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2. Abstract  19 

The dominant paradigm for analysing genetic variation relies on a central idea: all genomes 20 
in a species can be described as minor differences from a single reference genome. However, 21 
this approach can be problematic or inadequate for bacteria, where there can be significant 22 
sequence divergence within a species.  23 
Reference graphs are an emerging solution to the reference bias issues implicit in the “single-24 
reference” model. Such a graph represents variation at multiple scales within a population – 25 
e.g., nucleotide- and locus-level. 26 
The genetic causes of drug resistance in bacteria have proven comparatively easy to decode 27 
compared with studies of human diseases. For example, it is possible to predict resistance to 28 
numerous anti-tuberculosis drugs by simply testing for the presence of a list of single 29 
nucleotide polymorphisms and insertion/deletions, commonly referred to as a catalogue. 30 
We developed DrPRG (Drug resistance Prediction with Reference Graphs) using the bacterial 31 
reference graph method Pandora. First, we outline the construction of a Mycobacterium 32 
tuberculosis drug resistance reference graph, a process that can be replicated for other 33 
species. The graph is built from a global dataset of isolates with varying drug susceptibility 34 
profiles, thus capturing common and rare resistance- and susceptible-associated haplotypes.  35 
We benchmark DrPRG against the existing graph-based tool Mykrobe and the haplotype-36 
based approach of TBProfiler using 44,709 and 138 publicly available Illumina and 37 
Nanopore samples with associated phenotypes. We find DrPRG has significantly improved 38 
sensitivity and specificity for some drugs compared to these tools, with no significant 39 
decreases. It uses significantly less computational memory than both tools, and provides 40 
significantly faster runtimes, except when runtime is compared to Mykrobe on Nanopore 41 
data. 42 
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We discover and discuss novel insights into resistance-conferring variation for M. 43 
tuberculosis - including deletion of genes katG and pncA – and suggest mutations that may 44 
warrant reclassification as associated with resistance. 45 
 46 

3. Impact statement 47 

Mycobacterium tuberculosis is the bacterium responsible for tuberculosis (TB). TB is one of 48 
the leading causes of death worldwide; before the coronavirus pandemic it was the leading 49 
cause of death from a single pathogen. Drug-resistant TB incidence has recently increased, 50 
making the detection of resistance even more vital. In this study, we develop a new software 51 
tool to predict drug resistance from whole-genome sequence data of the pathogen using new 52 
reference graph models to represent a reference genome. We evaluate it on M. tuberculosis 53 
against existing tools for resistance prediction and show improved performance. Using our 54 
method, we discover new resistance-associated variations and discuss reclassification of a 55 
selection of existing mutations. As such, this work contributes to TB drug resistance 56 
diagnostic efforts. In addition, the method could be applied to any bacterial species, so is of 57 
interest to anyone working on antimicrobial resistance. 58 

4. Data summary 59 

The authors confirm all supporting data, code and protocols have been provided within 60 
the article or through supplementary data files. 61 
The software method presented in this work, DrPRG, is freely available from GitHub under 62 
an MIT license at https://github.com/mbhall88/drprg. We used commit 9492f25 for all results 63 
via a Singularity[1] container from the URI 64 
docker://quay.io/mbhall88/drprg:9492f25. 65 
All code used to generate results for this study are available on GitHub at 66 
https://github.com/mbhall88/drprg-paper. All data used in this work are freely available from 67 
the SRA/ENA/DRA and a copy of the datasheet with all associated phenotype information 68 
can be downloaded from the archived repository at https://doi.org/10.5281/zenodo.7819984 69 
or found in the previously mentioned GitHub repository. 70 
The Mycobacterium tuberculosis index used in this work is available to download through 71 
DrPRG via the command drprg index --download mtb@20230308 or from 72 
GitHub at https://github.com/mbhall88/drprg-index. 73 

