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Abstract 

Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-

chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment 

resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and 

progress, including chromosomally-driven transcription, is incompletely understood. We 

examined gene expression patterns of 870 tumors of varied histological types, to identify 

transcriptional correlates of ecDNA. Here we show that ecDNA containing tumors impact four 

major biological processes. Specifically, ecDNA containing tumors upregulate DNA damage and 

repair, cell cycle control, and mitotic processes, but downregulate global immune regulation 

pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA 

containing tumors, shedding light on molecular processes that give rise to their development and 

progression.  
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Introduction 

Extrachromosomal DNA (ecDNA) are large, functional, circular double-stranded DNA 

molecules that are enriched for oncogenes, highly amplified, and frequently observed in a wide 

variety of cancer types1,2. ecDNAs lack centromeres and are asymmetrically segregated into 

daughter cells during cell division, driving intratumoral genetic heterogeneity, accelerated 

evolution, and rapid treatment resistance3,4. Further, recent studies demonstrate strong positive 

selection for ecDNA during tumor progression5. ecDNAs also exhibit highly accessible chromatin 

and altered cis- and trans- regulation, including cooperative intramolecular interactions6, 

promoting elevated expression of oncogenic transcriptional programs7–9, further contributing to 

poor outcome for patients2.  

The recent development of computational tools that enable detection of ecDNA from whole 

genome sequencing data, has facilitated analyses of well-curated, publicly available datasets, 

including The Cancer Genome Atlas (TCGA), thereby providing an important opportunity to 

identify transcriptional repertoires that are preferentially detected in bona fide, clinical ecDNA-

containing tumors. To shed new light on the gene expression patterns that may enhance ecDNA 

development and progression, we examined global transcriptional analysis of ecDNA-containing 

tumors.  

Results 

A recent analysis utilized the tools AmpliconArchitect and AmpliconClassifier on 1,921 

tumors from The Cancer Genome Atlas (TCGA) to suggest that ecDNA prevalence ranges from 

0% to 59.6% across multiple tumor tissue subtypes2. Using AmpliconClassifier (AC), the analysis 

classified tumor samples into five subtypes: ecDNA(+), Breakage Fusion Bridge (BFB), complex 

non-cyclic, linear, and no-amplification. However, due to limitations imposed by short-read 

sequencing, AC may classify some ecDNA(+) structures as complex non-cyclic when breakpoints 

are missed. Secondly, BFB cycles can give rise to ecDNA formation, making discernment of the 

two modes of amplification difficult. To limit false-negative ecDNA classifications in the 

ecDNA(-) set, we treated samples with only a linear or no-amplification status as ecDNA(-), 

removing complex non-cyclic and BFB(+) samples from the analysis. In order to understand the 

transcriptional programs active in maintaining ecDNA, we selected 870 samples from 14 tumor 
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types with at least three ecDNA(+) samples each, and compared the gene expression data of the 

resulting 234 ecDNA(+) and 636 ecDNA(-) samples (Table S1). 

Machine learning identifies candidate genes for ecDNA maintenance 

In lieu of identifying genes that are highly differentially expressed between ecDNA(+) and 

ecDNA(-) samples but driven by a small subset of cases (e.g. gene A in Fig. S1a), we sought to 

identify genes (e.g. gene B) whose expression level was predictive of ecDNA presence. We 

assumed that genes that were persistently over-expressed or under-expressed in ecDNA(+) 

samples relative to ecDNA(-) samples were more likely to be involved in ecDNA biogenesis or 

maintenance, or in mediating the cellular response to the presence of ecDNA.  

To identify a minimal set of genes whose expression values were consistently predictive 

of ecDNA presence, we used Boruta,10 an automated feature selection algorithm (Fig. 1a and 

Methods). Given the unequal representation of ecDNA(+) and ecDNA(-) samples within each of 

the 14 tumor types, we performed Boruta on 200 datasets, each consisting of a random selection 

of 80% of the 870 samples (Fig. 1a), and chose the criterion of a gene being labeled as a Boruta 

gene in at least 10 of the 200 trials to be selected for downstream analysis. The Boruta analysis 

identified a set of 408 genes with persistent differential expression, hereafter denoted as the Core 

gene set. 

Extending the Core set with co-expressed genes 

We note that the Core gene set is not a comprehensive list of discriminatory genes, using a 

toy example. Consider gene “B”, a member of the core gene set, and another gene, “C”, whose 

expression values across all samples are nearly identical to the expression values of core gene B. 

The Boruta analysis would not need to assign gene C to the core set in addition to gene B, because 

adding both genes incurs the same predictive power as adding one. However, either, or both genes 

may play an important functional role. To correct this, we ran pvclust11 to cluster all gene 

expression values, and to identify stable clusters using multiscale bootstrap resampling (Fig. 1b; 

Methods). We used an approximately unbiased (AU) confidence value of 0.95 to select the most 

highly co-expressed gene clusters. An AU confidence value of 0.95 represents the rejection of the 

null hypothesis that a group of genes fail to form a stable cluster at  
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Figure 1. Genes predictive of ecDNA status. (a) The feature selection algorithm, Boruta, was applied to 
200 datasets of randomly selected subsets consisting of 80% of all samples. Genes selected by Boruta in at 
least 10 of the 200 trials were identified as the Core set of genes (408) that were predictive of ecDNA 
presence. (b) Identification of highly co-expressed and stable gene clusters using pvclust expanded the Core 
set by an additional 235 genes to the final list of 643 CorEx genes. (c) Out of 354 clusters, the majority 
(344) of clusters contained 1 or 2 Core genes. (d) Most clusters were small, with only 7 clusters containing 
more than 10 genes. 
 

a significance level of 0.05. Recomputing the number of Boruta trials that members of a cluster 

were selected in, we selected clusters that appeared in at least 10 of the 200 Boruta trials (Methods). 

This resulted in the selection of 354 recurring clusters (Table S2). 

Notably, among the 354 clusters, only 2 clusters (with 14 total genes) did not contain any 

Core genes. As most genes do not have completely identical expression patterns, we would expect 

one gene to be consistently picked as a Boruta gene over another co-expressed gene. Consistent 

with this hypothesis, most (344/354) clusters contained only 1 or 2 Core genes (Fig. 1c). When 

selecting clusters that contained at least 1 Core and 1 co-expressed gene, 53 of 71 clusters 

contained 1 to 3 Core genes (Fig. S1b), confirming that a few genes per co-expressed cluster 

provide sufficient predictive value, but other co-expressed genes might still play an important 

functional role in maintaining ecDNA presence. This is true for clusters of various sizes, including 

the 2-member cluster #74 and the 21-member cluster #3. In cluster #74, CSTF1 had similar 
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expression values to the Core gene RAE1, which is a mitotic checkpoint regulator implicated in 

tumor progression12 (Fig. S1c; Table S3). While not necessarily increasing the predictive value, 

CSTF1 is also a proto-oncogene involved in aberrant alternative splicing events13. In cluster #3, 

12 genes were highly co-expressed with 9 Core genes (Fig. S1d; Table S3), and were enriched in 

cell-cycle related biological processes (Methods). Importantly, the total number of genes per 

cluster was also small (Fig. 1d), with only 7 of 354 clusters carrying more than 10 genes. This 

suggests that the Core genes have specific roles that cannot be accomplished by multiple other 

genes. 

Summarizing, the 354 clusters contained 643 genes, which included 408 Core genes and 

235 additional genes (Fig. 1b). Together, we define these genes as the CorEx (Core+co-expressed) 

genes (Table 1). To address the concern that the selection of CorEx genes based on bulk RNA-

seq expression data could be confounded by tumor purity, we utilized a composite tumor purity 

score (CPE)14, and observed that the ecDNA(-) samples had slightly (but significantly) lower 

purity than ecDNA(+) samples (p-value 0.0036; Fig. S2a). This is consistent with reduced 

detection of ecDNA in less pure samples. However, lower sensitivity of ecDNA detection would 

reduce the strength of the signal but not result in false positives. Indeed, when we compared the 

significance of CorEx gene directionality in highly pure samples (tumor purity≥0.8; n=287) versus 

all samples (n=870), we found significant correlation (Fig. S2b), indicating robustness of the 

CorEx set. The remaining manuscript investigates the functional properties of these genes. 

