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Abstract

Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-
chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment
resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and
progress, including chromosomally-driven transcription, is incompletely understood. We
examined gene expression patterns of 870 tumors of varied histological types, to identify
transcriptional correlates of ecDNA. Here we show that ecDNA containing tumors impact four
major biological processes. Specifically, ecDNA containing tumors upregulate DNA damage and
repair, cell cycle control, and mitotic processes, but downregulate global immune regulation
pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA
containing tumors, shedding light on molecular processes that give rise to their development and

progression.
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Introduction

Extrachromosomal DNA (ecDNA) are large, functional, circular double-stranded DNA
molecules that are enriched for oncogenes, highly amplified, and frequently observed in a wide
variety of cancer types'?. ecDNAs lack centromeres and are asymmetrically segregated into
daughter cells during cell division, driving intratumoral genetic heterogeneity, accelerated
evolution, and rapid treatment resistance®*. Further, recent studies demonstrate strong positive
selection for ecDNA during tumor progression’. ecDNAs also exhibit highly accessible chromatin
and altered cis- and trans- regulation, including cooperative intramolecular interactions®,
promoting elevated expression of oncogenic transcriptional programs’?, further contributing to

poor outcome for patients.

The recent development of computational tools that enable detection of ecDNA from whole
genome sequencing data, has facilitated analyses of well-curated, publicly available datasets,
including The Cancer Genome Atlas (TCGA), thereby providing an important opportunity to
identify transcriptional repertoires that are preferentially detected in bona fide, clinical ecDNA-
containing tumors. To shed new light on the gene expression patterns that may enhance ecDNA
development and progression, we examined global transcriptional analysis of ecDNA-containing

tumors.

Results

A recent analysis utilized the tools AmpliconArchitect and AmpliconClassifier on 1,921
tumors from The Cancer Genome Atlas (TCGA) to suggest that ecDNA prevalence ranges from
0% to 59.6% across multiple tumor tissue subtypes”. Using AmpliconClassifier (AC), the analysis
classified tumor samples into five subtypes: ecDNA(+), Breakage Fusion Bridge (BFB), complex
non-cyclic, linear, and no-amplification. However, due to limitations imposed by short-read
sequencing, AC may classify some ecDNA(+) structures as complex non-cyclic when breakpoints
are missed. Secondly, BFB cycles can give rise to ecDNA formation, making discernment of the
two modes of amplification difficult. To limit false-negative ecDNA classifications in the
ecDNA(-) set, we treated samples with only a linear or no-amplification status as ecDNA(-),
removing complex non-cyclic and BFB(+) samples from the analysis. In order to understand the

transcriptional programs active in maintaining ecDNA, we selected 870 samples from 14 tumor
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types with at least three ecDNA(+) samples each, and compared the gene expression data of the

resulting 234 ecDNA(+) and 636 ecDNA(-) samples (Table S1).
Machine learning identifies candidate genes for ecDNA maintenance

In lieu of identifying genes that are highly differentially expressed between ecDNA(+) and
ecDNA(-) samples but driven by a small subset of cases (e.g. gene A in Fig. S1a), we sought to
identify genes (e.g. gene B) whose expression level was predictive of ecDNA presence. We
assumed that genes that were persistently over-expressed or under-expressed in ecDNA(+)
samples relative to ecDNA(-) samples were more likely to be involved in ecDNA biogenesis or

maintenance, or in mediating the cellular response to the presence of ecDNA.

To identify a minimal set of genes whose expression values were consistently predictive
of ecDNA presence, we used Boruta,'® an automated feature selection algorithm (Fig. 1a and
Methods). Given the unequal representation of ecDNA(+) and ecDNA(-) samples within each of
the 14 tumor types, we performed Boruta on 200 datasets, each consisting of a random selection
of 80% of the 870 samples (Fig. 1a), and chose the criterion of a gene being labeled as a Boruta
gene in at least 10 of the 200 trials to be selected for downstream analysis. The Boruta analysis
identified a set of 408 genes with persistent differential expression, hereafter denoted as the Core

gene set.
Extending the Core set with co-expressed genes

We note that the Core gene set is not a comprehensive list of discriminatory genes, using a
toy example. Consider gene “B”, a member of the core gene set, and another gene, “C”, whose
expression values across all samples are nearly identical to the expression values of core gene B.
The Boruta analysis would not need to assign gene C to the core set in addition to gene B, because
adding both genes incurs the same predictive power as adding one. However, either, or both genes
may play an important functional role. To correct this, we ran pvclust'! to cluster all gene
expression values, and to identify stable clusters using multiscale bootstrap resampling (Fig. 1b;
Methods). We used an approximately unbiased (AU) confidence value of 0.95 to select the most
highly co-expressed gene clusters. An AU confidence value of 0.95 represents the rejection of the

null hypothesis that a group of genes fail to form a stable cluster at
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Figure 1. Genes predictive of ecDNA status. (a) The feature selection algorithm, Boruta, was applied to
200 datasets of randomly selected subsets consisting of 80% of all samples. Genes selected by Boruta in at
least 10 of the 200 trials were identified as the Core set of genes (408) that were predictive of ecDNA
presence. (b) Identification of highly co-expressed and stable gene clusters using pvclust expanded the Core
set by an additional 235 genes to the final list of 643 CorEx genes. (¢) Out of 354 clusters, the majority
(344) of clusters contained 1 or 2 Core genes. (d) Most clusters were small, with only 7 clusters containing
more than 10 genes.

a significance level of 0.05. Recomputing the number of Boruta trials that members of a cluster
were selected in, we selected clusters that appeared in at least 10 of the 200 Boruta trials (Methods).

This resulted in the selection of 354 recurring clusters (Table S2).

Notably, among the 354 clusters, only 2 clusters (with 14 total genes) did not contain any
Core genes. As most genes do not have completely identical expression patterns, we would expect
one gene to be consistently picked as a Boruta gene over another co-expressed gene. Consistent
with this hypothesis, most (344/354) clusters contained only 1 or 2 Core genes (Fig. 1¢). When
selecting clusters that contained at least 1 Core and 1 co-expressed gene, 53 of 71 clusters
contained 1 to 3 Core genes (Fig. S1b), confirming that a few genes per co-expressed cluster
provide sufficient predictive value, but other co-expressed genes might still play an important
functional role in maintaining ecDNA presence. This is true for clusters of various sizes, including

the 2-member cluster #74 and the 21-member cluster #3. In cluster #74, CSTFI had similar
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expression values to the Core gene RAE, which is a mitotic checkpoint regulator implicated in
tumor progression'? (Fig. S1¢; Table S3). While not necessarily increasing the predictive value,
CSTF1 is also a proto-oncogene involved in aberrant alternative splicing events'®. In cluster #3,
12 genes were highly co-expressed with 9 Core genes (Fig. S1d; Table S3), and were enriched in
cell-cycle related biological processes (Methods). Importantly, the total number of genes per
cluster was also small (Fig. 1d), with only 7 of 354 clusters carrying more than 10 genes. This
suggests that the Core genes have specific roles that cannot be accomplished by multiple other

genes.

