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ABSTRACT 

Background | Symptoms of borderline personality disorder (BPD) often manifest in 
adolescence, yet the underlying relationship between these debilitating symptoms and the 
development of functional brain networks is not well understood. Here we aimed to investigate 
how multivariate patterns of functional connectivity are associated with symptoms of BPD in a 
large sample of young adults and adolescents. 

Methods | We used high-quality functional Magnetic Resonance Imaging (fMRI) data from 
young adults from the Human Connectome Project: Young Adults (HCP-YA; N = 870, ages 22-
37 years, 457 female) and youth from the Human Connectome Project: Development (HCP-D; 
N = 223, age range 16-21 years, 121 female). A previously validated BPD proxy score was 
derived from the NEO Five Factor Inventory (NEO-FFI). A ridge regression model with 10-fold 
cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict 
BPD scores in unseen data from regional functional connectivity, while controlling for in-scanner 
motion, age, and sex. The trained model was further tested on data from HCP-D without further 
tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-
related changes in connectivity. 

Results | Multivariate functional connectivity patterns significantly predicted out-of-sample BPD 
proxy scores in unseen data in both young adults (HCP-YA; pperm = 0.001) and older 
adolescents (HCP-D; pperm = 0.001). Predictive capacity of regions was heterogeneous; the 
most predictive regions were found in functional systems relevant for emotion regulation and 
executive function, including the ventral attention network. Finally, regional functional 
connectivity patterns that predicted BPD proxy scores aligned with those associated with 
development in youth. 

Conclusion | Individual differences in functional connectivity in developmentally-sensitive 
regions are associated with the symptoms of BPD.   
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Introduction 
 
Borderline personality disorder (BPD) is a major mental illness that affects 0.7% to 2.7% of 
adults in the US (1). Individuals diagnosed with BPD experience sudden shifts in mood and 
struggle to maintain stable interpersonal relationships. BPD is further characterized by 
impulsivity, suicidality, self-harm, feelings of emptiness, intense anxiety and stress, and 
dissociative symptoms (1, 2). BPD is also associated with high rates of death by suicide (4%) 
compared to other mental illness (1, 3-5). BPD and other personality disorders are typically 
diagnosed in adulthood, but recognizable symptoms often manifest in adolescence (6). Despite 
their significance, symptoms of BPD are typically not studied in youth samples and the relevant 
underlying developmental neurobiology remains sparsely explored. Addressing this gap in 
knowledge is of particular importance given that other major mental illnesses that emerge in 
adolescence or young adulthood are increasingly understood as disorders of brain development 
(7).  
 
Previous studies have investigated the link between symptoms of BPD and both brain function 
and structure using magnetic resonance imaging (MRI) (3, 5, 8, 9), but have yielded 
inconsistent findings. Studies using resting-state fMRI have reported altered functional 
connectivity in BPD patients relative to healthy controls in networks associated with emotional 
processing and executive control (8, 10, 11). Altered functional connectivity has been reported 
in frontomedial, frontotemporal and limbic regions (12, 13), the fronto-parietal network (10, 14), 
the default mode network (e.g. posterior cingulate and precuneus (10, 13, 15)), and the salience 
network (e.g. insula and anterior cingulate cortex (10, 12-14)). More generally, a theoretical 
perspective on the involvement of frontolimbic circuits in BPD suggests that deficits in the 
inhibitory function of these regions on circuits associated with social cognition and self-
regulation results in emotional dysregulation and behavioral dyscontrol in BPD (16, 17). 
Although functional alterations in these regions may partly explain the disruptions in emotion 
and regulatory control processes (e.g., impulsivity) common in BPD, some studies have 
reported no significant differences in neuroimaging data in patients versus healthy controls (18, 
19). These inconsistencies may in part be due to the heterogeneity in BPD populations. 
However, interacting methodological factors—in particular, small samples—may also be the 
source of such discrepancies (20). 
 
Prior neuroimaging studies of BPD have mainly used case-control designs with small samples 
of patients with diagnosed BPD. While such designs can be incredibly valuable and are 
ultimately essential for clinical translation, the small size of most case-control designs inevitably 
reduces the replicability and generalizability of the results. Indeed, there is growing evidence 
that large samples, multivariate models, and out-of-sample testing on unseen data are critical to 
identify replicable and generalizable brain-behavior associations (20-22). As suggested in part 
by the Research Domain Criteria (RDoC) (7) and the Hierarchical Taxonomy of 
Psychopathology (HiTOP) (23) frameworks, one alternative to small case-control designs in 
psychiatry are dimensional studies of a clinically-relevant construct in larger samples. 
Furthermore, this perspective accords with overwhelming evidence that BPD symptoms vary 
dimensionally, with functional impairment scaling with symptom severity (23-27). Although 
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dimensional self-report measures of BPD have been developed (28), substantial evidence also 
supports the mapping between Big 5 personality trait measures and personality disorder 
constructs (29). Indeed, Few and colleagues (30) recently developed and validated a trait-based 
measure of BPD derived from self-reported Big 5 personality traits on the NEO-Five Factor 
Inventory, which has been collected widely in larger population surveys and clinical samples. 
The use of such a proxy measure allows the field to leverage existing large-scale data 
resources with high-quality neuroimaging data to study BPD (19). 
 
