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Abstract   

Cattle have been a valuable economic resource and cultural icon since prehistory. From the 
initial  expansion of domestic cattle into Europe during the Neolithic period, taurine cattle 
(Bos taurus) and their wild ancestor, the aurochs (B. primigenius), had overlapping ranges, 
leading  to  ample  opportunities  for  mating  (whether  intended  by  farmers  or  not).  We 
performed  a  bioarchaeological  analysis  of  24  Bos  remains  from Iberia  dating  from the 
Mesolithic to the Roman period. The archaeogenomic dataset allows us to investigate the 
extent of domestic-wild hybridization over time, providing insight into the species’ behavior 
and  human  hunting  and  management  practices  by  aligning  changes  with  cultural  and 
genomic transitions in the archaeological record. Our results show frequent hybridization 
during  the  Neolithic  and  Chalcolithic,  likely  reflecting  a  mix  of  hunting  and  herding  or 
relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved 
in  hybridization.  This  is  supported by  isotopic  evidence consistent  with  ecological  niche 
sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs 
ancestry  remains  relatively  constant  from about  4000  years  ago,  probably  due  to  herd 
management and selection against  first  generation hybrids,  coinciding with other cultural 
transitions.  The  constant  level  of  wild  ancestry  (~20%)  continues  into  modern  western 
European breeds including the Spanish Lidia breed which is bred for its aggressiveness and 
fighting ability, but does not display elevated levels of aurochs ancestry. This study takes a 
genomic glance at the impact of human actions and wild introgression in the establishment 
of cattle as one of the most important domestic species today.
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Introduction
Domestication of livestock and crops has been the dominant and most enduring innovation 
of the transition from a hunter-gathering lifestyle to farming societies. It represents the direct 
exploitation of genetic diversity of wild plants and animals for human benefit. Ancient DNA 
(aDNA) has proved crucial to understanding the domestication process and the interaction 
between domesticated species and their wild relatives both within domestication centers and 
throughout the regions that the domestics expanded into (1–14). The origins of the European 
domestic taurine,  Bos taurus, are located in the Fertile Crescent  (15,  16) and unlike dogs, 
pigs and goats, where the wild forms are still extant, the wild cow (the aurochs) went extinct 
in 1627. Aurochs, B. primigenius, was present throughout much of Eurasia and Africa before 
the expansion of domestic cattle from the Levant that accompanied the first farmers during 
the  Neolithisation  of  Europe.  Upon arrival,  these  early  incoming  domesticates  inevitably 
coexisted with their wild counterparts in great parts of Europe facilitating gene flow in both 
directions. In general, taxa within the genus Bos can hybridize and produce fertile offspring 
(17) which may have facilitated and contributed to domestication, local adaptation and even 
speciation  (5,  18–20).  Mitochondrial  DNA  studies  have  previously  indicated  gene  flow 
between domestic cattle and aurochs outside their domestication center (21–25) and more 
recently,  genomic  studies  have  shown  the  presence  of  European  aurochs  ancestry  in 
modern  taurine  cattle  breeds  (26–28).  Although  cattle  have  represented  a  significant 
economic  resource  and  a  prominent  cultural  icon  for  millennia,  and  have  been  studied 
through aDNA for more than a decade  (5,  21,  22,  26,  28–30),  our understanding of the 
interaction of early cattle herds and wild aurochs is still limited due to a lack of time-series 
genomic data. This gap of knowledge includes European aurochs’ genetic contribution to 
modern domestic breeds and human management of these animals in the past. 

Aurochs  have  been  widely  exploited  by  humans  since  the  European  Palaeolithic  and 
archaeological evidence indicates that the species survived in Europe until historical times. 
Iberia  could  have  served  as  a  glacial  refugium  for  aurochs  (28),  and  the  most  recent 
evidence for aurochs is found at a Roman site in the Basque Country (31). Domestic cattle 
were introduced into Iberia with the Mediterranean Neolithic  expansion and reached the 
northern coast of the peninsula around 7000 years cal BP (32). Consequently, aurochs and 
domestic cattle have coexisted in Iberia for about five millennia.  Since then, cattle have 
played an important role in Iberian societies as a source of food and labour, as well  as 
cultural events such as bullfighting. Currently, there are more than 50 bovine breeds officially 
recognized in the Iberian Peninsula including the Lidia breed, a primitive, isolated population 
selected for centuries to develop agonistic-aggressive responses with the exclusive purpose 
of taking part in such socio-cultural events  (33). Recently, it has been reported that Lidia 
breed individuals have the largest brain size among a comprehensive data set of European 
domestic cattle breeds and are the most similar to wild aurochs  (34). The combination of 
aggressiveness and larger brain size in the Lidia breed may suggest a higher proportion of 
aurochs ancestry compared to other cattle breeds.

Here, we present the genomes and stable isotope data of Iberian Bovine specimens ranging 
from the Mesolithic into Roman times from four archeological sites (Fig. 1A). We explore the 
extent  of  interbreeding  between  wild  aurochs  and  domestic  cattle  over  time  and  the 
correlation of genetic ancestry with metric identification and ecological niches. Finally, we 
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compare the results to genomic data obtained from modern Iberian cattle breeds to estimate 
the genetic contribution of the now-extinct aurochs to the Iberian farming economy. 

