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Abstract

Background: Host response is critical to the onset, progression, and outcome of viral infections.
Since viruses hijack the host cellular metabolism for their replications, we hypothesized that
restoring host cell metabolism can efficiently reduce viral production.

Results: Here, we present a viral-host Metabolic Modeling (vhMM) method to systematically
evaluate the disturbances in host metabolism in viral infection and computationally identify
targets for modulation by integrating genome-wide precision metabolic modeling and
cheminformatics. We applied vhMM to SARS-CoV-2 infections and identified consistent
changes in host metabolism and gene and endogenous metabolite targets between the original
SARS-COV-2 and different variants (Alpha, Delta, and Omicron). Among six compounds
predicted for repurposing, methotrexate, cinnamaldehyde, and deferiprone were tested in vitro
and effective in inhibiting viral production with IC50 less than 4uM. Further, an analysis of real-
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world patient data showed that cinnamon usage significantly reduced the SARS-CoV-2 infection
rate with an odds ratio of 0.65 [95%CI: 0.55~0.75].
Conclusions: These results demonstrated that vhMM is an efficient method for predicting targets

and drugs for viral infections.
Keywords: vhMM, viral diseases, SARS-COV-2, host metabolism, drug repurposing,
methotrexate, cinnamaldehyde, deferiprone

Background

Viral infections have consistently been a significant health concern throughout human society
[1, 2]. Despite intensive research, a few drugs are FDA-approved to date for viral diseases[3-5].
The emergence of viral variants has also significantly impacted the efficacy of available
therapeutics and vaccines[6-9]. There is still a critical need for developing new agents to treat
viral infectious diseases. While current small-molecule drugs target viral proteins, investigations
into the host pathways provide opportunities for discovering new therapeutic agents with
different mechanisms that are either efficacious alone or in combination therapy. Since viruses
hijack host cellular metabolism for replications, which require high energy expenditure and a
large number of host metabolites[10] for the production of viral components, such as proteins,
RNA, and lipids, we hypothesize that restoring host cell metabolism can efficiently negate viral
production.

Genome-scale metabolic modeling can capture metabolic states of cells or tissues[11] and has
been applied to understanding the mechanisms of diseases, such as obesity[12], NAFLD [13],
cancer[14], and Alzheimer's disease[15]. It has also been utilized to study human cell metabolic
changes after viral infection and infer gene targets[16-18]. However, how to directly predict
candidate drugs for viral infections by targeting the host metabolic response remains challenging.

We recently developed an algorithm of precision metabolic modeling (GPMM) by quantitative
integration of the enzyme kinetics information from knowledge bases and enzyme levels from
transcriptome and proteome data[19]. Together with the in silico genome-wide gene and
metabolite knock-in/knock-out capability[20], this approach allows systematic evaluations of
genes and endogenous metabolites as candidate targets to modulate the host metabolism. In
addition, recent developments in chemoinformatics have enabled computational drug discovery
by comprehensive comparison of molecular structures[21, 22] and integrated bioactivity data
between a large number of small molecule compounds and the candidate targets[23].

Here we integrate these algorithms to unravel the host metabolic disruptions in viral infection
and discover potential antiviral targets. We applied this method to analyze the genomic data of
human cells infected by SARS-CoV-2 and identified gene and metabolite targets as well as drug
candidates that inhibit both the original virus and its variants. We performed in vitro validation
experiments on three out of six predicted drug candidates and found that they can effectively
inhibit viral production in cell lines. Further, an analysis of real-world data from five major
hospitals showed that cinnamon usage significantly reduced the risk of COVID-19 infection.
Taken together, this computational approach is effective in aiding the modulation of host
metabolism against viral infection.
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Results

viral-host Metabolic Modeling (vhMM) for modulating host metabolism against viral
infection

vhMM was developed to predict drug candidates to modulate host metabolism against viral
infection by integrating several procedures, including system-level precision metabolic modeling,
in silico system-wide knock-out analysis of genes and metabolites on metabolic fluxes, and
chemoinformatics to identify drugs targeting these genes and metabolites for repurposing.

As shown in Figure 1, a metabolism network model of human cells after viral infection was
first constructed that integrated human reconstructed metabolic models (e.g. Recon3D) and the
COVID-19 disease map[24]. In total 28 SARS-CoV-2-specific proteins, negative and positive
RNAs, and lipids were included in the curated virus-host metabolism map, along with the viral
biomass reaction using protein and RNA compositions from the literature[24, 25].

Second, Genome-wide Precision Metabolic Modeling (GPMM), a method we recently
developed to quantitatively integrate enzyme kinetics information from curated knowledge bases
and enzyme levels from transcriptome and proteome data into metabolic models[19], was
applied to characterize changes in metabolic fluxes due to the viral infection by comparing
transcriptome data before and after SARS-CoV-2 infection in three cell lines, A549, Calu3 and
NHBE[26].