5. Introduction 74 

Human industrialisation of antibiotic production and use over the last 100 years has led to a 75 
global rise in prevalence of antibiotic resistant bacterial strains. The phenomenon 76 
was even observed within patients in the first clinical trial of streptomycin as a drug for 77 
tuberculosis (TB) in 1948[2], and indeed as every new drug class has been introduced, so has 78 
resistance followed. Resistance mechanisms are varied, and can be caused by point mutations 79 
at key loci (e.g., binding sites of drugs[3,4]), frame-shifts rendering a gene non-functional[5],  80 
horizontal acquisition of new functionality via a new gene[6], or by up-regulation of efflux 81 
pumps to reduce the drug concentration within the cell[7].  82 
 83 
Phenotypic and genotypic methods for detecting reduced susceptibility to drugs play 84 
complementary roles in clinical microbiology. Carefully defined phenotypic assays are used 85 
to give (semi)quantitative or binary measures of drug susceptibility; these have the benefit of 86 
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being experimental, quantitative measurements, and are able to detect resistance caused by 87 
hitherto unknown mechanisms. Prediction of drug resistance from genomic data has different 88 
advantages. Detection of a single nucleotide polymorphism (SNP) is arguably more 89 
consistent than a phenotypic assay, as it is not affected by whether the resistance it causes is 90 
near some threshold defining a resistant/susceptible boundary. Additionally, combining 91 
sequence datasets from different labs is more reliable than combining different phenotypic 92 
datasets, and using sequence data allows one to detect informative genetic changes (e.g., a 93 
tandem expansion of a single gene to form an array, thus increasing dosage). More subtly, 94 
defining the cut-off to separate resistant from susceptible is only simple when the minimum 95 
inhibitory concentration distribution is a simple bimodal distribution; in reality it is 96 
sometimes a convolution of multiple distributions caused by different mutations, and genetic 97 
data is sometimes needed to deconvolve the data and choose a threshold[8,9]. 98 
 99 
The key requirement for a genomic predictor is to have an encodable understanding of the 100 
genotype-to-phenotype map. Research has focussed on clinically important pathogens, 101 
primarily Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Pseudomonas 102 
aeruginosa and Mycobacterium tuberculosis (MTB). The challenges differ across species; 103 
almost all bacterial species are extremely diverse, with non-trivial pan-genomes and 104 
considerable horizontal gene transfer causing transmission of resistance genes[10]. In these 105 
cases, species are so diverse that detection of chromosomal SNPs is affected heavily by 106 
reference bias[11]. Furthermore, there is an appreciable proportion of resistance which is not 107 
currently explainable through known SNPs or genes [12–14]. At the other extreme, MTB has 108 
almost no accessory genome, and no recombination or plasmids[15]. Resistance appears to be 109 
caused entirely by mutations, indels, and rare structural variants, and simple sets of rules ("if 110 
any of these mutations are present, or any of these genes inactivated, the sample is resistant") 111 
work well for most drugs[16]. MTB has an exceptionally slow growth rate, meaning culture-112 
based drug susceptibility testing (DST) is slow (2-4 weeks depending on media), and 113 
therefore sequencing is faster[17]. As part of the end TB strategy, the WHO strives towards 114 
universal access to DST[18], defining Target Product Profiles for molecular 115 
diagnostics[19,20] and publishing a catalogue of high-confidence resistance mutations 116 
intended to provide a basis for commercial diagnostics and future research[16]. There was a 117 
strong community-wide desire to integrate this catalogue into software for genotypic 118 
resistance prediction, although independent benchmarking confirmed there was still need for 119 
improvement[12]. Hence, there is a continuing need to improve the understanding of the 120 
genetic basis of resistance and integrate it into software for genotypic DST. 121 
  122 
In this paper we develop and evaluate a new software tool for genotypic DST for MTB, built 123 
on a generic framework that can be used for any bacteria. Several tools have been developed 124 
previously[21–25]. Of these, only Mykrobe and TBProfiler work on Illumina and Nanopore 125 
data, and both have been heavily evaluated previously[22,23,26,27] - so we benchmark 126 
against these. Mykrobe uses de Bruijn graphs to encode known resistance alleles and thereby 127 
achieves high accuracy even on indel calls with Nanopore data[27]. However it is unable to 128 
detect novel alleles in known resistance genes, nor to detect gene truncation or deletion, 129 
which would be desirable. TBProfiler is based on mapping and variant calling (by default 130 
using Freebayes[28]), and detects gene deletions using Delly[29].  131 
  132 
Our new software, called DrPRG (Drug resistance Prediction with Reference Graphs), builds 133 
on newer pan-genome technology than Mykrobe[11] using an independent graph for each 134 
gene in the catalogue, which makes it easier to go back-and-forth between VCF and the 135 
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graph. To build an index, it takes as input a catalogue of resistant variants (a simple 4-column 136 
TSV file), a file specifying expert rules (e.g. any missense variant between codons X and Y in 137 
gene Z causes resistance to drug W), and a VCF of population variation in the genes of 138 
interest. This allows it to easily incorporate the current WHO-endorsed catalogue[16], which 139 
is conservative, and for the user to update the catalogue or rules with minimal effort. Finally, 140 
to provide resistance predictions, it takes a prebuilt index (an MTB one is currently provided) 141 
and sequencing reads (FASTQ). 142 
  143 
We describe the DrPRG method, and to evaluate it, gather the largest MTB dataset of 144 
sequencing data with associated phenotype information and reveal novel insights into 145 
resistance-determining mutations for this species. 146 

6. Methods 147 

DrPRG is a command-line software tool implemented in the Rust programming language. 148 
There are two main subcommands: build for building a reference graph and associated 149 
index files, and predict for producing genotypic resistance predictions from sequencing 150 
reads and an index (from build) . 151 