Figure 1: (A) Map of Europe showing the Iberian sampling sites (red circles, size proportional 
to sample sizes) and the sites for published aurochs genomes used in the analysis (blue 
diamonds). (B) NMDS ordination of nuclear data of Iberian samples considered  B. taurus 
samples  (orange),  Iberian  samples  that  were  morphologically  considered  B.  primigenius 
(red),  other  Iberian  Bos samples (brown),  ancient  domestic  cattle  from the Balkans and 
Anatolia  (yellow),  and  aurochs  (blue).  Data  point  shape  corresponds  to  mitochondrial 
haplogroups. (C) f4 statistic measuring allele sharing of the Iberian samples with European 
aurochs  (Bed3)  or  Anatolian  Neolithic  cattle  (Sub1).  The  time  periods  displayed  are 
contextual.

Results

Exploratory analysis    

We successfully  sequenced 24 Bovine specimens excavated at  four  prehistoric  sites  in 
Iberia (Fig. 1A). Nine of these individuals were inferred to or suspected to represent aurochs 
based on morphology or chronology. Direct radiocarbon dates and contextual dating placed 
the individuals between the Mesolithic (oldest sample moo001, 8641-8450 cal BP) and the 
Roman Age (youngest sample moo010p, 2260-2150 cal BP). It should be noted that while all 
post-Mesolithic  samples were found at  archaeological  sites with evidence for  herding of 
other  domestic  fauna such  as  ovicaprids  (Supplementary  Information),  we  do  not  know 
whether these bovids were herded or hunted. Based on the number of reads mapping to the 
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X chromosome, 13 individuals were identified as female and 11 as male, for the samples 
with sufficient amounts of reads for this analysis. Sequencing coverage of the nuclear cattle 
genome was low to medium, reaching up to 4.7x with a mean of 0.38x (Dataset S1). The 
sequence  data  for  non-UDG-treated  libraries  showed  damage  patterns  characteristic  of 
ancient  DNA  (Supplementary  Information,  Figure  S1).  Based  on  reads  mapping  to  the 
mitochondrial genome, we were able to estimate contamination for 11 samples with most 
samples showing low levels (<2%) of contamination. One individual (moo013a) showed a 
high  contamination  of  51.7% [33.5,  69.9]  and  was  excluded  from further  analysis.  One 
Mesolithic individual (moo040) showed 8.3% [3.1, 13.5] contamination, which was included 
in the initial exploratory analysis but not used for the analysis of hybridization between wild 
and domestic as this analysis only focused on post-Mesolithic individuals.

Nine individuals were assigned to the mitochondrial P1 haplogroup, one to haplogroup T1, 
one to haplogroup T4, and 12 to haplogroup T3 (Dataset S1). P haplogroups are dominant 
among and thought  to  be endemic to  European aurochs  (35),  but  are  occurring at  low 
frequencies in modern European cattle breeds (24). The prevalence of the T3 haplogroup in 
our samples is expected; this haplogroup is dominant among modern European  B. taurus 
and is the most common haplogroup in ancient Western European domestic cattle. T3 was 
found in directly dated Neolithic samples from different sites providing direct evidence for the 
arrival of domestic cattle in northern Iberia during the Neolithic (Dataset S1). The specimen 
assigned to T1 (moo009a) is notable since this individual was previously used to argue for 
Bronze Age contact between Iberia and Africa, where the T1 haplogroup is thought to have 
originated (29, 36). T4 is usually considered to be restricted to Asian breeds with rare finds 
in Europe, restricted to the Balkans (24). The presence of T4 in Chalcolithic Iberia suggests 
that this haplogroup must have been distributed across Western Europe at low frequencies 
in prehistory. Furthermore, the fact that some specimens that were morphologically identified 
as aurochs carry domestic T haplogroups implies some level of interbreeding between the 
two groups.

As mitochondrial genomes only reflect the maternal line of ancestry, they are not informative 
about the exact extent of interbreeding in our dataset. To avoid being constrained by the 
variation in modern domestic breeds as with common approaches such as projected PCA 
(Supplementary Information, Figure S4), we performed non-metric multi-dimensional scaling 
(NMDS) ordinations on a matrix of pairwise outgroup f3 statistics to explore the genomic 
ancestry of the sequenced individuals. For reference, we included early cattle genomes from 
Anatolia  and  the  Balkans  as  well  as  aurochs  excavated  from Morocco  (Th7),  Armenia 
(Gyu2), Anatolia (Ch22), Germany (Bed3) and Britain (CPC98)  (5,  26,  30), and calculated 
pairwise outgroup f3 statistics. The NMDS ordination outcome (Fig. 1B) seems to represent a 
separation  between  domestic  autosomal  ancestry  (to  the  left)  and  European  aurochs 
ancestry  (to  the  right).  In  contrast,  aurochs  from  other  regions  (Th7  and  Gyu2)  seem 
genetically distinct. Many early domestic samples from Iberia fall close to early cattle from 
the Balkans and Anatolia as well as the Anatolian aurochs (Ch22). Notably, at least two of 
the Iberian samples in this cluster (moo004, moo007) were morphologically identified as 
aurochs. Eight of the nine Iberian samples with haplogroup P fall to the right in the plot, 
together  with  the  aurochs  from Germany (Bed3)  and  Britain  (CPC98).  Additionally,  one 
individual carrying a domestic T3 mitochondrial  genome (moo019) appears closer to the 
aurochs samples than the domestics.  Out of  nine samples that  were presumed aurochs 
based on their morphological features, only six would be considered aurochs based on this 
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analysis. This highlights a substantial overlap between measurements or criteria that are 
used to distinguish wild and domestic Bos based on morphometrics.

