

1 *February 2nd 2023*

2

3

4

5

6

7 A simple mechanism for integration of quorum sensing
8 and cAMP signalling in *V. cholerae*

9

10 Lucas M. Walker¹, James R.J. Haycocks¹, Julia C. van Kessel², Triana N. Dalia², Ankur B. Dalia² and
11 David C. Grainger^{1*}

12

13

14

15 ¹School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK.

16 ²Department of Biology, Indiana University, Bloomington, Indiana, USA.

17

18 *for correspondence

19 d.grainger@bham.ac.uk

20 Tel: +44 (0)121 414 5437

21

22

23

24

25

26

27

28

29

30

31

32

33 **ABSTRACT**

34 **Many bacteria use quorum sensing to control changes in lifestyle. The process is regulated by**
35 **microbially derived “autoinducer” signalling molecules, that accumulate in the local**
36 **environment. Individual cells sense autoinducer abundance, to infer population density, and alter**
37 **their behaviour accordingly. In *Vibrio cholerae*, quorum sensing signals are transduced by**
38 **phosphorelay to the transcription factor LuxO. Unphosphorylated LuxO permits expression of**
39 **HapR, which alters global gene expression patterns. In this work, we have mapped the genome-**
40 **wide distribution of LuxO and HapR in *V. cholerae*. Whilst LuxO has a small regulon, HapR**
41 **targets 32 loci. Many HapR targets coincide with sites for the cAMP receptor protein (CRP) that**
42 **regulates the transcriptional response to carbon starvation. This overlap, also evident in other**
43 ***Vibrio* species, results from similarities in the DNA sequence bound by each factor. At shared**
44 **sites, HapR and CRP simultaneously contact the double helix and binding is stabilised by direct**
45 **interaction of the two factors. Importantly, this involves a CRP surface that usually contacts RNA**
46 **polymerase to stimulate transcription. As a result, HapR can block transcription activation by**
47 **CRP. Thus, by interacting at shared sites, HapR and CRP integrate information from quorum**
48 **sensing and cAMP signalling to control gene expression.**

49

50 **INTRODUCTION**

51 *Vibrio cholerae* is a Gram-negative bacterium responsible for the human disease cholera¹. Estimates
52 suggest 3 million annual infections, of which 100 thousand are fatal². Most disease instances are
53 attributed to the El Tor *V. cholerae* biotype, which is responsible for the ongoing 7th cholera pandemic³.
54 Globally, over 1 billion people inhabit areas of endemicity and future climatic change is likely to
55 exacerbate the risk of illness^{2,4}. The success of *V. cholerae* as a pathogen is underpinned by an ability
56 to colonise both aquatic ecosystems and the human intestinal tract¹. In waterways, *V. cholerae* prospers
57 by forming biofilms on arthropod exoskeletons. Degradation of these chitinous surfaces ultimately
58 liberates *N*-acetylglucosamine (GlcNAc) for metabolism by the microbe⁵. Upon ingestion by a human
59 host, *V. cholerae* express genetic determinants for acid tolerance, intestinal colonisation, and virulence.
60 Diverse transcription factors regulate the transition and respond to signals including bile⁶, temperature⁷,
61 nucleotide second messengers^{8,9}, and chitin availability⁵. Understanding these regulatory networks is
62 important to determine how *V. cholerae* can switch between environments to cause disease
63 outbreaks^{3,10,11}.

64

65 Quorum sensing is key for the transition of *V. cholerae* between ecological niches¹². Briefly, *V. cholerae*
66 produce at least 3 autoinducer (AI) signalling molecules: cholera AI-1 (CAI-1), AI-2, and 3,5-
67 dimethylpyrazin-2-ol (DPO)¹³. In the environment, these compounds are detected by receptors in
68 neighbouring cells and indicate population density. Importantly, whilst AI-2 and DPO are produced by
69 multiple bacterial species, CAI-1 is only made by other members of the *Vibrio* genus¹⁴. Thus, *V.*

70 *cholerae* can determine the crude composition of bacterial populations. In the absence of their cognate
71 AIs, when population density is low, the receptors for CAI-I and AI-2 target the transcription factor
72 LuxO for phosphorylation via a phosphorelay system^{13,15,16}. When phosphorylated, LuxO upregulates
73 the production of four small quorum regulatory RNAs (Qrrs)¹⁷. In turn, the Qrrs control expression of
74 two global transcription factors: AphA and HapR¹⁷⁻¹⁹. Importantly, whilst AphA production is activated
75 by Qrrs, synthesis of HapR is repressed. Hence, AphA and HapR control gene expression at low and
76 high cell density respectively^{13,19}. A simplified outline of the LuxO dependent regulatory pathway for
77 HapR is illustrated in Figure 1a.

78

79 Identified as a regulator of *hapA*, required for *V. cholerae* migration through intestinal mucosa, HapR
80 is a TetR-family member that binds DNA as a homodimer via a N-terminal helix-turn-helix motif^{20,21}.
81 Many clinical isolates of pandemic *V. cholerae* have lost the ability to properly express HapR and this
82 may indicate adaptation to a more pathogenic lifestyle^{3,10,22}. In *V. cholerae*, HapR regulates the
83 expression of ~100 genes to promote ‘group behaviours’ including natural competence, repression of
84 virulence genes, and escape from the host intestinal mucosa²³. In other *Vibrio* spp., equivalent regulons
85 are larger. For example, LuxR in *Vibrio harveyi* regulates over 600 genes²⁴. Expression of HapR can be
86 influenced by other factors. In particular, cAMP receptor protein (CRP), a regulator that controls
87 metabolism of alternative carbon sources, including chitin, upregulates HapR²⁵. In this study, we used
88 chromatin immunoprecipitation and DNA sequencing (ChIP-seq) to identify direct DNA binding
89 targets of HapR and its upstream regulator, LuxO. We show that the degenerate DNA consensus bound
90 by HapR frequently overlaps targets for CRP. At such sites, HapR and CRP co-operatively bind offset
91 faces of the double helix. Strikingly, this occludes a key CRP surface required to activate transcription.
92 This simple mechanism allows *V. cholerae* species to integrate quorum sensing, and cAMP signalling,
93 in the control of gene expression.

94

95 **RESULTS**

96 *Genome-wide DNA binding by HapR and LuxO in Vibrio cholerae*

97 Whilst the impact of HapR on global gene expression in *V. cholerae* has been investigated, it is not
98 known which HapR responsive genes are directly controlled by the protein²³. Similarly, the extent of
99 the direct LuxO regulon is unknown. Hence, we sought to map the binding of LuxO and HapR across
100 the *V. cholerae* genome. To facilitate this, *luxO* and *hapR* were cloned in plasmids pAMCF and pAMNF
101 respectively. The resulting constructs, encoding LuxO-3xFLAG or 3xFLAG-HapR, were used to
102 transform *V. cholerae* strain E7946. In subsequent ChIP-seq experiments, anti-FLAG antibodies were
103 used to select fragments of the *V. cholerae* genome bound with either LuxO or HapR. The derived
104 binding profiles are shown in Figure 1b. In each plot, genes are shown as blue lines (outer two tracks)
105 whilst the LuxO and HapR binding signals are red and green respectively (inner two tracks). Examples
106 of individual binding peaks for each factor are shown in Figure 1c. In total, we identified 5 and 32 peaks

107 for LuxO and HapR binding respectively (Table 1). Previous work identified targets for LuxO adjacent
108 to genes encoding the 4 Qrr sRNAs. We recovered all of these known LuxO targets, and an additional
109 binding site was identified between *VC1142* and *VC1143*. These divergent genes encode cold shock-
110 like protein CspD, and the Clp protease adaptor protein, ClpS, respectively. Note that the LuxO binding
111 signal at this locus is small, compared to the *qrr1-4* targets (Figure S1). To identify the sequence bound
112 by LuxO, DNA regions overlapping LuxO binding peaks were inspected using MEME. The motif
113 identified matches the known consensus for LuxO binding and was found at all LuxO targets (Table 1
114 and Figure 1d)²⁶. The positions of LuxO binding sites with respect to genes, and the functions encoded
115 by these genes, are summarised in Figures 1e and 1f respectively. Of the 32 peaks for HapR binding, 4
116 correspond to previously identified direct targets (*hapR*²⁷, *VC0241*²⁸, *VC1851*²⁹ and *VCA0148*²⁸).
117 Similarly, a DNA motif common to all HapR ChIP-seq peaks matched prior descriptions of the DNA
118 target for HapR (Figure 1d). Occurrences of this HapR binging motif were most frequent in the 200 bp
119 preceding a gene start codon (Figure 1e). Most often, the genes adjacent to HapR binding peaks encode
120 protein functions related to metabolism, motility, and chemotaxis (Figure 1f). Overall, our data suggest
121 that LuxO primarily regulates gene expression via the 4 Qrr sRNA molecules. Conversely, the genome-
122 wide distribution of HapR is consistent with that of a global gene regulator with many undefined
123 regulatory roles.

124

125 *HapR is a direct regulator of transcription at many target sites*

126 We focused our attention on new HapR target promoters where adjacent coding sequence could be used
127 to predict encoded protein function. For these 24 targets, regulatory DNA was cloned upstream of *lacZ*
128 in plasmid pRW50T. Recombinants were then transferred to *V. cholerae* E7946, or the Δ *hapR*
129 derivative, by conjugation. Strains generated were cultured overnight before β -galactosidase activities
130 were determined. The results are shown in Figure 2a. Promoters were categorised as inactive,
131 unresponsive, repressed or activated by HapR. We identified 2 and 7 promoters subject to activation
132 and repression by HapR respectively. Of the remaining promoters, 7 were inactive and 11 unresponsive
133 to HapR in our conditions. Next, the 9 promoter DNA fragments responsive to HapR *in vivo* were
134 cloned upstream of the λ oop terminator in plasmid pSR. The resulting constructs were then provided to
135 housekeeping *V. cholerae* RNA polymerase, as templates for *in vitro* transcription, in the presence and
136 absence of HapR. The results are shown in Figure 2b where the expected size of transcripts terminated
137 by λ oop are marked with blue triangles³⁰. Recall that the *VC1375* and *VC1403* promoters were
138 activated by HapR *in vivo* (Figure 1a). Consistent with this, HapR also activated the *VC1375* promoter
139 *in vitro* (Figure 3b, lanes 43-47). However, HapR did not activate *in vitro* transcription from the *VC1403*
140 promoter (Figure 3b, lanes 48-53). Indeed, interpretation of these data were hampered because the
141 location of the *VC1403* transcription start site (TSS) is not known³⁰. Of the 7 promoters repressed by
142 HapR *in vivo*, we observed repression in 6 cases *in vitro* (*hapR*, *VC0585*, *VC2352*, *VCA0219*, *VCA0663*

143 and VCA0960) (lanes 7-42). Conversely, the *murQP* promoter (*PmurQP*) subject to repression by HapR
144 *in vivo*, generated no transcript *in vitro* (lanes 1-6).

145

146 *Transcription from the murQP promoter requires CRP in vivo and in vitro*
147 The *murQP* operon encodes functions important for recycling of peptidoglycan. Briefly, cell wall
148 derived *N*-acetylmuramic acid (MurNAc) is transported across the inner membrane, and simultaneously
149 phosphorylated, by the phosphotransferase system dependent permease MurP. Resulting MurNAc-6P
150 is hydrolysed by MurQ to generate *N*-acetylglucosamine 6-phosphate (GlcNAc-6P). Intriguingly,
151 GlcNAc-6P can also be derived from chitin break down and this coincides with expression of HapR.
152 Hence, we focused on understanding the role of HapR bound upstream of *murPQ*. The HapR ChIP-seq
153 binding signal at the *murQP* locus is shown in Figure 3a and the associated regulatory region is shown
154 in Figure 3b. The centre of the ChIP-seq peak for HapR is marked by an asterisk and the predicted
155 binding site is highlighted green. We reasoned that our inability to detect transcription from *PmurQP*
156 *in vitro* was likely because an undefined transcriptional activator is absent (Figure 2b). Inspection of
157 the DNA sequence upstream of *murQP* identified a close match to the consensus binding site for CRP
158 (5'-TGTGA-N₆-TCACA-3'). Furthermore, this sequence was located 41.5 bp upstream, of the *murQP*
159 TSS (Figure 3b). This is a common scenario for CRP dependent transcription activation³¹. To measure
160 binding of CRP to the *murQP* regulatory region we used electrophoretic mobility shift assays (EMSAs).
161 Consistent with our prediction, CRP bound to the *murQP* regulatory DNA (Figure 3c, lanes 1 and 2).
162 To confirm that we had correctly identified the binding site for CRP we made a series of *PmurQP*
163 derivatives. The Δ183 and Δ211 DNA fragments have large upstream deletions (sites of truncation are
164 shown by inverted triangles in Figure 3b, which mark the 5' end of the remaining promoter DNA) but
165 still bind CRP (Figure 3c, lanes 3-6). Conversely, point mutations -35g and -49g, within the CRP site,
166 prevent binding (Figure 3c, lanes 7-8). To determine the impact of CRP on *PmurQP* activity we first
167 used *in vitro* transcription assays (Figure 3d). Addition of CRP to reactions resulted in production of an
168 RNA from *PmurQP*. We observed similar CRP dependence *in vivo* using β-galactosidase assays (Figure
169 3e, compare wild type promoter activity with and without CRP). Furthermore, in wild type cells,
170 the -35g and -49g mutations reduced promotor activity whilst the Δ183 and Δ211 truncations did not
171 (Figure 3e). We note that the Δ211 derivative is much more active than the starting promoter DNA
172 sequence, but transcription remains totally dependent on CRP. Most likely, the truncation removes a
173 repressive DNA element upstream of the core promoter.

174

175 *HapR and CRP bind a shared DNA site at the murQP promoter*

176 At *PmurQP*, the DNA site for CRP is completely embedded within the predicted HapR binding
177 sequence (Figure 3b). To better understand this unusual configuration, we used DNaseI footprinting.
178 The results are shown in Figure 4a. Lane 1 shows the pattern of DNaseI digestion in the absence of

179 bound protein. In the presence of CRP (lanes 2-4) a footprint was observed between positions -29 and
180 -59 bp relative to the *murQP* TSS. As is usual for CRP, and a consequence of DNA bending, the
181 footprint comprised protection from, and hypersensitivity to, DNase I attack. Three distinct sites of
182 DNaseI hypersensitivity are marked by orange arrows alongside lane 4 in Figure 4a. The pattern of
183 DNase I digestion in the presence of HapR is shown in lanes 5-8. The footprint due to HapR binding
184 exactly overlaps the region bound by CRP and results in complete protection of the DNA from digestion
185 between positions -29 and -58 (green bar adjacent to lane 8). We also observed changes in the relative
186 intensity of bands upstream of the HapR site between promoter positions -60 and -80. We speculate that
187 this may result from changes in DNA conformation. Importantly, there was one further subtle difference
188 between HapR and CRP induced banding patterns. Namely, in the presence of HapR, a band was
189 observed at position -58 (see green triangle adjacent to lane 8). With CRP, a band was instead observed
190 at position -59 (compare lanes 2-4 with 5-8). In a final set of assays, we examined addition of CRP and
191 HapR in unison. We reasoned that 3 outcomes were possible. First, one of the two protein factors could
192 outcompete the other. This should result in a DNase I digestion pattern identical to either the individual
193 CRP or HapR footprint. Second, some DNA fragments in the reaction could be bound by CRP and
194 others by HapR. In this case, a mixed DNase I digestion pattern, containing all features of the individual
195 footprints due to CRP and HapR, should occur. Third, CRP and HapR could bind simultaneously. This
196 might generate a DNase I digestion pattern with similarities to the CRP and HapR footprints. However,
197 accessibility of the nucleic acid to DNase I would likely be altered in some way, with unpredictable
198 outcomes. The result of the experiment was analysed in lanes 9-12. The binding pattern matched only
199 some aspects of the individual footprints for CRP and HapR. Hence, we observed 2 of the 3 DNase I
200 hypersensitivity sites due to CRP binding. Changes in the banding pattern upstream of the binding
201 sequence, due to HapR, were also detected. We did not observe the band at position -58 detected with
202 HapR alone. Rather, we observed a band at position -59. An additional band at position -26 (black
203 triangle adjacent to lane 12) was unique to these reactions. We conclude that HapR and CRP recognise
204 the same section of the *murQP* regulatory region and may bind in unison.

205

206 *HapR and CRP bind the murQP promoter co-operatively*

207 Fragments of the *murQP* regulatory DNA, simultaneously bound by CRP and HapR, are expected to
208 have distinct migratory properties during electrophoresis. Thus, we compared binding of CRP and/or
209 HapR using EMSAs. The results are shown in Figure 4b. As expected, addition of CRP to reactions
210 caused a distinct shift in electrophoretic mobility (lanes 1-5). Comparatively, at the concentration used,
211 HapR bound the DNA fragment poorly; we observed only smearing of the free DNA at the highest
212 HapR concentration tested (lanes 6-10). The binding pattern due to HapR was dramatically different if
213 DNA was pre-bound with CRP (lanes 11-15). In this scenario, even low concentrations of added HapR
214 were sufficient to generate a super-shifted nucleoprotein complex (lanes 11-15). These data are
215 consistent with HapR having a higher affinity for CRP-P*murQP* than P*murQP* alone. Hence, HapR and

216 CRP bind the *murQP* regulatory region co-operatively. A mundane explanation is that increased
217 molecular crowding, upon CRP addition, increases the effective concentration of HapR. To exclude this
218 possibility, we did two further sets of EMSA experiments. In the first set of assays, CRP was added at
219 a lower concentration. Thus, some DNA remained unbound (Figure 4c, lanes 1 and 2). Hence, when
220 added to such reactions, HapR could bind either the free DNA or the CRP-DNA complex. Consistent
221 with HapR preferentially binding the latter, all of the CRP-DNA complex was super shifted upon HapR
222 addition. Conversely, the free DNA remained unbound (compare lanes 2 and 4). In equivalent
223 experiments, with point mutations -49g and -35g in the CRP site, neither CRP or HapR were able to
224 bind the DNA (lanes 5-8). In a second set of tests, we used the *hapR* regulatory DNA that binds HapR
225 but not CRP. If CRP addition increased the effective concentration of HapR, this should result in much
226 tighter HapR binding to the *hapR* promoter. However, this was not the case (Figure S2). Taken together,
227 our data are consistent with CRP and HapR co-operatively binding the same DNA locus at the *murQP*
228 promoter region.

229

230 *HapR represses CRP dependent transcription from the murQP promoter in vivo and in vitro*
231 Recall that, in the absence of CRP, *P_{murQP}* is inactive *in vitro* (Figures 2b and 3d). Furthermore, the
232 promoter is subject to repression by HapR *in vivo* (Figure 2a). An explanation consistent with both
233 observations is that HapR directly counteracts CRP mediated activation. To test this, we used *in vitro*
234 transcription assays (Figure 4d). As expected, addition of CRP activated *murQP* transcription (lanes
235 1-4) and this was blocked by addition of HapR (lanes 5-8). We also repeated our prior *lacZ* fusion
236 experiments, using the Δ211 *P_{murQP}* derivative, and *V. cholerae* E7946 lacking *cpr* and/or *hapR*. The
237 result is shown in Figure 4e. Deletion of *hapR* caused increased transcription from *P_{murQP}* only when
238 CRP was present. Hence, HapR also represses CRP dependent *murQP* transcription *in vivo*.