6.1 Constructing a resistance-specific reference graph and index 152 

The build subcommand of DrPRG requires a Variant Call Format (VCF) file of variants 153 
from which to build a reference graph, a catalogue of mutations that confer resistance or 154 
susceptibility for one or more drugs, and an annotation (GFF) and FASTA file of the 155 
reference genome. 156 
For this work, we used the reference and annotation for the MTB strain H37Rv (accession 157 
NC_000962.3) and the default mutation catalogue from Mykrobe (v0.12.1)[12,26]. 158 
To ensure the reference graph is not biased towards a particular lineage or susceptibility 159 
profile, we selected samples from a VCF of 15,211 global MTB samples[30]. We randomly 160 
chose 20 samples from each lineage 1 through 4, as well as 20 samples from all other 161 
lineages combined. In addition, we included 17 clinical samples representing MTB global 162 
diversity (lineages 1-6)[31,32] to give a total of 117 samples. In the development phase of 163 
DrPRG we also found it necessary to add some common mutations not present in these 177 164 
samples; as such, we added 48 mutations to the global VCF (these mutations are listed in 165 
archived repository – see Data summary). We did not add all catalogue mutations as there is a 166 
saturation point for mutation addition to a reference graph, and beyond this point, 167 
performance begins to decay[33]. 168 
The build subcommand turns this VCF into a reference graph by extracting a consensus 169 
sequence for each gene and sample. We use just those genes that occur in the mutation 170 
catalogue and include 100 bases flanking the gene. A multiple sequence alignment is 171 
constructed for each gene from these consensus sequences with MAFFT (v7.505)[34,35] and 172 
then a reference graph is constructed from these alignments with make_prg (v0.4.0)[11]. 173 
The final reference graph is then indexed with pandora[11]. 174 

6.2 Genotypic resistance prediction 175 

Genotypic resistance prediction of a sample is performed by the predict subcommand of 176 
DrPRG. It takes an index produced by the build command (see Constructing a resistance-177 
specific reference graph and index) and sequencing reads – Illumina or Nanopore are 178 
accepted. To generate predictions, DrPRG discovers novel variants (pandora), adds these to 179 
the reference graph (make_prg and MAFFT), and then genotypes the sample with respect 180 
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to this updated graph (pandora). The genotyped VCF is filtered such that we ignore any 181 
variant with less than 3 reads supporting it and require a minimum of 1% read depth on each 182 
strand. Next, each variant is compared to the catalogue. If an alternate allele has been called 183 
that corresponds with a catalogue variant, resistance (‘R’) is noted for the drug(s) associated 184 
with that mutation. If a variant in the VCF matches a catalogue mutation, but the genotype is 185 
null (‘.’), we mark that mutation, and its associated drug(s), as failed (‘F’). Where an alternate 186 
allele call does not match a mutation in the catalogue, we produce an unknown (‘U’) 187 
prediction for the drug(s) that have a known resistance-conferring mutation in the relevant 188 
gene. 189 
DrPRG also has the capacity to detect minor alleles and call minor resistance (‘r’) or minor 190 
unknown (‘u’) in such cases. Minor alleles are called when a variant (that has passed the 191 
above filtering) is genotyped as being the susceptible (reference) allele, but there is also read 192 
depth on the resistant (alternate) allele above a given minor allele frequency parameter (--193 
maf; default is 0.1 for Illumina data). Minor allele calling is turned off by default for 194 
Nanopore data as we found it led to a drastic increase in the number of false positive calls 195 
(this is also the case for Mykrobe and TBProfiler). 196 
When building the index for DrPRG and making predictions, we also accept a file of “expert 197 
rules” for calling variants of a certain class. A rule is associated with a gene, an optional 198 
position range, a variant type, and the drug(s) that rule confers resistance to. Currently 199 
supported variant types are missense, nonsense, frameshift, and gene absence. 200 
The output of running predict is a VCF file of all variants in the graph and a JSON file of 201 
resistance predictions for each drug in the index, along with the mutation(s) supporting that 202 
prediction and a unique identifier to find that variant in the VCF file (see Supplementary 203 
Section S1 for an example). The reference graph gene presence/absence (as determined by 204 
pandora) is also listed in the JSON file. 205 