This analysis suggests that one can use other European aurochs such as the German Bed3 
(Bedburg-Königshoven, 11802-11326 CalBP) (30) or the British CPC98 (Carsington Pasture 
Cave, 6874-6602 CalBP) (26) as a reference for Western European aurochs as they seem 
similar to our three low-coverage Mesolithic Iberian samples. This is also supported by a 
recent parallel study concluding that all Western European aurochs form a clade, possibly 
even originating from an Iberian glacial refugium (28). Using Sub1 (Suberde Höyük, 8171-
7974 CalBP) (5), a Neolithic domestic Anatolian individual, and the higher coverage aurochs 
Bed3 as references, we can perform f4 statistics to measure which Iberian individuals share 
more alleles with one or the other (Fig 1C). Despite the relatively low coverage of some 
samples,  the f4 statistics are highly correlated with the first  axis of  the NMDS (R2=0.84, 
p=8.3 10✕ -10)  implying  that  they  detect  the  same  pattern.  Non-overlapping  confidence 
intervals  also  confirm  that  the  high  genetic  differentiation  between  Western  European 
aurochs and domestic cattle allows confident assignment even with low coverage data. The 
three  Mesolithic  individuals  as  well  as  an  additional  six,  up  until  the  Late 
Neolithic/Chalcolithic, share most of their alleles with aurochs. Three individuals from the 
Neolithic and Late Neolithic/Chalcolithic share most of their alleles with domestic Anatolian 
cattle while two individuals (moo012a and moo039) are more intermediate, suggesting that 
there  could  have  been some level  of  hybridization.  More  recent  samples  from the  Bell 
Beaker period onwards all  appear to have similar  amounts of  allele sharing with mostly 
domestic ancestry but some level of aurochs introgression.

Quantifying the extent of introgression

While  f4 statistics  measure  allele  sharing  it  does  not  directly  quantify  the  amount  of 
introgression in the different specimens, hence, we employed three different frameworks to 
estimate ancestry proportions: f4 ratio (37), qpAdm (38, 39) and Struct-f4 (40) to model each 
Iberian individual from European aurochs (Bed3) and/or Anatolian Neolithic cattle (Sub1) as 
sources  (Table  1).  While  the  f4 ratio  provides  a  straightforward-to-interpret  estimate  of 
aurochs ancestry under a simple two source model,  we also include qpAdm due to the 
potential of rejecting models and hinting at additional ancestries. We also include Struct-f4 
for better samples (>0.1X) as it is more flexible than qpAdm not requiring a strict separation 
between  sources  and  outgroup  populations.  While  quantitative  estimates  of  European 
aurochs ancestry for the 20 post-Mesolithic individuals are somewhat correlated between f4 

ratio and qpAdm (Spearman’s correlation coefficient rho=0.57, p=0.01), they differ for certain 
individuals. This highlights differences between the methods, their assumptions about the 
relationships of sources and outgroups, and their sensitivity to low coverage data. For most 
parts of this study, we decide to present the f4 ratio results but it is important to highlight that 
our interpretations are based on the general pattern and not on the ancestry estimates for 
single individuals.

Most of the 20 post-Mesolithic individuals show indications of both domestic and European 
aurochs ancestries (Table 1). Only three individuals (f4 ratio) or one individual (qpAdm) do 
not show significant proportions of aurochs ancestry while only one individual (f4 ratio) or 
three individuals show not significant proportions of domestic ancestry. Furthermore, qpAdm 
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and Struct-f4 suggest low proportions of additional, eastern ancestries represented either by 
indicine cattle or the Caucasus aurochs Gyu2 in these analyses. While these ancestries are 
not well resolved and usually have high standard errors, they suggest that multiple western 
Asian populations contributed to the European early  domestic  gene pool.  Notably,  most 
Neolithic and pre-Bell Beaker Chalcolithic individuals show either predominantly domestic or 
aurochs  ancestry  while  many  Bell  Beaker  and  Bronze  Age  individuals  show  more 
intermediate  values  of  aurochs  ancestry.  In  fact,  from  the  Bronze  Age  onwards,  most 
estimates overlap with the approximately 25% aurochs ancestry in modern Iberian cattle 
(Fig. 2; Supplementary Information, Table S1) (41).
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Table 1:  European aurochs ancestry proportions in post-Mesolithic Iberian  Bos samples. 
Square brackets are showing Block-jackknife estimates of the 95% confidence interval. f4 
ratio and qpAdm are using Bed3 as source of European aurochs ancestry unless noted 
otherwise. Footnotes are added when deviations from the two source model were needed. 
Struct-f4 was run in semi-supervised mode to estimate ancestry in the Iberian samples with 
K=5 as the different ancestries separated at this point. Only individuals with at least 0.1x 
coverage  were  included  in  this  analysis  to  ensure  convergence.  LNCA=Late 
Neolithic/Chalcolithic
Sample ID Site Period Date calBP f4 ratio qpAdm Struct-f4 (K=5)
moo012a El Portalón Early Neolithic contextual 0.908 [0.743, 1.072] 0.928 [0.77, 1.085] -
moo004 Els Trocs Neolithic 7152-6890 0.103 [0.025, 0.182] 0.06 [0.026, 0.098]1 0.012a

moo007 Els Trocs Neolithic 7151-6890 -0.089 [-0.204, 0.026] 0.073 [0.033, 0.113]1 0.039a

moo014 El Portalón Neolithic 6491-6403 0.861 [0.791, 0.931] 0.942 [0.905, 0.979]2 0.942a