Summarizing, the 354 clusters contained 643 genes, which included 408 Core genes and
235 additional genes (Fig. 1b). Together, we define these genes as the CorEx (Core+co-expressed)
genes (Table 1). To address the concern that the selection of CorEx genes based on bulk RNA-
seq expression data could be confounded by tumor purity, we utilized a composite tumor purity
score (CPE)', and observed that the ecDNA(-) samples had slightly (but significantly) lower
purity than ecDNA(+) samples (p-value 0.0036; Fig. S2a). This is consistent with reduced
detection of ecDNA in less pure samples. However, lower sensitivity of ecDNA detection would
reduce the strength of the signal but not result in false positives. Indeed, when we compared the
significance of CorEx gene directionality in highly pure samples (tumor purity=0.8; n=287) versus
all samples (n=870), we found significant correlation (Fig. S2b), indicating robustness of the

CorEx set. The remaining manuscript investigates the functional properties of these genes.
CorEx genes are better predictors of ecDNA status compared to other gene sets

We validated the relevance of CorEx genes in ecDNA presence by running cross-validation
experiments (Fig. 2a; Methods) to test the predictive power of CorEx gene expression in
determining the ecDNA status of the sample. For comparisons, we used three other gene lists. The
first list was a randomly chosen gene subset of identical size. For the second list, we performed a
differential expression analysis using DESeq2!® and picked the 643 most significantly
differentially expressed genes in terms of the absolute value of their shrunken log-fold change
estimate (LFC; Methods). Using the sign of the LFC value as the determinant for directionality,
240 of these genes were up-regulated, while 403 were down-regulated. Notably, only 86 of these
Top-|LFC| genes overlapped with the CorEx gene set (Table S5; Fig. S3d). For the third list, we

used a generalized linear model (GLM) to predict 3,012 genes whose expression levels were
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significantly associated with sample ecDNA status using a logit function after controlling for
tumor subtype (Methods). Together, the 3 additional gene lists were denoted as random, Top-

ILFC|, and GLM.

For cross-validation tests, we performed multiple random 80-20 splits of the samples to
generate 200 training and test data-sets (Fig. 2a). For each training-test data-set, a Random Forest
method was used to train the predictability of the 5 gene lists (Methods) on the training data, and
the predictive performance was tested on the test data. Expectedly, none of the gene lists was a
great predictor of ecDNA status of a sample. Nevertheless, the average of the area under the
precision recall curve (AUPRC) was higher for CorEx and Core genes (0.48 and 0.5), relative to
GLM and Top-|LFC| (mean AUPRC: 0.43 each; Fig. 2b, S3b). For precision values of at least 0.7,
the CorEx genes had significantly higher recall than Top-|LFC| genes (Mann-Whitney U-test p-
value 4.8e-21) or GLM genes (p-value 8.5¢-20). In turn, the Top-|LFC| and GLM genes were more
predictive than random (mean AUPRC: 0.36). Expectedly, the predictive performance did not
change when switching between Core genes and CorEx genes, because each of the non-core gene

in the CorEx list had an expression pattern similar to at least one Core gene (Fig. 2b, S3a).

To test the persistence of CorEx genes across tumor types, we re-computed Cliff’s delta
values'®!” for each of the 11 TCGA tumor types that had at least 10 ecDNA(+) and at least 10
ecDNA(-) samples. The directionality of gene expression patterns was significantly similar to
TCGA in each tissue type, with one exception (Fig. 2c; Table S4). The sole exception was the
tumor type of Sarcoma (SARC). It is notable that the TCGA-SARC samples included many
liposarcomas. In addition to containing ecDNA, liposarcoma samples are known to have
extensively rearranged structures indicative of chromothripsis and neo-chromosome formation'®.
For other tissue types, the p-values against a null hypothesis of no match to the pan-cancer
prediction ranged from 4.2e-12 to 3.5e-85 (Fisher’s exact test) for the significant associations
(Methods). The results were similar if we tested using only Core genes (Fig. S3¢). Summarizing,
the 643 CorEx genes are differentially expressed across a multitude of tumor types, and have
consistently higher or lower expression in ecDNA(+) samples relative to ecDNA(-) samples. These
results are consistent with a pan-cancer role of CorEx genes in ecDNA biogenesis and

maintenance.
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The Top-|LFC| genes were also different from the CorEx genes by other metrics. Not
surprisingly, the log-fold change (LFC) values of the top-|LFC| genes were higher than the LFC
values of the CorEx genes (Fig. 2d, MWU p-value 1.83e-158). However, much of the LFC change
was due to the very low expression of the top-|LFC| genes in either ecDNA(+), or ecDNA(-)
samples. In fact, the CorEx genes had higher expression in both ecDNA(+) and ecDNA(-) samples
compared to the Differentially Expressed (DE) genes (Fig. 2e, MWU p-value < 2e-308). While
the absolute log fold-change in expression of CorEx genes between ecDNA(+) and ecDNA(-)
samples was not that high (median: 0.30, mean: 0.41), it was persistent across all samples

(variance: 0.14, standard deviation: 0.37).
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Figure 2. Validation of CorEx genes. (a) Cross-validation experiments validating the predictive value of
CorEx genes. Precision denotes the fraction of predicted samples that were truly ecDNA(+). Recall refers
to the fraction of ecDNA(+) samples that were predicted correctly. (b) For precision windows of width 0.1
and a value of at least 0.5, recall values were plotted as boxplots. The interquartile ranges for CorEx and
Core genes overlap, suggesting similar predictive power. (Continued on the following page.)
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Figure 2 (Continued). CorEx genes have higher predictive rates compared to the top 643 differentially
expressed genes based on logarithmic fold changes from a DESeq2 analysis (Top-|LFC| genes), 3,012
significant genes selected from a generalized linear model (GLM), and 643 randomly selected genes. (c)
CorEx genes were consistently up- or down-regulated in ecDNA(+) samples across tumor types, with the
exception of SARC. AU p-values from multiscale bootstrap resampling are shown at the dendrogram
branches. (d) Of the 643 Top-|[LFC| genes, 240 were up-regulated while 403 were down-regulated in
ecDNA(+) samples. Of the CorEx genes, 325 were up-regulated while 318 were down-regulated. The
absolute LFC values of the Top-|LFC| gene set was significantly greater than that of the CorEx genes (p-
value 1.83e-158). (e) The normalized gene expression values of the CorEx genes were significantly higher
than that of the Top-|LFC]| gene set (p-value < 2e-308). ***p-value < 0.001.

For example, the genes ITLN1 and PNMT had the second and eighth-highest absolute LFC
values of 3.92 and 2.89 in the top-|LFC]| list. However, their normalized expression values in most
ecDNA(+) samples were low. ITLNI had a normalized RSEM expression value <8 (21%
percentile) in 210/234 ecDNA(+) samples. Similarly, the normalized RSEM expression value of
PNMT in 223/234 ecDNA(+) samples was less than 8.5 (rank percentile: 41.1%). For PNMT, the
differential expression was mediated by 11 ecDNA(+) samples having an expression value > 71/,
and 5 of the 11 samples contained PNMT on an ecDNA amplicon (Fig. S3e). Similarly, 3 samples
with high RSEM contained /7LN1 on an amplicon (Fig. S3f), partly accounting for the high [LFC]|
value. In contrast, the CorEx gene, RAEI, had a high normalized expression value in both
ecDNA(+) and ecDNA(-) samples (average 9.72, rank percentile 74.3%), with a small but
persistent LFC value of 0.33.

The results confirm our intuition that differential expression can arise due to multiple
reasons, including low expression of the gene in a majority of samples, or the copy number
amplification of a gene in a few samples. In contrast, the CorEx genes were selected based on

persistent over- or under-expression in ecDNA(+) samples.

CorEx genes primarily up-regulate three biological processes: Cell Cycle, Cell division, and

DNA Damage Response

To identify enriched biological processes specific to either up-regulated or down-regulated

genes in ecDNA(+) samples, we combined two metrics of effect size, Cliff’s delta'®!”

, and log
fold change'® to determine the directionality of CorEx genes (Table S6; Methods). The two effect
size metrics were mostly in agreement in terms of directionality. Of the 7,288 genes that passed

the negligible effect size thresholds in both metrics, only 14 were not in concordance. This more
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stringent approach, in comparison to a simple directionality based on the sign of a single effect
size value, was applied given that enrichment analysis on gene sets is dependent on not only the
number of up- or down-regulated genes but also the degree of overlap with genes under a specific
biological process term (Methods). Using this approach, among the 643 CorEx genes, 262 genes
were found to be up-regulated in ecDNA(+), while 271 were found to be down-regulated (Table
1; Methods). 110 genes did not make the effect size cut-off. The numbers were similar for the 408
Core genes, with 190 up-regulated, 196 down-regulated, and 22 genes not making the cut-off.

