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2. Abstract

The dominant paradigm for analysing genetic variation relies on a central idea: all genomes
in a species can be described as minor differences from a single reference genome. However,
this approach can be problematic or inadequate for bacteria, where there can be significant
sequence divergence within a species.

Reference graphs are an emerging solution to the reference bias issues implicit in the “single-
reference” model. Such a graph represents variation at multiple scales within a population —
e.g., nucleotide- and locus-level.

The genetic causes of drug resistance in bacteria have proven comparatively easy to decode
compared with studies of human diseases. For example, it is possible to predict resistance to
numerous anti-tuberculosis drugs by simply testing for the presence of a list of single
nucleotide polymorphisms and insertion/deletions, commonly referred to as a catalogue.

We developed DrPRG (Drug resistance Prediction with Reference Graphs) using the bacterial
reference graph method Pandora. First, we outline the construction of a Mycobacterium
tuberculosis drug resistance reference graph, a process that can be replicated for other
species. The graph is built from a global dataset of isolates with varying drug susceptibility
profiles, thus capturing common and rare resistance- and susceptible-associated haplotypes.
We benchmark DrPRG against the existing graph-based tool Mykrobe and the haplotype-
based approach of TBProfiler using 44,709 and 138 publicly available [llumina and
Nanopore samples with associated phenotypes. We find DrPRG has significantly improved
sensitivity and specificity for some drugs compared to these tools, with no significant
decreases. It uses significantly less computational memory than both tools, and provides
significantly faster runtimes, except when runtime is compared to Mykrobe on Nanopore
data.
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We discover and discuss novel insights into resistance-conferring variation for M.
tuberculosis - including deletion of genes katG and pncA — and suggest mutations that may
warrant reclassification as associated with resistance.

3. Impact statement

Mycobacterium tuberculosis is the bacterium responsible for tuberculosis (TB). TB is one of
the leading causes of death worldwide; before the coronavirus pandemic it was the leading
cause of death from a single pathogen. Drug-resistant TB incidence has recently increased,
making the detection of resistance even more vital. In this study, we develop a new software
tool to predict drug resistance from whole-genome sequence data of the pathogen using new
reference graph models to represent a reference genome. We evaluate it on M. tuberculosis
against existing tools for resistance prediction and show improved performance. Using our
method, we discover new resistance-associated variations and discuss reclassification of a
selection of existing mutations. As such, this work contributes to TB drug resistance
diagnostic efforts. In addition, the method could be applied to any bacterial species, so is of
interest to anyone working on antimicrobial resistance.

4. Data summary

The authors confirm all supporting data, code and protocols have been provided within
the article or through supplementary data files.

The software method presented in this work, DrPRG, is freely available from GitHub under
an MIT license at https://github.com/mbhall88/drprg. We used commit 9492125 for all results
via a Singularity[1] container from the URI
docker://quay.io/mbhall88/drprg:9492£25.

All code used to generate results for this study are available on GitHub at
https://github.com/mbhall88/drprg-paper. All data used in this work are freely available from
the SRA/ENA/DRA and a copy of the datasheet with all associated phenotype information
can be downloaded from the archived repository at https://doi.org/10.5281/zenodo.7819984
or found in the previously mentioned GitHub repository.

The Mycobacterium tuberculosis index used in this work is available to download through
DrPRG via the command drprg index --download mtb@20230308 or from
GitHub at https://github.com/mbhall88/drprg-index.

5. Introduction

Human industrialisation of antibiotic production and use over the last 100 years has led to a
global rise in prevalence of antibiotic resistant bacterial strains. The phenomenon

was even observed within patients in the first clinical trial of streptomycin as a drug for
tuberculosis (TB) in 1948[2], and indeed as every new drug class has been introduced, so has
resistance followed. Resistance mechanisms are varied, and can be caused by point mutations
at key loci (e.g., binding sites of drugs|[3,4]), frame-shifts rendering a gene non-functional[5],
horizontal acquisition of new functionality via a new gene[6], or by up-regulation of efflux
pumps to reduce the drug concentration within the cell[7].

Phenotypic and genotypic methods for detecting reduced susceptibility to drugs play
complementary roles in clinical microbiology. Carefully defined phenotypic assays are used
to give (semi)quantitative or binary measures of drug susceptibility; these have the benefit of
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87  being experimental, quantitative measurements, and are able to detect resistance caused by
88  hitherto unknown mechanisms. Prediction of drug resistance from genomic data has different
89 advantages. Detection of a single nucleotide polymorphism (SNP) is arguably more
90 consistent than a phenotypic assay, as it is not affected by whether the resistance it causes is
91 near some threshold defining a resistant/susceptible boundary. Additionally, combining
92  sequence datasets from different labs is more reliable than combining different phenotypic
93 datasets, and using sequence data allows one to detect informative genetic changes (e.g., a
94  tandem expansion of a single gene to form an array, thus increasing dosage). More subtly,
95  defining the cut-off to separate resistant from susceptible is only simple when the minimum
96 inhibitory concentration distribution is a simple bimodal distribution; in reality it is
97  sometimes a convolution of multiple distributions caused by different mutations, and genetic
98 data is sometimes needed to deconvolve the data and choose a threshold[8,9].
99
100  The key requirement for a genomic predictor is to have an encodable understanding of the
101  genotype-to-phenotype map. Research has focussed on clinically important pathogens,
102  primarily Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Pseudomonas
103 aeruginosa and Mycobacterium tuberculosis (MTB). The challenges differ across species;
104  almost all bacterial species are extremely diverse, with non-trivial pan-genomes and
105 considerable horizontal gene transfer causing transmission of resistance genes[10]. In these
106 cases, species are so diverse that detection of chromosomal SNPs is affected heavily by
107  reference bias[11]. Furthermore, there is an appreciable proportion of resistance which is not
108  currently explainable through known SNPs or genes [12—14]. At the other extreme, MTB has
109 almost no accessory genome, and no recombination or plasmids[15]. Resistance appears to be
110  caused entirely by mutations, indels, and rare structural variants, and simple sets of rules ("if
111  any of these mutations are present, or any of these genes inactivated, the sample is resistant")
112 work well for most drugs[16]. MTB has an exceptionally slow growth rate, meaning culture-
113 based drug susceptibility testing (DST) is slow (2-4 weeks depending on media), and
114  therefore sequencing is faster[17]. As part of the end TB strategy, the WHO strives towards
115  universal access to DST[18], defining Target Product Profiles for molecular
116  diagnostics[19,20] and publishing a catalogue of high-confidence resistance mutations
117  intended to provide a basis for commercial diagnostics and future research[16]. There was a
118  strong community-wide desire to integrate this catalogue into software for genotypic
119  resistance prediction, although independent benchmarking confirmed there was still need for
120  improvement[12]. Hence, there is a continuing need to improve the understanding of the
121  genetic basis of resistance and integrate it into software for genotypic DST.
122
123 In this paper we develop and evaluate a new software tool for genotypic DST for MTB, built
124 on a generic framework that can be used for any bacteria. Several tools have been developed
125  previously[21-25]. Of these, only Mykrobe and TBProfiler work on Illumina and Nanopore
126  data, and both have been heavily evaluated previously[22,23,26,27] - so we benchmark
127  against these. Mykrobe uses de Bruijn graphs to encode known resistance alleles and thereby
128  achieves high accuracy even on indel calls with Nanopore data[27]. However it is unable to
129  detect novel alleles in known resistance genes, nor to detect gene truncation or deletion,
130  which would be desirable. TBProfiler is based on mapping and variant calling (by default
131  using Freebayes[28]), and detects gene deletions using Delly[29].
132
133  Our new software, called DrPRG (Drug resistance Prediction with Reference Graphs), builds
134  on newer pan-genome technology than Mykrobe[ 11] using an independent graph for each
135  gene in the catalogue, which makes it easier to go back-and-forth between VCF and the
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136  graph. To build an index, it takes as input a catalogue of resistant variants (a simple 4-column
137 TSV file), a file specifying expert rules (e.g. any missense variant between codons X and Y in
138  gene Z causes resistance to drug W), and a VCF of population variation in the genes of

139  interest. This allows it to easily incorporate the current WHO-endorsed catalogue[16], which
140  is conservative, and for the user to update the catalogue or rules with minimal effort. Finally,
141  to provide resistance predictions, it takes a prebuilt index (an MTB one is currently provided)
142  and sequencing reads (FASTQ).

