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The most highly expressed genes in microbial genomes tend to use a limited set of
synonymous codons, often referred to as “preferred codons.” The existence of pre-
ferred codons is commonly attributed to selection pressures on various aspects of
protein translation including accuracy and/or speed. However, gene expression is
condition-dependent and even within single-celled organisms transcript and pro-
tein abundances can vary depending on a variety of environmental and other fac-
tors. Here, we show that growth rate-dependent expression variation is an impor-
tant constraint that significantly influences the evolution of gene sequences. Using
large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccha-
romyces cerevisiae, we confirm that codon usage biases are strongly associated
with gene expression but highlight that this relationship is most pronounced when
gene expression measurements are taken during rapid growth conditions. Specif-
ically, genes whose relative expression increases during periods of rapid growth
have stronger codon usage biases than comparably expressed genes whose ex-
pression decreases during rapid growth conditions. These findings highlight that
gene expression measured in any particular condition tells only part of the story
regarding the forces shaping the evolution of microbial gene sequences. More gen-
erally, our results imply that microbial physiology during rapid growth is critical for
explaining long-term translational constraints.

Introduction 1

In prokaryotic and eukaryotic genomes, it has long been observed that alternate synonymous 2

codons are used non-randomly in a species-specific manner (Ikemura 1985; Plotkin and Kudla 3

2011; López et al. 2020). The preferential use of specific synonymous codons, also known 4

as codon usage bias (CUB), is notably strong in highly expressed genes (Bennetzen and 5

Hall 1982; Gouy and Gautier 1982; Sharp 1991). Strong codon usage bias is often discussed 6

alongside observations of slow evolutionary rates in highly expressed genes, indicating that 7

such genes may be subject to strong purifying selection (Duret and Mouchiroud 2000; Pál 8

et al. 2001; Rocha and Danchin 2004; Subramanian and Kumar 2004). Numerous mecha- 9

nistic explanations have been put forth to explain variation in codon usage biases and the 10

correlation with expression—with causes variably attributed to mutation, selection, or drift 11

(Hershberg and Petrov 2008; Plotkin and Kudla 2011). While the details remain unclear, 12

there has been consistent, compelling support for translational selection as a driving force 13
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shaping the evolution of coding sequences (Sharp and Li 1987; Reis et al. 2004; Drummond 14

et al. 2005; Drummond and Wilke 2008; Tuller et al. 2010; Park et al. 2013; Zhou et al. 15

2016; Hanson and Coller 2018; Frumkin et al. 2018; de Oliveira et al. 2021). Simply, highly 16

expressed genes are subject to particularly strong selective pressures to ensure the accurate 17

and/or efficient production of proteins, and thus have stronger bias for the codons that will 18

maximize accuracy and/or efficiency. 19

The observation that gene expression is predictive of codon usage biases has been made 20

in various species and environments but remains most pronounced in (fast growing) single- 21

celled organisms (Pál et al. 2001; Sharp 1991; Duret and Mouchiroud 2000; Subramanian and 22

Kumar 2004; Galtier et al. 2018; Kames et al. 2020). Most existing studies were performed 23

under the assumption, generally not explicitly stated, that genes that are highly expressed 24

in the specific environment in which they were measured for the purpose of the study are 25

highly expressed in all relevant conditions. However, expression in microbes is known to be 26

condition-dependent, varying based on current environmental conditions for example in Es- 27

cherichia coli and Saccharomyces cerevisiae (Elowitz et al. 2002; López-Maury et al. 2008; 28

Urchuegúıa et al. 2021). It is unclear how condition-dependent gene expression impacts 29

expectations for codon usage bias. If a gene is expressed highly in certain conditions but 30

not in others, the predicted strength of codon usage biases is unknown. Further, micro- 31

bial populations are subjected to fluctuating environmental conditions across time and thus 32

different selection pressures (López-Maury et al. 2008). It is unclear which conditions are 33

of evolutionary significance in shaping gene expression levels, codon usage biases, and the 34

relationship between them. 35

Here, we explore the connections between environmental condition, gene expression, and 36

codon usage biases. We primarily focus our analysis on published transcriptome-level data 37

coupled with known growth rates in E. coli, but confirm our findings in E. coli proteome 38

and S. cerevisiae transcriptome and proteome data sets (Sastry et al. 2019; Schmidt et al. 39

2016; Yu et al. 2021). We find a predictive relationship between expression and CUB with 40

the strength of this correlation varying across conditions. Conditions with the strongest 41

correlation are consistently associated with the fastest growth rates. We show that the degree 42

to which the expression of individual genes is correlated to growth rate—which we term 43

the Growth Correlation Index (GCI)—is a strong predictor of CUB. We further investigate 44

individual genes and find that those who are members of the core or essential genome are more 45

likely to see relative expression increases during rapid growth (GCI > 0), while accessory 46

and non-essential genes most often see a relative decrease in expression during rapid growth 47

(GCI < 0). Finally, we complete a gene ontology (GO) term enrichment analysis for genes 48

with positive and negative GCI values and find that resource uptake becomes relatively 49

more important in slow growth while biosynthesis becomes relatively more important in fast 50

growth environments. In aggregate, our findings support the notion that selective pressures 51

on translation drive the evolution of strong codon usage biases, and that these pressures are 52

most pronounced under rapid growth. 53
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Results 54