Third, in silico knockout analysis was systematically performed on all the genes and
metabolites involved in the model to examine which genes and metabolites can reverse the
altered metabolic fluxes in infected cells, using a computationally efficient algorithm
FastMM[27]. Since the virus is critically dependent on redirecting many host metabolic
pathways for its reproduction in the infected host cells, different from previous studies that only
considered the viral biomass reaction, we considered all the metabolic fluxes changed by the
infection to predict potential interventions to restore the compromised host metabolism toward
homeostasis. This all-against-all knockout analysis gave rise to effect-size matrices of genes and
metabolites on metabolic fluxes from which the top genes and endogenous metabolites were
identified as potential targets.

Finally, we adapted Chemical Checker (CC)[23], a database of biological and chemical
signatures of ~800,000 small molecules, and DrugBank[28], an online database containing
information on drugs and drug targets, to predict candidate drugs that mimic the molecular
characteristics of the gene and metabolite targets. If two compounds have similar metabolic
networks or signaling pathways, we define them as having similar effects if they have the same
pharmacological effect; otherwise, they are defined as having opposite effects (Details in
Materialsand Methods).

Evaluation of the host metabolism hijacked by SARS-CoV-2 in infected cells

We analyzed the altered metabolic state of the host cells infected by SARS-CoV-2 using a
transcriptome dataset of three viral-infected cell lines (ACE2-induced A549, Calu3, and
NHBE)[26]. First, using the viral biomass reaction as the target function, we simulated from the
transcriptome data the viral production of SARS-CoV-2 under each of the 13 conditions across
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the three cell lines. As shown in Figure 2A, compared with the measured viral load, the
algorithm effectively predicted the viral production (r = 0.75, p = 0.003). Next, we identified
individual metabolic fluxes and pathways significantly perturbed in each of the cell lines (false
discovery rate < 0.01). Notably, we observed a core set of viral perturbed metabolic pathways
changed consistently between the three cell lines after SARS-CoV-2 infection (Figure 2B).
Strikingly, pathways intimately associated with viral production, such as SARS-CoV-2 protein
synthesis, sense RNA synthesis, antisense RNA synthesis, and the overall viral biomass, were all
significantly up-regulated, while pathways of oxidative phosphorylation (OP), mitochondria
transport, glycolysis/gluconeogenesis, and tyrosine metabolism were down-regulated in the
aforementioned three cell lines, presumably as the result of the viral reprioritization of the host
metabolism to support the synthesis of viral components. Importantly, these results were
corroborated in a most recent study that core mitochondrial genes are down-regulated in
nasopharyngeal and autopsy tissues of patients after SARS-Cov-2 infection[29].

I'n silico gene knockouts toward restoring host metabolism after infection

We performed an all-against-all genome-wide single-gene knockout analysis in the three cell
lines and computed changes in metabolic fluxes affected by each gene knockout. These resulted
in a matrix of significant gene-flux effects for each cell line that included genes and
corresponding metabolic fluxes significantly changed in the cell line (log2 fold changes of the
fluxes > 0.5 and p <0.05). To be stringent, we only considered gene knockouts that significantly
affecting at least three separate fluxes as potential candidates for targets (Details in Materials
and Methods). In A549, this matrix comprised 181 genes and 213 fluxes, while 166 genes and
228 fluxes in Calu3 and 171 genes and 154 fluxes in NHBE (Supplementary Table S1-S3).

We further defined the genes identified as antagonist targets, where the knocked-outs of these
genes inhibited the fluxes up-regulated in the viral infection, and as agonist targets, where the
gene knocked-outs further decreased the fluxes down-regulated in the viral infection. We
hypothesized that inhibiting the antagonist targets or activating the agonist targets helps restore
the infection-altered metabolic fluxes toward homeostasis and thus may reduce viral production.
Five antagonist and two agonist targets were identified that were consistent in the three cell lines
(A549, Calu3, and NHBE) (Figure 2C, Supplementary Table $4). The five antagonist targets
were PAICS, GART, ATIC, PPAT, and PFAS, which are all enzymes involved in purine
synthesis. Purine synthesis has been widely considered a target for developing antiviral and
anticancer drugs[30, 31] and can be potentially targeted against SARS-COV-2 infections. The
two agonist targets were TYMS (thymidylate synthetase) and DHFR (dihydrofolate reductase).

We investigated whether these gene targets can directly inhibit the major components of viral
production, including viral proteins, RNA, lipids, and the viral biomass reaction. The result
showed that knockouts of each of the five antagonists reduced every viral component, including
viral proteins, RNA, and lipids, as well as the viral biomass reaction in Calu3 and NHBE cell
lines (Supplementary Table S5). For the A549 cell line, knockouts of these antagonist targets
inhibited viral proteins and RNA, but not viral lipids and the biomass reaction (Supplementary
Table S5). These results indicate that targeting these antagonists could inhibit viral production.

In silico screening of endogenous metabolites to modulate host cells after infection

We next conducted an all-against-all metabolite knockout analysis to obtain the potential
endogenous metabolites to modulate. Similar to the gene knockout analysis, we only considered
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metabolite knockouts that significantly affected at least three separate fluxes as potential
candidates for targets (Details in Materialsand Methods). 462 metabolites were identified as
significantly affecting the metabolic fluxes in A549 infected cell line, while 455 and 400
metabolites were identified as significant in Calu3 and NHBE cell lines, respectively
(Supplementary Table S6-S8).

