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Nonhuman primates (NHPs) exhibit complex and diverse be-
havior that typifies advanced cognitive function and social com-
munication, but quantitative and systematical measure of this
natural nonverbal processing has been a technical challenge.
Specifically, a method is required to automatically segment
time series of behavior into elemental motion motifs, much like
finding meaningful words in character strings. Here, we pro-
pose a solution called SyntacticMotionParser (SMP), a general-
purpose unsupervised behavior parsing algorithm using a non-
parametric Bayesian model. Using three-dimensional posture-
tracking data from NHPs, SMP automatically outputs an opti-
mized sequence of latent motion motifs classified into the most
likely number of states. When applied to behavioral datasets
from common marmosets and rhesus monkeys, SMP outper-
formed conventional posture-clustering models and detected a
set of behavioral ethograms from publicly available data. SMP
also quantified and visualized the behavioral effects of chemoge-
netic neural manipulations. SMP thus has the potential to dra-
matically improve our understanding of natural NHP behavior
in a variety of contexts.
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Introduction

In humans and other primates, complex and dynamical be-
havioral sequences consisting of gaze, facial expressions,
postures, and body movements serve as expressions of in-
ternal states such as emotion and intention (i.e. nonver-
bal expression), which are fundamental for normal social
life(1)(2). Nonhuman primates (NHPs), such as macaque
and marmoset monkeys, have been shown to interact so-
cially through such nonverbal expressions while they per-
form higher cognitive/motor functions, thus providing unique
opportunities for modeling human brain function in healthy
and diseased contexts(3)(4). A variety of NHP models
of dysfunction in emotion and social communication have
been proposed and studied using pharmacological interven-
tions and genetic modifications at the adult or developmen-
tal stages(5)(6)(7)(8). In addition, recent advances in genetic
manipulation techniques, such as chemogenetics, have al-
lowed reversible manipulation of activity in specific brain cir-
cuits of freely moving monkeys, opening up valuable avenues
for understanding the neural mechanisms that govern inter-

nal states(9)(10)(11). However, previous NHP studies have
focused on measuring behavioral indicators based on the
experimenters’ hypotheses, running the risk of overlooking
changes in animal behavior that are beyond the scope of the
prediction. Thus, advancing our understanding of the brain
mechanisms that underlie internal states requires a quantita-
tive, data-driven recapture of natural NHP behavior(12)(13);
however, the lack of a method for doing this has created a
bottleneck in this research field.

Recent developments in video-based motion-tracking sys-
tems have enabled the automated acquisition of large-scale
behavioral data(9)(14)(15)(16). These data can be analyzed
by machine learning to automatically segment and extract
recurrent behaviors (ethograms) from the data, thus replac-
ing human observation. Programmatically, this means auto-
matically determining the starting and ending points of all
data segments corresponding to a given ethogram, even for
non-predetermined behavior. Several studies have proposed
ethogram-detection algorithms, but each has certain limita-
tions. Ballesta et al. (2014) proposed a method for automati-
cally detecting ethograms(17); however, it requires manually
set ad hoc extraction parameters for the predetermined tar-
get ethograms, making it unsuitable as an objective means
of evaluating natural NHP behavior. Other studies have au-
tomatically classified NHP behavior by using a simple clus-
tering method that has been successfully applied to rodents
and insects to look at NHP body postures that correspond to
different ethograms(14)(15). This method may be useful for
studying NHPs in a confined range of research interests, such
as when all postures in the data can be completely mapped to
a set of ethograms of interest. However, comprehensive NHP
behavioral analysis must target a broad range of ethograms
that are beyond the scope of these posture-based classifi-
cation methods—including temporally dynamic changes in
multiple postures (e.g., jumps, turns, and catching prey), as
well as complex and abstract changes, such as those that oc-
cur during social play(18)(19)(20).

Another framework for unsupervised behavioral data seg-
mentation is one that fits a generative model to time se-
ries of data. In this scenario, observed behavioral pa-
rameters are modeled as probabilistic implements of a se-
quence of categorical and reproducible latent states (mo-
tion motifs)(21)(22). This framework has shown promise
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Fig. 1. Dynamic temporal segmentation of NHP motion time series using a generative model (a) lllustration of the generative description workflow of NHP behavior.
The input behavior series is segmented into a set of latent motion motifs, which are partially reproducible trends of multivariate motion parameters. The properties of motion
motifs and their probabilistic interconnectedness, i.e., "the grammar of behavior," are optimized by data-driven machine learning and generatively describe behavior as a
stochastic process model. (b) A graphical model of dynamical decomposition of monkey behavior using the nonparametric Bayesian model, SMP. The two major principal
component scores (PC1 and PC2) extracted from the multivariate time series of monkey behavior were optimally segmented by this model into a time series of discretely
labeled hidden state ¢, using GP as the nonlinear regression link function, a hidden semi-Markov model for estimating the temporal breakpoints, and HDP including the
stick-breaking process for estimating state class size. NHP, nonhuman primate; SMP, SyntacticMotionParser; GP, Gaussian process; HDP, hierarchical Dirichlet process.

in analyzing behavioral data from rodents, fish, and in-
sects for identifying novel ways of capturing prey(23),
sorting neuropharmacological effects(24), and mapping an-
imal internal states by simultaneously recording neural
activity(25)(26)(27). This technique is also gaining promi-
nence in the fields of computer vision and human robotics
as a way to computationally estimate the meaning of
behavior(28)(29)(30). However, to the best of our knowl-
edge, such an algorithm has not been verified as available for
NHPs, likely because the current algorithms were not devel-
oped or optimized to target the complexity and diversity of
NHP behavioral ethograms. In addition, even if the current
algorithms were available for NHPs, they remain somewhat
subjective; for unsupervised behavior segmentation, the de-
termination of the number of latent classes (class size) has
a significant impact on the results, but has usually been left
to the subjective judgment of the researchers(14)(31). Ide-
ally, the optimal class size should also be determined in an
unsupervised manner(32)(33).