Here we aimed to investigate how multivariate patterns of functional connectivity relate to 
symptoms of BPD in young adults and adolescents using large-scale publicly available 
datasets. Specifically, we used functional MRI (fMRI) data from two large public datasets to 
characterize functional connectivity in large samples of adolescents and young adults. We then 
used machine learning with rigorous cross-validation to predict symptoms of BPD in unseen 
data from regional patterns of functional connectivity. Finally, to contextualize these results in a 
developmental framework, we evaluated whether the connectivity patterns that best predicted 
BPD aligned with age-related changes of functional connectivity in youth.  
 
 
Methods and Materials 
 
We used functional connectivity networks from two large-scale, publicly available datasets—the 
Human Connectome Project - Young Adult (HCP-YA (31)) and the Human Connectome Project 
- Development (HCP-D (32))—to predict individual differences in BPD symptoms as measured 
by a validated trait-based BPD proxy score. We note that here the term “predict” refers to 
contemporaneous association between BPD and functional connectivity in unseen data rather 
than prospective prediction of BPD. As described below, to investigate the link between regional 
functional connectivity and BPD scores in the adult data from HCP-YA, a multivariate linear 
ridge regression model was first trained for each brain region, predicting participants’ BPD 
scores (i.e., dependent variable) from multivariate functional connectivity patterns (i.e., 
independent predictor). The trained model was then tested on unseen data using cross-
validation. Next, as a strong test of the generalizability of our model, we applied a fully trained 
model from HCP-YA to data from HCP-D without further training or tuning, testing the model on 
unseen data (i.e., HCP-D was not part of the training). Finally, we compared the degree to 
which connectivity patterns that best predicted BPD in this model corresponded to functional 
connectivity patterns that displayed the greatest developmental effects in HCP-D. Throughout, 
we performed multiple sensitivity analyses to assess the robustness of our findings. 
 
Participants 
 
Young adult sample: Resting-state and task functional Magnetic Resonance Imaging (fMRI) 
data from healthy young adults were obtained from the Human Connectome Project–Young 
Adults (HCP-YA (31); N = 870, ages 22-37 years, 457 female and 413 male). All imaging data 
were collected on a customized 3 Tesla scanner at Washington University (WashU). Data 
included 1 hour of resting-state fMRI scans acquired over 2 days (2 scans along opposing R/L 
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and L/R phase encoding directions per day; each about 15 minutes long) and 1 hour of task-
fMRI data over 2 days (one scan of 30 minutes long per day, where each task was run twice 
with opposing R/L and L/R phase encoding directions). All functional images were acquired with 
high spatial and temporal resolution (8x multiband acquisition, 2 mm3, TR=720 ms, TE=33.1 ms, 
flip angle=52°). 
 
Developmental sample: The developmental sample included resting-state and task fMRI data 
from the Human Connectome Project–Development 2.0 Release (HCP-D (32); N = 610, age 
range 5.6-21.9 years, 331 female and 279 male). Imaging data were obtained on 3 Tesla 
Siemens Prisma platforms at four sites. Participants who were at least 8 years old completed 26 
minutes of resting-state fMRI scans in four runs, whereas the scan time for younger participants 
(5-7 years old) were reduced to 21 minutes in total across all runs. The data also included 8 
minutes of task-fMRI data across two runs. All functional images were acquired with high spatial 
and temporal resolution (8x multiband acquisition, 2 mm3, TR=800 ms, TE=37 ms, flip 
angle=52°). 
 
Image processing 
 
The two datasets (HCP-YA and HCP-D) were preprocessed with similar image processing 
pipelines as described below. 
 
Young adult sample:  
All images were processed with HCP minimal preprocessing pipelines (33). The minimally 
preprocessed HCP outputs were then post-processed using the eXtensible Connectivity 
Pipelines-DCAN collaborative (XCP-D (34)). The preprocessing included gradient distortion 
correction, field-map distortion correction, boundary-based registration, bias field correction, and 
whole brain intensity normalization. Functional timeseries were then projected to the fsLR 
cortical surface and smoothed with a 2mm FWHM Gaussian kernel. Post-processing included 
despiking (3dDespike as implemented by AFNI (35, 36)) and confound regression of six motion 
parameters (3 translation (x,y,z) and 3 rotational (roll, pitch, yaw) motion measurements), the 
mean surface timeseries signal as the global signal, the mean white matter, the mean 
cerebrospinal fluid signal with their temporal derivatives, and the quadratic expansion of the six 
motion parameters, tissues signals, and their temporal derivatives. Residual timeseries from this 
regression were then band-pass filtered between 0.01 and 0.08 Hz. A summary measure of in-
scanner motion was estimated as framewise displacement, and high-quality data with low mean 
framewise displacement (mean [FD] <0.2mm) were retained for subsequent analyses. Finally, 
the preprocessed time-series were parcellated into 400 cortical regions using the Schaefer-400 
atlas (37). The parcellated time-series were used to construct functional connectivity matrices 
as Pearson correlation coefficients between pairs of regional time-series for each participant. 
We also used a lower resolution parcellation with 200 cortical regions (i.e., the Schaefer-200 
atlas) for sensitivity analysis. 
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Developmental sample: 
The developmental data (HCP-D) was preprocessed with the ABCD-BIDS pipeline (38), which 
is an updated version of HCP minimal preprocessing pipeline with a few differences and 
additional steps. Specifically, ABCD-BIDS uses the Advanced Normalization Tools (ANTs) for 
denoising, bias field correction, and nonlinear registration, which improves the registration 
performance compared to other methods (4, 39). Moreover, the motion estimation process in 
ABCD-BIDS provides an estimate of framewise displacement after accounting for respiratory 
effects on magnetic field changes (40). In addition, given that the HCP-D data was a higher 
motion sample compared to HCP-YA, scrubbing was used to remove high-motion time frames 
that had larger than 0.2 mm framewise displacement estimates (41). The rest of the image 
processing steps were the same as described above for HCP-YA. 
 