143

144 We describe the DrPRG method, and to evaluate it, gather the largest MTB dataset of

145  sequencing data with associated phenotype information and reveal novel insights into

146  resistance-determining mutations for this species.

147 6. Methods

148  DrPRG is a command-line software tool implemented in the Rust programming language.
149  There are two main subcommands: bui 1d for building a reference graph and associated
150 index files, and predict for producing genotypic resistance predictions from sequencing
151 reads and an index (from build).

152 6.1 Constructing a resistance-specific reference graph and index

153  The build subcommand of DrPRG requires a Variant Call Format (VCF) file of variants
154  from which to build a reference graph, a catalogue of mutations that confer resistance or
155  susceptibility for one or more drugs, and an annotation (GFF) and FASTA file of the

156  reference genome.

157  For this work, we used the reference and annotation for the MTB strain H37Rv (accession
158 NC _000962.3) and the default mutation catalogue from Mykrobe (v0.12.1)[12,26].

159  To ensure the reference graph is not biased towards a particular lineage or susceptibility
160  profile, we selected samples from a VCF of 15,211 global MTB samples[30]. We randomly
161  chose 20 samples from each lineage 1 through 4, as well as 20 samples from all other

162  lineages combined. In addition, we included 17 clinical samples representing MTB global
163  diversity (lineages 1-6)[31,32] to give a total of 117 samples. In the development phase of
164  DrPRG we also found it necessary to add some common mutations not present in these 177
165  samples; as such, we added 48 mutations to the global VCF (these mutations are listed in
166  archived repository — see Data summary). We did not add all catalogue mutations as there is a
167  saturation point for mutation addition to a reference graph, and beyond this point,

168  performance begins to decay[33].

169  The build subcommand turns this VCF into a reference graph by extracting a consensus
170  sequence for each gene and sample. We use just those genes that occur in the mutation

171  catalogue and include 100 bases flanking the gene. A multiple sequence alignment is

172 constructed for each gene from these consensus sequences with MAFFT (v7.505)[34,35] and
173 then a reference graph is constructed from these alignments with make prg (v0.4.0)[11].
174  The final reference graph is then indexed with pandora[l1].

175 6.2 Genotypic resistance prediction

176  Genotypic resistance prediction of a sample is performed by the predict subcommand of
177  DrPRG. It takes an index produced by the build command (see Constructing a resistance-
178  specific reference graph and index) and sequencing reads — [llumina or Nanopore are

179  accepted. To generate predictions, DrPRG discovers novel variants (pandora), adds these to
180  the reference graph (make prg and MAFFT), and then genotypes the sample with respect
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181  to this updated graph (pandora). The genotyped VCF is filtered such that we ignore any
182  variant with less than 3 reads supporting it and require a minimum of 1% read depth on each
183  strand. Next, each variant is compared to the catalogue. If an alternate allele has been called
184  that corresponds with a catalogue variant, resistance (‘R’) is noted for the drug(s) associated
185  with that mutation. If a variant in the VCF matches a catalogue mutation, but the genotype is
186  null (°.”), we mark that mutation, and its associated drug(s), as failed (‘F’). Where an alternate
187  allele call does not match a mutation in the catalogue, we produce an unknown (‘U’)

188  prediction for the drug(s) that have a known resistance-conferring mutation in the relevant
189  gene.

190  DrPRG also has the capacity to detect minor alleles and call minor resistance (‘r”) or minor
191  unknown (‘u’) in such cases. Minor alleles are called when a variant (that has passed the

192  above filtering) is genotyped as being the susceptible (reference) allele, but there is also read
193  depth on the resistant (alternate) allele above a given minor allele frequency parameter (—-
194 maf; default is 0.1 for Illumina data). Minor allele calling is turned off by default for

195 Nanopore data as we found it led to a drastic increase in the number of false positive calls
196  (this is also the case for Mykrobe and TBProfiler).

197  When building the index for DrPRG and making predictions, we also accept a file of “expert
198  rules” for calling variants of a certain class. A rule is associated with a gene, an optional

199  position range, a variant type, and the drug(s) that rule confers resistance to. Currently

200 supported variant types are missense, nonsense, frameshift, and gene absence.

201  The output of running predict is a VCF file of all variants in the graph and a JSON file of
202  resistance predictions for each drug in the index, along with the mutation(s) supporting that
203  prediction and a unique identifier to find that variant in the VCF file (see Supplementary
204  Section S1 for an example). The reference graph gene presence/absence (as determined by
205 pandora)is also listed in the JSON file.

206 6.3 Benchmark

207  We compare the performance of DrPRG against Mykrobe (v0.12.1)[26] and TBProfiler

208  (v4.3.0)[22] for MTB drug resistance prediction. Mykrobe is effectively a predecessor of
209  DrPRG:; it uses genome graphs, in the form of de Bruijn graphs, to construct a graph of all
210 mutations in a catalogue and then genotypes the reads against this graph. TBProfiler is a more
211  traditional approach which aligns reads to a single reference genome and calls variants from
212 that via aligned haplotype sequences.

213  Akey part of such a benchmark is the catalogue of mutations, as this generally accounts for
214  the majority of differences between tools[26]. As such, we use the same catalogue for all
215  tools to ensure any differences are method-related - not catalogue disparities. The catalogue
216  we chose is the default one provided in Mykrobe[12]. It is a combination of the catalogue
217  described in Hunt et al. [26] and the category 1 and 2 mutation and expert rules from the
218 2021 WHO catalogue[16]. This catalogue contains mutations for 14 drugs: isoniazid,

219  rifampicin, ethambutol, pyrazinamide, levofloxacin, moxifloxacin, ofloxacin, amikacin,

220  capreomycin, kanamycin, streptomycin, ethionamide, linezolid, and delamanid.

221  We used Mykrobe and TBProfiler with default parameters, except for a parameter in each
222  indicating the sequencing technology of the data as [llumina or Nanopore and the TBProfiler
223 option to not trim data (as we do this in Quality control).

224 We compare the prediction performance of each program using sensitivity and specificity. To
225  calculate these metrics, we consider a true positive (TP) and true negative (TN) as a case
226  where a program calls resistance and susceptible, respectively, and the phenotype agrees; a
227  false positive (FP) as a resistant call by a program but a susceptible phenotype, with false
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228  negatives (FN) being the inverse of FP. We only present results for drugs in the catalogue and
229  where at least 10 samples had phenotypic data available.

230  To benchmark the runtime and memory usage of each tool, we used the Snakemake

231  benchmark feature within our analysis pipeline[36].