We explored condition-dependent gene expression by incorporating this variation into the 55

well-studied expression–CUB paradigm. Most prior analyses examining the relationship be- 56

tween gene expression and codon usage bias ignored environmental variation, assuming that 57

expression levels and the resulting dynamics with CUB are constant across all conditions. We 58

considered a number of scenarios where gene expression profiles either conform to or violate 59

this assumption and summarized the known expectations for codon usage patterns in these 60

genes (Figure 1). Genes with constant expression profiles (genes A, B, and C in Figure 1) 61

have expected bias levels that correlate with their relative expression; i.e., highly expressed 62

genes have strong CUB, while lowly expressed genes have weak CUB. For genes with variable 63

expression profiles (genes D and E), it is unclear what level of bias should be expected. In 64

reality, most genes likely fall somewhere between the two extremes presented. Therefore, 65

we characterized condition-dependent gene expression and its relationship to codon usage 66

biases in an attempt to understand these currently unknown dynamics. 67

Gene expression in rapid growth conditions best predicts codon 68

usage bias. 69

We began our investigation into the relationship between gene expression and codon usage 70

biases by first exploring an existing RNA-seq compendium that consists of 278 uniformly 71

processed RNA-seq experiments performed across 154 conditions for E. coli (strains K-12 72

MG1655 and BW25113) (Sastry et al. 2019). We limited this data to conditions with known 73

growth rates, and we averaged the expression of genes across biological replicates when 74

applicable (see Materials and Methods). This resulted in 103 unique expression profiles whose 75

correlations with one another (reported here as coefficient of determination, R2) ranged 76

from 0.42 to 0.985 (Figure 2). The paired conditions with the highest and lowest reported 77

correlation were ytf delydcI ph5 vs ytf wt ph5 and ica cytd rib vs ssw glc xyl glc, 78

respectively (Figure 2B). Despite the limited size of this data set and the fact that it contains 79

only laboratory growth conditions, there was nevertheless clear and substantial heterogeneity 80

in gene expression whose impact we sought to explore. 81

We next quantified codon usage biases for all genes in each condition in the data set. We 82

used the Codon Adaptation Index (CAI) as a measure of codon usage biases but note that 83

results were similar when using two additional codon usage bias metrics that—including 84

the CAI—spanned a range of assumptions: the tRNA Adaptation Index (tAI) and ROC 85

SEMPPR (Sharp and Li 1987; Reis et al. 2004; Gilchrist et al. 2015). Across the 103 condi- 86

tions in our processed data set, we observed that the strength of the relationship between CAI 87

and measured transcript abundances varied substantially, with R2 values ranging from 0.15 88

to 0.30 (Figure 3A,B). The conditions with the weakest and strongest relationship between 89

CAI and gene expression were rpoB rpoBE672K lb and ica cytd rib, respectively. 90

For quantifiable comparisons across conditions, we characterize each condition by its 91

reported growth rate. Reported growth rates across the individual conditions vary from 92

0.07 to 1.42 (1/hr), corresponding to population doubling times between 0.48 and 9.9 hours 93

(Figure 3C). We mapped the strength of the relationship between gene expression and CAI to 94
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the growth rate data and observed a strong (and significant) positive relationship: transcript 95

abundances from rapid growth conditions were much more strongly predictive of CAI values 96

than transcript abundances measured during periods of slow growth (Spearman’s ρ = 0.64, 97

p = 3.30 × 10−13, Figure 3D). 98

Individual genes vary in the extent to which they are expressed 99

during rapid growth. 100

We assessed the correlation between relative gene expression values across all conditions for a 101

given gene and the corresponding observed growth rates for those conditions. The resulting 102

correlation coefficients (Pearson’s r) spanned a broad range, from −0.77 to 0.72 (Figure 103

4A, B). We compared the distribution of correlation coefficients to the expected distribution 104

under the null hypothesis of no association, by randomly permuting the data, and found that 105

the bulk of the observed distribution fell outside the null expectation, with the largest and 106

smallest observed correlation coefficients falling way beyond two standard deviations of the 107

null distribution (Figure 4C). Further, the observed distribution of correlation coefficients was 108

substantially skewed, with a mode around −0.3. In other words, we found that a majority of 109

genes decreased in relative abundance during periods of rapid growth whereas comparatively 110

few genes (examples include ribosomal proteins) increased in relative abundance. For ease of 111

nomenclature, we defined the Growth Correlation Index (GCI) of a gene as the correlation 112

coefficient r between the gene’s expression level across all conditions and the corresponding 113

growth rates of those conditions. GCI values can span a theoretical range from −1 to 1, 114

and the end points of this range represent genes whose expression is, respectively, perfectly 115

negatively or positively correlated with measured growth rates. We found that GCI values 116

for individual genes were positively correlated with the mean expression level across all 117

conditions (R2 = 0.14, p < 10−10), indicating that the genes which tended to increase in 118

abundance under rapid growth conditions also appeared to have higher levels of expression 119

across the 103 conditions overall. 120

Growth-rate-dependent expression variation is predictive of codon 121

usage bias. 122

To test whether the GCI metric captures biological constraints, we assessed its relationship 123

with codon usage biases. We constructed a series of linear models to predict CAI values 124

from average gene expression or GCI values both independently and in combination (Figure 125

5). First, we found that the relationship between mean gene expression and CAI was highly 126

significant and positive, as expected (adjusted R2 = 0.27, p < 10−10, Figure 5A, B). Second, 127

we found that the relationship between GCI and CAI was significant and positive but slightly 128

weaker (adjusted R2 = 0.19, p < 10−10). Importantly, GCI correlated more strongly with 129

CAI than it did with mean expression level (R2 = 0.14), as reported in the preceding sub- 130

section. Also, we note that while the relationship between CAI values and mean expression 131

for genes appeared somewhat non-linear (Figure 5B), the relationship between CAI and GCI 132

was best characterized by a linear model (Supplemental Figure S1). 133

Next, we constructed an additive multi-variable model using both GCI and mean ex- 134
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pression to predict CAI scores. We observed a higher predictive power (adjusted R2 = 0.33, 135

p < 10−10) than for either individual model, and confirmed that this increase does not appear 136

to be caused by collinearity (VIF = 1.16). Further, we found that the overall magnitude of 137

the contribution made by the GCI predictor variable to this model was substantial (Figure 138