6.3 Benchmark 206 

We compare the performance of DrPRG against Mykrobe (v0.12.1)[26] and TBProfiler 207 
(v4.3.0)[22] for MTB drug resistance prediction. Mykrobe is effectively a predecessor of 208 
DrPRG; it uses genome graphs, in the form of de Bruijn graphs, to construct a graph of all 209 
mutations in a catalogue and then genotypes the reads against this graph. TBProfiler is a more 210 
traditional approach which aligns reads to a single reference genome and calls variants from 211 
that via aligned haplotype sequences. 212 
A key part of such a benchmark is the catalogue of mutations, as this generally accounts for 213 
the majority of differences between tools[26]. As such, we use the same catalogue for all 214 
tools to ensure any differences are method-related - not catalogue disparities. The catalogue 215 
we chose is the default one provided in Mykrobe[12]. It is a combination of the catalogue 216 
described in Hunt et al. [26] and the category 1 and 2 mutation and expert rules from the 217 
2021 WHO catalogue[16]. This catalogue contains mutations for 14 drugs: isoniazid, 218 
rifampicin, ethambutol, pyrazinamide, levofloxacin, moxifloxacin, ofloxacin, amikacin, 219 
capreomycin, kanamycin, streptomycin, ethionamide, linezolid, and delamanid. 220 
We used Mykrobe and TBProfiler with default parameters, except for a parameter in each 221 
indicating the sequencing technology of the data as Illumina or Nanopore and the TBProfiler 222 
option to not trim data (as we do this in Quality control). 223 
We compare the prediction performance of each program using sensitivity and specificity. To 224 
calculate these metrics, we consider a true positive (TP) and true negative (TN) as a case 225 
where a program calls resistance and susceptible, respectively, and the phenotype agrees; a 226 
false positive (FP) as a resistant call by a program but a susceptible phenotype, with false 227 
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negatives (FN) being the inverse of FP. We only present results for drugs in the catalogue and 228 
where at least 10 samples had phenotypic data available. 229 
To benchmark the runtime and memory usage of each tool, we used the Snakemake 230 
benchmark feature within our analysis pipeline[36]. 231 

6.4 Datasets 232 

We gathered various MTB datasets where whole-genome sequencing data (Nanopore or 233 
Illumina) were available from public repositories (ENA/SRA/DRA) and associated 234 
phenotypes were accessible for at least one drug present in our catalogue[16,27,37–49]. 235 
All data was downloaded with fastq-dl (v1.1.1; https://github.com/rpetit3/fastq-dl). 236 

6.5 Quality control 237 

All downloaded Nanopore fastq files had adapters trimmed with porechop (v0.2.4; 238 
https://github.com/rrwick/Porechop), with the option to discard any reads with an adapter in 239 
the middle, and any reads with an average quality score below 7 were removed with nanoq 240 
(v0.9.0)[50]. Illumina reads were pre-processed with fastp (v0.23.2)[51] to remove adapter 241 
sequences, trim low quality bases from the ends of the reads, and remove duplicate reads and 242 
reads shorter than 30bp. 243 
Sequencing reads were decontaminated as described in Hall et al.[27] and Walker et al.[16]. 244 
Briefly, sequenced reads were mapped to a database of common sputum contaminants and the 245 
MTB reference genome (H37Rv; accession NC_000962.3)[52] keeping only those reads 246 
where the best mapping was to H37Rv. 247 
After quality control, we removed any sample with average read depth less than 15, or where 248 
more than 5% of the reads mapped to contaminants.  249 
Lineage information was extracted from the TBProfiler results (see Benchmark). 250 

6.6 Statistical Analysis 251 

We used a Wilcoxon rank-sum paired data test from the Python library SciPy[53] to test for 252 
significant differences in runtime and memory usage between the three prediction tools. 253 
The sensitivity and specificity confidence intervals were calculated with a Wilson’s score 254 
interval with a coverage probability of 95%. 255 

7. Results 256 

To benchmark DrPRG, Mykrobe, and TBProfiler, we gathered an Illumina dataset of 45,702 257 
MTB samples with a phenotype for at least one drug. After quality control (see Quality 258 
control), this number reduced to 44,709. In addition, we gathered 142 Nanopore samples, of 259 
which 138 passed quality control. In Figure 1 we show all available drug phenotypes for 260 
those interested in the dataset, yet our catalogue does not offer predictions for all drugs listed 261 
(see Benchmark). Lineage counts for all samples that passed quality control and have a 262 
single, major lineage call can be found in Table 1. 263 
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 264 
Figure 1: Drug phenotype counts for Illumina (upper) and Nanopore (lower) datasets. Bars are stratified and 265 
coloured by whether the phenotype is resistant (R; orange) or susceptible (S; green). Note, the y-axis is log-scaled. 266 
PAS=para-aminosalicylic acid 267 

Table 1: Lineage counts from the Illumina and Nanopore datasets, covering main lineages 1-9 (L1-L9) and the three 268 
livestock-associated lineages (La1-La3) as defined in [54] 269 