Here, we propose a new framework called SyntacticMotion-
Parser (SMP), which allows for quantitative and automatic
parsing of NHP behavior into a set of motion motifs. Using
SMP, three-dimensional (3D) motion-tracking data can be
described as a stochastic generative process of motion motifs,
each of which is optimally segmented by unsupervised ma-
chine learning (Fig. la). Specifically, the internal variability
of individual motifs is regressed by a Gaussian process (GP)
and simultaneously clustered by its hyperparameters, while
the number of motif classes is automatically optimized by
a Bayesian nonparametric model with hierarchical Dirichlet
process (HDP) (Fig. 1b). We demonstrate that SMP can char-
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acterize and describe different styles of common marmoset
(Callithrix jacchus) feeding behavior. SMP was also able to
extract several ethograms unique to rhesus monkeys (Macaca
mulatta) from publicly available motion-tracking data and
describe their patterns and temporal sequences(14). Criti-
cally, SMP was also able to automatically detect and describe
the changes in marmoset behavior that resulted from chemo-
genetic manipulation of specific neural circuits(9), without
any prior information.

Results

Unsupervised detection of latent motion motifs from
free-feeding marmoset behavior. We first assessed the
ability of SMP’s computational segmentation to identify
changes in internal states. Internal states were inferred from
simple goal-directed behaviors, which included stereotyped
and reproducible motion series such as searching, discov-
ering, approaching, and eating. We recorded free-feeding
behavior of four adult marmosets, during which they fed
wherever, whenever, and however they wanted (Fig. 2a-
b, Supplementary Fig. 1). Using an original marker-less
motion-tracking system(9)(34)(35), the marmoset behavior
was semi-automatically captured as 3D trajectories of the
four body parts (Face, Head, Trunk, and Hip; Fig. 2c-d and
Supplementary Movie 1). For the SMP analysis, we manu-
ally extracted trajectory data (approx. 20 s) centered on the
timing of feeding based on video clips (N = 59; Supplemen-
tary Tablel). We assumed that this 20-s feeding behavior
would consist of a few motion units, each lasting several sec-
onds. We applied SMP to the Ist and 2nd principal compo-
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Fig. 2. Motion tracking and computational segmentation in freely moving common marmosets (a) Experimental setup for marmoset free-feeding behavior. Yellow
arrowheads indicate the location of the food reward. (b) lllustrations showing the subtypes of feeding behavior: using hands to take food from the floor (floor-hand, left), using
head and mouth directly (floor-head, middle), and taking food from the wall (wall, right). (c) Data-flow diagram of the marker-less motion-tracking system. The positions of
marmoset body parts, Head, Neck, Trunk, and Hip were estimated by a skeleton model fitting. The Face position was also estimated by the projection of the face rectangle
on RGB images to the point cloud. See also Supplementary Movie 1. (d) The posture parameters were transformed from distance-from-the center coordinates (left) to
Trunk-centered coordinates (right). (e) Time series of the first and second principal component scores (PC1 and PC2) with 10 Hz resolution for a total of 1,020 s of data
comprising 51 sets of 20-s data. (f) The class size of the elemental motion units during the free-feeding behavior was estimated by four statistical models: the proposed
SMP method (HDP + GP, red), Model1 (GP, blue), Model2 (HDP + linear regression, square), and Model3 (HDP, cross). (g) Using MDD, the number of fragment classes
converged to a unimodal posterior distribution with a median of 18. (h) Examples of a set of 18 motion units estimated by SMP simulation with 22 initial classes. SMP,

SyntacticMotionParser; HDP, hierarchical Dirichlet process; GP, Gaussian process.

nent (PC) scores of the free-feeding data (51 x 20 s) including
3D trajectories of body parts (13 parameters)(Fig. 2e). SMP
successfully segmented the data into about 430 motion mo-
tifs (433.8 + 5.2, mean * sd) across simulations with various
initial class sizes (random seed, n = 23). In those simula-
tions, the number of motif classes converged to a unimodal
posterior distribution with a median value of 18, which indi-
cates the optimal class size (Fig. 2f-g, red). Analysis of the
seven simulations that yielded 18 motif classes revealed that
the frequency distribution of the motifs was similar regard-
less of the initial class size (X-sq = 30.13, df = 102, p-value
= 1.00, Pearson’s Chi-squared test, Supplementary Fig. 2).
Figure 2h shows 18 motion motifs characterized by a distinct
set of PC-score dynamics segmented by SMP with an initial
class size of 22 (which was used in the subsequent analy-
ses). These motion motifs were commonly observed in the
four marmosets without significant individual unique distri-
bution bias (X-sq =62.99, df = 51, p-value = 0.121, Pearson’s
Chi-squared test, Supplementary Table 2). Successful con-
vergence of dynamic motion segmentation appeared to result
from the combination of GP and HDP inherent in SMP; the
GP works as a link function that represents dynamic postural
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changes, while the HDP optimizes the class size(36)(37)(38).
To benchmark SMP performance, we compared it with the
performance of other statistical models. When using GP as a
link function, but not using HDP, the class size depended on
the initial value and the optimal class size was not determined
(Fig. 2f, Modell). Similarly, when using HDP with a differ-
ent link function (autocorrelation and static; Fig. 2f, Mod-
els 2 and 3, respectively), the class size again depended on
the initial value and no information about optimal class size
was provided. Thus, SMP that incorporates both HDP and
GP demonstrated a significant advantage in simultaneously
providing flexible regression to explain free-feeding behavior
and returning an optimal class size of motion motifs inherent
in the data.