Assessment of BPD-spectrum symptoms 
 
Targeted measures of BPD symptoms are usually administered only in focal studies of BPD in 
adults and are not available in large-scale neuroimaging studies of youth. To obtain a proxy 
measure of BPD-spectrum symptoms in HCP-YA and HCP-D, we used a previously-validated 
proxy measure of BPD (30) that has been previously used to investigate BPD-spectrum 
symptoms in large imaging datasets such as the HCP-YA (19). This proxy measure estimates 
BPD symptom scores using 24 items from a widely-used personality assessment instrument, 
NEO Five Factor Inventory (NEO-FFI). Few and colleagues developed and validated this trait-
based BPD proxy score across multiple datasets, comparing the BPD proxy score with explicit 
measures of BPD in both clinical BPD samples and the broader population (30). Given that the 
NEO-FFI is available in most large-scale datasets, it provides a useful and scalable route to 
study BPD-relevant symptoms in large-scale data. We used the NEO-FFI instrument to estimate 
a BPD proxy score for each participant for both young adults (HCP-YA) and adolescents (HCP-
D) as previously described (30) (Table S1). Note that NEO-FFI was available for all participants 
in HCP-YA data, whereas it was only available for participants over age 16 in HCP-D data (N = 
223, 121 female and 102 male).  
 
Multivariate analyses 
 
Prior work has shown that identifying reliable and generalizable brain-behavior associations 
requires out-of-sample testing, and that reliability is enhanced by multivariate analysis 
approaches (20, 21). Accordingly, here we used a machine learning approach to predict BPD 
proxy scores from multivariate regional functional connectivity patterns. Specifically, we used 
linear ridge regression modeling as implemented in Scikit-Learn (42). We trained a separate 
linear ridge regression model for each brain region, predicting each participant’s BPD proxy 
score from the region’s functional connectivity profile (i.e., all connections between a given 
region and all other regions). Hence, the dependent variable was the participant's BPD score 
and the independent predictor was a row of their functional connectivity matrix (Figure 1). This 
analysis yielded an estimate of the association between BPD symptoms and the functional 
connectivity profile of each brain region. As described below, all models included covariates for 
age, sex, and in-scanner motion (mean FD). 
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We first trained and tested the ridge regression models on the HCP-YA data using 10-fold 
cross-validation. For each split, we performed nested cross-validation and hyperparameter 
tuning (regularization parameter = [0.1, 1.0, 10]) using the training set. To avoid leakage across 
training and test sets when correcting for covariates, we first used a linear regression model to 
remove covariate effects from connectivity data in the training set. We then used the same 
linear regression model (without any additional adjustments) to correct for covariates in the test 
set. Note that the linear regression model coefficients were defined only based on the training 
set, avoiding any information leakage in the test data. This procedure was repeated separately 
for each train and test split. Following the covariate correction process, the ridge regression 
model trained on the training set was applied to the held-out test set to predict the BPD proxy 
scores in the unseen data. To assess the final out-of-sample model performance of a given 
brain region in HCP-YA, we pooled the test set predicted scores across all 10 folds and 
estimated the model performance as the Pearson correlation coefficient r between the empirical 
and predicted BPD proxy scores. To obtain the participant-level model performance, we 
calculated the average predicted score across brain regions for each participant. The model 
performance was then estimated as the correlation coefficient between the empirical and 
average predicted scores across regional models. We evaluated the significance of predictive 
performance using permutation testing: we generated a null distribution of predicted scores for 
each split using 1,000 permutations by randomly shuffling the dependent variable (i.e., BPD 
scores) and repeating the analysis. The model performance was assessed as described above. 
This procedure yielded null distributions of participant-level and region-level model performance. 
 
To assess system-specific model performance, we calculated the average model performance 
in the seven resting-state functional networks (i.e., intrinsic networks) as defined by Yeo and 
colleagues (43). We then performed a network enrichment analysis using spatial 
autocorrelation-preserving null models (i.e., “spin” tests) (44, 45). Specifically, we generated null 
brain maps of regional model performance with disrupted topographic patterns but preserved 
spatial autocorrelation by applying 10,000 randomly-sampled rotations to the spherical 
projections of the data (44). The rotations were applied to one hemisphere and then mirrored to 
the other hemisphere. We calculated the average model performance for each intrinsic network 
in the null brain maps, generating a null distribution of average model performance per intrinsic 
network. 
 
