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Abstract 

The COVID-19 pandemic offers a powerful opportunity to develop methods for monitoring the spread of 

infectious diseases based on their signatures in population immunity. Adaptive immune receptor 

repertoire sequencing (AIRR-seq) has become the method of choice for identifying T cell receptor (TCR) 

biomarkers encoding pathogen specificity and immunological memory. AIRR-seq can detect imprints of 

past and ongoing infections and facilitate the study of individual responses to SARS-CoV-2, as shown in 

many recent studies. Here, we have applied a machine learning approach to two large AIRR-seq datasets 

with more than 1,200 high-quality repertoires from healthy and COVID-19-convalescent donors to infer 

TCR repertoire features that were induced by SARS-CoV-2 exposure. The new batch effect correction 

method allowed us to use data from different batches together, as well as combine the analysis for data 
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obtained using different protocols. Proper standardization of AIRR-seq batches, access to human 

leukocyte antigen (HLA) typing, and the use of both α- and β-chain sequences of TCRs resulted in a high-

quality biomarker database and a robust and highly accurate classifier for COVID-19 exposure. This 

classifier is applicable to individual TCR repertoires obtained using different protocols, paving the way to 

AIRR-seq-based immune status assessment in large cohorts of donors. 

Introduction 

Pathogen exposure leaves an imprint on the T cell immunity, with pathogen recognition being guided by 

antigens presented by HLA molecules and resulting in T cell expansion and formation of immunological 

memory1. This imprint can be explored by sequencing the T cell receptor (TCR) repertoire2, and recent 

studies have revealed that the structure of TCR repertoires derived from peripheral blood mononuclear 

cells (PBMC) can be explained by a relatively simple V(D)J rearrangement model3 together with the 

signs of past infections4. Many studies have utilized adaptive immune receptor repertoire (AIRR)-seq data 

to infer biomarkers associated with donor phenotype and pathology5,6, including efforts directed at 

predicting exposure to common pathogens such as cytomegalovirus (CMV) or SARS-CoV-2 from 

repertoire data7–9. 

The recent COVID-19 pandemic has led to increased effort to analyze TCR repertoires10,11. 

However, most studies have been conducted on small cohorts of individuals (<500 donors), which may 

not be sufficient for large-scale statistical analysis12. Existing studies for large cohorts have shown high-

quality classification of COVID-19 severity based on VJ gene segment usage or TCR sequence 

patterns13,14, but the authors did not employ batch effect correction methods, which could affect the 

generalizability of the results. The challenge in creating a universal pipeline for TCR biomarkers 

identification lies in tackling prominent batch effects in AIRR-seq data, often characterized by 

imbalanced V and J gene usage profiles and the existence of common TCR variants caused by cross-

sample contamination. Interestingly, traces of the COVID-19 immune response can be identified in both 

healthy donors and patients15, which may indicate cross-reactivity of the pre-existing memory T cell 

immune response to SARS-CoV-2. In addition, the virus is rapidly evolving16–18, and it has recently been 

shown that the robustness of the SARS-CoV-2-specific immune response is mediated by the diversity of 

the antigen-specific T cells19. Notably, the immune response is also strongly differentiated by the patient's 

HLA alleles5, which is important to account for when building AIRR-based classifiers.   

In the present study, we report a classifier that can distinguish SARS-CoV-2-exposed patients 

from uninfected donors, including individuals sampled before the COVID-19 pandemic. The main idea of 

this approach is to use complementarity-determining region 3 (CDR3) sequences, which are highly 

diverse and encode most information on TCR antigen specificity, as biomarkers for training the classifier, 

extending far beyond the set of previously reported TCRs recognizing cognate SARS-CoV-2 

epitopes8,20,21. 

Our cohort features individuals of known COVID-19 status and HLA class I and II haplotype that 

were subject to deep profiling of both TCRα and β chain repertoires. We extracted CDR3 sequences that 

can serve as biomarkers of COVID-19 status and assessed them by studying HLA association and TCRα-

β chain pairing, and discovered a large number of homologous groups of TCR sequences 

(‘metaclonotypes’) similar to known SARS-CoV-2-related TCRs. We aimed to minimize batch effects 

that are prominent in repertoire-sequencing studies, thereby allowing us to generalize our classifier across 

data from different batches and remove potential biases22–24, resulting in a robust classifier that shows 
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good performance on unseen data batches. We also used a previously reported cohort of convalescent and 

healthy individuals from Adaptive Biotechnologies8,25 to further validate the performance of our 

classifier. 

 

Results 

Study design overview 

The main aim of our study was to find TCR sequence biomarkers and develop a bioinformatic pipeline 

that allows the construction of an accurate and robust classifier that distinguishes COVID-19-

convalescent donors from unexposed individuals, as summarized in Figure 1. We performed 

immunosequencing of the rearranged TCRα and β regions from donor PBMCs. For the cohort described 

in this study (Cohort I), we sequenced both chains of the TCR heterodimer, as both chains are required to 

properly predict antigen recognition26. We ran a conventional T cell repertoire data analysis pipeline (see 

Methods) and pre-processed the data to remove low-coverage samples.  
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Figure 1. Experimental and analytical procedure. A. Peripheral blood samples were obtained for donors from 

Cohort I with known COVID-19 status and HLA context. TCRα and β loci were sequenced using a conventional 

protocol involving multiplex PCR (see Methods). Samples were preprocessed and mapped to identify V/D/J alleles 

and extract CDR3 regions. A batch-effect correction procedure was applied to normalize V(D)J rearrangement 

frequencies. B. TCRα and β biomarkers were selected for both T cell chains separately using the Fisher exact test. 

These biomarkers were aggregated by clustering TCR sequences into ‘metaclonotypes’. Annotation of these clusters 
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was performed using a database of TCR sequences with known antigen specificity, association with HLA metadata, 

and the results of α-β chain pairing analysis. C. Classifiers including various sets of features were constructed based 

on metaclonotype biomarkers described above. These classifiers were trained and evaluated using a leave-one-

batch-out cross-validation technique. D. We used another previously published cohort (Cohort II)8, 25 to assess the 

robustness of our classifier. Batch-effect correction and sample preprocessing techniques were applied to both 

cohorts, and the classifier was trained entirely on one of the cohorts and validated on the other. 

 

 After sequencing, we processed the data to extract clonotype tables from each sample — that is, 

TCR sequences rearranged from specific V and J genes and having a specific CDR3 region sequence. 