We performed enrichment analysis on gene sets to identify the Gene Ontology (GO)
biological processes that are enriched in CorEx genes (Methods). Briefly, we applied a one-sided
Fisher’s exact test using gene sets from MSigDB!°! using a false discovery rate of 5%
(Benjamini-Hochberg procedure). The UP-regulated genes enriched 187 Biological processes
(Table S7). Note that the GO-biological process (BP) terms are not independent, because of their
hierarchical organization, and sharing of genes across different GO terms. Therefore, we used an
approach similar to that used in DAVID?? to cluster the biological processes enriched by the UP-
regulated genes into 11 broad categories (Table S8; Fig S4; Methods). The 11 categories were
assigned a name using manual inspection of the constituent GO terms, or called “Other.” The 11
categories (including “Other”) are shown in a waterfall plot to explain the contribution of each

gene to a category (Fig. 3a).

The 10 categories included expected participation of biological processes involved in (a)
cell-cycle regulation (Mitotic/Meiotic Cell Cycle, G1/S, G2/M) (b) cell-division (Spindle
Organization, Cell Division, Chromosome Condensation, Chromosome Segregation), (¢) DNA
Damage response (DNA Repair), and (d) the HOX Gene cluster. Indeed, one of the largest clusters,
cluster #3, containing 9 Core genes and 12 co-expressed genes, was enriched in GO-BP terms
related to the cell cycle (Table S9). Notably, the enriched categories also included a role for the
HOX genes with 17 members of the HOX family up-regulated in ecDNA(+) cancers (Table S8).
Many recent reports have associated HOX genes with cancer, including an association with their
phenotypic “hallmarks™?. Genes involved in angiogenesis (HOXA2, HOXCS), genome instability
(HOXCS5, HOXC11), deregulating cellular energetics (HOXA4, HOXCS), and metastasis (HOXA2)

were all up-regulated in ecDNA(+) cancers.

10
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While Meiotic cell-cycle was also enriched, only 7 genes were allocated specifically to the
group of enriched terms: SEPPI1, SNRPAl, TMEM203, RNF114, TAF4, TNFAIP6, and PTX3
(Table S10). Though these genes have roles in the meiotic cell cycle, they have also been
implicated in cancer and other inflammatory diseases. The spliceosomal protein SNRPA1 is a pro-
metastatic splicing enhancer’*. TNFAIP6, together with PTX3, activates the Wnt/B-catenin
pathway to promote gastric carcinoma cell invasion®>. TMEM?203 is a STING-centered signaling
regulator implicated in inflammatory diseases?®. RNF114 is a zinc-binding protein whose over-
expression is an indicator of epithelial inflammation and implicated in various tumors?’. TAF4, a
transcription initiation factor, when overexpressed, is implicated in ovarian cancer by playing a
role in dedifferentiation that promotes metastasis and chemoresistance?®. Finally, in looking at the
genes in the “Other” category, SHCBPI was the only gene unique to it. A member of the neural
precursor cell proliferation process, SHCBP1 is reported to promote tumor cell signaling and

proliferation®.

Taken together, the 11 biological process categories explain 165 of the 262 up-regulated
CorEx genes, and suggest that Mitotic Cell-Division, Cell cycle regulation, and DNA Damage
response are the three broad categories of biological processes up-regulated to ensure ecDNA

presence, along with an up-regulation of genes in the HOX cluster.
CorEx genes upregulate specific Double-strand break repair pathways

The 16 enriched DNA damage response GO terms contained terms “double-strand break
repair” and “recombination”, but none contained the terms “single-strand”, “nucleotide-excision”,
or “mismatch-repair” (Table S8), suggesting that the CorEx genes are largely composed of genes
involved in multiple double-strand break (DSB) repair pathways, which include classical non-
homologous end-joining (c-NHEJ), Alternative end-joining (Alt-EJ), single-strand annealing
(SSA), or homology directed repair (HDR)?°.

The choice of these varied DSB repair mechanisms for ecDNA presence is not well
understood. We compiled and hand-curated a list of 129 genes involved in DSB repair and marked
them for their role in one or more of these 4 pathways (Table S11). Of these genes, a high number
(67) were up-regulated in ecDNA(+), while a smaller number (15) were down-regulated, relative
to ecDNA(-) samples. This breakdown of 129 DDR genes contrasts with an analysis using all

genes where a near identical number of genes (5,256, and 5,251) were up- and down-regulated in
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ecDNA(+) samples, confirming that DDR genes are significantly up-regulated relative to all
differentially expressed genes (p-value < 0.0001; Fisher’s exact test). When broken down to the
roles of genes in individual DSB repair pathways, we found that Alt-EJ with 11 up-regulated and
1 down-regulated genes (p-value 0.0063), SSA (11 up, 1 down (p-value 0.0063)), and HR (46 up,
8 down; p-value <0.00001) were all up-regulated. However, classical NHEJ (14 up, 7 down; p-
value: 0.19) was not significantly up-regulated in ecDNA(+) samples relative to ecDNA(-) samples
(Methods, Table S12, Table S13).
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Figure 3. Up-regulated CorEx genes. (Continued on the following page.)
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Figure 3 (Continued). (a) GO biological processes enriched in up-regulated genes were clustered into 11
broad categories. The horizontal barplot represents the number of GO biological processes belonging to
each of the 11 broad categories, while the vertical barplot represents the number of broad categories that a
specific GO biological process belongs to. (b) Genes up- or down-regulated in processes involved in major
double-strand break (DSB) damage repair pathways. Many critical genes in the c-NHEJ pathway were
down-regulated in ecDNA(+) samples relative to ecDNA(-) samples.

The expression of key genes in these pathways raises the possibility of an increased role of
non-classical-NHEJ processes in ecDNA development or progression, relative to c-NHEJ (Fig.
3b; Table S11). A number of genes involved in c-NHEJ were downregulated in ecDNA-
containing tumors relative to non-ecDNA tumors. These included XLF/NHEJI (MWU p-value
2.05e-03), which is a key member of the ligase complex required for c-NHEJ; LIG4, another
member of the ligase complex (MWU p-value 0.03), PNKP, which generates 5 -phosphate/3’-
hydroxyl DNA termini required for ligation (MWU p-value 3.90e-06); and also, DNA polymerases
A (POLL; MWU p-value 1.09¢e-21) and p (POLM; MWU p-value 0.01), which promotes the
ligation of terminally compatible overhangs requiring fill-in synthesis and promotes the ligation
of incompatible 3’ overhangs®! in a template independent manner, respectively. This does not

imply a defect in these repair processes, but rather, potentially additional or preferential utilization

of alternative DSB repair pathways in ecDNA-containing tumors.

TP53BP1 is key to blocking resection and promoting the c-NHEJ pathway choice, but is
displaced by BRCA1 and the MRN complex to initiate resection in the broken strands*>**. BRCA1
was significantly up-regulated in ecDNA(+) samples (Fig. 3b), while TP53BP-1 was significantly
down-regulated (MWU p-value 0.016), although with negligible effect size (Table S11).
Supporting the role of alternative pathway choice for DDR, key genes in the Alt-EJ pathway,
including PARP-1, DNA polymerase 0 (POLQ), LIGI, LIG3, FENI were all significantly up-
regulated in ecDNA(+) samples. Homology directed repair is the preferred pathway when a sister
chromatid is available to act as a template. HDR is initiated by additional and extensive resection.
The genes BLM, EXOI1, RPAI, RPA3 which promote additional resection, as well as BRCAI,
BRCA2, RADS51, and others that support HDR were all found to be significantly up-regulated. We
can conclude that the specific pathway choice for DSB repair in ecDNA(+) samples is dominated

by alt-EJ and homology directed repair pathways, while c-NHEJ is not a preferred choice.
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CorEx genes primarily down-regulate immune system processes