CorEx genes are better predictors of ecDNA status compared to other gene sets 

We validated the relevance of CorEx genes in ecDNA presence by running cross-validation 

experiments (Fig. 2a; Methods) to test the predictive power of CorEx gene expression in 

determining the ecDNA status of the sample.  For comparisons, we used three other gene lists. The 

first list was a randomly chosen gene subset of identical size. For the second list, we performed a 

differential expression analysis using DESeq215 and picked the 643 most significantly 

differentially expressed genes in terms of the absolute value of their shrunken log-fold change 

estimate (LFC; Methods). Using the sign of the LFC value as the determinant for directionality, 

240 of these genes were up-regulated, while 403 were down-regulated. Notably, only 86 of these 

Top-|LFC| genes overlapped with the CorEx gene set (Table S5; Fig. S3d).  For the third list, we 

used a generalized linear model (GLM) to predict 3,012 genes whose expression levels were 
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significantly associated with sample ecDNA status using a logit function after controlling for 

tumor subtype (Methods). Together, the 3 additional gene lists were denoted as random, Top-

|LFC|, and GLM. 

For cross-validation tests, we performed multiple random 80-20 splits of the samples to 

generate 200 training and test data-sets (Fig. 2a). For each training-test data-set, a Random Forest 

method was used to train the predictability of the 5 gene lists (Methods) on the training data, and 

the predictive performance was tested on the test data. Expectedly, none of the gene lists was a 

great predictor of ecDNA status of a sample. Nevertheless, the average of the area under the 

precision recall curve (AUPRC) was higher for CorEx and Core genes (0.48 and 0.5), relative to 

GLM and Top-|LFC| (mean AUPRC: 0.43 each; Fig. 2b, S3b). For precision values of at least 0.7, 

the CorEx genes had significantly higher recall than Top-|LFC| genes (Mann-Whitney U-test p-

value 4.8e-21) or GLM genes (p-value 8.5e-20). In turn, the Top-|LFC| and GLM genes were more 

predictive than random (mean AUPRC: 0.36). Expectedly, the predictive performance did not 

change when switching between Core genes and CorEx genes, because each of the non-core gene 

in the CorEx list had an expression pattern similar to at least one Core gene (Fig. 2b, S3a). 

To test the persistence of CorEx genes across tumor types, we re-computed Cliff’s delta 

values16,17 for each of the 11 TCGA tumor types that had at least 10 ecDNA(+) and at least 10 

ecDNA(-) samples. The directionality of gene expression patterns was significantly similar to 

TCGA in each tissue type, with one exception (Fig. 2c; Table S4). The sole exception was the 

tumor type of Sarcoma (SARC). It is notable that the TCGA-SARC samples included many 

liposarcomas. In addition to containing ecDNA, liposarcoma samples are known to have 

extensively rearranged structures indicative of chromothripsis and neo-chromosome formation18. 

For other tissue types, the p-values against a null hypothesis of no match to the pan-cancer 

prediction ranged from 4.2e-12 to 3.5e-85 (Fisher’s exact test) for the significant associations 

(Methods). The results were similar if we tested using only Core genes (Fig. S3c).  Summarizing, 

the 643 CorEx genes are differentially expressed across a multitude of tumor types, and have 

consistently higher or lower expression in ecDNA(+) samples relative to ecDNA(-) samples. These 

results are consistent with a pan-cancer role of CorEx genes in ecDNA biogenesis and 

maintenance. 
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The Top-|LFC| genes were also different from the CorEx genes by other metrics. Not 

surprisingly, the log-fold change (LFC) values of the top-|LFC| genes were higher than the LFC 

values of the CorEx genes (Fig. 2d, MWU p-value 1.83e-158). However, much of the LFC change 

was due to the very low expression of the top-|LFC| genes in either ecDNA(+), or ecDNA(-) 

samples. In fact, the CorEx genes had higher expression in both ecDNA(+) and ecDNA(-) samples 

compared to the Differentially Expressed (DE) genes (Fig. 2e, MWU p-value < 2e-308). While 

the absolute log fold-change in expression of CorEx genes between ecDNA(+) and ecDNA(-) 

samples was not that high (median: 0.30, mean: 0.41), it was persistent across all samples 

(variance: 0.14, standard deviation: 0.37). 

 
Figure 2. Validation of CorEx genes. (a) Cross-validation experiments validating the predictive value of 
CorEx genes. Precision denotes the fraction of predicted samples that were truly ecDNA(+). Recall refers 
to the fraction of ecDNA(+) samples that were predicted correctly. (b) For precision windows of width 0.1 
and a value of at least 0.5, recall values were plotted as boxplots. The interquartile ranges for CorEx and 
Core genes overlap, suggesting similar predictive power. (Continued on the following page.) 
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Figure 2 (Continued). CorEx genes have higher predictive rates compared to the top 643 differentially 
expressed genes based on logarithmic fold changes from a DESeq2 analysis (Top-|LFC| genes), 3,012 
significant genes selected from a generalized linear model (GLM), and 643 randomly selected genes. (c) 
CorEx genes were consistently up- or down-regulated in ecDNA(+) samples across tumor types, with the 
exception of SARC. AU p-values from multiscale bootstrap resampling are shown at the dendrogram 
branches. (d) Of the 643 Top-|LFC| genes, 240 were up-regulated while 403 were down-regulated in 
ecDNA(+) samples. Of the CorEx genes, 325 were up-regulated while 318 were down-regulated. The 
absolute LFC values of the Top-|LFC| gene set was significantly greater than that of the CorEx genes (p-
value 1.83e-158). (e) The normalized gene expression values of the CorEx genes were significantly higher 
than that of the Top-|LFC| gene set (p-value < 2e-308). ***p-value < 0.001. 
 

For example, the genes ITLN1 and PNMT had the second and eighth-highest absolute LFC 

values of 3.92 and 2.89 in the top-|LFC| list. However, their normalized expression values in most 

ecDNA(+) samples were low. ITLN1 had a normalized RSEM expression value ≤ 8 (21st 

percentile) in 210/234 ecDNA(+) samples. Similarly, the normalized RSEM expression value of 

PNMT in 223/234 ecDNA(+) samples was less than 8.5 (rank percentile: 41.1%). For PNMT, the 

differential expression was mediated by 11 ecDNA(+) samples having an expression value  ≥  11, 

and 5 of the 11 samples contained PNMT on an ecDNA amplicon (Fig. S3e). Similarly, 3 samples 

with high RSEM contained ITLN1 on an amplicon (Fig. S3f), partly accounting for the high |LFC| 

value. In contrast, the CorEx gene, RAE1, had a high normalized expression value in both 

ecDNA(+) and ecDNA(-) samples (average 9.72, rank percentile 74.3%), with a small but 

persistent LFC value of 0.33. 

The results confirm our intuition that differential expression can arise due to multiple 

reasons, including low expression of the gene in a majority of samples, or the copy number 

amplification of a gene in a few samples. In contrast, the CorEx genes were selected based on 

persistent over- or under-expression in ecDNA(+) samples. 

CorEx genes primarily up-regulate three biological processes: Cell Cycle, Cell division, and 

DNA Damage Response 

To identify enriched biological processes specific to either up-regulated or down-regulated 

genes in ecDNA(+) samples, we combined two metrics of effect size, Cliff’s delta16,17, and log 

fold change15 to determine the directionality of CorEx genes (Table S6; Methods). The two effect 

size metrics were mostly in agreement in terms of directionality. Of the 7,288 genes that passed 

the negligible effect size thresholds in both metrics, only 14 were not in concordance. This more 
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stringent approach, in comparison to a simple directionality based on the sign of a single effect 

size value, was applied given that enrichment analysis on gene sets is dependent on not only the 

number of up- or down-regulated genes but also the degree of overlap with genes under a specific 

biological process term (Methods). Using this approach, among the 643 CorEx genes, 262 genes 

were found to be up-regulated in ecDNA(+), while 271 were found to be down-regulated (Table 

1; Methods). 110 genes did not make the effect size cut-off. The numbers were similar for the 408 

Core genes, with 190 up-regulated, 196 down-regulated, and 22 genes not making the cut-off. 

We performed enrichment analysis on gene sets to identify the Gene Ontology (GO) 

biological processes that are enriched in CorEx genes (Methods). Briefly, we applied a one-sided 

Fisher’s exact test using gene sets from MSigDB19–21, using a false discovery rate of 5% 

(Benjamini-Hochberg procedure). The UP-regulated genes enriched 187 Biological processes 

(Table S7). Note that the GO-biological process (BP) terms are not independent, because of their 

hierarchical organization, and sharing of genes across different GO terms. Therefore, we used an 

approach similar to that used in DAVID22 to cluster the biological processes enriched by the UP-

regulated genes into 11 broad categories (Table S8; Fig S4; Methods). The 11 categories were 

assigned a name using manual inspection of the constituent GO terms, or called “Other.” The 11 

categories (including “Other”) are shown in a waterfall plot to explain the contribution of each 

gene to a category (Fig. 3a). 