Hereafter, we will focus on CDR3 amino acid sequences as a proxy for specific T cell clonotypes, and 

refer to the number of sequencing reads corresponding to that clonotype as the clonotype size. Of the 

samples from Cohort I which passed the read-count threshold, 383/377 TCR α/β samples were from 

healthy donors (SARS-CoV-2 PCR test negative or obtained prior to pandemic) and 890/848 were from 

COVID-19-positive patients (Supplementary Figure 1A, B). The majority of samples were accompanied 

by information on HLA class I and II alleles. Samples were prepared and sequenced in nine batches. 

We proceeded to select a set of CDR3 sequences that can serve as biomarkers and form a feature 

list for COVID-19 status classifier. Selecting an unbiased set is problematic due to the batch effects that 

stem from cross-sample contamination27 and method-specific biases23. Such biases can also affect the 

classifier training procedure, as it can learn from them when batches are unbalanced in terms of cases. In 

order to tackle such batch effects, we performed a standardization procedure that allowed us to correct for 

differences in V and J gene usage, which are the major source of differences across batches. We also 

validated the resulting set of clonotypes in several ways. Co-occurrence of specific TCRα and β 

clonotypes can serve as an independent validation for biomarkers and their co-association with some 

specific pathogen. Additional information on donor HLAs was also provided to filter the set of 

biomarkers based on HLA restriction; association with donor HLA serves as additional evidence for TCR 

specificity to a specific set of antigens presented in a given donor, and allows detection of the fingerprints 

of past and present infection28. Furthermore, clonotypes with similar sequences can be aggregated into 

‘metaclonotype’ biomarkers based on clonotype graph analysis. Finally, we trained various COVID-19 

status classifiers on selected batches derived from Cohort I data using different algorithms and 

incorporating different feature sets. We verified the robustness of our results using independent batches 

from Cohort I as well as data from the previously published Cohort II that contain TCRβ sequences from 

COVID-19-convalescent donors8 merged with control samples obtained prior to the pandemic25 

(Supplementary Figure 1C, D). 

 

Batch effects and their correction in TCR repertoires 

As with many large-scale studies involving hundreds of subjects, our dataset was prepared in several 

batches. These batches were uneven both in terms of the number of subjects and imbalances in the ratio of 

COVID-19-convalescent patients to healthy donors (Figure 2A; Supplementary Figure 2A, B). Since 

TCR repertoire sequencing data is extremely high-dimensional and complex, even minor differences in 

library preparation and sequencing between batches can lead to biases in the comparative analysis of 

repertoires and obfuscate COVID-19-related features. We therefore utilized V and J gene frequency 

profiles (i.e., ‘gene usage’) of repertoires to monitor for these biases and biological effects. 
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Figure 2. Batch-effect and genotype-related differences in V gene usage. A. A bar plot of total number of 

subjects and the number of COVID-19-convalescent and healthy cases for nine donor sample batches from Cohort I. 

Numbers reflect samples that passed the sequencing depth cutoff for both TCRα and β chains. B. Heatmap of gene 

usage, showing the imprint of TRBV28/3-2/4-3 haplotypes in the dataset. Black lines show gene usage Z-scores for 

each of the three genes. C. t-SNE plots of TRBV usage according to the frequency of TRBV28, TRBV3-2 and 

TRBV4-3 gene usage. D, E. Visualization of batch effects using t-SNE. Plots show similarity of TRBV (D) and 

TRAV (E) gene usage profiles between samples. Samples are colored by batch. F, G. Same as D, E, but for TRBV 

(F) and TRAV (G) gene usage profiles after batch-effect correction. H. t-SNE plots of TRBV usage for the batch 

effect corrected data according to the frequency of TRBV28, TRBV3-2 and TRBV4-3 gene usage. 

We start with V gene usage clustering analysis, and used standard multidimensional reduction approaches 

such as principle component analysis (PCA) and t-stochastic neighbor embedding (t-SNE) for 

visualization. From the gene usage heatmap analysis, one can spot a prominent and peculiar pattern of 

TRBV28, TRBV6-2, and TRBV4-3 co-usage (Figure 2B). This pattern can be attributed to germline 

differences in the TCRβ locus29: there is a well-known 21-kb deletion polymorphism involving both 

TRBV6-2 and TRBV4-3, while TRBV28 is involved in a single-gene deletion polymorphism. As can be 
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seen in the t-SNE plot from Figure 2C, D, there is a three-cluster pattern in TRBV usage that seems to be 

unrelated to differences between batches. Further analysis showed that this is related to TRBV28 deletion 

in component 1 and TRBV6-2/TRBV4-3 deletion in component 2 (Figure 2C). Ideally, when correcting 

for batch effects, one should still be able to recover biological differences between samples such as the 

aforementioned germline polymorphisms. On the other hand, TRAV usage demonstrated clear batch-

related clustering, with samples from batches 1 and 8 predominantly located on the positive and negative 

sides of component 1 in the t-SNE plot (Figure 2E). Batch effects were also detected for TRAJ and TRBJ 

genes (Supplementary Figure 3); for both chains, batches sequenced later in time were clustered 

together (e.g., batches #8 and #9; Supplementary Figure 2C, D). Allelic effects were also visible for the 

TRBJ, TRAV and TRAJ genes, but we didn't find any previous reports for these (Supplementary Figure 

3), which we attribute to the fact that most AIRR-seq studies have focused on the β chain. 

We proceeded to perform the batch-effect correction procedure described in detail in the 

Methods section. Briefly, we aimed to normalize gene usage profiles across samples by using Z-scores 

calculated across each batch for log-transformed gene frequencies. These values were then transformed 

and re-scaled to reflect the global gene usage hierarchy of the entire dataset. As one can see from Figure 

2F and G, and Supplementary Figure 2E and F, such normalization negates batch effects such that the 

samples are uniformly distributed on the t-SNE plot. On the other hand, our correction procedure leaves 

biological variability intact, as can be seen for the case of TRBV28, TRBV6-2, and TRBV4-3 shown in 

Figure 2H. The biological variability is also preserved for TRAV and TRAJ genes as well as for TRBJ 

gene usage (Supplementary Figure 3). After correcting gene usage profiles, one can re-sample the 

clonotypes in the repertoires as described in Methods and proceed with comparative analysis of donor 

repertoires to search for COVID-19-associated clonotypes. We trained COVID-19 status classifiers based 

on V-J gene usage profiles alone, but did not succeed (Supplementary Figure 4).  