232 6.4 Datasets

233 We gathered various MTB datasets where whole-genome sequencing data (Nanopore or
234 Illumina) were available from public repositories (ENA/SRA/DRA) and associated

235  phenotypes were accessible for at least one drug present in our catalogue[16,27,37—49].

236  All data was downloaded with fastg-dl (v1.1.1; https://github.com/rpetit3/fastq-dl).

237 6.5 Quality control

238  All downloaded Nanopore fastq files had adapters trimmed with porechop (v0.2.4;

239  https://github.com/rrwick/Porechop), with the option to discard any reads with an adapter in
240  the middle, and any reads with an average quality score below 7 were removed with nanog
241 (v0.9.0)[50]. Illumina reads were pre-processed with fastp (v0.23.2)[51] to remove adapter
242 sequences, trim low quality bases from the ends of the reads, and remove duplicate reads and
243 reads shorter than 30bp.

244 Sequencing reads were decontaminated as described in Hall ez al.[27] and Walker et al.[16].
245  Briefly, sequenced reads were mapped to a database of common sputum contaminants and the
246 MTB reference genome (H37Rv; accession NC_000962.3)[52] keeping only those reads

247  where the best mapping was to H37Rwv.

248  After quality control, we removed any sample with average read depth less than 15, or where
249  more than 5% of the reads mapped to contaminants.

250 Lineage information was extracted from the TBProfiler results (see Benchmark).

251 6.6 Statistical Analysis

252 We used a Wilcoxon rank-sum paired data test from the Python library SciPy[53] to test for
253  significant differences in runtime and memory usage between the three prediction tools.
254  The sensitivity and specificity confidence intervals were calculated with a Wilson’s score
255 interval with a coverage probability of 95%.

256 7. Results

257  To benchmark DrPRG, Mykrobe, and TBProfiler, we gathered an Illumina dataset of 45,702

258  MTB samples with a phenotype for at least one drug. After quality control (see Quality

259  control), this number reduced to 44,709. In addition, we gathered 142 Nanopore samples, of

260  which 138 passed quality control. In Figure 1 we show all available drug phenotypes for

261 those interested in the dataset, yet our catalogue does not offer predictions for all drugs listed
262  (see Benchmark). Lineage counts for all samples that passed quality control and have a

263  single, major lineage call can be found in Table 1.
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Figure 1: Drug phenotype counts for Illumina (upper) and Nanopore (lower) datasets. Bars are stratified and

coloured by whether the phenotype is resistant (R; orange) or susceptible (S; green). Note, the y-axis is log-scaled.
PAS=para-aminosalicylic acid
Table 1: Lineage counts from the Illumina and Nanopore datasets, covering main lineages 1-9 (L1-L9) and the three
livestock-associated lineages (Lal-La3) as defined in [54]

Lineage [llumina Nanopore

Lal 239 0

La2 7 0

La3 71 0

L1 3907 32

L2 12870 38

L3 5803 9

L4 20731 59

L5 63 0

L6 78 0

L7 3 0

L9 1 0

7.1 Sensitivity and specificity performance

We present the sensitivity and specificity results for [llumina data in Figure 2 and Suppl.
Table S1 and the Nanopore data in Figure 3 and Suppl. Table S2.
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274  When comparing DrPRG’s performance to that of Mykrobe and TBProfiler, we look for
275  instances where the confidence intervals do not overlap; indicating a significant difference.
276  With Illumina data (Figure 2 and Suppl. Table S1), DrPRG achieves significantly greater
277  sensitivity than Mykrobe for rifampicin (96.4% [96.0-96.7] vs. 95.6% [95.2-95.9)),

278  streptomycin (85.3% [84.4-86.3] vs. 83.1% [82.1-84.1]), amikacin (85.6% [83.9-87.1] vs.
279  80.8% [78.9-82.5]), capreomycin (77.5% [75.2-79.7] vs. 71.8% [69.3-74.1]), kanamycin
280  (83.7% [82.1-85.2] vs. 79.9% [78.2-81.5]), and ethionamide (75.2% [73.7-76.8] vs. 71.4%
281  [69.7-73.0]), with no significant difference for all other drugs. In terms of sensitivity, there
282  was no significant difference between DrPRG and TBProfiler except for ethionamide, where
283  DrPRG was significantly more sensitive (75.2% [73.7-76.8] vs. 71.5% [69.8-73.1]). For
284  specificity, there was no significant difference between the tools except that DrPRG and
285  Mykrobe were significantly better than TBProfiler for rifampicin (97.8% [97.6-98.0] vs.
286  97.2% [97.0-97.4]). There was no significant difference in sensitivity or specificity for any
287  drug with Nanopore data.
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289 Figure 2: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different
290 drugs (x-axis) from Illumina data. Error bars are coloured by prediction tool. The central horizontal line in each
291 error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity
292 panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear
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293 around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile
294 (TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid,
295 RIF=rifampicin, EMB=ethambutol, PZA=pyrazinamide, LFX=levofloxacin, MFX=moxifloxacin, OFX=ofloxacin,
296 AMK=amikacin, CAP=capreomycin, KAN=kanamycin, STM=streptomycin, ETO=ethionamide, LZD=linezolid,
297 DLM=delamanid.
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299 Figure 3: Sensitivity (upper panel; y-axis) and specificity (lower panel; y-axis) of resistance predictions for different
300 drugs (x-axis) from Nanopore data. Error bars are coloured by prediction tool. The central horizontal line in each
301 error bar is the sensitivity/specificity and the error bars represent the 95% confidence interval. Note, the sensitivity
302 panel’s y-axis is logit-scaled. This scale is similar to a log scale close to zero and to one (100%), and almost linear
303 around 0.5 (50%). The red dashed line in each panel represents the minimal standard WHO target product profile
304 (TPP; where available) for next-generation drug susceptibility testing for sensitivity and specificity. INH=isoniazid,
305 RIF=rifampicin, EMB=ethambutol, OFX=ofloxacin, AMK=amikacin, CAP=capreomycin, KAN=kanamycin,

306 STMs=streptomycin, ETO=ethionamide.

307 In both figures, we show the minimal requirements from the WHO target product profiles for
308 sensitivity and specificity of genotypic drug susceptibility testing[19] as red dashed lines.

309 Note, a sensitivity target is not specified by the WHO for ethambutol (EMB), capreomycin
310 (CAP), kanamycin (KAN), streptomycin (STM), or ethionamide (ETO). For Illumina data, all
311  tools’ predictions for rifampicin, isoniazid, levofloxacin, moxifloxacin and amikacin are
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312  above the sensitivity minimal requirement target. TBProfiler also exceeds the target for

313  pyrazinamide, which DrPRG misses by 0.2%. No drug’s sensitivity target was achieved with
314  Nanopore data. For specificity, the tools are all very similar and either exceed or fall below
315 the threshold together (see Figure 2). The target of >98% is met by all tools on Illumina data
316  only for ofloxacin, amikacin, linezolid, and delamanid. Mykrobe also exceeds the target for
317  capreomycin. As such, amikacin is the only drug where both sensitivity and specificity

318 performance exceed the minimal requirement of the WHO target product profiles. Only

319 capreomycin and kanamycin specificity targets are exceeded (by all tools) with Nanopore
320 data.