The 10 categories included expected participation of biological processes involved in (a) 

cell-cycle regulation (Mitotic/Meiotic Cell Cycle, G1/S, G2/M) (b) cell-division (Spindle 

Organization, Cell Division, Chromosome Condensation, Chromosome Segregation), (c) DNA 

Damage response (DNA Repair), and (d) the HOX Gene cluster. Indeed, one of the largest clusters, 

cluster #3, containing 9 Core genes and 12 co-expressed genes, was enriched in GO-BP terms 

related to the cell cycle (Table S9). Notably, the enriched categories also included a role for the 

HOX genes with 17 members of the HOX family up-regulated in ecDNA(+) cancers (Table S8). 

Many recent reports have associated HOX genes with cancer, including an association with their 

phenotypic “hallmarks”23. Genes involved in angiogenesis (HOXA2, HOXC5), genome instability 

(HOXC5, HOXC11), deregulating cellular energetics (HOXA4, HOXC5), and metastasis (HOXA2) 

were all up-regulated in ecDNA(+) cancers. 
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While Meiotic cell-cycle was also enriched, only 7 genes were allocated specifically to the 

group of enriched terms: SEPP1, SNRPA1, TMEM203, RNF114, TAF4, TNFAIP6, and PTX3 

(Table S10). Though these genes have roles in the meiotic cell cycle, they have also been 

implicated in cancer and other inflammatory diseases. The spliceosomal protein SNRPA1 is a pro-

metastatic splicing enhancer24. TNFAIP6, together with PTX3, activates the Wnt/β-catenin 

pathway to promote gastric carcinoma cell invasion25. TMEM203 is a STING-centered signaling 

regulator implicated in inflammatory diseases26. RNF114 is a zinc-binding protein whose over-

expression is an indicator of epithelial inflammation and implicated in various tumors27. TAF4, a 

transcription initiation factor, when overexpressed, is implicated in ovarian cancer by playing a 

role in dedifferentiation that promotes metastasis and chemoresistance28. Finally, in looking at the 

genes in the “Other” category, SHCBP1 was the only gene unique to it. A member of the neural 

precursor cell proliferation process, SHCBP1 is reported to promote tumor cell signaling and 

proliferation29. 

Taken together, the 11 biological process categories explain 165 of the 262 up-regulated 

CorEx genes, and suggest that Mitotic Cell-Division, Cell cycle regulation, and DNA Damage 

response are the three broad categories of biological processes up-regulated to ensure ecDNA 

presence, along with an up-regulation of genes in the HOX cluster. 

CorEx genes upregulate specific Double-strand break repair pathways  

The 16 enriched DNA damage response GO terms contained terms “double-strand break 

repair” and “recombination”, but none contained the terms “single-strand”, “nucleotide-excision”, 

or “mismatch-repair” (Table S8), suggesting that the CorEx genes are largely composed of genes 

involved in multiple double-strand break (DSB) repair pathways, which include classical non-

homologous end-joining (c-NHEJ), Alternative end-joining (Alt-EJ), single-strand annealing 

(SSA), or homology directed repair (HDR)30.  

The choice of these varied DSB repair mechanisms for ecDNA presence is not well 

understood. We compiled and hand-curated a list of 129 genes involved in DSB repair and marked 

them for their role in one or more of these 4 pathways (Table S11). Of these genes, a high number 

(67) were up-regulated in ecDNA(+), while a smaller number (15) were down-regulated, relative 

to ecDNA(-) samples. This breakdown of 129 DDR genes contrasts with an analysis using all 

genes where a near identical number of genes (5,256, and 5,251) were up- and down-regulated in 
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ecDNA(+) samples, confirming that DDR genes are significantly up-regulated relative to all 

differentially expressed genes (p-value < 0.0001; Fisher’s exact test). When broken down to the 

roles of genes in individual DSB repair pathways, we found that Alt-EJ with 11 up-regulated and 

1 down-regulated genes (p-value 0.0063), SSA (11 up, 1 down (p-value 0.0063)), and HR (46 up, 

8 down; p-value <0.00001) were all up-regulated. However, classical NHEJ (14 up, 7 down; p-

value: 0.19) was not significantly up-regulated in ecDNA(+) samples relative to ecDNA(-) samples 

(Methods, Table S12, Table S13). 

 

 
Figure 3. Up-regulated CorEx genes. (Continued on the following page.) 
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Figure 3 (Continued). (a) GO biological processes enriched in up-regulated genes were clustered into 11 
broad categories. The horizontal barplot represents the number of GO biological processes belonging to 
each of the 11 broad categories, while the vertical barplot represents the number of broad categories that a 
specific GO biological process belongs to. (b) Genes up- or down-regulated in processes involved in major 
double-strand break (DSB) damage repair pathways. Many critical genes in the c-NHEJ pathway were 
down-regulated in ecDNA(+) samples relative to ecDNA(-) samples. 
 

The expression of key genes in these pathways raises the possibility of an increased role of 

non-classical-NHEJ processes in ecDNA development or progression, relative to c-NHEJ (Fig. 

3b; Table S11). A number of genes involved in c-NHEJ were downregulated in ecDNA-

containing tumors relative to non-ecDNA tumors. These included XLF/NHEJ1 (MWU p-value 

2.05e-03), which is a key member of the ligase complex required for c-NHEJ; LIG4, another 

member of the ligase complex (MWU p-value 0.03), PNKP, which generates 5΄-phosphate/3΄-

hydroxyl DNA termini required for ligation (MWU p-value 3.90e-06); and also, DNA polymerases 

λ (POLL; MWU p-value 1.09e-21) and μ (POLM; MWU p-value 0.01), which promotes the 

ligation of terminally compatible overhangs requiring fill-in synthesis and promotes the ligation 

of incompatible 3ʹ overhangs31 in a template independent manner, respectively. This does not 

imply a defect in these repair processes, but rather, potentially additional or preferential utilization 

of alternative DSB repair pathways in ecDNA-containing tumors. 

TP53BP1 is key to blocking resection and promoting the c-NHEJ pathway choice, but is 

displaced by BRCA1 and the MRN complex to initiate resection in the broken strands32,33. BRCA1 

was significantly up-regulated in ecDNA(+) samples (Fig. 3b), while TP53BP-1 was significantly 

down-regulated (MWU p-value 0.016), although with negligible effect size (Table S11). 

Supporting the role of alternative pathway choice for DDR, key genes in the Alt-EJ pathway, 

including PARP-1, DNA polymerase θ (POLQ), LIG1, LIG3, FEN1 were all significantly up-

regulated in ecDNA(+) samples. Homology directed repair is the preferred pathway when a sister 

chromatid is available to act as a template. HDR is initiated by additional and extensive resection. 

The genes BLM, EXO1, RPA1, RPA3 which promote additional resection, as well as BRCA1, 

BRCA2, RAD51, and others that support HDR were all found to be significantly up-regulated. We 

can conclude that the specific pathway choice for DSB repair in ecDNA(+) samples is dominated 

by alt-EJ and homology directed repair pathways, while c-NHEJ is not a preferred choice. 
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CorEx genes primarily down-regulate immune system processes 

Using methodology similar to the analysis of the up-regulated genes, the down-regulated 

genes enriched 73 GO terms (Table S14), and could be clustered into seven broad categories, 

including “Other” (Fig. 4a; Table S15; Fig. S5). Surprisingly, all categories were 

immunomodulatory. The most enriched broad category contained 75 CorEx genes relating to the 

Lymphocyte activation pathway. It included genes enriching “T-cell activation” (28 CorEx genes; 

p-value 2.58e-05), and “Positive regulation of cell-cell adhesion” (16 CorEx genes; p-value 4.49e-

03).  Other down-regulated pathways included Cytokine activation, especially for genes in the IL-

12 pathway (6 CorEx genes, p-value 7.17e-03), TNF super-family (12 CorEx genes, p-value 7.24e-

03), and Inflammation, including, for example, down-regulation of Toll-like receptor 2 signaling 

(4 CorEx genes, p-value 4.49e-03). Finally, the broad category of Leukocyte chemotaxis was also 

 

 
Figure 4. Down-regulated CorEx genes. (a) GO biological processes enriched in down-regulated genes 
were clustered into 7 broad categories. The horizontal barplot represents the number of GO biological 
processes belonging to each of the 7 broad categories, while the vertical barplot represents the number of 
broad categories that a specific GO biological process belongs to. (b) Four of these categories map to steps 
in the cancer-immunity cycle. CorEx genes in three of the four categories were significantly down-regulated 
compared to all genes (Fisher’s exact test). 
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enriched among the down-regulated genes. The chemotaxis genes include many chemokines and 

their receptors involved in trafficking of T cells to the site of the tumor. The remaining down-

regulated genes included four fucosyltransferases, and the category marked “Other.” FUT2 

silencing is associated with reduced adhesion and increased metastatic potential34. Notably, the 

category marked “Other” was dominated by genes in NF-κB pathway regulation (14 CorEx genes, 

p-value 2.28e-02). 