239

240 *Binding sites for CRP and HapR overlap in a specific configuration genome-wide*

241 Both CRP and HapR bind the same DNA region upstream of *murPQ*. This suggests similar nucleic acid
242 sequences are recognised by each factor. Figure 5a shows an alignment of DNA logos, derived from
243 CRP⁹ (top) and HapR (bottom) ChIP-seq targets. The two motifs have features in common that align
244 best when the logo centres are offset by 1 base pair. This is consistent with the arrangement of binding
245 sites upstream of *murPQ* (Figure 3b). To understand the importance of this configuration we first took
246 a bioinformatic approach. The DNA sequences logos shown in Figure 5a were used to create position
247 weight matrices (PWMs) describing either the CRP or HapR binding site. We then searched the *V.*
248 *cholerae* genome, using each PWM, and calculated the distance between identified CRP and HapR
249 sites. The data for all sites within 100 bp of each other is shown in Figure 5b (top panel). In all cases,
250 the CRP and HapR targets were offset by 1 bp. We then repeated the analysis after randomising the *V.*
251 *cholerae* genome sequence (bottom panel). The number of overlapping targets was reduced 7-fold. An
252 equivalent analysis of the *V. harveyi* genome produced similar results (Figure S3). Hence, sites for CRP

253 and HapR have a propensity to coincide in a specific configuration. That such sites are found more
254 frequently in native genome sequences, compared to those first randomised, suggests selection during
255 genome evolution. We next sought to understand how this arrangement might permit simultaneous and
256 co-operative binding of CRP and HapR.

257

258 *A structural model of the DNA-CRP-HapR ternary complex*

259 To understand organisation of the DNA-CRP-HapR ternary complex we used structural modelling. The
260 *V. cholerae* CRP protein is 96 % identical to the equivalent factor in *Escherichia coli*. Similarly, the
261 *Staphylococcus aureus* factor QacR is 50 % similar to *V. cholerae* HapR. Previously, structural biology
262 tools were used to investigate *E. coli* CRP, and *S. aureus* QacR, bound with their cognate DNA targets.
263 We used this information to build a model for the DNA-CRP-HapR ternary complex. Importantly, we
264 ensured that the CRP and HapR binding centres were offset by 1 bp. When aligned in this way, CRP
265 and HapR recognise the same section of DNA via different surfaces of the double helix. We examined
266 the model in the context of our DNase I footprinting data. Recall that CRP binding upstream of *murPQ*
267 induces three sites of DNase I hypersensitivity (Figure 4a). These correspond to positions -47, -38 and
268 -34 with respect to the *murQP* TSS. Figure S4 shows these positions highlighted in the context of our
269 model. In the presence of CRP alone, all sites are surface exposed but position -34 is partially occluded
270 by CRP (Figure S4a). This likely explains why positions -47 and -38 are more readily cleaved by
271 DNase I (Figure 4a). With both CRP and HapR, position -34 was completely protected from DNase I
272 attack (Figure 4a). Consistent with the footprinting data, our model indicates that position -34 is almost
273 completely hidden upon binding of HapR (Figure S4b). Conversely, access to positions -47 and -38 is
274 not altered (Compare Figures S4a and S4b).

275

276 *Co-operative binding with HapR requires CRP residue E55*

277 Co-operative DNA binding by transcription factors can result from their direct interaction³²⁻³⁴. In our
278 model, a negatively charged surface of CRP (including residue E55) is in close proximity to positively
279 charged HapR residue R123 (Figure 5c). In initial experiments, we mutated both protein surfaces to
280 remove the charged side chain, or replace the residue with an oppositely charged amino acid. We then
281 investigated consequences for HapR and CRP binding individually at *PmurQP* using EMSAs (Figure
282 S5). Whilst the CRP derivatives were able to bind the *murQP* regulatory region normally, HapR variants
283 were completely defective. This is likely because R123 sits at the HapR dimerisation interface. Hence,
284 we focused on understanding the contribution of CRP sidechain E55 to co-operative DNA binding by
285 HapR and CRP using EMSAs. The results are shown in Figure 5d. Both wild type CRP, and CRP^{E55A},
286 were able to bind the *murQP* regulatory region similarly (lanes 1-4 and 10-13). As expected, HapR
287 bound tightly to the wild type CRP:DNA complex (lanes 5-9). Conversely, HapR had a lower affinity
288 for DNA in complex with CRP^{E55A} (lanes 14-18). This suggests that the E55A mutation in CRP
289 destabilises the interaction with HapR.

290 *Repression of P_{murQP} by HapR requires CRP residue E55*

291 Residue E55 locates to a negatively charged surface of CRP called Activating Region 3 (AR3). This
292 determinant aids recruitment of RNA polymerase when CRP binds close to the promoter -35 element³⁵.
293 Hence, AR3 is likely to be important for activation of *P_{murQP}* (Figure 3b). We inferred that CRP
294 lacking E55 should activate *P_{murQP}* less efficiently but be less sensitive to negative effects of HapR.
295 To test these predictions, we used *in vitro* transcription assays. The results for CRP, CRP^{E55A} and
296 CRP^{E55R} are shown in Figure 5e. All CRP derivatives were able to activate transcription from *P_{murQP}*.
297 However, consistent with an important role for AR3, the ability of the CRP^{E55A} and CRP^{E55R} to activate
298 transcription was impaired (compare lanes 1-5, 10-14 and 19-23). Crucially, whilst HapR reduced
299 transcription dependent on wild type CRP by 50-fold (compare lane 4 with lanes 6-9) only a 2-fold
300 effect of HapR was observed with CRP^{E55A} (compare lane 13 with lanes 15-18). In the presence of
301 CRP^{E55R}, HapR was even less effective (compare lane 22 with lanes 24-27).

302

303 *High cell density locked V. cholerae are defective for growth on MurNAc*

304 Phosphorylated LuxO activates expression of the Qrr sRNAs that inhibit *hapR* expression at low cell
305 density (Figure 1a). Consequently, deletion of *luxO* causes constitutive expression of HapR. Thus,
306 *ΔluxO* *V. cholerae* are “locked” in a high cell density state²⁹. Our model predicts that such strains will
307 be defective for growth using MurNAc as the sole carbon source, as this requires expression of *murQP*
308 that is repressed by HapR. Furthermore, any such defect should be relieved upon deletion of *hapR*. To
309 test this, we constructed strains lacking different combinations of *luxO* and *hapR*. We also tested a *V.*
310 *cholerae* derivative lacking *murP*³⁶. Figure 6a illustrates growth in M9 minimal media, supplemented
311 with MurNAc or glucose, and in Luria Broth. As expected, cells lacking *murP* could not grow when
312 MurNAc was the only carbon source but were not defective in other conditions (compare grey data
313 points in each panel). Cells lacking *hapR*, alone or in combination with *luxO*, had a similar growth
314 defect in all conditions. Strikingly, the *luxO* mutant (high cell density locked), exhibited a growth defect
315 only when MurNAc was the sole carbon source (compare red data points). Specifically, these cells
316 exhibited an extended lag phase in MurNAc. This extended lag phase was not apparent when both *luxO*
317 and *hapR* were deleted, consistent with the effect of *luxO* being mediated by HapR-dependent
318 repression of *murQP*.

319

320 *Co-operative interactions between HapR and CRP are commonplace*

321 In a final set of experiments, we turned our attention to other sites shared by CRP and HapR (Table 1
322 and prior work⁹). We selected 5 such targets and examined binding of CRP and HapR using EMSAs.
323 At 1 target, adjacent to VCA0218, binding was not co-operative and free DNA remained when both
324 proteins were present (Figure S6). For 4 of the targets, we detected co-operative binding of CRP and
325 HapR, reminiscent of our experiments with *P_{murQP}* DNA (Figure 4). At these loci (adjacent to
326 VC0102, VC1851, VCA0663 and VCA0691) either HapR or CRP bound poorly to DNA in the absence

327 of the other protein. However, when both factors were added together, all DNA shifted into a distinct
328 low mobility complex. We conclude that co-operative binding of HapR and CRP to shared targets is
329 common.

330

331 DISCUSSION

332 Previously, two studies have mapped DNA binding by HapR homologs in *Vibrio* species. For *V.*
333 *harveyi*, van Kessel and co-workers used ChIP-seq to identify 105 LuxR binding targets³⁷. At 77 of
334 these sites, LuxR repressed transcription. Using ChIP-seq and global DNase I footprinting, Zhang *et*
335 *al.* found 76 LuxR bound regions in *Vibrio alginolyticus*³⁸. Regulatory effects were evident for 37
336 targeted genes, with 22 cases of LuxR mediated repression. In the present study, we identified 32 HapR
337 bound sections of the *V. cholerae* genome. Consistent with prior work, repression of target genes was
338 the most common regulatory outcome. Furthermore, the DNA binding consensus derived here for HapR
339 is almost identical to motifs for LuxR binding in *V. harveyi* and *V. alginolyticus*. Contrastingly, Tsou
340 and colleagues used bioinformatic tools to predict HapR binding in *V. cholerae*²⁸. Two different HapR
341 binding motifs were proposed. Both partially match the HapR target sequence proposed here. Most
342 likely, the analysis of Tsou *et al.* was hampered by a paucity of targets from which a full consensus
343 could be derived. We note that our list of 32 HapR targets does not include all known targets. However,
344 on inspection, whilst insufficient to pass our stringent selection criteria, weaker signals for HapR are
345 evident at many such locations (Figure S7). In particular, we note evidence for binding of HapR
346 upstream of *hapA*, which has previously been only inferred (Figure S7b).

347

348 Recognition of shared DNA targets provides a simple mechanism for integration of quorum sensing
349 signals, relayed by HapR, and cAMP fluctuations, communicated by CRP. In the example presented
350 here, HapR acts to prevent transcription activation by co-binding the same DNA target with CRP
351 (Figure 4). Hence, at *PmurQP*, the function of CRP switches from that of an activator to a co-repressor
352 with HapR (Figure 6b). This regulatory strategy is a logical consequence of *V. cholerae* forming
353 biofilms on chitinous surfaces. At low cell density, rapidly dividing cells must continually remodel their
354 cell wall. In these conditions, HapR is not expressed. Thus, MurQ and MurP are produced and can
355 convert cell wall derived MurNAc to GlcNAc-6P. Conversely, in high cell density scenarios, usually
356 involving adherence to chitin, cells divide infrequently, and remodelling of the cell wall is not required.
357 In addition, GlcNAc-6P can be derived readily from chitin oligosaccharides. **Hence, cells locked in the**
358 **high cell density state are defective for growth when supplied with MurNAc as the sole carbon source**
359 **(Figure 6a).** We suggest that HapR and CRP are likely to coordinate the expression of other metabolic
360 enzymes in a similar way. Interestingly, AphA, another quorum sensing responsive regulator, also acts
361 alongside CRP at many *V. cholerae* promoters³⁹. Indeed, AphA and CRP binding sites can overlap but
362 this results in competition between the factors³⁹. Together with results presented here, these
363 observations highlight close integration of quorum sensing with gene control by cAMP in *V. cholerae*.

364

365 MATERIALS AND METHODS

366 *Strains, plasmids and oligonucleotides*

367 Strains, plasmids and oligonucleotides used in this study are listed in Table S1. All *V. cholerae* strains
368 are derivatives of E7946⁴⁰. Chromosomal deletions were made using the pKAS32 suicide plasmid for
369 allelic exchange^{41,42} or via splicing-by-overlap-extension PCR and chitin-induced natural
370 transformation⁴³. The *E. coli* strain JCB387 was used for routine cloning⁴⁴. Plasmids were transferred
371 into *V. cholerae* by either conjugation or transformation as described previously^{9,39}.

372

373 *ChIP-seq and bioinformatics*

374 Chromatin immunoprecipitation was done as in prior work³⁹ using strain E7946, carrying
375 plasmid pAMCF-*luxO* or pAMNF-*hapR*. In both cases, control experiments were done using
376 the equivalent plasmid with no gene insert. Note that both plasmids drive low level constitutive
377 expression of 3xFLAG transcription factor derivatives⁴⁵. Lysates were prepared from mid-log
378 phase cultures, incubated with shaking at 37 °C. Following sonication, the protein-DNA
379 complexes were immunoprecipitated with an anti-FLAG antibody (Sigma) and Protein A
380 sepharose beads. Immunoprecipitated DNA was blunt-ended, A-tailed, and ligated to barcoded
381 adaptors before elution and de-crosslinking. ChIP-seq libraries were then amplified by PCR
382 and purified. Library quality was assessed using an Agilent Tapestation 4200 instrument and
383 quantity determined by qPCR using an NEBnext library quantification kit (NEB). Libraries
384 were sequenced as described previously⁴⁵ and reads are available from ArrayExpress using
385 accession code E-MTAB-11906. Single-end reads, from two independent ChIP-seq
386 experiments for each strain, were mapped to the reference *V. cholerae* N16961 genome
387 (chromosome I: NC_002505.1 and chromosome II: NC_002506.1) with Bowtie 2⁴⁶. The read
388 depth at each position of the genome was determined for each BAM file using
389 multibamsummary. Each binding profile was then normalised to an average genome-wide read
390 depth of 1 read per base. Following normalisation, the average read depth per base for each
391 pair of replicates was calculated. The resulting files were used to generate the circular plots in
392 Figure 1 using DNAPlotter⁴⁷. For peak selection, the files were viewed as graphs using the
393 Artemis genome browser⁴⁸. After visually identifying an appropriate cut-off, peaks were
394 selected using the “create features from graph” tool. For HapR, the window size, minimum
395 feature size, and cut-off value were 100, 100 and 10 respectively. For LuxO, the equivalent
396 values were 100, 100 and 4. The mid-point of features selected in this way was set as the peak
397 centre. In each case, 300 bp of sequence from the peak centre was selected and the combined

398 set of such sequences for each factor were analysed using MEME to generate DNA sequence
399 logos⁴⁹.

400

401 *β-galactosidase assays*

402 Promoter DNA was fused to *lacZ* in plasmid pRW50T that can be transferred from *E. coli* to *V. cholerae*
403 by conjugation⁹. Assays of β-galactosidase activity were done according to the Miller method⁵⁰.
404 Bacterial cultures were grown at 37 °C with shaking in LB broth, supplemented with appropriate
405 antibiotics, to mid-log phase. Values shown are the mean of three independent experiments and error
406 bars show the standard deviation.

407

408 *Proteins*

409 We purified *V. cholerae* CRP and RNA polymerase as described previously^{9,39}. To generate HapR, *E.*
410 *coli* T7 Express cells were transformed with plasmid pHis-tev-HapR, or derivatives, which encodes
411 HapR with a His₆ tag and intervening site for the tobacco etch virus protease protease. Transformants
412 were cultured in 40 ml LB overnight, then subcultured in 1 L of LB, with shaking at 37 °C. When
413 subcultures reached midlog phase they were supplemented with 400 mM IPTG for 3 hours. Cells were
414 then collected by centrifugation, resuspended in 40 ml of buffer 1 (40 ml 25 mM Tris-HCl pH 7.5, 1
415 mM EDTA and 1 M NaCl) and lysed by sonication. Inclusion bodies, recovered by centrifugation, were
416 resuspended with 40 ml of buffer 2 (25 mM Tris-HCl pH 8.5 and 4 M urea) before the remaining solid
417 material was again recovered and then solubilised using 40 ml of buffer 3 (25 mM Tris-HCl pH 8.5 and
418 6 M guanidine hydrochloride). Cleared supernatant was applied to a HisTrap HP column (GE
419 healthcare) equilibrated with buffer A (25 mM Tris-HCl pH 8.5 and 1 M NaCl). To elute His₆-HapR, a
420 gradient of buffer B (25 mM Tris-HCl pH 8.5, 1 M NaCl and 1 M imidazole) was used. Fractions
421 containing His₆-HapR were pooled and the protein was transferred into buffer X (50 mM HEPES, 1 M
422 NaCl, 1 mM DTT, 5 mM EDTA and 0.1 mM Triton X-100) by dialysis. Finally, we used Vivaspin
423 ultrafiltration columns to reduce sample volume. The concentration of His₆-HapR was then determined.

424

425 *in vitro transcription assays*

426 Experiments were done using our prior approach³⁹. Plasmid templates were isolated from *E. coli* using
427 Qiagen Maxiprep kits. Each *in vitro* transcription assay contained 16 µg/ml DNA template in 40 mM
428 Tris pH 7.9, 5 mM MgCl₂, 500 µM DTT, 50 mM KCl, 100 µg/ml BSA, 200 µM ATP/GTP/CTP, 10
429 µM UTP and 5 µCi α-P32-UTP. Purified HapR and CRP were added at the indicated concentrations
430 prior to the reaction start point. In experiments where CRP was used, the protein was incubated with
431 cAMP 37 °C prior to addition. Transcription was instigated by addition of RNA polymerase
432 holoenzyme prepared in advance by incubation of the core enzyme with a 4-fold excess of σ⁷⁰ for 15
433 minutes at room temperature. After 10 minutes incubation at 37 °C, reactions were stopped by the

434 addition of an equal volume of formamide containing stop buffer. Reactions were resolved on an 8%
435 (w/v) denaturing polyacrylamide gel, exposed on a Bio-Rad phosphor screen then visualised on a Bio-
436 Rad Personal Molecular Imager. To quantify transcript levels, we measured the intensity of bands
437 corresponding to RNAI and the RNA of interest using Quantity One software. After subtracting
438 background lane intensity, we calculated the RNA of interest to RNAI ratio. The maximum ratio was
439 set to 100 % activity with other ratios shown as a percentage of this maximum.

440 *Electrophoretic mobility shift assays and DNase I footprinting*

441 Promoter DNA fragments were excised from plasmid pSR and end-labelled with γ 32-ATP using T4
442 PNK (NEB). EMSAs and DNase I footprints were done as previously described³⁹. Full gel images are
443 shown in Figure S8.

444

445 *Structural modelling*

446 The model of the ternary DNA-CRP-HapR complex was generated in PyMOL by aligning PDB
447 depositions 1jt0 (QacR-DNA complex) and 6pb6 (CRP-DNA complex). Alignments were done
448 manually and guided by the relative two-fold centres of symmetry for each complex. Each structure
449 was positioned so that their DNA base pairs overlapped and binding centres were offset by 1 base pair.
450 The Mutagenesis function of PyMOL was used to replace QacR sidechain K107, equivalent to HapR
451 R123²⁰, with an arginine residue. The double helix of the QacR DNA complex is hidden in the final
452 model.