 

Identification of COVID-19-associated TCR α and β clonotypes 

We proceeded to perform statistical inference of COVID-19-associated TCR clonotypes from batch-

corrected repertoires. Inspired by previous work identifying CMV-associated TCR sequences25, we 

performed the Fisher exact test for the contingency table of presence/absence of a given TCR and 

positive/negative COVID-19 status with one critical modification described below. Note that at this step 

we considered all batches in our analysis: due to extremely high diversity of TCR repertoires and sparse 

overlap, each batch will likely bring many novel biomarkers. 

First, we made a short-list of candidate TCR α and β clonotypes that were rearranged at least 

twice—i.e., supported by at least two unique nucleotide variants or found in at least two samples in our 

entire dataset. After computing P-values for the association, we ran false-discovery rate (FDR) correction 

for multiple testing to select significant hits at q = 0.05. Surprisingly, no significant hits were found for 

TCRβ clonotypes. We suggest that this is due to limited sampling depth of individual repertoires and low 

cell counts of individual TCR variants in a donor. We then modified our method to allow a single 

mismatch in the CDR3 amino acid sequence when searching for a clonotype of interest in the repertoire. 

This adjustment is justified by the fact that a single mismatch in CDR3 doesn’t change antigen specificity 

most of the time30. The other rationale is that the estimate of clonotype population frequency computed 

this way is in perfect agreement with theoretical baseline V(D)J rearrangement probability3. After this 

adjustment, many significant hits were obtained at q = 0.05. For the final list of COVID-19-associated 

TCRs, we used the q = 0.01 threshold, arriving at 4,887 and 574 significant TCRα and β biomarkers, 

respectively (Supplementary Figure 5A and B). This nearly 10-fold difference in the number of variants 

for TCRα and β can be explained by the fact that TCRβ clonotypes are less public and more dissimilar 

due to the presence of D gene segments; as such, finding a significant association for them is harder and 

requires more samples than for TCRα. 
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Figure 3. Assessment of COVID-19 TCR α and β biomarkers. A, B. Scatter plot showing the number of COVID-

19-associated TCRα (A) and TCRβ (B) clonotypes (Y axis) plotted against the total number of clonotypes in each 

sample (X axis) from the validation batch. All numbers are given in terms of unique rearrangements; matching to 

associated clonotypes allows up to one amino acid substitution in CDR3. C, D. Distribution of COVID-19-

associated TCRα (C) and TCRβ (D) clonotype fraction across healthy and convalescent samples. E, F. CDR3 

sequence similarity graph of COVID-19-associated TCRα (E) and TCRβ (F) clonotypes, where edges (not shown) 

connect sequences with up to one amino acid substitution. Each connected cluster is highlighted with its own color. 

Predicted antigen specificity according to VDJdb is shown with arrows and labels. Green labels correspond to 

SARS-CoV-2 epitopes, red labels to the other viruses. The detailed list of associations is available in 

Supplementary Table 1 (TCRα) and 2 (TCRβ). G. Co-occurrence of CDR3 sequences in α and β chain clonotype 

clusters. Co-occurrence was calculated as the Tanimoto index for the corresponding TCR α and β clusters. The color 

corresponds to the correlation coefficient between the usage of α and β cluster clonotypes in the specified clusters. 

Bold squares show α-β pairings that demonstrate significant association with the same antigen according to VDJdb. 

H, I. CDR3 sequence logos of top four largest clusters in E and F (TCR α and β respectively). 

Basic analysis of the incidence rate of COVID-19-associated clonotypes showed that they 

constitute a detectable fraction in COVID-19-convalescent donor samples (24.1% and 6.8% on average of 

all clonotypes in TCRα and TCRβ repertoires respectively; Supplementary Figure 5A, B, C, D) that is 

significantly higher compared to healthy donors (P = 1.2 x 10-33 and 2.6 x 10-15 for TCRα and β 

respectively, Mann-Whitney test; Supplementary Figure 5E, F). Manual inspection of clonotype lists 

revealed that some of the found clonotypes had spurious CDR3 sequences that are either extremely short 

or too long, or non-canonical (e.g., CDR3 not starting with Cys and ending with Phe/Trp). We used the 

V(D)J rearrangement model31 to compute the generation probability for each of the clonotypes in our list. 
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We found outliers both for TCRα and β sequences (Supplementary Figure 5G, H) that match manually-

detected spurious sequences and removed them, leaving 4,393 and 567 TCRα and β biomarkers, 

respectively, for further analysis. The results remained unchanged after spurious clonotype removal 

(Figure 3A, B, C and D). In order to check the robustness of our results to batch removal, we repeated the 

analysis while leaving out a validation batch (batch #6), and we were nevertheless able to reproduce the 

results above. There was a detectable number of rearrangements matching COVID-19-associated TCRs in 

convalescent donors (Supplementary Figure 6A, B), and those were significantly more frequent than in 

healthy donors (P < 10-4 for both α and β, Mann-Whitney test, Supplementary Figure 6C, D). 

Assessment of COVID-19-associated TCR biomarkers 

We explored our list of COVID-19-associated TCR clonotypes to see if there are some characteristic 

motifs that may be linked to antigen specificity. Firstly, we calculated the CDR3 amino acid sequence 

similarity graph with a threshold Hamming distance of 1 for edges (Figure 3E, F). The presence of 

prominent hubs in the graph suggests that the clustering is non-random, and that there may be large 

groups among the identified biomarkers that share the same CDR3 motifs and have similar antigen 

specificity. After computing connected components, we defined 115 and 58 TCR α and β clonotype 

clusters, or metaclonotypes—an order of magnitude reduction in the number of biomarkers compared to 

the original clonotype list. We repeated the analysis with the validation batch dropped which also resulted 

in a sufficient clustering (Supplementary Figure 6E, F). 

We then performed a search against the VDJdb database32 to query for potential antigen 

specificities of metaclonotypes, allowing for a single amino acid substitution in the CDR3 region. In order 

to find reliable specificity predictions, we tested if the fraction of clonotypes associated with a given 

antigen in our cluster is higher than the fraction observed for the entire clonotype list. In cases when 

multiple antigens are associated with the same cluster, we selected the most enriched one. After setting a 

P < 0.05 threshold for the Fisher exact test and choosing the epitopes with maximum enrichment score, 

we found that 23 and five TCR α and β clusters, respectively, were strongly associated with SARS-CoV-2 

epitopes (Supplementary Table 1 and 2). Three matches to epitopes other than SARS-CoV-2 were found 

for β clusters, with 27 matches to distinct epitopes for α clusters. The latter might be either false-positive 

hits, arising as a consequence of us considering only one chain whereas specificity is defined by both. 

Alternately, they may represent bystander clonal expansions in COVID-19 due to structural relatedness 

between the original epitope and SARS-CoV-2-derived antigens—for example, the association of α 

cluster#3 with an epitope from HCoV-HKU1. 