These metabolites were also characterized into two categories based on their impact on the
metabolic fluxes compared with the corresponding changes by the infection. Figure 2D and
Supplementary Table S9 showed the 20 endogenous metabolites identified as consistent in the
three cell lines. Two agonist endogenous metabolites included methylenetetrahydrofolate(mlthf),
and 2-oxoglutarate (akg), and 18 antagonist metabolites included IMP, GTP, adenylosuccinate
(dcamp), seven metabolites related to purine synthesis (25aics, air, 5aizc, gar, fgam, pram, and
fpram), and eight amino acids (Gly, Cys, Phe, Asn, Lys, Arg, Met, and Thr). IMP was previously
identified as an essential metabolite for viral production, and its synthesis has been targeted in
antiviral applications [32].

We further investigated whether targeting these metabolites can also directly inhibit viral
production. The results showed that targeting any of the 18 antagonist metabolites can not only
inhibit the biosynthesis of all the viral components as well as the viral biomass reaction
(Supplementary Table S10).

Common drug candidates between the original strain and variants of concern (VOCS)

Numerous variants of SARS-CoV-2 have emerged since the pandemic, and so far, at least
VOCs have significantly impacted global public health, therapeutics, and vaccines[33].
Therefore, we evaluated whether our results from the study of an original SARS-CoV-2 isolate
(IC19) are replicable in independent studies of the different viral isolates (Alpha, Delta, and
Omicron) in a cell line (Calu3)[34, 35].

The core set of metabolic pathways identified in IC19 infected cell lines was similarly
perturbed by the VOCs (Figure 3A), which included the up-regulated SARS-CoV-2 proteins,
sense RNA, antisense RNA, and overall SARS-CoV-2 biomass, and the down-regulated
oxidative phosphorylation (OP), mitochondria transport, folate metabolism, pyruvate metabolism,
and nucleotide interconversion. The overall correlation between Alpha, Delta and Omicron
variants and the original 1C19, respectively of the changes on these pathways was 0.60, 0.59, and
0.39, which are consistent with the order in which the variants emerged.

We next evaluated the metabolic effects of the gene and metabolite candidates for modulation
identified from IC19 in the host cells infected by the different viral isolates. For gene targets,
except for the agonist gene targets, the five antagonist gene targets (viz., PAICS, GART, ATIC,
PPAT, PFAS) were consistent in IC19, Alpha, Delta, and Omicron isolates (Figure 3B). For
metabolites, 19 of 20 predicted endogenous metabolites (all except mithf) were consistent from
IC19 to omicron isolates (Figure 3C).

Computational drug repurposing for SARS-CoV-2 infection

We first screened the FDA approved drugs based on gene targets. As five consistent gene
targets are all purine synthesis enzymes (Figure 3B), we screened the FDA-approved drugs that
not only inhibit at least one of the predicted target genes, but also have pharmacological effects
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that inhibit purine synthesis. Methotrexate was identified from the DRUGBANK]28] database
that met the above two criteria (Figure 3D).

Next, to identify candidates for drug repurposing based on metabolite targets, we overlapped
drugs and compounds in DRUGBANK with molecules in Chemical Checker[23], and obtained
2,008 FDA-approved compounds in Chemical Checker. We searched for drugs that have similar
network profiles as the endogenous metabolite targets (Details in Materialsand Methods).

Six of 23 endogenous metabolites can significantly match at least one of the FDA-approved
compounds by using network and pharmaceutical similarity (compound prediction score (CPS) >
0 based on network similarity, details in Materialsand Methods), including 2-Oxoglutarate, 5-
Amino-1-(5-Phospho-D-Ribosyl)Imidazole (air), 5-Amino-1-(5-Phospho-D-Ribosyl)Imidazole-
4-Carboxylate (5aizc), L-Threonine, L—Proline, and L-Asparagine. At the same time, six FDA-
approved drug candidates were identified (CPS>0), including Cinnamaldehyde, Bupropion,
Deferiprone, Proguanil, Penicillamine, and N-acetyltyrosine (Figure 3E). Notably, 4 of these 6
drugs were previously studied for their antiviral functions (Supplementary Table S11).

In vitro experimental validation of the predicted drug candidates

To further test whether the predicted gene target and drug candidates can inhibit viral
production, we selected three of the predicted drugs for subsequent validation by in vitro cell line
experiments. These include methotrexate (an inhibitor of common drug targets), cinnamaldehyde
(the top-ranked drug from common antagonist metabolites), and deferiprone (the top-ranked drug
from common agonist endogenous metabolites (Figure 3F).

We first estimated the drug safety by performing a cytotoxicity assay (Details in Materials
and Methods). None of the three drugs appeared to have significant cytotoxicity for the drug
concentrations up to 100uM (Figure 4A). Immunofluorescence also showed that the level of
SARS-CoV-2 N protein was significantly reduced at the concentration of 25uM for each of the
three drugs(Figure 4A).

