to clusters with the same ROIs but
different TOIs. n.s.: no significant cluster was found.
3.3 Acoustic-level TRF responses with delayed latencies as noise increases

Significant acoustic-level TRF responses in the theta band were found at all SNR levels and showed a
similar positivity within central electrodes at around 300~500 ms (i.e., Al, A2a, A3b), as demonstrated in
Figure 5A. At the no-noise level, the TRF showed positivity in the central electrodes with a latency of
around 400 ms (cluster-level p < .01). At the low-noise and high-noise levels, the TRF showed similar
positivity in the central electrodes with a latency of around 430 (cluster-level p <.01) and 440 ms (cluster-
level p < .01). We estimated the peak amplitude and peak latency for the positive peak at each SNR level.
The peak latencies were significantly different among the three SNR levels (rmANOVA, F(2, 36) = 21.42,
p < .001), and post-hoc t-tests revealed significantly delayed peak latencies as noise increased (ps < .05,

Bonferroni corrected), as shown in Figure 5C. No significant differences were found in the peak amplitudes

(rmANOVA, F(2, 36) = 0.64, p = .535).
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The reconstruction accuracies from the corresponding ROIs/TOIls were significantly higher in the
actual decoders than in the control decoders (ps < .01, FDR corrected, Figure 5B). Comparing the
reconstruction accuracies revealed significant differences among the three SNR levels (rmANOVA, F(2,
36) = 6.19, p = .010 with Greenhouse-Geisser correction), and post-hoc t-tests revealed significantly
weakened neural tracking at the high-noise level compared with the no-noise level and the low-noise level

(ps < .05, Bonferroni corrected, Figure 5C).
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Figure 5. Acoustic-level TRF responses in the theta band at different SNR levels. (A) The bold curves in
different shades of red are the mean of TRFs averaged among ROIs across participants at the three SNR

levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored horizontal line
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at the bottom of each plot indicates TOIs over which TRFs differed significantly from the control models.
Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy calculated from
the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise effect on the peak
amplitude, peak latency, and reconstruction accuracy. Grey dots indicate data points from each participant.
Error bars denote the standard error. n.s.: not significant, *: p <.05, **: p < .01, ***: p <.001.

3.4 Semantic-level TRF responses with earlier latencies as noise increases

Significant semantic-level TRF responses to word entropy in the delta band were found at all SNR
levels. They showed similar negativity at around 200~600 ms leading to speech fluctuation onset, as
demonstrated in Figure 6A. The time lags of pre-onset processing to word entropy showed a gradual
advanced trend as noise increased. The time lag was approximately from around -300 ms to -180 ms at the
no-noise level (cluster-level p < .05) and was from around -400 ms to -250 ms at the low-noise level
(cluster-level p < .05), from around -630 ms to -360 ms at the high-noise level (cluster-level p <.01). We
estimated the peak amplitude and peak latency for the pre-onset negative peak at each SNR level. The peak
latencies were significantly different among the three SNR levels (rmANOVA, F(2, 36) = 58.08, p <.001),
and post-hoc t-tests revealed that as noise increased the peak latencies were gradually earlier (ps < .05,
Bonferroni corrected), as shown in Figure 6C. No significant differences were found in the peak amplitudes
(rmANOVA, F(2, 36) = 0.63, p = .538).

The pre-onset TRF responses to word entropy exhibited different spatiotemporal patterns at three SNR
levels. At the no-noise level, the ROIs included frontal-parietal electrodes and exhibited obvious left
lateralization. At the low-noise level, the ROIs showed similar left-lateralized topological distribution but
included more electrodes, while at the high-noise level, no obvious lateralization was observed in the

frontal-parietal ROIs.
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The reconstruction accuracies from corresponding ROIs/TOls were significantly higher in the actual
decoders than in the control decoders at both the low-noise level (p < .05, FDR corrected) and the high-
noise level (p <.001, FDR corrected), but only marginally significant at the no-noise level (p = .073, FDR
corrected), as shown in Figure 6B. Comparing the reconstruction accuracies among different SNR levels

revealed no significant differences (rmANOVA, F(2, 36) = 1.64, p =.208, Figure 6C).
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Figure 6. Semantic-level TRF responses to word entropy in the delta band at different SNR levels. (A) The
bold curves in different shades of green are the mean of TRFs averaged among ROIs across participants at
the three SNR levels. The grey curves are TRFs averaged among the ROIs of each participant. The colored
horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly from the

control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy
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calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise
effect on the peak amplitude, peak latency, and reconstruction accuracy. Grey dots indicate data points from
each participant. Error bars denote the standard error. n.s.: not significant, t: p<.1, *: p <.05, **: p < .01,
*x%: < 001,
3.5 Correlation between TRF responses and behavioral performance