453

454 **REFERENCES**

- 455 1. Nelson, E. J., Harris, J. B., Morris, J. G., Calderwood, S. B. & Camilli, A. Cholera
456 transmission: The host, pathogen and bacteriophage dynamic. *Nature Reviews Microbiology*
457 vol. 7 693–702 (2009).
- 458 2. Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated Global Burden of Cholera in
459 Endemic Countries. *PLoS Negl. Trop. Dis.* **9**, (2015).
- 460 3. Domman, D. *et al.* Integrated view of *Vibrio cholerae* in the Americas. *Science* **358**, 789–793
461 (2017).
- 462 4. Asadgol, Z., Mohammadi, H., Kermani, M., Badirzadeh, A. & Gholami, M. The effect of
463 climate change on cholera disease: The road ahead using artificial neural network. *PLoS One*
464 **14**, e0224813 (2019).
- 465 5. Meiborn, K. L. *et al.* The *Vibrio cholerae* chitin utilization program. *PNAS* **101**, 2524–2529
466 (2004).
- 467 6. Hung, D. T. & Mekalanos, J. J. Bile acids induce cholera toxin expression in *Vibrio cholerae*
468 in a ToxT-independent manner. *PNAS* **102**, 3028–3033 (2005).
- 469 7. Weber, G. G., Kortmann, J., Narberhaus, F. & Klose, K. E. RNA thermometer controls

470 temperature-dependent virulence factor expression in *Vibrio cholerae*. *PNAS* **111**, 14241–
471 14246 (2014).

472 8. Krasteva, P. V. *et al.* *Vibrio cholerae* vpst regulates matrix production and motility by directly
473 sensing cyclic di-GMP. *Science* **327**, 866–868 (2010).

474 9. Manneh-Roussel, J. *et al.* Camp receptor protein controls *Vibrio cholerae* gene expression in
475 response to host colonization. *MBio* **9**, (2018).

476 10. Kamareddine, L. *et al.* Activation of *Vibrio cholerae* quorum sensing promotes survival of an
477 arthropod host. *Nat. Microbiol.* **3**, 243–252 (2018).

478 11. Weill, F.-X. *et al.* Genomic history of the seventh pandemic of cholera in Africa. *Science* **358**,
479 785–789 (2017).

480 12. Eickhoff, M. J. & Bassler, B. L. SnapShot: Bacterial Quorum Sensing. *Cell* vol. 174 1328–
481 1328.e1 (2018).

482 13. Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically
483 changing environments. *Nature Reviews Microbiology* vol. 17 371–382 (2019).

484 14. Henke, J. M. & Bassler, B. L. Three parallel quorum-sensing systems regulate gene expression
485 in *Vibrio harveyi*. *J. Bacteriol.* **186**, 6902–6914 (2004).

486 15. Freeman, J. A. & Bassler, B. L. A genetic analysis of the function of LuxO, a two-component
487 response regulator involved in quorum sensing in *Vibrio harveyi*. *Mol. Microbiol.* **31**, 665–677
488 (1999).

489 16. Freeman, J. A. & Bassler, B. L. Sequence and function of LuxU: A two-component
490 phosphorelay protein that regulates quorum sensing in *Vibrio harveyi*. *J. Bacteriol.* **181**, 899–
491 906 (1999).

492 17. Lenz, D. H. *et al.* The small RNA chaperone Hfq and multiple small RNAs control quorum
493 sensing in *Vibrio harveyi* and *Vibrio cholerae*. *Cell* **118**, 69–82 (2004).

494 18. Shao, Y. & Bassler, B. L. Quorum-sensing non-coding small RNAs use unique pairing regions
495 to differentially control mRNA targets. *Mol. Microbiol.* **83**, 599–611 (2012).

496 19. Rutherford, S. T., Van Kessel, J. C., Shao, Y. & Bassler, B. L. AphA and LuxR/HapR
497 reciprocally control quorum sensing in vibrios. *Genes Dev.* **25**, 397–408 (2011).

498 20. De Silva, R. S. *et al.* Crystal structure of the *Vibrio cholerae* quorum-sensing regulatory
499 protein HapR. *J. Bacteriol.* **189**, 5683–5691 (2007).

500 21. Jobling, M. G. & Holmes, R. K. Characterization of hapR, a positive regulator of the *Vibrio*
501 cholerae HA/protease gene hap, and its identification as a functional homologue of the *Vibrio*
502 *harveyi* luxR gene. *Mol. Microbiol.* **26**, 1023–1034 (1997).

503 22. Heidelberg, J. F. *et al.* DNA sequence of both chromosomes of the cholera pathogen *Vibrio*
504 *cholerae*. *Nature* **406**, 477–483 (2000).

505 23. Nielsen, A. T. *et al.* RpoS controls the *Vibrio cholerae* mucosal escape response. *PLoS Pathog.*
506 **2**, 0933–0948 (2006).

507 24. Van Kessel, J. C., Rutherford, S. T., Shao, Y., Utria, A. F. & Bassler, B. L. Individual and
508 combined roles of the master regulators apha and luxr in control of the *Vibrio harveyi* quorum-
509 sensing regulon. *J. Bacteriol.* **195**, 436–443 (2013).

510 25. Silva, A. J. & Benitez, J. A. Transcriptional regulation of *Vibrio cholerae*
511 hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. *J. Bacteriol.* **186**, 6374–
512 6382 (2004).

513 26. Tu, K. C. & Bassler, B. L. Multiple small RNAs act additively to integrate sensory information
514 and control quorum sensing in *Vibrio harveyi*. *Genes Dev.* **21**, 221–233 (2007).

515 27. Lin, W., Kovacikova, G. & Skorupski, K. Requirements for *Vibrio cholerae* HapR binding and
516 transcriptional repression at the hapR promoter are distinct from those at the apha promoter. *J.*
517 *Bacteriol.* **187**, 3013–3019 (2005).

518 28. Tsou, A. M., Cai, T., Liu, Z., Zhu, J. & Kulkarni, R. V. Regulatory targets of quorum sensing
519 in *Vibrio cholerae*: Evidence for two distinct HapR-binding motifs. *Nucleic Acids Res.* **37**,
520 2747–2756 (2009).

521 29. Waters, C. M., Lu, W., Rabinowitz, J. D. & Bassler, B. L. Quorum sensing controls biofilm
522 formation in *Vibrio cholerae* through modulation of cyclic Di-GMP levels and repression of
523 vpsT. *J. Bacteriol.* **190**, 2527–2536 (2008).

524 30. Papenfort, K., Förstner, K. U., Cong, J. P., Sharma, C. M. & Bassler, B. L. Differential RNA-
525 seq of *Vibrio cholerae* identifies the VqmR small RNA as a regulator of biofilm formation.
526 *PNAS* **112**, E766–E775 (2015).

527 31. Savery, N. J. *et al.* Transcription activation at class II CRP-dependent promoters: Identification
528 of determinants in the C-terminal domain of the RNA polymerase α subunit. *EMBO J.* **17**,
529 3439–3447 (1998).

530 32. Wade, J. T., Belyaeva, T. A., Hyde, E. I. & Busby, S. J. W. A simple mechanism for co-
531 dependence on two activators at an *Escherichia coli* promoter. *EMBO J.* **20**, 7160–7167
532 (2002).

533 33. Kallipolitis, B. H., Nørregaard-Madsen, M. & Valentin-Hansen, P. Protein-protein
534 communication: Structural model of the repression complex formed by CytR and the global
535 regulator CRP. *Cell* **89**, 1101–1109 (1997).

536 34. Meibom, K. L., Kallipolitis, B. H., Ebright, R. H. & Valentin-Hansen, P. Identification of the
537 subunit of cAMP receptor protein (CRP) that functionally interacts with CytR in CRP-CytR-
538 mediated transcriptional repression. *J. Biol. Chem.* **275**, 11951–11956 (2000).

539 35. Rhodius, V. A. & Busby, S. J. W. Interactions between Activating Region 3 of the *Escherichia*
540 *coli* cyclic AMP receptor protein and region 4 of the RNA polymerase σ 70 subunit:
541 Application of suppression genetics. *J. Mol. Biol.* **299**, 311–324 (2000).

542 36. Hayes, C. A., Dalia, T. N. & Dalia, A. B. Systematic genetic dissection of PTS in *Vibrio*
543 *cholerae* uncovers a novel glucose transporter and a limited role for PTS during infection of a

544 mammalian host. *Mol. Microbiol.* **104**, 568–579 (2017).

545 37. van Kessel, J. C., Ulrich, L. E., Zhulin, I. B. & Bassler, B. L. Analysis of activator and
546 repressor functions reveals the requirements for transcriptional control by LuxR, the master
547 regulator of quorum sensing in *Vibrio harveyi*. *MBio* **4**, (2013).

548 38. Zhang, J. *et al.* Binding site profiles and N-terminal minor groove interactions of the master
549 quorum-sensing regulator LuxR enable flexible control of gene activation and repression.
550 *Nucleic Acids Res.* **49**, 3274–3293 (2021).

551 39. Haycocks, J. R. J. J. *et al.* The quorum sensing transcription factor AphA directly regulates
552 natural competence in *Vibrio cholerae*. *PLoS Genet.* **15**, e1008362 (2019).

553 40. Levine, M. M. *et al.* The pathogenicity of nonenterotoxigenic vibrio cholerae serogroup 01
554 biotype ei tor isolated from sewage water in brazil. *J. Infect. Dis.* **145**, 296–299 (1982).

555 41. Skorupski, K. & Taylor, R. K. Positive selection vectors for allelic exchange. *Gene* **169**, 47–52
556 (1996).

557 42. Dalia, A. B., McDonough, E. K. & Camilli, A. Multiplex genome editing by natural
558 transformation. *PNAS* **111**, 8937–8942 (2014).

559 43. Dalia, A. B. Natural cotransformation and multiplex genome editing by natural transformation
560 (MuGENT) of vibrio cholerae. in *Methods in Molecular Biology* vol. 1839 53–64 (2018).

561 44. Page, L., Griffiths, L. & Cole, J. A. Different physiological roles of two independent pathways
562 for nitrite reduction to ammonia by enteric bacteria. *Arch. Microbiol.* **154**, 349–354 (1990).

563 45. Sharma, P. *et al.* The multiple antibiotic resistance operon of enteric bacteria controls DNA
564 repair and outer membrane integrity. *Nat. Commun.* **8**, 1444 (2017).

565 46. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,
566 357–359 (2012).

567 47. Carver, T., Thomson, N., Bleasby, A., Berriman, M. & Parkhill, J. DNAPlotter: circular and
568 linear interactive genome visualization. *Bioinformatics* **25**, 119–120 (2008).

569 48. Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & Mcquillan, J. A. Artemis: an integrated
570 platform for visualization and analysis of high-throughput sequence-based experimental data.
571 **28**, 464–469 (2012).

572 49. Bailey, T. L. *et al.* MEME Suite: Tools for motif discovery and searching. *Nucleic Acids Res.*
573 **37**, (2009).

574 50. Miller, J. *Experiments in molecular genetics*. *Experiments in molecular genetics* (Cold Spring
575 Harbor Laboratory, 1972).

576

577 **ACKNOWLEDGEMENTS**

578 This work was funded by BBSRC project grant BB/N005961/1 awarded to DCG, a BBSRC
579 MIBTP studentship (BB/M01116X/1, project reference 1898542) awarded to LMW, and grant

580 R35GM128674 from the National Institutes of Health (to ABD). We thank Kai Papenfort,
581 Jenny Ritchie and Joseph Wade, for commenting on the manuscript prior to submission, and
582 Melanie Blokesch for helpful discussions.

583

584 FIGURE LEGENDS

585 **Figure 1: Genome-wide distribution of HapR and LuxO in *Vibrio cholerae*.**

586

- 587 a. **Simplified schematic overview of quorum sensing in *Vibrio cholerae*.** At low cell density,
588 expression of HapR is repressed by the Qrr sRNAs that depend on phosphorylated LuxO for
589 activation of their transcription. Arrows indicate activation and bar ended lines indicate
590 repression. For clarity, not all protein factors involved in the cascade have been included.
- 591 b. **Binding of LuxO and HapR across both *Vibrio cholerae* chromosomes.** In each plot the
592 outer two tracks (blue) are genes orientated in the forward or reverse direction. The LuxO and
593 HapR ChIP-seq binding signals are shown in red and green. LuxO binding peaks corresponding
594 to the *qrr1-4* loci are indicated. Tick marks are 0.25 Mbp apart.
- 595 c. **Example LuxO and HapR ChIP-seq binding peaks.** ChIP-seq coverage plots are shown for
596 individual experimental replicates. Data for LuxO and HapR are in green and red respectively.
597 Signals above or below the horizontal line correspond to reads mapping to the top or bottom
598 strand respectively. Gene are show as block arrows.
- 599 d. **Sequence motifs derived from LuxO and HapR binding peaks using MEME.**
- 600 e. **Positions of LuxO and HapR binding peaks with respect to genes.** The histograms show the
601 distribution of binding peak centres with respect to the start codon of the nearest gene.
- 602 f. **Pie charts showing gene classes targeted by LuxO and HapR.**

603

604 **Figure 2: HapR is a direct repressor of transcription at many target promoters.**

605

- 606 a. **Activity of HapR targeted promoters in the presence and absence of HapR *in vivo*.** The
607 promoter regions of HapR targeted genes were fused to *lacZ* in plasmid pRW50T and constructs
608 used to transform required bacterial strains. was measured in cell lysates taken from *Vibrio*
609 *cholerae* E7946 (bars) or the Δ hapR derivative (open bars). containing the VC0857 promoter
610 cloned upstream of *lacZ* in pRW50T. Standard deviation is shown for three independent
611 biological replicates. Cells were grown in LB medium. Promoters were classified as inactive
612 if, in both the presence and absence of HapR, β -galactosidase activity was <2-fold higher than
613 the equivalent no insert control.
- 614 b. **Activity of HapR targeted promoters in the presence and absence of HapR *in vitro*.** The
615 gel images show results of *in vitro* transcription experiments. The DNA templates were plasmid
616 pSR derivatives containing the indicated regulatory regions. Experiments were done with 0.4
617 μ M RNA polymerase in the presence (0.25, 0.75, 1.0, 3.0, or 5.0 μ M) and absence of HapR.
618 Except for the VC1375 promoter, where the maximum HapR concentration was 3.0 μ M. The
619 RNAI transcript is plasmid-derived and acts as an internal control. Expected transcript sizes,
620 based on results from global transcription start site mapping experiments³⁰, are indicated. Note
621 that no VC1403 transcript was detected in this prior study³⁰.

622

623 **Figure 3: Transcription from the *murQP* promoter requires CRP *in vivo* and *in vitro*.**

624

- 625 a. **HapR binding to the *murQP* regulatory region.** Genes are shown as block arrows. ChIP-seq
626 coverage plots are shown for individual experimental replicates. Signals above or below the
627 horizontal line correspond to reads mapping to the top or bottom strand respectively.
- 628 b. **DNA sequence of the intergenic region upstream of *murQP*.** For clarity, numbering is with
629 respect to the *murQP* transcription start site (TSS, +1). The TSS and promoter -10 element are
630 in bold. The *murQ* start codon is in blue. The HapR binding site, predicted by MEME analysis
631 of our ChIP-seq data for HapR, is in green. A potential CRP site is embedded within the HapR

binding sequence (orange). Sequences in red indicate point mutations used in this work. Triangles show sites of truncation.

628 c. **Binding of CRP to the *murQP* regulatory region and derivatives.** Electrophoretic mobility
629 shift assays showing migration of the *murQP* regulatory region, or indicated derivatives, with
630 or without 0.1 μ M CRP. The DNA fragment used is shown above each pair of lanes and
631 correspond to the truncations or point mutations indicated in panel b.

632 d. **The *murQP* promoter is activated by CRP *in vitro*.** The gel image shows the result of an *in*
633 *vitro* transcription assay. The DNA template was plasmid pSR carrying the *murQP* regulatory
634 region. Experiments were done with 0.4 μ M RNA polymerase with or without 0.125, 0.25, or
635 0.5 μ M CRP. The RNAI transcript is plasmid-derived and acts as an internal control.

636 e. **The *murQP* promoter is activated by CRP *in vivo*.** The bar chart shows results of
637 β -galactosidase activity assays. Cell lysates were obtained from wild type *V. cholerae* E7946
638 (solid green) or the Δ *crp* derivative, transformed with pRW50T derivatives containing the
639 indicated promoter derivatives fused to *lacZ*. Standard deviation is shown for three independent
640 biological replicates. Cells were grown in LB medium.

641

642

643 **Figure 4: HapR and CRP co-operatively bind the same section of *murQP* regulatory DNA.**

644

645 a. **Binding locations of HapR and CRP upstream of *murQP*.** The gel shows the result of DNase
646 I footprinting experiment. The gel is calibrated with Sanger sequencing reactions. The pattern
647 of DNase I cleavage in the absence of any proteins is in lane 1. Protection of DNA from DNase
648 I cleavage in the presence of 0.11, 0.23 or 0.45 μ M CRP is shown in lanes 2-4. Sites of DNase
649 I hypersensitivity due to CRP binding are indicated by orange triangles. Protection from DNase
650 I cleavage in the presence of 0.5, 1.0, 2.0 or 3.0 μ M HapR is shown in lanes 5-8. Protection
651 from DNase I cleavage, dependent on HapR, is shown by a green bar. A DNase I hypersensitive
652 band, unique to reactions with HapR, is shown by a green triangle. In the presence of 0.45 μ M
653 CRP, increasing concentrations of HapR result in a different DNase I cleavage pattern,
654 including the appearance of a different site of hypersensitivity (black triangle).

655 b. **Binding of HapR and CRP upstream of *murQP* is co-operative.** Electrophoretic mobility
656 shift assays showing migration of the *murQP* regulatory region with different combinations of
657 CRP (0.025, 0.05, 0.1 or 0.2 μ M) and HapR (0.5, 1.0, 2.0, 3.0 or 4.0 μ M). For incubations with
658 both factors, the same range of HapR concentrations was used with 0.2 μ M CRP.

659 c. **Co-operative binding of CRP requires the shared HapR and CRP binding site.** Results of
660 an electrophoretic mobility shift assay, using the wild type *murQP* regulatory region or a
661 derivative with two point mutations in the shared recognition sequence, for HapR (4.0 μ M) and
662 CRP (0.1 μ M). Positions of mutations are shown in Figure 3b.

663 d. **HapR blocks CRP mediated activation of the *murQP* promoter *in vitro*.** The gel image
664 shows the result of an *in vitro* transcription assay. The DNA template was plasmid pSR carrying
665 the *murQP* regulatory region. Experiments were done with 0.4 μ M RNA polymerase, with or
666 without 0.05, 0.1, 0.2 or 0.5 μ M CRP or 0.5, 1.0, 2.0 or 3.0 μ M HapR, as indicated. The RNAI
667 transcript is plasmid-derived and acts as an internal control.

668 e. **HapR represses CRP mediated activation of the *murQP* promoter *in vivo*.** β -galactosidase
669 activity was measured in cell lysates taken from *Vibrio cholerae* E7946 (solid green bars),
670 Δ *hapR* derivative (open green bars), Δ *crp* variant (open orange bars), or cells lacking both
671 factors (orange outline with green patterned fill). Standard deviation is shown for three
672 independent biological replicates. Cells were grown in LB medium.

673

674

675 **Figure 5: HapR contacts Activation Region 3 of CRP.**

676

677 a. **Binding sites for CRP and HapR are optimally aligned when offset by one base pair.** The
678 panel shows DNA sequences logos generated by aligning binding sites identified by ChIP-seq
679 analysis for CRP (top) and HapR (bottom). The centre of each motif is indicated by a dashed
680 line.