moo039 Mendandia Neolithic 7426-7280 0.435 [0.334, 0.536] 0.866 [0.76, 0.971] -
moo015 El Portalón LNCA 5041-4842 -0.055 [-0.182, 0.072] 0.444 [0.32, 0.565] -
moo017 El Portalón LNCA 5567-5326 0.756 [0.646, 0.866] 0.811 [0.769, 0.853]1 -
moo019 El Portalón LNCA 5556-5325 0.723 [0.628, 0.818] 0.828 [0.786, 0.87]1 0.654
moo020 El Portalón LNCA contextual 0.775 [0.652, 0.897] 0.944 [0.80, 1.085] -
moo050 El Portalón LNCA 5468-5320 0.788 [0.709, 0.866] 0.809 [0.773, 0.845]1 0.663b

moo011b El Portalón Bell Beaker contextual 0.109 [-0.097, 0.316] 0.667 [0.47, 0.865] -
moo012b El Portalón Bell Beaker 4421-4291 0.706 [0.528, 0.883] 0.326 [0.258, 0.394]1 -
moo022 El Portalón Bell Beaker contextual 0.169 [0.006, 0.332] 0.729 [0.55, 0.910] -
moo023 El Portalón Bell Beaker 4153-3976 0.179 [0.073, 0.285] 0.641 [0.54, 0.738] 0.21a

moo033 El Portalón Early Bronze Age contextual 0.241 [0.050, 0.432] 0.987 [0.79, 1.182] -
moo009a El Portalón Bronze Age 3884-3635 0.399 [0.297, 0.502] 0.284 [0.244, 0.324]1 0.152a

moo009x El Portalón Bronze Age 3829-3513 0.198 [0.115, 0.280] 0.259 [0.203, 0.315]3 0.176a

moo034 El Portalón Bronze Age 3811-3492 0.547 [0.300, 0.794] 0.112 [-0.061, 0.285]4 -
moo035 El Portalón Bronze Age contextual 0.307 [0.170, 0.445] 0.821 [0.68, 0.963] -
moo010p El Portalón Roman 2334-2156 0.397 [0.205, 0.589] 0.281 [0.217, 0.345]1 -

1 To produce a fitting and feasible model (p>0.01) a minor contribution (<=5%) of indicine ancestry is required to fit the data.
2 Model does not fit with Bed3 as European aurochs source but fits well (p=0.49) when using CPC98.
3 To produce a fitting and feasible model (p>0.01) a contribution of 33.7% Caucasus aurochs ancestry (Gyu2) is required to fit 
the data. This additional source is not well resolved as the standard error is large (21.2%).
4 To produce a fitting and feasible model (p>0.01) a contribution of 85.9% Caucasus aurochs ancestry (Gyu2) is required to fit 
the data. This additional source is not well resolved as the standard error is large (74.6%).
a Struct-f4 also assigns a small proportion of Caucasus aurochs ancestry (Gyu2) to this individual (<5%).
b Struct-f4 also assigns a proportion of Caucasus aurochs ancestry (Gyu2) to this individual (14.0%).
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Figure  2:  (A)  Estimates  of  aurochs ancestry  (estimated using the  f4 ratio  with  Bed3 as 
European aurochs source) in directly dated post-Mesolithic Iberian samples over time. Error 
bars indicate the 95% confidence interval. Modern Iberian whole-genome sequenced Lidia 
individuals are added around date 0 with some horizontal jitter. Approximate boundaries for 
the main sampling periods are indicated by dashed vertical lines. 

A limitation of this analysis is the availability of genomes that can be used as representatives 
of  the  source  populations.  We  used  German  and  British  aurochs  to  represent  western 
European  aurochs  ancestry  and  a  single  Anatolian  Neolithic  to  represent  the  original 
domestic cattle that was introduced into Europe. Our Mesolithic Iberian aurochs contained 
too little endogenous DNA to be used as a proxy aurochs reference and all Neolithic and 
Chalcolithic  samples  estimated  with  predominantly  aurochs  ancestry  (including  the  2.7x 
genome of moo014) already carry low (but significant) levels of domestic ancestry. However, 
the fact that all  of  these aurochs samples carried P mitochondria strongly suggests that 
western European aurochs can be considered monophyletic. Furthermore, a recent parallel 
study also concluded that all Western European aurochs form a clade (28). The Anatolian 
Sub1 might also not be depleted of  any European aurochs ancestry and could not fully 
represent the original European Neolithic gene pool as also indicated by qpAdm and Struct-
f4 identifying small proportions of other Asian ancestries in some Iberian individuals. While 
these caveats should affect our quantitative estimates of European aurochs ancestry, they 
should not drive the qualitative pattern as our tests would still detect any excess European 
aurochs ancestry that was not present in Neolithic Anatolia.

An  important  question  that  remains  unexamined  is  the  exact  process  that  led  to  the 
hybridization since this could provide insight into human management practices or, more 
generally speaking, mating patterns between wild and domestic individuals. The fact that 
some individuals with predominantly aurochs ancestry carry T haplogroups (moo019) and 
that some individuals with predominantly domestic ancestry carry P haplogroups ( moo009x) 
implies that females contributed in both directions. To assess whether the admixture process 
was  sex-biased,  we  compared  aurochs  ancestry  patterns  on  the  X  chromosome  and 
autosomes (Fig. 3). Since females carry two X chromosomes and males only have one, we 
can assume that an excess of a certain ancestry on the X chromosome indicates more 
females from that particular source population. While the estimates are noisy due to the low 
coverage data and even less sites available for the X chromosome, it is striking that all but 
one  individual  with  mostly  domestic  autosomal  ancestry  (>50%)  show even lower  point 
estimates of aurochs ancestry on the X chromosome. This pattern even extends into the 
modern Iberian individuals. Male-biased aurochs introgression has been suggested based 
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on mitochondrial haplotypes before  (5). In the absence of aurochs Y chromosomal data, 
however,  it  is  difficult  to  assess sex-biased processes from uniparental  data alone.  The 
comparison of X chromosomes and autosomes should theoretically have more power to 
detect such processes as they are less sensitive to genetic drift due to their recombining 
nature (42) but estimation of ancestry proportions on the X chromosome can be affected by 
different biases (43–45). Overall, our results are consistent with previous observations that 
the contribution of wild ancestry into domestic cattle was mostly through aurochs bulls.