In order to overcome the limitation of the absence of TCR α and β pairing information, we 

performed an in silico chain pairing procedure by studying the correlation of α and β clonotypes across 

samples. The detailed description of the approach applied can be found in Methods section. This 

approach has limitations, as it will not be able to detect pairing for extremely rare or extremely frequent 

metaclonotypes. The resulting heatmap of α and β pairing for our clusters is shown in Figure 3G. We 

next performed antigen specificity prediction for pairs of clusters, using only those VDJdb records that 

contain both TCR chains. Interestingly, only strongly-correlated TCRα and β clusters matched to the 

same epitope according to our annotation, and many of these epitopes were associated with SARS-CoV-2 

(Supplementary Table 3), although there were also some matches to Epstein-Barr virus epitopes and 

even neoantigens that may be attributable to cross-reactivity. Characteristic CDR3 amino acid motifs for 

the four largest α and β clusters are shown in Figure 3H and I. The full database of biomarkers is 

available online and can be accessed via https://covidbiomarkers.cdr3.net/.  

 

Building a COVID-19 status classifier using TCRα and β biomarkers 
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Figure 4. Building a classifier from TCRβ and α biomarkers. Classifiers were trained on all batches except 

#6, which was left out for validation purposes. A. Comparison of ML model F1 scores produced for each 

feature set. B. Scatter plot of the probabilities of labeling samples as COVID-19-positive for TCRα- and β-

based classifiers. Histograms on the periphery show the distribution of probabilities for each variable. C. 

Scatter plot of the probabilities of labeling samples COVID-19-positive for classifiers based on both TCRα+β 

biomarkers and TCRα+β metaclonotype cluster features. The periphery plots are similar to B. D. Target 

metrics (F1-score, precision, recall) for all evaluated models. E. Receiver operating curve (ROC) for SVM-

based classifiers for all sets of features. F. Waterfall plot of the probability of each sample being labeled as 

COVID-19 positive (> 0) or healthy (< 0). Samples from healthy donors are blue, COVID-19 samples are 
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orange. G. Precision-recall curve for SVM-based classifiers using different biomarker sets. H. Feature 

importance plot for XGBoost or RandomForest classifier models based on TCRα- and β-based meta-

biomarkers and HLA features. 

We subsequently used these TCRα and β biomarkers to build an accurate COVID-19 status 

classifier. We consider both clustered metaclonotypes and unclustered clonotypes as features, training for 

either one or both chains. Note that here we considered the biomarker list obtained for all batches in order 

to provide uniform coverage of repertoires; leaving some batches out decreased classifier recall (data not 

shown). Among the possible parameters for a classifier is the choice of biomarker frequency encoding 

and the addition of binary-encoded HLA features. Biomarker frequency can be encoded as Boolean 

(present or absent), categorical (supported by 0, 1, 2, or 3+ reads) or real (fraction of reads) values. One 

can also add binary-encoded HLA information, based on the expectation that biomarkers will have 

different feature importance depending on the HLA context. After training an example support vector 

machine (SVM) classifier (Supplementary Figure 7), we found that real biomarker frequency encoding 

gives the highest accuracy, with almost no effect from the inclusion of HLA information. The non-

informativeness of HLA data can be explained by the fact that these were obtained from the entire dataset, 

with a diverse mixture of HLAs, and thus had to be robust to donor HLA haplotype. This is further 

supported by our observations regarding classifier training on allele-restricted set of samples, described 

later in the text. 

As some batches contained exclusively healthy or COVID-19-convalescent individuals, we 

combined them to balance the number of cases as described in Methods. As before, we withheld batch 

#6, which is relatively balanced, to monitor for batch effects in classifier training. We considered six 

commonly-used classifier models and measured the F1 score, which is robust to case imbalance, to select 

the optimal classifier based on training with various sets of features (e.g., using one or both chains, 

considering metaclonotype biomarkers). SVM showed optimal performance, with multi-linear perceptron 

(MLP) having a slightly lower median score (Figure 4A), and the former was chosen for in-depth 

evaluation of classifier performance. As seen in Figure 4A, using both α and β chains simultaneously 

results in a highly accurate classifier, suggesting that biomarkers from each chain convey additional 

information that benefits overall classification. This is supported by the fact that classification results 

obtained using α and β chain biomarkers are independent (Figure 4B, Pearson R = 0.44). Interestingly, 

using metaclonotypes in the αβ classifier provides far better separation between COVID-19-convalescent 

and healthy cases (Figure 4C), perhaps owing to less sparsity in feature values. All these factors result in 

optimal classifier metrics (Figure 4D, E, F), leading to excellent sample classification (Figure 4G). 

We additionally assessed the impact of batch effects on classifier performance. We performed a 

leave-one-batch-out cross-validation procedure to compute classifier accuracy, and focused on the 

difference between combined batches (batches 4+1, batches 4+2, batches 4+3, batches 4+9), batches 5, 7 

and 8, and held-out batch 6 (Figure S8). As expected, the combined batches demonstrated a higher score 

due to batch effects; however, batch #6, which was not used at the biomarker selection step, was 

classified with accuracy similar to batches 5, 7 and 8, suggesting that our set of biomarkers is robust. We 

analyzed the feature importance of the TCRα+β metaclonotype-based classification by training XgBoost 

and RandomForest classifiers (Figure 4H). RandomForest almost exclusively ranked α chain features as 

being most important, with a couple of β chain features showing medium to low importance. XgBoost 

model, on the other hand, ranked many β chain features as being important (17 out of 58 β 

metaclonotypes among the top-50 most important features), and additionally included 3 HLA-related 

features. It may be that XgBoost’s ranking of β and HLA features is due to its ability as a boosting model 

to highlight features that are important for small subsets of data.  

 

Applying the COVID-19 status classifier to an independent dataset 
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Figure 5. Comparative analysis of classifiers between cohorts. A, B. Visualization of batch effects pre- (A) and 

post- (B) correction procedure for TRBV genes. Colors show sample batch. C. A Fisher test-based approach 

revealed >20,000 statistically significant clonotypes. The volcano plot was used to select the clonotypes with the 

highest fold change. D. Homology graph of CDR3 sequences of COVID-19-associated TCRβ clonotypes for Cohort 

II. The most probable epitope is marked for each cluster associated with SARS-CoV-2. E. Precision-recall curves 

for Cohort I (blue)- or Cohort II (yellow)-based classifiers. AP = average precision. F. Comparison of metrics for 

the models described in E. G. Homology graph of CDR3 sequences of COVID-19-associated clonotypes for both 

Cohort I and Cohort II TCRβ biomarkers. Clusters containing clonotypes from both classifiers are colored orange.  