Lineage Illumina Nanopore 

La1 239 0 

La2 7 0 

La3 71 0 

L1 3907 32 

L2 12870 38 

L3 5803 9 

L4 20731 59 

L5 63 0 

L6 78 0 

L7 3 0 

L9 1 0 

 270 

7.1 Sensitivity and specificity performance 271 

We present the sensitivity and specificity results for Illumina data in Figure 2 and Suppl. 272 
Table S1 and the Nanopore data in Figure 3 and Suppl. Table S2.  273 
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When comparing DrPRG’s performance to that of Mykrobe and TBProfiler, we look for 274 
instances where the confidence intervals do not overlap; indicating a significant difference. 275 
With Illumina data (Figure 2 and Suppl. Table S1), DrPRG achieves significantly greater 276 
sensitivity than Mykrobe for rifampicin (96.4% [96.0-96.7] vs. 95.6% [95.2-95.9]), 277 
streptomycin (85.3% [84.4-86.3] vs. 83.1% [82.1-84.1]), amikacin (85.6% [83.9-87.1] vs. 278 
80.8% [78.9-82.5]), capreomycin (77.5% [75.2-79.7] vs. 71.8% [69.3-74.1]), kanamycin 279 
(83.7% [82.1-85.2] vs. 79.9% [78.2-81.5]), and ethionamide (75.2% [73.7-76.8] vs. 71.4% 280 
[69.7-73.0]), with no significant difference for all other drugs. In terms of sensitivity, there 281 
was no significant difference between DrPRG and TBProfiler except for ethionamide, where 282 
DrPRG was significantly more sensitive (75.2% [73.7-76.8] vs. 71.5% [69.8-73.1]). For 283 
specificity, there was no significant difference between the tools except that DrPRG and 284 
Mykrobe were significantly better than TBProfiler for rifampicin (97.8% [97.6-98.0] vs. 285 
97.2% [97.0-97.4]). There was no significant difference in sensitivity or specificity for any 286 
drug with Nanopore data. 287 

 288 
Figure 2: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different 289 
drugs (x-axis) from Illumina data. Error bars are coloured by prediction tool. The central horizontal line in each 290 
error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity 291 
panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear 292 
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around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile 293 
(TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid, 294 
RIF=rifampicin, EMB=ethambutol, PZA=pyrazinamide, LFX=levofloxacin, MFX=moxifloxacin, OFX=ofloxacin, 295 
AMK=amikacin, CAP=capreomycin, KAN=kanamycin, STM=streptomycin, ETO=ethionamide, LZD=linezolid, 296 
DLM=delamanid.  297 

 298 
Figure 3: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different 299 
drugs (x-axis) from Nanopore data. Error bars are coloured by prediction tool. The central horizontal line in each 300 
error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity 301 
panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear 302 
around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile 303 
(TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid, 304 
RIF=rifampicin, EMB=ethambutol, OFX=ofloxacin, AMK=amikacin, CAP=capreomycin, KAN=kanamycin, 305 
STM=streptomycin, ETO=ethionamide. 306 

In both figures, we show the minimal requirements from the WHO target product profiles for 307 
sensitivity and specificity of genotypic drug susceptibility testing[19] as red dashed lines. 308 
Note, a sensitivity target is not specified by the WHO for ethambutol (EMB), capreomycin 309 
(CAP), kanamycin (KAN), streptomycin (STM), or ethionamide (ETO). For Illumina data, all 310 
tools’ predictions for rifampicin, isoniazid, levofloxacin, moxifloxacin and amikacin are 311 
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above the sensitivity minimal requirement target. TBProfiler also exceeds the target for 312 
pyrazinamide, which DrPRG misses by 0.2%. No drug’s sensitivity target was achieved with 313 
Nanopore data. For specificity, the tools are all very similar and either exceed or fall below 314 
the threshold together (see Figure 2). The target of >98% is met by all tools on Illumina data 315 
only for ofloxacin, amikacin, linezolid, and delamanid. Mykrobe also exceeds the target for 316 
capreomycin. As such, amikacin is the only drug where both sensitivity and specificity 317 
performance exceed the minimal requirement of the WHO target product profiles. Only 318 
capreomycin and kanamycin specificity targets are exceeded (by all tools) with Nanopore 319 
data. 320 
However, for Illumina data, we did find that likely sample-swaps or phenotype instability[55] 321 
could lead to some drugs being on the threshold of the WHO target product profiles. If we 322 
excluded samples where all three tools make a FP call for the strong isoniazid and rifampicin 323 
resistance-conferring mutations katG S315T (n=152) and rpoB S450L (n=119) [16] 324 
respectively, all three tools would exceed the isoniazid specificity target of 98% - thus 325 
meeting both sensitivity and specificity targets for isoniazid. In addition, DrPRG and 326 
Mykrobe would meet the rifampicin specificity target of 98% – leading to both targets being 327 
met for rifampicin for these two tools. As previously reported [55,56], we also found a lot of 328 
instability in the ethambutol result caused by embB mutations M306I (n=827) and M306V 329 
(n=519) being called for phenotypically susceptible samples (FP) by all three tools. Other 330 
frequent consensus FP calls included: fabG1 c-15t, which is associated with ethionamide 331 
(n=441) and isoniazid (n=241) resistance; rrs a1401g, which is associated with resistance to 332 
capreomycin (n=241), amikacin (n=70), and kanamycin (n=48). In addition there were 333 
common false positives from gyrA mutations A90V and D94G, which are associated with 334 
resistance to the fluoroquinolones levofloxacin (n=108 and n=70, respectively), moxifloxacin 335 
(n=419 and n=349) and ofloxacin (n=19 and n=17), and are known to cause heteroresistance 336 
and minimum inhibitory concentrations (MIC) close to the critical concentration 337 
threshold[57–59]. 338 