To measure the efficacy in viral inhibition of these three drugs, we performed the antiviral
activity assay in three different lung cell types (viz., CaCo2, HPA and Huh7 cell lines) at
different dosage range from 0.01uM to 100uM. As shown in Figure 4B, the average 1C50 of
methotrexate among these three cell lines was 2.0 uM (1.72uM for CaCo2, 2.03uM for HPA, and
2.17uM for Huh7). For cinnamaldehyde, the average IC50 was 3.9uM (2.59uM for CaCo2,
3.73uM for HPA, and 5.43uM for Huh7). For deferiprone, the average IC50 was 2.59uM
(1.97uM for CaCo2, 2.07uM for HPA, and 3.72 for Huh7). Remdesivir was used as a positive
control, which had an average 1C50 of 0.83uM as measured (Figur e 4B).

Together, these results showed that all three tested drugs have a significant anti-viral effect
with the 1C50 of SARS-CoV-2 ranging from 2.0uM to 3.9uM, clearly supporting that vhMM is
effective in computational drug repurposing for anti-viral applications.

Analysisof the predicted repurposing drugson real-world patient data

We next attempted to analyze the effect of these three drugs in a real-world setting.
Methotrexate had an IC50 of 2.0uM, and the effective dosage was estimated at 40 mg/day
(Details in Materialsand Methods), which is much higher than the usage of the drug for
autoimmune-related diseases (< 20mg/week)[36]. Deferiprone had an IC50 of 2.59uM and an
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estimated dosage of 55mg/day. However, we could not obtain enough data in ACT Network[37],
presumably because deferiprone is an orphan drug for the treatment of iron overload in
thalassaemia[38].

Cinnamaldehyde is the main active component in cinnamon (~3% cinnamaldehyde)[39]. It
had an IC50 of 3.9uM and an estimated cinnamon equivalent dosage of 0.59 gram/day. On the
other hand, cinnamon supplements typically have a daily dosage of 2-4 grams. We analyzed the
incidences of COVID-19 in the ACT Network with respect to cinnamon usage. Since cinnamon
is mainly used in supportive care for diabetic patients, we used patients with diabetes as the
control group. A retrospective cohort of 410,645 individuals with diabetes from five major
hospitals of ACT Network was queried. There was no difference in age distribution between the
two groups (Supplementary Table S12, Kolmogorov-Smirnov test p-value = 0.166). These
included 2,460 patients taking cinnamon, with a rate of recorded SARS-CoV-2 infection of 6.5%,
while the rate of infection in the control group of 408,005 patients was 10.1%. Data of the 5
hospitals consistently showed by meta-analysis that patients who took cinnamon had a
significant 36% lower rate of SAR-CoV-2 infection (p = 6.1e-8, odds ratio of 0.64 and 95% ClI
of 0.55~0.75) (Figure5). These suggest that cinnamaldehyde is a promising candidate for
further investigation against COVID-109.

Discussion

In this study, we developed a novel method (vhMM) for drug screening and target identification
in viral infectious diseases by integrating metabolic modeling and chemoinformatics. We applied
this method to study COVID-19 and captured changes in host metabolism after viral infection.
Gene and metabolite targets and six candidate drugs were identified to inhibit both original and
mutated SARS-COV-2 production by modulating the host metabolism. We validated the top 3
predicted drugs using in vitro experiments and found that all of these candidates can effectively
inhibit viral production with IC50 <4uM. In a retrospective cohort study, patients taking
cinnamaldehyde showed a significant reduction in the COVID-19 infection rate.

Many viruses, including SARS-CoV-2, depend on the cell metabolism of the infected host for
viral replication[40, 41]. vhMM was designed to computationally predict antiviral compounds by
modulating the host. In contrast to the commonly used approach of targeting viral proteins[42,
43], vhMM aims to target host metabolism by rescuing or partially rescuing the metabolic
dysfunction in host cells after viral infection. We found that the suppression of mitochondria
function is one of the major metabolic changes after SARS-CoV-2 infection, which was
supported by the recent study of rodent and patient tissues [29]. In addition, the results are
consistent in three independent studies from three different laboratories on most pandemic viral
variants (alpha, delta and omicron), indicating that vaMM is robust and likely able to tolerate or
at least partially tolerate viral mutations. Further, the top candidates were validated by in vitro
cell line experiments as well as by the analysis of real-world patient data. These results suggest
that vhMM is an effective computational method for anti-viral applications.

We performed validation experiments on three predicted candidate drugs, methotrexate,
cinnamaldehyde, and deferiprone, and strikingly, all these drugs showed anti-viral activity in
multiple lung cell lines. Given that purine synthesis is essential for viral RNA replication and has
been approved in other viral diseases[44-46], and a recent study showed that inhibiting the host
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nucleotide synthesis can effectively block the SARS-COV-2 replication[47], our results further
confirmed, at least in vitro, that inhibition of purine synthesis by methotrexate can also inhibit
the viral production of SARS-CoV-2. Deferiprone is an iron-chelating drug to treat iron overload
from blood transfusions in thalassemia[48]. Here we found that deferiprone can also inhibit viral
production in a way mimicking 2-oxoglutarate, which may involve modulating cellular redox
stress, energy production, or nitrogen metabolism[49, 50].