We use a previously published data compendium from Adaptive Biotechnologies8 (Cohort II) to validate 

our classifier, and also to see whether we can train an efficient classifier on this cohort and apply it to 

Cohort I. Cohort II comprises 777 healthy and 1,214 COVID-19 samples prior after coverage filtering 

(Supplementary Figure 1C, D), and is limited to TCRβ chain data. The healthy donors were taken from 

the HIP and KECK cohorts, which were initially used for CMV infection status research25. The main 

problem with this dataset is that the healthy and COVID-19 convalescent samples come from different 

batches sequenced years apart, which can result in strong batch effects. Moreover, this dataset was 

generated using a proprietary protocol and primers that are different from the ones used here, such that a 

strong batch effect is also expected when comparing Cohorts I and II. We applied the batch effect 

correction technique discussed above, and resampled the clonotypes afterwards (Figure 5A, B). As the 

average number of reads (sequencing depth) in Cohort II is far larger than in Cohort I, each sample in this 
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cohort was down-sampled to 50,000 reads. We repeated the feature selection pipeline for the resampled 

Cohort II data, and found 17,185  TCRβ biomarkers significantly associated with COVID-19 status 

(compared to ~500 in Cohort I). However, due to our inability to decouple COVID-19 status and batch, 

we suspect the majority of these features reflect batch effects. To narrow down the biomarker list, we 

used a log enrichment (observed:expected incidence ratio in COVID-19 samples) threshold of 2.5, 

yielding 2,066 biomarkers (Figure 5C). Interestingly, there were no spurious clonotypes, and clonotype 

incidence rates were in good agreement with those predicted by a theoretical model of V(D)J 

rearrangement. 

We proceeded with similarity clustering of TCRβ clonotypes and arrived at 231 metaclonotypes, 

33 of which were specific to SARS-CoV-2 epitopes according to VDJdb (Figure 5D). The fraction of 

SARS-CoV-2 epitope-specific metaclonotypes in Cohort II is 14% (33 out of 231), which is higher than 

the 8.6% (5 out of 58) observed for TCRβ in Cohort I. We next tested the performance of a classifier 

trained for Cohort I on Cohort II data and vice versa. First, we took an existing TCRβ classifier trained for 

5,670 biomarkers from the Cohort I data and applied it to Cohort II, with prior batch-effect correction 

between cohorts. In this case, we did not downsample the Cohort II data, as we expected that the Cohort I 

biomarkers would be quite rare and require additional depth to be detected in Cohort II. Unfortunately, 15 

of the described biomarkers were still absent in all samples from Cohort II. This approach resulted in a 

validation F1-score of 0.76, precision score of 0.61, and recall of 1 for the preselected model, and an 

optimal precision-recall (PR) curve (Figure 5E, F). We also trained an SVM classifier on Cohort II 

biomarkers, downsampled the data, and applied it to Cohort I. In this case, we got roughly similar 

performance results, but with suboptimal average precision (Figure 5E, F). It may be that the design of 

Cohort II, where COVID-19 status cannot be decoupled from batch effects, does not allow training an 

optimal classifier. Nevertheless, when we checked whether TCRβ clonotype biomarkers identified 

separately for Cohort I and II have similar sequences, we observed five overlapping clusters of 

clonotypes—strong evidence that these two classifiers homed in on similar clonotypes (Figure 5G). 

 

HLA association analysis reveals a unique COVID-19 biomarker motif 

Imprints of past and present infections on TCR repertoires are associated with individual HLA 

haplotypes, as the set of antigens available to T cells is shaped by HLA restriction33. The same should be 

the case for COVID-19, and so we searched for TCRs associated with both donor status and HLA 

haplotype, employing a strategy proposed previously28. HLA-associated clonotypes were found by using 

the Fisher exact test to compare incidence in individuals with a specific HLA allele versus those without 

it. We then calculated COVID-19 association for the subset of samples having an HLA of interest. After 

obtaining lists of HLA-associated clonotypes and COVID-19-associated clonotypes for every HLA, we 

identified their intersection in order to generate a list of HLA-restricted biomarkers. This allowed us to 

explore rare clonotypes present in COVID-19 patients depending on HLA context. This approach led to 

the identification of 13 TCRβ biomarkers that were exclusive to COVID-19 donors with HLA-DQB1*05 

or HLA-DRB1*16 alleles which are present in COVID-19 positive samples from all the batches 

(Supplementary Figure 9A). Interestingly, while the search was performed using a CDR3 region that 

contains only a few amino acids (i.e. a CASS subsequence that is common across many TRBV alleles), 

all of these clonotypes were recombinants that incorporated TRBV12-3. The amino acid motif 

corresponding to the 13 clonotypes generally featured only one variable position (position 8), whereas all 

other positions remained largely fixed (Figure 6A). It is also interesting to note that the presence of both 

HLA-DQB1*05 and HLA-DRB1*16 (which have high linkage disequilibrium) is associated with various 

autoimmune diseases34,35. This pattern of clonotypes was found in 75 donors and was almost always 

associated with positive COVID-19 status (63 out of 75 donors; Figure 6B), allowing straightforward 

classification of a fraction of convalescent donors with a common HLA allele. Moreover, 11 of the 12 

healthy donors with clonotypes matching the found motif had only one read representing the clonotypes 

of interest; as such, when we dropped all samples having just one read with the corresponding pattern, the 

HLA linkage became even more evident (Figure 6C, Supplementary Figure 9B).  
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Figure 6. Analysis of DRB1*16, DQB1*05 and COVID-19-associated TCRβ biomarkers. A. Consensus motif 

for the 13 TCRβ biomarker associated with the DRB1*16, DQB1*05 HLA alleles and COVID-19 history. B. The 

number of TCRβ motif biomarker reads versus number of unique TCR sequences in healthy and COVID-19 cohorts. 

C. Heatmap representing the linkage of HLAs of interest for all the COVID-19 patients with at least two motif reads 

present in a sample. 