7.2 Evaluation of potential additions to the WHO catalogue 339 

False negatives are much harder to investigate as it is not known which mutation(s) were 340 
missed as they are presumably not in the catalogue if all tools failed to make a call. However, 341 
looking through those FNs where DrPRG makes an “unknown” resistance call, we note some 342 
potential mutations that may need reclassification or inclusion in the WHO catalogue. For 343 
delamanid FNs, we found five different nonsense mutations in the ddn gene in seven samples 344 
– W20* (n=2), W27* (n=1), Q58* (n=1), W88* (n=2), and W139* (n=1) – none of which 345 
occurred in susceptible samples. We also found 13 pyrazinamide FN cases with a nonstop 346 
(stop-loss) mutation in pncA – this mutation type was also seen in two susceptible samples. 347 
Another pncA mutation, T100P, was also observed in 10 pyrazinamide FN samples and no 348 
susceptible samples. T100P only appears once in the WHO catalogue data (“solo” in a 349 
resistant sample). As such, it was given a grading of uncertain significance. As our dataset 350 
includes those samples in the WHO catalogue dataset, this means an additional nine isolates 351 
have been found with this mutation - indicating this may warrant an upgrade to ‘associated 352 
with resistance’. We found an interesting case of allele combinations, where nine ethambutol 353 
FN samples have the same two embA mutation c-12a and c-11a and embB mutation P397T - 354 
this combination is only seen in two susceptible samples. Interestingly, embB P397T and 355 
embA c-12a don't appear in the WHO catalogue, but have been described as causing 356 
resistance previously[60]. Three katG mutations were also detected in isoniazid FN cases. 357 
First, G279D occurs in eight missed resistance samples and no susceptible cases. This 358 
mutation is graded as ‘uncertain significance’ in the WHO catalogue and was seen solo in 359 
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four resistant samples in that data. Singh et al. performed a protein structural analysis caused 360 
by this mutation and found it produced “an undesirable effect on the functionality of the 361 
protein”[61]. Second, G699E occurs in eight FN samples and no susceptible cases, but has a 362 
WHO grading of ‘uncertain significance’ based on six resistant isolates; thus, we add two 363 
extra samples to that count. And third, N138H occurs in 14 FN samples and one susceptible. 364 
In seven of these cases, it co-occurs with ahpC mutations t-75g (n=2) and t-76a (n=5). This 365 
mutation occurs in only three resistant isolates in the WHO catalogue dataset, giving it an 366 
uncertain significance, but we add a further 11 cases. This mutation has been found to cause a 367 
high isoniazid MIC and be associated with resistance[62,63]. 368 

7.3 Detection of large deletions 369 

There are expert rules in the WHO catalogue which treat gene loss-of-function (any 370 
frameshift or nonsense mutation) in katG, ethA, gid, and pncA as causing resistance for 371 
isoniazid, ethionamide, streptomycin, and pyrazinamide, respectively[16]. Although 372 
examples of resistance caused by gene deletion are rare[64–68], with a dataset of this size 373 
(n=44,709), we can both evaluate these rules, and compare the detection power of DrPRG 374 
and TBProfiler for identifying gene deletions (Mykrobe does not, although in principle it 375 
could). In total we found 206 samples where DrPRG and/or TBProfiler identified deletions of 376 
ethA, katG, or pncA. Although many of these isolates did not have phenotype information for 377 
the associated drug (n=100), the results are nevertheless striking (Figure 4). Given the low 378 
false-positive rate of pandora for gene absence detection[11], these no-phenotype samples 379 
provide insight into how often gene deletions are occurring in clinical samples. 380 
Of the 34 isolates where katG was identified as being absent, and an isoniazid phenotype was 381 
available, all 34 were phenotypically resistant. DrPRG detected all 34 (100% sensitivity) and 382 
TBProfiler identified 26 (76.5% sensitivity). Deletions of pncA were detected in 56 isolates, 383 
of which 49 were phenotypically resistant. DrPRG detected 47 (95.9% sensitivity) and 384 
TBProfiler detected 46 (93.9% sensitivity). Lastly, ethA was found to be missing in 16 385 
samples with an ethionamide phenotype, of which 10 were phenotypically resistant. Both 386 
DrPRG and TBProfiler correctly predicted all 10 (100% sensitivity). No gid deletions were 387 
discovered. We note that the TP calls made by Mykrobe were due to it detecting large 388 
deletions that are present in the catalogue, which is understandable given the whole gene is 389 
deleted.  390 
We conclude that DrPRG is slightly more sensitive at detecting large deletions than 391 
TBProfiler (and Mykrobe) for katG, and equivalent for pncA and ethA. However we note that 392 
the WHO expert rule which predicts resistance to isolates missing specific genes appears 393 
more accurate for katG (100% of isolates missing the gene are resistant) than for pncA (87% 394 
resistant) and ethA (62.5% resistant). 395 
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 396 
Figure 4: Impact of gene deletion on resistance classification. The title of each subplot indicates the gene and drug it 397 
effects. Bars are coloured by their classification and stratified by tool. Count (y-axis) indicates the number of gene 398 
deletions for that category. The NA bar (white with diagonal lines) indicates the number of samples with that gene 399 
deleted but no phenotype information for the respective drug. TP=true positive; FN=false negative; TN=true negative; 400 
FP=false positive; NA=no phenotype available. 401 

