

1
2
3
4
5
6
7

Surface growth of *Pseudomonas aeruginosa* reveals a regulatory effect of 3-oxo-C₁₂-homoserine lactone in absence of its cognate receptor, LasR

Thays de Oliveira Pereira¹, Marie-Christine Groleau¹, Eric Déziel^{1#}

¹ Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, H7V 1B7, Canada

[#]Corresponding author: eric.deziel@inrs.ca

8 ABSTRACT

9 Successful colonization of a multitude of ecological niches by the bacterium *Pseudomonas*
10 *aeruginosa* relies on its ability to respond to concentrations of self-produced signal molecules.
11 This intercellular communication system known as quorum sensing (QS) tightly regulates the
12 expression of virulence determinants and a diversity of survival functions, including those
13 required for social behaviours. In planktonic cultures of *P. aeruginosa*, the transcriptional
14 regulator LasR is generally considered on top of the QS circuitry hierarchy; its activation relies
15 on binding to 3-oxo-C₁₂-homoserine lactone (3-oxo-C₁₂-HSL), a product of the LasI synthase.
16 Transcription of *lasI* is activated by LasR, resulting in a positive feedback loop. Few studies
17 have looked at the function of QS during surface growth even though *P. aeruginosa* typically
18 lives in biofilm-like communities under natural conditions. Here, we show that surface-grown *P.*
19 *aeruginosa* readily produces 3-oxo-C₁₂-HSL in absence of LasR, and that this phenotype is
20 frequent upon surface association in naturally occurring environmental and clinical LasR-
21 defective isolates, suggesting a conserved alternative function for the signal. Indeed, even in the
22 absence of the cognate regulator LasR, 3-oxo-C₁₂-HSL upregulates the autologous expression of
23 pyocyanin and of LasR-controlled virulence determinants in neighboring cells. This highlights a
24 possible role for 3-oxo-C₁₂-HSL in shaping community responses and provides a possible
25 evolutive benefit for mixed populations to carry LasR-defective cells, a common feature of
26 natural of *P. aeruginosa*.
27

28 IMPORTANCE

29 The bacterium *Pseudomonas aeruginosa* colonizes and thrives in many environments, in which
30 it is typically found in surface-associated polymicrobial communities known as biofilms.
31 Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular
32 communication system pivotal in the expression of social traits. Regardless of its importance in
33 QS regulation, the loss of function of the master regulator LasR is now considered a conserved
34 adaptation of *P. aeruginosa*, irrespective of the origin of strains. By investigating the QS
35 circuitry in surface-grown cells, we found accumulation of QS signal 3-oxo-C₁₂-HSL in absence
36 of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly
37 based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-
38 grown cells. This provides a new perspective on the beneficial aspects that underline the
39 frequency of LasR-deficient isolates.

40 INTRODUCTION

41 Bacteria are social organisms that often respond to environmental cues in coordination.
42 *Pseudomonas aeruginosa* is a very adaptable Gram-negative bacterium that colonizes diverse
43 ecological niches. The flexibility of this opportunist human pathogen is aided by several
44 regulatory networks, assuring proper responses to changing environmental conditions. Quorum
45 sensing (QS) is a gene expression regulation mechanism based on the production, release,
46 detection and response to diffusible signaling molecules that synchronizes the transcription of
47 target genes in a population density-dependent manner (1). In *P. aeruginosa*, three interlinked
48 QS systems regulate the expression of hundreds of genes – including several encoding virulence
49 determinants (2). In this bacterium, QS regulation is structured as a hierarchical network
50 composed of two *N*-acyl homoserine lactone (AHL)-based circuits (*las* and *rhl*) and the *pqs*
51 system, that relies on signaling molecules of the 4-hydroxy-2-alkylquinoline (HAQ) family. The
52 *las* and *rhl* systems comprise an AHL synthase (LasI and RhI) responsible for the syntheses of
53 *N*-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C₁₂-HSL) and *N*-butanoyl-L-homoserine
54 lactone (C₄-HSL), respectively (3, 4). These autoinducers activate their cognate LuxR-type
55 transcriptional regulators – LasR and RhI, which in turn can induce the transcription of target
56 QS-regulated genes. Under standard laboratory conditions, the *las* system is generally considered
57 to be atop the regulatory hierarchy. Once activated by the binding with its cognate autoinducer,
58 LasR regulates several virulence traits such as the elastase LasB (*lasB*) (5, 6). LasR also induces
59 the transcription of the LasI synthase coding gene, creating a positive feedback loop (7). The *pqs*
60 system relies on the LysR-type transcriptional regulator MvfR (also known as PqsR) (8, 9). The
61 latter directly activates the operons *pqsABCDE* and *phnAB*, both required for HAQ biosynthesis,
62 and indirectly regulates the expression of many other QS-regulated genes via PqsE (8, 10-14).
63 MvfR has dual ligands as it can be induced by 4-hydroxy-2-heptylquinoline (HHQ) and the
64 *Pseudomonas* quinolone signal (PQS; 3,4-dihydroxy-2-alkylquinoline), both members of the
65 HAQ family (15, 16). The *rhl* and *pqs* circuits are directly and positively regulated by LasR,
66 which induces the transcription of *rhI* and *rhII* as well as *mvfR* (13, 15, 17, 18).