5A, C). In practice, this shows that genes with similar mean expression levels across all 139

conditions are likely to have substantially higher CAI scores if their relationship with growth 140

rate is positive (GCI > 0). By contrast, genes that are negatively associated with growth 141

rate (GCI < 0) will—on average—have substantially lower CAI scores than their mean ex- 142

pression across the conditions might otherwise predict. These relationships are most easily 143

seen by comparing model predictions under different GCI values (Figure 5C). 144

To further ensure that the relationship between GCI and codon usage biases is robust to 145

various model assumptions and specifications, we constructed a final model which included 146

an interaction term between GCI and mean expression. For this model, we observed an even 147

stronger ability to predict CAI values (adjusted R2 = 0.37, p < 10−10, Figure 5A, D), though 148

the increase in variance explained was small (four percentage points). This finding shows 149

that GCI and mean expression level are largely independent of each other in their effect on 150

CAI, consistent with the observation of a low VIF for the model without interaction term. 151

On average, a more positive GCI will correspond to larger CAI at all expression levels, and 152

similarly higher expression levels will correspond to larger CAI for all GCI values. 153

Finally, to assess whether our results were robust to our choice of CUB metric, we re- 154

peated these analyses with tAI and ROC SEMPPR values in place of CAI. We found that 155

regardless of CUB metric, GCI was a strong predictor of codon usage bias (Supplemental 156

Figures S2 and S3). Moreover, for these two additional metrics of CUB, the interaction 157

term in the fourth model had even less predictive power than it did for CAI. In aggregate, 158

these results provide strong support that GCI is quantifying an important and previously 159

unknown aspect of individual genes, which partially governs coding sequence evolution. 160

Genes with highest GCI values are associated with important func- 161

tional pathways. 162

To gain further insight into the biological significance of GCI, we investigated what if any 163

associations existed between GCI and the functional classification of genes. First, we checked 164

for differences in GCI values between essential and non-essential genes. We classified all 165

genes as either essential or non-essential based on their presence in the PEC (Profiling of 166

E. coli Chromosome) database (Hashimoto et al. 2005; Yamazaki et al. 2008). We found 167

that there was a significant difference in the distribution of the GCI values for essential and 168

non-essential genes. GCI values for essential genes had a mode around 0.3, a mean of 0.12, 169

and were left skewed. GCI values for non-essential genes had a mode around −0.3, a mean of 170

−0.15, and were right-skewed. The means were significantly different (t-test, p < 10−10). We 171

found similar results when assessing essentiality alternatively by their presence or absence 172

in the Keio collection (Baba et al. 2006) (mean GCI values of 0.12 and −0.15, respectively, 173

p < 10−10). We also used an additional classification where we subdivided genes into either 174

core or accessory, rather than essential or non-essential. Core genes included those shared 175
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across 60 strains of E. coli (Maddamsetti et al. 2017). We found that the core genes on 176

average differed significantly from accessory genes in their GCI values and indeed had more 177

positive GCI values (mean GCI of −0.05 vs. −0.20, respectively, p < 10−10). 178

We also subdivided all genes by whether their GCI was positive or negative and then ran 179

independent Gene Ontology analyses to assess GO term enrichment within each gene set. 180

Genes with GCI < 0 were enriched for GO terms indicated in processes most important for 181

cell survival, such as transport and metabolism (Figure 6B, left). By contrast, genes with 182

GCI > 0 were enriched for GO terms related to biosynthesis and ribosomal activity (Figure 183

6B, right). We note that the odds ratios in the enrichment analysis for genes with GCI > 0 184

were considerably larger than those in the analysis for genes with GCI < 0. 185

Results are robust to changes in data sources, data filtering, and 186

organism considered. 187

To assess the robustness of our results, we repeated our analyses in a number of complemen- 188

tary data sets that covered different biomolecules (RNA and protein) and species (E. coli 189

and S. cerevisiae). These five additional data sets consisted of two subsets of the full E. coli 190

transcriptome data set, an E. coli proteome data set, and a transcriptome and a proteome 191

data set from S. cerevisiae. 192

Although we had already employed several filtering steps to ensure the 103 conditions 193

used in the full E. coli RNAseq data set were representative and independent, we created 194

three subsets to account for potential limitations in the original data (Sastry et al. 2019). 195

We constructed a “sparse” data set by iteratively removing individual conditions whose gene 196

expression levels were strongly correlated with one another, until arriving at a set of 30 197

unique conditions. We additionally created two “neutral” data sets: one consisting of only 198

the 48 conditions that were not identified as ALE (adaptive laboratory environment) strains, 199

and the other consisting of a further subset of 28 conditions that also excluded mutants and 200

knock-out strains. All our prior findings were qualitatively unchanged in these two data sets: 201

GCI was highly variable, negatively-skewed, and predictive of CAI (Supplementary Figures 202

S4, S5, S6, S7, S8, S9). 203

The E. coli genome is known to contain a subset of 730 AT-rich genes with unusually low 204

CUB (dos Reis et al. 2003). The vast majority of these genes have negative GCI, and in fact 205

many of the E. coli genes with the most negative GCI values are found in this group of genes 206

(Supplementary Figure S10). Thus, these genes are among the most down-regulated under 207

conditions of rapid growth. Therefore, by our observation that low GCI tends to associate 208

with reduced CUB, these genes would be expected to have among the least codon usage bias 209

in the E. coli genome. We asked whether these genes were responsible for the genome-wide 210

relationship we have observed between GCI and CUB, by excluding them from the analysis, 211

and found that the overall patterns remained unchanged even after excluding these genes 212

(Supplementary Figure S11). 213

Next we expanded our analysis from transcript abundances to protein abundances. It 214

is known that transcript abundances are not necessarily predictive of protein abundances 215
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E. coli, in particular during periods of starvation (Houser et al. 2015), so this additional 216

analysis served as an important additional control. We utilized data that measured growth 217

rate and protein abundances of E. coli across 20 conditions, where population growth rates 218

spanned a range from 0.12–1.9 hr−1 (Schmidt et al. 2016). Despite the smaller size of 219

the data set and the narrower range of the growth rates explored, our results were again 220

qualitatively unchanged. Notably, protein abundances measured during conditions of rapid 221

growth showed a stronger relationship with codon usage biases than abundances measured 222

during slow growth. Gene-specific GCI values calculated from this data set spanned a wider 223

range of magnitudes with a less extreme shift towards negative values (Supplementary Figure 224