SMP can describe and reproduce sequences of mo-
tion motifs from goal-directed marmoset behavior.
Having shown that SMP performed consistently in unsuper-
vised segmentation of marmoset free-feeding behavior, we
next investigated how feeding behavior can be described with
a sequence of motion motifs detected by SMP. Figure 3a
presents a 20-s data sample that included two feedings. SMP
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Fig. 3. Example of marmoset behavior smoothly described by SMP-derived motion units (a) Example of behavior segmentation. The curve trends represent the 1st
and 2nd principal component scores (PC1 and PC2) of the motion parameters. The bottom lines and background rectangles represent the resulting eight segmented motion
units with four types (8, 2, 7, and 3). (b) Two sequential images of marmoset free-feeding behaviors with three-segment arrays “8-2-7”, where the labels (i) and (i) correspond
to those in a. Black arrows indicate the position of the video frame in the segment represented by the upper bar. Yellow arrowheads indicate the location of the food reward.
Orange rectangles indicate the images in which feeding occurred. (¢) Time series of the original body movement trajectory during the data from a, with the X-axis representing
time and the front-back direction, and the Y-axis representing the up-down direction. The Face, Head, Trunk, and Hip are color-coded in red, orange, green, and dark yellow,
respectively. (d) The time series of the ideal body motion trajectory, which was pieced together from the eight motion units provided by SMP. (e) Time series connecting the
six representative postures provided by the posture model, calculated by clustering the two-dimensional UMAP scores of all data using the k-means hierarchical clustering
method (k = 6). See also Supplementary Movie 2. (f) Segmentation results of the motion sequence ¢ using the proposed SMP method and the posture models (k = 6 and
18). (g) Dot plots showing the distribution of motion motifs in response to food placed on the wall and floor and in feeding approaches to food placed on the floor (floor-hand

and floor-head). Size indicates the number of observations. *, p-value < 0.05 by Pearson’s Chi-squared test.

decomposed these data into a sequence of eight motion mo-
tifs from four classes. Because each motion motif represents
typical body motion trajectories that are transformed into
temporal dynamics of two PCs (Fig. 2h), corresponding body
motion parameters can be retrieved by inverse calculation
from the mean value of the PC scores. For example, when a
series of movements represented by motifs 2, 3, 7, and 8 were
reconstructed in the order of observation, marmoset behav-
ior was able to be retrieved as the dynamic relative positions
of the Face, Head, Trunk, and Hip (Fig. 3d, Supplementary
Movie 2), similar to those from the original data (Fig. 3b-c).
When we attempted a similar reproduction of movements us-
ing a standard posture model (the 2D UMAP; uniform mani-
fold approximation and projection)(18)(19) with the k-means
clustering method, the motions were unnatural and resembled
a stop-motion animation of static postures stitched together
(Fig. 3e). With the same initial class size as that of the SMP
(k = 18), the posture model decomposed the data into signif-
icantly shorter sub-second fragments (UMAP: 0.5 + 1.16 s,
median + sd; SMP: 2.2 + 0.59 s; BM statistic = -443.83, df
= 1253.4, p-value < 2.2e-16) (Fig. 3f). These results demon-
strate that SMP is unique in that it allows for a simple de-
scription of the multi-second dynamical structure observed
during feeding behavior.
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SMP motion motifs quantitatively characterized classi-
fication by observation. As shown in Figure 3a, SMP de-
scribed feeding behavior as a specific sequence motion mo-
tifs (e.g., 8-2-7). Because feeding behaviors can be classi-
fied manually into three subtypes according to food position
and approach strategy (floor-hand, floor-head, and wall; Fig.
2b; Supplementary Tablel), we next asked whether SMP-
derived motion motifs would correspond to different feed-
ing subtypes. Analysis revealed differences in motion motifs
according to where the food was located (wall vs. floor), in-
dicating that significantly different motifs were employed in
the feeding segment (X-sq = 55.1, df = 11, p-value = 7.37e-
08, Fig. 3g, top). We also found significant differences ac-
cording to approach (floor-hand vs. floor-head), indicating
that different motifs were employed depending on the ap-
proach strategy (X-sq = 22.6, df = 7, p-value = 1.97e-3, Fig.
3g, bottom). For comparison, we assessed the distribution
of posture clusters during feeding using a conventional pos-
ture model with k = 18. Although the distributions of pos-
ture clusters at feeding times differed significantly between
wall and floor (X-sq = 54.343, df = 10, p = 4.18e-08, Pear-
son’s Chi-squared test), they did not significantly differ be-
tween floor-head and floor-hand (X-sq = 4.7454, df = 8, p
= (.784, Pearson’s Chi-squared test; Supplementary Table
3). Thus, SMP could detect smaller, fine-grain differences
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Fig. 4. Independent macaque behavior was segmented into ethograms by SMP (a) Published macaque image (top; adapted from OpenMonkeyStudio(14)) and cor-
responding posture keypoint coordinates, which have been rescaled as Hip-centered with the x-y plane including the Hip-Neck vector (bottom). (b) The median posterior
distribution of class sizes was 10. (c) Example of the trends for the 1st and 2nd principal components (PC1 and PC2) of each motion unit with initial class size = 18 (arrowhead
in b). (d) The synthesized ideal body trajectories in major motions are calculated by the inverse operation of PC analysis. Motion motifs 1—4 represent walking, climbing up
and holding upside down, stepping down, and climbing up and staying, respectively (see also Supplementary Movie 3).