67 In addition to sensing the surrounding chemical environment, bacteria are also responsive to
68 mechanical signals, such as those involved in the physical encounter of the cell with surfaces or
69 with each other. Indeed, several behaviors are specific to life on surfaces, including movement
70 on semi-solid (swarming motility) and solid surfaces (twitching motility) as well as biofilm
71 formation (19-21). Not surprisingly, virulence is also induced by surface attachment as many
72 infection strategies require contact with the host (22-24). Even though QS and surface-sensing
73 regulate many of the same social behaviors, little is known about how these different regulatory
74 cues converge to modulate bacterial responses. Exploring the link between surface-sensing and
75 QS is particularly relevant as *P. aeruginosa* readily adopts a surface-attached mode of growth as
76 biofilms in its natural habitats. Biofilms are organized communities encased in a self-produced
77 exopolymeric matrix. In the context of infections, biofilms contribute to host immune evasion

78 and delay antibiotic penetration (25, 26). In fact, *P. aeruginosa* persists as biofilms in the lungs
79 of people with the genetic disease cystic fibrosis (27).

80 While the emergence of LasR-defective mutants has long been associated with adaptation to the
81 CF lung environment (28-31), it is actually a common feature of *P. aeruginosa* from diverse
82 environments (32, 33). Interestingly, some LasR-defective isolates, known as RAIL (for RhlR
83 active independently of LasR), retain a functional RhlR regulator (31, 32, 34-37). Their sustained
84 QS responses are in line with our previous report showing that in the presence of a nonfunctional
85 LasR, RhlR acts as a surrogate activator for a set of LasR-regulated genes (38). It is noteworthy
86 that in the wild-type *P. aeruginosa* strain PA14 background, surface-sensing upregulates *lasR*,
87 and that surface-grown cells induce LasR targets more strongly than their planktonic counterpart
88 (39). Thus, surface-sensing appears to sensitize cells to the cognate autoinducer 3-oxo-C₁₂-HSL.
89 Considering the prevalence of LasR-defective mutants, unable to produce nor respond to 3-oxo-
90 C₁₂-HSL, we wondered how *P. aeruginosa* would respond to surface attachment, as biofilm
91 formation is essential to this bacterium physiology and pathology.

92 In this study, we investigated the effect of surface-sensing on QS responses of LasR-defective
93 strains. We found that, upon surface attachment, LasR becomes dispensable to the production of
94 3-oxo-C₁₂-HSL. This response is conserved among naturally occurring environmental and
95 clinical LasR-defective isolates. Production of 3-oxo-C₁₂-HSL modulates the production of
96 virulence factors at the individual (LasR-defective background) and community levels (mixed
97 with LasR-responsive cells). As a result, virulence of mixed populations, composed of LasR-
98 responsive and LasR-defective cells, is accentuated. We propose that the production of 3-oxo-
99 C₁₂-HSL by LasR-negative cells, modulating biological bacterial responses on diverse levels, has
100 a positive role in shaping community responses of the population.

