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The most highly expressed genes in microbial genomes tend to use a limited set of
synonymous codons, often referred to as “preferred codons.” The existence of pre-
ferred codons is commonly attributed to selection pressures on various aspects of
protein translation including accuracy and/or speed. However, gene expression is
condition-dependent and even within single-celled organisms transcript and pro-
tein abundances can vary depending on a variety of environmental and other fac-
tors. Here, we show that growth rate-dependent expression variation is an impor-
tant constraint that significantly influences the evolution of gene sequences. Using
large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccha-
romyces cerevisiae, we confirm that codon usage biases are strongly associated
with gene expression but highlight that this relationship is most pronounced when
gene expression measurements are taken during rapid growth conditions. Specif-
ically, genes whose relative expression increases during periods of rapid growth
have stronger codon usage biases than comparably expressed genes whose ex-
pression decreases during rapid growth conditions. These findings highlight that
gene expression measured in any particular condition tells only part of the story
regarding the forces shaping the evolution of microbial gene sequences. More gen-
erally, our results imply that microbial physiology during rapid growth is critical for
explaining long-term translational constraints.

Introduction

In prokaryotic and eukaryotic genomes, it has long been observed that alternate synonymous
codons are used non-randomly in a species-specific manner (Ikemura|1985; |Plotkin and Kudla
2011; |Lopez et al[2020). The preferential use of specific synonymous codons, also known
as codon usage bias (CUB), is notably strong in highly expressed genes (Bennetzen and
Hall|[1982; |Gouy and Gautier||1982; Sharp |1991). Strong codon usage bias is often discussed
alongside observations of slow evolutionary rates in highly expressed genes, indicating that
such genes may be subject to strong purifying selection (Duret and Mouchiroud [2000; |Pal
et al.[[2001; Rocha and Danchinl 2004; [Subramanian and Kumar|2004). Numerous mecha-
nistic explanations have been put forth to explain variation in codon usage biases and the
correlation with expression—with causes variably attributed to mutation, selection, or drift
(Hershberg and Petrovi 2008; Plotkin and Kudla]2011). While the details remain unclear,
there has been consistent, compelling support for translational selection as a driving force

1

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.14.532645; this version posted July 13, 2023. The copyright holder for this preprint (which

10

11

12

13


https://doi.org/10.1101/2023.03.14.532645
http://creativecommons.org/licenses/by/4.0/

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

shaping the evolution of coding sequences (Sharp and Li[1987; Reis et al.|2004; |Drummond
et al. 2005 |Drummond and Wilke| 2008} [Tuller et al. 2010; Park et al. 2013; Zhou et al.
2016; Hanson and Coller|2018; Frumkin et al.2018; |de Oliveira et al.[2021). Simply, highly
expressed genes are subject to particularly strong selective pressures to ensure the accurate
and /or efficient production of proteins, and thus have stronger bias for the codons that will
maximize accuracy and/or efficiency.

The observation that gene expression is predictive of codon usage biases has been made
in various species and environments but remains most pronounced in (fast growing) single-
celled organisms (Pal et al.[2001; Sharp(1991; |Duret and Mouchiroud|2000; Subramanian and
Kumar| 2004; Galtier et al.[2018; Kames et al.[2020). Most existing studies were performed
under the assumption, generally not explicitly stated, that genes that are highly expressed
in the specific environment in which they were measured for the purpose of the study are
highly expressed in all relevant conditions. However, expression in microbes is known to be
condition-dependent, varying based on current environmental conditions for example in Fs-
cherichia coli and Saccharomyces cerevisiae (Elowitz et al. 2002} |[Lépez-Maury et al.[[2008;
Urchueguia et al.|2021)). It is unclear how condition-dependent gene expression impacts
expectations for codon usage bias. If a gene is expressed highly in certain conditions but
not in others, the predicted strength of codon usage biases is unknown. Further, micro-
bial populations are subjected to fluctuating environmental conditions across time and thus
different selection pressures (Lopez-Maury et al.|2008). It is unclear which conditions are
of evolutionary significance in shaping gene expression levels, codon usage biases, and the
relationship between them.

Here, we explore the connections between environmental condition, gene expression, and
codon usage biases. We primarily focus our analysis on published transcriptome-level data
coupled with known growth rates in E. coli, but confirm our findings in F. coli proteome
and S. cerevisiae transcriptome and proteome data sets (Sastry et al|[2019; Schmidt et al.
2016; 'Yu et al.|2021)). We find a predictive relationship between expression and CUB with
the strength of this correlation varying across conditions. Conditions with the strongest
correlation are consistently associated with the fastest growth rates. We show that the degree
to which the expression of individual genes is correlated to growth rate—which we term
the Growth Correlation Index (GCI)—is a strong predictor of CUB. We further investigate
individual genes and find that those who are members of the core or essential genome are more
likely to see relative expression increases during rapid growth (GCI > 0), while accessory
and non-essential genes most often see a relative decrease in expression during rapid growth
(GCI < 0). Finally, we complete a gene ontology (GO) term enrichment analysis for genes
with positive and negative GCI values and find that resource uptake becomes relatively
more important in slow growth while biosynthesis becomes relatively more important in fast
growth environments. In aggregate, our findings support the notion that selective pressures
on translation drive the evolution of strong codon usage biases, and that these pressures are
most pronounced under rapid growth.
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Results

We explored condition-dependent gene expression by incorporating this variation into the
well-studied expression-CUB paradigm. Most prior analyses examining the relationship be-
tween gene expression and codon usage bias ignored environmental variation, assuming that
expression levels and the resulting dynamics with CUB are constant across all conditions. We
considered a number of scenarios where gene expression profiles either conform to or violate
this assumption and summarized the known expectations for codon usage patterns in these
genes (Figure . Genes with constant expression profiles (genes A, B, and C in Figure [1)
have expected bias levels that correlate with their relative expression; i.e., highly expressed
genes have strong CUB, while lowly expressed genes have weak CUB. For genes with variable
expression profiles (genes D and E), it is unclear what level of bias should be expected. In
reality, most genes likely fall somewhere between the two extremes presented. Therefore,
we characterized condition-dependent gene expression and its relationship to codon usage
biases in an attempt to understand these currently unknown dynamics.