667 b. **Global overlap of CRP and HapR binding sites.** A position weight matrix (PWM),
668 corresponding to each DNA sequence logo shown in panel a, was created. The PWMs were
669 used to search the *V. cholerae* genome sequence using FIMO. Distances between the identified
670 CRP and HapR sites were calculated. Proximal sites were always overlapping and offset by one
671 base pair (top panel). Overlap was greatly reduced when the analysis was applied to a
672 randomised version of the same genome sequence (bottom panel).

673 c. **Model of the DNA-CRP-HapR complex.** The model was generated using PDB submissions
674 6pb6 (*E. coli* CRP in complex with a class II CRP dependent promoter) and 1jt0 (*S. aureus*
675 QacR bound to its DNA target). Note that QacR is closely related to *V. cholerae* HapR. The
676 structures were aligned so that the CRP and HapR binding centres were offset by one base pair.
677 Residue E55 of CRP (blue) is within Activating Region 3 of CRP that can interact with the
678 RNA polymerase sigma subunit at class II promoters. HapR residue R123 (red) participates in
679 HapR dimerisation and is proximal to E55 of CRP.

680 d. **Side chain E55 of CRP is required for stability of the DNA-CRP-HapR complex.**
681 Electrophoretic mobility shift assays showing migration of the *murQP* regulatory region with
682 different combinations of CRP or CRP^{E55A} (0.15, 0.3 or 0.6 μ M) and HapR (0.083, 0.125, 0.166
683 0.208 or 0.25 μ M).

684 e. **HapR cannot repress transcription activated by CRP^{E55A}.** Result of an *in vitro* transcription
685 assay. The DNA template was plasmid pSR carrying the *murQP* regulatory region. Experiments
686 were done with 0.4 μ M RNA polymerase, with or without 0.05, 0.1, 0.2 or 0.5 μ M CRP or
687 CRP^{E55A} and 0.5, 1.0, 2.0 or 3.0 μ M HapR, in the presence of 0.2 μ M CRP, as indicated. The
688 RNAi transcript is plasmid-derived and acts as an internal control.

689

690 **Figure 6: Control of *murQP* expression by CRP and HapR at low and high cell density.**

691

692 a. ***V. cholerae* locked at high cell density are defective for growth using MurNAc as the sole**
693 **carbon source.** Each panel illustrates the optical density of *V. cholerae* cultures at different
694 timepoints after inoculation. Cells lacking *luxO*, but not *luxO* and *hapR*, mimic the high cell
695 density state. Error bars show standard deviation from three separate experimental replicates.

696 b. **Model for coordination of MurNAc catabolism by CRP and HapR.** In low *V. cholerae*
697 population density conditions (left panel) cell division necessitates cell wall turnover.
698 Expression of MurQP facilitates cell wall recycling and conversion of MurNAc to GlcNAc 6P
699 for glycolysis (insert). At high cell density conditions (right panel) *V. cholerae* form biofilms
700 on chitinous surfaces. Reduced cell division, and the availability of chitin derived GlcNAc 6P,
701 reduces the need for MurQP.

702

703 **SUPPLEMENTARY FIGURE LEGENDS**

704 **Figure S1: Binding of LuxO and the *qrr1* and *VC1142* loci.** ChIP-seq coverage plots are shown for
705 individual experimental replicates. Signals above or below the horizontal line correspond to reads
706 mapping to the top or bottom strand respectively.

707

708 **Figure S2: Binding of HapR to the *hapR* promoter region in the presence and absence of CRP.**
709 Electrophoretic mobility shift assay showing migration of the *hapR* regulatory region with different
710 combinations of CRP (0.0125, 0.025, 0.05 or 0.1 μ M) and HapR (0.0625, 0.125, 0.25 or 0.5 μ M). For
711 incubations with both factors, the same range of HapR concentrations was used with 0.1 μ M CRP.

712

713 **Figure S3: Global overlap of CRP and HapR binding sites in *Vibrio harveyi*.** A position weight
714 matrix (PWM), corresponding to each DNA sequence logo shown in Figure 5a, was created. The PWMs
715 were used to search the *V. harveyi* genome sequence (strain ATCC 33843) using FIMO. Distances
716 between the identified CRP and HapR sites were calculated. Proximal sites were always overlapping
717 and offset by one base pair (top panel). Overlap was greatly reduced when the analysis was applied to
718 a randomised version of the same genome sequence (bottom panel).

720 **Figure S4: Models of the DNA-CRP and DNA-CRP-HapR complexes.** The models were generated
721 using PDB submissions 6pb6 (*E. coli* CRP in complex with a class II CRP dependent promoter) and
722 1jt0 (*S. aureus* QacR bound to its DNA target). The DNA is shown in grey and positions hypersensitive
723 to DNase I cleave, in the context of the DNA-CRP complex, are highlighted red (Figure 4a). DNA
724 position -34 is not cleaved by DNase I in the context of the ternary DNA-CRP-HapR complex (Figure
725 4a). Consistent with this, position -34 is obscured by HapR binding.
726

727 **Figure S5: Binding of CRP and HapR derivatives to *PmurQP*.** The figures shows results of
728 electrophoretic mobility shift assays with CRP and derivatives (0.1, 0.2, 0.4 or 0.8 μ M) or HapR and
729 derivatives (0.25, 0.5, 1.0, 2.0 or 4.0 μ M).
730

731 **Figure S6: Co-operative DNA binding of HapR and CRP is common.** Electrophoretic mobility shift
732 assays showing migration of the indicated regulatory regions with different combinations of CRP (1
733 μ M) and HapR (0.19 μ M). For *VCA0691* the concentration of HapR was 0.57 μ M.
734

735 **Figure S7: Example HapR binding signals.**
736

- 737 a. **Binding peaks for HapR that fall above our cut-off for peak selection.** The HapR ChIP-seq
738 binding profiles are shown in green and genes are shown as blue arrows.
- 739 b. **Binding peaks for HapR, at known targets, that fall below our cut-off for peak selection.**
740 Binding signals for HapR are shown at known target genes. These peaks for not selected by our
741 analysis because the signal was too weak and/or insufficiently reproducible.
742

743 **Figure S8: Original gel images.**
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771 **Table 1: Locations of binding peaks from ChIP-seq experiments**
772

773	peak centre	gene(s) ⁴	site location	site sequence
-----	-------------	----------------------	---------------	---------------

774
775
776

HapR ChIP-seq peaks
chromosome I

777	99874	VC0102<(VC0103)	99863.5	aaattaataaaaactgtcattta
778	213457	(VC0205)>VC0206	213452.5	taattgtgatttttatcaccaa
779	246366 ¹	VC0240<>VC0241	246349.5	taattaagatggctataaacta
780	463584	VC0433		
781	514422	VC0484	514430.5	ctactgacccctttcatcaataa
782	516570	(VC0486)	516601.5	caactgagaaggcacacaatag
783	534714	(VC0502)	534691.5	ctattataagctctatcagtgt
784	547108	VC0515	547135.5	atagaatattattttgttaatag
785	613328 ³	VC0583 ^A	613357.5	ttatttgagtgggtacataacaa
786	716707	VC0668	716625.5	ctattgtatgaggttatccacag
787	735309	VC0687<>VC0688		
788	882854	(VC0822)	882825.5	taatttatccacttttatcaattg
789	941187	VC0880	941164.5	ctttgacatttctgtcacaaa
790	978577	VC0916 ^R	978540.5	taattaatatccagctcaatta
791	1356743	VC1280<>VC1281 ^A	1356736.5	atattgatagaaataacaagtc
792	1379202	VC1298<>VC1299	1379180.5	ttcatgatagttttgttaattat
793	1469384	VC1375<>VC1376	1469377.5	atattgatataccacatctt
794	1496023	VC1403 ^A <(VC1404)>VC1405	1496025.5	tagttgatatttttataattgt
795	1533842	(VC1437)	1533854.5	tttggagtcctgtcaataaa
796	1990133 ²	VC1851	1990076.5	atattgagtaatcaatttagtaa
797	2364721	(VC2212)	2364680.5	ctattaacagtttatttataaa
798	2509878	VC2352	2509882.5	tttagtgacagatgcgtcattaa
799	2667349	VC2486	2667368.5	taattattaatttgaacaatag

800

chromosome II

802	163808 ¹	VCA0148	163810.5	taattgattattgtgtaactat
803	214589	(VCA0198)	214582.5	taattgataactttgacagttat
804	237008	VCA0218<>VCA0219 ^R	237019.5	taaataatatgaatatcagtaa
805	247286	VCA0224<>VCA0225	247241.5	taatgactaataagacaat
806	598444	VCA0662<>VCA0663 ^R	598403.5	tttggataaaatttgcattaa
807	630517	VCA0691 ^A	630559.5	ctattaacaggactgacattaa
808	862737	VCA0906		
809	910196	VCA0960 ^R <>VCA0961	910181.5	ctgattataaaatttgcattaa
810	1021174	VCA1070	1021117.5	ctccatatccgattggtcactat

811

LuxO ChIP-seq peaks
chromosome I

814	1090129	qrr1<> VC1021	1090154	ttgcaaaaatgcaa
815	1212442	VC1142<>VC1143	1212435	ttgcaaaatcgcgaa

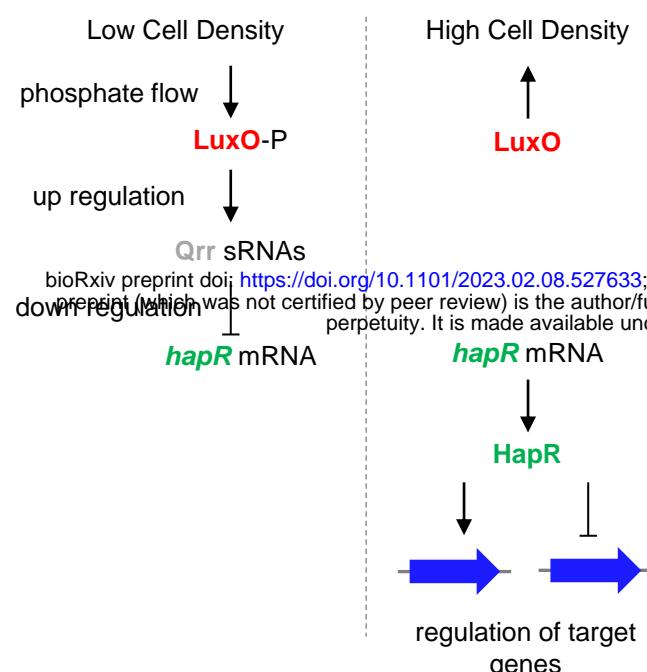
816

chromosome II

817	48415	qrr2	48347	ttgcaatttgcaa
818	772208	qrr3	772149	ttgcattttgcaa
819	908445	qrr4	908436	ttgcaatttgcaa

820

¹Identified by Tsou and co-workers²⁸


²Identified by Waters and co-workers²⁹

³Identified by Lin and co-workers²⁷

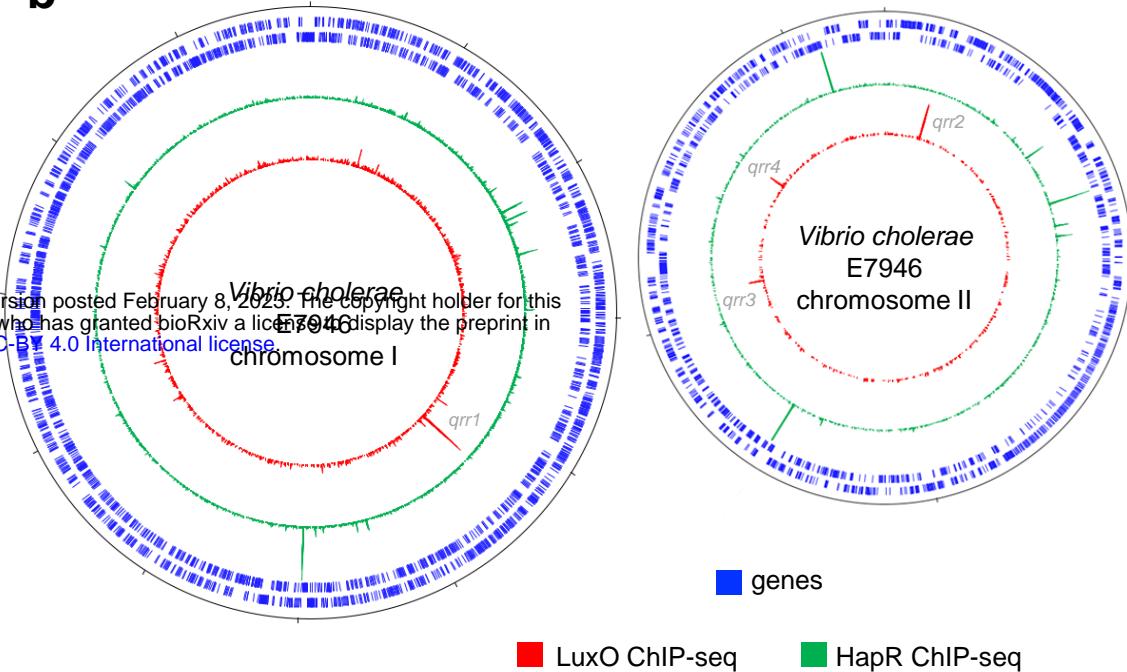
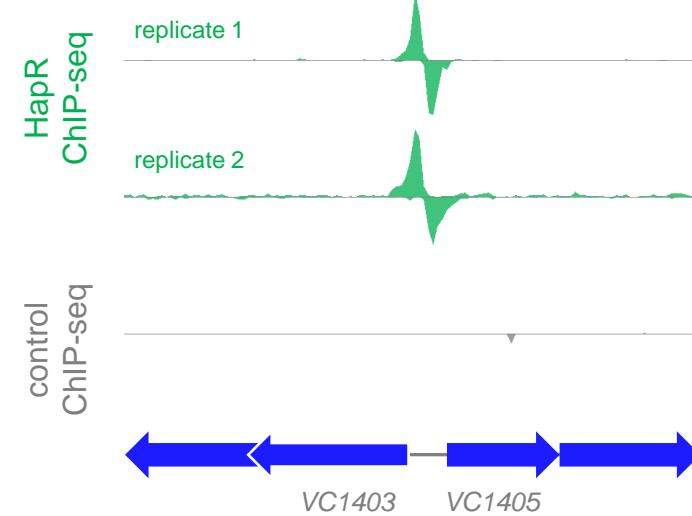
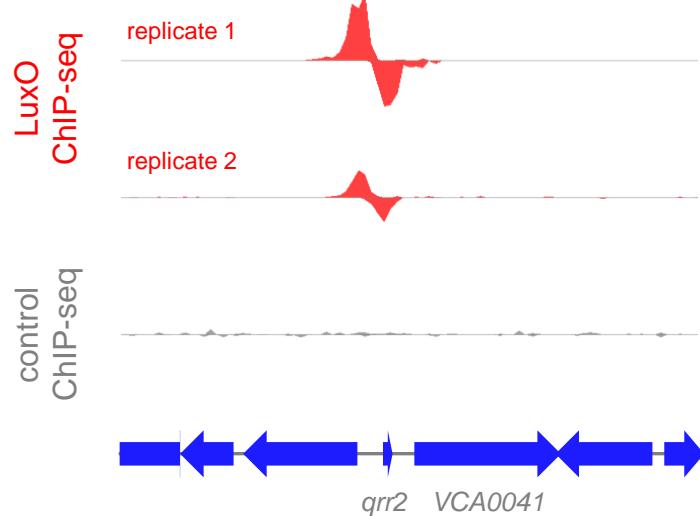
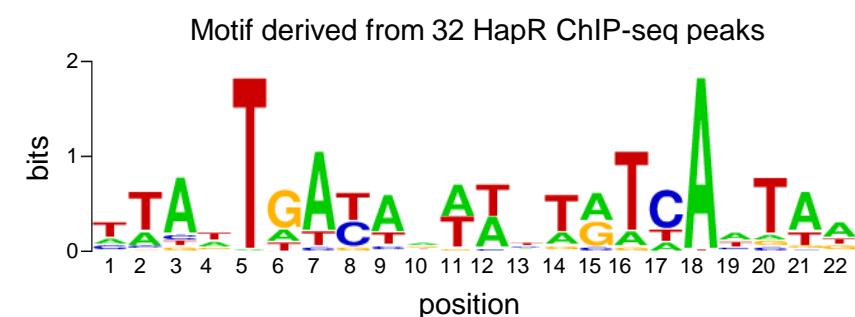
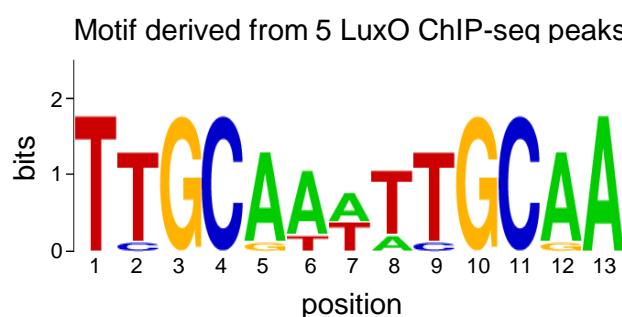
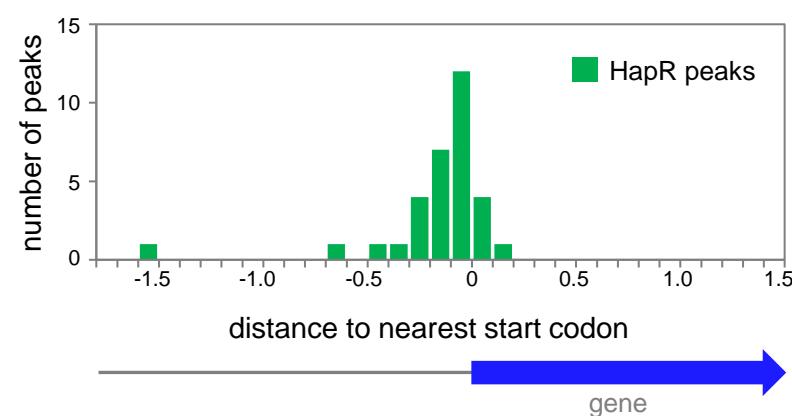
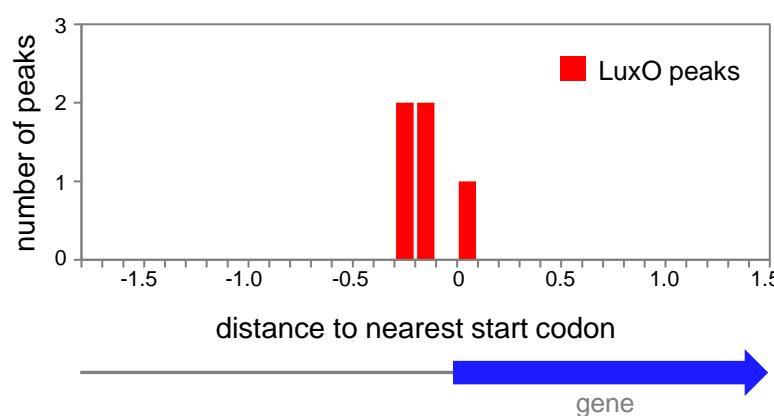
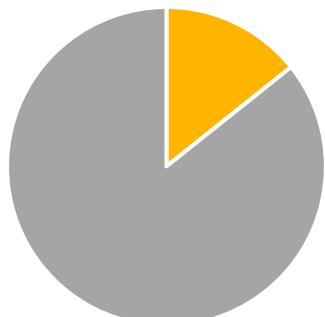