Figure  3:  Comparison  of  f4 ratio  estimated  aurochs  ancestry  of  post-Mesolithic  Iberian 
samples on the autosomes versus X chromosomes. Error bars indicate the 95% confidence 
interval.

Aurochs ancestry in modern breeds and the Spanish Lidia cattle breed
We estimated aurochs ancestry in a set of  Western European cattle breeds  (27) as we 
performed for the prehistoric samples. Previous studies have used D statistics for pairwise 
comparisons  between breeds  (26,  27,  46).  Such  D statistics,  however,  are  sensitive  to 
biases including gene flow from populations not included in the analysis (47). Furthermore, 
qpAdm provides the possibility to reject scenarios not fitting the data. Our point estimates for 
the aurochs ancestry range between 20% and 30% across all breeds (Fig. 4) and do not 
show an increase in aurochs ancestry in Iberian breeds  (46). This result differs from the 
previous studies which suggested geographic differences in western and central Europe and 
we  believe  this  could  be  due  to  ancestry  from  other,  non-European  groups  in  some 
commercial breeds (Supplementary Information). Importantly, not all tested breeds did fit the 
simple  two-source  model  Anatolian  Neolithic  domestic  +  European  aurochs,  likely 
representing low levels  of  contributions from other  groups,  e.g.  indicine cattle  (27).  The 
presence of indicine ancestry can be confirmed in a qpAdm analysis using three sources 
resulting in fitting models for all breeds (Supplementary Information, Table S4).
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Figure 4: qpAdm estimates of Aurochs ancestry in modern western European cattle breeds 
from the (27) dataset. Commercial breeds are marked with a “C”. The figure is only showing 
breeds  with  feasible  and  non-rejected  two  source  models,  all  results  are  shown  in 
Supplementary Information, Table S1. Error bars are showing block-jackknife estimates of 
the 95% confidence interval. 

Cattle have played an important role in Iberian culture during the last centuries as they have 
been part of numerous traditional popular events including bullfighting. The Lidia breed, a 
heterogeneous  group  of  Iberian  cattle  that  is  mainly  bred  for  aggressive  behavior,  has 
commonly been used for such popular festivities  (33).  Even though Lidia cattle has only 
been actively bred for agonistic behavior for about 200 years, some people attribute their 
aggressiveness and appearance as an indication of high levels of aurochs ancestry (34). We 
additionally use medium coverage genomes of six Lidia individuals  (41) to estimate their 
proportion of aurochs ancestry. Lidia cattle in the (27) data set had a point estimate of 25% 
(95% confidence interval:  [18.5,  31.5])  aurochs ancestry  and estimates  in  the  individual 
genomes ranged from 17.6% [10.9, 24.3] to 23.5% [17.0, 30.0] (Supplementary Information, 
Figure S8) – all overlapping with the observed range for other western European breeds. 
Despite some variation between individuals, which might be attributable to noise due to low 
coverage sequencing data in the reference populations, we do not observe a systematically 
elevated level of aurochs ancestry compared to other modern breeds or ancient samples 
since the Bronze Age. While these results reject the idea that the specifics of Lidia cattle can 
be attributed to a substantially increased genome-wide aurochs ancestry, it does not rule out 
the possibility  that  the roots of  their  aggressiveness and appearance are indeed due to 
aurochs variants at key loci responsible for those traits. An in-depth investigation of such 
questions  would  require  a  larger  dataset  of  aurochs  genomes  as  well  as  a  more 
comprehensive Lidia sampling due to their fragmentation in highly distant genetic lineages 
(33).
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Stable Isotope Analysis
In addition to their ancestry, we studied the ecology of the bovids through stable isotope 
analysis of bone collagen. Lynch et al. (48) suggested that stable isotope data could be used 
to infer niche separation between the species in Britain, with domestic cattle in more open 
settings, while aurochs (about 1‰ more depleted in δ13C) were habitually in more forested 
areas,  or  wet  ground.  This  is  most  likely  facilitated through human management  of  the 
domestic cattle, separating them from their wild counterparts. In contrast, Noe-Nygard et al. 
(49) failed to observe such an effect in samples from Denmark and northern Germany.

Considering  our  dataset  and  other  data  published  on  Iberian  cattle  (categorised  on 
morphology/date)  (50–59) we  observe  that  the  nitrogen  isotope  means  are  statistically 
different only when our data are compared using morphological characteristics, not genetic 
distinctions (see Dataset S1 and Supplementary Information). This difference is mostly due 
to some domestic cattle with  δ15N values greater than 6.5‰. This could be explained by 
some  taurine  cattle  having  exclusive  habitual  access  to  high  nitrogen  isotope  ratio 
resources. For example,  human management such as corralling on manured ground, or 
feeding with manured crops, would produce this effect. Nevertheless, there is generally a 
large amount of overlap in the isotope values for the two groups suggesting that wild and 
domesticated groups often did not occupy different niches in Iberia.