Gene expression in rapid growth conditions best predicts codon
usage bias.

We began our investigation into the relationship between gene expression and codon usage
biases by first exploring an existing RNA-seq compendium that consists of 278 uniformly
processed RNA-seq experiments performed across 154 conditions for E. coli (strains K-12
MG1655 and BW25113) (Sastry et al.[2019)). We limited this data to conditions with known
growth rates, and we averaged the expression of genes across biological replicates when
applicable (see Materials and Methods). This resulted in 103 unique expression profiles whose
correlations with one another (reported here as coefficient of determination, R?) ranged
from 0.42 to 0.985 (Figure . The paired conditions with the highest and lowest reported
correlation were ytf__delydcI_phb vs ytf__wt_phb and ica__cytd.rib vs ssw__glc xyl_glc,
respectively (Figure ) Despite the limited size of this data set and the fact that it contains
only laboratory growth conditions, there was nevertheless clear and substantial heterogeneity
in gene expression whose impact we sought to explore.

We next quantified codon usage biases for all genes in each condition in the data set. We
used the Codon Adaptation Index (CAI) as a measure of codon usage biases but note that
results were similar when using two additional codon usage bias metrics that—including
the CAl-—spanned a range of assumptions: the tRNA Adaptation Index (tAl) and ROC
SEMPPR (Sharp and Li|1987; Reis et al.|2004; Gilchrist et al.[2015). Across the 103 condi-
tions in our processed data set, we observed that the strength of the relationship between CAI
and measured transcript abundances varied substantially, with R? values ranging from 0.15
to 0.30 (Figure ,B). The conditions with the weakest and strongest relationship between
CAI and gene expression were rpoB__rpoBE672K_1b and ica__cytd rib, respectively.

For quantifiable comparisons across conditions, we characterize each condition by its
reported growth rate. Reported growth rates across the individual conditions vary from
0.07 to 1.42 (1/hr), corresponding to population doubling times between 0.48 and 9.9 hours
(Figure ) We mapped the strength of the relationship between gene expression and CAI to
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the growth rate data and observed a strong (and significant) positive relationship: transcript
abundances from rapid growth conditions were much more strongly predictive of CAI values
than transcript abundances measured during periods of slow growth (Spearman’s p = 0.64,
p =3.30 x 10713, Figure [3D).

Individual genes vary in the extent to which they are expressed
during rapid growth.

We assessed the correlation between relative gene expression values across all conditions for a
given gene and the corresponding observed growth rates for those conditions. The resulting
correlation coefficients (Pearson’s r) spanned a broad range, from —0.77 to 0.72 (Figure
MA, B). We compared the distribution of correlation coefficients to the expected distribution
under the null hypothesis of no association, by randomly permuting the data, and found that
the bulk of the observed distribution fell outside the null expectation, with the largest and
smallest observed correlation coefficients falling way beyond two standard deviations of the
null distribution (Figure[4|C). Further, the observed distribution of correlation coefficients was
substantially skewed, with a mode around —0.3. In other words, we found that a majority of
genes decreased in relative abundance during periods of rapid growth whereas comparatively
few genes (examples include ribosomal proteins) increased in relative abundance. For ease of
nomenclature, we defined the Growth Correlation Index (GCI) of a gene as the correlation
coefficient r between the gene’s expression level across all conditions and the corresponding
growth rates of those conditions. GCI values can span a theoretical range from —1 to 1,
and the end points of this range represent genes whose expression is, respectively, perfectly
negatively or positively correlated with measured growth rates. We found that GCI values
for individual genes were positively correlated with the mean expression level across all
conditions (R? = 0.14, p < 107'%), indicating that the genes which tended to increase in
abundance under rapid growth conditions also appeared to have higher levels of expression
across the 103 conditions overall.

Growth-rate-dependent expression variation is predictive of codon
usage bias.

To test whether the GCI metric captures biological constraints, we assessed its relationship
with codon usage biases. We constructed a series of linear models to predict CAI values
from average gene expression or GCI values both independently and in combination (Figure
5). First, we found that the relationship between mean gene expression and CAI was highly
significant and positive, as expected (adjusted R? = 0.27, p < 1071°, Figure , B). Second,
we found that the relationship between GCI and CAI was significant and positive but slightly
weaker (adjusted R? = 0.19, p < 107'%). Importantly, GCI correlated more strongly with
CAI than it did with mean expression level (R? = 0.14), as reported in the preceding sub-
section. Also, we note that while the relationship between CAI values and mean expression
for genes appeared somewhat non-linear (Figure ), the relationship between CAI and GCI
was best characterized by a linear model (Supplemental Figure .