321 However, for Illumina data, we did find that likely sample-swaps or phenotype instability[55]
322 could lead to some drugs being on the threshold of the WHO target product profiles. If we
323  excluded samples where all three tools make a FP call for the strong isoniazid and rifampicin
324  resistance-conferring mutations katG S315T (n=152) and rpoB S450L (n=119) [16]

325 respectively, all three tools would exceed the isoniazid specificity target of 98% - thus

326  meeting both sensitivity and specificity targets for isoniazid. In addition, DrPRG and

327  Mykrobe would meet the rifampicin specificity target of 98% — leading to both targets being
328  met for rifampicin for these two tools. As previously reported [55,56], we also found a lot of
329 instability in the ethambutol result caused by embB mutations M3061 (n=827) and M306V
330 (n=519) being called for phenotypically susceptible samples (FP) by all three tools. Other
331 frequent consensus FP calls included: fabG1 c-15t, which is associated with ethionamide
332  (n=441) and isoniazid (n=241) resistance; rrs al401g, which is associated with resistance to
333  capreomycin (n=241), amikacin (n=70), and kanamycin (n=48). In addition there were

334  common false positives from gyr4 mutations A90V and D94G, which are associated with
335 resistance to the fluoroquinolones levofloxacin (n=108 and n=70, respectively), moxifloxacin
336  (n=419 and n=349) and ofloxacin (n=19 and n=17), and are known to cause heteroresistance
337  and minimum inhibitory concentrations (MIC) close to the critical concentration

338  threshold[57-59].

339 7.2 Evaluation of potential additions to the WHO catalogue

340 False negatives are much harder to investigate as it is not known which mutation(s) were

341 missed as they are presumably not in the catalogue if all tools failed to make a call. However,
342  looking through those FNs where DrPRG makes an “unknown” resistance call, we note some
343  potential mutations that may need reclassification or inclusion in the WHO catalogue. For
344  delamanid FNs, we found five different nonsense mutations in the ddn gene in seven samples
345 - W20* (n=2), W27* (n=1), Q58* (n=1), W88* (n=2), and W139* (n=1) — none of which
346  occurred in susceptible samples. We also found 13 pyrazinamide FN cases with a nonstop
347  (stop-loss) mutation in pncA — this mutation type was also seen in two susceptible samples.
348  Another pncA mutation, T100P, was also observed in 10 pyrazinamide FN samples and no
349  susceptible samples. T100P only appears once in the WHO catalogue data (“solo” in a

350 resistant sample). As such, it was given a grading of uncertain significance. As our dataset
351 includes those samples in the WHO catalogue dataset, this means an additional nine isolates
352  have been found with this mutation - indicating this may warrant an upgrade to ‘associated
353  with resistance’. We found an interesting case of allele combinations, where nine ethambutol
354  FN samples have the same two embA mutation c-12a and c-11a and embB mutation P397T -
355  this combination is only seen in two susceptible samples. Interestingly, embB P397T and

356  embA c-12a don't appear in the WHO catalogue, but have been described as causing

357 resistance previously[60]. Three katG mutations were also detected in isoniazid FN cases.
358  First, G279D occurs in eight missed resistance samples and no susceptible cases. This

359  mutation is graded as ‘uncertain significance’ in the WHO catalogue and was seen solo in
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360 four resistant samples in that data. Singh et al. performed a protein structural analysis caused
361 by this mutation and found it produced “an undesirable effect on the functionality of the

362 protein”’[61]. Second, G699E occurs in eight FN samples and no susceptible cases, but has a
363  WHO grading of ‘uncertain significance’ based on six resistant isolates; thus, we add two

364  extra samples to that count. And third, N138H occurs in 14 FN samples and one susceptible.
365 In seven of these cases, it co-occurs with aspC mutations t-75g (n=2) and t-76a (n=5). This
366  mutation occurs in only three resistant isolates in the WHO catalogue dataset, giving it an
367 uncertain significance, but we add a further 11 cases. This mutation has been found to cause a
368  high isoniazid MIC and be associated with resistance[62,63].

369 7.3 Detection of large deletions

370  There are expert rules in the WHO catalogue which treat gene loss-of-function (any

371  frameshift or nonsense mutation) in katG, ethA, gid, and pncA as causing resistance for

372  isoniazid, ethionamide, streptomycin, and pyrazinamide, respectively[16]. Although

373  examples of resistance caused by gene deletion are rare[64—68], with a dataset of this size
374  (n=44,709), we can both evaluate these rules, and compare the detection power of DrPRG
375 and TBProfiler for identifying gene deletions (Mykrobe does not, although in principle it

376  could). In total we found 206 samples where DrPRG and/or TBProfiler identified deletions of
377  ethA, katG, or pncA. Although many of these isolates did not have phenotype information for
378  the associated drug (n=100), the results are nevertheless striking (Figure 4). Given the low
379 false-positive rate of pandora for gene absence detection[11], these no-phenotype samples
380 provide insight into how often gene deletions are occurring in clinical samples.

381  Of the 34 isolates where katG was identified as being absent, and an isoniazid phenotype was
382 available, all 34 were phenotypically resistant. DrPRG detected all 34 (100% sensitivity) and
383  TBProfiler identified 26 (76.5% sensitivity). Deletions of pncA were detected in 56 isolates,
384  of which 49 were phenotypically resistant. DrPRG detected 47 (95.9% sensitivity) and

385  TBProfiler detected 46 (93.9% sensitivity). Lastly, ethA was found to be missing in 16

386  samples with an ethionamide phenotype, of which 10 were phenotypically resistant. Both
387 DrPRG and TBProfiler correctly predicted all 10 (100% sensitivity). No gid deletions were
388 discovered. We note that the TP calls made by Mykrobe were due to it detecting large

389  deletions that are present in the catalogue, which is understandable given the whole gene is
390 deleted.

391  We conclude that DrPRG is slightly more sensitive at detecting large deletions than

392  TBProfiler (and Mykrobe) for katG, and equivalent for pncA and ethA. However we note that
393  the WHO expert rule which predicts resistance to isolates missing specific genes appears

394  more accurate for katG (100% of isolates missing the gene are resistant) than for pncA (87%
395 resistant) and ethA (62.5% resistant).
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402 7.4 Runtime and memory usage benchmark

403  The runtime and peak memory usage of each program was recorded for each sample and is
404  presented in Figure 5. DrPRG (median 161 seconds) was significantly faster than both

405  TBProfiler (307 seconds; p<0.0001) and Mykrobe (230 seconds; p<0.0001) on Illumina data.
406  For Nanopore data, DrPRG (250 seconds) was significantly faster than TBProfiler (290

407  seconds; p<0.0001), but significantly slower than Mykrobe (213 seconds; p=0.0347). In

408 terms of peak memory usage, DrPRG (Illumina median peak memory 58MB; Nanopore

409  277MB) used significantly less memory than Mykrobe (1538MB; 1538MB) and TBProfiler
410 (1463MB; 1990MB) on both Illumina and Nanopore data (p<0.0001 for all comparisons).
411
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417 8. Discussion

418 In this work, we have presented a novel method for making drug resistance predictions with
419  reference graphs. The method, DrPRG, requires only a reference genome and annotation, a
420 catalogue of resistance-conferring mutations, a VCF of population variation from which to
421  build a reference graph, and (optionally) a set of rules for types of variants in specific genes
422  which cause resistance. We apply DrPRG to the pathogen M. tuberculosis, for which there is
423  a great deal of information on the genotype/phenotype relationship, and a great need to

424  provide good tools which implement and augment current and forthcoming versions of the
425  WHO catalogue. We illustrate the performance of DrPRG against two existing methods for
426  drug resistance prediction — Mykrobe and TBProfiler.