⁴Identified as activated (A) or repressed (R) by Nielsen and co-workers²³

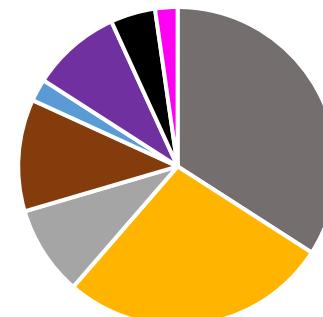
Figure 1



a

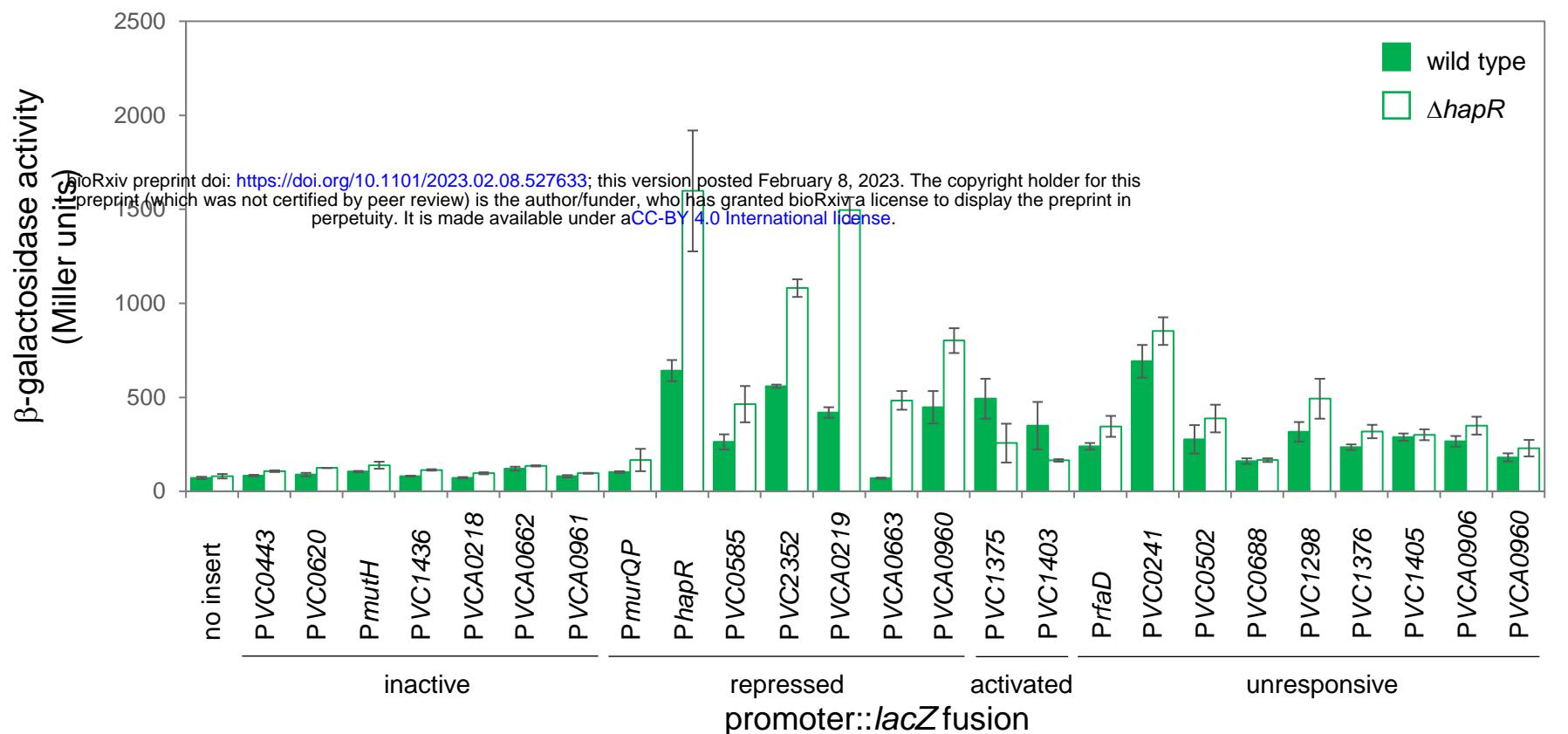


b



c


d


e

f



■ gene regulation
■ metabolism

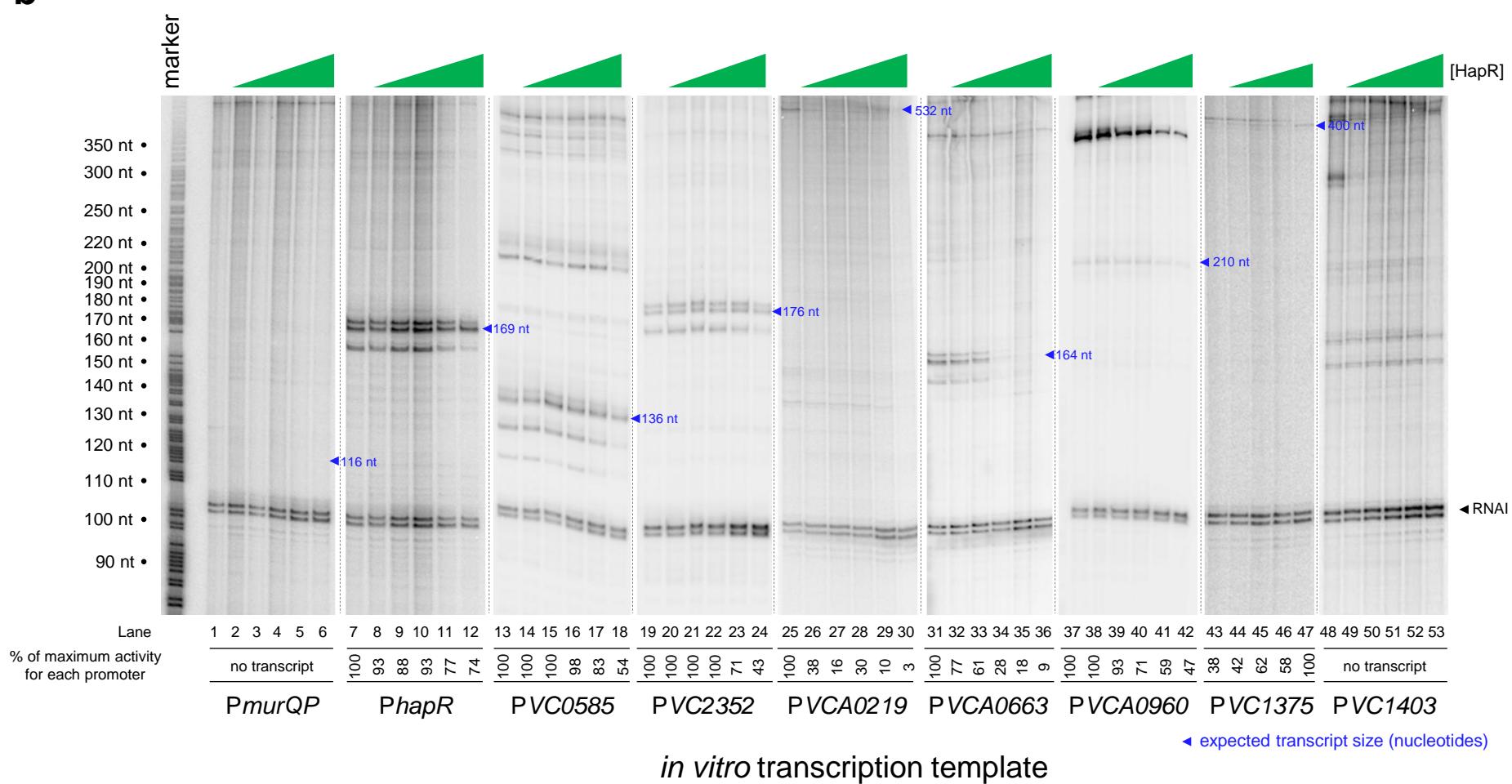
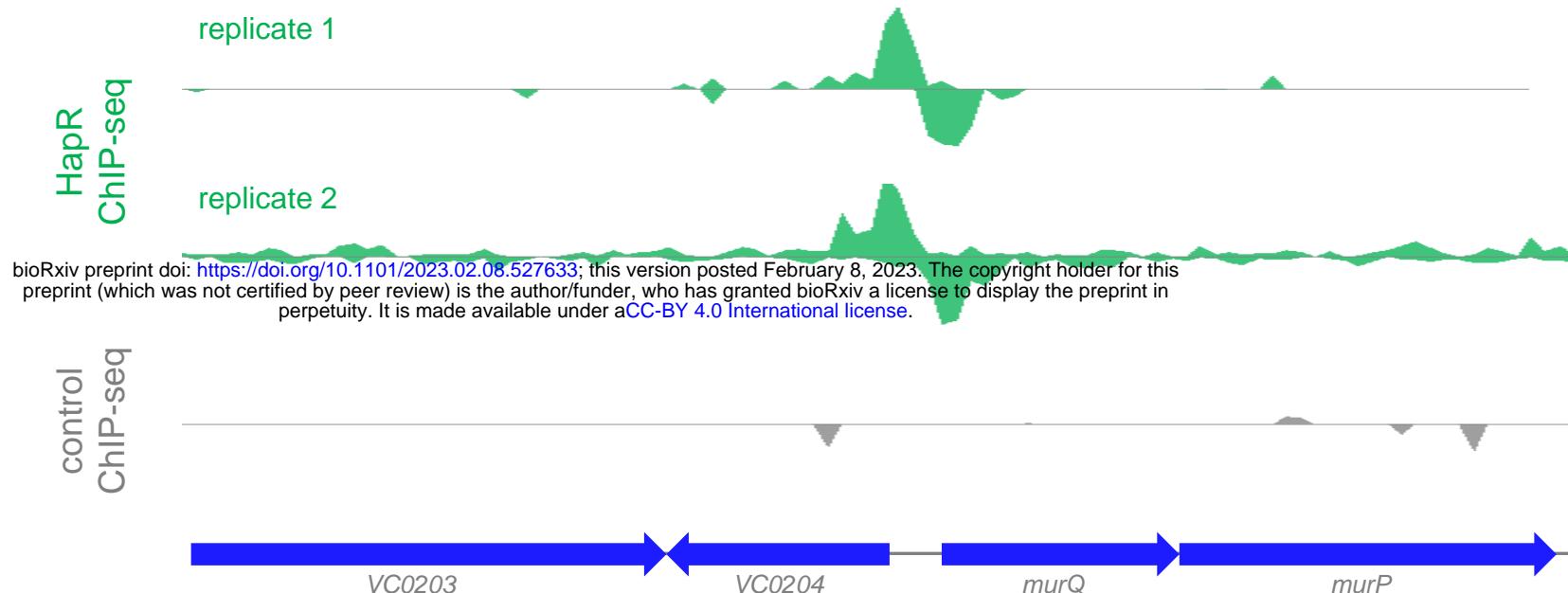


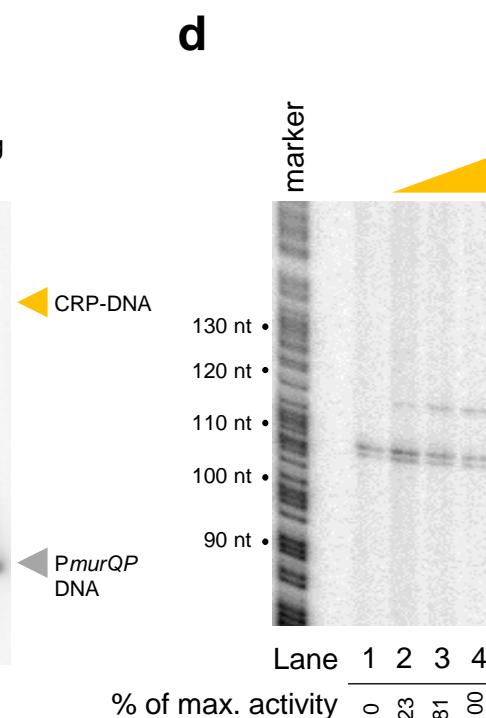
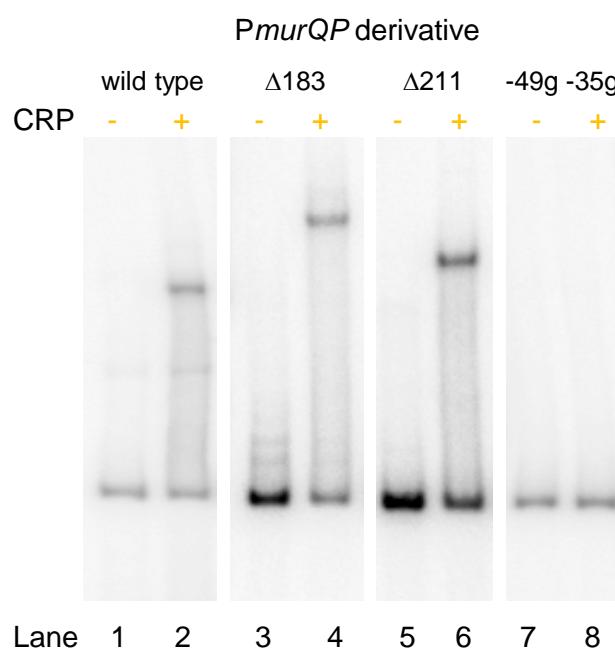
Figure 2