As the peak latencies of both the post-onset positive peak of acoustic-level TRFs and the pre-onset
negative peak of semantic-level TRFs showed significant differences among SNR levels, we then created
linear mixed effect models to explore whether these peak latencies were sensitive predictors of the
behavioral performance with the following general formula:

Behavioral performance~SNR(+Peak latency)(+SNR: Peak latency) + Random (6)
where “Behavioral performance” refers to the comprehension performance, clarity, or intelligibility ratings.
“SNR” takes the values of speech intensity percentage, i.e., 100%, 60%, and 40%. “Peak latency” refers to
the peak latencies of either the acoustic-level post-onset TRFs or the semantic-level pre-onset TRFs,
depending on the specific model being investigated. “SNR:Peak latency” refers to the interaction between
them. A random intercept per participant was included in the model. “Peak latency” and “SNR:Peak latency”
were added between brackets to the general formula because these factors were included only if they led to
a lower Akaike Information Criterion (AIC) which indicated a better fitting (Verschueren et al., 2022).
Results showed that overall, the behavioral performance was correlated with SNR levels, which echoed the
behavioral results in the section 3.1. More importantly, the earlier peak latencies of semantic-level pre-
onset TRF response were correlated with the decreasing comprehension performance (LME, g = 2.61x10
4, 1(52.64) = 1.853, p = .069) and the decreasing perceived intelligibility (LME, g = 9.26x<10, t(40.48) =
3.497, p = .001). And the correlation with intelligibility was more prominent as noise increased (LME
interaction, g = -7.69%10%, t(45.80) = -1.987, p = .053), as illustrated in Table 1 and Figure 7. The
relationships between the reconstruction accuracies and the behavioral performance were also examined

through Spearman’s correlation and summarized in Supplementary Table S5 and Table S6.
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479  Table 1. LME models of the behavioral performance as a function of SNR and peak latency. Each row
480 indicates a different model. The SNR was given as a percentage (100%, 60%, 40%).
SNR Peak latency SNR:Peak latency
B t p p t p B t p
§ 8  TRFacousic  1.46%102  3.835 .001 No lower AIC No lower AIC
S S
5 E
SIS
g ’g_ TRFsemanic ~ 6.23%107? 1.056 297 2.61x10% 1.853 .069 No lower AIC
o
TRFacousiic  8.87>x10!  16.481 <.001 No lower AIC No lower AIC
)
£
@)
TRFsemanic ~ 8.87<101  16.481 <.001 No lower AIC No lower AIC
2 TRFacoustc 1.74x<10%  6.050 <.001 No lower AIC No lower AIC
E
=
g TRFsemanic  -1.34x101  -1.147 257 9.26x10“4 3.497 .001 -7.69%<10* -1.987 .053
(A) (B)
100
—~ 90
= =
> 80 5
® ® =)
S 70} ® ® 2
8 o I=
< 60 L Q @ No-noise - o @ No-noise
@ Low-noise o @ Low-noise
50 O High-noise 0.4 .O ) o High-noise
-600 -400 -200 -600 -400 -200
Peak latency Peak latency
481  Figure 7. Correlation between the peak latencies of the semantic-level pre-onset TRFs and (A) the
482  comprehension performance and (B) the perceived intelligibility. Colored dots indicate data points from
483  each participant at different SNR levels.
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4 Discussion

The current study investigated the neural tracking of hierarchical features of naturalistic speech in
noisy situations using a TRF-based technique. Significant post-onset acoustic-level TRF responses were
found within the central electrodes at around 400 ms, and the peak latencies were delayed as noise increased.
Significant pre-onset semantic-level TRF responses were found within the frontal electrodes at around -
600~-200 ms. The peak latencies showed a gradually advanced trend as noise increased, and increased
advancement was correlated with decreasing comprehension performance and intelligibility. These findings
indicated that noise differently modulates acoustic and semantic processing and suggested that robust and
adaptive semantic pre-activation could play a vital role in reliable speech comprehension in noisy
environments.