7.4 Runtime and memory usage benchmark 402 

The runtime and peak memory usage of each program was recorded for each sample and is 403 
presented in Figure 5. DrPRG (median 161 seconds) was significantly faster than both 404 
TBProfiler (307 seconds; p≤0.0001) and Mykrobe (230 seconds; p≤0.0001) on Illumina data. 405 
For Nanopore data, DrPRG (250 seconds) was significantly faster than TBProfiler (290 406 
seconds; p≤0.0001), but significantly slower than Mykrobe (213 seconds; p=0.0347). In 407 
terms of peak memory usage, DrPRG (Illumina median peak memory 58MB; Nanopore 408 
277MB) used significantly less memory than Mykrobe (1538MB; 1538MB) and TBProfiler 409 
(1463MB; 1990MB) on both Illumina and Nanopore data (p≤0.0001 for all comparisons). 410 
 411 
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 412 
Figure 5: Benchmark of the maximum memory usage (left panels) and runtime (right panels) from Illumina (upper 413 
row) and Nanopore (lower row) data. Each point and violin is coloured by the tool, with each point representing a 414 
single sample. Statistical annotations are the result of a Wilcoxon rank-sum paired data test on each pair of tools. 415 
Dashed lines inside the violins represent the quartiles of the distribution. Note, the x-axis is log-scaled. 416 