a

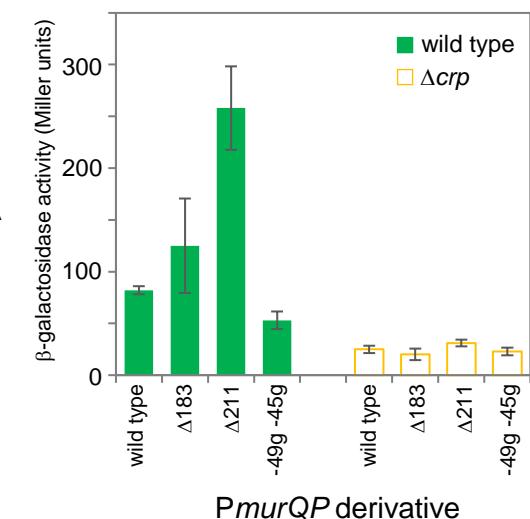


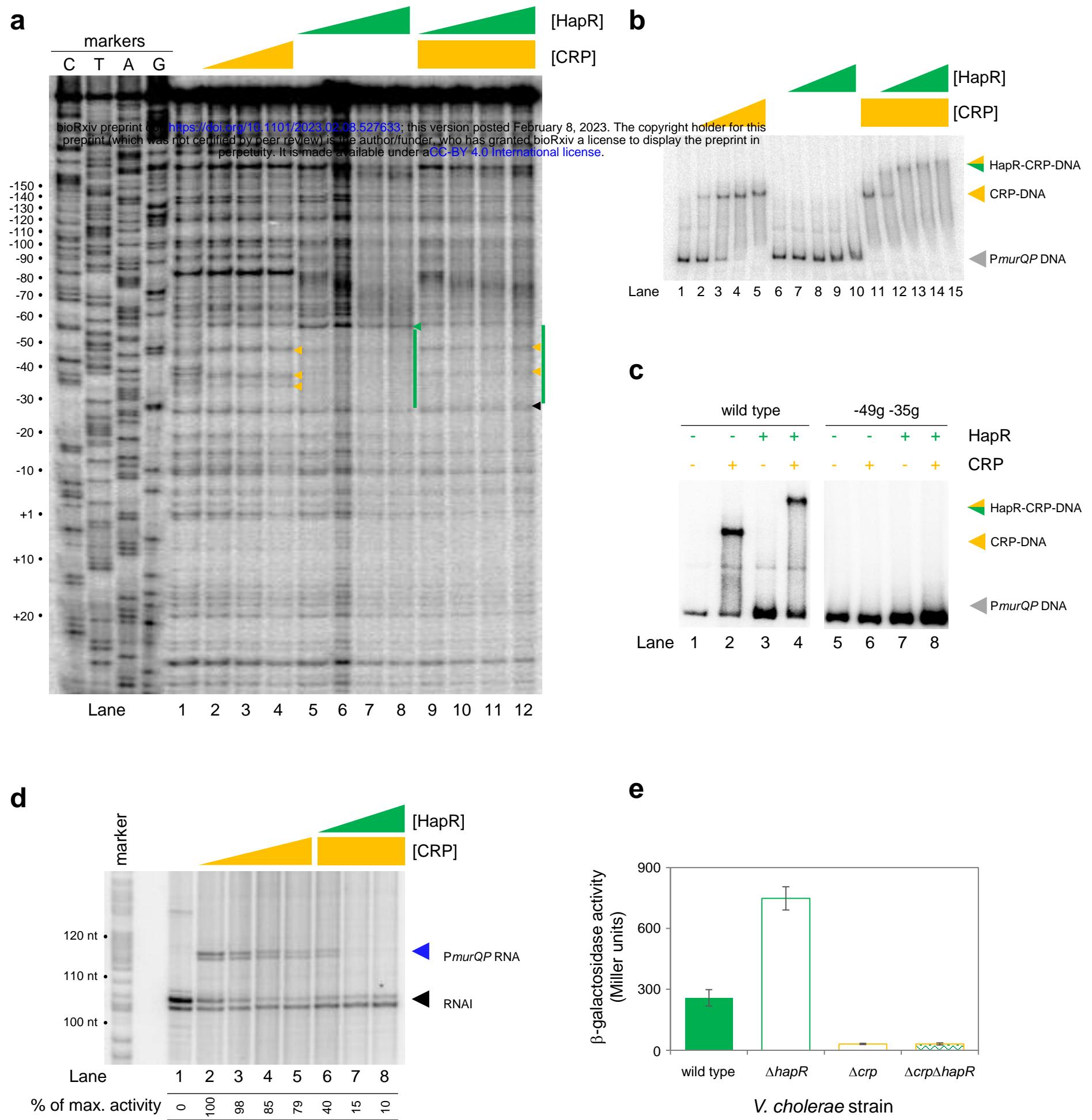
b

Figure 3



a

b


c


d

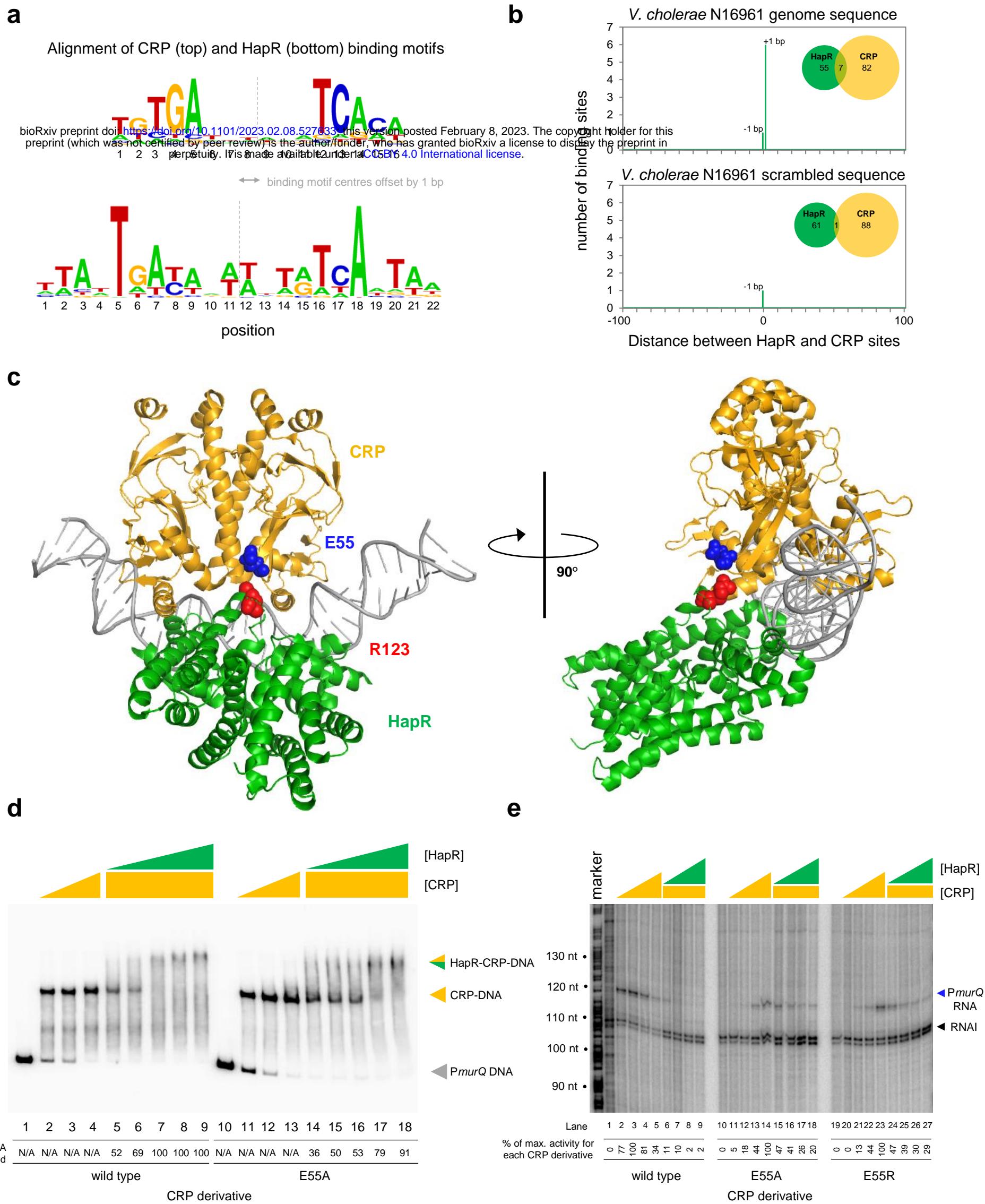

e

Figure 4

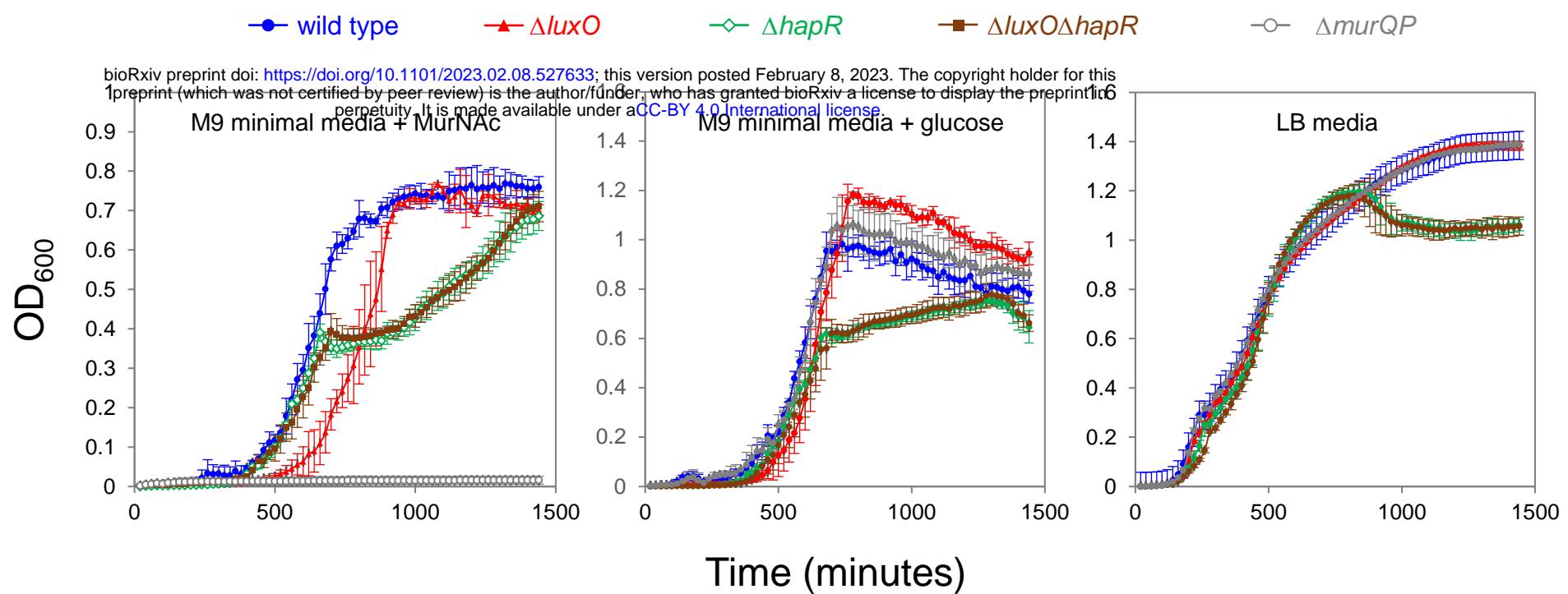


Figure 5

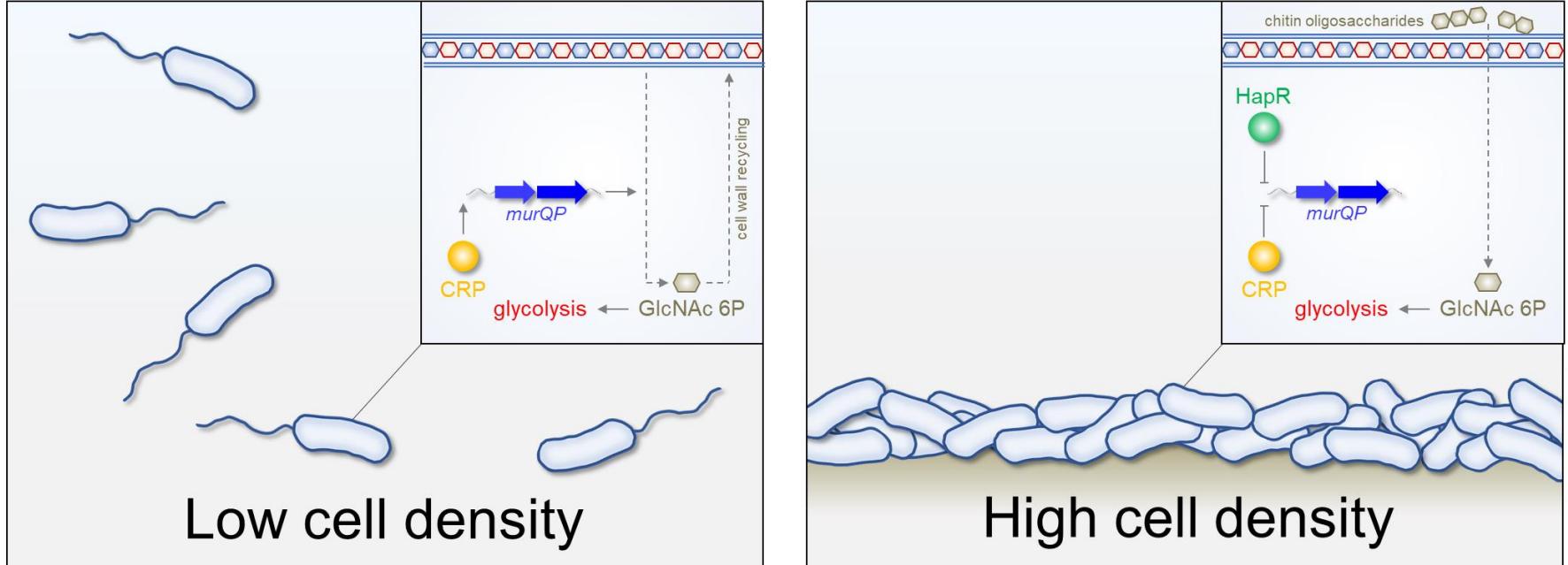
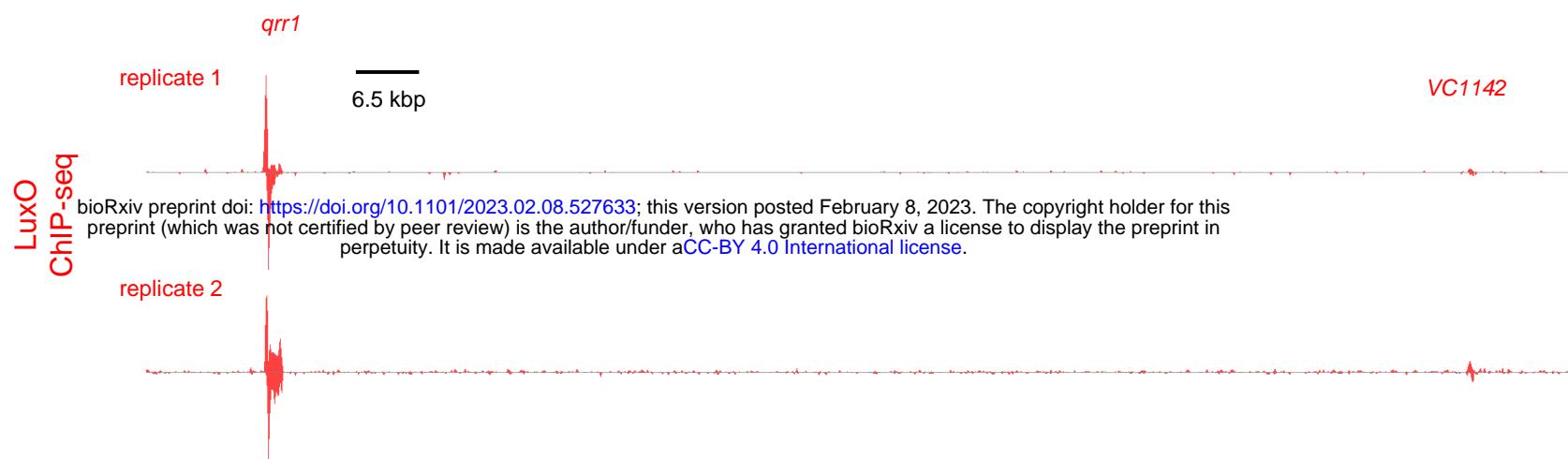
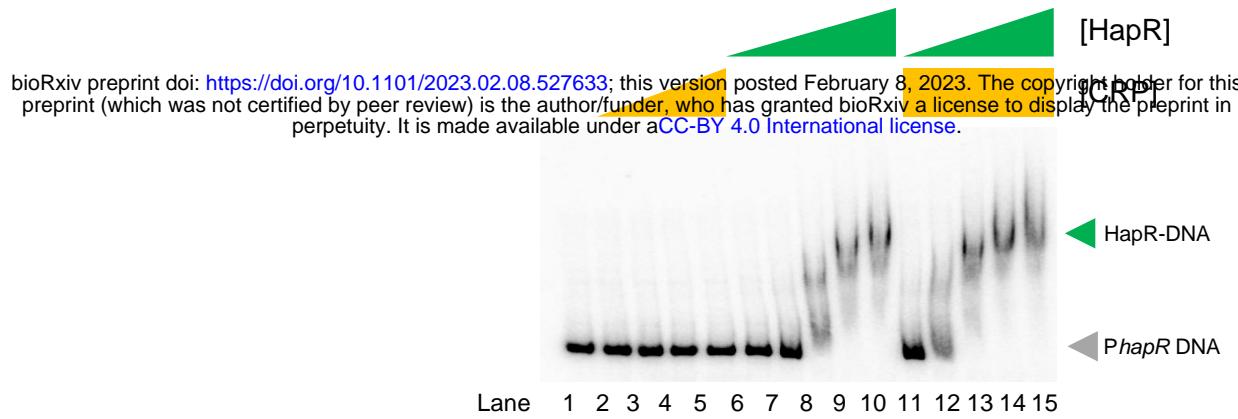


Figure 6


a


b

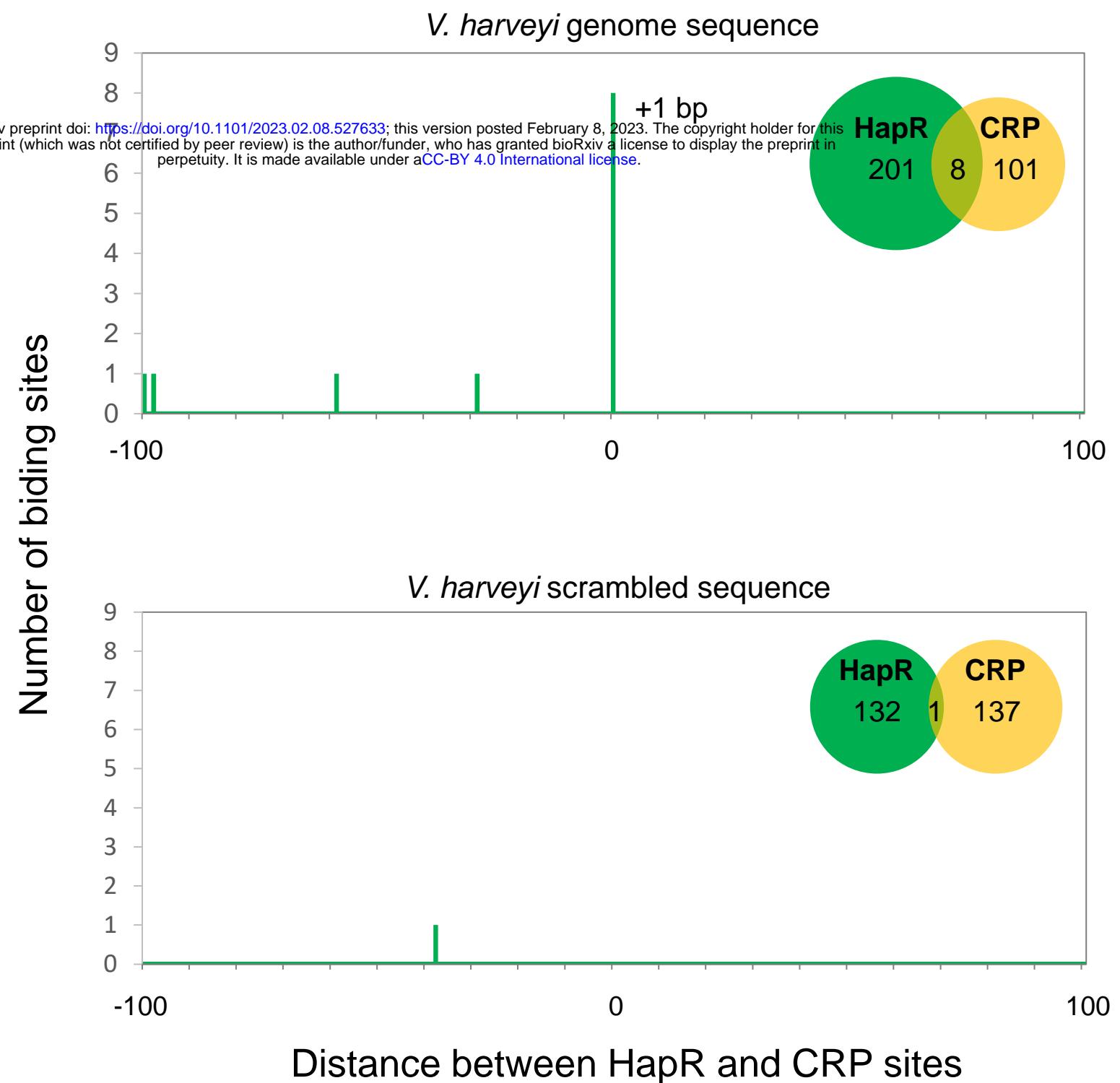
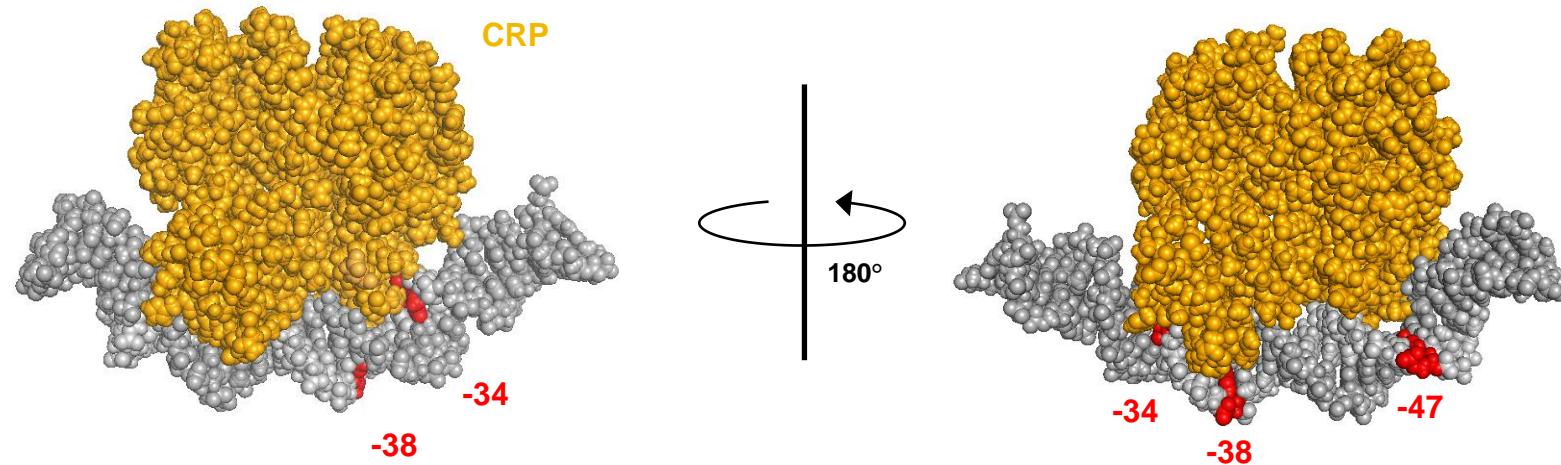
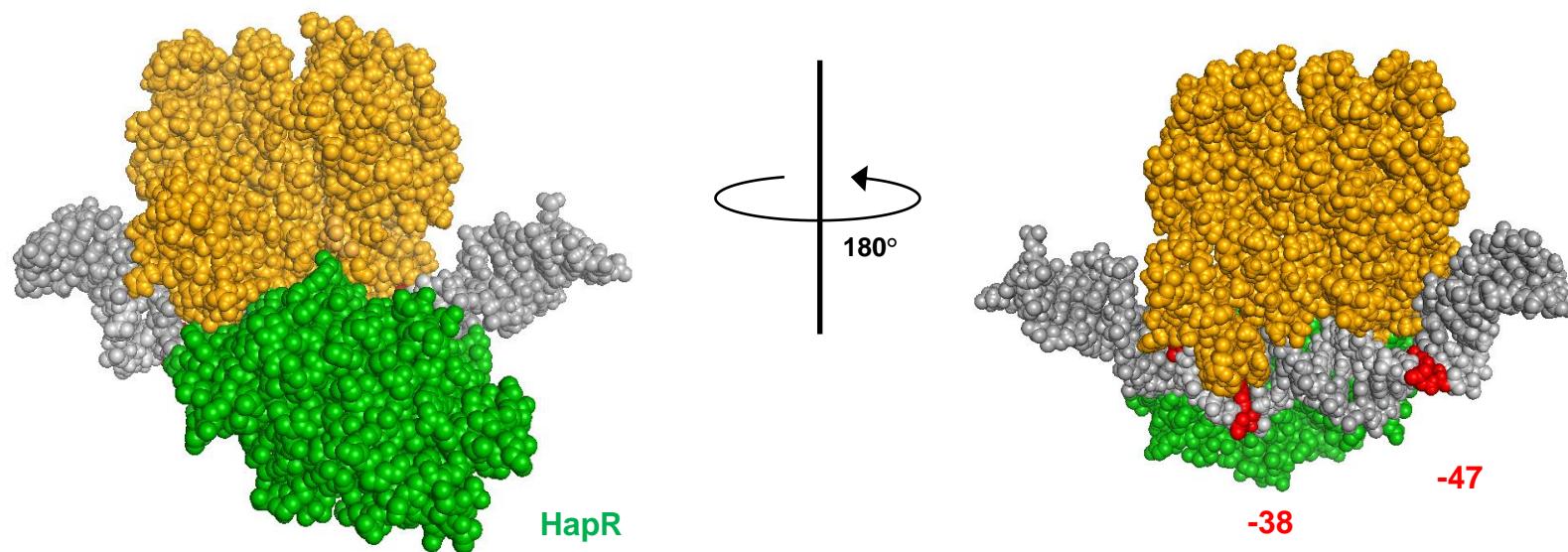