Separate HLA classifiers provide better classification quality 

Although our previous attempts to incorporate HLA information into the COVID-19 classifier didn’t 

yield any gains in accuracy, we hypothesized that this might be due to limited cohort size and the 

presence of a large number of rare HLA alleles. Thus, we decided to directly check whether HLA 

information can improve classifier performance by selecting samples carrying a certain HLA allele for 

our pipeline. We chose HLA-A*02+, as this is among the most common HLA alleles—in Cohort I, there 

were 545 positive donors for TCRα and 521 positive donors for TCRβ. We then repeated our COVID-19 
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association analysis, identifying 3,277 and 358 TCRα and β clonotype biomarkers that form large hubs in 

a TCR similarity graph, and which can respectively be clustered into 174 and 197 TCRα and β 

metaclonotypes (Figure 7A, B). The majority of these were specific to HLA-A*02-restricted epitopes, 

according to VDJdb annotation.  Next, we used this HLA-A*02-restricted biomarker set to train classifiers 

for the HLA-A*02+ subset of the cohort, resulting in highly accurate COVID-19 status predictions for 

SVM classifier (Figure 7C, D). To perform a proper comparison with the HLA-unrestricted classifier, we 

repeated the whole procedure described in this section for 545 and 521 Cohort I donors for TCRα and β 

chains, respectively, who were randomly selected regardless of their HLA. The resulting classifier 

performed worse than the classifiers for our entire cohort, as we had decreased the dataset size by nearly 

two-fold. These results demonstrate that HLA information can greatly boost classifier performance when 

one is provided with a sufficient number of samples with a given HLA and is handling them correctly. 

Moreover, our approach can be utilized for accurate HLA allele prediction for frequent alleles 

(Supplementary Figure 10). 

 
Figure 7. Comparison of classifiers built using biomarkers derived from random samples and A*02+ samples. 

A. Homology graph of CDR3 sequences of COVID-19-associated TCRβ clonotypes derived using only A*02+ 

samples. For each cluster associated with SARS-CoV-2, the most probable epitope is marked. Green labels show 

SARS-CoV-2 epitopes, red labels belong to other viruses. Detailed information on cluster associations is available in 

Supplementary Data 5. B. Same as A, but for TCRα biomarkers. Only matches for clusters of size >9 are shown. 

For more information see Supplementary Data 5. C. Comparison of model performance for different datasets. 

Random alpha and beta datasets correspond to classifiers built using biomarkers derived from 545 and 521 random 

TCRα and β samples, respectively, in Cohort I. A02 datasets correspond to classifiers built for A*02+ biomarkers 

and samples. D. Precision-recall curve for SVM classifiers built for the datasets in C. Classifiers using single HLA 

allele samples and single HLA allele SARS-CoV-2-associated clonotypes provided better classification. 
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Classification based on published SARS-CoV-2 epitope-specific TCR sequences 

Our previous results indicate that many inferred biomarkers are similar to TCR sequence variants that 

recognize SARS-CoV-2 epitopes according to previously published studies. Thus, we decided to test 

whether we can create an accurate COVID-19 status classifier by solely relying on publicly available 

TCR sequences as biomarkers. We started with 2,909 and 3,816 SARS-CoV-2 epitope-specific TCRα and 

β sequences, respectively, from the VDJdb database32 as a biomarker set. Overall, there was no significant 

difference in the incidence of clonotypes matching VDJdb biomarkers (with up to one amino acid 

substitution) in convalescent donors compared to healthy ones. We decided to narrow the set and proceed 

with Fisher test analysis for COVID-19 status association. We observed no significant difference for the 

majority of clonotypes, as most of them are found in only a handful of samples in the dataset. 

Nevertheless, we were able to select 338 TCRβ (Supplementary Figure 11A, B, C) and 265 TCRα 

(Supplementary Figure 11D, E, F) biomarkers for further analysis. We evaluated classifiers based on 

this set of biomarkers and found that it yields an F1 of 0.6–0.7, which is substantially lower than the 

classifier built using Cohort I data (F1 = 0.7–0.9; Supplementary Figure 11G–J). However, one can still 

see the improvement of classification metrics in the paired-chain classifier model compared to the single-

chain one. These results suggest that the number of publicly-available TCR specificity records is still too 

small to enable accurate COVID-19 status prediction in a large and diverse population of donors. 

Discussion 

Since the advent of AIRR-seq technology, there has always been an expectation that it will yield a wealth 

of novel diagnostic biomarkers and complement commonly-used immunological assays in infectious 

disease and vaccine studies. However, the complexity of the AIRR-seq protocol—combined with the 

extreme diversity of antigen receptors, variability in the strength of immune response in different donors, 

and the phenomenon of public (shared across multiple donors) and private immune responses—make it 

extremely hard to employ this technique in a clinical setting. In the present study, we used a large cohort 

of COVID-19-convalescent and healthy donors to design a proof-of-concept wet lab and bioinformatic 

pipeline based on AIRR-seq data that can be employed to accurately stratify patients based on the history 

of infection. 

The main obstacle in the way of designing a universal pipeline based on a robust set of COVID-

19 TCR biomarkers is the presence of strong batch effects in the AIRR-seq data that can lead to data 

overfitting and misclassification of donor samples23. As observed previously, most batch effects manifest 

in the form of skewed V and J gene usage profiles and the presence of ultra-public TCR variants due to 

cross-sample contamination. Here, we designed and applied a gene-usage normalization strategy that was 

able to remove biases between batches and technologies, making our data consistent and comparable with 

previously published datasets. This approach is useful in cases where each donor group is sequenced in a 

separate batch8, and can more broadly benefit research comparing AIRR-seq data from different groups of 

donors or entailing meta-analysis of different AIRR-seq studies41. We also propose the use if V(D)J 

rearrangement model software such as OLGA31 to control for potentially spurious clonotypes arising from 

artifacts or contaminants. Importantly, we explicitly show that our approach can derive a set of 

biomarkers that can be transferred and applied to an independent COVID-19 dataset obtained from a 

population with distinct demographics using a different AIRR-seq protocol.  

The ability to sequence only one TCR chain is one of the major limitations of bulk AIRR-seq 

methods. Most studies limit their analysis to TCRβ sequencing data42, even though interaction with both 
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chains is required for proper antigen binding43 and there are multiple cases of prominent TCRα motifs 

recognizing immunogenic epitopes41,44. In the present study, we clearly demonstrate that TCRα and β 

chain biomarkers contain complementary information and that joint analysis of both chains can greatly 

boost COVID-19 status classifier performance even in the absence of single-cell-resolution pairing data40. 

The latter can be partially recovered by performing in silico pairing based on biomarker co-occurrence. 