427

428  We benchmarked the methods on a high-quality Illumina sequencing dataset with associated
429  phenotype profiles for 44,709 MTB genomes; the largest known dataset to-date[16]. All tools
430 used the same catalogue and rules, and for most drugs, there was no significant difference
431  between the tools. However, DrPRG did have a significantly higher specificity than

432  TBProfiler for rifampicin predictions, and sensitivity for ethionamide predictions. DrPRG’s
433  sensitivity was also significantly greater than Mykrobe’s for rifampicin, streptomycin,

434  amikacin, capreomycin, kanamycin, and ethionamide. Evaluating detection of gene loss, we
435  found DrPRG was more sensitive to katG deletions than TBProfiler.

436  We also benchmarked using 138 Nanopore-sequenced MTB samples with phenotype

437  information, but found no significant difference between the tools. This Nanopore dataset
438  was quite small and therefore the confidence intervals were large for all drugs. Increased
439  Nanopore sequencing over time will provide better resolution of the overall sensitivity and
440  specificity values and improve the methodological nuances of calling variants from this

441  emerging, and continually changing, sequencing technology.
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442  DrPRG also used significantly less memory than Mykrobe and TBProfiler on both Nanopore
443  and Illumina data. In addition, the runtime of DrPRG was significant faster than both tools on
444  Illumina data and faster than TBProfiler on Nanopore data. While the absolute values for

445  memory and runtime for all tools mean they could all easily run on common computers found
446  in the types of institutions likely to run them, the differences for the Nanopore data warrant
447  noting. As Nanopore data can be generated “in the field”, computational resource usage is
448  critical. For example, in a recent collaboration of ours with the National Tuberculosis

449  program in Madagascar[27], Nanopore sequencing and analysis are regularly performed on a
450 laptop, meaning memory usage is sometimes a limiting factor. DrPRG’s median peak

451  memory was 277MB, meaning it can comfortably be run on any laptop and other mobile

452  computing devices[69].

453 Tt is clear from the [llumina results that more work is needed to understand resistance-

454  conferring mutations for delamanid and linezolid. However, we did find that nonsense

455  mutations in the ddn gene appear likely to be resistance-conferring for delamanid — as has
456  been noted previously[39,70—72]. We also found a novel (likely) mechanism of resistance to
457  pyrazinamide - a nonstop mutation in pncA. Phenotype instability in embB at codon 306 was
458  also found to be the main driver in poor ethambutol specificity, as has been noted

459  elsewhere[55,56], indicating the need to further investigate cofactors that may influence the
460  phenotype when mutations at this codon are present.

461  Gene absence/deletion detection allowed us to confirm that the absence of katG — a

462  mechanism which is rare in clinical samples[64—67,73] - is highly likely to confer resistance
463  to isoniazid. Additionally, we found that the absence of pncA is likely to cause resistance to
464  pyrazinamide, as has been noted previously[68]. One finding that requires further

465 investigation is the variability in ethionamide phenotype when ethA4 is absent. We found that
466  only 63% of the samples with eth4 missing, and an ethionamide phenotype, were resistant.
467  An et al have suggested that eth4 deletion alone does not always cause resistance and there
468  might be an alternate pathway via mshA[74].

469  Given the size of the [llumina dataset used in this work, the results provide a good marker of
470 Illumina whole-genome sequencing’s ability to replace traditional phenotyping methods.

471  With the catalogue used in this study, DrPRG meets the WHQO'’s target product profile for

472  next-generation drug-susceptibility testing for both sensitivity and specificity for amikacin,
473  and sensitivity only for rifampicin, isoniazid, levofloxacin, and moxifloxacin. However, if we
474  exclude cases where all tools call 7poB S450L or katG S315T for phenotypically susceptible
475  samples (these are strong markers of resistance[16] and therefore we suspect sample-swaps or
476  phenotype error[75]), DrPRG also meets the specificity target product profile for rifampicin
477  and isoniazid. For the other first-line drugs ethambutol and pyrazinamide, ethambutol does
478  not have a WHO target and DrPRG’s sensitivity is 0.2% below the WHO target (although the
479  confidence interval spans the target), while the specificity target is missed by 0.8%.

480  The primary limitation of the DrPRG method relates to minor allele calls. DrPRG uses

481 pandora for novel variant discovery, which combines a graph of known population variants
482  (which can be detected at low frequency) with de novo detection of other variants if present at
483  above ~50% frequency. Thus, it can miss minor allele calls if the allele is absent from its

484  reference graph. While this issue did not impact most drugs, it did account for the majority of
485  cases where DrPRG missed pyrazinamide-resistant calls (in pncA), but the other tools

486  correctly called resistance. Unlike most other genes, where there are a relatively small

487  number of resistance-conferring mutations, or they’re localised to a specific region (e.g. the
488 rifampicin-resistance determining region in rpoB), resistance-conferring mutations are

489  numerous - with most being rare - and distributed throughout pncA[16,76,77]. Adding all of
490 these mutations will, and does, lead to decreased performance of the reference graph[33], and
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491  so improving minor allele calling for pyrazinamide remains a challenge we need to revisit in
492  the future.

493  One final limitation is the small number of Nanopore-sequenced MTB isolates with

494  phenotypic information. In order to get a clearer picture of the sensitivities and specificities
495  this sequencing technology can provide, we need much larger and more diverse data.

496

497  In conclusion, DrPRG is a fast, memory frugal software program that can be applied to any
498  bacterial species. We showed that on MTB, it performs as well as, or better than two other
499  commonly used tools for resistance prediction. We also collected and curated the largest
500 dataset of MTB Illumina-sequenced genomes with phenotype information and hope this will
501  benefit future work to improved genotypic drug susceptibility testing for this species. While
502  we applied DrPRG to MTB in this study, it is a framework that is agnostic to the species.
503 MTB is likely one of the bacterial species with the least to gain from reference graphs given
504  its relatively conserved (closed) pan-genome compared to other common species[78]. As
505  such, we expect the benefits and performance of DrPRG to improve as the openness of the
506  species’ pan-genome increases|11]; especially given its good performance on a reasonably
507 closed pan-genome.

508 9. Author statements

509 9.1 Author contributions

510 M.B.H: conceptualisation, data curation, formal analysis, investigation, methodology,

511  resources, software, visualisation, writing — original draft, writing — review & editing. L.L:
512 resources, software, writing — review & editing. L.J.M.C: funding acquisition, methodology,
513  supervision, writing — review & editing. Z.I: conceptualisation, funding acquisition,

514  methodology, supervision, writing — original draft, writing — review & editing.

515 9.2 Conflicts of interest
516  The authors declare no conflicts of interest.
517 9.3 Funding information

518 M.B.H. and L.J.M.C were supported by an Australian Government Medical Research Future
519  Fund (MRFF) grant (2020/MRF1200856).

520 94 Acknowledgements

521  We thank Kerri M. Malone for sharing her MTB knowledge through many discussions and
522  critiquing the final manuscript. We also thank Martin Hunt and Jeff Knaggs for facilitating
523  access to the CRyPTIC VCFs. Finally, we would like to acknowledge Timothy Walker for his
524  clinically-relevant MTB advice.

525 10. References

526 1. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of
527 compute. PLOS ONE. 2017;12: e0177459. doi:10.1371/journal.pone.0177459

528 2. Medical Research Council. Streptomycin Treatment of Pulmonary Tuberculosis: A
529 Medical Research Council Investigation. Br Med J. 1948;2: 769-782.
530 doi:10.1136/bmj.2.4582.769


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

531
532
533

534
535
536

537
538
539
540

541
542
543
544

545
546
547
548

549
550
551
552

553
554
555

556
557

558
559
560

561
562
563

564
565
566

567
568
569

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

10.