101

102 MATERIALS AND METHODS

103 Bacterial strains and growth conditions

104 Bacterial strains and plasmids used in this study are listed in **Table 1** and **Table 2**, respectively.
105 Oligonucleotides used are listed in **Table S1**. Bacteria were routinely grown in tryptic soy broth
106 (TSB; BD Difco, Canada) at 37°C in a TC-7 roller drum (NB, Canada) at 240 rpm or on
107 Lysogeny Broth (LB; BD Difco, Canada) agar plates. For quantification of QS signaling
108 molecules and related data, King's A broth (planktonic growth) or King's A agar (surface-
109 associated growth) supplemented with 100 μM FeCl₃ were used (40). For the latter, sterile
110 King's A agar was poured into each well of a 96-well plate (200 μl per well) and allowed to
111 solidify at the center of a biosafety cabinet. When needed, the following concentrations of
112 antibiotics were included: for *Escherichia coli* 100 μg/ml carbenicillin, 15 μg/ml gentamicin, and
113 15 μg/ml tetracycline. Diaminopimelic acid (DAP) was added to cultures of the auxotroph *E.*
114 *coli* χ 7213 at 62.5 μg/ml. Irgasan (20 μg/ml) was used as a counter-selection agent against *E.*

115 *coli*. For *P. aeruginosa*, 300 µg/ml carbenicillin, 30 µg/ml gentamicin, and tetracycline at 125
 116 µg/ml (solid) or 75 µg/ml (liquid).

117

118 **Table 1. Strains used in this study**

Strain	Lab ID #	Relevant genotype or description	Reference
<i>P. aeruginosa</i>			
PA14	ED14	Clinical isolate from a human burn patient UCBPP-PA14	(41)
PA14 <i>ΔlasR</i>	ED4409	PA14 derivate; unmarked in-frame <i>lasR</i> deletion	This study
PA14 <i>ΔlasI</i>	ED4539	PA14 derivate; unmarked in-frame <i>lasI</i> deletion	(42)
PA14 <i>ΔrhlR</i>	ED4406	PA14 derivate; unmarked in-frame <i>rhlR</i> deletion	This study
PA14 <i>lasR rhlR</i> ⁻	ED266	PA14 derivate; marked deletion of <i>lasR</i> (<i>lasR</i> ::Gm) and <i>rhlR</i> (<i>rhlR</i> ::Tc)	(38)
PA14 <i>ΔlasR ΔrhlI</i>	ED4541	PA14 derivate; unmarked in-frame double <i>lasR</i> and <i>rhlI</i> deletion	This study
PA14 <i>lasR</i> ⁻ <i>ΔpqsE</i>	ED247	PA14 derivate; marked deletion of <i>lasR</i> (<i>lasR</i> ::Gm) and an unmarked <i>pqsE</i> deletion	(13)
PA14 <i>ΔlasR ΔlasI</i>	ED4540	PA14 derivate; unmarked in-frame double <i>lasR</i> and <i>lasI</i> deletion	This study
PA14 <i>ΔlasR ΔlasI ΔrhlI attB::CTX phzA1-lux</i>	ED4544	PA14 derivate; unmarked in-frame triple <i>lasR</i> , <i>lasI</i> and <i>rhlI</i> deletion carrying the chromosomal <i>phzA1-lux</i> reporter	This study
PA14 <i>ΔlasR ΔlasI attB::CTX phzA1-lux</i>	ED4591	PA14 derivate; ED4540 carrying the chromosomal <i>phzA1-lux</i> reporter	This study
PA14 <i>ΔlasI attB::CTX lasB-lux</i>	ED4543	PA14 derivate; ED4539 carrying the chromosomal <i>lasB-lux</i> reporter	This study
PA14 <i>ΔlasR attB::CTX lasI-lux</i>	ED4542	PA14 derivate; ED4409 carrying the chromosomal <i>lasI-lux</i> reporter	This study
PA14 <i>ΔlasR ΔpilT</i>	ED4556	PA14 derivate; unmarked in-frame double <i>lasR</i> and <i>pilT</i> deletion	This study
PA14 <i>ΔlasR pilU</i>	ED4557	PA14 derivate; unmarked in-frame <i>lasR</i> and marked <i>pilU</i> mutant (<i>pilU</i> ::MrT7)	This study
18G	ED4592	Oil-contaminated soil	(43)
32R	ED4593	Oil-contaminated soil	(43)
78RV	ED4590	Oil-contaminated soil	(43)
E41	ED4160	Cystic fibrosis isolate	(31)
E113	ED4144	Cystic fibrosis isolate	(31)
E167	ED4152	Cystic fibrosis isolate	(31)
E113 <i>ΔrhlR</i>	ED4145	E113 derivate carrying an unmarked deletion in the <i>rhlR</i> gene	(37)
E167 <i>ΔrhlR</i>	ED4153	E167 derivate carrying an unmarked deletion in the <i>rhlR</i> gene	(37)
<i>E. coli</i>			
SM10(λ <i>pir</i>)	ED222	<i>thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu Km λpir</i>	Lab collection
χ 7213	ED743	<i>thr-1 leuB6 fhuA21 lacY1 glnV44 recA1 ΔasdA4 Δ(zhf-2::Tn10) thi-1 RP4-2-Tc::Mu[λ pir]</i>	Lab collection