Next, we constructed an additive multi-variable model using both GCI and mean ex-
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pression to predict CAT scores. We observed a higher predictive power (adjusted R? = 0.33,
p < 10719) than for either individual model, and confirmed that this increase does not appear
to be caused by collinearity (VIF = 1.16). Further, we found that the overall magnitude of
the contribution made by the GCI predictor variable to this model was substantial (Figure
, C). In practice, this shows that genes with similar mean expression levels across all
conditions are likely to have substantially higher CAI scores if their relationship with growth
rate is positive (GCI > 0). By contrast, genes that are negatively associated with growth
rate (GCI < 0) will—on average—have substantially lower CAI scores than their mean ex-
pression across the conditions might otherwise predict. These relationships are most easily
seen by comparing model predictions under different GCI values (Figure p|C).

To further ensure that the relationship between GCI and codon usage biases is robust to
various model assumptions and specifications, we constructed a final model which included
an interaction term between GCI and mean expression. For this model, we observed an even
stronger ability to predict CAI values (adjusted R? = 0.37, p < 107'°, Figure[fJA, D), though
the increase in variance explained was small (four percentage points). This finding shows
that GCI and mean expression level are largely independent of each other in their effect on
CAI, consistent with the observation of a low VIF for the model without interaction term.
On average, a more positive GCI will correspond to larger CAI at all expression levels, and
similarly higher expression levels will correspond to larger CAI for all GCI values.

Finally, to assess whether our results were robust to our choice of CUB metric, we re-
peated these analyses with tAl and ROC SEMPPR values in place of CAI. We found that
regardless of CUB metric, GCI was a strong predictor of codon usage bias (Supplemental
Figures and [S3)). Moreover, for these two additional metrics of CUB, the interaction
term in the fourth model had even less predictive power than it did for CAI. In aggregate,
these results provide strong support that GCI is quantifying an important and previously
unknown aspect of individual genes, which partially governs coding sequence evolution.

Genes with highest GCI values are associated with important func-
tional pathways.

To gain further insight into the biological significance of GCI, we investigated what if any
associations existed between GCI and the functional classification of genes. First, we checked
for differences in GCI values between essential and non-essential genes. We classified all
genes as either essential or non-essential based on their presence in the PEC (Profiling of
E. coli Chromosome) database (Hashimoto et al|2005; [Yamazaki et al.|2008]). We found
that there was a significant difference in the distribution of the GCI values for essential and
non-essential genes. GCI values for essential genes had a mode around 0.3, a mean of 0.12,
and were left skewed. GCI values for non-essential genes had a mode around —0.3, a mean of
—0.15, and were right-skewed. The means were significantly different (¢-test, p < 1071%). We
found similar results when assessing essentiality alternatively by their presence or absence
in the Keio collection (Baba et al[2006) (mean GCI values of 0.12 and —0.15, respectively,
p < 10719). We also used an additional classification where we subdivided genes into either
core or accessory, rather than essential or non-essential. Core genes included those shared
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across 60 strains of E. coli (Maddamsetti et al. 2017). We found that the core genes on
average differed significantly from accessory genes in their GCI values and indeed had more
positive GCI values (mean GCI of —0.05 vs. —0.20, respectively, p < 10719).

We also subdivided all genes by whether their GCI was positive or negative and then ran
independent Gene Ontology analyses to assess GO term enrichment within each gene set.
Genes with GCI < 0 were enriched for GO terms indicated in processes most important for
cell survival, such as transport and metabolism (Figure , left). By contrast, genes with
GCI > 0 were enriched for GO terms related to biosynthesis and ribosomal activity (Figure
6B, right). We note that the odds ratios in the enrichment analysis for genes with GCI > 0
were considerably larger than those in the analysis for genes with GCI < 0.

Results are robust to changes in data sources, data filtering, and
organism considered.

To assess the robustness of our results, we repeated our analyses in a number of complemen-
tary data sets that covered different biomolecules (RNA and protein) and species (E. coli
and S. cerevisiae). These five additional data sets consisted of two subsets of the full E. coli
transcriptome data set, an F. coli proteome data set, and a transcriptome and a proteome
data set from S. cerevisiae.

Although we had already employed several filtering steps to ensure the 103 conditions
used in the full E. coli RNAseq data set were representative and independent, we created
three subsets to account for potential limitations in the original data (Sastry et al.[[2019).
We constructed a “sparse” data set by iteratively removing individual conditions whose gene
expression levels were strongly correlated with one another, until arriving at a set of 30
unique conditions. We additionally created two “neutral” data sets: one consisting of only
the 48 conditions that were not identified as ALE (adaptive laboratory environment) strains,
and the other consisting of a further subset of 28 conditions that also excluded mutants and
knock-out strains. All our prior findings were qualitatively unchanged in these two data sets:
GCI was highly variable, negatively-skewed, and predictive of CAI (Supplementary Figures

The E. coli genome is known to contain a subset of 730 AT-rich genes with unusually low
CUB (dos Reis et al.2003). The vast majority of these genes have negative GCI, and in fact
many of the E. coli genes with the most negative GCI values are found in this group of genes
(Supplementary Figure . Thus, these genes are among the most down-regulated under
conditions of rapid growth. Therefore, by our observation that low GCI tends to associate
with reduced CUB, these genes would be expected to have among the least codon usage bias
in the E. coli genome. We asked whether these genes were responsible for the genome-wide
relationship we have observed between GCI and CUB, by excluding them from the analysis,
and found that the overall patterns remained unchanged even after excluding these genes

(Supplementary Figure [S11)).

Next we expanded our analysis from transcript abundances to protein abundances. It
is known that transcript abundances are not necessarily predictive of protein abundances
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E. coli, in particular during periods of starvation (Houser et al.|2015), so this additional
analysis served as an important additional control. We utilized data that measured growth
rate and protein abundances of E. coli across 20 conditions, where population growth rates
spanned a range from 0.12-1.9 hr™' (Schmidt et al|2016). Despite the smaller size of
the data set and the narrower range of the growth rates explored, our results were again
qualitatively unchanged. Notably, protein abundances measured during conditions of rapid
growth showed a stronger relationship with codon usage biases than abundances measured
during slow growth. Gene-specific GCI values calculated from this data set spanned a wider
range of magnitudes with a less extreme shift towards negative values (Supplementary Figure
S12)), and were predictors of CAI independently of expression level (Supplementary Figure
S13).