Discussion
We generated and analyzed biomolecular data from B. primigenius and B. taurus spanning 
more than 9000 years  in  the same region.  Cattle  are  important  livestock in  the Iberian 
Peninsula today, and our results illustrate the interaction between domestic cattle and their 
wild relatives in the past. The two groups show signs of frequent hybridization starting soon 
after the arrival of cattle to the peninsula, as evident in our oldest directly dated Neolithic 
individual (moo039, 7426-7280 CalBP) where signals of carrying both ancestries are clear. 
Throughout the Neolithic, we observed large variations in the wild versus domestic ancestry 
per  individual,  but  this  pattern  later  stabilized  (to  20-30%  aurochs  ancestry)  from  the 
Chalcolithic/Bronze Age onwards. As we do not know whether the sequenced individuals 
were  hunted  or  herded,  this  could  reflect  a  transition  from  hunting  and  herding  to 
predominantly herding and it is possible that systematic herd management led to the nearly 
constant levels of aurochs ancestry over the last 4000 years. This period also coincides with 
several other societal changes; including the Bell Beaker complex and the introduction of 
human ancestry from the Pontic steppe into the Iberian Peninsula (60–62). Around this time, 
humans also started processing a significantly higher amount of dairy products connected 
with the “secondary product revolution”  (63,  64). Aurochs were probably present in Iberia 
until  Roman times  (31) leaving possibilities for interbreeding but we cannot exclude that 
various factors such as hunting or changing vegetation had led to a substantial decline in the 
wild aurochs population around the early Bronze Age. A previous study on cattle morphology 
from the site of El Portalón described a decrease in size from the Neolithic to the Chalcolithic 
and a further significant size decrease from the Chalcolithic to the Bronze Age  (65) and 
associated this change in size to the aridification of the area at this time (66). Indeed, this 
climatic change could also be related to a reduction of the aurochs population contributing to 
the stabilization of  the levels of  ancestry in domestic cattle from the Bronze Age to the 
present. Nonetheless, our stable isotope results suggest that wild and domesticated groups 
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often  did  not  occupy  substantially  different  niches  on  the  Iberian  Peninsula.  Material 
excavated  from  Denmark  suggested  that  aurochs  changed  their  niches  over  time  (49) 
demonstrating some flexibility depending on local vegetation and the possibility of aurochs 
adapting to changing environments. 

The reduced level of aurochs ancestry on the X chromosome (compared to the autosomes) 
in  admixed individuals  suggests  that  it  was mostly  aurochs males  who contributed wild 
ancestry to domestic herds, a process that had been suggested based on the distribution of 
mitochondrial haplotypes before  (5). A recent parallel study based using ancient genomes 
also detected male-biased aurochs introgression using similar methods as our study  (28). 
Consequently,  the  offspring  of  wild  bulls  and  domestic  cows  could  be  born  into  and 
integrated within managed herds. It is unclear how much of this process was intentional but 
the possibility of a wild bull inseminating a domestic cow without becoming part of the herd 
suggests that some level of incidental interbreeding was possible. For Neolithic Turkey, it 
has been suggested that allowing insemination of domesticated females by wild bulls was 
intentional,  maybe even ritual  (67).  Modern breeders are still  mostly exchanging bulls or 
sperm to improve their stock which manifests in a lower between-breed differentiation on the 
X chromosome (46).

The lack of correlation between genomic, stable isotope and morphological data highlights 
the difficulties of identifying and defining aurochs to the exclusion of domestic cattle. All of  
these data measure different aspects of an individual: their ancestry, ecology or appearance, 
respectively. While they can give some indication, none of them are a direct measurement of 
how these cattle were recognised by prehistoric humans or whether they were herded or 
hunted.  It  remains  unclear  whether  our  ancestry  inferences  had  any  correlation  to  how 
prehistoric herds were managed and how much intentional breeding is behind the observed 
pattern of hybridization. It is even possible that all hybrids identified in this study were part of  
domestic herds.

Even though wild aurochs populations went extinct, European aurochs ancestry survived 
into modern cattle with a relatively uniform distribution across western European breeds. 
Isolated Iberian Lidia,  bred for  their  aggressiveness,  appears to be no exception to this 
pattern.  This  rejects  the notion that  an overall  increased proportion of  aurochs ancestry 
causes the distinctiveness of  certain breeds,  but  considering the functional  relevance of 
archaic  introgression  into  modern  humans  (68),  it  is  possible  that  aurochs  variants  at 
functional  loci  may  have  a  substantial  influence  on  the  characteristics  of  modern  cattle 
breeds. Our low coverage sequencing data did not allow us to investigate this but future 
bioarchaeological studies combining different types of data will have the possibility to clarify 
the role of the extinct aurochs ancestry in modern domestic cattle.

Conclusions
Using a bioarchaeological approach we have demonstrated that since cattle arrived in Iberia 
there has been hybridization with the local aurochs population, and that mainly aurochs bulls 
contributed to the gene pool still found in domestic herds today. Admixture proportions vary 
for the first few millennia but stabilize during the Bronze Age at approximately 20-30% of wild 
ancestry  in  the  individuals  found at  the  Iberian  archaeological  sites,  a  level  that  is  still 
observed  in  modern  Iberian  breeds,  including  the  more  aggressive  Lidia  breed.  This 
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development could be the result  of  an initial  mix of hunting and herding together with a 
generally loose management of herds, becoming more controlled over time in combination 
with a reduced importance of hunting wild aurochs.