Given that T-cells observe pathogens through the prism of HLA alleles presenting distinct 

peptides, we combined the AIRR-seq data reported in this paper with donor HLA typing. Our results 

show that in general, unsupervised feature selection leads to an HLA-agnostic set of biomarkers, and that 

classifiers built using these cannot be improved by including donor HLA information. On the other hand, 

dedicated classifiers trained on donors with shared HLA alleles (e.g., the HLA-A*02 allele, which is 

relatively common in the population) showed higher accuracy than those trained for sets of donors of 

similar size with mixed HLA alleles or for the whole dataset. We were also able to find a relatively rare 

(in terms of incidence in donors) subset of biomarkers that is nevertheless tightly linked to donor HLA 

class II haplotype DRB1*16/DQB1*05 and COVID-19 positive status. Overall, our findings suggest that 

HLA information can greatly benefit AIRR-based donor classifiers if handled properly45,46. 

The pipeline described in the present study can be easily adapted to AIRR-seq studies of various 

infectious diseases and pathologies. Furthermore, the set of biomarkers produced in this work can be 

applied to monitor T cell memory for COVID-19 in donor samples and test if similar TCR sequences are 

induced by vaccination with SARS-CoV-2 antigens. We hope that further AIRR-seq studies containing 

large and diverse cohorts of donors will extend the TCR biomarker knowledgebase to other conditions, 

and make AIRR-based diagnostics and monitoring more common in clinical settings in the near future. 
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Materials and Methods 

Cohort collection 

This study is a multicenter cross-sectional stratified epidemiological research. The study was conducted 

in Federal Medical-Biological Agency (FMBA) medical organizations in 54 regions of the Russian 

Federation. The design of the study included volunteers from two cohorts. The first, ‘control’ cohort 

included conditionally healthy people without signs of respiratory diseases at the time of inclusion in the 

study and a SARS-CoV-2 PCR negative test, as well as samples of healthy individuals collected before 

the COVID-19 pandemic. The second ‘core’ cohort included people with COVID-19, with a positive test 

for SARS-CoV-2, lung CT findings, and a history of diagnosis. This core group included participants 

with different severities of COVID-19—asymptomatic, mild, moderate, severe, or extremely severe—as 

defined in the recommendations of the Ministry of Health of the Russian Federation. The core group 

included patients who had gone no more than 28 days since the diagnosis of COVID-19. A total of 1,253 

participants were included in this study (392 in the control group and 861 in the core group) in the period 

from  June  to October 2020. All participants underwent a medical inspection, physical examination, 

collection of blood samples, and oropharyngeal swаb. Samples were stored at 4–6 °C for no more than 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.11.08.566227doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566227
http://creativecommons.org/licenses/by/4.0/


 

two hours after sampling and transfer to the laboratory, and were consistently maintained at -80 °C until 

time of analysis. 

Ethical considerations 

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the 

Local Ethics Committee of the Federal State Budgetary Institution "Centre for Strategic Planning and 

Management of Biomedical Health Risks" of the FMBA (Protocol No. 2 of May 28, 2020). All 

participants provided informed consent. 

DNA isolation 

For HLA typing, genomic DNA (gDNA) from whole blood samples was isolated manually using the 

DNA Blood Mini Kit (Qiagen, Germany) in accordance to the manufacturer's protocol. The yield and 

purity of the isolated gDNA were manually determined using a Qubit 4.0 fluorimeter (Thermo Fisher 

Scientific, USA) and NanoDrop One C Microvolume UV-Vis (Thermo Fisher Scientific, USA), 

respectively. Only gDNA samples with absorbance ratios of 1.7–1.9 A260/280 and 1.8–2.2 A230/260 were 

selected for further analysis. For TCR library preparation, 200 µl of frozen whole blood was used for 

gDNA isolation using the Amplitech E1 automatic sample preparation station (LLC  “Amplitech”, 

Russia). The first step was lysis of blood samples, followed by washing. The gDNA was eluted with 50 µl 

of TE buffer, and the gDNA concentration was manually determined using a Qubit 2.0 fluorimeter 

(Thermo Fisher Scientific, USA). 

HLA typing 

A total of 150-500 ng of gDNA was used to prepare high-throughput sequencing (HTS) libraries. 

Libraries were prepared using the Illumina DNA Prep kit (Illumina, Inc. USA) according to the 

manufacturer's recommendations with a Tecan Freedom EVO robotic station (Tecan, Switzerland). The 

size of the resulting libraries was determined with the Agilent D1000 reagent kit and Agilent 4200 

TapeStation (Agilent Technologies, USA). Pooling was performed automatically using a Tecan Freedom 

EVO robotic station (Tecan, Switzerland). Pool quality control was performed with an Agilent High 

Sensitivity D1000 Screen Tape reagent kit using the Agilent 4200 TapeStation (Agilent Technologies, 

USA). Whole-genome sequencing (WGS) was performed using the Illumina NovaSeq 6000 with the S4 

reagent kit (300 cycles) (Illumina, USA) with 2 × 150 bp paired-end reads. Samples were typed at six 

main loci of HLA classes I and II (HLA-A, -B, -C, -DRB1, -DPB1, -DQB1) with a resolution of two 

fields with the xHLA bioinformatic software36. 

TCR library preparation 

The sequencing libraries for TCR α and β chains profiling were prepared using Human TCR DNA 

Multiplex kit (MiLaboratories, USA) according to the manufacturer’s protocol. Briefly, 600 ng DNA 

(equivalent to 92,000 genome copies with expected ~50% related to T cells) extracted from whole blood 

was used as input in two separate 50 μl multiplex PCR replicates containing 1X Turbo buffer, 10 U HS 

Taq polymerase, 200 μM of each dNTP (all Evrogen, Russia) and 1X TR hum DNA PCR1 primer mix 
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from the Human TCR DNA Multiplex kit. The amplification profile was 94 °C for 3 min, followed by 8 

cycles of 94 °C for 20 s, 57 °C for 90 s, and 72 °C for 40 s, followed by an additional 17 cycles of 94 °C 

for 20 s and 72 °C for 80 s. Denaturation steps (94 °C) were performed with a ramp of 4 °C/s, and other 

steps were performed with a ramp of 0.5 °C/s. 10 μl of each replicate amplicon were pooled and purified 

using 1V AmPure XP beads (Beckman Coulter) and used as a template for the second PCR. The second 

(indexing) 25 μl PCR contained 1X Turbo buffer, 2.5 units of HS Taq polymerase, 200 μM of each 

dNTP, and 1 μl of unique dual-index primers (Illumina, USA). The amplification profile was as follows: 

94 °C for 3 min, followed by 15 cycles of 94 °C for 20 s, 55 °C for 20 s, and 72 °C for 40 s. Obtained 

amplicons were purified using 0.8V AmPure XP beads (Beckman Coulter, USA), pooled, and sequenced 

on the Illumina NovaSeq 6000 system in 150PE mode. 