119

120 **Table 2. Plasmids used in this study**

Plasmid	Description	Reference or source
pTOP01	pEX18Ap Δ lasR; gene replacement vector for the in-frame deletion of lasR by allelic recombination, Carb ^r	This study
pTOP02	pEX18Ap Δ rhlR; gene replacement vector for the in-frame deletion of rhlR by allelic recombination, Carb ^r	This study
pTOP03	pEX18Ap Δ rhII; gene replacement vector for the in-frame deletion of rhII by allelic recombination, Carb ^r	This study
pTOP04	pEX18Ap Δ pilT; gene replacement vector for the in-frame deletion of pilT by allelic recombination, Carb ^r	This study
pEX18Gm Δ lasI	Gene replacement vector for the in-frame deletion of lasI by allelic recombination, Gm ^r	(42)
pTOP05	Promoter of lasI in mini-CTX-lux, Tet ^r	This study
pCDS101	Promoter of phzI in mini-CTX-lux, Tet ^r	(44)
pCTX-1-P _{lasB} -lux	Promoter of lasB in mini-CTX-lux, Tet ^r	(45)

121

122 **Construction of in-frame deletion mutants**

123 An allelic exchange technique based on the use of a suicide vector was used to construct gene
124 knockout deletions (46). Mutant alleles, flanked by regions of homology to the recipient
125 chromosome, were synthesized *in vitro* by PCR from PA14 genomic DNA and then cloned into
126 the allelic exchange vector pEX18Ap (yielding pTOP01, pTOP02, pTOP03, and pTOP04).
127 Plasmids were assembled from purified PCR products and restriction enzyme-cleaved plasmid
128 backbone by employing a seamless strategy of ligation-independent cloning (pEASY® -Uni
129 Seamless Cloning and Assembly Kit, TransGen Biotech Co.). These suicide vectors were
130 transferred into *P. aeruginosa* by conjugation with *E. coli* donor strain (SM10). Carbenicillin
131 was used to select recipient merodiploid cells and *E. coli* donor cells were counter-selected using
132 Irgasan. Double-crossover mutants were isolated by sucrose counter-selection and confirmed by
133 PCR.
134

135 **Inactivation of pilU gene**

136 Transfer of transposon insertion (::MrT7) from the PA14 non-redundant transposon insertion
137 mutant library was used (47) to inactivate pilU. Genomic DNA from pilU::MrT7 (mutant ID #
138 53607) was extracted and transformed into the recipient PA14 Δ lasR background. Gentamicin
139 (15 μ g/ml) was used to select transformants.
140

141 **Construction of chromosomal reporter strains**

142 The promoter region of lasI was PCR-amplified from PA14 genomic DNA. pTOP05 (mini-
143 CTX-lasI-lux) was constructed by the assembly of the purified PCR product and the enzyme-
144 cleaved mini-CTX-lux backbone (48). pTOP05, pCTX-1-P_{lasB}-lux and pCDS101 were integrated

145 into the *attB* chromosomal site of PA14 and isogenic mutants by conjugation on LB agar plates.
146 Selection was performed on LB agar plates containing tetracycline.

147

148 **Luminescence reporter measurements**

149 For *lux* reporter readings, luminescence was measured using a Cytation 3 multimode plate reader
150 (BioTek Instruments, USA). Relative light units (RLU) were normalized by colony-forming
151 units per mL⁻¹ (reported in RLU CFU⁻¹). When mentioned, AHLs were added to a final
152 concentration of 1.5 µM of C₄-HSL and 3 µM of 3-oxo-C₁₂-HSL from stocks prepared in high-
153 performance liquid chromatography (HPLC)-grade acetonitrile. Acetonitrile only was added in
154 controls.