Given that multivariate analysis along with large samples and out-of-sample testing are 
essential for generalizable studies of brain-behavior associations, we next aimed to directly 
evaluate the generalizability of our approach. We selected HCP-D data since it is a large 
dataset with a younger age range and is acquired using different sequences and at different 
scanning sites, making it a good candidate to test the generalizability of our approach and 
predictive models. We used all the data from HCP-YA to train a ridge regression model, and 
then applied the trained regional models to the completely unseen HCP-D data without any 
additional tuning. Model performance and significance were evaluated as described above. 
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Functional connectivity age effects 
 
To assess whether the association between functional connectivity and BPD proxy scores 
reflects any age-related effects on functional connectivity, we estimated how regional functional 
connectivity profiles evolve during development. We used a linear ridge regression model for 
each region to predict participant age at the time of the interview from the region’s functional 
connectivity profile in the full developmental sample (HCP-D; N = 610), while controlling for in-
scanner motion and sex as above. As in prior analyses, the models were trained and tested 
using a 10-fold cross-validation analysis. The regional age prediction accuracies were then 
compared with regional BPD proxy score prediction accuracies for the HCP-D dataset. We 
performed 10,000 spin permutations to compare the topographic patterns across the cortex 
using spatial autocorrelation-preserving null models generated as described above (44, 45). 
This procedure allowed us to evaluate if the regions whose functional connectivity profiles best 
predicted BPD symptoms co-localized with regions whose connectivity varied the most with 
brain development. 
 
Code and data availability 
 
Data used in the present study were obtained from publicly available HCP-YA and HCP-D 
datasets (31, 32). Code used to conduct the analyses reported in this study is available on 
GitHub (https://github.com/PennLINC/borderline). 
 
 
Results 
 
BPD score distribution 
 
BPD proxy score was estimated from 24 NEO-FFI items in both young adults (HCP-YA: 𝛼 = 
0.79, mean = 0.90, SD = 0.39) and adolescents (HCP-D: 𝛼 = 0.80, mean = 1.17, SD = 0.43). 
Summary measures from BPD score distributions and sample descriptions are included in 
Table 1 for both datasets. The BPD score distribution in both samples was comparable to the 
BPD scores reported by Few and colleagues (30) in college students (Sample 1: 𝛼 = 0.78, 
mean = 1.76, SD = 0.44; Sample 2: 𝛼 = 0.73, mean = 1.83, SD = 0.43) and a general population 
of young adults (𝛼 = 0.81, mean = 1.52, SD = 0.43). Note that Few and colleagues reported 
higher BPD scores (𝛼 = 0.67, mean = 2.29, SD = 0.39) for psychiatric outpatient adult 
populations (including patients with BPD). 
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Table 1. BPD score distribution | Sample descriptions and BPD score distributions (range, 
mean, and standard deviation (SD)) are provided. Note that the BPD proxy score was only 
estimated for a subset of individuals in HCP-D since the NEO-FFI questionnaire was only 
available for individuals over age 16. Internal consistency was estimated using Cronbach’s 𝛼. 

 HCP-YA 
(N = 870) 

HCP-D (with NEO-FFI) 
(N = 223) 

HCP-D (full sample) 
(N = 610) 

Age 
(range, mean, SD) [22.0, 27.0], 28.6, 3.7 [16.0, 21.9], 19.0, 1.8 [5.6, 21.9], 14.6, 4.0 

Sex 
(female, male) 457, 413 121, 102 331, 279 

BPD score 
(range, mean, SD) [-0.17, 2.30], 0.90, 0.39 [0, 2.75], 1.17, 0.43 n/a 

Reliability coefficient 
(Cronbach’s 𝜶, CI) 0.79, [0.77, 0.81] 0.80, [0.78, 0.82] n/a 

 
 
 

 
Figure 1. Predicting BPD proxy scores from multivariate functional connectivity patterns 
| Functional connectivity data (i.e. features) were used to predict BPD proxy scores (i.e., target)  
in young adults and adolescents. A separate linear ridge regression model was trained using a 
given region’s functional connectivity profile (e.g., the i-th row of the connectivity matrix 
corresponding to the connections between region i and all other regions). The regional trained 
models were applied to the held-out test data to obtain predicted BPD scores for each individual 
and each region. Region-level accuracy was estimated as the Pearson correlation coefficient r 
between the empirical and predicted BPD scores for each model. Participant-level accuracy was 
estimated as the Pearson correlation coefficient r between the empirical and average predicted 
BPD scores across regional models. 
 