The delayed peak latency in the acoustic-level TRF responses as noise increased was in line with
several previous studies, suggesting an impaired efficiency in challenging conditions with background
noise (Gillis, Decruy, et al., 2022; Mirkovic et al., 2019; Muncke et al., 2022; Yasmin et al., 2023; Zou et
al., 2019). As the frontally and centrally distributed channels (corresponding to the primary auditory cortex,
superior temporal gyrus, premotor cortex, etc.) have been frequently reported to be related to the processing
of speech acoustics (e.g., Bidelman & Howell, 2016; Broderick et al., 2019; Hickok & Poeppel, 2007; Zou
et al., 2019), the present TRF results would imply similar recruitment of these brain regions for acoustic-
level processing for naturalistic speech under various SNR levels. However, the post-onset 400-ms latency
was later compared to the commonly reported latency of < 300 ms in previous studies (Gillis, Decruy, et
al., 2022; Yasmin et al., 2023). This discrepancy could be due to the causal filter used for EEG signal
preprocessing in the present study, possibly resulting in a delayed TRF compared to previous studies using
noncausal filters, similar as reported by Etard and Reichenbach (2019). Alternatively, it could be possible
that the latency modulation started earlier but only reached significance later for the present dataset, as the
observed TRF responses exhibited an oscillatory pattern starting much earlier than 400 ms (Figure 5C).
While an impaired processing efficiency has been associated with both amplitude and latency modulation
by noise in previous studies (Muncke et al., 2022; Zion Golumbic et al., 2013; Zou et al., 2019), the present

study together with a series of other studies reporting latency-only results would suggest latency as a more
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511  sensitive candidate for noisy speech processing (Ding & Simon, 2013; Kaplan-Neeman et al., 2006;
512  Whiting et al., 1998).

513 At the semantic level, our findings on the pre-onset response to word entropy were consistent with
514  recent studies, in which the neural responses to entropy have been reported to involve neural activities
515  within the left hemisphere at up to 800 ms before onset (Goldstein et al., 2022; Weissbart et al., 2020;
516  Willems et al., 2016). This pre-onset prediction mechanism for the upcoming stimuli was regarded as a
517  fundamental computational principle in the human language processing (Goldstein et al., 2022). Our results
518 echo these findings and highlight the potential of entropy as a promising index for exploring forward-
519  looking prediction mechanisms.

520 More importantly, our results extend the present understanding of the predictive mechanism with the
521  manipulation of the SNR levels and suggest a distinct mechanism for speech-in-noise comprehension at the
522  semantic level. The significant pre-onset response to word entropy appeared at all SNR levels, which would
523  imply that such a forward-looking prediction was robust against noise. In addition, we found that the peak
524  latencies of the pre-onset responses became earlier with increasing noise, and that increased forward shift
525 trend at each SNR level was correlated with poorer perceived intelligibility as well as decreasing
526  comprehension performance. One possible explanation for this phenomenon is that our brain could adjust
527  the timing of predictive processing in response to adverse environments. As semantic prediction can
528 facilitate speech comprehension (Mattys et al., 2012; Miller et al., 1951; Obleser & Kotz, 2010; Pickering
529 & Gambi, 2018; Zekveld et al., 2011), the brain relies on it more heavily as noise increases to counteract
530 distorted auditory input. Nevertheless, noise can increase the processing load and decrease the processing
531 efficiency (Gillis, Decruy, et al., 2022; Kaplan-Neeman et al., 2006; Kong et al., 2014; Mirkovic et al.,
532  2019). To compensate for the interference, the neural system initiates the pre-onset response earlier and
533  extends it for a longer duration, giving our brain more time for the preparation of the upcoming speech
534  information. The more degraded the speech, the greater the need for this kind of “early-bird” compensation.
535  Another possible explanation is that in noisy environments our brain relies more on longer-range prediction
536  based on higher-level context information to enhance speech comprehension. According to a recent study
537  based on GPT-2 and functional Magnetic Resonance Imaging (fMRI) (Caucheteux et al., 2023), the

538  forward-looking prediction involved hierarchical representations and multiple time scales, with the
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maximum of forecast distance reaching 8 words (corresponding to approximately 3.15s). Future studies
could employ local and context-unified entropy (e.g., Brodbeck et al., 2022) and longer time windows to
further elucidate the noise effect on the forward-looking prediction. Overall, our findings suggest that the
brain has a robust and adaptive prediction mechanism for reliable speech comprehension in noisy
environments. As such a pre-onset signature was not observed at the acoustic level, our results suggest the
predictive mechanism might be mainly focused at the semantic level (Goldstein et al., 2022; Grisoni et al.,
2021), where the speech information is expected to be more abstract and more robust against noise (Yasmin
etal., 2023).