We also considered S. cerevisiae, a well-studied microbial eukaryote. Yu et al. (2021)
measured both transcript and protein abundances for thousands of S. cerevisiae genes across
22 conditions. We focused our analysis on a subset of those conditions encompassing 14
unique environments (see Methods). The growth rates within these conditions spanned a
range of 0.05-0.35 hr', and correlations between individual transcriptome (proteome) data
sets across all conditions spanned a range from 0.57-0.99 (0.88-0.99 in proteomes).

Qualitatively, all of the results that we observed for F. coli remained true for S. cerevisiae.
Most notably, expression measurements from rapid growth conditions showed the strongest
correlations with CAI values. GCI values spanned nearly the full range of potential values
(—1 to 1) with peaks forming towards more extreme values (Supplementary Figures ,
. While there were only 14 unique conditions used to estimate GCI values for individual
genes, the relationship between GCI and CAI was highly significant and independent of the
relationship between mean expression and CAI (Supplementary Figures[S16] [S17).

Discussion

We have investigated the relationship between condition-dependent gene expression and
codon usage bias (CUB). We have confirmed the well known observation that CUB increases
on average with increasing expression level, and we have additionally discovered that CUB
is best predicted by expression values measured under conditions of rapid growth. The
expression level of individual genes varies considerably across conditions and can be variably
associated with microbial growth rate. To capture this association between variation in
gene expression and variation in growth rate across conditions, we have introduced a novel
gene-level metric, GCI (Growth Correlation Index), and we have found that GCI has a
significant, positive relationship with CUB. We have further found that these results are
consistent across different data sets, covering different unicellular organisms (E. coli and S.
cerevisiae), different types of biomolecules (mRNA transcripts and proteins) and different
metrics of codon usage bias (CAI, tAl, ROC SEMPPR). In all cases, genes with positive
GCI values experience a relative increase in expression during periods of rapid growth (by
definition) and they have the strongest codon usage biases. Additionally, we have shown for
E. coli that these genes are more likely to be classified as essential genes or as members of
the core genome with functional roles in translation.
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Our discovery that an additional, expression-related metric (GCI) is predictive of the
strength of codon usage biases, independently of the mean gene expression level across con-
ditions, offers both renewed support and additional clarification for prior work noting the
positive correlation between expression level and CUB (Pal et al.2001}; Sharp|1991;|Duret and
Mouchiroud|[2000} |[Subramanian and Kumar|2004; Galtier et al.|2018} [Kames et al.2020). In
these earlier studies, the observed correlations were significant but somewhat moderate. We
have here observed a strong increase in our ability to predict CAI (and other CUB metrics)
by accounting for additional sources of variation related to growth rate. Previously calcu-
lated correlations might have been considerably higher if growth-rate-dependent expression
variation had been accounted for as we have done here.

We emphasize, however, that our work is based on simple correlation metrics, whereas
several prior works have employed mechanistic population genetics models to disentangle
the effects of mutation, selection, and drift on codon usage bias (Bulmer|[1991; Shah and
Gilchrist 2011; Wallace et al.|2013; |Gilchrist et al.[2015). Importantly, all these models are
steady-state models and they implicitly or explicitly assume the existence of a latent gene
expression level that is constant over time. Consequently, there is no straightforward way
to adapt them to the inherently non-equilibrium scenario we are considering here, where we
have no a priori knowledge about how expression changes relate to growth rate and what
distribution of growth conditions species experience over evolutionary time. We believe
that given this lack of a priori knowledge, an unbiased, correlation-based approach is the
right tool to discover novel biological relationships, such as the observation we have made
here that an increase in expression level with increasing growth rate seems to lead to the
strongest selection pressure on codon usage. We hope that future modeling studies will take
this observation and incorporate it into a mechanistic model of mutation, selection, drift,
and growth under changing environmental conditions.

During periods of rapid growth, genes with GO terms associated with biosynthesis path-
ways experience a relative increase in expression. In addition to being upregulated, these
genes also display strongest correlations between the growth-dependent expression level (as
quantified by GCI) and codon usage bias. The observation that this pattern holds across
species, biomolecules, and metrics of codon usage bias provides strong support for the notion
that highly expressed genes in high growth environments experience the strongest selection.
While there could be many biological explanations, we suggest one that we believe to be most
likely: Under conditions of rapid growth, microbial cells risk depleting their charged tRNA
molecules; and the genes that are highly expressed under these conditions (genes associated
with biosynthesis and essential functions) experience the strongest selection to preferentially
use the tRNAs (and thus codons) that will be the least limiting to growth. This explanation
aligns with insights from previous modeling studies (Sharp and Li [1987; Reis et al.| 2004}
Tuller et al.|2010; [Hanson and Coller|[2018; Frumkin et al.[2018; de Oliveira et al./|2021). We
emphasize that this explanation does not specifically distinguish between selection for speed
or accuracy of translation, nor does it provide any insight into whether selection is driven
primarily by the rate of protein production, the absolute amount of protein produced, the
rate or amount of misfolded protein produced, or any other biological function involved in
accurate and efficient translation under rapid growth.
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Our observation that GCI (an empirically determined metric quantifying the correlation
between individual expression and growth rate across conditions) correlates strongly with
several metrics of codon usage bias is complementary to previous observations made at the
species-level (Sharp et al.[2010). Sharp et al. surveyed 80 bacterial species and found that
species-level growth rates and codon usage biases were highly correlated. Bacterial species
with stronger biases had a higher number of rRNA operons and tRNA genes in their genomes
(Sharp et al.[2010). This work was confirmed and extended in numerous studies (Vieira-Silva
and Rocha2010; [Ran and Higgs 2012; Hockenberry et al.|2018; Weissman et al.|2021)). While
species-level patterns have been well established, our analysis shows that growth rates and
codon usage biases are highly correlated within individual species as well.