Using methodology similar to the analysis of the up-regulated genes, the down-regulated
genes enriched 73 GO terms (Table S14), and could be clustered into seven broad categories,
including “Other” (Fig. 4a; Table S15; Fig. SS5). Surprisingly, all categories were
immunomodulatory. The most enriched broad category contained 75 CorEx genes relating to the
Lymphocyte activation pathway. It included genes enriching “T-cell activation” (28 CorEx genes;
p-value 2.58e-05), and “Positive regulation of cell-cell adhesion” (16 CorEx genes; p-value 4.49¢-
03). Other down-regulated pathways included Cytokine activation, especially for genes in the IL-
12 pathway (6 CorEx genes, p-value 7.17¢-03), TNF super-family (12 CorEx genes, p-value 7.24e-
03), and Inflammation, including, for example, down-regulation of Toll-like receptor 2 signaling

(4 CorEx genes, p-value 4.49¢-03). Finally, the broad category of Leukocyte chemotaxis was also
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Figure 4. Down-regulated CorEx genes. (a) GO biological processes enriched in down-regulated genes
were clustered into 7 broad categories. The horizontal barplot represents the number of GO biological
processes belonging to each of the 7 broad categories, while the vertical barplot represents the number of
broad categories that a specific GO biological process belongs to. (b) Four of these categories map to steps
in the cancer-immunity cycle. CorEx genes in three of the four categories were significantly down-regulated
compared to all genes (Fisher’s exact test).
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enriched among the down-regulated genes. The chemotaxis genes include many chemokines and
their receptors involved in trafficking of T cells to the site of the tumor. The remaining down-
regulated genes included four fucosyltransferases, and the category marked “Other.” FUT2
silencing is associated with reduced adhesion and increased metastatic potential**. Notably, the
category marked “Other” was dominated by genes in NF-xB pathway regulation (14 CorEx genes,
p-value 2.28e-02).

NF-«B signaling represents a prototypical, proinflammatory pathway>> with multiple roles,
including apoptosis. Specifically, 8 of the 14 down-regulated genes involved caspase activation
(Table S16), representing the pro-apoptotic arm of NF-kB signaling. A parallel pathway for
sensing endogenous ligands secreted in cell death and cancer is mediated by Toll-like receptor
(TLR) proteins®®. Remarkably, all ten TLRs were significantly down-regulated in ecDNA(+)
tumors. They included TLRs expressed on the cell membrane that bind lipids and proteins as well
as TLRs expressed on endosomal membranes that bind DNA. The CorEx down-regulated genes

also included many involved in TLR signaling, such as TLR3, CYBA, LYN, and TIRAP.

Four of the seven broad categories mapped to facets of the cancer immune cycle’’ (Fig.
4b). We tested if CorEx genes in these categories were more likely to be down-regulated rather
than up-regulated, when compared to the non-CorEx differentially expressed genes. The
Inflammation category, which mapped to the “Cancer antigen presentation” facet, showed 18 up-
regulated and 76 down-regulated CorEx genes (p-value 0.005, Fisher exact test, Table S15).
Similarly, the CorEx genes related to the “Trafficking of T cells” facet (“Leukocyte migration and
chemotaxis” category, 13 up, 49 down-regulated; p-value 0.03) and “Infiltration and recognition
of tumor cells by cytotoxic T cells” facet (“Lymphocyte activation” category, 23 up, 75 down-
regulated; p-value 0.0075) were also significantly down-regulated. However, down-regulation in
the “Priming and activation” facet (“Cytokine production” category, 6 up, 28 down-regulated) was

not significant at the 5% level.

As the RNA data were bulk-sequenced, transcripts were sampled from tumor cells and cells
from the tumor microenvironment. Thorsson et al.*® mined immune cell expression signatures to
identify six immune subtypes: wound healing (C1), IFN-y dominant (C2), inflammatory (C3),
lymphocyte depleted (C4), immunologically quiet (C5), and TGF- dominant (C6). A recent study

analyzing the tumor microenvironment (TME) of ecDNA(+) vs. ecDNA(-) samples in seven tumor

15


https://www.zotero.org/google-docs/?ELKusf
https://www.zotero.org/google-docs/?8CcO2B
https://www.zotero.org/google-docs/?VZMdE3
https://www.zotero.org/google-docs/?oyyeIR
https://www.zotero.org/google-docs/?reYeCJ
https://doi.org/10.1101/2023.04.24.537925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.24.537925; this version posted November 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

subtypes revealed an association of ecDNA presence with immune evasion®’. Our results (Fig.
S6), which used an updated version of the classification method for these ecDNA(+) samples, were
broadly consistent with those from the Wu et al*°. study. Our results suggested an increase in C1
and C2 subtypes and a depletion of C3 and C6 between ecDNA(+) and ecDNA(-) categories (p-
value 3.96e-03, Chi-squared test). Notably, the C3 (inflammatory) subtype is associated with lower
levels of somatic copy number alterations, and C6 with high lymphocyte infiltration, while C1 is
associated with elevated levels of angiogenic genes. These are consistent with our findings of
increased somatic copy numbers, increased expression of angiogenic genes on ecDNA(+) samples,

and reduced lymphocyte infiltration.
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Figure 5. Mutational characteristics of ecDNA-containing tumors. (a) Total mutation burden of
ecDNA(+) and ecDNA(-) samples. ecDNA(+) samples have significantly higher mutation burden than the
ecDNA(-) samples (p-value < 0.0001, Mann Whitney test). (b) Odds ratios of differentially mutated genes
in ecDNA(+) and ecDNA(-) (p-value < 0.005). The size of the dot indicates whether the corresponding
gene belongs to the Cancer Gene Census (CGC) or not (Non-CGC). Only TP53 and BRAF showed
significance at the level of FDR < 0.1 (Benjamini-Hochberg).

ecDNA(+) samples carry a higher mutational burden relative to ecDNA(-) samples

In order to understand if the change in transcriptional program was driven by mutations to
the genes, we checked if ecDNA(+) samples have differential levels of mutation relative to
ecDNA(-). Intriguingly, we found that the total mutation burden was significantly higher in
ecDNA(+) samples relative to ecDNA(-) samples (Fig. 5a). The result was significant also when
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mutations were limited to deleterious substitutions as measured by SIFT or PolyPhen2, and high-
impact insertions and deletions (Fig. S7a). However, when controlling for cancer type, only
glioblastoma (GBM; lower mutations in ecDNA(+)), low-grade gliomas (LGG; higher mutations
in ecDNA(+)), and uterine corpus endometrial carcinoma (UCEC; lower mutations in ecDNA(+))
continued to show differential total mutational burden (Fig. S7b). Next, we tested if specific genes
were differentially mutated between the two classes (Fig. Sb). For deleterious/high-impact
mutations, 7P53 was the only gene whose mutational patterns were significantly higher in
ecDNA(+) compared to ecDNA(-) (OR 2.67, Bonferroni adjusted p-value 4.22e-07). BRAF
mutations, however, were more common in ecDNA(-) samples and were significant to an adjusted
p-value <0.1 (OR 0.27). The excess of TP53 mutations in ecDNA(+) samples provides additional
support to the hypothesis that mutations in DNA damage response or cell cycle checkpoints are
important for ecDNA presence. Other genes that are differentially mutated with nominal

significance (unadjusted p-value < 0.005) are shown in Table S17.

We also tested if a collection of gene mutations could predict ecDNA status using
XGBoost*?, which uses an adaptive boosting of “weak classifiers” to predict class. Here, each
mutated gene was treated as a weak classifier of ecDNA status. However, the two classes could
not be separated with high accuracy (Fig. S7¢). An unsupervised principal component analysis did
not separate the two classes either. Only the first principal component explained a significant
proportion (14%) of the total variance (Fig. S7d) and did not separate the bulk of the samples.
Finally, we recapitulated earlier findings that ecDNA(+) samples enrich for APOBEC activity
through the presence of the mutation signatures SBS2 and SBS13*'*? (Fig. S8). The enrichment
in TP53 mutations was also consistent with previous findings®. On balance, however, collections
of gene mutations did not distinguish ecDNA(+) samples from ecDNA(-) samples, at least at a

pan-cancer level, in contrast to the gene expression data.
Persistently occurring genes in ecDNA(+) samples represent potential vulnerabilities

Any CorEx gene is either a Core gene that was selected as a feature in at least 5% of 200
Boruta trials, or be highly co-expressed with a Core gene. Because the selection criterion of 5% is
arbitrary, we also tested robustness with 8 other cut-offs ranging from 5-0f-200 to 200-0f-200
Boruta trials. The number of CorEx genes expectedly decreases with more stringent cut-offs.