Interestingly, the spatial patterns of TRF responses to word entropy showed left-lateralization at the
no-and low-noise levels and recruited bilateral hemispheres at the high-noise level. The left-lateralization
has been reported in studies on speech-in-noise comprehension (Z. Li et al., 2021) and was found to be
sensitive to linguistic content (Peelle et al., 2013), word entropy (Willems et al., 2016), and semantic
expectancy (Golestani et al., 2013; Obleser & Kotz, 2010). Our results would support the left-lateralized
brain regions for predictive speech processing at the semantic level. Meanwhile, research has reported that
regions within the right hemisphere, such as the right inferior frontal gyrus, are sensitive to semantic
features such as entropy (Willems et al., 2016) and that the involvement of the right hemisphere increased
under degraded conditions (Bidelman & Howell, 2016), which was hypothesized as the possible
recruitment of additional regions for compensation (Shtyrov et al., 1998, 1999). Accordingly, our results
suggest that the involvement of bilateral hemispheric in adverse environments might reflect a semantic-
related compensation mechanism.

Our results suggested the specificity of the frequency band for processing different levels of speech
information. Specifically, acoustic-level TRF response was primarily associated with the theta band
whereas semantic-level TRF neural response was dominated by the delta band (Figure 4). This could be
explained as that theta- and delta-band neural tracking have different functional roles: the former is related
to acoustic processing while the latter is related to sematic/syntactic processing (Dai et al., 2022; Ding et
al., 2014; Etard & Reichenbach, 2019; K&em & van Wassenhove, 2017; J. Li et al., 2023). Alternatively,
this distinction could be related to the intrinsic temporal properties of the speech features (Lalor, 2018),

that is, a faster acoustic-level fluctuation at the theta rhythm and a slower semantic-level fluctuation at the
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word rate similar to the delta rhythm. Further studies could employ careful experimental manipulation to
clarify whether this frequency-specific neural tracking is the result of intrinsic neural oscillations or
stimulus-evoked responses (see a review, Obleser & Kayser, 2019). For instance, researchers could
manipulate the speech rate (Oganian et al., 2023) and examine whether the frequency characteristics of
neural tracking at the semantic level change in response to the varying word rates.

The present study has some limitations to be noted. First, there were several significant TRF responses
to word entropy not included in the above analyses and discussions, which were primarily observed at the
no-noise level. As the focus of the present study was speech-in-noise comprehension, these responses were
not further discussed. Nevertheless, they also reflected speech information processing that would deserve
investigations in future studies. Second, while the present study only adopted word entropy and word
surprisal as two semantic-level features (Gillis et al., 2021; Goldstein et al., 2022; Heilbron et al., 2022;
Weissbart et al., 2020; Willems et al., 2016), the rapid development in NLP methods especially the large
language models (LLMSs) present us with a broader range of options such as semantic embedding (Heilbron
etal., 2022). Future studies could employ additional indexes to fully demonstrate the adaptation mechanism
of speech-in-noise comprehension. Furthermore, beyond feature extraction, the LLMs also could serve as
brain-aligned agents which could be compared with humans and help unveil shared (or unique) mechanisms
in the human brain (Caucheteux et al., 2023; Goldstein et al., 2022; Mahowald et al., 2023; Schrimpf et al.,
2020). In sum, future studies could employ the promising NLP-based approach to further extend our
understanding of language processing. Third, despite the advantage of the high temporal resolution of EEG
in exploring temporal dynamics, the relatively poor spatial resolution limits the ability to investigate brain
regions involved in predictive mechanisms. A more fine-grained analysis of the spatiotemporal dynamics
of semantic prediction would require techniques such as fMRI, ECoG, or multimodal approaches.