The amount of hybridisation observed in the ancient cattle makes it difficult to genetically 
define what a domestic or wild Bos is, bringing into doubt the validity of such categorisations. 
Our interpretation is made more difficult by the overlap in morphological and metric data, 
creating further difficulties in species determination (especially in hybrids) and niche sharing 
as revealed by stable isotopes. To some extent, our interpretation is moot, as the salient 
matter is, how did prehistoric humans interact with cattle? What was their sense of wild and 
domestic and hybridisation? While we have recognised individual hybrids, to what extent 
these were part of domestic herds or intentionally bred and managed is uncertain. 

Another  source  of  uncertainty  in  our  determinations  is  the  limited  knowledge about  the 
genetic diversity in European aurochs. Further regional (and temporally longitudinal) aurochs 
genomes would aid future genomic studies defining the genetic variation in the European 
aurochs population. 
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Materials and Methods

Data generation
We attempted DNA extractions of 50 archaeological remains from which we successfully 
extracted DNA from 24 individuals identified as domestic cattle and aurochs excavated from 
four prehistoric sites in Iberia: El Portalón de Cueva Mayor (n=18), Artusia (n=1), Els Trocs 
(n=2) and Mendandia (n=3). Teeth and bones were UV irradiated (6 J/cm2 at 254 nm) and 
the first millimeter of bone/tooth surface abraded using a Dremel™ tool. DNA was extracted 
in a dedicated ancient DNA facility using a silica-based DNA extraction protocol  (69). For 
each sample, 100-200mg of bone or tooth powder were incubated for 24 h at 37ºC, using 
the  MinElute  column  Zymo  extender  assembly  replaced  by  the  High  Pure  Extender 
Assembly (Roche High Pure Viral Nucleic Acid Large Vol. Kit) and performed twice for each 
sample.  DNA extracts  were subjected to UDG treatment  for  the removal  of  deaminated 
cytosines  and  were  further  converted  into  blunt-end  double  stranded  Illumina  multiplex 
sequencing libraries  (70).  Between seven and fifthteen qPCR cycles were performed to 
amplify the DNA libraries using indexed primers  (70). These were subsequently pooled at 
equimolar  concentrations  and  shotgun  sequenced  on  Illumina  HiSeq  and  Novaseq 
sequencing platforms.  

Radiocarbon dates
Eight Bone and teeth were directly radiocarbon dated (AMS) at Waikato University in New 
Zealand and two teeth  at  Beta Analytics  in  the United States.  Radiocarbon dates were 
calibrated using the OXcal 4.4 program (71) and the IntCal20 calibration curve (72). Three 
samples from the site of Mendandia were conventionally radiocarbon dated at Groningen 
(Netherlands) radiocarbon laboratory and calibrated as above.

Stable Isotopes Analysis
Many of the samples analysed here were radiocarbon dated and stable isotope data (via 
IRMS) were generated in this process, to augment this data we also produced stable isotope 
data for some additional samples in this dataset, where they were available. The additional 
samples underwent bone collagen or tooth dentine collagen extraction at the Laboratorio de 
Evolución Humana (Universidad de Burgos) following the protocol of (73). In brief, this is a 
cold acid demineralization, followed by Milli Q water rinsing, gelatinization at pH3 (24 hrs at 
70ºC), Ezee filtering and lyophilization. Collagen yields (as % mass of starting bone) were 
recorded. Stable isotope values (δ13C, δ15N) and %C, %N were measured in duplicate at the 
Universitat Autònoma de Barcelona, unless only one sample was successful in the analysis. 
Collagen samples (approx. 0.4 mg) were analysed using a Flash IRMS elemental analyser 
(EA) coupled to a Delta V Advantage isotope ratio mass spectrometer (IRMS), both from 
Thermo  Scientific  (Bremen,  Germany)  at  the  Institute  of  Environmental  Science  and 
Technology of the Universitat Autònoma de Barcelona (ICTA-UAB). International laboratory 
standard  IAEA-600  was  used,  with  measurements  made  relative  to  Vienna  PeeDee 
Belemnite (V-PDB) for  δ13C, and air  N2 (AIR) for  δ15N. The average analytical  error was 
<0.2‰ (1σ) as determined from the duplicate analyses of δ13C and δ15N. In house standards 
used was dog hair collected and homogenized for interlaboratory comparisons.
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Data processing    
HiSeq  X10  reads  have  been  trimmed  and  merged  using  AdapterRemoval  (74) while 
adapters for NovaSeq 6000 reads have been trimmed with cutadapt (75) and merging was 
performed with FLASH  (76) requiring a minimum overlap of 11bp. Single-end reads of at 
least 35bp length were then mapped to the cattle reference genomes UMD3.1  (77) and 
Btau5  (78) using bwa  (79) with the non-default  parameters: -l  16500, -n 0.01, and -o 2. 
Different  sequencing  runs  per  sample  were  merged  with  samtools  (80) and  consensus 
sequences were called for duplicate sequences with identical start and end coordinates (81). 
Finally,  reads with more than 10% mismatches to the reference genome were removed. 
Biological sex was assigned to the samples mapped to the Btau_5 reference genome (as 
UMD3.1 does not contain a Y chromosome assembly) using the Rx method (82) modified for 
29 autosomes.