NF-κB signaling represents a prototypical, proinflammatory pathway35 with multiple roles, 

including apoptosis. Specifically, 8 of the 14 down-regulated genes involved caspase activation 

(Table S16), representing the pro-apoptotic arm of NF-κB signaling. A parallel pathway for 

sensing endogenous ligands secreted in cell death and cancer is mediated by Toll-like receptor 

(TLR) proteins36. Remarkably, all ten TLRs were significantly down-regulated in ecDNA(+) 

tumors. They included TLRs expressed on the cell membrane that bind lipids and proteins as well 

as TLRs expressed on endosomal membranes that bind DNA. The CorEx down-regulated genes 

also included many involved in TLR signaling, such as TLR3, CYBA, LYN, and TIRAP. 

Four of the seven broad categories mapped to facets of the cancer immune cycle37 (Fig. 

4b). We tested if CorEx genes in these categories were more likely to be down-regulated rather 

than up-regulated, when compared to the non-CorEx differentially expressed genes. The 

Inflammation category, which mapped to the “Cancer antigen presentation” facet, showed 18 up-

regulated and 76 down-regulated CorEx genes (p-value 0.005, Fisher exact test, Table S15). 

Similarly, the CorEx genes related to the “Trafficking of T cells” facet (“Leukocyte migration and 

chemotaxis” category, 13 up, 49 down-regulated; p-value 0.03) and “Infiltration and recognition 

of tumor cells by cytotoxic T cells” facet (“Lymphocyte activation” category, 23 up, 75 down-

regulated; p-value 0.0075) were also significantly down-regulated. However, down-regulation in 

the “Priming and activation” facet (“Cytokine production” category, 6 up, 28 down-regulated) was 

not significant at the 5% level. 

As the RNA data were bulk-sequenced, transcripts were sampled from tumor cells and cells 

from the tumor microenvironment. Thorsson et al.38 mined immune cell expression signatures to 

identify six immune subtypes: wound healing (C1), IFN-γ dominant (C2), inflammatory (C3), 

lymphocyte depleted (C4), immunologically quiet (C5), and TGF-β dominant (C6). A recent study 

analyzing the tumor microenvironment (TME) of ecDNA(+) vs. ecDNA(-) samples in seven tumor 
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subtypes revealed an association of ecDNA presence with immune evasion39. Our results (Fig. 

S6), which used an updated version of the classification method for these ecDNA(+) samples, were 

broadly consistent with those from the Wu et al39. study. Our results suggested an increase in C1 

and C2 subtypes and a depletion of C3 and C6 between ecDNA(+) and ecDNA(-) categories (p-

value 3.96e-03, Chi-squared test). Notably, the C3 (inflammatory) subtype is associated with lower 

levels of somatic copy number alterations, and C6 with high lymphocyte infiltration, while C1 is 

associated with elevated levels of angiogenic genes. These are consistent with our findings of 

increased somatic copy numbers, increased expression of angiogenic genes on ecDNA(+) samples, 

and reduced lymphocyte infiltration.  

Figure 5. Mutational characteristics of ecDNA-containing tumors. (a) Total mutation burden of 
ecDNA(+) and ecDNA(-) samples. ecDNA(+) samples have significantly higher mutation burden than the 
ecDNA(-) samples (p-value < 0.0001, Mann Whitney test). (b) Odds ratios of differentially mutated genes 
in ecDNA(+) and ecDNA(-) (p-value < 0.005). The size of the dot indicates whether the corresponding 
gene belongs to the Cancer Gene Census (CGC) or not (Non-CGC). Only TP53 and BRAF showed 
significance at the level of FDR < 0.1 (Benjamini-Hochberg). 
 

ecDNA(+) samples carry a higher mutational burden relative to ecDNA(-) samples 

In order to understand if the change in transcriptional program was driven by mutations to 

the genes, we checked if ecDNA(+) samples have differential levels of mutation relative to 

ecDNA(-). Intriguingly, we found that the total mutation burden was significantly higher in 

ecDNA(+) samples relative to ecDNA(-) samples (Fig. 5a). The result was significant also when 
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mutations were limited to deleterious substitutions as measured by SIFT or PolyPhen2, and high-

impact insertions and deletions (Fig. S7a). However, when controlling for cancer type, only 

glioblastoma (GBM; lower mutations in ecDNA(+)), low-grade gliomas (LGG; higher mutations 

in ecDNA(+)), and uterine corpus endometrial carcinoma (UCEC; lower mutations in ecDNA(+)) 

continued to show differential total mutational burden (Fig. S7b). Next, we tested if specific genes 

were differentially mutated between the two classes (Fig. 5b). For deleterious/high-impact 

mutations, TP53 was the only gene whose mutational patterns were significantly higher in 

ecDNA(+) compared to ecDNA(-) (OR 2.67, Bonferroni adjusted p-value 4.22e-07). BRAF 

mutations, however, were more common in ecDNA(-) samples and were significant to an adjusted 

p-value < 0.1 (OR 0.27). The excess of TP53 mutations in ecDNA(+) samples provides additional 

support to the hypothesis that mutations in DNA damage response or cell cycle checkpoints are 

important for ecDNA presence. Other genes that are differentially mutated with nominal 

significance (unadjusted p-value < 0.005) are shown in Table S17. 

We also tested if a collection of gene mutations could predict ecDNA status using 

XGBoost40, which uses an adaptive boosting of “weak classifiers” to predict class. Here, each 

mutated gene was treated as a weak classifier of ecDNA status. However, the two classes could 

not be separated with high accuracy (Fig. S7c). An unsupervised principal component analysis did 

not separate the two classes either. Only the first principal component explained a significant 

proportion (14%) of the total variance (Fig. S7d) and did not separate the bulk of the samples. 

Finally, we recapitulated earlier findings that ecDNA(+) samples enrich for APOBEC activity 

through the presence of the mutation signatures SBS2 and SBS1341,42 (Fig. S8). The enrichment 

in TP53 mutations was also consistent with previous findings5. On balance, however, collections 

of gene mutations did not distinguish ecDNA(+) samples from ecDNA(-) samples, at least at a 

pan-cancer level, in contrast to the gene expression data. 

Persistently occurring genes in ecDNA(+) samples represent potential vulnerabilities 

Any CorEx gene is either a Core gene that was selected as a feature in at least 5% of 200 

Boruta trials, or be highly co-expressed with a Core gene. Because the selection criterion of 5% is 

arbitrary, we also tested robustness with 8 other cut-offs ranging from 5-of-200 to 200-of-200 

Boruta trials. The number of CorEx genes expectedly decreases with more stringent cut-offs. 

However, of the 187 GO terms that were enriched by 262 CorEx UP-genes using 10 of 200 Boruta 
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trials as the selection criteria, 93 terms (49.7%) were enriched for each cut-off (Fig. S9), and 155 

terms (82.9%) were enriched in at least 5 of the 8 cut-off criteria. Given that our subsequent 

analyses utilized the hierarchy of GO terms and identified 4 GO-categories enriched by UP-

regulated genes, the conclusions would hold regardless of the specific cut-off. 

To rank CorEx genes by importance, we computed harmonic mean rank values based on 

three categories: a) the average GINI importance statistic from the trained random forest models; 

b) the number of Boruta trials that a gene was selected in; and c) the number of Boruta trials (out 

of 200) that a gene was selected in when counting by cluster (Methods). 65 genes that were up-

regulated (47 genes) or down-regulated (18 genes) had a harmonic rank lower than 3 (Table 1). 