We have found through an enrichment analysis on GO terms that resource uptake tends
to become relatively more important in slow growth environments (GCI < 0) whereas pro-
cesses such as biosynthesis become relatively more important in fast growth environments
(GCI > 0). The genes responsible for these processes experience a relative increase in ex-
pression in those contexts. This trend is consistent with prior work on starvation in E. coli
(Houser et al.|2015) and with the observation that growth-related and stress-related genes
have antagonistic regulation (Lopez-Maury et al[|2008). In addition to implications in trans-
lational machinery, genes with positive GCI values are more likely to be classified as either
core or essential in reference data sets (Hashimoto et al.|[2005; Yamazaki et al. 2008; |[Baba
et al. 2006; Maddamsetti et al.|2017). Core genes are defined based on conservation across
species or strains found in a variety of environments (Maddamsetti et al.[2017)), and essential
genes are defined based on the survival (or not) of gene knockout strains. Although there is
overlap between these two sets of genes they are distinct, and genes in both sets are more
likely to be upregulated during periods of rapid growth (GCI > 0).

Despite the abundance of available transcriptome and proteome scale data sets that
have been produced in recent years, few studies have explicitly grown cells in different en-
vironments while noting the population growth rates or doubling times. This is partially
a logistical challenge since growth rates are often calculated from a series of points during
exponential growth; it is unclear how to explicitly extend our methods to include data from
growth conditions where the cells are not growing exponentially, as may be the case during
nutrient up- and down-shifts or during extremely slow stationary phase growth periods. The
data sets that we selected for our analysis were all comparatively recent, spanned a range of
conditions, and within each data set were uniformly processed (Sastry et al.|2019; |Schmidt
et al.[2016; Yu et al.|2021). We focused here on two unicellular organisms: a representative
prokaryote, E. coli, and a representative eukaryote, S. cerevisiae. Of course, the data sets
we used are of limited size and environmental diversity, but given the large evolutionary
distance between E. coli and S. cereuvisiae we expect that our results will generalize to a
larger set of species.

Throughout this work, our primary data source was [Sastry et al.| (2019), who curated
a collection of 250 RNAseq data sets for E. coli grown in various environments. While we
have filtered this data set to ensure maximum reliability of our analysis, we acknowledge that
there are still potential limitations to this data. One potential concern arises around the
inclusion of adaptive laboratory environment (ALE) and mutant and knock-out strains in the
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103 conditions considered. Our results have proven quantitatively consistent in the presence
and absence of ALE, mutant, and knock-out strains, suggesting that their inclusion does
not impede the applicability of this analysis. We note that one mutant strain is highlighted
as the condition with the weakest recorded relationship between CAI and gene expression
(Figure ); however, we emphasize that this result is presented only as an example of a
weak correlation.

We additionally note that gene expression and cellular growth rate measurements are
inherently noisy. And some of the noise is due to measurement error while other noise rep-
resents biologically meaningful variation among related organisms or across time in response
to the same environment. In prior work, using a steady-state model, |Wallace et al.| (2013))
have been able to disentangle different noise sources from each other and from mutation and
selection pressures acting on codon-usage bias. However, it is not clear how to adapt this
model to a non-equilibrium setting, as we have mentioned above. Furthermore, we note that
expression noise is condition-dependent, tied closely to the structure of gene regulatory net-
works, and has been shown to systematically decrease with growth rate at the genome-level
(Urchueguia et al.|[2021)). The relationship between noise in expression and in growth rate
appears to be the target of natural selection (Urchueguia et al.|2021; |Krah and Hermsen
2021). Highly expressed genes experience minimal expression noise, and have the potential
to drive growth rate when fast growth is selected for (Krah and Hermsen![2021]).

It is unclear what impact, if any, noise might have on our analysis, but we would expect
that conditions of higher expression noise lead to weaker correlations between expression
level and codon usage bias, both because the noise weakens the ability of selection to act on
codon usage bias and because it prevents us from obtaining precise measurements of gene
expression level. The quantity we use to study the relationship between expression level
and growth rate, GCI, is a correlation coefficient between two noisy quantities, and thus
is expected to be noisy as well. Nevertheless, for individual genes the GCI index should
roughly capture the component of gene expression variation that is attributable to growth
rate variation, as long as a reasonable number of conditions are sampled. Inaccuracies in
measuring GCI are, if anything, expected to dilute statistical signal. Consequently, our
findings likely represent a lower-bound regarding the strength of the relationship between
growth-dependent gene expression variation and codon usage biases.