In summary, the current study investigated how noise affected acoustic and semantic processing during
naturalistic speech comprehension. With increasing noise, acoustic processing became increasingly delayed
whereas semantic processing became increasingly advanced. Our results suggest that, while the efficiency
of brain processing of speech information is indeed impaired by noise, the brain could compensate for the

associated effects through active prediction at the semantic level. Overall, the present findings are expected
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594  to contribute to the growing research on the neural mechanisms of naturalistic speech comprehension in

595  noisy environments.
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Figure S1. Clusters in TRF responses for different speech features at different SNR levels in the (A)

delta/theta and (B) alpha/beta bands. The grey histograms show the distribution of the cluster-level test

statistics from 1,000 permutations. The colored lines indicate significant clusters, and the black lines

indicate nonsignificant clusters. n.c.: no cluster is formed. *: p <.05, **: p < .01, ***: p <.001.
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Figure S2. Similarity index of acoustic-level and semantic-level clusters. The similarity index was

Similarity index
Similarity index

calculated as the following formula:
S 1
Similarity index = 5 (Strrs + Stopographies)

Where Srrrs refers to the temporal similarity, which derived from the Pearson’s correlation between the
averaged TRFs within the ROIs, and Sopographies refers to the spatial similarity, which derived from the
cosine similarity between topographies of the peak of clusters. Black rectangles indicate the visually
identified clusters with similar spatiotemporal patterns.
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Figure S3. Cluster Ada and A5b of the acoustic-level TRF responses in the theta band. (A) The bold curves
in different shades of red are the mean of TRFs averaged among ROIs across participants at the low- and
high-noise levels. The grey curves are TRFs averaged among the ROIls of each participant. The colored
horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly from the
control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction accuracy
calculated from the ROIs/TOIs in (A). AM means actual models. CM means control models. (C) Noise
effect on the peak amplitude, peak latency, and reconstruction accuracy. Peak latencies were significantly
longer at the high-noise level than that at the low-noise level (paired-samples t-test, t(18) = 4.72, p <.001).
Reconstruction accuracies were significantly lower at the high-noise level than that at the low-noise level
(paired-samples t-test, t(18) = 2.54, p < .05). No significant differences were found in the peak amplitudes
(paired-samples t-test, t(18) = 0.60, p = .558). Grey dots indicate data points from each participant. Error

bar denotes the standard error. n.s.: not significant, *: p < .05, **: p <.01, ***: p <.001.
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921  Figure S4. Cluster E5 and E6 of the semantic-level TRF responses to word entropy in the delta band. (A)
922  The bold curves in different shades of green are the mean of TRFs averaged among ROIs across participants
923  at the no- and low-noise levels. The grey curves are TRFs averaged among the ROIs of each participant.
924  The colored horizontal line at the bottom of each plot indicates TOIs over which TRFs differed significantly
925  from the control models. Dots in the corresponding topographies depicted the ROIs. (B) Reconstruction
926  accuracy calculated from the ROIs/TOls (A), AM means actual models. CM means control models. (C)
927  Noise effect on the peak amplitude, peak latency, and reconstruction accuracy. No significant differences
928  were found in the peak amplitudes (paired-samples t-test, t(18) = 0.02, p = .981), peak latencies (paired-
929  samples t-test, t(18) = -0.21, p = .834), and reconstruction accuracies (paired-samples t-test, t(18) = 0.95, p
930 =.357). Grey dots indicate data points from each participant. Error bar denotes the standard error. n.s.: not
931  significant, *: p < .05, **: p < .01, ***: p <.001.
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932  Table S1. Details of the Natural Language Processing model used to extract semantic features.

Type Parameter
Model type Long-Short Term Memory (LSTM)

Embedding size 200

Hidden units per layer 200
Number of layers 2
Initial learning rate 3

Gradient clipping 0.25
Sequence length 35
Drop out 0.2
Epoch 50

Batch size 3
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933  Table S2. Descriptive statistics of semantic features. Std. means standard deviation.