The next highest ranked gene had harmonic rank exceeding 17. These 65 genes represent the most 

persistent differentially expressed CorEx genes, and appeared as Core (or clustered gene) in all 

200 Boruta trials. Notably, of the 24 genes most frequently expressed on ecDNA,2 only EGFR and 

CDK4 were included in the list of 65 genes, suggesting that the most persistent CorEx genes do 

not themselves appear frequently on ecDNA. 

Expectedly, the high-ranked up-regulated genes impacted cell division (16 genes), cell 

cycle regulation (10 genes), DNA damage response (16 genes). Only 12 of the 47 genes were not 

included in the gene sets of any enriched GO term. Many of these genes were from small CorEx 

clusters with less than 3 members, but we also found 6 genes from the HOX gene cluster (cluster 

#17), and another cluster of 21 genes (cluster #3). Members of cluster #3 appeared in all 200 Boruta 

trials; however, there were three genes all involved in cell-division (TPX2, KIF2C, and AURKA), 

each of which appeared in at least 180 Boruta trials. High expression among these three genes is 

associated with poor prognosis43, and due to the highly persistent nature of their differential 

expression across ecDNA(+) samples, they represent a possible widespread vulnerability for 

ecDNA(+) samples. 

Intriguingly, 14 of the 18 down-regulated genes with low harmonic rank came from a single 

cluster (#2; Table S2), and 13 of the 18 genes did not specifically enrich any specific BP ontology. 

Six of the down-regulated genes appeared in 180 or more Boruta trials (CHMP7, XPO7, INTS9, 

TACR1, KIAA1967, and PCM1). Some of these genes (CHMP7, XPO7, KIAA1967) are reported 

to be tumor suppressor genes44–46. However, the exact functional role of down-regulating these 

genes in ecDNA(+) samples remains to be elucidated.  
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Discussion 

ecDNA is increasingly recognized as a major cause of oncogene amplification, 

intratumoral genetic heterogeneity, accelerated evolution, and treatment resistance, but many of 

the underlying processes involved in its formation, function, and progression are not fully 

understood. The ability to conduct multi-omic studies of well-curated, bona fide clinical tumor 

samples, such as the TCGA, presents an opportunity to learn about differentially regulated gene 

expression programs that may be involved in ecDNA biogenesis or maintenance, and in worse 

outcomes for patients7–9. Using a relatively intuitive set of principles, we have developed a 

machine learning approach that identifies differentially expressed, co-regulated genes in ecDNA-

containing tumors, highlighting four main biological processes: non-c-NHEJ DSB repair, cell 

cycle, proliferation control, and immune regulation. 

The GO analysis revealed three core biological processes that were up-regulated and only 

the immune system processes as being down-regulated. These observations strengthen the case for 

targeting proteins involved in mitotic cell-division47, cell-cycle regulation, and DNA damage 

response in ecDNA(+) cancers, but also reveal roles for the HOX cluster of genes. Also, in this 

paper, we did not extensively study the role of ncRNA in prediction of ecDNA status. We do note 

that HOTAIR, encoded in the HOXC locus, is independently associated with metastasis and poor 

outcomes48. Further experiments are needed to provide a mechanistic basis for the role of HOX 

cluster genes in maintaining ecDNA presence, as also for involvement of ncRNA. 

The DNA damage genes are broadly up-regulated in ecDNA(+) samples, especially in 

double-strand break repair. Within this broad category of mechanisms, our analysis suggests that 

alternative DSB repair pathways such as Alt-EJ are preferred relative to classical NHEJ. This is 

consistent with previous observations of small microhomologies at breakpoint junctions2,49, and 

has important implications in therapeutic selection that will need to be validated in future 

experimental studies. We note, however, the microhomology analyses typically study breakpoint 

junctions, and might ignore double-strand breaks in non-junctional sequences which could be 

observed, for example at replication-transcription junctions. 

The down-regulated genes were primarily immunomodulatory in nature, in addition to a 

few persistently down-regulated tumor suppressor genes. Lowered expression of 

immunomodulatory genes in ecDNA(+) samples has been previously reported2,39, but not 
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mechanistically explained. Remarkably, the down-regulated immunomodulatory genes 

encompassed most aspects of the cancer immune cycle, suggesting impaired recognition of tumor 

DNA and proteins as foreign in ecDNA(+) tumors. Sensing of foreign DNA, including tumor 

DNA, is often mediated by the cGAS/STING pathway50,51. Intriguingly, cGAS was significantly 

up-regulated in ecDNA(+) samples, while STING was significantly down-regulated, suggesting a 

role for STING agonists in intervention. Finally, in addition to the down-regulation of genes in the 

toll-like receptor family, we observed a down-regulation of genes involved in regulating TLR 

signaling pathways that were part of the CorEx list. Understanding the mechanisms of broad down-

regulation of TLRs could provide insight into vulnerabilities of ecDNA(+) tumors. 

Mutation data alone does not provide as clear a picture of the genes involved in ecDNA 

status prediction. We did observe that the total mutation burden (TMB) was higher in ecDNA(+) 

samples. However, that relationship is much less clear after controlling for cancer type. High TMB 

has been positively correlated with sensitivity to immunotherapy52, and better patient outcomes; 

however, the gene expression patterns suggest that immunomodulatory genes are down-regulated 

in ecDNA(+) samples, and patients with ecDNA(+) tumors have worse outcomes2. Notably, other 

results have suggested that the correlation between TMB and response to immunotherapy is not 

uniform, and it can vary across different tumor subtypes53. Specifically, our data is consistent with 

previous results which showed that Gliomas with high TMB have worse response to 

immunotherapy relative to gliomas with low TMB53. In general, no collection of gene mutations 

was predictive of ecDNA status, although mutations in TP53 were more likely in ecDNA(+) 

samples, and perhaps are an important driver for ecDNA formation5.  

These results suggest that cancer cells that contain ecDNA have profound alterations in 

their global transcriptional patterns. Importantly, these transcriptional differences do not arise 

solely from genes on the ecDNAs themselves, but rather suggest that fundamental global processes 

involved in DSB repair, cell cycle control, and immune regulation contribute to ecDNA formation 

and pathogenesis. 
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Methods 

TCGA sample ecDNA status classification 

Amplicon Classifier (version 0.4.9, https://github.com/jluebeck/AmpliconClassifier) 

classified amplicons detected in 1,921 TCGA samples into five sub-types: ecDNA, BFB, complex 

non-cyclic, linear, and no-amplification. When classifying a sample with multiple amplicons, the 

order of preference is as follows: ecDNA, BFB, complex non-cyclic, linear, and no-amplification. 

Given the challenges of detecting ecDNA from short read data, and to avoid possible false-negative 

ecDNA classifications, samples with a BFB or complex non-cyclic status which were not called 

ecDNA(+), were removed from the analysis. We treated samples with the linear amplification and 

no-amplification classifications as ecDNA(-). Of the 1,921 samples, 1,535 samples classified as 

ecDNA(+) and ecDNA(-) had RNA-seq data, including 1,406 primary solid tumor samples, 95 

tumor metastasis samples, and 34 primary blood derived cancer – peripheral blood samples. 

Removing metastases results in a total of 1,440 samples, including 243 ecDNA(+) and 1,197 

ecDNA(-) samples. While the set of 1,440 samples represented 24 tumor types, ten of these tumor 

types had insufficient numbers of ecDNA(+) samples, including four tumor types with no 

ecDNA(+) samples. To prevent the 561 ecDNA(-) samples representing these tumors from 

skewing the analysis, we removed 570 samples representing tumor types with less than three 

ecDNA(+) samples. This resulted in a total of 870 samples representing 14 tumor types, of which 

234 were classified as ecDNA(+) and 636 were classified as ecDNA(-). 

Gene expression datasets 

Gene expression data for 32 studies part of the TCGA Pan-cancer Atlas was downloaded 

from cBioPortal (01.05.2021) (https://www.cbioportal.org/). The cBioPortal 

“data_RNA_Seq_v2_expression_median.txt” data is sourced from the file 

“EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv” (synapse id: syn4976363). 

Briefly, the matrices contain batch corrected values of the upper-quartile (UQ) normalized RSEM 

estimated counts data from Broad firehose (tumor.uncv2.mRNAseq_RSEM_all.txt). Missing 

values due to the batch effect correction process were imputed using K-nearest neighbors (KNN). 