S12), and were predictors of CAI independently of expression level (Supplementary Figure 225

S13). 226

We also considered S. cerevisiae, a well-studied microbial eukaryote. Yu et al. (2021) 227

measured both transcript and protein abundances for thousands of S. cerevisiae genes across 228

22 conditions. We focused our analysis on a subset of those conditions encompassing 14 229

unique environments (see Methods). The growth rates within these conditions spanned a 230

range of 0.05–0.35 hr−1, and correlations between individual transcriptome (proteome) data 231

sets across all conditions spanned a range from 0.57–0.99 (0.88–0.99 in proteomes). 232

Qualitatively, all of the results that we observed for E. coli remained true for S. cerevisiae. 233

Most notably, expression measurements from rapid growth conditions showed the strongest 234

correlations with CAI values. GCI values spanned nearly the full range of potential values 235

(−1 to 1) with peaks forming towards more extreme values (Supplementary Figures S14, 236

S15). While there were only 14 unique conditions used to estimate GCI values for individual 237

genes, the relationship between GCI and CAI was highly significant and independent of the 238

relationship between mean expression and CAI (Supplementary Figures S16, S17). 239

Discussion 240

We have investigated the relationship between condition-dependent gene expression and 241

codon usage bias (CUB). We have confirmed the well known observation that CUB increases 242

on average with increasing expression level, and we have additionally discovered that CUB 243

is best predicted by expression values measured under conditions of rapid growth. The 244

expression level of individual genes varies considerably across conditions and can be variably 245

associated with microbial growth rate. To capture this association between variation in 246

gene expression and variation in growth rate across conditions, we have introduced a novel 247

gene-level metric, GCI (Growth Correlation Index), and we have found that GCI has a 248

significant, positive relationship with CUB. We have further found that these results are 249

consistent across different data sets, covering different unicellular organisms (E. coli and S. 250

cerevisiae), different types of biomolecules (mRNA transcripts and proteins) and different 251

metrics of codon usage bias (CAI, tAI, ROC SEMPPR). In all cases, genes with positive 252

GCI values experience a relative increase in expression during periods of rapid growth (by 253

definition) and they have the strongest codon usage biases. Additionally, we have shown for 254

E. coli that these genes are more likely to be classified as essential genes or as members of 255

the core genome with functional roles in translation. 256
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Our discovery that an additional, expression-related metric (GCI) is predictive of the 257

strength of codon usage biases, independently of the mean gene expression level across con- 258

ditions, offers both renewed support and additional clarification for prior work noting the 259

positive correlation between expression level and CUB (Pál et al. 2001; Sharp 1991; Duret and 260

Mouchiroud 2000; Subramanian and Kumar 2004; Galtier et al. 2018; Kames et al. 2020). In 261

these earlier studies, the observed correlations were significant but somewhat moderate. We 262

have here observed a strong increase in our ability to predict CAI (and other CUB metrics) 263

by accounting for additional sources of variation related to growth rate. Previously calcu- 264

lated correlations might have been considerably higher if growth-rate-dependent expression 265

variation had been accounted for as we have done here. 266

We emphasize, however, that our work is based on simple correlation metrics, whereas 267

several prior works have employed mechanistic population genetics models to disentangle 268

the effects of mutation, selection, and drift on codon usage bias (Bulmer 1991; Shah and 269

Gilchrist 2011; Wallace et al. 2013; Gilchrist et al. 2015). Importantly, all these models are 270

steady-state models and they implicitly or explicitly assume the existence of a latent gene 271

expression level that is constant over time. Consequently, there is no straightforward way 272

to adapt them to the inherently non-equilibrium scenario we are considering here, where we 273

have no a priori knowledge about how expression changes relate to growth rate and what 274

distribution of growth conditions species experience over evolutionary time. We believe 275

that given this lack of a priori knowledge, an unbiased, correlation-based approach is the 276

right tool to discover novel biological relationships, such as the observation we have made 277

here that an increase in expression level with increasing growth rate seems to lead to the 278

strongest selection pressure on codon usage. We hope that future modeling studies will take 279

this observation and incorporate it into a mechanistic model of mutation, selection, drift, 280

and growth under changing environmental conditions. 281

During periods of rapid growth, genes with GO terms associated with biosynthesis path- 282

ways experience a relative increase in expression. In addition to being upregulated, these 283

genes also display strongest correlations between the growth-dependent expression level (as 284

quantified by GCI) and codon usage bias. The observation that this pattern holds across 285

species, biomolecules, and metrics of codon usage bias provides strong support for the notion 286

that highly expressed genes in high growth environments experience the strongest selection. 287

While there could be many biological explanations, we suggest one that we believe to be most 288

likely: Under conditions of rapid growth, microbial cells risk depleting their charged tRNA 289

molecules, and the genes that are highly expressed under these conditions (genes associated 290

with biosynthesis and essential functions) experience the strongest selection to preferentially 291

use the tRNAs (and thus codons) that will be the least limiting to growth. This explanation 292

aligns with insights from previous modeling studies (Sharp and Li 1987; Reis et al. 2004; 293

Tuller et al. 2010; Hanson and Coller 2018; Frumkin et al. 2018; de Oliveira et al. 2021). We 294

emphasize that this explanation does not specifically distinguish between selection for speed 295

or accuracy of translation, nor does it provide any insight into whether selection is driven 296

primarily by the rate of protein production, the absolute amount of protein produced, the 297

rate or amount of misfolded protein produced, or any other biological function involved in 298

accurate and efficient translation under rapid growth. 299
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Our observation that GCI (an empirically determined metric quantifying the correlation 300

between individual expression and growth rate across conditions) correlates strongly with 301

several metrics of codon usage bias is complementary to previous observations made at the 302

species-level (Sharp et al. 2010). Sharp et al. surveyed 80 bacterial species and found that 303

species-level growth rates and codon usage biases were highly correlated. Bacterial species 304

with stronger biases had a higher number of rRNA operons and tRNA genes in their genomes 305