I1.

12.

13.

14.

made available under aCC-BY 4.0 International license.

Wengenack NL, Todorovic S, Yu L, Rusnak F. Evidence for Differential Binding of
Isoniazid by Mycobacterium tuberculosis KatG and the Isoniazid-Resistant Mutant
KatG(S315T). Biochemistry. 1998;37: 15825-15834. do0i:10.1021/bi982023k

Hackbarth CJ, Kocagoz T, Kocagoz S, Chambers HF. Point mutations in Staphylococcus
aureus PBP 2 gene affect penicillin-binding kinetics and are associated with resistance.
Antimicrob Agents Chemother. 1995;39: 103—-106. doi:10.1128/AAC.39.1.103

Esposito EP, Cervoni M, Bernardo M, Crivaro V, Cuccurullo S, Imperi F, et al. Molecular
Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood
Isolates From the Hospital Agency “Ospedale dei Colli,” Naples, Italy. Front Microbiol.
2018;9. doi:10.3389/fmicb.2018.01463

Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-
mediated colistin resistance mechanism MCR-1 in animals and human beings in China:
a microbiological and molecular biological study. Lancet Infect Dis. 2016;16: 161-168.
doi:10.1016/S1473-3099(15)00424-7

Maira-Litran T, Allison DG, Gilbert P. An evaluation of the potential of the multiple
antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate

resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother.
2000;45: 789-795. doi:10.1093/jac/45.6.789

Werngren J, Sturegérd E, Juréen P, Angeby K, Hoffner S, Schén T. Reevaluation of the
Critical Concentration for Drug Susceptibility Testing of Mycobacterium tuberculosis
against Pyrazinamide Using Wild-Type MIC Distributions and pncA Gene Sequencing.
Antimicrob Agents Chemother. 2012;56: 1253—1257. doi:10.1128/AAC.05894-11

Schon T, Miotto P, Koser CU, Viveiros M, Bottger E, Cambau E. Mycobacterium
tuberculosis drug-resistance testing: challenges, recent developments and perspectives.
Clin Microbiol Infect. 2017;23: 154—-160. doi:10.1016/j.cmi.2016.10.022

Mclnerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat
Microbiol. 2017;2: 17040. doi1:10.1038/nmicrobiol.2017.40

Colquhoun RM, Hall MB, Lima L, Roberts LW, Malone KM, Hunt M, et al. Pandora:
nucleotide-resolution bacterial pan-genomics with reference graphs. Genome Biol.
2021;22: 267. doi:10.1186/s13059-021-02473-1

Hall MB, Coin LIM. Assessment of the 2021 WHO Mycobacterium tuberculosis drug
resistance mutation catalogue on an independent dataset. Lancet Microbe. 2022.
doi:10.1016/52666-5247(22)00151-3

Mahfouz N, Ferreira I, Beisken S, von Haeseler A, Posch AE. Large-scale assessment of
antimicrobial resistance marker databases for genetic phenotype prediction: a systematic
review. J Antimicrob Chemother. 2020;75: 3099-3108. doi:10.1093/jac/dkaa257

Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using
Genomics to Track Global Antimicrobial Resistance. Front Public Health. 2019;7.
doi:10.3389/fpubh.2019.00242


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

570
571
572

573
574
575
576

577
578
579
580

581
582
583

584
585
586

587
588
589
590

591
592
593

594
595
596
597

598
599
600

601
602
603

604
605
606
607

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

16.

17.

18.

20.

21.

22.

23.

24.

25.

made available under aCC-BY 4.0 International license.

. Godfroid M, Dagan T, Kupczok A. Recombination Signal in Mycobacterium tuberculosis

Stems from Reference-guided Assemblies and Alignment Artefacts. Genome Biol Evol.
2018;10: 1920-1926. doi:10.1093/gbe/evy143

Walker TM, Miotto P, Koser CU, Fowler PW, Knaggs J, Igbal Z, et al. The 2021 WHO
catalogue of Mycobacterium tuberculosis complex mutations associated with drug
resistance: a genotypic analysis. Lancet Microbe. 2022. doi:10.1016/s2666-
5247(21)00301-3

Votintseva AA, Bradley P, Pankhurst L, Elias C del O, Loose M, Nilgiriwala K, et al.
Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome
Sequencing of Direct Respiratory Samples. J Clin Microbiol. 2017;55: 1285-1298.
doi:10.1128/jcm.02483-16

The end TB strategy. Geneva: World Health Organization; 2015. Report No.:
WHO/HTM/TB/2015.19. Available: https://www.who.int/publications/i/item/WHO-
HTM-TB-2015.19

. Target product profile for next-generation drug-susceptibility testing at peripheral centres.

Geneva: World Health Organization; 2021. Available:
https://www.who.int/publications/i/item/9789240032361

MacLean EL-H, Miotto P, Angulo LG, Chiacchiaretta M, Walker TM, Casenghi M, et al.
Updating the WHO target product profile for next-generation Mycobacterium

tuberculosis drug susceptibility testing at peripheral centres. PLOS Glob Public Health.
2023;3: e0001754. doi:10.1371/journal.pgph.0001754

Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S. KvarQ: targeted and direct
variant calling from fastq reads of bacterial genomes. BMC Genomics. 2014;15: 881.
doi:10.1186/1471-2164-15-881

Phelan JE, O’Sullivan DM, Machado D, Ramos J, Oppong YEA, Campino S, et al.
Integrating informatics tools and portable sequencing technology for rapid detection of
resistance to anti-tuberculous drugs. Genome Med. 2019;11: 41. doi:10.1186/s13073-
019-0650-x

Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-
resistance predictions from genome sequence data for Staphylococcus aureus and
Mycobacterium tuberculosis. Nat Commun. 2015;6: 10063. doi:10.1038/ncomms 10063

Kohl TA, Utpatel C, Schleusener V, Filippo MRD, Beckert P, Cirillo DM, et al. MTBseq:
a comprehensive pipeline for whole genome sequence analysis of Mycobacterium
tuberculosis complex isolates. PeerJ. 2018;6: €5895. doi:10.7717/peerj.5895

Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, et al. PhyResSE:
a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage
from Whole-Genome Sequencing Data. J Clin Microbiol. 2015;53: 1908—-1914.
doi:10.1128/JCM.00025-15


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

608 26. Hunt M, Bradley P, Lapierre SG, Heys S, Thomsit M, Hall MB, et al. Antibiotic

609 resistance prediction for Mycobacterium tuberculosis from genome sequence data with
610 Mykrobe. Wellcome Open Res. 2019;4: 191. doi:10.12688/wellcomeopenres.15603.1
611 27. Hall MB, Rabodoarivelo MS, Koch A, Dippenaar A, George S, Grobbelaar M, et al.

612 Evaluation of Nanopore sequencing for Mycobacterium tuberculosis drug susceptibility
613 testing and outbreak investigation: a genomic analysis. Lancet Microbe. 2022;0.

614 doi:10.1016/S2666-5247(22)00301-9

615  28. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing.
616 arXiv; 2012. doi:10.48550/arXiv.1207.3907

617  29. Rausch T, Zichner T, Schlattl A, Stiitz AM, Benes V, Korbel JO. DELLY: structural

618 variant discovery by integrated paired-end and split-read analysis. Bioinformatics.