Finally, we would like to emphasize that measures of codon usage bias such as CAI, tAl,
or ROC SEMPPR assume that codon preferences are constant across different environmental
conditions, but tRNA pools and codon preferences are known to vary somewhat in response
to growth conditions or external stressors (Dong et al. [1996; |Novoa and Ribas de Pouplana
2012; (Chionh et al. 2016; [Torrent et al.|[2018). For example, a seminal study demonstrated
that in E. coli, abundances of tRNAs corresponding to preferred codons increased with
increasing growth rate (Dong et al.[1996)). It is not surprising to see tRNAs upregulated
when they are the most needed, and this dynamic could also increase the selection pressure
for genes expressed under rapid growth to be encoded using those preferred codons, consistent
with our findings here. However, we need to be careful to assume this is a foregone conclusion.
The selection strength under specific conditions will depend on the balance between the
availability of and the demand for specific tRNAs, and if increased tRNA abundances cannot
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compensate for increased demand then selection might actually favor less biased codon usage
under such conditions. Because of these subtle complexities, we see an opportunity and need
to develop models that explicitly link environmental conditions, dynamic tRNA regulation,
and selection on codon bias, so that we can develop better intuition and insight into how
varying growth conditions shape selection for codon usage bias.

Materials and Methods

Data sources and processing

We analyzed several data sets that contain transcript or protein abundance data across
multiple conditions for two microbes, E. coli and S. cerevisiae (Sastry et al.2019; Schmidt
et al.|2016; Yu et al.|2021). These include three E. coli transcriptome data sets (a full, a
sparse, and a neutral version), an E. coli proteome data set, and S. cerevisiae transcriptome
and proteome data sets. Analyses presented here were run independently on each data set.
The original data sources and processing steps are described below.

E. coli transcriptome data. We used a previously published E. coli data set that con-
tains RNA-seq and meta data for several hundred independent experiments in strains K-12
MG1655 and BW25113 (Sastry et al|2019)). Transcript abundances in this data set were
reported as log-TPM (transcripts per million) throughout, and growth rates were reported
as increase per hour. We limited our analysis to the experiments with reported, non-zero
growth rates; i.e., we removed conditions where growth rate data was either unknown or
reported as zero. Growth rates reported as zero could either indicate that stationary phase
cultures were used or that errors occurred in reporting. Additionally, we excluded conditions
that were reported to have poor alignment scores (less than 80). After these quality controls,
173 of the original 278 conditions remained.

Many of the experiments included in this data set had the same replicated conditions,
resulting in multiple gene expression and growth measurements for one condition. To incor-
porate as much data as possible while avoiding pseudoreplication, we averaged both gene
expression levels and growth rates across all replicates within each condition (identified
within the data set based on the naming conventions given in the original paper). After
averaging across replicates, 105 conditions remained. We note that two columns within
the gene expression data set were identical and appeared to be duplicated (namely, con-
ditions pal_lyx_ale2 and pal__lyx ale4). Identical gene expression measurements were
identified by correlation coefficients of 1.0 in an all-by-all Spearman correlation, which is ex-
tremely unlikely to arise experimentally. Despite duplicated measurements in the expression
columns, the reported growth rate for each condition varied. In this case, neither averaging
nor eliminating one of the duplicate columns seemed appropriate. We thus excluded these
two conditions from all analyses, resulting in a final E. coli gene expression data set for 3,923
genes across 103 independent conditions.

While we had implemented a number of filters to ensure that conditions were unique,
we created two additional data sets where filtered even further. To create a data set with
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maximally distinct conditions, we pruned the full data set using an iterative removal pro-
cess. In each iteration, an all-by-all Spearman correlation matrix was calculated, the two
conditions with the highest correlations were identified, and then one of them was randomly
removed. This process continued until a data set with only 30 conditions remained. We
refer to this pruned data set as the “sparse” data set. We additionally created two “neu-
tral” data sets. The first excluded all conditions that were identified as adaptive laboratory
environment (ALE) strains, limiting the data set to 48 of the 103 conditions. The second fur-
ther restricted the non-ALE neutral data set to also exclude mutants and knock-out strains,
reducing our analysis to 28 conditions.

Finally, for our full E. coli gene expression data set, we considered the impact of genes
previously identified as AT-rich outliers (dos Reis et al. (2003)); Table S1, group 3 genes), by
repeating our analysis on a reduced data set that removed those genes. The reduced data
set included 3,339 non-outlier genes measured across all 103 conditions.

E. coli proteome data set. Our E. coli proteome data set was taken from a study that
measured protein abundance levels across 22 experimental conditions (Schmidt et al.|2016]).
We focused here on the measurements collected for E. coli strain BW25113, including only
the conditions that had non-zero growth rates recorded. We limited our analysis to proteins
with measured (i.e., non-missing) abundance values across all conditions and removed any
duplicated expression profiles. Our final data set consisted of 2,052 unique proteins observed
across 20 conditions.

Because protein abundances were reported as average counts of protein copies per cell,
we transformed them to units comparable to log TPM, using the formula 6 + In(a/ )" a),
where a is the abundance (raw count) for a given protein within a condition, and »_ a sums
the abundances of all proteins within a condition.

S. cerevisiae transcriptome and proteome data sets. We analyzed transcript and
protein abundance data from a study that quantified expression profiles for yeast in 22 steady-
state chemostat cultures (Yu et al.|[2021). These 22 cultures consisted of 14 experiments
(referred to as novel conditions) that were all collected using a consistent experimental
protocol and 8 experiments that had been conducted previously. We focused here exclusively
on the 14 novel conditions.

This yeast data set reported both transcript and protein abundances for the same con-
ditions. Abundances for both proteins and mRNA were reported as absolute measurements
in fmol/mgDW. As in the case of the E. coli proteome data set, we therefore normalized
all abundances using the formula 6 4 log,,(a/ > a). Additionally, we replaced any counts of
zero with the smallest, non-zero minimum value in the set prior to this transformation. For
the RNA data, no replacement was necessary, while the protein data required 1 replacement
of 0 with 0.0218. Each experimental condition included 3 biological replicates, which were
averaged (after normalization) to give one expression profile per condition.