(Sharp et al. 2010). This work was confirmed and extended in numerous studies (Vieira-Silva 306

and Rocha 2010; Ran and Higgs 2012; Hockenberry et al. 2018; Weissman et al. 2021). While 307

species-level patterns have been well established, our analysis shows that growth rates and 308

codon usage biases are highly correlated within individual species as well. 309

We have found through an enrichment analysis on GO terms that resource uptake tends 310

to become relatively more important in slow growth environments (GCI < 0) whereas pro- 311

cesses such as biosynthesis become relatively more important in fast growth environments 312

(GCI > 0). The genes responsible for these processes experience a relative increase in ex- 313

pression in those contexts. This trend is consistent with prior work on starvation in E. coli 314

(Houser et al. 2015) and with the observation that growth-related and stress-related genes 315

have antagonistic regulation (López-Maury et al. 2008). In addition to implications in trans- 316

lational machinery, genes with positive GCI values are more likely to be classified as either 317

core or essential in reference data sets (Hashimoto et al. 2005; Yamazaki et al. 2008; Baba 318

et al. 2006; Maddamsetti et al. 2017). Core genes are defined based on conservation across 319

species or strains found in a variety of environments (Maddamsetti et al. 2017), and essential 320

genes are defined based on the survival (or not) of gene knockout strains. Although there is 321

overlap between these two sets of genes they are distinct, and genes in both sets are more 322

likely to be upregulated during periods of rapid growth (GCI > 0). 323

Despite the abundance of available transcriptome and proteome scale data sets that 324

have been produced in recent years, few studies have explicitly grown cells in different en- 325

vironments while noting the population growth rates or doubling times. This is partially 326

a logistical challenge since growth rates are often calculated from a series of points during 327

exponential growth; it is unclear how to explicitly extend our methods to include data from 328

growth conditions where the cells are not growing exponentially, as may be the case during 329

nutrient up- and down-shifts or during extremely slow stationary phase growth periods. The 330

data sets that we selected for our analysis were all comparatively recent, spanned a range of 331

conditions, and within each data set were uniformly processed (Sastry et al. 2019; Schmidt 332

et al. 2016; Yu et al. 2021). We focused here on two unicellular organisms: a representative 333

prokaryote, E. coli, and a representative eukaryote, S. cerevisiae. Of course, the data sets 334

we used are of limited size and environmental diversity, but given the large evolutionary 335

distance between E. coli and S. cerevisiae we expect that our results will generalize to a 336

larger set of species. 337

Throughout this work, our primary data source was Sastry et al. (2019), who curated 338

a collection of 250 RNAseq data sets for E. coli grown in various environments. While we 339

have filtered this data set to ensure maximum reliability of our analysis, we acknowledge that 340

there are still potential limitations to this data. One potential concern arises around the 341

inclusion of adaptive laboratory environment (ALE) and mutant and knock-out strains in the 342
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103 conditions considered. Our results have proven quantitatively consistent in the presence 343

and absence of ALE, mutant, and knock-out strains, suggesting that their inclusion does 344

not impede the applicability of this analysis. We note that one mutant strain is highlighted 345

as the condition with the weakest recorded relationship between CAI and gene expression 346

(Figure 3A); however, we emphasize that this result is presented only as an example of a 347

weak correlation. 348

We additionally note that gene expression and cellular growth rate measurements are 349

inherently noisy. And some of the noise is due to measurement error while other noise rep- 350

resents biologically meaningful variation among related organisms or across time in response 351

to the same environment. In prior work, using a steady-state model, Wallace et al. (2013) 352

have been able to disentangle different noise sources from each other and from mutation and 353

selection pressures acting on codon-usage bias. However, it is not clear how to adapt this 354

model to a non-equilibrium setting, as we have mentioned above. Furthermore, we note that 355

expression noise is condition-dependent, tied closely to the structure of gene regulatory net- 356

works, and has been shown to systematically decrease with growth rate at the genome-level 357

(Urchuegúıa et al. 2021). The relationship between noise in expression and in growth rate 358

appears to be the target of natural selection (Urchuegúıa et al. 2021; Krah and Hermsen 359

2021). Highly expressed genes experience minimal expression noise, and have the potential 360

to drive growth rate when fast growth is selected for (Krah and Hermsen 2021). 361

It is unclear what impact, if any, noise might have on our analysis, but we would expect 362

that conditions of higher expression noise lead to weaker correlations between expression 363

level and codon usage bias, both because the noise weakens the ability of selection to act on 364

codon usage bias and because it prevents us from obtaining precise measurements of gene 365

expression level. The quantity we use to study the relationship between expression level 366

and growth rate, GCI, is a correlation coefficient between two noisy quantities, and thus 367

is expected to be noisy as well. Nevertheless, for individual genes the GCI index should 368

roughly capture the component of gene expression variation that is attributable to growth 369

rate variation, as long as a reasonable number of conditions are sampled. Inaccuracies in 370

measuring GCI are, if anything, expected to dilute statistical signal. Consequently, our 371

findings likely represent a lower-bound regarding the strength of the relationship between 372

growth-dependent gene expression variation and codon usage biases. 373

Finally, we would like to emphasize that measures of codon usage bias such as CAI, tAI, 374

or ROC SEMPPR assume that codon preferences are constant across different environmental 375

conditions, but tRNA pools and codon preferences are known to vary somewhat in response 376

to growth conditions or external stressors (Dong et al. 1996; Novoa and Ribas de Pouplana 377