in behavioral features than the conventional posture model
could, meaning it has a higher behavioral resolution. Com-
pared with existing posture-based methods, when given data
that was manually and roughly clipped to the timing of spe-
cific events, SMP provided a description that better reflected
the dynamics of the actual behavior.

Using SMP to identify ethograms in freely mov-
ing macaques. Having demonstrated the effectiveness of
SMP analysis of marmoset behavior during a goal-directed
paradigm, we next applied SMP to data from freely moving
NHPs to test whether it could extract what animals are do-
ing (i.e., ethograms), in a data-driven manner. For this pur-
pose, we used OpenMonkeyStudio, an open data source of
macaque monkey behaviors(14), which consists of 3D tra-
jectories of 13 key landmarks on a macaque body captured
by multiple synchronized cameras (Fig. 4a, top). Similar to
the data preprocessing in the marmoset analysis, the Front-
Up coordinates were aligned to the Head-Hip axis (Hip-
centered) to determine what each animal was doing rather
than where it was (Fig. 4a, bottom). We assumed that the
macaque behavior would comprise several kinds of motion
motifs, each lasting around 15 s. The SMP segmented the
data into about 230 motion motifs (234.2 + 6.5, mean + sd)
in 16 random-seed simulations with various initial class sizes.
The motifs comprised 10 different classes whose sizes did not
vary depending on the initial values of the simulation (Fig.
4b). Figure 4c shows the PC waveforms of motion motifs
that resulted from SMP extraction with an initial class size
of 18. By inverse-calculating the postural parameters from
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the average trend of the PC waveforms, SMP resynthesized
the ideal motion represented by each motion motif, as ex-
emplified in Fig. 4d: walking (motif 1), climbing up and
holding on upside down (motif 2), stepping down (motif 3),
and climbing up and staying (motif 4), which are common
motion ethograms of macaques. Furthermore, less common
ethograms were also captured as independent classes, such
as long-distance jumps along walls and to the floor (motif 8
and motif 9; Fig 4c, Supplementary Movie 3). These results
demonstrate the versatility of SMP for detecting ethograms in
freely moving NHPs from any dataset, with only a minimum
assumption of their duration.

Using SMP to characterize behavioral change induced
by circuit manipulation. To identify how activity within
a specific brain circuit can cause specific natural behaviors,
we must be able to establish a method for unsupervised de-
tection of behavioral changes. We therefore tested whether
SMP could detect and characterize behavioral changes in
free-moving marmosets that were induced by chemogenetic
neural manipulation in our previous study(9). Marmosets that
expressed the excitatory chemogenetic receptor hM3Dq in
the unilateral substantia nigra (SN) spun themselves around
in the direction contralateral to the activated SN, and this be-
havior began about 45 min after eating the chemogenetic ac-
tivator (deschloroclozapine, DCZ) (Fig. 5a-b). Although this
behavioral change can be quantified by counting the number
of rotations, its characterization is not simple, as it is difficult
to describe rotation behavior using conventional static pos-
tures in a series of snapshot images. We asked whether SMP
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Fig. 5. SMP characterized contralateral rotation behavior induced by chemogenetic neuro-manipulation (a) lllustration of viral vector injection locations adapted
from Mimura et al., 2021(9). AAV vectors expressing excitatory DREADD hM3Dq were injected into the unilateral substantia nigra (SN, red arrow). As a control, an AAV
vector expressing a fluorescent marker (mKO) was injected into the contralateral SN (blue arrow). (b) Example of the top view of the Head trajectory of the marmoset after
deschloroclozapine (DCZ; 10 ug/kg, per os (p.o.)) and vehicle administration. (c) lllustration of the posture coordinate. The horizontal mapping of the Head through the center
of the Trunk was defined as the front-back (F-B) axis, and the axes orthogonal to the F-B axis horizontally and vertically were defined as the ipsilateral-contralateral (I-C) and
vertical up-down (U-D) axes, respectively. (d) Body coordinates were used to determine relative positions every 3 s. (e) Estimation result of motion-motif class size. SMP
was applied to four 5-min time windows each from two 90-min sessions after DCZ and vehicle p.o. The result was 7 kinds of motion motifs. (f) Example of a motion-motif
sequence detected by SMP with initial class size = 5 (arrowhead in e). The time at which the motif was observed is indicated by tiles and color-coded by the percentage of
occurrences in the DCZ data. The days since vector injection are shown below the dosing conditions. (g) The top view illustration of the body trajectories is represented by
the motion motifs in f. Observed numbers in the DCZ and vehicle groups are under the motif numbers. The red and white arrowheads indicate the starting and ending points
of the Head track, respectively. The Head, Trunk, and Hip positions are color-corded as ¢, with white at the ending points. The body positions are drawn at 0.5-s intervals
with a gradation from blue to black from start to end (see also Supplementary Movie 4).