The reported dilution rates were assumed to be equivalent to and treated as growth rate
per hour in our analysis.
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Gene metrics 465

To perform sequence-level analyses such as calculations of codon usage bias we used reference s
genomes for E. coli (str. K-12 substr. MG1655, accession NC_000913) and S. cerevisiae (str. s
CEN.PK113-7D assembly ASM26988v1, accession GCA_000269885.1) from GenBank and e
Ensembl Fungi, respectively(Sayers et al.|[2021; Howe et al. [2021). We limited analyses to s
coding sequences within each genome. For each coding sequence, we identified the locus tag, o
gene name, start and stop loci, and the strand it is located on. We next applied some filtering .
rules to ensure all genes met basic quality standards. We only included coding sequences a7
in the analysis if they met the following criteria: First, coding sequence length had to be a3
divisible by 3 and equivalent to the counted base length. Second, genes with unrealistically 47
long coding sequences, defined as longer than 5 times the median length across all genes, s
were excluded from analysis. This process eliminated 58 coding sequences from the F. coli 6
genome and H3 coding sequences from the S. cerevisiae genome, resulting in reference data 7
sets with 4,357 and 5,398 genes, respectively. 478

For each gene in the two reference genomes, we calculated several codon usage bias 4
metrics: the codon adaptation index (CAI), the proportional differences in ribosome overhead s
costs in a Stochastic Evolutionary Model of Protein Production Rate (ROC SEMPPR), and &
the tRNA adaptation index (tAl) (Sharp and Li|1987; Gilchrist et al.|2015; [Reis et al.[2004). 4
CAI measures the distance of a given coding sequence from a pre-defined, species-specific as3
reference set specifying weights for each codon. It is calculated as the geometric mean of s
the weights for all codons within that coding sequence. Reference weights were taken from sss
the original paper (Sharp and Li/[1987). ROC SEMPPR is a CUB metric with two unique s
advantages: it is grounded in population genetic theory (allowing for the contributions of s
natural selection and mutational biases to be disentangled) and its calculations are performed  4ss
with only the set of coding sequences of interest (removing the requirements of a priori s
information) (Gilchrist et al.2015). We implemented the ROC SEMPPR model in R using 40
the AnaCoDa package (Landerer et al.[2018). Lastly, tAl metric is a measure introduced a0
to test translational selection by estimating the adaptation of a gene to the genomic tRNA 40
pool (Reis et al.|2004). Like CAI, is calculated by assigning each codon a value based on a 4
list of codon weights and then calculating the geometric mean of all weights for a given gene. 40
Reference codon weights for S. cerevisiae and E. coli were taken from published tables (Reis| a0
et al.[2004; [Tuller et al.|2010)). 496

Relationship between gene expression levels and growth condition .

To assess the variation in gene expression levels across conditions, we computed Pearson’s s
correlation coefficients (r) and their squares, the coefficients of determination (also written 4o
as R?), for each possible gene pair. These computations were performed on the log-TPM s
values for mRNA abundances and on equivalently transformed values for protein abundances so
(see Data sources and processing). 502

Additionally, for each individual gene, we calculated the Pearson correlation coefficient 7  sos
between expression level and growth rate across all conditions. We refer to this correlation sos
coefficient as the Growth Correlation Index (GCI). GCI has a potential range between —1 sos
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and 1. Genes with negative GCI values are upregulated during periods of slow growth while
genes with positive GCI values are upregulated during periods of rapid growth.

As a control, for each data set we also generated a set of randomized GCI values. These
values were generated via permutations; i.e., expression values and growth rates were shuffled.
For each gene, we shuffled the measured expression values and growth rates and calculated
one permuted GCI value from the randomly paired data.

The set of AT-rich genes identified by dos Reis et al. (2003]) was shown to have low CUB,
so we compared the distribution of GCI values for these genes against the rest of the genes
in our data set. We extracted gene names from Table S1, group 3 genes of /dos Reis et al.
(2003) and identified 508 AT-rich genes in our full E. coli data set. (While the original list
of AT-rich genes contains closer to 750 genes, not all of them were present in our full data
set.) We tested for significant differences in GCI between these 508 genes and the remaining
3,339 genes using Student’s t-test.

Predicting Codon Usage Bias

We tested to what extent gene expression level and/or GCI predict codon usage bias, as
measured by CAI, tAl, or ROC SEMPPR, by constructing a series of linear models that had
the measure of codon usage bias as the response and either gene expression level or GCI or
both as predictors. Specifically, we considered four different linear models. The first only
used gene expression level as predictor. The second only used GCI as predictor. The third
used both gene expression level and GCI as independent, additive predictors. The fourth also
included an interaction term between gene expression level and GCI. For all models, we used
adjusted R? values as a measure of model performance. To assess whether the third model
(with two independent variables mean expression level and GCI) suffered from collinearity,
we calculated the variance inflation factor (VIF) for this model (Fox and Weisberg|2019).
VIFs near one indicate no collinearity whereas VIFs in excess of 5 are usually considered
problematic. The VIFs we observed were |2 in all cases.

Relationship between GCI and functional annotations of genes

For additional insight into the biological significance of our GCI metric, we examined its
relationship to functional properties of genes. We performed this analysis only for the data
set corresponding to the E. coli transcriptome.

Analysis of essential vs non-essential genes. We first examined the relationship be-
tween GCI and individual genes by labelling each gene as either “essential” or “non-essential.”
Genes were classified based on their designation in the PEC (Profiling of E. coli Chromo-
some) database (Hashimoto et al.| 2005; [Yamazaki et al|2008)). We designated genes as
essential if they were present in the reference set (n = 285), while all other genes were
designated as non-essential (n = 3625). We tested for a significant difference in mean GCI
between these two gene sets using a Student’s t-test.