However, of the 187 GO terms that were enriched by 262 CorEx UP-genes using 10 of 200 Boruta
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trials as the selection criteria, 93 terms (49.7%) were enriched for each cut-off (Fig. S9), and 155
terms (82.9%) were enriched in at least 5 of the 8 cut-off criteria. Given that our subsequent
analyses utilized the hierarchy of GO terms and identified 4 GO-categories enriched by UP-

regulated genes, the conclusions would hold regardless of the specific cut-off.

To rank CorEx genes by importance, we computed harmonic mean rank values based on
three categories: a) the average GINI importance statistic from the trained random forest models;
b) the number of Boruta trials that a gene was selected in; and ¢) the number of Boruta trials (out
of 200) that a gene was selected in when counting by cluster (Methods). 65 genes that were up-
regulated (47 genes) or down-regulated (18 genes) had a harmonic rank lower than 3 (Table 1).
The next highest ranked gene had harmonic rank exceeding 17. These 65 genes represent the most
persistent differentially expressed CorEx genes, and appeared as Core (or clustered gene) in all
200 Boruta trials. Notably, of the 24 genes most frequently expressed on ecDNA,? only EGFR and
CDK4 were included in the list of 65 genes, suggesting that the most persistent CorEx genes do

not themselves appear frequently on ecDNA.

Expectedly, the high-ranked up-regulated genes impacted cell division (16 genes), cell
cycle regulation (10 genes), DNA damage response (16 genes). Only 12 of the 47 genes were not
included in the gene sets of any enriched GO term. Many of these genes were from small CorEx
clusters with less than 3 members, but we also found 6 genes from the HOX gene cluster (cluster
#17), and another cluster of 21 genes (cluster #3). Members of cluster #3 appeared in all 200 Boruta
trials; however, there were three genes all involved in cell-division (7PX2, KIF2C, and AURKA),
each of which appeared in at least 180 Boruta trials. High expression among these three genes is
associated with poor prognosis®, and due to the highly persistent nature of their differential
expression across ecDNA(+) samples, they represent a possible widespread vulnerability for

ecDNA(+) samples.

Intriguingly, 14 of the 18 down-regulated genes with low harmonic rank came from a single
cluster (#2; Table S2), and 13 of the 18 genes did not specifically enrich any specific BP ontology.
Six of the down-regulated genes appeared in 180 or more Boruta trials (CHMP7, XPO7, INTS9,
TACRI, KIAA1967, and PCM1). Some of these genes (CHMP7, XPO7, KIAA1967) are reported
to be tumor suppressor genes** 6. However, the exact functional role of down-regulating these

genes in ecDNA(+) samples remains to be elucidated.
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Discussion

ecDNA is increasingly recognized as a major cause of oncogene amplification,
intratumoral genetic heterogeneity, accelerated evolution, and treatment resistance, but many of
the underlying processes involved in its formation, function, and progression are not fully
understood. The ability to conduct multi-omic studies of well-curated, bona fide clinical tumor
samples, such as the TCGA, presents an opportunity to learn about differentially regulated gene
expression programs that may be involved in ecDNA biogenesis or maintenance, and in worse
outcomes for patients’. Using a relatively intuitive set of principles, we have developed a
machine learning approach that identifies differentially expressed, co-regulated genes in ecDNA-
containing tumors, highlighting four main biological processes: non-c-NHEJ DSB repair, cell

cycle, proliferation control, and immune regulation.

The GO analysis revealed three core biological processes that were up-regulated and only
the immune system processes as being down-regulated. These observations strengthen the case for
targeting proteins involved in mitotic cell-division*’, cell-cycle regulation, and DNA damage
response in ecDNA(+) cancers, but also reveal roles for the HOX cluster of genes. Also, in this
paper, we did not extensively study the role of ncRNA in prediction of ecDNA status. We do note
that HOTAIR, encoded in the HOXC locus, is independently associated with metastasis and poor
outcomes*®. Further experiments are needed to provide a mechanistic basis for the role of HOX

cluster genes in maintaining ecDNA presence, as also for involvement of ncRNA.

The DNA damage genes are broadly up-regulated in ecDNA(+) samples, especially in
double-strand break repair. Within this broad category of mechanisms, our analysis suggests that
alternative DSB repair pathways such as Alt-EJ are preferred relative to classical NHEJ. This is
consistent with previous observations of small microhomologies at breakpoint junctions**°, and
has important implications in therapeutic selection that will need to be validated in future
experimental studies. We note, however, the microhomology analyses typically study breakpoint
junctions, and might ignore double-strand breaks in non-junctional sequences which could be

observed, for example at replication-transcription junctions.

The down-regulated genes were primarily immunomodulatory in nature, in addition to a
few persistently down-regulated tumor suppressor genes. Lowered expression of

immunomodulatory genes in ecDNA(+) samples has been previously reported>*°, but not
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mechanistically explained. Remarkably, the down-regulated immunomodulatory genes
encompassed most aspects of the cancer immune cycle, suggesting impaired recognition of tumor
DNA and proteins as foreign in ecDNA(+) tumors. Sensing of foreign DNA, including tumor
DNA, is often mediated by the cGAS/STING pathway>%>!. Intriguingly, cGAS was significantly
up-regulated in ecDNA(+) samples, while STING was significantly down-regulated, suggesting a
role for STING agonists in intervention. Finally, in addition to the down-regulation of genes in the
toll-like receptor family, we observed a down-regulation of genes involved in regulating TLR
signaling pathways that were part of the CorEx list. Understanding the mechanisms of broad down-

regulation of TLRs could provide insight into vulnerabilities of ecDNA(+) tumors.

Mutation data alone does not provide as clear a picture of the genes involved in ecDNA
status prediction. We did observe that the total mutation burden (TMB) was higher in ecDNA(+)
samples. However, that relationship is much less clear after controlling for cancer type. High TMB
has been positively correlated with sensitivity to immunotherapy?2, and better patient outcomes;
however, the gene expression patterns suggest that immunomodulatory genes are down-regulated
in ecDNA(+) samples, and patients with ecDNA(+) tumors have worse outcomes”. Notably, other
results have suggested that the correlation between TMB and response to immunotherapy is not
uniform, and it can vary across different tumor subtypes>>. Specifically, our data is consistent with
previous results which showed that Gliomas with high TMB have worse response to
immunotherapy relative to gliomas with low TMB™. In general, no collection of gene mutations
was predictive of ecDNA status, although mutations in 7P53 were more likely in ecDNA(+)

samples, and perhaps are an important driver for ecDNA formation.