could effectively capture this phenotype without any assump-
tions. We analyzed two sessions of 5-min motion-tracking
data at four certain time windows (10-15, 35-40, 60-65, and
85-90 min) after DCZ or vehicle consumption. We used 3D
trajectories of the Head, Trunk, and Hip, and their velocities
in the postural coordinates where the Head was frontal and
the Trunk was centered (Fig. 5c-d), and applied PC analy-
sis to reduce their dimensions to two. With multiple initial
class sizes, SMP consistently extracted seven classes of mo-
tion motifs (approx. 30-s) from the data (Fig. 5e). Temporal
distribution of these motifs indicated that more than 90% of
motifs 1 through 4 appeared later than 60 min after DCZ ad-
ministration (Fig. 5f, red). Visualization of the reconstructed
body movements through inverse PC analysis revealed that
motion motifs 1-4 characterized the nature of the contralat-
eral rotation with dynamical postural changes, which were
clearly dissociable from normal directional changes (mo-
tifs 5 and 6 ipsilateral and contralateral, respectively) or ex-
ploratory behavior (motif 7) (Fig. 5g, Supplementary Movie
4). These results demonstrate that without any prior informa-
tion, SMP could successfully capture and describe changes
in unconstrained behavior that were induced by circuit ma-
nipulation. Importantly, it also indicated when and how the
behavioral effects appeared, highlighting another advantage
of this method in studying the causal relationship between
natural behavior and brain function in NHPs.
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Discussion

Here, we describe a novel computational framework, SMP,
that quantitatively and automatically parses natural NHP be-
haviors into motion motifs, which can be used as meaningful
metrics, like ethograms. As illustrated by its application to
three NHP datasets in two monkey species, SMP is versatile
and effective for quantifying and characterizing behaviors by
simply adjusting the temporal window for motifs of interest,
and not changing the model or process. SMP can also auto-
matically detect and describe behavioral changes induced by
neuronal manipulation. Thus, SMP can be widely applied for
motion description and quantification of NHPs, offering the
potential to dramatically improve our understanding of natu-
ral NHP behavior and the underlying brain functions in both
normal and disease states.

Recent advances in machine learning allow for the collection
of large-scale posture data, measured and estimated automat-
ically from videos of freely moving NHPs(9)(14)(15)(16).
At the same time, frame-by-frame classification of posture
information can be used to detect ethograms from stream-
ing behavior data(14). Although this type of classification
has been shown to be effective in rodents(39), it may not be
sufficient in NHPs because their natural ethograms are typi-
cally longer and more complex, which makes it more likely
that the same postures occur in different contexts, as hap-
pens when climbing up and down. Indeed, in our demon-
stration, the conventional posture-classification method could

Mimura etal. |


https://doi.org/10.1101/2023.03.04.531044
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.04.531044; this version posted March 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

not capture and reproduce NHP motion motifs because these
methods transform inherently smooth and dynamic postural
changes in a given ethogram into a constrained combination
of static states, i.e., postures (Fig. 3e-f). In the case of ro-
dents and insects, attempts have been made to address this
issue by refining the conventional posture model to account
for the semantic context(33)(40). The results are like stop-
motion animations, forcing complex and expensive modifi-
cations to reproduce natural actions. Unlike these static pos-
ture models, our proposed SMP can provide dynamic and re-
producible motion motifs—which are inherent in the behav-
ior—as basic units. Using a probabilistic estimation of the
type and occurrence of motifs through data-driven learning,
SMP automatically parses streaming behavioral data into a
series of motion motifs (or ethograms). This is similar to the
way in which sentence structure analysis in natural language
processing directly searches for meaningful morphemes like
words, omitting detailed consideration of the smallest static
unit, the character. SMP clearly distinguished climbing up
from climbing down as different behavioral "words", even
though these two actions are indistinguishable in principle
by posture alone (Fig. 4, Supplementary Movie 3). Thus,
by estimating the grammar and syntax of NHP behavior, mo-
tion parsing might allow researchers to understand the inter-
nal state of animals or the functional significance of the be-
havior in terms of social communication and the underlying
brain mechanisms, similar to what has already been shown to
be effective for time-series correlation analysis with neural
activity in rodents(24)(26).

Our results also demonstrate that SMP represents a major ad-
vance in how the behavioral effects of neural manipulation
can be evaluated. While conventional methods have long re-
lied on subjectively defined ethograms or task-controlled be-
havior, SMP employs automatic detection and description of
changes in natural behavior, such as the frequency and type
of motion motifs. Our demonstration showed that SMP can
isolate and resynthesize abnormal contralateral turning that
was triggered by chemogenetic neuronal manipulation, even
under severe constraints such as limited tracking points that
lacked facial coordinates (Fig. 5, Supplementary Movie 4).
When chemogenetics is applied to NHP brain circuits that
govern complex behaviors (e.g., the dorsolateral prefrontal
cortex and caudate nucleus)(41), SMP may be able to detect
resulting behavioral changes not only as abnormal motifs, but
also as abnormalities in motion-motif sequences (e.g., "8-2-
7" in feeding behavior in Fig. 3) or their transition structures.
In addition, by building a large dataset of natural NHP be-
havior, we can address behavioral variations across individu-
als. Our results suggest that SMP holds enormous potential
for quantifying and describing behavioral changes far beyond
what can be measured by conventional observational or task-
based methods.