 
Functional connectivity predicts symptoms of BPD 
 
We used a multivariate linear ridge regression model to predict BPD proxy scores from a given 
brain region’s functional connectivity profile (Figure 1). The regional models were initially 
trained on the data from healthy young adults (HCP-YA) and tested on unseen data from the 
same cohort using cross-validation. We found that multivariate patterns of functional 
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connectivity significantly predicted dimensional BPD symptoms (Figure 2a; r = 0.14, pperm = 
0.001). These findings demonstrate that multivariate functional connectivity patterns are indeed 
linked to symptoms of BPD in young adults. We further found that there was substantial 
heterogeneity in how well the functional connectivity profile of each region predicted BPD 
symptoms (Figure 2b; see regional maps thresholded based on permutation tests in Figure 
S1). To investigate whether the regional prediction accuracy was more pronounced in specific 
functional systems, we estimated the average prediction accuracy for the 7 intrinsic functional 
networks defined by Yeo and colleagues (43) (Figure 2c). We found that the prediction 
accuracy was highest for the fronto-parietal (pspin = 0.021; FDR-corrected) and ventral attention 
(pspin = 0.007; FDR-corrected) networks, suggesting a link between BPD symptoms and 
systems involved in emotion regulation and executive function. 
 
BPD symptoms are linked to functional connectivity in adolescents 
 
To examine whether the link between functional connectivity and BPD symptoms identified in 
early adulthood generalizes to late adolescence, we used the previously trained regional models 
to predict BPD proxy scores in HCP-D. Note that the regional models were trained on HCP-YA 
data only and the trained models were applied to HCP-D; as such, the HCP-D data were 
completely unseen by the models during training. Consistent with the reported findings in young 
adults, we found that regional functional connectivity profiles significantly predict BPD proxy 
scores in adolescents (Figure 2d; r = 0.24, pperm = 0.001). The fact that the model constructed 
in young adults significantly predicted BPD symptoms in an unseen sample of older adolescents 
suggests that multivariate connectivity patterns are generalizably linked to BPD symptoms 
across ages and multiple datasets. Notably, regional patterns showed similar heterogeneity as 
in the adult data (Figure 2e; see correspondence between regional accuracies across samples 
in Figure S2), with the highest prediction accuracy observed in ventral attention network (FDR-
corrected pspin = 0.0001; Figure 2f). Together, these results suggest that individual differences 
in brain systems important for emotion regulation and executive function are linked to BPD 
symptoms in both young adults and adolescents.  
 
Regions that predict BPD symptoms also display developmental effects 
 
Next, we sought to situate our findings in the context of brain development. Specifically, we 
evaluated whether the regions that were most strongly linked to BPD symptoms also were those 
that displayed age-related changes in connectivity during development in youth. To quantify the 
developmental effects in functional networks, we used regional patterns of functional 
connectivity to predict the age of unseen HCP-D participants. We found that functional 
connectivity was associated with age, but that prediction accuracy varied significantly across the 
cortex (Figure 3a). To directly examine if these age-related changes in connectivity profiles 
aligned with regions associated with BPD symptoms, we compared the cortical distributions of 
age prediction accuracy and BPD proxy score prediction accuracy in the developmental sample 
(Figure 3b). Permutation testing with spatial autocorrelation-preserving null models (i.e., “spin” 
tests) revealed a significant association between cortical distribution of age and BPD proxy 
score prediction accuracy (Figure 3b; r = 0.20, pspin = 0.001). This finding suggests that regions 
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associated with BPD symptoms are also those that undergo greater age-related changes in 
functional connectivity in youth.  
 
 

 
Figure 2. Functional connectivity predicts BPD scores in young adults and adolescents | 
Regional linear ridge regression models were used to predict BPD proxy scores from 
multivariate functional connectivity patterns in (a-c) healthy young adults from the Human 
Connectome Project (HCP-YA) data and (d-f) adolescents from the Human Connectome Project 
- Development (HCP-D). The model performance was assessed as the Pearson correlation 
coefficient r between the empirical and predicted scores. Participant-level model performance is 
depicted as scatter plots, demonstrating the relationship between the empirical and average 
BPD scores across regional models (HCP-YA: r = 0.14, 95% CI = [0.08 0.21]; HCP-D: r = 0.24, 
95% CI = [0.12 0.37]). Each point in the scatter plot represents a participant. The participant-
level accuracy r (red vertical line) is then compared with a null distribution of accuracies (blue 
distribution) obtained from 1,000 permutation tests, randomly shuffling the samples. Regional 
out-of-sample model performance is depicted across the cortex for both cohorts (Schaefer-400 
atlas; 99% confidence intervals) (see regional maps thresholded based on permutation tests in 
Figure S1). Finally, the average functional system-level prediction accuracy was estimated for 
the 7 intrinsic functional networks defined by Yeo and colleagues (32). Asterisk denotes 
significant system-level prediction accuracy based on 10,000 spatial autocorrelation-preserving 
null models (pspin < 0.05; FDR-corrected). Significant system-level accuracy was observed in 
fronto-parietal (pspin = 0.021; FDR-corrected) and ventral attention (pspin = 0.007; FDR-corrected) 
networks for HCP-YA and ventral attention network (pspin = 0.0001; FDR-corrected) for HCP-D. 
Intrinsic networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention; 
lim = limbic; fp = fronto-parietal; dmn = default mode. 
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Figure 3. Regional predictive capacity aligns with developmental changes in functional 
connectivity | (a) Regional functional connectivity profiles were used to predict participants’ age 
in the developmental sample (HCP-D). The age prediction accuracy r is depicted across the 
cortex along with the previously obtained BPD proxy score prediction accuracy (Schaefer-400 
atlas; 99% confidence intervals). (b) Topographic patterns of BPD score prediction and age 
prediction were compared using the Pearson correlation coefficient r and 10,000 spatial 
autocorrelation-preserving null models (i.e., “spin” tests). Each point in the scatter plot 
corresponds to a brain region. 
 