For each tumor type, values were imputed based on gene vectors under the assumption that genes 

are similarly expressed between samples of the same tumor type. For genes with less than 60% of 

samples with missing values, values were imputed using the logarithmic (base 2) of the gene 

expression value plus one, and subsequently back-transformed when writing the imputed matrices 
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to file. The resulting gene expression matrix used for the Boruta analysis described below consisted 

of 870 TCGA samples and 16,309 protein-coding genes (based on “hgnc_complete_set.txt” 

downloaded from HGNC on 7.24.2018). To generate a RSEM raw counts matrix for the DESeq2 

analysis described below, mRNAseq_Preprocess.Level_3 data was downloaded from Broad 

Firehose (tumor.uncv2.mRNAseq_raw_counts.txt). 

Boruta analysis 

To identify a minimal set of genes whose expression values were predictive of the sample 

being ecDNA(+), we used Boruta10, an automated feature selection algorithm that utilizes multiple 

iterations of the random forest classifier to determine the statistical significance of  selected 

features. The algorithm is terminated when all features are categorized as “confirmed” or 

“rejected”, or until the user-defined number of iterations is reached. In our modified version of the 

BorutaPy python package (6.21.2021; https://github.com/scikit-learn-contrib/boruta_py), we set 

the maximum number of iterations to 400, a stagnant count maximum of 5, and a tentative count 

minimum of 50. This translates to termination of Boruta if 400 iterations are reached, or if the 

tentative count (features that have yet to be “confirmed” or “rejected”) falls to or below 50 and 

these tentative features remain tentative for 5 iterations.   

While we use a standard implementation of Boruta, the method is briefly described here 

for expository purposes. In each iteration, i, within a single Boruta trial, the input is a gene 

expression matrix, M, of dimension r x c, where r is the number of samples and c is the number of 

tentative or confirmed features (i.e., genes). Boruta generates c shadow feature vectors by random 

shuffling of feature vectors in matrix M, generating a new matrix M’ of dimension r x 2c. A random 

forest classifier (class_weight=balanced_subsample, max_depth=7) is then used to quantify the 

importance of each feature in separating ecDNA(+) from ecDNA(-) samples. Specifically, there 

are two possible outcomes for a feature: 1) if the feature scores higher than the best scoring shadow 

feature, the feature is considered a “hit”, and 2) if the feature scores lower than the best scoring 

shadow feature, the feature is considered a “non-hit”. Features are rejected after i iterations, if the 

number of hits is not significantly higher than expected by chance, using a Bonferroni corrected 

p-value.  

In order to evaluate the ability of selected features in predicting the ecDNA status of a 

tumor sample, we left out 20% of ecDNA(+) and 20% of ecDNA(-) samples for the hold-out 

testing dataset in the evaluation procedure described below, and performed Boruta on the gene 
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expression matrix consisting of the remaining 80% of samples. However, due to the unequal 

representation of ecDNA(+) and ecDNA(-) samples within each of the tumor subtypes, we opted 

to generate 200 training (80%) and testing (20%) datasets to decrease the bias that may be 

introduced during random sampling. For each of the 200 datasets, a Boruta analysis was performed 

on the 80% training data. Features categorized as “confirmed” were considered as Boruta genes 

for that specific trial. Of the 941 Boruta genes combined across the 200 trials, 408 genes were 

present in at least 10 of the 200 Boruta trials, and subsequently defined as the Core set of genes in 

downstream analyses. 

Highly co-expressed genes 

To identify genes co-expressed with the core set of Boruta genes, hierarchical clustering of 

the 16,309 genes was performed using the R package pvclust11 (ver. 2.2-0; 

dist.method=correlation, method=ward.D2, nboot=1000). A total of 843 significant clusters (AU 

> 0.95) with at least 1 Boruta gene were selected, consisting of 1,375 genes. To obtain the final 

list of CorEx genes, we apply a minimal count of 10 trials for the gene or 10 trials for the cluster 

of genes seen in 200 Boruta trials. A cluster is determined to be seen in a Boruta trial if at least 

one of its members is selected in the trial. This results in 354 clusters, with a total number of 643 

genes, of which 408 are Core genes. 

Evaluation of CorEx genes   

To evaluate a set of genes, G, as predictive of ecDNA presence in tumor samples, we 

performed cross-validation and hyper-parameter tuning on each of the 80% training datasets, and 

evaluated the final model on the corresponding hold-out 20% testing dataset using the scikit-learn 

package. Specifically, the gene expression matrix for cross-validation and hyper-parameter tuning 

consisted of m samples from the training dataset and n genes from set G. RandomizedSearchCV 

(n_iter=50, cv=5, scoring=f1) was first used to narrow down a wide range of hyper-parameters for 

the random forest classifier (RandomForestClassifier, class_weight=’balanced_subsample’), and 

GridSearchCV (cv=StratifiedKFold(n_splits=5, shuffle=True), scoring=f1) was then used to test 

every combination of a smaller range of hyper-parameters given the best parameters from 

RandomizedSearchCV. The hyper-parameters tuned (initial values) include the number of trees in 

the forest (n_estimators: np.linspace(100, 2000, num = 10)), the maximum depth of the tree 

(max_depth: None, np.linspace(10, 100, num = 10)), the minimum number of samples required to 
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split an internal node (min_samples_split: (2, 5, 10)), and the minimum number of samples 

required to be at a leaf node (min_samples_leaf: (1, 2, 4)). The best estimator from the 

GridSearchCV hyper-parameter tuning was then evaluated on the 20% testing dataset, where the 

gene expression matrix consisted of m samples from the testing dataset and n genes from set G. 

Performing this procedure on each of the 200 training/testing datasets resulted in 200 data points 

for each of the 3 metrics computed using sklearn.metrics: precision_score, recall_score, and 

average_precision_score (AUPR). 

We performed this procedure on the following sets of genes, G: the 408 Core genes, 408 

randomly selected genes, the 643 CorEx genes, 643 randomly selected genes, a set of 643 most 

differentially expressed genes based on the absolute log-fold change estimates from a conventional 

DE analysis using DESeq215  as described below, and the set of 3,012 significant genes from the 

GLM analysis described below. 

Generalized linear model (GLM) analysis 

 We tested each of 16,309 genes independently in a separate logistic regression model 

using the glm() function in the R stats package (v4.2.0), and retained genes that were significant 

(p-value 0.01). Specifically, the model was defined as glm(𝑦𝑦 ~ 𝑔𝑔𝑗𝑗 + 𝑡𝑡, data = 𝑀𝑀, family = 

binomial(link = 'logit')), where y is the response vector where 𝑦𝑦𝑖𝑖=1 if sample 𝑖𝑖 ∈ {1, . . . ,870} is 

ecDNA(+) and 𝑦𝑦𝑖𝑖 =0 otherwise, 𝑔𝑔𝑗𝑗 is the vector of expression values for gene j ∈ {1, . . . ,16309} 

in samples 𝑖𝑖 ∈ {1, . . . ,870}, t is the covariate vector representing the tumor subtypes of samples 

𝑖𝑖 ∈ {1, . . . ,870}, and 𝑀𝑀 is the data matrix containing values of gene expression, tumor subtype, 

and ecDNA status for all samples. The equation for the binomial logistic regression described 

above is formulated as 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝
1−𝑝𝑝

) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1+. . . +𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘, where p is the probability that the 

dependent variable y is 1, 𝑋𝑋 are the independent variables, and 𝛽𝛽 are the coefficients of the 

model. In this case, k=1 represents independent variable gene j and k=2 represents the tumor 

subtype covariate t. Of the 16,309 genes tested independently, 3,012 genes were significant at p-

value<0.01. 

Default DE analysis 

We performed a default DESeq215 (R package, ver. 1.36.0) analysis to obtain shrunken 

maximum a posteriori (MAP) log-fold change estimates for effect size (i.e., LFC). Specifically, 

to obtain i) LFC effect size values per gene for integration with its Cliff’s delta effect size value 
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when determining if a gene is up- or down-regulated in ecDNA(+) samples, and ii) a list of n top-

ranked genes by absolute value of the LFC (with application of an adjusted p-value <0.05 cutoff 

and LFC threshold of 𝑙𝑙𝑙𝑙𝑔𝑔2(1.1) = 0.13) for use in comparison against genes selected as important 

in the prediction of ecDNA in samples. For comparisons against Core genes, n is set to 408, and 

for comparisons against CorEx genes, n, is set to 643. 