SMP implements two extensions to its generative model,
HPD and GP, which address the following two major issues
related to statistical estimation of latent states. The first is-
sue is determining how many latent states exist in the be-
havioral data, which is always a problem when labeling dis-
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crete data elements as "characters" or "words". Because the
class size of a latent state model is usually given as an ad
hoc fixed parameter(42), researchers have struggled to deter-
mine which is the most likely result when running simula-
tions under a variety of conditions, each returning a plausible
result(14). The HDP is theoretically guaranteed to yield a
single estimated class size for any initial value in an ideal
situation with infinite iterations, which eliminates the need
to select an optimal result(36)(37)(38). Our comparison of
multiple initial values was not for a posteriori sorting as in
previous studies(33), but rather it was to confirm that suf-
ficient iterations were performed for convergence. In fact,
all of our simulations returned a simple unimodal posterior
distribution of the class sizes after 100 iterations (Fig. 2f-
g, 4b, and Se), from which the most likely class size was
uniquely and automatically determined. The second issue is
related to the link function of the latent state model. In a
typical latent state model, each state is assumed to be static,
as is the posture, which is why a link function is needed
to regress and represent complex internal variability such as
motion. We chose GP as the regression link function because
it has been used in human behavior analyses(29)(30)(43), and
because it allows for more flexible regression than conven-
tional auto-regressive filtering or Bernoulli generalized linear
models(25)(26).

By incorporating both GP and HDP, SMP is able to automat-
ically estimate all parameters, except for the three hyperpa-
rameters and hidden state intervals (min, max, and mean).
For the three hyperparameters, «, v, and ) (parameters that
control error coefficients, sparsity of the underlying state
transition matrix, and expected number of different hidden
states, respectively; Fig. 1b), we showed that the basic pa-
rameter settings are useful for NHP behavior quantification,
and that the values were similar to those in our human motion
analysis(29). The hyperparameters might need to be tuned
for data with different variance assumptions. As for the state
interval parameters, they are major adjustment factors that di-
rectly reflect the temporal extent of the motion motifs of in-
terest. Although there are no theoretical limitations on the in-
tervals, longer intervals increase computational cost and de-
crease the frequency of reproducible GP regression curves.
Therefore, when trying different intervals, we recommend
that the parameterized frame length first be fixed and the time
resolution of the data be adjusted, as we demonstrated. While
a similar latent model with HDP and GP was able to identify
human motion as accurately as manual annotation(29), the
current study is the first application of this type of model ex-
tension for exploratory behavior quantification in NHPs, for
which the GP kernel function was optimized.

SMP will open the door to quantitative, rigorous, and com-
prehensive research of natural monkey behavior, which is
needed in a wide range of scientific disciplines, including
neuroscience, ethology, and developmental and evolutionary
biology. Application of SMP also has a potential use in drug
development and engineering brain-machine interfaces and
other clinical devices. Neural recording and circuit manipu-
lation of NHPs in free-moving conditions(9)(44) would bear
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real fruit when combined with computational behavioral de-
scription. SMP overcomes the motion annotation bottleneck
of NHP experiments and automatically describes the diver-
sity and complexity of the dynamical natural behavior and
the behavioral changes associated with brain circuit manipu-
lation, therefore increasing the value of NHPs in the fields of
neuroscience and psychology by opening a new behavioral
research field—natural nonverbal processing.

Materials and methods

Animals. Four laboratory-bread adult common marmosets
were used (2 males, 2 females; 1.4-6.4 years old; 290—400
g, Supplementary Tablel). Each cage was exposed to a
12/12-h light-dark cycle. Room temperature and humidity
were maintained at 27-30°C and 40%-50%, respectively.
All experimental procedures were performed in accordance
with the Guide for the Care and Use of Nonhuman Pri-
mates in Neuroscience Research (Japan Neuroscience Soci-
ety; https://www.jnss.org/en/animal_primates) and were ap-
proved by the Animal Ethics Committee of the National In-
stitutes for Quantum Science and Technology (#11-1038).

Behavior test. Behavior experiments were conducted in a
sound-attenuated room (O’hara & Co., Ltd., Tokyo, Japan;
2.4 m (h) x 1.2 m (w) x 1.6 m (d)), which was apart from the
colony room. Vocalizations from the colony room could not
be detected in the experimental room. The temperature was
maintained at 27-30°C and relative humidity was 30%—40%.
The internal space of the sound-attenuated room was venti-
lated and illuminated with fluorescent lighting. The experi-
ments were performed between 11:00 and 16:00.

Before the experimental sessions, each subject was trans-
ferred individually from the colony room to the experimen-
tal room in a small transport chamber (O’hara & Co., Ltd.,
Tokyo, Japan; 300 mm (h) x 100 mm (w) x 100 mm (d)).
Once in the experimental room the transport chamber was
placed under a table with a green top (O’hara & Co., Ltd.,
Tokyo, Japan; 0.5 m x 0.5 m x 0.5 m), upon which rested a
cylindrical test chamber made from transparent acrylic (0.4
m (r) x 0.5 m (h)). The bottom of the test chamber had
a door that when opened allowed the marmoset to enter
from the transport chamber (Supplementary Fig. 1a). The
test chamber had 16 feeding ports (30 mm x 15 mm) lo-
cated at 45-degree intervals on the floor (8 ports) and on
the wall at heights of 150 mm and 200 mm (4 each, alter-
nately arranged). Platforms (30 mm x 15 mm) were set up
on the outside of the wall ports where food rewards could be
placed (Supplementary Fig. 1b). For 3D data acquisition, 4
depth cameras (RealSense Depth Camera R200, Intel, Santa
Clara, USA) were placed around the chamber at 90-degree
intervals (Supplementary Fig. 1b), and were connected in
parallel to a PC (Windows 10, 64-bit) using USB-C cables
(U3S1A01C12-050, Newnex Technology, Santa Clara, USA;
the distance was 1-5 m). The subjects were allowed to adapt
to the transport procedure and experimental environment for
two consecutive days before behavioral testing.