 
Sensitivity analysis provides convergent results 
 
As a final step, to evaluate if our findings were affected by specific analytical choices, we 
performed multiple sensitivity analyses. First, we repeated the analyses using only resting-state 
fMRI data, rather than the concatenated task- and rest-fMRI scans used in the original analysis. 
Specifically, we used functional connectivity networks from only resting-state fMRI data to 
predict BPD proxy scores in both young adults (HCP-YA; Figure S3a) and adolescents (HCP-D; 
Figure S3b). The results were consistent in both samples. Next, to ensure that the reported 
findings were robust to the parcellation resolution chosen, we repeated all the analyses with a 
different parcellation resolution (200 rather than 400 regions).  Again, results were consistent for 
both HCP-YA (Figure S4a) and HCP-D (Figure S4b). Finally, to verify that the findings were not 
influenced by scanning-site differences in HCP-D, we used CovBat-GAM (46-49) to harmonize 
functional connectivity data across sites and repeated the analyses with harmonized data. The 
results were consistent with the original findings (Figure S5). These sensitivity analyses—
combined with the generalizability of results across samples—bolsters confidence in the 
reported findings. 
 
Discussion 
 
To our knowledge, this is the largest functional neuroimaging study of BPD symptoms in 
adolescence and young adulthood. We found three main results. First, functional connectivity 
significantly predicted symptoms of BPD in large samples of both young adults (HCP-YA) and 
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adolescents (HCP-D). Second, the predictive capacity was heterogeneous across the cortex, 
such that the most predictive regions were found in functional systems relevant for emotion 
regulation and executive function. Finally, we found that regions associated with BPD symptoms 
co-localized with regions with prominent age-related changes in connectivity in youth. 
 
Previous studies have sought to associate symptoms of BPD with diverse functional and 
structural neuroimaging markers (3, 8). The findings from these studies have varied 
considerably and as yet there is no consensus regarding how differences in brain function are 
linked to BPD symptoms. However, one relatively consistent finding across studies is the 
presence of altered structural and functional patterns in fronto-limbic networks implicated in 
emotion regulation and cognitive control (8, 10-14, 50). One likely cause of the heterogeneity in 
the existing literature is the relatively small samples studied, hampering efforts to identify 
reliable and replicable neurobiological signatures of BPD symptoms (3). 
 
It should be noted that such challenges are hardly unique to BPD research; identifying reliable, 
replicable, and generalizable neuroimaging indices of psychopathology remains a major 
ongoing challenge (20, 22). Recent evidence suggests that large samples, out-of-sample 
testing, and use of multivariate methods are essential for studies that seek to link brain and 
behavior (20-22). Out-of-sample testing using rigorous cross-validation analysis along with 
analyses that assess the generalization of results to unseen, new datasets collected under 
different conditions are required to properly assess brain-behavior associations. Fortunately, 
collaborative efforts in collecting and sharing human neuroimaging data with large sample sizes 
have provided an unprecedented opportunity to examine the brain-behavior association in a 
systematic and comprehensive manner. Although there has been a growing number of large-
scale publicly available datasets in healthy populations and clinical cohorts (e.g., ADNI for 
Alzheimer's Disease (51); PPMI for Parkinson’s Disease (52); ENIGMA consortium for various 
neurological and psychiatric diseases and disorders (53)), most neuroimaging studies that are 
focused on neuropsychiatric brain disorders and diseases have small sample sizes. An 
alternative approach suggested in part by the RDoC initiative and the HiTOP system is to 
investigate dimensional variations of clinically-relevant measures in larger non-clinical samples 
such as HCP (7, 23). 
 
We used a personality trait-based measure to estimate BPD proxy scores in large samples of 
healthy young adults and adolescents. This allowed us to take advantage of publicly available 
datasets to study the link between brain function and BPD symptoms. One recent study used a 
similar approach to investigate the link between structural neuroimaging markers from T1-
weighted MRI data and BPD symptoms in two large samples (19). However, the study identified 
no associations between BPD symptoms and the MRI structural markers, including cortical 
thickness, surface area and subcortical volumes (19). Considered together with our findings, 
this aligns with the recent evidence indicating that functional brain organization may provide a 
more sensitive tool than anatomical markers for capturing brain-behavior relationships in some 
settings (20). Here, we investigated the link between multivariate functional connectivity patterns 
and BPD symptoms in adolescence and young adulthood. Our findings demonstrated that 
functional connectivity is indeed associated with BPD proxy scores in both adolescents and 
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young adults. The spatial distribution of regional predictive capacity was heterogeneous across 
the cortex. Consistent with some studies in the previous literature, the link between functional 
connectivity and BPD symptoms was more prominent in certain functional systems, such as the 
ventral attention network (which overlaps with insular cortex and the salience network) and the 
fronto-parietal network (11, 50). These functional networks are associated with emotion 
regulation (ventral attention network) and executive function and top-down control (fronto-
parietal network). The high contribution of ventral attention and fronto-parietal networks to the 
link between brain function and BPD symptoms may be linked to impairments in emotion 
regulation and impulse control reported in patients with BPD (1). 
 