To obtain the LFC effect size metric between ecDNA(+) vs. ecDNA(-) samples for each 

gene’s expression, we fed as input to DESeq2 a matrix of raw RSEM estimated counts. To take 

into account batch effects, we included the center and platform information of samples, 

downloaded from synapse id syn4976363 (EB++GeneExpAnnotation.tsv), in the design of the 

DESeq object:  

DESeq_object <- DESeqDataSetFromMatrix(countData = 

AC_0_4_9_TCGA_matrix, colData = coldata, design = 

~batch+condition) 

To compute results, the lfcThreshold was set to 𝑙𝑙𝑙𝑙𝑔𝑔2(1.1) for an accurate computation of 

p-values and the contrast set to c(“condition”, “ecDNA(+)”, “ecDNA(-)”) to obtain the logarithmic 

fold change of the form �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(+)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(−)� . By setting the lfcThreshold, the null hypothesis tested is that 

|𝐿𝐿𝐿𝐿𝐿𝐿| ≤ 𝜃𝜃, where 𝜃𝜃 = (1.1) , and the alternative hypothesis is that |𝐿𝐿𝐿𝐿𝐿𝐿| > 𝜃𝜃. A 𝑙𝑙𝑙𝑙𝑔𝑔2(1.1) value 

is chosen as the minimal value/negligible effect size threshold as it represents a 10% fold-change, 

and anything below this fold-change would likely not be of biological interest54. The specific 

commands run are as follows: 

DESeq_object$condition <- relevel(DESeq_object$condition, ref = 

"Non_ecDNA") 

DESeq_object <- DESeq(DESeq_object) 

results <- results(DESeq_object, lfcThreshold= log2(1.1), 

contrast=c("condition","ecDNA","Non_ecDNA")) 

To obtain the shrunken MAP log-fold change estimates, we used the lfcShrink function 

provided in DESeq2, using the default apeglm method for the empirical Bayes shrinkage 

procedure55: 

lfcShrink(DESeq_object, lfcThreshold= log2(1.1),                                          

coef="condition_ecDNA_vs_Non_ecDNA", type="apeglm") 
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Up- or Down-regulated genes in ecDNA(+) samples 

To categorize genes as "up-" or "down-" regulated in ecDNA(+) samples, we integrated 

two effect size metrics, Cliff’s delta (d)16,17  and the DESeq2 shrunken MAPlog-fold change 

estimate (LFC15). Effect size is a measure of the magnitude of deviation from the null hypothesis, 

and unlike p-values, has the advantage of not being impacted by sample size56. This property is 

especially useful when comparing effect size values of a gene between tests where sample sizes 

differ. Comparing p-values between such tests would be invalid. 

Cliff’s delta, d, is a non-parametric measure of the separation between two distributions 

and ranges from -1 to 1. Given two distributions, 𝑋𝑋 = {𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚} and  𝑌𝑌 = {𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑛𝑛}, 

comparisons are made between each of m values in 𝑋𝑋 and n values in 𝑌𝑌. Cliff’s delta is computed 

as 𝑑𝑑 = #(𝑖𝑖>𝑗𝑗)−#(𝑖𝑖<𝑗𝑗)
𝑚𝑚𝑚𝑚

, where #(𝑖𝑖 > 𝑗𝑗) is the number of times a member of X is greater than a member 

of Y, and #(𝑖𝑖 < 𝑗𝑗) is the number of times a member of X is less than a member of Y16. A negative 

d indicates that values in Y tend to be higher than X, while a positive d indicates that values in X 

tend to be higher than Y. The magnitude of the effect size of Cliff’s delta can be separated into four 

levels: |𝑑𝑑| < 0.147 for negligible effects, 0.147 ≤ |𝑑𝑑| < 0.33 for small effects, 0.33 ≤ |𝑑𝑑| < 0.474 

for medium effects, and |𝑑𝑑| ≥ 0.474 for large effects56. The python package used to compute 

Cliff’s delta values can be accessed at https://github.com/neilernst/cliffsDelta. The input values 

used to compute Cliff’s delta are log-transformed normalized gene expression values plus one as 

described in the “Gene expression datasets” section of methods. 

The DESeq2 LFC is computed as described above. To allow integration of the Cliff’s delta 

effect size with the DESeq2 LFC, we also separated the LFC values into four levels: |𝐿𝐿𝐿𝐿𝐿𝐿| <

𝑙𝑙𝑙𝑙𝑔𝑔2(1.1) for negligible effects, 𝑙𝑙𝑙𝑙𝑔𝑔2(1.1) ≤ |𝐿𝐿𝐿𝐿𝐿𝐿| < 𝑙𝑙𝑙𝑙𝑔𝑔2(1.5) for small effects, 𝑙𝑙𝑙𝑙𝑔𝑔2(1.5) ≤

|𝐿𝐿𝐿𝐿𝐿𝐿| < 𝑙𝑙𝑙𝑙𝑔𝑔2(2) or medium effects, and |𝐿𝐿𝐿𝐿𝐿𝐿| ≥ 𝑙𝑙𝑙𝑙𝑔𝑔2(2) for large effects. 

For each gene, g, whether the gene is up-regulated or down-regulated in ecDNA(+) samples 

is determined by the signage and magnitude of its effect sizes 𝑑𝑑𝑔𝑔 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔. The initial criteria for 

𝑑𝑑𝑔𝑔 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔 to be used as a determinant in the direction of a gene is for it to have a magnitude 

larger than that of a negligible effect. If the signage of 𝑑𝑑𝑔𝑔 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔 are both positive, gene g is 

considered up-regulated in ecDNA(+). If only a single value has a magnitude larger than the 

negligible effect threshold (e.g, 𝑑𝑑𝑔𝑔 > 0 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔 = −0.1), gene g is considered up-regulated in 

ecDNA(+). In the case of conflicting signages between the two values, the effect size with a larger 
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magnitude takes precedence. For example, if 𝑑𝑑𝑔𝑔 = −0.2 and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔 = 0.847, given that 𝑑𝑑𝑔𝑔 has a 

small negative effect and 𝐿𝐿𝐿𝐿𝐶𝐶𝑔𝑔 has a large positive effect, gene g is considered up-regulated in 

ecDNA(+) samples. 

Tumor heatmap 

A Cliff’s delta effect size matrix representing 643 CorEx genes was generated to compare 

TCGA with tumor expression patterns. For each of the 11 tumor types with at least 10 ecDNA(+) 

and at least 10 ecDNA(-) samples, we re-computed Cliff’s delta. Using a Fisher’s exact test 

(fisher_exact function from the scipy.stats python package; alternative hypothesis: two-sided), we 

tested the null-hypothesis of whether the up- and down- directionality of CorEx genes in TCGA 

vs. each tumor were independent of each other. The contingency table is as below. The 

directionality of a gene (up or down) was based solely on the signage of the gene’s Cliff’s delta 

effect size value. 

  Tumor 
UP DOWN 

TCGA UP  a b 
DOWN c d 

 

Gene Ontology (GO) enrichment analysis 

To identify Gene Ontology Biological Process (GOBP) terms that were enriched in either 

the set of down-regulated or up-regulated CorEx genes, we applied one-sided Fisher’s exact tests 

(alternative=”greater”; scipy.stats python package) on 2x2 contingency tables for each GOBP 

term. Specifically, in the contingency table below, N is the total number of genes in the universe 

(i.e., 16k for the number of genes measured in the RNAseq data), n is the number of DE genes 

(either up- or down-regulated in ecDNA(+) samples), m is the number of genes belonging to the 

GOBP term as defined by gene sets from MSigDB (c5.go.bp.v7.5.1.entrez), and k is the number 

of DE genes that belong to the GOBP term. The false discovery rate was controlled at 5% and 

adjusted p-values were computed using the Benjamini-Hochberg procedure (fdr correction from 

python statsmodels package). A final set of GOBP terms with adjusted p-value<0.05 was used for 

downstream analysis. 
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 DE Non-DE 
Inside GOBP 
term   

k m-k 

Outside GOBP 
term 

n-k N+k-n-m 

 

Clustering gene sets 

To cluster enriched gene sets into categories for visualization purposes, Cohen's kappa 

coefficient (python sklearn cohen_kappa_score) was used to determine term-term "connectivity" 

(agreement of term-term pairs) – an approach described in the DAVID paper22. Given a 𝑟𝑟 × 𝑐𝑐 

binary matrix, where enriched GOBP terms are rows, CorEx genes are columns, and values are 1 

if a CorEx gene is part of the GOBP term or 0 otherwise, kappa scores were computed between 

each pair of terms, where term 𝑡𝑡𝑖𝑖 ∈ 𝑡𝑡 and 𝑖𝑖 = {1,2,3, … .𝑛𝑛}: 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦), where 𝑥𝑥 ∈ 𝑖𝑖 and 

y ∈ 𝑖𝑖. 