Each behavioral test started when a marmoset entered the test
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chamber from the transport chamber through the floor en-
trance, and the recording of movements lasted until they fin-
ished eating all the food placed in the feeding ports, lasting
up to 30 min. Subjects freely moved around the test chamber
and, whenever they wanted, ate 7-9 pieces of sponge cake
(approximately 2 g each); one cake was located on the near
side of the entrance to entice them to enter the chamber, two
on the wall ports, two on the near side of the floor ports, and
the others 3 cm away from the floor ports (Fig. 2a, Supple-
mentary Fig. 1 b). Observed feeding behaviors were manu-
ally classified into three subtypes: using hands to take food
from the floor (floor-hand), using head and mouth directly
(floor-head), and taking food from the wall (wall) (Fig. 2b,
Supplementary Tablel). Fifty-one sets of 20 s (10 s before
and after eating) were used for analysis (Supplementary Ta-
blel). Subjects were returned to the colony room after the end
of the recording session. The experiments were performed
once a day for each subject.

Marmoset marker-less 3D motion-tracking system. Our
motion-tracking system software package for depth cam-
era calibration, 3D data acquisition, and fundamental setup
for physical simulation is available online (3DTracker-FAB,
https://www.3dtrack.org). This motion-tracking system al-
lowed us to robustly estimate the 3D trajectory of marmoset
body parts as the positions of skeleton model parts (Head,
Neck, Trunk, Hip) fitted by the physical simulation to the 3D
point data of marmoset body shape (3D point cloud)(9)(34).
The Face position was estimated by projecting the rectangle
of the marmoset face area onto the 3D point cloud. This face
area was detected frame-by-frame on 2D-RGB images by an
object recognition algorithm YOLO3(35). To achieve suf-
ficient accuracy, the YOLO3 detector was trained to detect
marmoset face regions using 2,000 manually detected faces
from two of the four marmosets (Marmo1l and Marmo?2). 3D
points inside the projected face rectangle were filtered to be
less than 2.5 cm away from the center of the Head, and the
average position of these 3D points was defined as the Face
position (Fig.2c). Estimated error of Face position was re-
ported in Supplementary Fig. 3.

Behavioral data under chemogenetic neuronal manip-
ulation. We used behavioral data obtained from an adult
male marmoset that received a viral vector injection in the
unilateral SN for expressing a Designer Receptor Exclusively
Activated by a Designer Drug (DREADD) (AAV2.1-hSynl-
hM3Dgq-IRES-AcGFP)(9). Using this DREADD setup, SN
neurons are excited when the receptor is activated by admin-
istration of the agonist DCZ (HY-42110, MedChemExpress,
NIJ, USA; 3 ng/kg, orally). Two sets of free-moving behavior
data (~60 min) following either DCZ or vehicle alone (saline
with 2.5% dimethyl sulfoxide FUJIFILM Wako Pure Chem-
ical., Osaka, Japan) were used.

Data preprocessing. All data preprocessing were per-
formed using R version 4.0.3 (www.r-project.org) and its
packages tidyverse version 1.3.0(45), data.table version
1.13.2, patchwork version 1.1.1, and magick version 2.7.0.
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Marmosets For free-feeding behavior analysis, the trajec-
tory of body parts (Face, Head, Trunk, and Hip) was filtered
with a locally estimated scatterplot smoothing filter using the
stats::loess() function with span = 1/30 and downsampled to
10 Hz. Then, the spatial movement speed of each body part
was calculated and the data coordinates were transformed
frame-by-frame to make them posture-centered. Specifically,
distance-from-center coordinates were transformed into pos-
ture coordinates with the Trunk’s center and the vector from
Trunk to Head contained in the front-up quadrant. As a re-
sult, we used a set of 13 posture parameters (Face [X, Y, z, V],
Head [x =0, vy, z, v], Trunk [x =0,y = 0, z, v], and Hip
[x, y, z, v], Fig. 2d). For SMP analysis, PC1 and PC2 were
calculated using the stats::prcomp() function in R with scale
= TRUE (Fig. 2e), and then scaled to a maximum absolute
value of 1.

The same procedures were used for the data obtained after
chemogenetic neuronal manipulation, except that instead of
the Face position, we included the relative velocity of body
parts into the SMP analysis, which was calculated from the
postures at t+3 s (Fig. 5d) and normalized by the coordinates
of the body at time t and the distances between these parts.
Thus, the analysis of the neuronal manipulation data used a
set of 26 parameters (Head [X,y, z = 0], Trunk [x =0,y =
0,z = 0], Hip [x, y, z], their positions at t+3 s [x, y, z], their
velocities [X, y, z, and absolute value]).