Cinnamaldehyde, the main active component of Cinnamon, has been previously investigated
for its potential beneficial metabolic effects, e.g., increasing glucose uptake and improving
insulin sensitivity[51], and cinnamon is sometimes recommended as a supplement for diabetic
patients[52]. Here we demonstrated that cinnamaldehyde could inhibit SARS-COV-2 replication
by inhibiting intermediate molecules in purine biosynthesis as predicted by vaMM. This is
consistent with structure-based prediction of protein targets of cinnamaldehyde in ChEMBL[53].
Retrospective analysis of patient data showed consistent results in patients taking oral cinnamon
supplements. Interestingly, the results of a Phase 3 trial (COVID-OUT) recently showed that
outpatient treatment with metformin during the initial infection significantly reduced the
incidence of long COVID[54], raising the possibility of modulating host metabolism toward
homeostasis to prevent the risk of long COVID.

There are still several limitations in our study. First, we did not consider signaling pathways in
vhMM, which may result in missing important drug targets and candidates. Second, although the
three compounds predicted here have been validated in vitro cell lines, and one of them has been
further validated in vivo in a large-scale cohort, clinical trials are essential to evaluate their effect
in the treatments of COVID-19. Third, the mechanisms of anti-viral activities of these three
experimentally supported compounds require further investigation.

Conclusions

We present a new computational method, vaMM, to evaluate the disturbances of metabolism in
virus-infected host cells and to predict repurposing drugs to modulate the host metabolism
against viral infections. vhMM was applied to analyze the host metabolism hijacked by SARS-
CoV-2 and, importantly, predicted and validated gene and metabolite targets and drug candidates
in vitro and using real-world data. These results support further drug discovery and repurposing
developments to modulate host metabolism in COVID-19 and other viral diseases.

M ethods

Dataset collections

Datasets from several sources were utilized to develop the computational model for studying the
host metabolic response after SARS-CoV-2 infection. These included the genome-wide
metabolic model of human cells[55], information on the genomic and proteomic sequences of the
SARS-CoV-2 virus[24], RNA-sequencing data of three cell lines (A549, Calu3, and NHBE)
infected by the original variant[26], Calu3 cell line infected by the Alpha variant[34] and Calu3
cell line infected by the Delta variant and Omicron variant (BA.5 variant)[35], metabolic uptake
dataset[56], chemical information of FDA approved drugs from DrugBank[28], and the
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harmonized chemical and biological profiles of ~800,000 small molecules from Chemical
Checker[23].

Genome wide precison metabolic modeling

Construction of virus-host metabolic modeling models. First, 28 viral protein production
reactions, RNA production reactions, and lipid synthesis reactions were incorporated into the
human metabolic model (Supplementary Table S13). The viral biomass reaction was then
constructed using the structural composition from the experimental data of SARS-CoV-2[25].
The viral biomass reaction is:

2.0 YP_009724393[c] + 1.0 YP_009724397[c] + 0.1 YP_009724392[c] + 0.3 YP_009724390[c]
+0.01 COVID_RNA_BS pos[c] + 0.01 COVID_RNA_BS_neg[c] + 0.001 COVID_lipids_v]c]

M etabolic modeling. We used our recently developed genome-wide precision metabolic
modeling method, GPMM, to perform the genome-wide metabolic modeling[19]. Briefly,
GPMM integrates the estimated protein abundance from gene expression and enzymatic kinetic
parameters into the generic human metabolic model as upper bounds based on Michaelis—
Menten Kkinetics. In addition, the nutrient uptake fluxes of cell lines are derived from the
literature[56] and the lower bound of other exchanges was set at zero. The flux variability
analysis (FVA) is conducted to construct the tissue-specific models for each cell line using the
FastMM toolbox[27].

To obtain the flux change after COVID-19 infection, we performed Monte-Carlo (MCMC)
simulations using the Cobra 3.0 toolbox[57]. Since ATP production is essential for all cells, we
constrained the low bound of ATP production as 90% of its optimized value, similar to previous
studies[58]. Similarly, the lower bound of the fluxes of host biomass and COVID-19 production
biomass was set at 90% for the normal and SARS-COV-2 infected cells. Thus, the MCMC
sampling provided thousands of feasible fluxes for each reaction but still maintained the feasible
ATP production and biomass reaction for the normal and infected cells. The flux changes
between normal and infected cells were calculated using the Limma package [59] based on the
averaged values of the MCMC results.

| dentifying metabolic pathway changes. The differential abundance score (DA score) was
calculated using the previously published method[60]. For each metabolic pathway (i), the DA
score (DA;) can be calculated as following:

DAi _ # up regulated flux-es —-# (-10wn regulated fluxes (1)
Total reactions in ith subsystem
All-against-all gene knockout analysis. In silico knockout analysis was performed to obtain the
effect of each gene knockout on each reaction by using the function of “FastMM _singleGeneKO”
in our recently developed FastMM toolbox[27]. We thus obtained an all-against-all gene
knockout matrix (G°), where rows and columns represented the genes and reactions,
respectively. As the flux of transport was not constrained in GPMM due to the lack of enzymatic
parameters[19], we removed the knockout results of transporters.