Mitochondrial contamination was estimated following the approach used by Green et al. (83) 
for hominins. We first identified nearly private mutations (less than 5% frequency in the 278 
diverse  mitogenomes  used  by  MitoToolPy  and  dometree  (84),  obtained  from  Dryad 
https://doi.org/10.5061/dryad.cc5kn) in each individual and then used the proportion of non-
consensus alleles at these sites to estimate contamination. We restricted this analysis to 
sites with at least 10x coverage, a minimum base quality of 30. Furthermore, transition sites 
with a C or G in the consensus mitogenome were excluded to avoid over-estimation due to 
post-mortem damage.  Standard  errors  were  estimated  assuming  a  binomial  distribution 
around  the  point  estimate.  Code  used  for  this  step  can  be  found  at 
https://github.com/GuntherLab/mt_contam_domestic_green 

For comparative purposes, we also processed published data from (5, 18, 19, 26) using the 
same bioinformatic pipeline. Furthermore, we downloaded sequence data for six Spanish 
Lidia cattle (41), a single modern water buffalo (Bubalus bubalis, Jaffrabadi-0845) (85) and a 
single  zebu  cattle  individual  (Sha_3b)  (86) and  processed  them  with  our  ancient  DNA 
mapping pipeline. To obtain a pseudohaploid Yak (Bos grunniens) sequence, we followed 
the approach by (27) splitting the Yak reference genome (87) contigs into 100bp fragments 
and mapping them to the UMD3.1 reference genome.

Data Analysis

Mitochondrial  consensus  sequences  were  called  using  ANGSD  (88) and  the  options 
-doFasta  2  -doCounts  1  -minQ 30  -minMapQ 30.  Mitochondrial  haplogroups  were  then 
assigned to the whole mitogenome sequences using the Python script MitoToolPy (84). 

For population genomic analysis, we used a panel of SNPs derived from Run6 of the 1000 
genomes project  (89,  90). We obtained a list of SNPs from (91) and reduced the panel to 
biallelic SNPs of at least 10% minor allele frequency in the joint European B. taurus/Asian B. 
indicus dataset. Prior to genotype calling, all ancient BAM files were modified such that Ts in 
the first 5 bases of each fragment and As at the last 5 base pairs of each fragment have a 
base quality of 2. This approach allows to include more sites than excluding all transitions 
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which  are  potentially  affected  by  post-mortem damage.  It  produces  highly  correlated  f4 
statistics (Supplementary Information, Figure S2) and f4 ratios (Supplementary Information, 
Figure S3) but much lower standard errors in f4 ratios due to the larger total number of sites 
(Supplementary Information, Figure S3). To generate pseudohaploid representations of each 
individual, we randomly draw a single read with mapping and base quality of at least 30 at 
each SNP position. If  the allele carried by the ancient individual was not one of the two 
known  alleles,  we  removed  the  site  from  the  panel.  Using  this  approach,  ~9.1  million 
autosomal and 248K X chromosomal SNPs were genotyped in the ancient samples.  To 
compare the ancient samples to a diverse set of modern cattle, we used the panel of modern 
European breeds presented by (27) which were genotyped at ~770,000 SNPs. The ancient 
samples were genotyped the same way as for the 1000 Bulls project SNP panel.

To conduct an ordination of the nuclear data, sequences of 43 ancient Eurasian cattle and 
two aurochs were obtained from (26) and (5). Outgroup f3 statistics were calculated for all 
pairs of our Iberian Bos samples, using a Yak (Bos grunniens) genome as an outgroup, and 
a distance matrix for all samples was calculated as 1-f3. All f-statistics were calculated in R 
version 4.1.2  (92) package ‘admixtools2’  (93). The distance matrix was used to compute 
scores for  non-metric  multi-dimensional  scaling (NMDS) ordinations using the metaMDS 
function in the ‘vegan’ R package and 10000 random starts (94).

European aurochs introgression  into Iberian individual  X was estimated using fɑ 4 ratios 
calculated with POPSTATS (95) and the equation

ɑ=1−
f 4(Gyu 2,YAK ; X ,EuropeanAurochs)
f 4(Gyu 2,YAK ;1,EuropeanAurochs)

.

Both Bed3 and CPC98 were separately tested as aurochs source and Bed3 was chosen for 
the results presented in the article due to lower confidence intervals. POPSTATS was run 
with the non-default options –ratio, –testpop and –not23 to allow for more autosomes than 
humans have. We also used admixtools2  (93) and qpAdm (38,  39) to model the ancestry 
proportions in the samples. Bed3 was used as a source for European aurochs ancestry (due 
to lower standard errors in the f4 ratios) while the domestic Anatolian Neolithic Sub1 was 
used as a source for domesticated cattle ancestry. As “right” populations, we used Gyu2, B. 
indicus, Yak and Bison bonasus bonasus PLANTA. qpAdm was run with auto_only=FALSE, 
maxmiss=0.5  and  allsnps=TRUE.  When  the  two  source  model  did  not  fit  (p<0.01)  or 
produced  infeasible  admixture  proportions  outside  [0,  1],  we  used  rotate_models  and 
qpadm_multi to find alternative models adding CPC98 as an additional possible source or 
“right” population. qpAdm was also used for the modern western European breed panel from 
(27) adding Bes2  (5) to  the “right”  populations and excluding breeds from Italy  and the 
Balkan from the targets as non-taurine ancestry (27) in them would lead to a rejection of the 
models. Finally, we also used Struct-f4 (40) to estimate ancestry proportions. First, input files 
were generated with the provided helper scripts and f4 statistics were calculated in blocks of 
5Mbp. Struct-f4 was then run in semi-supervised mode to estimate ancestries in Iberian 
individuals with at least 0.1x coverage. This cutoff was chosen as lower coverage samples 
prevented conversion. CPC98, YAK, Ch22, Gyu2, Bed3, Sub1 and Sha_3b were used as 
additional individuals to provide a framework of different possible ancestries.
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Data availability
Raw sequence data and aligned reads for the new ancient individuals are available through 
the European Nucleotide Archive under  accession number  PRJEB63140.  All  metric  and 
isotope data are available in Dataset S1.
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