Notably, we found that this link between functional connectivity and BPD proxy score was 
generalizable across datasets of both young adults and adolescents collected at different sites. 
This finding indicates that although BPD is usually not diagnosed before the age of 18 years (2), 
individual differences in functional networks linked to BPD may be present earlier in 
development. This possibility is particularly relevant given the finding that brain regions that 
undergo the most functional maturation during development are the ones that contribute the 
most to the link between functional connectivity and BPD symptoms. Together, these findings 
suggest that—like many other major neuropsychiatric conditions (7, 54)—BPD may be 
understood in part as a disorder of neurodevelopment. Examining BPD from a 
neurodevelopmental perspective may accelerate efforts to identify markers of risk for BPD 
earlier in life and develop personalized interventions before negative outcomes of this disabling 
disorder accrue. 
  
The findings presented in this work should be considered with respect to several methodological 
caveats. First, the analyses were not performed in patients diagnosed with BPD. The two 
datasets used in this study include healthy young adults and typically developing adolescents. 
The main objective of this study was to conduct a large-scale functional imaging study of BPD 
symptoms leveraging the large sample sizes of publicly available datasets. Although we used a 
trait-based BPD proxy score that has been previously validated in multiple datasets including 
healthy and BPD populations, future work applying this approach to individuals diagnosed with 
BPD (or individuals with greater levels of BPD symptomatology) using targeted BPD measures 
is required to further confirm our findings. Second, the NEO-FFI questionnaire, and hence the 
BPD proxy score used here, was only available in older adolescents and young adults 
(individuals who were at least 16 years or older). Using this trait-based measure of BPD proxy 
score made it possible to expand our analysis to older adolescents, which have generally not 
been included in prior studies of BPD. Moving forward, the link between functional brain 
organization and BPD symptoms in younger adolescents remains an important area for study, 
given that recognizable symptoms of BPD often manifest much earlier in life, even as early as 
12 years old (1, 2). Third, BPD is a heterogeneous disorder and patients with BPD often suffer 
from comorbid mental health problems and other psychiatric conditions (1, 5). Further work is 
required to discover the impact of comorbidity with other mental disorders. Finally, the goal of 
this study was to reliably identify a link between multivariate patterns of functional connectivity 
and BPD using large sample and rigorous out-of-sample analysis. Future investigation focusing 
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on specific functional connections and regions-of-interest is essential to identify detailed neural 
substrates of BPD.  
 
In sum, we demonstrated that multivariate functional connectivity patterns can successfully 
predict BPD symptoms in unseen data from both young adults and adolescents. Findings also 
suggest regions whose functional connectivity develops the most in youth align with those 
associated with BPD, providing new evidence for understanding BPD as a neurodevelopmental 
disorder. Moving forward, linking within-individual neurodevelopmental trajectories of functional 
connectivity to the emergence of BPD is an important direction for longitudinal studies. 
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Table S1. NEO Five Factor Inventory (NEO-FFI) items included in BPD proxy score | The 
NEO-FFI was used to estimate composite BPD proxy scores (19). The included 24 items and 
the corresponding questions are listed below. Given that a lower score in items assessing 
Agreeableness and Conscientiousness corresponds to more severe BPD symptoms, these 
items were reverse scored (i.e., multiplied by -1). The composite BPD score was estimated for 
each participant as the mean score across the included 24 items. 

Neo-FFI Factor Facet Item Number and Question 

Neuroticism (N) 

Anxiety #21: “I often feel tense and jittery.” 
#31: “I rarely feel fearful or anxious.” 

Angry Hostility #36: “I often get angry at the way people treat me.” 

Depression 
#26: “Sometimes I feel completely worthless.” 
#41: “Too often when things go wrong, I get discouraged 
and feel like giving up.” 

Vulnerability 

#11: “When I'm under a great deal of stress, sometimes I 
feel like I'm going to pieces.” 
#51: “I often feel helpless and want someone else to solve 
my problems.” 

Extraversion (E) Excitement-Seeking #22: “I like to be where the action is.” 

Openness (O) 
Feelings #33: “I seldom notice the moods or feelings that different 

environments produce.” 

Actions #8: “Once I find the right way to do something, I stick to It.” 
#28: “I often try new and foreign foods.” 

Agreeableness (A) 

Trust 

#24: “I tend to be cynical and skeptical of others' 
intentions.” 
#29: “I believe that most people will take advantage of you 
if you let them.” 

Straightforwardness #59: “If necessary, I am willing to manipulate people to get 
what I want.” 