619 2012;28:1333-1339. doi:10.1093/bioinformatics/bts378

620  30. The CRyPTIC Consortium and the 100,000 Genomes Project. A data compendium

621 associating the genomes of 12,289 Mycobacterium tuberculosis isolates with

622 quantitative resistance phenotypes to 13 antibiotics. PLOS Biol. 2022;20: e3001721.
623 doi:10.1371/journal.pbio.3001721

624  31. Chiner-Oms A, Berney M, Boinett C, Gonzalez-Candelas F, Young DB, Gagneux S, et al.
625 Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium
626 tuberculosis complex. Nat Commun. 2019;10: 3994. doi:10.1038/s41467-019-11948-6
627  32. Letcher B, Hunt M, Igbal Z. Gramtools enables multiscale variation analysis with

628 genome graphs. Genome Biol. 2021;22: 259. doi:10.1186/s13059-021-02474-0

629  33. Pritt J, Chen N-C, Langmead B. FORGe: prioritizing variants for graph genomes.

630 Genome Biol. 2018;19: 220. doi:10.1186/5s13059-018-1595-x

631  34. Katoh K, Frith MC. Adding unaligned sequences into an existing alignment using

632 MAFFT and LAST. Bioinformatics. 2012;28: 3144-3146.

633 doi:10.1093/bioinformatics/bts578

634  35. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple

635 sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30: 3059—
636 3066. doi:10.1093/nar/gkf436

637  36. Molder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al.

638 Sustainable data analysis with Snakemake. F1000Research. 2021;10: 33.

639 doi:10.12688/f1000research.29032.2

640  37. Groschel MI, Owens M, Freschi L, Vargas R, Marin MG, Phelan J, et al. GenTB: A user-
641 friendly genome-based predictor for tuberculosis resistance powered by machine

642 learning. Genome Med. 2021;13: 138. doi:10.1186/s13073-021-00953-4

643  38. Trisakul K, Nonghanphithak D, Chaiyachat P, Kaewprasert O, Sakmongkoljit K,
644 Reechaipichitkul W, et al. High clustering rate and genotypic drug-susceptibility
645 screening for the newly recommended anti-tuberculosis drugs among global extensively


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

646
647

648
649
650
651

652
653
654
655

656
657
658
659

660
661
662

663
664
665
666

667
668
669
670

671
672
673
674

675
676
677
678

679
680
681

682
683
684
685

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

made available under aCC-BY 4.0 International license.

drug-resistant Mycobacterium tuberculosis isolates. Emerg Microbes Infect. 2022;11:
1857-1866. doi:10.1080/22221751.2022.2099304

Battaglia S, Spitaleri A, Cabibbe AM, Meehan CJ, Utpatel C, Ismail N, et al.
Characterization of Genomic Variants Associated with Resistance to Bedaquiline and
Delamanid in Naive Mycobacterium tuberculosis Clinical Strains. J Clin Microbiol.
2020;58. doi:10.1128/jcm.01304-20

Huang H, Ding N, Yang T, Li C, Jia X, Wang G, et al. Cross-sectional Whole-genome
Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium
tuberculosis in China. Clin Infect Dis Off Publ Infect Dis Soc Am. 2019;69: 405-413.
doi:10.1093/cid/ciy883

Bainomugisa A, Lavu E, Hiashiri S, Majumdar S, Honjepari A, Moke R, et al. Multi-
clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium
tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades.
Microb Genomics. 2018;4: €¢000147. doi:10.1099/mgen.0.000147

Smith C, Halse TA, Shea J, Modestil H, Fowler RC, Musser KA, et al. Assessing
Nanopore sequencing for clinical diagnostics: A comparison of NGS methods for
Mycobacterium tuberculosis. J Clin Microbiol. 2020. doi:10.1128/jcm.00583-20

Peker N, Schuele L, Kok N, Terrazos M, Neuenschwander SM, Beer J de, et al.
Evaluation of whole-genome sequence data analysis approaches for short- and long-read

sequencing of Mycobacterium tuberculosis. Microb Genomics. 2021;7.
doi:10.1099/mgen.0.000695

Merker M, Rasigade J-P, Barbier M, Cox H, Feuerriegel S, Kohl TA, et al.
Transcontinental spread and evolution of Mycobacterium tuberculosis W148
European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun.
2022;13: 5105. doi:10.1038/s41467-022-32455-1

Finci I, Albertini A, Merker M, Andres S, Bablishvili N, Barilar I, et al. Investigating
resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and

phenotypic antimicrobial susceptibility testing: a multicentre observational study.
Lancet Microbe. 2022;3: e672—e682. doi:10.1016/s2666-5247(22)00116-1

Roberts LW, Malone KM, Hunt M, Joseph L, Wintringer P, Knaggs J, et al. Repeated
evolution of bedaquiline resistance in Mycobacterium tuberculosis is driven by
truncation of mmpRS5. bioRxiv; 2022. p. 2022.12.08.519610.
doi:10.1101/2022.12.08.519610

Di Marco F, Spitaleri A, Battaglia S, Batignani V, Cabibbe AM, Cirillo DM. Advantages
of long- and short-reads sequencing for the hybrid investigation of the Mycobacterium
tuberculosis genome. Front Microbiol. 2023;14. doi:10.3389/fmicb.2023.1104456

Lempens P, Decroo T, Aung KJM, Hossain MA, Rigouts L, Meehan CJ, et al. Initial
resistance to companion drugs should not be considered an exclusion criterion for the

shorter multidrug-resistant tuberculosis treatment regimen. Int J Infect Dis. 2020;100:
357-365. doi:10.1016/5.1jid.2020.08.042


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

686  49. Lempens P, Meehan CJ, Vandelannoote K, Fissette K, de Rijk P, Van Deun A, et al.

687 Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by
688 high-confidence resistance-conferring mutations. Sci Rep. 2018;8: 3246.

689 doi:10.1038/s41598-018-21378-x

690  50. Steinig E, Coin L. Nanoq: ultra-fast quality control for nanopore reads. J Open Source
691 Softw. 2022;7: 2991. doi:10.21105/j0ss.02991

692  51. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.

693 Bioinformatics. 2018;34: 1884—1890. doi:10.1093/bioinformatics/bty560

694  52. Hunt M, Letcher B, Malone KM, Nguyen G, Hall MB, Colquhoun RM, et al. Minos:

695 variant adjudication and joint genotyping of cohorts of bacterial genomes. Genome Biol.
696 2022;23: 147. doi:10.1186/s13059-022-02714-x

697  53. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy
698 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:
699 261-272. d0i:10.1038/s41592-019-0686-2

700 54. Zwyer M, avusoglu C, Ghielmetti G, Pacciarini M, Scaltriti E, Van Soolingen D, et al. A
701 new nomenclature for the livestock-associated Mycobacterium tuberculosis complex
702 based on phylogenomics. Open Res Eur. 2021;1. doi:10.12688/openreseurope.14029.2
703  55. Chen Y, Takiff HE, Gao Q. Phenotypic instability of Mycobacterium tuberculosis strains
704 harbouring clinically prevalent drug-resistant mutations. Lancet Microbe. 2023;0.