Macaques For this analysis, we used published 3D macaque
tracking data captured by OpenMonkeyStudio(14). From the
published data, we extracted 3,534 s of data that was divided
into 29 subsets with few missing frames (frame gap < 20
frames) and sufficient duration (d = 100 s). Then, the ex-
tracted data were transformed frame-by-frame from distance-
from-center coordinates to posture coordinates with the Hip’s
center and the vector from Hip to Neck contained in the front-
up quadrant. These posture-coordinated parameters were in-
terpolated in 2/3 Hz using the stats::loess() function with a
span set to one-fifth of the data fragment length. As a result,
we use 5,452 video frames with 36 posture parameters ([X,
y, z] coordinates of 13 body keypoints with Hip_x, Hip_z,
Neck_z scaled to zero, Fig. 4a). For SMP analysis, PC1 and
PC2 extracted from these 36-parameter data were calculated
using the stats::prcomp() function with scale = TRUE.

Computational segmentation. The joint probability distri-
bution of motion-motif length and class can be estimated by
a blocked Gibbs sampler in which all motion motifs and their
classes in the observed data (PC scores) are sampled. First,
all data are randomly divided into motion motifs and classi-
fied. Next, motion motifs obtained by a part of the data are
excluded from the dataset, and the model parameters are up-
dated. By iterating this procedure, the parameters can be op-
timized. Parameter estimation in each iteration is described
as forward filtering-backward sampling, which can be con-
sidered a maximum likelihood estimation process.

In the forward filtering step, the probability « that a data point
given time step ¢ is the ending point of a motion motif of
length k classified motif class ¢ was calculated as follows:
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alt)[K)[d) = GP(st—pl Xo) S { S pelel)alt — KK
k=1 /=1

where s; denotes time series PC score at a time step i, C'
denotes the maximum number of motion motif classes, K
denotes the maximum length of motion motifs, and p:(c|c)
denotes posterior transition probability from motif ¢’ to c.
The GP(st—k.k|X.) is a predictive distribution of a Gaus-
sian process of class c fitted to PC score s at time step from
t — k to k, and is computed as follows:

k
GP(St—k:k|Xc): H P(Sz‘|Xc,i),
i=t—k

1

where X . denotes a set of segments that are classified into
class c. The variation within a segment is regressed on data
fragments belonging to the same class c as follows:

Clipyiq) = k(ip,ig) +w ™ opq.

The class ¢; of the ith motion motif is determined by the
(7 — 1)th segment and transition probability 7., which is gen-
erated from the 3, generated Dirichlet process (DP) parame-
terized by 7 as follows:

WCNDP(TIaﬁ)-

This 3 is an infinite-dimensional multinomial distribution,
and its parameters were constructed by repeatedly breaking
a stick, the length of which is one, with a ratio v, sampled
from a beta distribution, as follows:

vy, ~ Beta(1,7) (k=1,2,---,00),

k—1
B ~ v, H(l—vi) (]CZ 1,2,--- ,oo).
=1

This stick-breaking process is also the DP, so the two-phase
DP to generate 7. is called an HDP. In both the macaque
and marmoset behavior analysis, the parameters were set w =
10.0, n = 10.0, and v = 1.0, and the length of the motion
motifs was set around 30 frames (10 and 70, min and max,
respectively). This model was reported as HDP-GP-HSMM
for human motion analysis (29). For exploratory behavior
analysis in NHP, we optimized the kernel function &(-,-) with
comparison as follows,

SMP and Modell, k(ip,iq) = exp(—||ip —iq|?);

Model2, k(ip,iq) = 1+ip *iq;

and Model3, k(ip,iq) = 1.

In addition, after learning the parameters for the data by it-
erating the model 100 times, the Viterbi algorithm estimated
the most likely path of the latent state in the data. That is,
all possible « in the data were obtained, and the most proba-
ble of all possible state sequences, combined with the learned
transition probabilities, was adopted as the posterior state se-
quence.
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Posture model. For comparisons, the conventional posture
model was estimated as described below. Standardized nine-
dimensional marmoset motion information, the 3D coordi-
nates of the four body parts (Face, Head, Trunk, and Hip), ex-
cluding the three scaled to zero, were mapped to two dimen-
sions using the umap.UMAP() function in Python 3.741(46).
Posture clusters were detected on the UMAP scores using the
stats::kmeans() function in R. The representative posture for
each cluster was the average of the data contained in each
class.

Synthesis of typical body motion sequences. The in-
verse operation of PC analysis was used to synthesize a typi-
cal posture series from the estimated PC coordinates. In each
motif class, the typical PC waveforms (Fig. 2h, and Fig.
4c) were calculated within 10 Hz by moving the average for
all PCs. These typical PCs were multiplied by the pseudo-
inverse matrix of the eigenvector for the PC analysis of the
test data that was calculated using MASS::ginv() function in
R. Finally, the resulting values were inversely standardized
using the mean and variance values of the data to synthesize
the posture parameters. In the cases of marmoset free-feeding
behavior and macaque ethogram detection, the postural in-
formation is displayed side-by-side along the time axis (Fig.
3c-e, Fig. 4d). The results of neural manipulation analysis
visualized the motif’s internal variability by integrating the
velocity relative to the initial position (Fig. 5g).

Statistical analysis. Pearson’s Chi-square test, imple-
mented with the stats::chisq.test() function in R, was used to
compare intervals containing constant-specific timing among
feeding subtypes and to test for differences in motion unit
distributions among individuals. The Brunner-Munzel test,
implemented with the lawstats::brunner.munzel.test() func-
tion in R, was used to compare the median value of segment
length.
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