2012; Chionh et al. 2016; Torrent et al. 2018). For example, a seminal study demonstrated 378

that in E. coli, abundances of tRNAs corresponding to preferred codons increased with 379

increasing growth rate (Dong et al. 1996). It is not surprising to see tRNAs upregulated 380

when they are the most needed, and this dynamic could also increase the selection pressure 381

for genes expressed under rapid growth to be encoded using those preferred codons, consistent 382

with our findings here. However, we need to be careful to assume this is a foregone conclusion. 383

The selection strength under specific conditions will depend on the balance between the 384

availability of and the demand for specific tRNAs, and if increased tRNA abundances cannot 385
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compensate for increased demand then selection might actually favor less biased codon usage 386

under such conditions. Because of these subtle complexities, we see an opportunity and need 387

to develop models that explicitly link environmental conditions, dynamic tRNA regulation, 388

and selection on codon bias, so that we can develop better intuition and insight into how 389

varying growth conditions shape selection for codon usage bias. 390

Materials and Methods 391

Data sources and processing 392

We analyzed several data sets that contain transcript or protein abundance data across 393

multiple conditions for two microbes, E. coli and S. cerevisiae (Sastry et al. 2019; Schmidt 394

et al. 2016; Yu et al. 2021). These include three E. coli transcriptome data sets (a full, a 395

sparse, and a neutral version), an E. coli proteome data set, and S. cerevisiae transcriptome 396

and proteome data sets. Analyses presented here were run independently on each data set. 397

The original data sources and processing steps are described below. 398

E. coli transcriptome data. We used a previously published E. coli data set that con- 399

tains RNA-seq and meta data for several hundred independent experiments in strains K-12 400

MG1655 and BW25113 (Sastry et al. 2019). Transcript abundances in this data set were 401

reported as log-TPM (transcripts per million) throughout, and growth rates were reported 402

as increase per hour. We limited our analysis to the experiments with reported, non-zero 403

growth rates; i.e., we removed conditions where growth rate data was either unknown or 404

reported as zero. Growth rates reported as zero could either indicate that stationary phase 405

cultures were used or that errors occurred in reporting. Additionally, we excluded conditions 406

that were reported to have poor alignment scores (less than 80). After these quality controls, 407

173 of the original 278 conditions remained. 408

Many of the experiments included in this data set had the same replicated conditions, 409

resulting in multiple gene expression and growth measurements for one condition. To incor- 410

porate as much data as possible while avoiding pseudoreplication, we averaged both gene 411

expression levels and growth rates across all replicates within each condition (identified 412

within the data set based on the naming conventions given in the original paper). After 413

averaging across replicates, 105 conditions remained. We note that two columns within 414

the gene expression data set were identical and appeared to be duplicated (namely, con- 415

ditions pal lyx ale2 and pal lyx ale4). Identical gene expression measurements were 416

identified by correlation coefficients of 1.0 in an all-by-all Spearman correlation, which is ex- 417

tremely unlikely to arise experimentally. Despite duplicated measurements in the expression 418

columns, the reported growth rate for each condition varied. In this case, neither averaging 419

nor eliminating one of the duplicate columns seemed appropriate. We thus excluded these 420

two conditions from all analyses, resulting in a final E. coli gene expression data set for 3,923 421

genes across 103 independent conditions. 422

While we had implemented a number of filters to ensure that conditions were unique, 423

we created two additional data sets where filtered even further. To create a data set with 424
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maximally distinct conditions, we pruned the full data set using an iterative removal pro- 425

cess. In each iteration, an all-by-all Spearman correlation matrix was calculated, the two 426

conditions with the highest correlations were identified, and then one of them was randomly 427

removed. This process continued until a data set with only 30 conditions remained. We 428

refer to this pruned data set as the “sparse” data set. We additionally created two “neu- 429

tral” data sets. The first excluded all conditions that were identified as adaptive laboratory 430

environment (ALE) strains, limiting the data set to 48 of the 103 conditions. The second fur- 431

ther restricted the non-ALE neutral data set to also exclude mutants and knock-out strains, 432

reducing our analysis to 28 conditions. 433

Finally, for our full E. coli gene expression data set, we considered the impact of genes 434

previously identified as AT-rich outliers (dos Reis et al. (2003); Table S1, group 3 genes), by 435

repeating our analysis on a reduced data set that removed those genes. The reduced data 436

set included 3,339 non-outlier genes measured across all 103 conditions. 437

E. coli proteome data set. Our E. coli proteome data set was taken from a study that 438

measured protein abundance levels across 22 experimental conditions (Schmidt et al. 2016). 439

We focused here on the measurements collected for E. coli strain BW25113, including only 440

the conditions that had non-zero growth rates recorded. We limited our analysis to proteins 441

with measured (i.e., non-missing) abundance values across all conditions and removed any 442

duplicated expression profiles. Our final data set consisted of 2,052 unique proteins observed 443

across 20 conditions. 444

Because protein abundances were reported as average counts of protein copies per cell, 445

we transformed them to units comparable to log TPM, using the formula 6 + ln(a/
∑
a), 446

where a is the abundance (raw count) for a given protein within a condition, and
∑
a sums 447

the abundances of all proteins within a condition. 448

S. cerevisiae transcriptome and proteome data sets. We analyzed transcript and 449

protein abundance data from a study that quantified expression profiles for yeast in 22 steady- 450

state chemostat cultures (Yu et al. 2021). These 22 cultures consisted of 14 experiments 451