I dentification of genetargets. To identify the gene targets for modulation, we first constructed
a gene effective matrix(GE™), which can be calculated as:
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I = 6 x sign(log2FC)) x L @

where i and j represent the ith gene and the jth reaction, and log2FC; and L; are the log2
fold change and logical of (significance p<0.05 AND log2 fold change >0.5) in the jth flux,
respectively.

Then, we calculated the gene effective score (GES) by summing the effective values in GEW

and calculated as the following:
GES; = X1, G, 3)

From equation (2), the value of GES >0 or <0 indicates that knocking out this gene can either
rescue or enhance the flux changes in the host cells due to infection. To be stringent, we only
considered GES > 3 or GES < -3 as potential candidates for antagonist targets or agonist targets,
respectively. To obtain robust results, the candidates from each of the three cell types (A549,
Calu3 and NHBE) were compared, and only those identified in all the cell lines were designated
as gene targets for modulation.

All-against-all metabolite knockout analysis. The knockout analysis was conducted using the
function of “FastMM _singleMetKO” in the FastMM toolbox to obtain the all-against-all
metabolite knockout matrix(M®), where row and column represent the gene and reaction,
respectively.

| dentification of endogenous metabolite targets. Similar to the gene targets, we obtained a
metabolite effective matrix(ME™), which was calculated as:

Mi(’fM) = Mi(fo) x sign(log2FC;) x L; (4)
Where Mi(’fM) represented the effect score of the ith metabolite on the jth reaction.

Then, we calculated the overall metabolite effective score (MES) by summing the effective
values in MEW:

MES; = Y, . )

Similar to the gene targets, we only consider the MES > 3 or MES < -3 as the antagonist or
agonist candidates, respectively, and the final list of metabolite targets was obtained by also
limiting to the candidates consistently found in each of the three cell types.

Drug repositioning using chemoinfor matics

To identify candidate drugs modulating the host cellular metabolism, we reason drugs that have
similar network and pharmacological profiles of agonist metabolites or opposite profiles of
antagonist metabolites can potentially rescue the COVID-19 metabolic change.

First, we mapped each of the antagonist and agonist metabolites to the Chemical Checker
(CC) database and obtained the normalized the fingerprint for 25 different types of molecular
features[23]. For each gene target, compounds in CC were also identified that either inhibit or
activate the gene, which constitutes the profile of the gene.
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Second, we calculated the fingerprint correlations between these metabolites and the
~800,000 small molecules in CC database to obtain the background correlation distribution. This

correlation matrix can be written as Cl.(;‘."), represented the Pearson correlation value of ith

metabolites and jth molecules in kth feature. The value of Cif;f) ranges from -1 to 1, where the

negative and positive values represent the opposite and similar feature between the two
molecules. We used the maximum likelihood method (‘fgev’ function in R ‘evd’ package) to fit
the generalized extreme value distribution and estimated the location parameter i, the scale
parameter ¢ and the shape parameter & for each metabolite for each molecular feature. The
extreme value distribution of background has been used in our previously developed anti-cancer
prediction method [61].

Third, for a given molecule m, the one-tailed similarity p-value between m and the screened
metabolite i (pi’k)) can be calculated as following:
1— F(C(k)'u(k),ai(k),éi(k)), if € >0

im?’ i i,

€9)
b = k k k k . k
F(cisu®,al,60), ifcl <o

i im —

(6)

Where F (Ciff‘;g ; ,ugk), ai(k), Ei(k)) represents the cumulative function of generalized extreme value
distribution. Ci(:;) represents the fingerprint correlation between the give molecule mand the

metabolites i in the feature k. uf"), al.(k), and El.(k) represent the location, scale and the shape
parameters of the generalized extreme distribution.

Finally, for each drug compound, we calculate the compound prediction score (CPS) to rank
the similarity between the drug compound and the gene and metabolite targets based on three
network features: mechanism of action of the compounds (B1 in CC), and pathway features (C2
and C3 in CC), which can be calculated as:

CPS = maXiE[l,n] [—ai * loglo (pi(Bl) X pi(C2|C3))] (7)

Where n is the total number of antagonist and agonist metabolites, «; is a discriminate factor.
When both p®» and p“*“® are smaller than p-cutoff (e.g., 0.01), a; = 1, else a; = 0. A

1

compound with the CPS >0 was considered a candidate for repurposing.

We retrieved the FDA-approved compounds from DrugBank[28]. After filtering the drugs
that were not included in the CC database, we obtained six candidate drugs for anti-COVID-19.