We checked for robustness of our result with an alternative set of essential genes, defined
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by the Keio collection (Baba et al.[2006). We extracted all essential genes listed in their
Supplementary Table 7 to generate an independent set of essential and non-essential genes
(n = 255 and n = 3655, respectively). We again used a t-test to test for a significant
difference in mean GCI between these two sets of genes.

Analysis of core vs accessory genes. As an alternative to the distinction of essential
and non-essential genes, we also classified all genes in the E. coli genome as either “core”
or “accessory.” We developed this classification via a Prokka-Roary pipeline, where we
identified genes that are shared across the genomes of 60 E. coli strains (Seemann| 2014}
Page et al.[2015; [Maddamsetti et al. [2017). This resulted in lists of n = 1810 core and
n = 2100 accessory genes. These numbers were comparable to previously reported results
(Abram et al.|2021; Maddamsetti et al.|2017; Sims and Kim|2011). As before, we tested for
a significant difference in mean GCI between these two gene sets using a t-test.

GO term enrichment analysis. We performed GO term enrichment analysis for the sets
of genes with either GCI < 0 or GCI > 0. For each set, we used the AnnotationDbi package
to convert gene names to Entrez IDs, then used the clusterProfiler package to create gene
sets of Gene Ontology (GO) terms associated with the gene IDs, and completed an Over-
Representation Analysis to find terms enriched in the set (Pages et al.|2022; [Yu et al.|2012;
Wu et al.[2021}; |Ashburner et al.|2000; |Gene Ontology Consortium/2021). We only retained
terms with significant enrichment (p < 0.04 and ¢ < 0.05) and corrected for multiple testing
with the Benjamini-Hochberg procedure (Benjamini and Hochberg)1995)). Using the output
of clusterProfiler’s enrichment analysis, we calculated the odds ratio (OR) for all significant
GO terms. For both gene sets, we ranked terms by ORs and reported the terms with the 15
largest ratios.

Code and data availability

Data analysis, processing, and visualization was done using a combination of python and R
scripts (Van Rossum and Drake2009; R Core Team|[2021)). These scripts and their associate
input and output data are available at:
https://github.com/mmjohn/Growth-expression-translation.
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Figure 1. Known and unknown relationship dynamics between gene expression,
growth, and expectations for CUB. Highly expressed genes tend to have strong codon
usage bias (gene A), lowly expressed genes have low bias (gene C), and intermediate ex-
pression have intermediate bias (gene B). These expectations are based on observations in
constant conditions and do not account for environmental variation. It is unclear what level
of bias to expect for genes that have variable expression across conditions/environments

(genes D and E).
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Figure 2. Gene expression variably correlates between conditions in the E. coli
RNA data set with 103 conditions. (A) Coefficients of determination (R?) in an all-
by-all comparison of gene expression levels across all 103 conditions. Each row/column is
one condition. (B) The two pairs of conditions with the highest and lowest R? in the data
set. Conditions 78 and 73 correspond to ytf__delydcI_ph5 and ytf__wt_phb5, which vary in
the MG1655 strain used (one with a deletion of ydcl vs wildtype). Conditions 57 and 45
correspond to ica__cytd_rib and ssw__glc_xyl glc, which vary in their carbon source, the
presence of a cytidine supplement, and their ALE status.
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Figure 3. The strength of the relationship between codon usage bias and gene
expression is growth-rate dependent in the full E. coli RNA data set. Conditions
with the lowest (A) and highest (B) correlation between expression and CAI. The lowest
correlation was found in condition rpoB__rpoBE672K_1b, a rpoB knock-in study with LB
base media, a glucose carbon source and Kanamycin antibiotic, while the highest correlation
was found in condition ica__cytd_rib, a wildtype study with M9 base media, a D-ribose
carbon source, and a cytidine supplement. (C) Distribution of reported growth rates for all
conditions in the assessed data set. (D) Relationship between a condition’s growth rate and
the strength of the relationship between expression and CAI (reported as R?).
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Figure 4. Individual gene expression across conditions variably correlates with
growth rate in the full E. coli RNA data set. The top row shows the two genes with
the most negative (A) and most positive (B) correlation between growth rate and expression
across all conditions. (C) The distribution of correlation coefficients for all genes (shown in
green) against a reference data set with permuted expression and growth data (grey).
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Figure 5. CAI is partially predicted by GCI in the full E. colt RNA data set.
(A) A comparison of the predictive ability (measured as R? after adjustments) of linear
models that use either: 1) mean expression values, 2) GCI values, 3) both expression and
GCI values, or 4) expression and GCI values with an interaction term, to predict CAI. (B,
C, D) CAI against mean expression for a subset of models with observed values for each
gene shown as points and model predictions as lines. The fit of model 1, which predicts CAI
using only mean gene expression values, is shown with one line (B), while models 3 and 4
are shown with several lines colored by fixed GCI values (C and D, respectively).
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Figure 6. Genes with high GCI values are associated with essential genes and
functional pathways. (A) Distributions of GCI values for genes classified as either essential
or non-essential. The mean GCI values for these two distributions are 0.12 and —0.15,
respectively, and they are significantly different (¢-test, p < 107!9). (B) Results of a GO
enrichment analysis for sets of genes with negative (left) and positive (right) GCI values.
The significant terms with the 15 highest odds ratios are shown in each set. Odds ratios are
shown on a log scale with a solid black reference line at 1 in each plot.
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