(referred to as novel conditions) that were all collected using a consistent experimental 452

protocol and 8 experiments that had been conducted previously. We focused here exclusively 453

on the 14 novel conditions. 454

This yeast data set reported both transcript and protein abundances for the same con- 455

ditions. Abundances for both proteins and mRNA were reported as absolute measurements 456

in fmol/mgDW. As in the case of the E. coli proteome data set, we therefore normalized 457

all abundances using the formula 6 + log10(a/
∑
a). Additionally, we replaced any counts of 458

zero with the smallest, non-zero minimum value in the set prior to this transformation. For 459

the RNA data, no replacement was necessary, while the protein data required 1 replacement 460

of 0 with 0.0218. Each experimental condition included 3 biological replicates, which were 461

averaged (after normalization) to give one expression profile per condition. 462

The reported dilution rates were assumed to be equivalent to and treated as growth rate 463

per hour in our analysis. 464
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Gene metrics 465

To perform sequence-level analyses such as calculations of codon usage bias we used reference 466

genomes for E. coli (str. K-12 substr. MG1655, accession NC 000913) and S. cerevisiae (str. 467

CEN.PK113-7D assembly ASM26988v1, accession GCA 000269885.1) from GenBank and 468

Ensembl Fungi, respectively(Sayers et al. 2021; Howe et al. 2021). We limited analyses to 469

coding sequences within each genome. For each coding sequence, we identified the locus tag, 470

gene name, start and stop loci, and the strand it is located on. We next applied some filtering 471

rules to ensure all genes met basic quality standards. We only included coding sequences 472

in the analysis if they met the following criteria: First, coding sequence length had to be 473

divisible by 3 and equivalent to the counted base length. Second, genes with unrealistically 474

long coding sequences, defined as longer than 5 times the median length across all genes, 475

were excluded from analysis. This process eliminated 58 coding sequences from the E. coli 476

genome and 53 coding sequences from the S. cerevisiae genome, resulting in reference data 477

sets with 4,357 and 5,398 genes, respectively. 478

For each gene in the two reference genomes, we calculated several codon usage bias 479

metrics: the codon adaptation index (CAI), the proportional differences in ribosome overhead 480

costs in a Stochastic Evolutionary Model of Protein Production Rate (ROC SEMPPR), and 481

the tRNA adaptation index (tAI) (Sharp and Li 1987; Gilchrist et al. 2015; Reis et al. 2004). 482

CAI measures the distance of a given coding sequence from a pre-defined, species-specific 483

reference set specifying weights for each codon. It is calculated as the geometric mean of 484

the weights for all codons within that coding sequence. Reference weights were taken from 485

the original paper (Sharp and Li 1987). ROC SEMPPR is a CUB metric with two unique 486

advantages: it is grounded in population genetic theory (allowing for the contributions of 487

natural selection and mutational biases to be disentangled) and its calculations are performed 488

with only the set of coding sequences of interest (removing the requirements of a priori 489

information) (Gilchrist et al. 2015). We implemented the ROC SEMPPR model in R using 490

the AnaCoDa package (Landerer et al. 2018). Lastly, tAI metric is a measure introduced 491

to test translational selection by estimating the adaptation of a gene to the genomic tRNA 492

pool (Reis et al. 2004). Like CAI, is calculated by assigning each codon a value based on a 493

list of codon weights and then calculating the geometric mean of all weights for a given gene. 494

Reference codon weights for S. cerevisiae and E. coli were taken from published tables (Reis 495

et al. 2004; Tuller et al. 2010). 496

Relationship between gene expression levels and growth condition 497

To assess the variation in gene expression levels across conditions, we computed Pearson’s 498

correlation coefficients (r) and their squares, the coefficients of determination (also written 499

as R2), for each possible gene pair. These computations were performed on the log-TPM 500

values for mRNA abundances and on equivalently transformed values for protein abundances 501

(see Data sources and processing). 502

Additionally, for each individual gene, we calculated the Pearson correlation coefficient r 503

between expression level and growth rate across all conditions. We refer to this correlation 504

coefficient as the Growth Correlation Index (GCI). GCI has a potential range between −1 505
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and 1. Genes with negative GCI values are upregulated during periods of slow growth while 506

genes with positive GCI values are upregulated during periods of rapid growth. 507

As a control, for each data set we also generated a set of randomized GCI values. These 508

values were generated via permutations; i.e., expression values and growth rates were shuffled. 509

For each gene, we shuffled the measured expression values and growth rates and calculated 510

one permuted GCI value from the randomly paired data. 511

The set of AT-rich genes identified by dos Reis et al. (2003) was shown to have low CUB, 512

so we compared the distribution of GCI values for these genes against the rest of the genes 513

in our data set. We extracted gene names from Table S1, group 3 genes of dos Reis et al. 514

(2003) and identified 508 AT-rich genes in our full E. coli data set. (While the original list 515

of AT-rich genes contains closer to 750 genes, not all of them were present in our full data 516

set.) We tested for significant differences in GCI between these 508 genes and the remaining 517

3,339 genes using Student’s t-test. 518

Predicting Codon Usage Bias 519

We tested to what extent gene expression level and/or GCI predict codon usage bias, as 520

measured by CAI, tAI, or ROC SEMPPR, by constructing a series of linear models that had 521

the measure of codon usage bias as the response and either gene expression level or GCI or 522

both as predictors. Specifically, we considered four different linear models. The first only 523

used gene expression level as predictor. The second only used GCI as predictor. The third 524

used both gene expression level and GCI as independent, additive predictors. The fourth also 525

included an interaction term between gene expression level and GCI. For all models, we used 526

adjusted R2 values as a measure of model performance. To assess whether the third model 527

(with two independent variables mean expression level and GCI) suffered from collinearity, 528

we calculated the variance inflation factor (VIF) for this model (Fox and Weisberg 2019). 529

VIFs near one indicate no collinearity whereas VIFs in excess of 5 are usually considered 530

problematic. The VIFs we observed were ¡2 in all cases. 531

Relationship between GCI and functional annotations of genes 532

For additional insight into the biological significance of our GCI metric, we examined its 533

relationship to functional properties of genes. We performed this analysis only for the data 534

set corresponding to the E. coli transcriptome. 535

Analysis of essential vs non-essential genes. We first examined the relationship be- 536

tween GCI and individual genes by labelling each gene as either “essential” or “non-essential.” 537