705 doi:10.1016/S2666-5247(23)00007-1

706  56. Sirgel FA, Warren RM, Streicher EM, Victor TC, Helden PD van, Bottger EC. embB306
707 Mutations as Molecular Indicators to Predict Ethambutol Susceptibility in

708 Mycobacterium tuberculosis. Chemotherapy. 2013;58: 358-363.

709 doi:10.1159/000343474

710 57. HuoF,MaY, Li S, XueY, Shang Y, Dong L, et al. Specific gyrA Gene Mutations

711 Correlate with High Prevalence of Discordant Levofloxacin Resistance in

712 Mycobacterium tuberculosis Isolates from Beijing, China. J] Mol Diagn. 2020;22: 1199—
713 1204. doi:10.1016/j.jmoldx.2020.06.010

714  58. Brankin AE, Fowler PW. Inclusion of minor alleles improves catalogue-based prediction
715 of fluoroquinolone resistance in Mycobacterium tuberculosis. JAC-Antimicrob Resist.
716 2023;5: dlad039. doi:10.1093/jacamr/dlad039

717  59. Nimmo C, Brien K, Millard J, Grant AD, Padayatchi N, Pym AS, et al. Dynamics of

718 within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment.
719 EBioMedicine. 2020;55: 102747. doi:10.1016/j.ebiom.2020.102747

720  60. Perdigdo J, Gomes P, Miranda A, Maltez F, Machado D, Silva C, et al. Using genomics to
721 understand the origin and dispersion of multidrug and extensively drug resistant

722 tuberculosis in Portugal. Sci Rep. 2020;10: 2600. doi:10.1038/s41598-020-59558-3

723  61. Singh A, Singh A, Grover S, Pandey B, Kumari A, Grover A. Wild-type catalase
724 peroxidase vs G279D mutant type: Molecular basis of Isoniazid drug resistance in


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

725 Mycobacterium tuberculosis. Gene. 2018;641: 226-234.

726 doi:10.1016/j.gene.2017.10.047

727  62. Vaziri F, Kohl TA, Ghajavand H, Kargarpour Kamakoli M, Merker M, Hadifar S, et al.
728 Genetic Diversity of Multi- and Extensively Drug-Resistant Mycobacterium

729 tuberculosis Isolates in the Capital of Iran, Revealed by Whole-Genome Sequencing. J
730 Clin Microbiol. 2019;57: e01477-18. doi:10.1128/JCM.01477-18

731  63. de Lourdes do Carmo Guimaraes Diniz J, von Groll A, Unis G, Dalla-Costa ER, Rosa
732 Rossetti ML, Vianna JS, et al. Whole-genome sequencing as a tool for studying the

733 microevolution of drug-resistant serial Mycobacterium tuberculosis isolates.

734 Tuberculosis. 2021;131: 102137. doi:10.1016/j.tube.2021.102137

735  64. Altamirano M, Marostenmaki J, Wong A, FitzGerald M, Black WA, Smith JA. Mutations
736 in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis
737 isolates. J Infect Dis. 1994;169: 1162—1165. doi:10.1093/infdis/169.5.1162

738  65. Ferrazoli L, Palaci M, da Silva Telles MA, Ueki SY, Kritski A, Marques LRM, et al.

739 Catalase Expression, katG, And MIC Of Isoniazid For Mycobacterium tuberculosis
740 Isolates From SaO Paulo, Brazil. J Infect Dis. 1995;171: 237-240.

741 doi:10.1093/infdis/171.1.237

742  66. Ramaswamy SV, Reich R, Dou S-J, Jasperse L, Pan X, Wanger A, et al. Single

743 Nucleotide Polymorphisms in Genes Associated with Isoniazid Resistance in

744 Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47: 1241-1250.

745 doi:10.1128/AAC.47.4.1241-1250.2003

746  67. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase—peroxidase gene and

747 isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358: 591-593.

748 doi:10.1038/358591a0

749  68. Martinez E, Holmes N, Jelfs P, Sintchenko V. Genome sequencing reveals novel deletions
750 associated with secondary resistance to pyrazinamide in MDR Mycobacterium

751 tuberculosis. J Antimicrob Chemother. 2015;70: 2511-2514. doi:10.1093/jac/dkv128
752  69. Samarakoon H, Punchihewa S, Senanayake A, Hammond JM, Stevanovski I, Ferguson
753 IM, et al. Genopo: a nanopore sequencing analysis toolkit for portable Android devices.
754 Commun Biol. 2020;3: 1-5. doi:10.1038/s42003-020-01270-z

755  70. Gomez-Gonzalez PJ, Perdigao J, Gomes P, Puyen ZM, Santos-Lazaro D, Napier G, et al.
756 Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to
757 bedaquiline, delamanid and pretomanid. Sci Rep. 2021;11: 19431. doi:10.1038/s41598-
758 021-98862-4

759  71. Schena E, Nedialkova L, Borroni E, Battaglia S, Cabibbe AM, Niemann S, et al.

760 Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin
761 microtitre assay and the BACTEC™ MGIT™ 960 system. J Antimicrob Chemother.
762 2016;71: 1532—-1539. doi:10.1093/jac/dkw044

763 72. Gomes LC, Campino S, Marinho CRF, Clark TG, Phelan JE. Whole genome sequencing
764 reveals large deletions and other loss of function mutations in Mycobacterium


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

765
766

767
768
769
770

771
772
773

774
775
776

777
778
779

780
781
782

783
784
785

786

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.539481; this version posted May 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

73.

74.

75.

76.

77.

78.

made available under aCC-BY 4.0 International license.

tuberculosis drug resistance genes. Microb Genomics. 2021;7: 000724.
doi:10.1099/mgen.0.000724

De Maio F, Cingolani A, Bianco DM, Salustri A, Palucci I, Sanguinetti M, et al. First
description of the katG gene deletion in a Mycobacterium tuberculosis clinical isolate
and its impact on the mycobacterial fitness. Int J Med Microbiol. 2021;311: 151506.
doi:10.1016/j.ijmm.2021.151506

Ang MLT, Zainul Rahim SZ, de Sessions PF, Lin W, Koh V, Pethe K, et al. EthA/R-
Independent Killing of Mycobacterium tuberculosis by Ethionamide. Front Microbiol.
2017;8. doi:10.3389/fmicb.2017.00710

The CRyPTIC Consortium and the 100,000 Genomes Project. Prediction of Susceptibility
to First-Line Tuberculosis Drugs by DNA Sequencing. N Engl ] Med. 2018;379: 1403—
1415. doi:10.1056/NEJMoal800474

Késer CU, Cirillo DM, Miotto P. How To Optimally Combine Genotypic and Phenotypic
Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrob Agents Chemother.
2020;64: €01003-20. doi:10.1128/AAC.01003-20

Yadon AN, Maharaj K, Adamson JH, Lai Y-P, Sacchettini JC, loerger TR, et al. A
comprehensive characterization of PncA polymorphisms that confer resistance to
pyrazinamide. Nat Commun. 2017;8: 588. do0i:10.1038/s41467-017-00721-2

Park S-C, Lee K, Kim YO, Won S, Chun J. Large-Scale Genomics Reveals the Genetic
Characteristics of Seven Species and Importance of Phylogenetic Distance for
Estimating Pan-Genome Size. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00834


https://doi.org/10.1101/2023.05.04.539481
http://creativecommons.org/licenses/by/4.0/

	1.1 Author names
	1.2 Affiliation(s)
	1.3 Corresponding author and email address
	1.4 Keywords
	2. Abstract
	3. Impact statement
	4. Data summary
	5. Introduction
	6. Methods
	6.1 Constructing a resistance-specific reference graph and index
	6.2 Genotypic resistance prediction
	6.3 Benchmark
	6.4 Datasets
	6.5 Quality control
	6.6 Statistical Analysis

	7. Results
	7.1 Sensitivity and specificity performance
	7.2 Evaluation of potential additions to the WHO catalogue
	7.3 Detection of large deletions
	7.4 Runtime and memory usage benchmark

	8. Discussion
	9. Author statements
	9.1 Author contributions
	9.2 Conflicts of interest
	9.3 Funding information
	9.4 Acknowledgements

	10. References