Figure S1

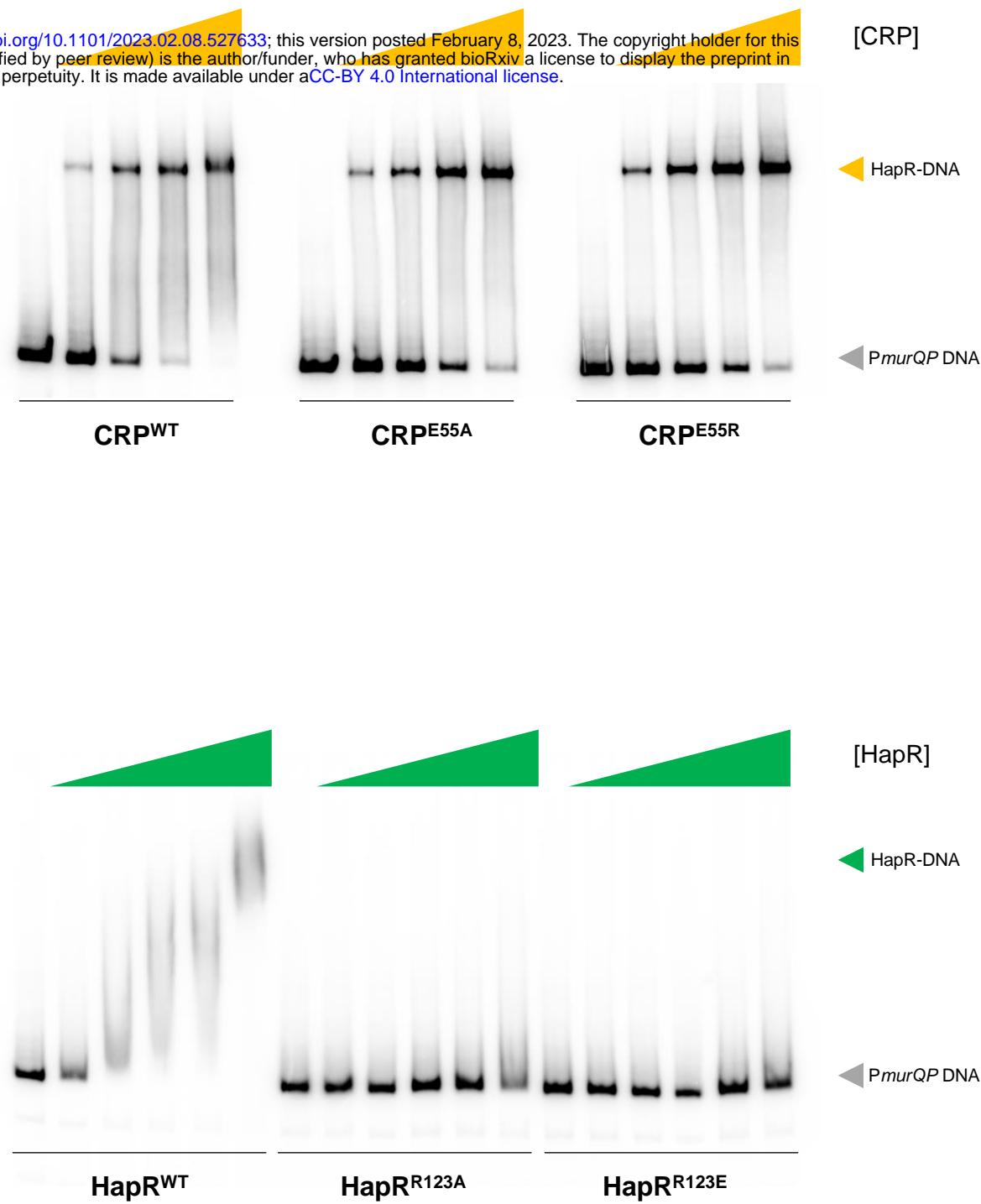
Figure S2


Figure S3


Figure S4

a

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.08.527633>; this version posted February 8, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



b

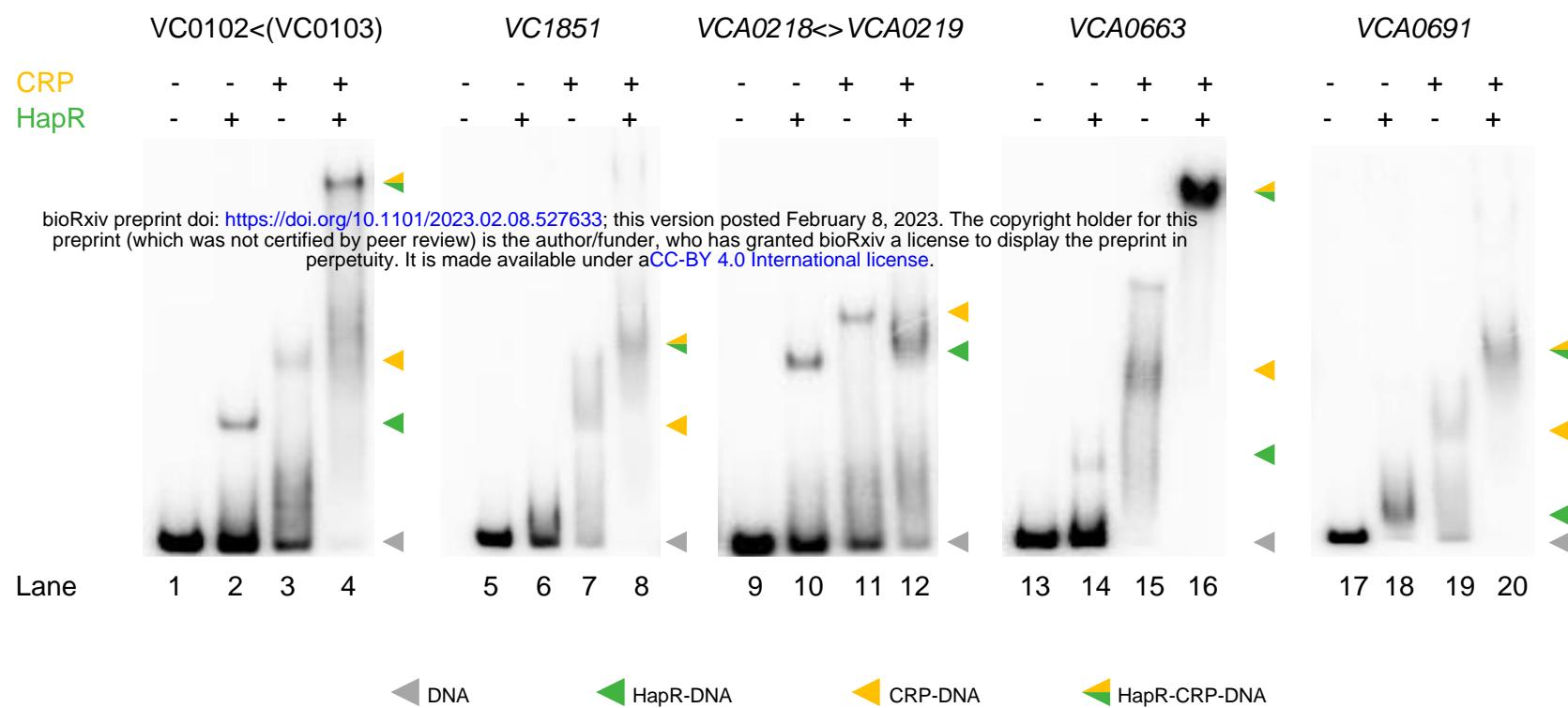


Figure S5

bioRxiv preprint doi: <https://doi.org/10.1101/2023.02.08.527633>; this version posted February 8, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

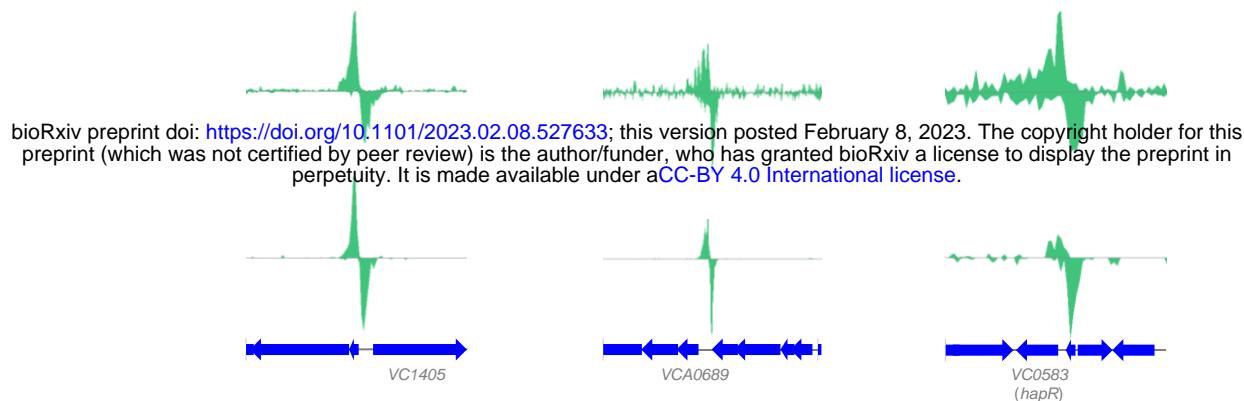


Figure S6

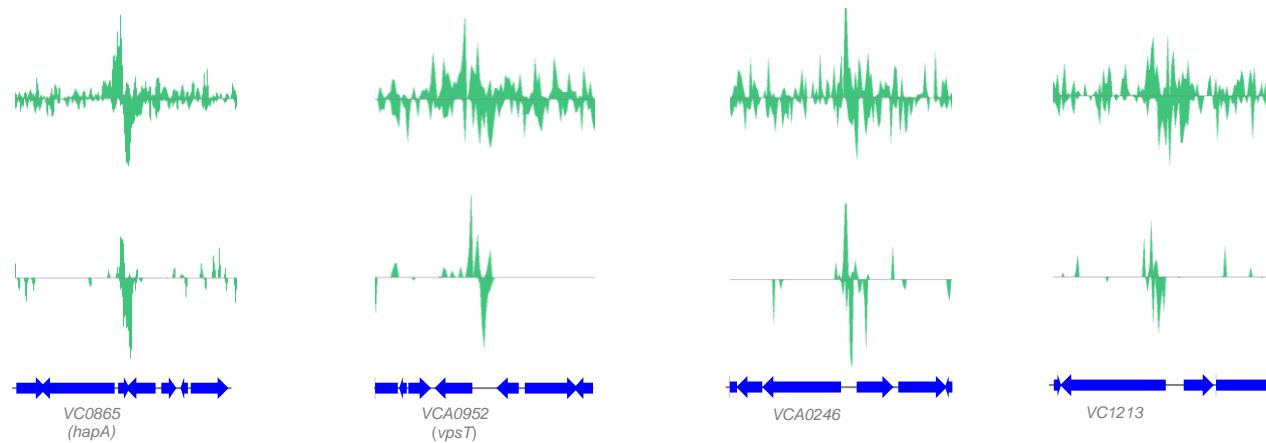
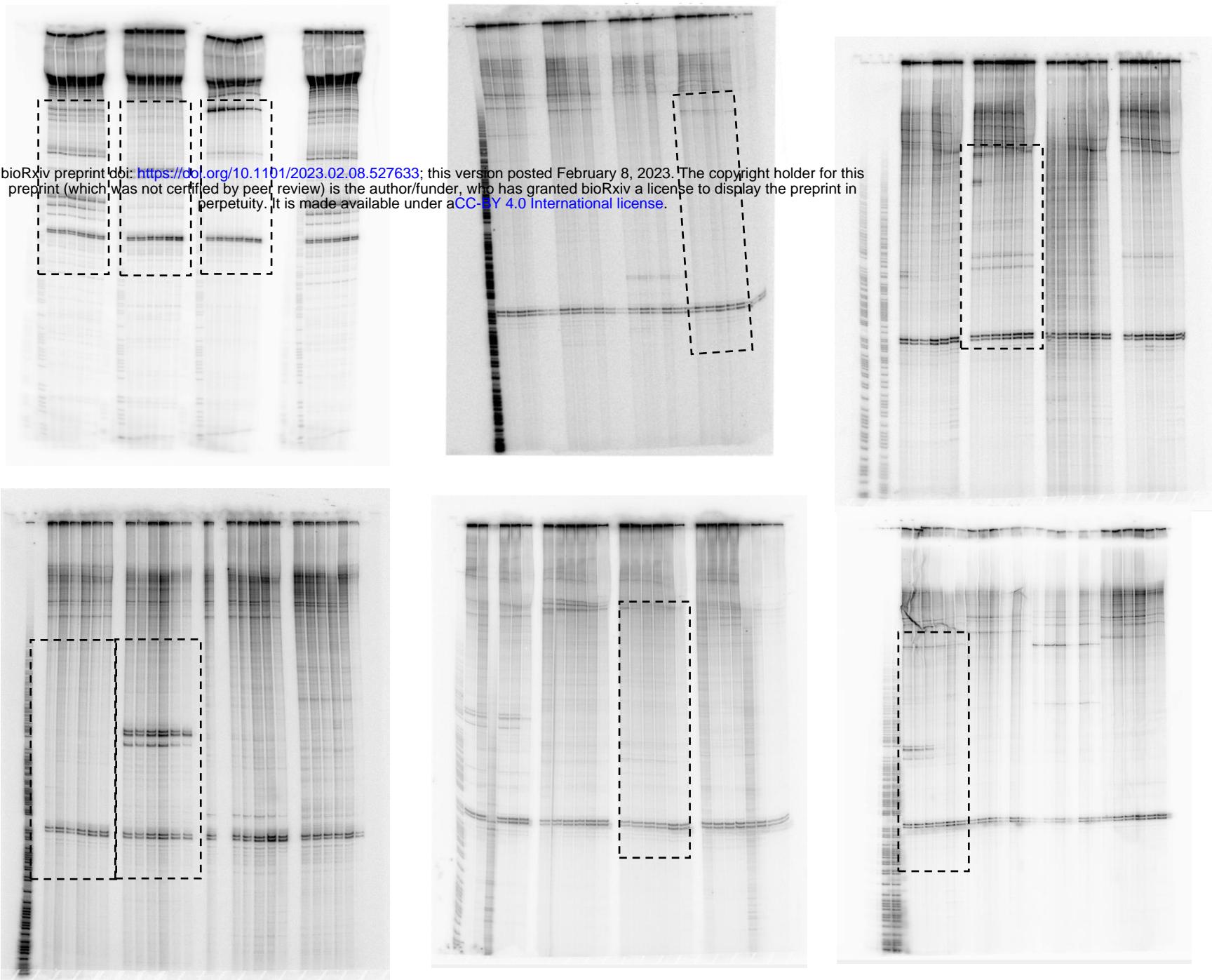