Genes were classified based on their designation in the PEC (Profiling of E. coli Chromo- 538

some) database (Hashimoto et al. 2005; Yamazaki et al. 2008). We designated genes as 539

essential if they were present in the reference set (n = 285), while all other genes were 540

designated as non-essential (n = 3625). We tested for a significant difference in mean GCI 541

between these two gene sets using a Student’s t-test. 542

We checked for robustness of our result with an alternative set of essential genes, defined 543

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.03.14.532645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532645
http://creativecommons.org/licenses/by/4.0/


by the Keio collection (Baba et al. 2006). We extracted all essential genes listed in their 544

Supplementary Table 7 to generate an independent set of essential and non-essential genes 545

(n = 255 and n = 3655, respectively). We again used a t-test to test for a significant 546

difference in mean GCI between these two sets of genes. 547

Analysis of core vs accessory genes. As an alternative to the distinction of essential 548

and non-essential genes, we also classified all genes in the E. coli genome as either “core” 549

or “accessory.” We developed this classification via a Prokka-Roary pipeline, where we 550

identified genes that are shared across the genomes of 60 E. coli strains (Seemann 2014; 551

Page et al. 2015; Maddamsetti et al. 2017). This resulted in lists of n = 1810 core and 552

n = 2100 accessory genes. These numbers were comparable to previously reported results 553

(Abram et al. 2021; Maddamsetti et al. 2017; Sims and Kim 2011). As before, we tested for 554

a significant difference in mean GCI between these two gene sets using a t-test. 555

GO term enrichment analysis. We performed GO term enrichment analysis for the sets 556

of genes with either GCI < 0 or GCI > 0. For each set, we used the AnnotationDbi package 557

to convert gene names to Entrez IDs, then used the clusterProfiler package to create gene 558

sets of Gene Ontology (GO) terms associated with the gene IDs, and completed an Over- 559

Representation Analysis to find terms enriched in the set (Pagès et al. 2022; Yu et al. 2012; 560

Wu et al. 2021; Ashburner et al. 2000; Gene Ontology Consortium 2021). We only retained 561

terms with significant enrichment (p ≤ 0.04 and q ≤ 0.05) and corrected for multiple testing 562

with the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995). Using the output 563

of clusterProfiler’s enrichment analysis, we calculated the odds ratio (OR) for all significant 564

GO terms. For both gene sets, we ranked terms by ORs and reported the terms with the 15 565

largest ratios. 566

Code and data availability 567

Data analysis, processing, and visualization was done using a combination of python and R 568

scripts (Van Rossum and Drake 2009; R Core Team 2021). These scripts and their associate 569

input and output data are available at: 570

https://github.com/mmjohn/Growth-expression-translation. 571
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Figure 1. Known and unknown relationship dynamics between gene expression,
growth, and expectations for CUB. Highly expressed genes tend to have strong codon
usage bias (gene A), lowly expressed genes have low bias (gene C), and intermediate ex-
pression have intermediate bias (gene B). These expectations are based on observations in
constant conditions and do not account for environmental variation. It is unclear what level
of bias to expect for genes that have variable expression across conditions/environments
(genes D and E).
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Figure 2. Gene expression variably correlates between conditions in the E. coli
RNA data set with 103 conditions. (A) Coefficients of determination (R2) in an all-
by-all comparison of gene expression levels across all 103 conditions. Each row/column is
one condition. (B) The two pairs of conditions with the highest and lowest R2 in the data
set. Conditions 78 and 73 correspond to ytf delydcI ph5 and ytf wt ph5, which vary in
the MG1655 strain used (one with a deletion of ydcI vs wildtype). Conditions 57 and 45
correspond to ica cytd rib and ssw glc xyl glc, which vary in their carbon source, the
presence of a cytidine supplement, and their ALE status.
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Figure 3. The strength of the relationship between codon usage bias and gene
expression is growth-rate dependent in the full E. coli RNA data set. Conditions
with the lowest (A) and highest (B) correlation between expression and CAI. The lowest
correlation was found in condition rpoB rpoBE672K lb, a rpoB knock-in study with LB
base media, a glucose carbon source and Kanamycin antibiotic, while the highest correlation
was found in condition ica cytd rib, a wildtype study with M9 base media, a D-ribose
carbon source, and a cytidine supplement. (C) Distribution of reported growth rates for all
conditions in the assessed data set. (D) Relationship between a condition’s growth rate and
the strength of the relationship between expression and CAI (reported as R2).
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Figure 4. Individual gene expression across conditions variably correlates with
growth rate in the full E. coli RNA data set. The top row shows the two genes with
the most negative (A) and most positive (B) correlation between growth rate and expression
across all conditions. (C) The distribution of correlation coefficients for all genes (shown in
green) against a reference data set with permuted expression and growth data (grey).
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Figure 5. CAI is partially predicted by GCI in the full E. coli RNA data set.
(A) A comparison of the predictive ability (measured as R2 after adjustments) of linear
models that use either: 1) mean expression values, 2) GCI values, 3) both expression and
GCI values, or 4) expression and GCI values with an interaction term, to predict CAI. (B,
C, D) CAI against mean expression for a subset of models with observed values for each
gene shown as points and model predictions as lines. The fit of model 1, which predicts CAI
using only mean gene expression values, is shown with one line (B), while models 3 and 4
are shown with several lines colored by fixed GCI values (C and D, respectively).
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Figure 6. Genes with high GCI values are associated with essential genes and
functional pathways. (A) Distributions of GCI values for genes classified as either essential
or non-essential. The mean GCI values for these two distributions are 0.12 and −0.15,
respectively, and they are significantly different (t-test, p < 10−10). (B) Results of a GO
enrichment analysis for sets of genes with negative (left) and positive (right) GCI values.
The significant terms with the 15 highest odds ratios are shown in each set. Odds ratios are
shown on a log scale with a solid black reference line at 1 in each plot.
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