In vitro experimental validation

The SARS-CoV-2 (NMDCNO0OHUI) was propagated and titrated on Vero E6 cells (ATCC, no.
1586). Human pulmonary alveolar epithelial cell line (HPAEpiC) was purchased from the
ScienCell Research Laboratory (San Diego, CA). Human hepatocarcinoma cell line Huh7 were
purchased from Procell Life Science & Technology Co., Ltd (Wuhan, China). Human colorectal
adenocarcinoma cell line Caco-2 was purchased from Cell Bank, Chinese Academy of Sciences.
All the cells were cultured in high glucose DMEM medium with 4.5 mM L-glutamine (Gibco)
contains with 10% FBS (Gibco) and 1% penicillin—streptavidin (Gibco). All work with SARS-
CoV-2 was conducted in a BSL-3 facility at the Key Laboratory of Animal Models and Human


https://doi.org/10.1101/2023.07.24.550423
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.24.550423; this version posted August 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology
(Kunming, China).

Cytotoxicity assay. The cytotoxicity of compounds on HPAEpIC cells and Huh7 cells was
determined by CCKS8 assay. Briefly, 8x10* per well HPAEpIC or 4x10* per well Huh7 cells were
respectively seeded in 96-well plates and incubated at 37°C, 5% CO2 overnight. When the cells
grew to more than 90% confluence, they were incubated with or without series diluted
compounds in 96-well cell culture plates and further incubated for 72 hours. 10 uL CCK8
(Beyotime) was added to each well at 37°C, and one hours later, the optical absorbance was
measured by ELx800 reader (Bio-Tek) at 450 nm/630 nm. 50% cytotoxicity concentration
(CCsp) was calculated.

| mmunofluor escence experiment (IFA). 2x10°cells Caco-2 were seeded on glass coverslips
pretreated with TC (Solarbio) in 24-well plates to reach 90% confluency and infected with virus
at an MOI of 0.02. Meanwhile, the test compounds were added to the wells. After 1 hour, the
supernatant was discarded, and the wells were washed 3 times with PBS and replaced with fresh
medium containing drug compounds. After 48 hours, cells were fixed in 4% paraformaldehyde
and subjected to IFA.

Antiviral activity assay. 1.6x10° cells of HPAEpIC or 8x10* cells of Huh7 or Caco-2 were
respectively seeded in 48-well plates and grown overnight. HPAEpIC cells, Huh7 cells, and
Caco-2 cells were infected at an MOI of 1, 0.1and 0.02. At the same time, the test compounds
were added to the wells with different concentrations. One hour later, the drug-virus mixture was
removed, and cells were washed 3 times to remove the free virus with PBS and replaced with
fresh medium containing compounds. 48 hours later, the supernatants were collected, and viral
RNA was extracted by using a High pure Viral RNA Kit (Roche), RT-qPCR analysis was
performed. Viral RNA was quantified by THUNDERBIRD® Probe One-step gRT-PCR Kit
(Toyobo). TagMan primers for SARS-CoV-2 are 5-GGGGAA’TTCTCCTGCTAGAAT-3' and
5"CAGACA’TTTGCTCTCAAGCTG-3' with S’RS-CoV-2 probe FAM-
TTGCTGCTGCTTGACAGATT-TAMRA-3'. The I’50 values were calculated by using a dose-
response model in GraphPad Prism 7.0 software.

In vivo retr ospective cohort study of the ACT networ k

A rough estimation of the dosage of the repurposed. The drug dose was estimated using the
formula by MW x IC50 X V X %/1000 , Wwhere MW is the molecular weight (unit g/mol), V is

the volume of liquid in adults (12L for 60 kg adult), HL is the half-life time (in hours) of the
given drug. IC50 is the half maximal inhibitory concentration (in uM). For methotrexate, HL is
approximately 6.5 hours[28], and we estimated the dose of 40 mg/day (454.44 X 2 X 12 X

%/1000). For deferiprone, the HL is 1.9 hours [28], and the estimated dose was 55mg/day
(139.15 x 2.59 x 12 X %/1000). For cinnamaldehyde, the HL is 8.7 hours[62], and the estimated
dose is 17.06 mg/day (132.16 x 3.9 x 12 X %/1000). As cinnamaldehyde is the major active
component in cinnamon (2.89% cinnamaldehyde)[39], the estimated cinnamon dose is 17.06
mg/day /0.0289 = 0.59 gram/day.

This retrospective cohort study utilized the real-world patient data of the Accrual to Clinical
Trials (ACT) network of 35 Clinical and Translational Science Awards (CTSA)-affiliated
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hospitals[37]. Since cinnamon is mainly used in supportive care for diabetic patients, we queried
among patients with a diagnosis of diabetes between 01/01/2020 and 09/09/2022 whether they
used cinnamon and whether they had a confirmed case of COVID-19.

The query criteria were the following: i) Diabetes: ICD-9: 250, ICD-10: E08-E13. ii) COVID-
19: confirmed cases under CDC case definition, i.e., diagnostic laboratory tests results as active
infection test positive. iii) Cinnamon usage: Chromium Picolinate / Cinnamon Bark (1313956),
Cinnamon Allergenic Extract (899673), Cinnamon Bark (477053), Cinnamon Preparation
(285245).