Figure S7

a



b

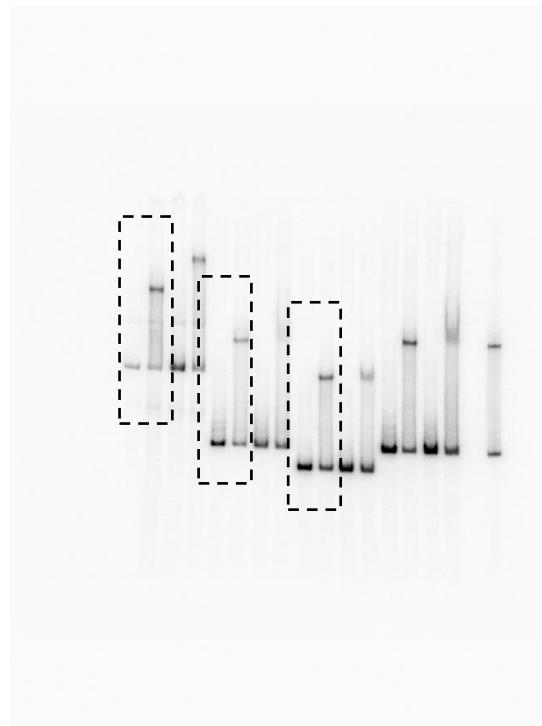


Figure S8

Figure 2b

Figure 3c

Figure 3d

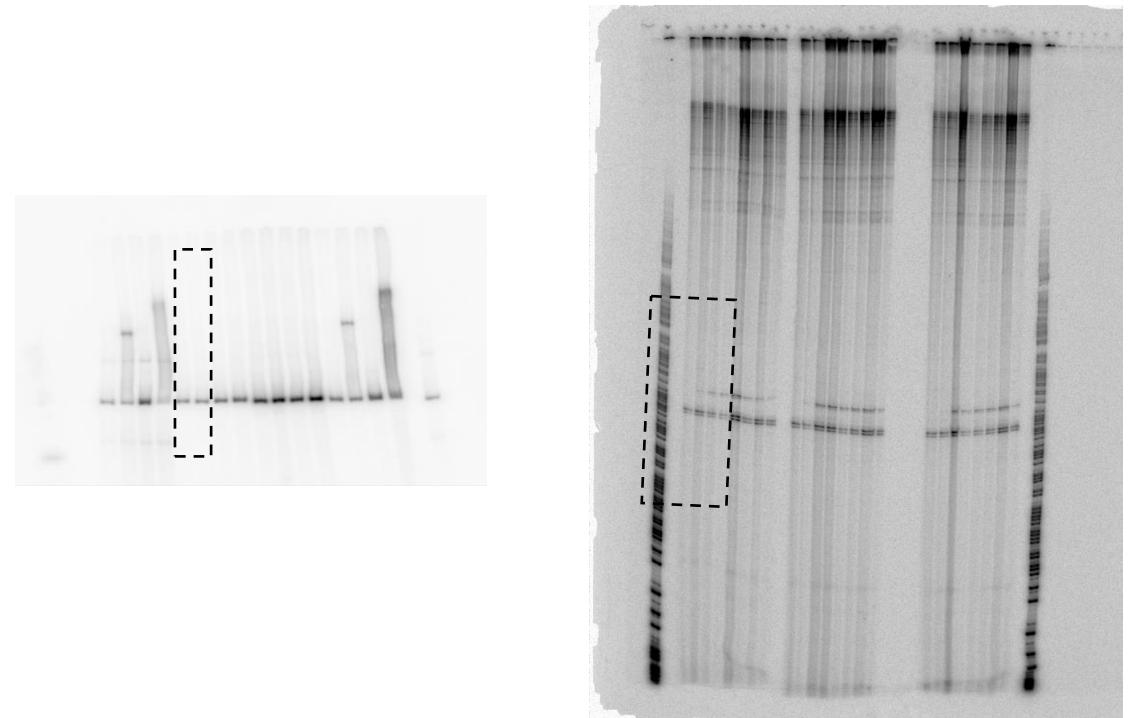


Figure 4a

Figure 4d

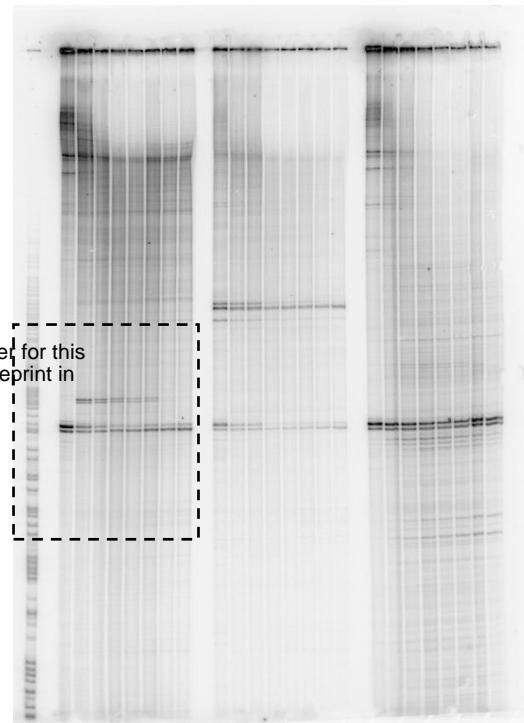


Figure 4b

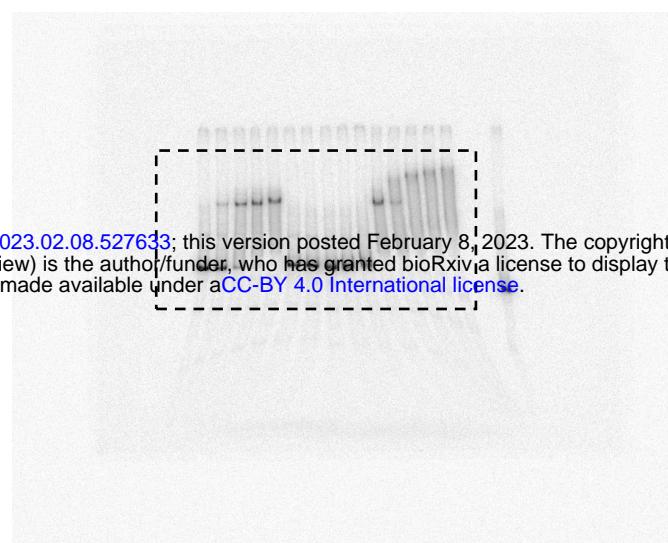


Figure 4c

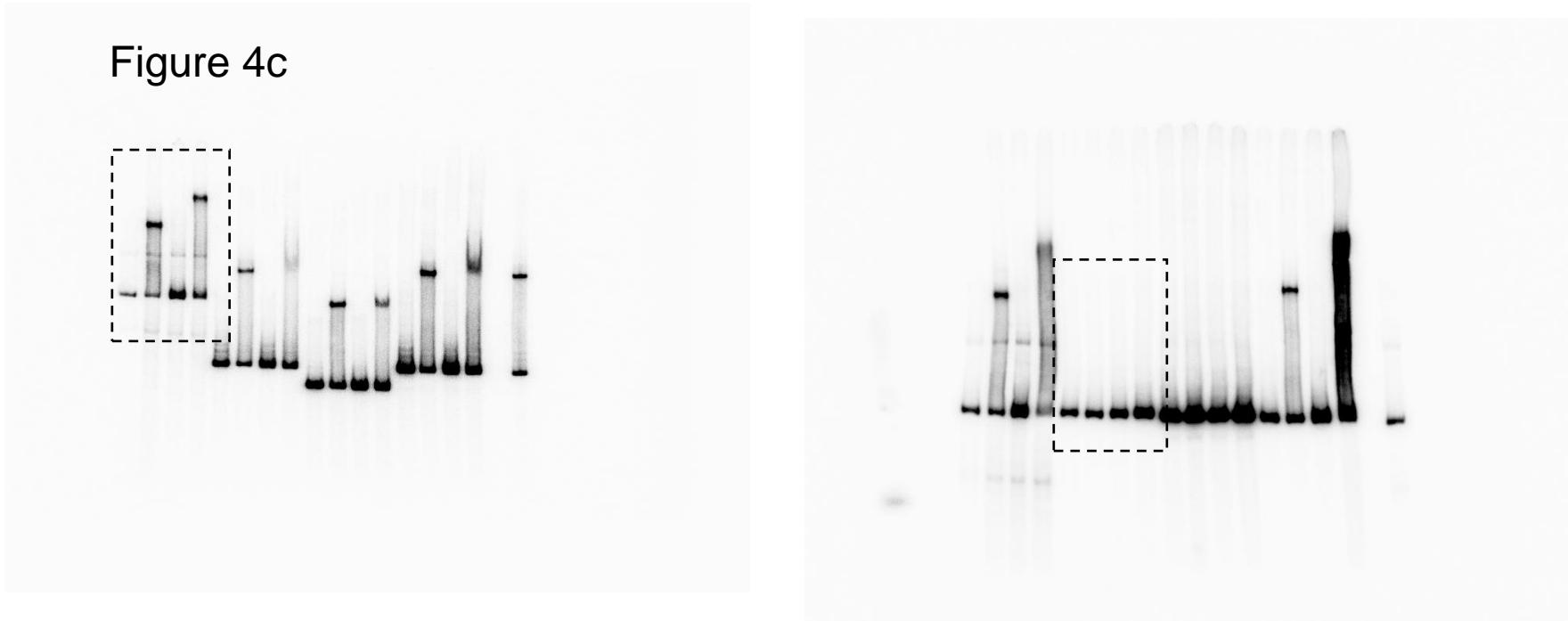


Figure 5d

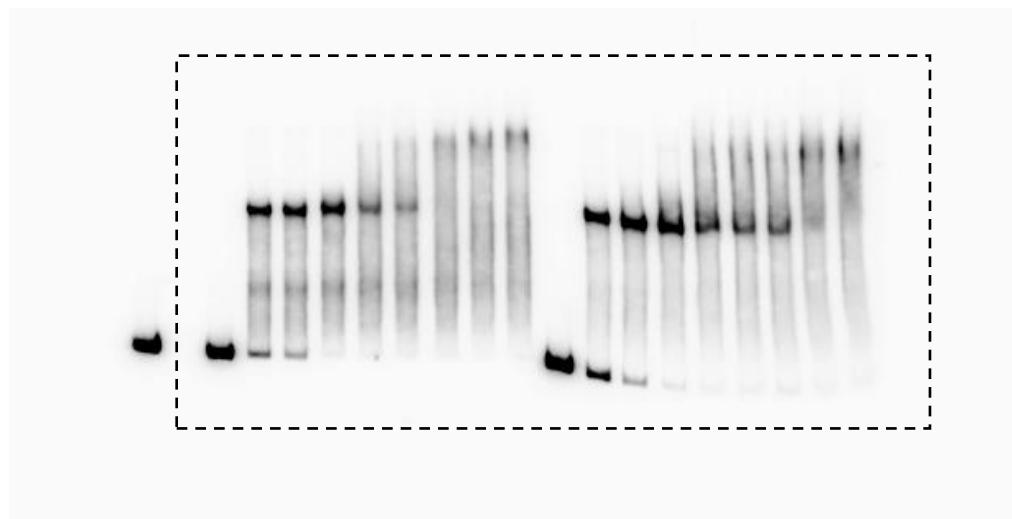


Figure 5e

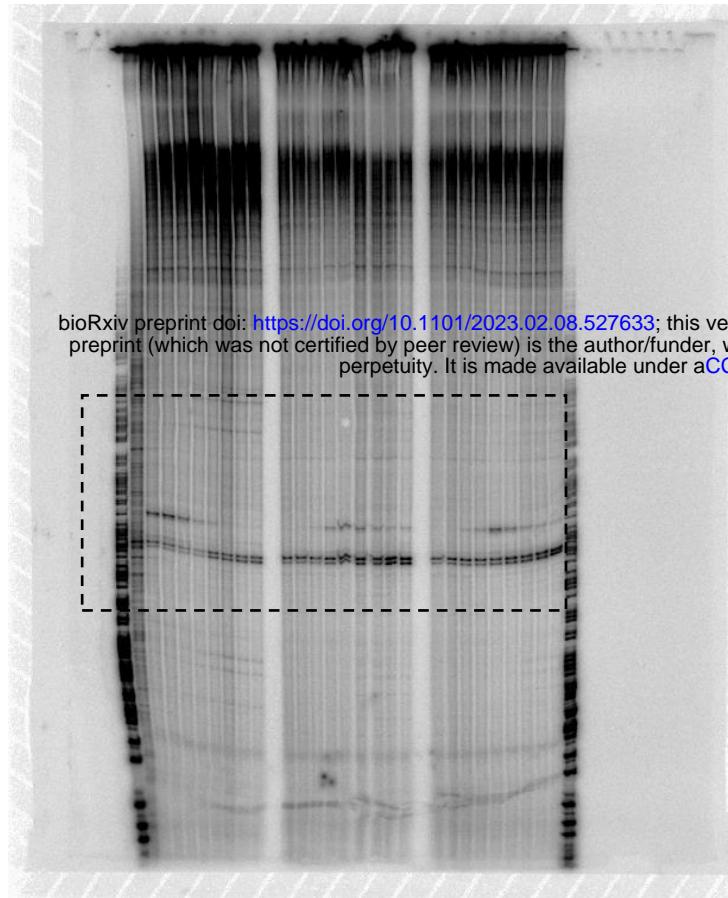


Figure S2

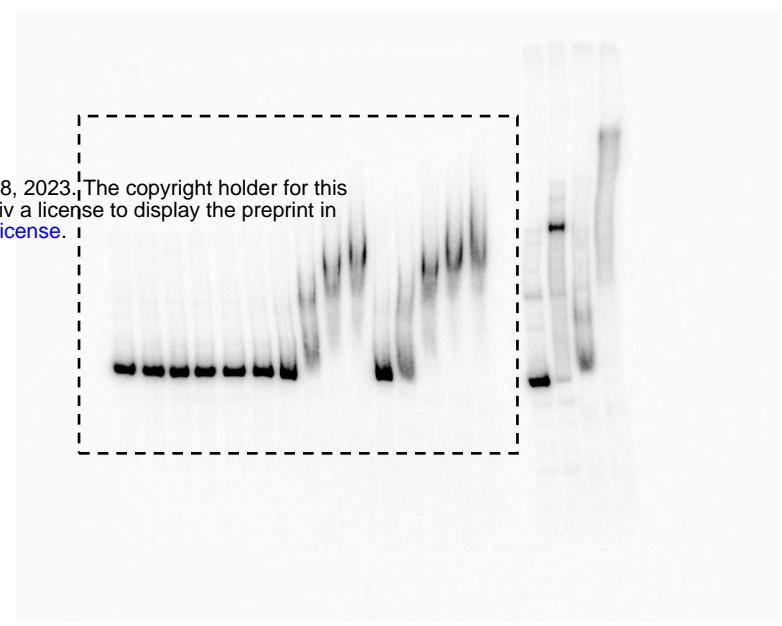


Figure S5

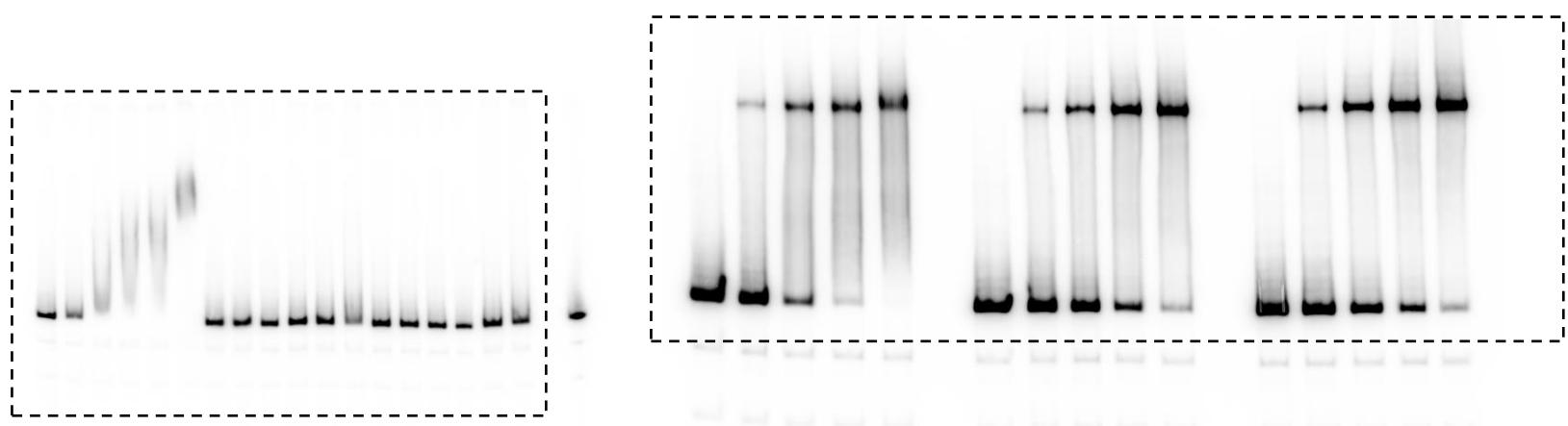
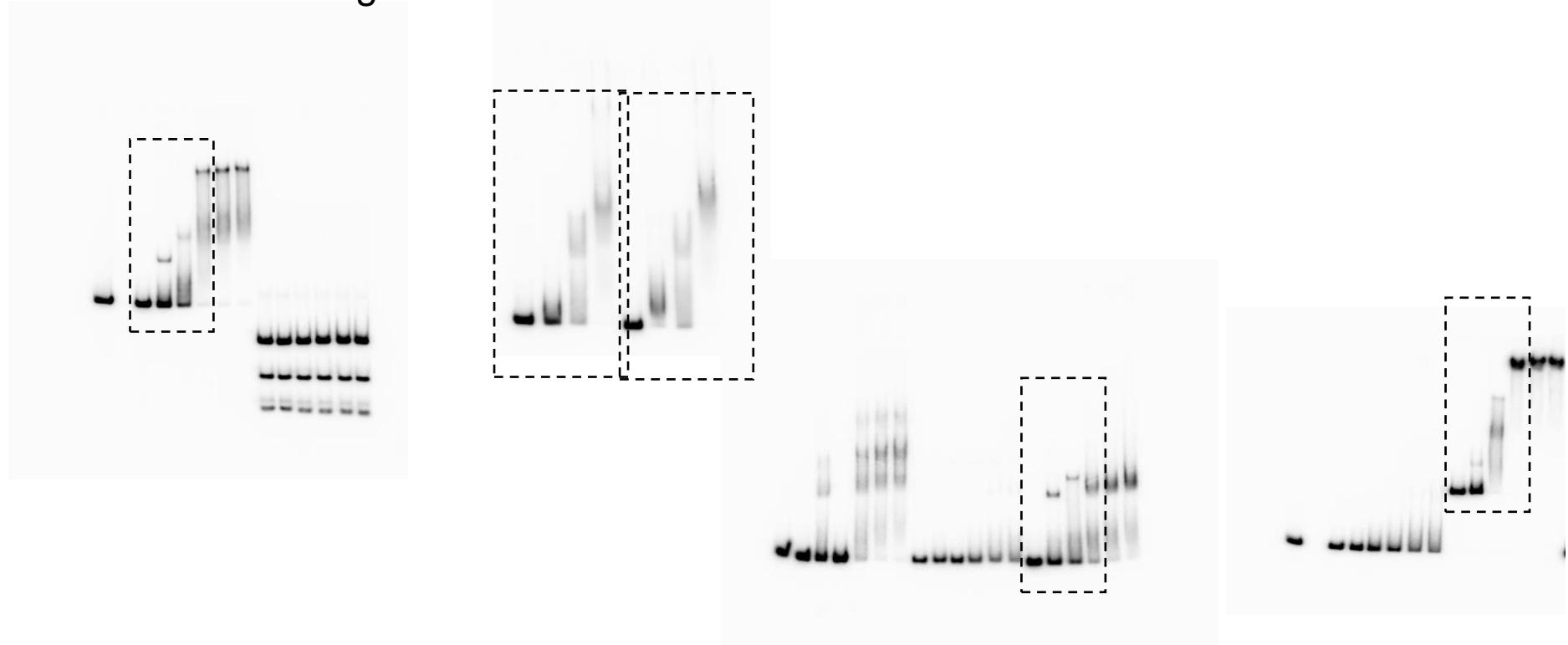



Figure S6