These results suggest that cancer cells that contain ecDNA have profound alterations in
their global transcriptional patterns. Importantly, these transcriptional differences do not arise
solely from genes on the ecDNAs themselves, but rather suggest that fundamental global processes
involved in DSB repair, cell cycle control, and immune regulation contribute to ecDNA formation

and pathogenesis.
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Methods

TCGA sample ecDNA status classification

Amplicon Classifier (version 0.4.9, https://github.com/jluebeck/AmpliconClassifier)
classified amplicons detected in 1,921 TCGA samples into five sub-types: ecDNA, BFB, complex
non-cyclic, linear, and no-amplification. When classifying a sample with multiple amplicons, the
order of preference is as follows: ecDNA, BFB, complex non-cyclic, linear, and no-amplification.
Given the challenges of detecting ecDNA from short read data, and to avoid possible false-negative
ecDNA classifications, samples with a BFB or complex non-cyclic status which were not called
ecDNA(+), were removed from the analysis. We treated samples with the linear amplification and
no-amplification classifications as ecDNA(-). Of the 1,921 samples, 1,535 samples classified as
ecDNA(+) and ecDNA(-) had RNA-seq data, including 1,406 primary solid tumor samples, 95
tumor metastasis samples, and 34 primary blood derived cancer — peripheral blood samples.
Removing metastases results in a total of 1,440 samples, including 243 ecDNA(+) and 1,197
ecDNA(-) samples. While the set of 1,440 samples represented 24 tumor types, ten of these tumor
types had insufficient numbers of ecDNA(+) samples, including four tumor types with no
ecDNA(+) samples. To prevent the 561 ecDNA(-) samples representing these tumors from
skewing the analysis, we removed 570 samples representing tumor types with less than three
ecDNA(+) samples. This resulted in a total of 870 samples representing 14 tumor types, of which
234 were classified as ecDNA(+) and 636 were classified as ecDNA(-).

Gene expression datasets

Gene expression data for 32 studies part of the TCGA Pan-cancer Atlas was downloaded
from cBioPortal (01.05.2021) (https://www.cbioportal.org/). The cBioPortal
“data RNA Seq v2 expression_median.txt” data is sourced from the file
“EB++AdjustPANCAN IlluminaHiSeq RNASeqV2.geneExp.tsv” (synapse id: syn4976363).
Briefly, the matrices contain batch corrected values of the upper-quartile (UQ) normalized RSEM
estimated counts data from Broad firehose (tumor.uncv2.mRNAseq RSEM all.txt). Missing
values due to the batch effect correction process were imputed using K-nearest neighbors (KNN).
For each tumor type, values were imputed based on gene vectors under the assumption that genes
are similarly expressed between samples of the same tumor type. For genes with less than 60% of
samples with missing values, values were imputed using the logarithmic (base 2) of the gene

expression value plus one, and subsequently back-transformed when writing the imputed matrices
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to file. The resulting gene expression matrix used for the Boruta analysis described below consisted
of 870 TCGA samples and 16,309 protein-coding genes (based on “hgnc complete set.txt”
downloaded from HGNC on 7.24.2018). To generate a RSEM raw counts matrix for the DESeq2
analysis described below, mRNAseq Preprocess.Level 3 data was downloaded from Broad

Firehose (tumor.uncv2.mRNAseq raw_counts.txt).

Boruta analysis

To identify a minimal set of genes whose expression values were predictive of the sample
being ecDNA(+), we used Boruta'®, an automated feature selection algorithm that utilizes multiple
iterations of the random forest classifier to determine the statistical significance of selected
features. The algorithm is terminated when all features are categorized as ‘“confirmed” or
“rejected”, or until the user-defined number of iterations is reached. In our modified version of the
BorutaPy python package (6.21.2021; https://github.com/scikit-learn-contrib/boruta_py), we set
the maximum number of iterations to 400, a stagnant count maximum of 5, and a tentative count
minimum of 50. This translates to termination of Boruta if 400 iterations are reached, or if the
tentative count (features that have yet to be “confirmed” or “rejected”) falls to or below 50 and
these tentative features remain tentative for 5 iterations.

While we use a standard implementation of Boruta, the method is briefly described here
for expository purposes. In each iteration, i, within a single Boruta trial, the input is a gene
expression matrix, M, of dimension 7 x ¢, where 7 is the number of samples and c is the number of
tentative or confirmed features (i.e., genes). Boruta generates ¢ shadow feature vectors by random
shuffling of feature vectors in matrix M, generating a new matrix M’ of dimension 7 x 2¢. A random
forest classifier (class weight=balanced subsample, max depth=7) is then used to quantify the
importance of each feature in separating ecDNA(+) from ecDNA(-) samples. Specifically, there
are two possible outcomes for a feature: 1) if the feature scores higher than the best scoring shadow
feature, the feature is considered a “hit”, and 2) if the feature scores lower than the best scoring
shadow feature, the feature is considered a “non-hit”. Features are rejected after i iterations, if the
number of hits is not significantly higher than expected by chance, using a Bonferroni corrected
p-value.

In order to evaluate the ability of selected features in predicting the ecDNA status of a
tumor sample, we left out 20% of ecDNA(+) and 20% of ecDNA(-) samples for the hold-out

testing dataset in the evaluation procedure described below, and performed Boruta on the gene
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expression matrix consisting of the remaining 80% of samples. However, due to the unequal
representation of ecDNA(+) and ecDNA(-) samples within each of the tumor subtypes, we opted
to generate 200 training (80%) and testing (20%) datasets to decrease the bias that may be
introduced during random sampling. For each of the 200 datasets, a Boruta analysis was performed
on the 80% training data. Features categorized as “confirmed” were considered as Boruta genes
for that specific trial. Of the 941 Boruta genes combined across the 200 trials, 408 genes were
present in at least 10 of the 200 Boruta trials, and subsequently defined as the Core set of genes in

downstream analyses.

Highly co-expressed genes

To identify genes co-expressed with the core set of Boruta genes, hierarchical clustering of
the 16,309 genes was performed using the R package pvclust'! (ver. 2.2-0;
dist.method=correlation, method=ward.D2, nboot=1000). A total of 843 significant clusters (AU
> 0.95) with at least 1 Boruta gene were selected, consisting of 1,375 genes. To obtain the final
list of CorEx genes, we apply a minimal count of 10 trials for the gene or 10 trials for the cluster
of genes seen in 200 Boruta trials. A cluster is determined to be seen in a Boruta trial if at least
one of its members is selected in the trial. This results in 354 clusters, with a total number of 643

genes, of which 408 are Core genes.

Evaluation of CorEx genes

To evaluate a set of genes, G, as predictive of ecDNA presence in tumor samples, we
performed cross-validation and hyper-parameter tuning on each of the 80% training datasets, and
evaluated the final model on the corresponding hold-out 20% testing dataset using the scikit-learn
package. Specifically, the gene expression matrix for cross-validation and hyper-parameter tuning
consisted of m samples from the training dataset and »n genes from set G. RandomizedSearchCV
(n_iter=50, cv=5, scoring=f1) was first used to narrow down a wide range of hyper-parameters for
the random forest classifier (RandomForestClassifier, class weight="balanced subsample’), and
GridSearchCV (cv=StratifiedKFold(n_splits=5, shuffle=True), scoring=f1) was then used to test
every combination of a smaller range of hyper-parameters given the best parameters from
RandomizedSearchCV. The hyper-parameters tuned (initial values) include the number of trees in
the forest (n_estimators: np.linspace(100, 2000, num = 10)), the maximum depth of the tree

(max_depth: None, np.linspace(10, 100, num = 10)), the minimum number of samples required to
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split an internal node (min_samples_split: (2, 5, 10)), and the minimum number of samples
required to be at a leaf node (min samples leaf: (1, 2, 4)). The best estimator from the
GridSearchCV hyper-parameter tuning was then evaluated on the 20% testing dataset, where the
gene expression matrix consisted of m samples from the testing dataset and »n genes from set G.
Performing this procedure on each of the 200 training/testing datasets resulted in 200 data points
for each of the 3 metrics computed using sklearn.metrics: precision score, recall score, and
average precision_score (AUPR).

We performed this procedure on the following sets of genes, G: the 408 Core genes, 408
randomly selected genes, the 643 CorEx genes, 643 randomly selected genes, a set of 643 most
differentially expressed genes based on the absolute log-fold change estimates from a conventional
DE analysis using DESeq2'° as described below, and the set of 3,012 significant genes from the
GLM analysis described below.