Number Word entropy Word surprisal

of words Mean Range Std. Mean Range Std.
Storyl 213 6.56 9.31 2.17 6.12 16.98 3.22
Story2 245 6.41 9.77 2.16 5.56 17.02 3.38
Story3 247 6.53 9.77 2.24 5.49 13.37 2.96
Story4 249 6.68 10.28 2.32 6.17 15.25 331
Story5 240 6.90 10.27 2.24 6.05 13.68 3.23
Story6 228 6.59 10.00 2.16 6.08 15.80 3.18
Story7 281 6.52 9.96 241 5.84 17.05 3.04
Story8 245 6.53 9.47 231 5.86 13.34 3.13
Story9 254 6.48 9.88 2.39 6.35 16.62 3.27
Story10 244 6.56 9.84 2.35 5.82 17.03 3.26
Storyl1 231 6.41 9.60 2.24 6.53 18.55 3.81
Story12 271 6.41 10.01 2.29 6.23 17.65 3.59
Story13 317 6.57 10.22 2.30 5.91 17.74 3.49
Storyl4 243 6.93 10.10 2.35 6.47 16.95 3.42
Story15 305 6.24 9.45 2.17 5.66 17.37 3.1
Story16 303 6.57 9.70 2.32 6.33 17.19 3.36
Storyl7 344 6.53 9.46 2.09 5.98 15.66 3.06
Story18 251 6.69 9.71 2.01 6.06 14.75 3.33
Story19 266 6.35 9.58 2.14 5.67 13.77 3.04
Story20 274 6.45 9.69 2.12 5.87 14.36 3.08
Story21 248 6.27 9.54 2.36 5.34 15.96 3.11
Story22 274 6.40 10.15 245 5.82 17.36 3.45
Story23 272 6.32 9.75 2.29 5.57 15.25 2.93
Story24 264 6.67 9.88 2.23 6.04 16.43 3.29
Story25 271 6.53 9.53 2.16 6.02 17.32 3.14
Story26 253 6.54 9.62 2.17 6.41 15.85 3.19
Story27 261 6.44 941 2.03 6.17 17.82 3.15
Story28 236 6.75 10.02 241 6.03 13.41 3.36
Story29 282 6.65 9.89 2.04 6.27 15.88 3.09

Story30 235 6.71 9.78 2.28 6.31 18.16 3.48
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934  Table S3. Time lags of interests (TOIs) of each cluster in the acoustic-level TRF responses.

Cluster Time lags of interests (TOIs)
Al 383 ~ 483 ms
A2a 406 ~ 453 ms
A2b 484 ~ 539 ms
A3a 344 ~ 383 ms
A3b 414 ~ 469 ms
Ada 406 ~ 445 ms
Adb 484 ~ 531 ms
A5a 336 ~ 383 ms

A5b 414 ~ 469 ms
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935  Table S4. Time lags of interests (TOIs) of each cluster in the semantic-level TRF responses.

Cluster Time lags of interests (TOISs)

El -297 ~ -195 ms
E2 -398 ~ -250 ms
E3 -625 ~ -359 ms
E4 -8 ~141ms

E5 250 ~ 406 ms
E6 273 ~ 398 ms
E7 602 ~ 961 ms

ES8 563 ~ 727 ms
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936  Table S5. Spearman’s correlation between the reconstruction accuracies of each cluster in acoustic-level

937  TRF responses and the behavioral performance. Significant correlation results are bolded (uncorrected).

Comprehension Clarity Intelligibility
Performance Ratings Ratings
Al r=.11, p =.647 r=-11,p=.662 r=.10,p =.694
A2a r=.05,p=.831 =-46,p=.047 r=-.04,p=.858
A2b r=.25p=.309 r=-.50,p=.032 r=.02,p=.926
A3a r=.09,p=.702 r=-52,p=.025 r=.05p=.854
A3b r=-002,p=.994  r=-51p=.028 r=-.06,p=.798
Ada r=.08, p=.757 r=-47,p=.043 r=-08,p=.734
Adb r=.18,p = .465 r=-42,p=.071 r=.004, p =.986
Aba r=.03,p=.918 r=-46,p=.048 r=.002, p =.997

A5hb r=.22,p=.361 r=-52,p=.026 r=.15,p=.541
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Table S6. Spearman’s correlation between the reconstruction accuracies of each cluster in semantic-level

TRF responses and the behavioral performance. Significant correlation results are bolded (uncorrected).
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Comprehension Clarity Intelligibility
Performance Ratings Ratings
E1 =-.09,p=.714 =-21,p=.394 r=.14,p=.560
E2 r=.11,p=.668 r=.23,p=.339 r=-07,p=.762
E3 =-01, p=.997 r=-.30,p=.206 r=-31,p=.203
E4 r=-02,p=.928 =-.24,p=.332 r=.09,p=.721
E5 r=.51,p=.027 r=.15,p = .527 r=.37,p=.121
E6 r=.13,p=.594 r=-22,p=.365 r=-30,p=.215
E7 r=.20, p=.404 r=.04,p=.881 r=.15,p=.551
E8 r=.20,p=.411 r=-28,p=.237 r=-14,p= 575
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