Each term, 𝑡𝑡𝑖𝑖, formed an initial seeding group, 𝑔𝑔𝑖𝑖, where a term 𝑡𝑡𝑥𝑥 is part of 𝑔𝑔𝑖𝑖 if 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑖𝑖, 𝑡𝑡𝑥𝑥) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜. If at least 50% of term-term pairs in 𝑔𝑔𝑖𝑖 have a 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, the initial seeding group 𝑔𝑔𝑖𝑖 is retained for the next step. The 

second criteria ensures that terms within the same seeding group have strong interconnectivity. An 

iterative merging of seeding groups then follows: groups sharing p% or more members are merged. 

The representative term for each group was determined as the member with the highest 

interconnectivity score with other members of the group. After the automatic grouping process, a 

manual inspection leads to the merging of outliers or smaller groups into representative groups. 

We used a kappa score threshold of 0.5, and condition of p≥25% of shared members when merging 

for the down-regulated genes, and a kappa score threshold of 0.6 and condition of p≥50% of shared 

members when merging for the up-regulated genes. 

DDR pathway genes 

We hand-curated 88 genes for double-stranded break DNA damage repair pathways (a-EJ, 

HR, c-NHEJ, SSA) via an extensive literature search, and added an additional 51 genes from the 

following MSigDB (c5.go.bp.v2022.1.Hs.entrez.gmt) GO biological process terms: GO:0097680 

(double strand break repair via classical nonhomologous end joining), GO:0097681 (double strand 

break repair via alternative nonhomologous end joining), GO:1905168 (positive regulation of 
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double strand break repair via homologous recombination), and GO:0045002 (double strand break 

repair via single strand annealing). This resulted in a final list of 129 genes. The directionality of 

the genes, as either up- or down-regulated in ecDNA(+) samples, is based on the full set of 1,440 

samples, consisting of 243 ecDNA(+) and 1,197 ecDNA(-) samples representing 24 tumor types 

(Table S12; Table S13). 

To test whether the number of genes passing our effect size thresholds for all genes 5,256 

(UP) and 5,251 (DOWN) was significantly different from the up-/down-regulated genes 

implicated in each of the 4 pathways, we performed a Fisher’s exact test (fisher_exact function 

from the scipy.stats python package) on the contingency table below, where c and d are the up- 

and down-regulated genes for each of the pathways tested. 

Contingency table: 

 UP DOWN 
All genes 5,256 5,251 
Pathway c d 

Pathway values: 

 c d 
c-NHEJ 14 7 
Alt-EJ 11 1 
HR 46 8 
SSA 11 1 

 

Physical presence on amplicons 

To determine physical presence of a gene on an amplicon, gene coordinates listed in the 

gene annotations file GRCh37/human_hg19_september_2011/Genes_July_2010_hg19.gff, 

downloaded from the AA repo on 3/21/2022, were mapped to amplicon genomic intervals (bed 

files). A gene is determined to be physically present on an amplicon if its genomic coordinates are 

fully encompassed within the amplicon genomic intervals. 

Mutational analysis 

 We pulled the list of mutations from the open-access version of MC3 dataset 

(https://ellrottlab.org/project/mc3/), then investigated differences between ecDNA(+) and 

ecDNA(-) samples. Synonymous mutations were excluded when calculating the mutation burden. 
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For the differentially mutated gene analysis, only damaging mutations were selected by using 

snpEff57 annotation which is originally included in the MC3 dataset. First, mutations annotated as 

HIGH in the IMPACT column were selected to obtain frameshift INDELs and stop gain SNVs. 

Next, mutations predicted to be damaging by SIFT58 and PolyPhen259, were selected to obtain 

damaging missense mutations. Finally, we generated 2-by-2 contingency tables for each gene with 

cells a, b, c, and d representing the number of individuals with and without damaging mutations 

in ecDNA(+) and (-) tumors. The odds ratios were computed as 𝑂𝑂𝑂𝑂 = 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

, where a is the number 

of individuals in ecDNA(+) with the mutation, b is the number of individuals in ecDNA(+) without 

the mutation, c is the number of individuals in ecDNA(-) with the mutation, and d is the number 

of individuals in ecDNA(-) without the mutation. To determine if a gene contained mutations that 

were implicated in cancer, we checked genes against the Cancer Gene Census (CGC) database 

(v97)60, marking genes in the database as CGC and those that were not as non-CGC. 

Classification with mutational status 

 First, we created a binary matrix representing whether a gene is damaged or not, from the 

MC3 damaging mutation set described as above. Then we divided the whole matrix into 80% of 

the training set and 20% of the test set. Hyperopt was applied on the training set to select the best 

parameters for the XGBoost40 model. The optimal parameters estimated by Hyperopt (eta = 0.1, 

max_depth = 6, min_child_weight = 3.0, scale_pos_weight = 4.9) were input to the XGBoost 

model, and the ecDNA status of each sample were also input as an answer set. The performance 

of the model was checked by inputting the 20% test set to the model and comparing the output 

result with the answer. Principal component analysis was also performed with the same mutational 

matrix as above, using the scikit.learn package. 

Ranking of CorEx genes 

To rank CorEx genes by importance, we computed harmonic mean rank values based on 

three categories: a) the average Gini importance statistic or mean decrease impurity (MDI) MDI 

(feature importance) values extracted from the trained random forest models on 200 training sets 

during the evaluation method described above, b) the number of Boruta trials (out of 200) that a 

gene is selected in, rounded to 2-digits, and c) the number of Boruta trials (out of 200) that a gene 

is selected in when counting by cluster, rounded to 2-digits. The ranks for each category are 
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adjusted separately so that genes with the same value share the same rank value. For example, if 

using the Boruta trial count as the rank value: 

 Trial 

count 

round(trial_count/10.0

) 

Rank Adjusted rank 

Gene A 200 20 1 1 

Gene B 200 20 2 1 

Gene C 200 20 3 1 

Gene D 187 19 4 4 

 

The harmonic mean rank is defined as:  

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
3

1
𝑎𝑎 + 1

𝑏𝑏 + 1
𝑐𝑐
 

Tumor immune subtype 

We classified ecDNA(+) and ecDNA(-) samples into the 6 immune subtype categories 

(Thorsson et al., 201838) provided in Table S6 from Bagaev et al., 202161. 

 

Impact of tumor purity on CorEx gene expression 

 To investigate the effects of the presence of non-cancer tissue (impurity) in bulk RNA-seq 

samples on the analyses performed in this study, we utilized the consensus measurement of purity 

estimations (CPE) for TCGA samples from a publication by Aran et al.14. Of the 870 TCGA 

samples (234 ecDNA(+), 636 ecDNA(-)) with gene expression (RNA-seq) data, 701 samples (174 

ecDNA(+), 527 ecDNA(-)) were assigned a CPE value by Aran et al.. To determine if the presence 

of undetected ecDNA in ecDNA(-) samples would confound the results by reducing the 

discriminating power of genes, we measured the expression directionality of CorEx genes in all 

samples (n=870) versus samples which had a high tumor purity (CPE≥0.8, n=287). Specifically, 

p-values were obtained by performing Mann-Whitney U rank tests (scipy.stats python package) 

on gene expression values of ecDNA(+) and ecDNA(-) samples for both the 870 TCGA samples 

and 287 TCGA samples with high tumor purity. Genes with a significantly (p-value≤0.05) higher 

expression in ecDNA(+) samples (alternative=“greater”) were labeled as “UP”, while genes with 
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a significantly lower expression in ecDNA(+) samples (alternative= “less”) were labeled as 

“DOWN”. To generate a plot that compared gene directionality of all samples vs. high purity 

samples using p-values, a function F was applied to p-values. Specifically, 𝐹𝐹(𝑝𝑝) = 𝑑𝑑 ⋅ 𝑙𝑙𝑙𝑙𝑔𝑔10(𝑝𝑝), 

where p is the p-value and 𝑑𝑑 = 1 if directionality is “DOWN” and 𝑑𝑑 = −1 if directionality is 

“UP”. 
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