Generalized linear model (GLM) analysis

We tested each of 16,309 genes independently in a separate logistic regression model
using the glm() function in the R stats package (v4.2.0), and retained genes that were significant
(p-value 0.01). Specifically, the model was defined as glm(y ~ g; + t, data = M, family =
binomial(link = 'logit')), where y is the response vector where y;=1 if sample i € {/,...,870} is
ecDNA(+) and y; =0 otherwise, g; is the vector of expression values for gene j € {/,...,/16309}
in samples i € {/,...,870}, t is the covariate vector representing the tumor subtypes of samples
i €{1,...,870}, and M is the data matrix containing values of gene expression, tumor subtype,
and ecDNA status for all samples. The equation for the binomial logistic regression described

above is formulated as log (%) = By + B, X;+... +BX), where p is the probability that the

dependent variable y is 1, X are the independent variables, and 8 are the coefficients of the
model. In this case, k=1 represents independent variable gene j and &=2 represents the tumor
subtype covariate ¢. Of the 16,309 genes tested independently, 3,012 genes were significant at p-

value<0.01.

Default DE analysis
We performed a default DESeq2!® (R package, ver. 1.36.0) analysis to obtain shrunken
maximum a posteriori (MAP) log-fold change estimates for effect size (i.e., LFC). Specifically,

to obtain 1) LFC effect size values per gene for integration with its Cliff’s delta effect size value
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when determining if a gene is up- or down-regulated in ecDNA(+) samples, and ii) a list of n top-
ranked genes by absolute value of the LFC (with application of an adjusted p-value <0.05 cutoff
and LFC threshold of log,(1.1) = 0.13) for use in comparison against genes selected as important
in the prediction of ecDNA in samples. For comparisons against Core genes, 7 is set to 408, and

for comparisons against CorEx genes, 7, is set to 643.

To obtain the LFC effect size metric between ecDNA(+) vs. ecDNA(-) samples for each
gene’s expression, we fed as input to DESeq2 a matrix of raw RSEM estimated counts. To take
into account batch effects, we included the center and platform information of samples,
downloaded from synapse id syn4976363 (EB++GeneExpAnnotation.tsv), in the design of the
DESeq object:

DESeq _object <- DESegDataSetFromMatrix (countData =

AC 0 4 9 TCGA matrix, colData = coldata, design =

~batch+condition)

To compute results, the IfcThreshold was set to log,(/.1) for an accurate computation of

p-values and the contrast set to c(“‘condition”, “ecDNA(+)”, “ecDNA(-)”) to obtain the logarithmic

ecDNA(+)

fold change of the form (ecDNA(—)

) . By setting the lfcThreshold, the null hypothesis tested is that

|LFC| < 6, where 8 = (1.1) , and the alternative hypothesis is that |LFC| > 6. A log,(1.1) value
is chosen as the minimal value/negligible effect size threshold as it represents a 10% fold-change,

and anything below this fold-change would likely not be of biological interest™*

. The specific
commands run are as follows:

DESeq object$condition <- relevel (DESeq object$condition, ref =
"Non ecDNA")

DESeqg object <- DESeqg(DESeq object)

results <- results(DESeq object, lfcThreshold= log2(l.1),

contrast=c("condition", "ecDNA", "Non ecDNA"))

To obtain the shrunken MAP log-fold change estimates, we used the 1fcShrink function
provided in DESeq2, using the default apeglm method for the empirical Bayes shrinkage
procedure™:

lfcShrink (DESeq object, lfcThreshold= log2(1.1),

coef="condition ecDNA vs Non ecDNA", type="apeglm")

25


https://www.zotero.org/google-docs/?7Me9DT
https://www.zotero.org/google-docs/?l73OHn
https://doi.org/10.1101/2023.04.24.537925
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.24.537925; this version posted November 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Up- or Down-regulated genes in ecDNA(+) samples

To categorize genes as "up-" or "down-" regulated in ecDNA(+) samples, we integrated
two effect size metrics, Cliff’s delta (d)!®!” and the DESeq2 shrunken MAPlog-fold change
estimate (LFC'S). Effect size is a measure of the magnitude of deviation from the null hypothesis,
and unlike p-values, has the advantage of not being impacted by sample size*®. This property is
especially useful when comparing effect size values of a gene between tests where sample sizes

differ. Comparing p-values between such tests would be invalid.

Cliff’s delta, d, is a non-parametric measure of the separation between two distributions
and ranges from -1 to 1. Given two distributions, X = {i;, i5,...,i} and Y = {j;, /> ., jn}

comparisons are made between each of m values in X and » values in Y. Cliff’s delta is computed

as d = #(I>))—#(I<))
mn

, where #(i > j) is the number of times a member of X is greater than a member

of Y, and #(i < j) is the number of times a member of X is less than a member of Y'°. A negative
d indicates that values in Y tend to be higher than X, while a positive d indicates that values in X
tend to be higher than Y. The magnitude of the effect size of Cliff’s delta can be separated into four
levels: |d| < 0.147 for negligible effects, 0.147 < |d| < 0.33 for small effects, 0.33 < |d| < 0.474
for medium effects, and |d| > 0.474 for large effects®®. The python package used to compute
Cliff’s delta values can be accessed at https://github.com/neilernst/cliffsDelta. The input values
used to compute Cliff’s delta are log-transformed normalized gene expression values plus one as

described in the “Gene expression datasets” section of methods.

The DESeq2 LFC is computed as described above. To allow integration of the Cliff’s delta
effect size with the DESeq2 LFC, we also separated the LFC values into four levels: |LFC| <
log,(1.1) for negligible effects, log,(1.1) < |LFC| < log,(1.5) for small effects, log,(1.5) <
|LFC| < log,(2) or medium effects, and |LFC| = log,(2) for large effects.

For each gene, g, whether the gene is up-regulated or down-regulated in ecDNA(+) samples
is determined by the signage and magnitude of its effect sizes dy and LF Cy. The initial criteria for
dg and LFCy to be used as a determinant in the direction of a gene is for it to have a magnitude
larger than that of a negligible effect. If the signage of d; and LF(y are both positive, gene g is

considered up-regulated in ecDNA(+). If only a single value has a magnitude larger than the

negligible effect threshold (e.g, dy > 0 and LFCy; = —0.1), gene g is considered up-regulated in

ecDNA(+). In the case of conflicting signages between the two values, the effect size with a larger
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magnitude takes precedence. For example, if d; = —0.2 and LFCy = 0.847, given that d has a
small negative effect and LFC, has a large positive effect, gene g is considered up-regulated in

ecDNA(+) samples.

Tumor heatmap

A Cliff’s delta effect size matrix representing 643 CorEx genes was generated to compare
TCGA with tumor expression patterns. For each of the 11 tumor types with at least 10 ecDNA(+)
and at least 10 ecDNA(-) samples, we re-computed Cliff’s delta. Using a Fisher’s exact test
(fisher exact function from the scipy.stats python package; alternative hypothesis: two-sided), we
tested the null-hypothesis of whether the up- and down- directionality of CorEx genes in TCGA
vs. each tumor were independent of each other. The contingency table is as below. The
directionality of a gene (up or down) was based solely on the signage of the gene’s Cliff’s delta

effect size value.

Tumor
UP DOWN
UP a b

TCGA DOWN |c¢ d

Gene Ontology (GO) enrichment analysis

To identify Gene Ontology Biological Process (GOBP) terms that were enriched in either
the set of down-regulated or up-regulated CorEx genes, we applied one-sided Fisher’s exact tests
(alternative="greater”; scipy.stats python package) on 2x2 contingency tables for each GOBP
term. Specifically, in the contingency table below, N is the total number of genes in the universe
(i.e., 16k for the number of genes measured in the RNAseq data), n is the number of DE genes
(either up- or down-regulated in ecDNA(+) samples), m is the number of genes belonging to the
GOBP term as defined by gene sets from MSigDB (c5.go.bp.v7.5.1.entrez), and k is the number
of DE genes that belong to the GOBP term. The false discovery rate was controlled at 5% and
adjusted p-values were computed using the Benjamini-Hochberg procedure (fdr correction from
python statsmodels package). A final set of GOBP terms with adjusted p-value<0.05 was used for

downstream analysis.
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DE Non-DE
Inside GOBP k m-k
term
Outside GOBP n-k N+k-n-m
term

Clustering gene sets

To cluster enriched gene sets into categories for visualization purposes, Cohen's kappa
coefficient (python sklearn cohen kappa score) was used to determine term-term "connectivity"
(agreement of term-term pairs) — an approach described in the DAVID paper?’. Given a r X ¢
binary matrix, where enriched GOBP terms are rows, CorEx genes are columns, and values are 1
if a CorEx gene is part of the GOBP term or 0 otherwise, kappa scores were computed between
each pair of terms, where term t; € tand i = {/,2,3, ....n}: Kappa_Score(ty, t,), where x € i and
y € I.