External datasets 

Cohort II data from Adaptive Biotechnologies was obtained from Emerson et al.25 (HIP and KECK 

batches, pre-COVID-19 control) and Nolan et al.8 (convalescent donor data). 

Data processing and analysis 

All datasets were processed with MIGEC and MiXCR software as reported previously27,37. Clonotype 

sequences for Cohort II datasets were re-mapped using MiXCR to keep consistent V(D)J naming across 

datasets. Clonotype tables were formatted and standardized using VDJtools software 38. Formatted 

datasets can be downloaded from Zenodo39, and the list of TCR biomarkers can be downloaded at 

https://covidbiomarkers.cdr3.net/. All data analysis was performed using in-house R and python scripts 

available at GitHub (https://github.com/antigenomics/tcr-covid-classifier), and the analysis can be 

reproduced by running a Snakemake workflow stored in the repository.  

Batch-effect correction and data normalization 

We focused on sample preparation and sequencing biases manifested in the difference in frequency of V 

and J gene rearrangements across batches and normalized samples as follows. We assumed that gene 

usage (P, fraction of reads mapping to a given gene in a given sample) is log-normally distributed for 

each gene across samples in a given batch, with a specific mean and standard deviation P(gene, sample) ~ 

LogNormal(𝜇, 𝜎 | batch). We therefore log-transformed gene usage and computed Z-scores, where Z = 

(log P - 𝜇) / 𝜎 for each gene, so that the distribution of gene usage becomes a standard normal distribution 

N(0, 1) across all samples. As we performed the analyses at the clonotype level, we needed the means to 

re-define and correct raw clonotype frequencies (fi), and we therefore put the Z-scores back into the [0, 1] 

interval so that we can use them to scale clonotype frequencies. We used sigmoid transform for this 

purpose, adjusted to preserve the original average gene frequency Pavg(gene) across all batches. We then 

computed target frequencies as Pfinal(gene, sample) = 2 ⨉ Pavg(gene) / (1 + exp[-Z(gene, sample)]). We 

can then correct the frequencies of clonotype fi from sample S rearranged from gene G as fi’ = fi ⨉ Pfinal(G, 

S) / P(G, S). We next adjusted the sample clonotype composition according to the new frequencies. As 

our frequency adjustment can lead to non-integer clonotype counts, straightforward sampling from a 

multinomial distribution is not feasible. We therefore randomly sampled numbers from a uniform 

distribution U[0, 1] equal to the read count in the sample and performed a roulette-wheel selection for 

clonotypes according to their adjusted frequencies fi’’ normalized to a sum of 1. 
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In-silico α-β pairing of clonotype groups 

This approach is inspired by the work of Howie et al.40 and extended by the addition of fuzzy CDR3 

matching and working with clonotype groups instead of clonotypes for robustness. We estimate the 

pairing between selected TCRα and β chain clonotype groups as follows. For a given group of clonotypes 

g, we estimated the number of matching clonotypes in a given sample s as Xgs, which is equal to the 

number of CDR3 amino acid sequences in the sample that match at least one sequence in g with up to one 

amino acid mismatch allowed (i.e. Hamming distance ≤ 1). As an example, consider the ith group of α 

chain clonotypes and jth group of β chain clonotypes. We can compute the Pearson correlation, 𝜌ij , of Xis 

and Xjs across all samples and use it as a score for pairing between these two groups. Alternatively, one 

can compute ni = ∑s Xis > 0 and nij = ∑s Xis > 0 ∧ Xjs > 0 and define the odds ratio of detecting a given 

pair as 𝜃ij = (nij ⨉ n) / (ni ⨉ nj), where n is the total number of samples. Note that the potential of in silico 

pairing is limited. A too-frequent group with high incidence across samples will be paired with almost all 

groups of another chain, whereas a rare group may have insufficient statistical power to detect a matching 

group. 

Clonotype group antigen specificity annotation 

We annotated clonotype groups with the putative antigen they recognize by matching TCRα and β 

sequences to antigen specificity records from the VDJdb database32. In general, we considered a match 

between CDR3 sequences with no more than a single amino acid substitution relative to a database record 

to indicate that a given TCR sequence recognizes a corresponding antigen. In this way, we arrived at the 

putative set of antigens {A}G for a given clonotype group G. The overall matching between a given 

clonotype group and antigen A can be assessed as follows: let nA be the number of matching clonotypes in 

a group of interest, m be the size of group of interest, NA be the number of matches in all groups and M be 

the total number of clonotypes in groups. We can then use binomial distribution with parameters nA, m 

and p = NA / M to test the significance of overlap nA / m as described in Pogorelyy et al.28. 

For a given α and β chain clonotype group pair (Gα, Gβ), we can narrow down the search to the 

intersection of their putative antigen sets. We can exploit the true α and β pairing information present in 

VDJdb to find high-confidence antigen matches for pairs of clonotype groups as follows. Let us consider 

only paired records in VDJdb for an antigen A; we next iterate over all pairs of TCRα and β sequences in 

our clonotype group and see if they match any paired database records with a single amino acid 

substitution in both CDR3 chains allowed. Counting the extent of pairing xA (i.e., the total number of 

TCRα and β sequences matched to A), we can compare it to the expected value by using the 

hypergeometric test with the maximum potential number of matches XA = min(|Gα|, |Gβ|), the number of 

paired records belonging to antigen A in VDJdb, and the total number of paired records in VDJdb. 

Selecting a COVID-19 classifier model 

We compared a set of commonly used machine learning approaches in terms of their ability to classify 

COVID-19 status using TCR repertoire data, a set of pre-selected TCR features, and HLA haplotype. 

These included SVM, AdaBoost (ab), KNN, Random Forest Classifier (rfc), Multi Linear Perceptron 

Classifier (mlpclassifier), and XgBoost. These models were compared according to their performance, 

and ab and XgBoost were additionally used to analyze feature importance. Grid search based on five-fold 

cross-validation was used to optimize the parameters of each classifier model for training data that 
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includes all batches except #6, which was withheld from classifier model selection and training, and used 

for validation. 

As the data was still imbalanced, we focused on the F1-score (harmonic mean of the precision 

and recall metrics) and precision-recall (PR)-curves to assess classifier performance. The best model was 

chosen by the maximum F1-score on the test sets. We obtained final metrics for best models using leave-

one-batch-out cross-validation. Since batches 1–3 contained no negative cases and almost all donors in 

batch 4 were positive, we constructed merged batches batch14, batch24 and batch34 by evenly 

distributing batch 4 to the first three batches, and used these instead of original batches 1-4. 
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