To obtain robust results, we only included in the analysis data from five hospitals where at
least 200 patients took cinnamon. In total, 410,645 individuals with diabetes from these five
hospitals were studied: 2,460 patients who took cinnamon were in the case group, and the rest
were in the control group. For each hospital, the COVID-19 infection rates were calculated for
the case and control groups, and meta-analysis was conducted to estimate the effect of cinnamon
usage on COVID-19 infection rate.

Availability of data and materials

The code and processed data in this manuscript can be available from
http://github.com/GonghuaL.i/vhMM.
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Figure legends:

Figure 1. A Flowchart of viral-host M etabolic Modeling (vhMM). Step 1, Model
reconstruction of human cells after viral infection. Step 2, Genome-wide precision metabolic
modeling to identify metabolic changes after infection and in silicon genome-wide knock-outs to
identify genes and metabolites as targets for modulation. Step 3, Drug repurposing by identifying
candidate drugs that mimic the molecular characteristics of the gene and metabolite targets.

Figure 2: Prediction of gene and endogenous metabolite targets. (A) Correlation between the
predicted viral load by vaMM and the experimentally measured viral load (r = 0.75, p = 0.003).
(B) Heatmap of changes of metabolic pathways after SARS-COV-2 infection in three cell lines
(Calu3, ACE2-induced A549, and NHBE). Note: ***, ** * and . represent the false discovery
rate (FDR) of <0.001, <0.01, < 0.05, and < 0.1, respectively. (C) Gene effective scores of
predicted gene targets in the three infected cell lines. (D) Metabolite effective scores of predicted
endogenous metabolites as targets in the three infected cell lines.

Figure 3: Prediction of repurposing drugsamong I C19, Alpha, Delta and Omicron variants.
(A) Heatmap of metabolic pathway changes in IC19, Alpha, Delta, and Omicron variant infected
cells. Note: *** ** * and . represent FDR of <0.001, <0.01, < 0.05, and < 0.1, respectively. (B)
Gene effective scores of predicted gene targets in different viral isolates. (C). Metabolite
effective scores of predicted endogenous metabolite targets in different viral isolates. (D) Drug
repurposing by requiring the inhibition of at least one antagonist gene target and the inhibition of
purine synthesis. (E) Drug repurposing based on metabolite targets. Blue and red colors represent
antagonist and agonist endogenous metabolites, respectively. The metabolites and predicted
drugs are listed in descending order based on the metabolite effective score (MES) and the
compound prediction score (CPS), respectively. (F) Drugs selected for in vitro validation.
Methotrexate is an FDA-approved drug and is predicted to inhibit the antagonist gene targets and
pathway, while Cinnamaldehyde and Deferiprone are the top-ranked drugs from antagonist and
agonist endogenous metabolites, respectively.

Figure 4: Experimental validation of Methotrexate, Cinnamaldehyde, and Deferiprone. (A)
Immunofluorescence experiment of the three predicted drugs. Different drug concentrations
(25uM, 50uM, and 100uM) were assayed for each of the drugs. (B) Antiviral activity assay of
the three predicted drugs and a positive control (remdesivir). Three lung cell lines (CaCo2, HPA,
and Huh7) were used to test the antiviral activity of each drug.
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Figure5: Analysisof areal-world patient dataset on cinnamon. Cinnamaldehyde is the
major active component in cinnamon. A retrospective cohort of 410,645 individuals with
diabetes from five major hospitals of ACT Network was queried about incidences of COVID-19
with respect to cinnamon usage. These included 2,460 patients taking cinnamon, with a rate of
recorded SARS-CoV-2 infection of 6.5%, while the rate of infection in the control group of
408,005 patients was 10.1%. Data from the five hospitals consistently showed that patients who
took cinnamon had a significantly lower rate of SAR-CoV-2 infection (p = 6.1e-8, odds ratio of
0.64, and 95% CI of 0.55~0.75).

Title of table S1-S13

Table S1: Gene effective matrix of SARS-COV-2 infected ACE2-induced A549 cell line.
Table S2: Gene effective matrix of SARS-COV-2 infected Calu3 cell line.

Table S3: Gene effective matrix of SARS-COV-2 infected NHBE cell line.

Table S4: Overlapped gene targets among three cell lines.

Table S5: Overlapped gene targets among three cell lines using viral biomass reaction.

Table S6: Metabolite effective matrix of SARS-COV-2 infected ACE2-induced A549 cell line.
Table S7: Metabolite effective matrix of SARS-COV-2 infected Calu3 cell line.

Table S8: Metabolite effective matrix of SARS-COV-2 infected NHBE cell line.

Table S9: Overlapped metabolite targets among three cell lines.

Table S10: Overlapped metabolite targets among three cell lines using viral biomass reaction.

Table S11: Predicted Repurposing Drugs for Anti-COVID-19.

Table S12: Age distribution of patients in cinnamon and diabetes groups.

Table S13: The SARS-COV-2 components for vaMM.
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Figure 2

A. Predicted viral biomass and the B. Changes of metabolic pathways

experimental viral load in the three infected cell lines
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Figure 3

A. Metabolic pathway changes in
different isolate infected cells
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Figure 4

A. Immunofluorescence experiment of the three predicted drugs
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B. Antiviral activity assay of three predicted drugs
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Figure 5
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