Each term, t;, formed an initial seeding group, g;, where a term t, is part of g; if
Kappa_Score(t;, t,) = score threshold. If at least 50% of term-term pairs in g; have a
Kappa_Score = score threshold, the initial seeding group g; is retained for the next step. The
second criteria ensures that terms within the same seeding group have strong interconnectivity. An
iterative merging of seeding groups then follows: groups sharing p% or more members are merged.
The representative term for each group was determined as the member with the highest
interconnectivity score with other members of the group. After the automatic grouping process, a
manual inspection leads to the merging of outliers or smaller groups into representative groups.
We used a kappa score threshold of 0.5, and condition of p>25% of shared members when merging
for the down-regulated genes, and a kappa score threshold of 0.6 and condition of p>50% of shared

members when merging for the up-regulated genes.

DDR pathway genes

We hand-curated 88 genes for double-stranded break DNA damage repair pathways (a-EJ,
HR, c-NHEJ, SSA) via an extensive literature search, and added an additional 51 genes from the
following MSigDB (c5.g0.bp.v2022.1.Hs.entrez.gmt) GO biological process terms: GO:0097680
(double strand break repair via classical nonhomologous end joining), GO:0097681 (double strand

break repair via alternative nonhomologous end joining), GO:1905168 (positive regulation of
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double strand break repair via homologous recombination), and GO:0045002 (double strand break
repair via single strand annealing). This resulted in a final list of 129 genes. The directionality of
the genes, as either up- or down-regulated in ecDNA(+) samples, is based on the full set of 1,440
samples, consisting of 243 ecDNA(+) and 1,197 ecDNA(-) samples representing 24 tumor types
(Table S12; Table S13).

To test whether the number of genes passing our effect size thresholds for all genes 5,256
(UP) and 5,251 (DOWN) was significantly different from the up-/down-regulated genes
implicated in each of the 4 pathways, we performed a Fisher’s exact test (fisher exact function
from the scipy.stats python package) on the contingency table below, where ¢ and d are the up-

and down-regulated genes for each of the pathways tested.

Contingency table:
UP | DOWN
All genes | 5,256 | 5,251
Pathway c d

Pathway values:

c d
c-NHEJ 14 7
Alt-EJ 11 1
HR 46 8
SSA 11 1

Physical presence on amplicons

To determine physical presence of a gene on an amplicon, gene coordinates listed in the
gene annotations file GRCh37/human hgl9 september 2011/Genes July 2010 hgl9.gff,
downloaded from the AA repo on 3/21/2022, were mapped to amplicon genomic intervals (bed
files). A gene is determined to be physically present on an amplicon if its genomic coordinates are

fully encompassed within the amplicon genomic intervals.

Mutational analysis

We pulled the list of mutations from the open-access version of MC3 dataset
(https://ellrottlab.org/project/mc3/), then investigated differences between ecDNA(+) and

ecDNA(-) samples. Synonymous mutations were excluded when calculating the mutation burden.
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For the differentially mutated gene analysis, only damaging mutations were selected by using
snpEff>7 annotation which is originally included in the MC3 dataset. First, mutations annotated as
HIGH in the IMPACT column were selected to obtain frameshift INDELs and stop gain SN'Vs.
Next, mutations predicted to be damaging by SIFT® and PolyPhen2*’, were selected to obtain
damaging missense mutations. Finally, we generated 2-by-2 contingency tables for each gene with

cells a, b, ¢, and d representing the number of individuals with and without damaging mutations
. . d .
in ecDNA(+) and (-) tumors. The odds ratios were computed as OR = Z—C, where a is the number

of individuals in ecDNA(+) with the mutation, b is the number of individuals in ecDNA(+) without
the mutation, ¢ is the number of individuals in ecDNA(-) with the mutation, and d is the number
of individuals in ecDNA(-) without the mutation. To determine if a gene contained mutations that
were implicated in cancer, we checked genes against the Cancer Gene Census (CGC) database

(v97)%°, marking genes in the database as CGC and those that were not as non-CGC.

Classification with mutational status

First, we created a binary matrix representing whether a gene is damaged or not, from the
MC3 damaging mutation set described as above. Then we divided the whole matrix into 80% of
the training set and 20% of the test set. Hyperopt was applied on the training set to select the best
parameters for the XGBoost*® model. The optimal parameters estimated by Hyperopt (eta = 0.1,
max_depth = 6, min_child weight = 3.0, scale pos weight = 4.9) were input to the XGBoost
model, and the ecDNA status of each sample were also input as an answer set. The performance
of the model was checked by inputting the 20% test set to the model and comparing the output
result with the answer. Principal component analysis was also performed with the same mutational

matrix as above, using the scikit.learn package.

Ranking of CorEx genes

To rank CorEx genes by importance, we computed harmonic mean rank values based on
three categories: a) the average Gini importance statistic or mean decrease impurity (MDI) MDI
(feature importance) values extracted from the trained random forest models on 200 training sets
during the evaluation method described above, b) the number of Boruta trials (out of 200) that a
gene is selected in, rounded to 2-digits, and ¢) the number of Boruta trials (out of 200) that a gene

is selected in when counting by cluster, rounded to 2-digits. The ranks for each category are
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adjusted separately so that genes with the same value share the same rank value. For example, if

using the Boruta trial count as the rank value:

Trial round(trial count/10.0 | Rank | Adjusted rank
count )

Gene A 200 20 1 1

Gene B 200 20 2 1

Gene C 200 20 3 1

Gene D 187 19 4 4

The harmonic mean rank is defined as:

harmonic mean rank =

Ql~
+

S~

O~

Tumor immune subtype
We classified ecDNA(+) and ecDNA(-) samples into the 6 immune subtype categories
(Thorsson et al., 2018%®) provided in Table S6 from Bagaev et al., 2021!.

Impact of tumor purity on CorEx gene expression

To investigate the effects of the presence of non-cancer tissue (impurity) in bulk RNA-seq
samples on the analyses performed in this study, we utilized the consensus measurement of purity
estimations (CPE) for TCGA samples from a publication by Aran et al.'*. Of the 870 TCGA
samples (234 ecDNA(+), 636 ecDNA(-)) with gene expression (RNA-seq) data, 701 samples (174
ecDNA(+), 527 ecDNA(-)) were assigned a CPE value by Aran et al.. To determine if the presence
of undetected ecDNA in ecDNA(-) samples would confound the results by reducing the
discriminating power of genes, we measured the expression directionality of CorEx genes in all
samples (n=870) versus samples which had a high tumor purity (CPE>0.8, n=287). Specifically,
p-values were obtained by performing Mann-Whitney U rank tests (scipy.stats python package)
on gene expression values of ecDNA(+) and ecDNA(-) samples for both the 870 TCGA samples
and 287 TCGA samples with high tumor purity. Genes with a significantly (p-value<0.05) higher

expression in ecDNA(+) samples (alternative="greater”) were labeled as “UP”, while genes with
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a significantly lower expression in ecDNA(+) samples (alternative= “less”) were labeled as
“DOWN”. To generate a plot that compared gene directionality of all samples vs. high purity
samples using p-values, a function F" was applied to p-values. Specifically, F(p) = d - log,o(p),
where p is the p-value and d = 1 if directionality is “DOWN” and d = —1 if directionality is
“UP”.
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