Altruism #14: “Some people think I'm selfish and egotistical.” 
#39: “Some people think of me as cold and calculating.” 

Compliance 
#9: “I often get into arguments with my family and co-
workers.” 
#54: “If I don't like people, I let them know it.” 

Conscientiousness (C) 

Order #5: “I keep my belongings clean and neat.” 
#55: “I never seem to be able to get organized.” 

Dutifulness 

#40: “When I make a commitment, I can always be 
counted on to follow through.” 
#45: “Sometimes I'm not as dependable or reliable as I 
should be.” 

Self-Discipline 
#30: “I waste a lot of time before settling down to work.” 
#50: “I am a productive person who always gets the job 
done.” 
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Figure S1. Regional predictive capacity thresholded based on permutation tests | We 
generated a null distribution of predicted scores for each regional model using 1,000 
permutations by randomly shuffling the dependent variable (i.e., BPD scores) and re-calculating 
the model performance for each permutation. Regional maps were then thresholded based on 
permutation tests following correction for multiple comparisons (pperm < 0.05; FDR-corrected). 
 
 

 
Figure S2. Regional predictive capacity is consistent in adulthood and adolescence | 
Spatial distributions of BPD score predictions in adulthood (HCP-YA; Figure 2a) and 
adolescence (HCP-D; Figure 2b) were compared using Pearson correlation coefficient r and 
10,000 spatial autocorrelation-preserving null models (i.e., “spin” tests). Each point in the scatter 
plot corresponds to a brain region. 
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Figure S3. Sensitivity analysis with resting-state fMRI only | Only the resting-state fMRI 
data were used to predict BPD proxy scores, rather than the concatenated rest- and task-fMRI 
data used in the original analysis (Figure 2). The results are depicted for (a) healthy young 
adults from the Human Connectome Project (HCP-YA) data and (b) adolescents from the 
Human Connectome Project - Development (HCP-D). The participant-level prediction 
accuracies are shown using the scatter plots (HCP-YA: r = 0.15, 95% CI = [0.08 0.21]; HCP-D: r 
= 0.16, 95% CI = [0.02 0.28]). Similar to the original analysis, the results were compared with 
null distributions of accuracies obtained from permutation tests. Region-level accuracies are 
also shown across the cortex (Schaefer-400 atlas; 99% confidence intervals). Finally, the 
average functional system-level prediction accuracy was estimated for the 7 intrinsic functional 
networks. Asterisk denotes significant system-level prediction accuracy based on 10,000 spatial 
autocorrelation-preserving null models (pspin < 0.05; FDR-corrected). Significant system-level 
accuracy was observed in fronto-parietal (pspin = 0.0001; FDR-corrected) and ventral attention 
(pspin = 0.014; FDR-corrected) networks for HCP-YA and ventral attention (pspin = 0.0035; FDR-
corrected) and somatomotor (pspin = 0.0035; FDR-corrected) networks for HCP-D. Intrinsic 
networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention; lim = 
limbic; fp = fronto-parietal; dmn = default mode. 
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Figure S4. Sensitivity analysis with lower parcellation resolution | To ensure that the 
findings are independent from the parcellation resolution, a lower resolution atlas with 200 
cortical regions (Schaefer-200 atlas) was used to obtain functional connectivity matrices. 
Functional connectivity data were then used to predict BPD proxy scores. The results are 
depicted for (a) healthy young adults from the Human Connectome Project (HCP-YA) data and 
(b) adolescents from the Human Connectome Project - Development (HCP-D). The participant-
level prediction accuracies are shown using the scatter plots (HCP-YA: r = 0.15, 95% CI = [0.09 
0.22]; HCP-D: r = 0.20, 95% CI = [0.06 0.32]). Similar to the original analysis, the results were 
compared with null distributions of accuracies obtained from permutation tests. Region-level 
accuracies are also depicted across the cortex (Schaefer-400 atlas; 99% confidence intervals). 
Finally, the average functional system-level prediction accuracy was estimated for the 7 intrinsic 
functional networks. Asterisk denotes significant system-level prediction accuracy based on 
10,000 spatial autocorrelation-preserving null models (pspin < 0.05; FDR-corrected). Significant 
system-level accuracy was observed in ventral attention network for HCP-YA (pspin = 0.0001; 
FDR-corrected) and HCP-D (pspin = 0.0001; FDR-corrected). Intrinsic networks: vis = visual; sm 
= somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp = fronto-parietal; 
dmn = default mode. 
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Figure S5. Findings are not influenced by scanning-site effects | We used CovBat-GAM to 
harmonize functional connectivity across scanning sites in HCP-D and repeated the analyses 
with harmonized data. Participant-level (a), region-level (b), and system-level (c) accuracies 
were consistent with the original results. Asterisk denotes significant system-level prediction 
accuracy (pspin < 0.05; FDR-corrected). Significant system-level accuracy was observed in 
ventral attention network (pspin = 0.0001; FDR-corrected). Intrinsic networks: vis = visual; sm = 
somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp = fronto-parietal; dmn 
= default mode. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.08.03.551534doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551534
http://creativecommons.org/licenses/by/4.0/