8. Discussion 417 

In this work, we have presented a novel method for making drug resistance predictions with 418 
reference graphs. The method, DrPRG, requires only a reference genome and annotation, a 419 
catalogue of resistance-conferring mutations, a VCF of population variation from which to 420 
build a reference graph, and (optionally) a set of rules for types of variants in specific genes 421 
which cause resistance. We apply DrPRG to the pathogen M. tuberculosis, for which there is 422 
a great deal of information on the genotype/phenotype relationship, and a great need to 423 
provide good tools which implement and augment current and forthcoming versions of the 424 
WHO catalogue. We illustrate the performance of DrPRG against two existing methods for 425 
drug resistance prediction – Mykrobe and TBProfiler.  426 
 427 
We benchmarked the methods on a high-quality Illumina sequencing dataset with associated 428 
phenotype profiles for 44,709 MTB genomes; the largest known dataset to-date[16]. All tools 429 
used the same catalogue and rules, and for most drugs, there was no significant difference 430 
between the tools. However, DrPRG did have a significantly higher specificity than 431 
TBProfiler for rifampicin predictions, and sensitivity for ethionamide predictions. DrPRG’s 432 
sensitivity was also significantly greater than Mykrobe’s for rifampicin, streptomycin, 433 
amikacin, capreomycin, kanamycin, and ethionamide. Evaluating detection of gene loss, we 434 
found DrPRG was more sensitive to katG deletions than TBProfiler.  435 
We also benchmarked using 138 Nanopore-sequenced MTB samples with phenotype 436 
information, but found no significant difference between the tools. This Nanopore dataset 437 
was quite small and therefore the confidence intervals were large for all drugs. Increased 438 
Nanopore sequencing over time will provide better resolution of the overall sensitivity and 439 
specificity values and improve the methodological nuances of calling variants from this 440 
emerging, and continually changing, sequencing technology. 441 
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DrPRG also used significantly less memory than Mykrobe and TBProfiler on both Nanopore 442 
and Illumina data. In addition, the runtime of DrPRG was significant faster than both tools on 443 
Illumina data and faster than TBProfiler on Nanopore data. While the absolute values for 444 
memory and runtime for all tools mean they could all easily run on common computers found 445 
in the types of institutions likely to run them, the differences for the Nanopore data warrant 446 
noting. As Nanopore data can be generated “in the field”, computational resource usage is 447 
critical. For example, in a recent collaboration of ours with the National Tuberculosis 448 
program in Madagascar[27], Nanopore sequencing and analysis are regularly performed on a 449 
laptop, meaning memory usage is sometimes a limiting factor. DrPRG’s median peak 450 
memory was 277MB, meaning it can comfortably be run on any laptop and other mobile 451 
computing devices[69]. 452 
It is clear from the Illumina results that more work is needed to understand resistance-453 
conferring mutations for delamanid and linezolid. However, we did find that nonsense 454 
mutations in the ddn gene appear likely to be resistance-conferring for delamanid – as has 455 
been noted previously[39,70–72]. We also found a novel (likely) mechanism of resistance to 456 
pyrazinamide - a nonstop mutation in pncA. Phenotype instability in embB at codon 306 was 457 
also found to be the main driver in poor ethambutol specificity, as has been noted 458 
elsewhere[55,56], indicating the need to further investigate cofactors that may influence the 459 
phenotype when mutations at this codon are present. 460 
Gene absence/deletion detection allowed us to confirm that the absence of katG – a 461 
mechanism which is rare in clinical samples[64–67,73] - is highly likely to confer resistance 462 
to isoniazid. Additionally, we found that the absence of pncA is likely to cause resistance to 463 
pyrazinamide, as has been noted previously[68]. One finding that requires further 464 
investigation is the variability in ethionamide phenotype when ethA is absent. We found that 465 
only 63% of the samples with ethA missing, and an ethionamide phenotype, were resistant. 466 
An et al. have suggested that ethA deletion alone does not always cause resistance and there 467 
might be an alternate pathway via mshA[74]. 468 
Given the size of the Illumina dataset used in this work, the results provide a good marker of 469 
Illumina whole-genome sequencing’s ability to replace traditional phenotyping methods. 470 
With the catalogue used in this study, DrPRG meets the WHO’s target product profile for 471 
next-generation drug-susceptibility testing for both sensitivity and specificity for amikacin, 472 
and sensitivity only for rifampicin, isoniazid, levofloxacin, and moxifloxacin. However, if we 473 
exclude cases where all tools call rpoB S450L or katG S315T for phenotypically susceptible 474 
samples (these are strong markers of resistance[16] and therefore we suspect sample-swaps or 475 
phenotype error[75]), DrPRG also meets the specificity target product profile for rifampicin 476 
and isoniazid. For the other first-line drugs ethambutol and pyrazinamide, ethambutol does 477 
not have a WHO target and DrPRG’s sensitivity is 0.2% below the WHO target (although the 478 
confidence interval spans the target), while the specificity target is missed by 0.8%. 479 
The primary limitation of the DrPRG method relates to minor allele calls. DrPRG uses 480 
pandora for novel variant discovery, which combines a graph of known population variants 481 
(which can be detected at low frequency) with de novo detection of other variants if present at 482 
above ~50% frequency. Thus, it can miss minor allele calls if the allele is absent from its 483 
reference graph. While this issue did not impact most drugs, it did account for the majority of 484 
cases where DrPRG missed pyrazinamide-resistant calls (in pncA), but the other tools 485 
correctly called resistance. Unlike most other genes, where there are a relatively small 486 
number of resistance-conferring mutations, or they’re localised to a specific region (e.g. the 487 
rifampicin-resistance determining region in rpoB), resistance-conferring mutations are 488 
numerous - with most being rare - and distributed throughout pncA[16,76,77]. Adding all of 489 
these mutations will, and does, lead to decreased performance of the reference graph[33], and 490 
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so improving minor allele calling for pyrazinamide remains a challenge we need to revisit in 491 
the future. 492 
One final limitation is the small number of Nanopore-sequenced MTB isolates with 493 
phenotypic information. In order to get a clearer picture of the sensitivities and specificities 494 
this sequencing technology can provide, we need much larger and more diverse data. 495 
 496 
In conclusion, DrPRG is a fast, memory frugal software program that can be applied to any 497 
bacterial species. We showed that on MTB, it performs as well as, or better than two other 498 
commonly used tools for resistance prediction. We also collected and curated the largest 499 
dataset of MTB Illumina-sequenced genomes with phenotype information and hope this will 500 
benefit future work to improved genotypic drug susceptibility testing for this species. While 501 
we applied DrPRG to MTB in this study, it is a framework that is agnostic to the species. 502 
MTB is likely one of the bacterial species with the least to gain from reference graphs given 503 
its relatively conserved (closed) pan-genome compared to other common species[78]. As 504 
such, we expect the benefits and performance of DrPRG to improve as the openness of the 505 
species’ pan-genome increases[11]; especially given its good performance on a reasonably 506 
closed pan-genome. 507 
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