155

156 **Quantification of QS signaling molecules**

157 Concentration of 3-oxo-C₁₂-HSL was measured for bacteria grown in liquid King's A
158 (planktonic growth) and on King's A agar (surface growth) using HPLC/tandem mass
159 spectrometry (LC/MS/MS) as previously described (49). Quantification was performed at
160 indicated times post-inoculation in both growth conditions. For planktonic growth, overnight
161 cultures grown on TSB were diluted to OD₆₀₀ 0.1 in fresh King's A medium. At the given time-
162 points, cultures were mixed with acetonitrile containing the internal standard tetradeuterated 4-
163 hydroxy-2-heptylquinoline (HHQ-d₄), in a 4:1 ratio of culture to solvent (HHQ-d₄ final
164 concentration of 3 ppm). Bacterial suspension was vortexed and centrifuged at maximum speed
165 for 10 min in order to pellet bacterial cells. The resulting mixture was transferred into vials for
166 LC/MS/MS analyses. Alternatively, for cells grown on agar surfaces, overnight cultures on TSB
167 were diluted to OD₆₀₀ 0.05 in TSB medium. Cultures were grown until an OD₆₀₀ of 1 and agar
168 plugs were inoculated with 5 µl of bacterial suspension. Plates were incubated at 37°C and
169 samples were collected at the indicated time-points. Each sample was composed of two agar
170 plugs mixed with 1 mL of acetonitrile containing the internal standard. This mixture was
171 incubated at 4°C for 16h under gentle agitation, optimizing the diffusion of signaling molecules
172 from the agar to the solvent. After incubation, the mixture was centrifuged at maximum speed
173 for 10 min and the resulting supernatant was transferred into a LC/MS vial. All samples were
174 injected using an HPLC Waters 2795 (Mississauga, ON, Canada) on a Kinetex C8 column
175 (Phenomenex) with an acetonitrile-water gradient containing 1% acetic acid. The detector was a
176 tandem quadrupole mass spectrometer (Quattro premier XE; Waters) equipped with a Z-spray
177 interface using electrospray ionization in positive mode (ESI+). Nitrogen was used as a
178 nebulizing and drying gas at flow rates of 15 and 100 ml · min⁻¹, respectively. Concentration was
179 normalized by CFUs per mL⁻¹ and reported in ng CFU⁻¹. All experiments were performed in
180 triplicates and repeated at least twice independently.

181

182 **Pyocyanin quantification**

183 Quantification of pyocyanin produced by surface-grown cells was performed similarly to
184 previously described in (50). Overnight cultures were diluted and grown in TSB until an OD₆₀₀

185 of 1. At this point, 5 μ L were used to inoculate agar plugs from a 96-well plate containing King's
186 A agar supplemented with FeCl_3 (200 μ L per well). Plates were incubated at 37°C for 24h.
187 Pyocyanin was extracted in 500 μ L of chloroform from two agar plugs (by replicate). Tubes
188 were vortexed and centrifuged for 3 min at 12,000 $\times g$. 200 μ L of the organic phase was
189 recovered in a new tube and a second chloroform extraction was performed on the plugs. The
190 organic phase (400 μ L) was acidified with 500 μ L 0.2 N HCl and vortexed. The samples were
191 centrifuged for 3 min at 12,000 $\times g$ and the absorbance of the pink aqueous phase was read at
192 OD_{520 nm}. Blank was performed by pyocyanin extraction from uninoculated agar plugs. Values
193 were corrected by colony-forming units per mL⁻¹ from samples prepared in the same conditions.
194

195 ***Drosophila melanogaster* feeding assay**

196 Fruit flies (*D. melanogaster*) were infected orally in a feeding assay model (51). Male flies (4- to
197 6-days old) were anesthetized under a gentle stream of carbon dioxide and separated into vials,
198 each containing 10 males. Each strain (or condition) tested was composed of three independent
199 vials, totalizing 30 flies. Vials were prepared with 5 mL of a solution of sucrose agar (5% of
200 sucrose and 1.5% agar). Once solidified, a sterile filter disk was placed on the surface. Prior to
201 infection, bacteria were grown in 6 mL of TSB until an OD₆₀₀ of 3. At this point, the bacterial
202 suspension was centrifuged 3 min at 12,000 $\times g$ and the pellet was resuspended in 100 μ L of
203 sterile 5% sucrose and dispensed on the filter papers. Sterile 5% sucrose alone was used as
204 control. Males were starved 6-8h prior to the infection. Flies were kept at 25°C and about 50%
205 humidity. They were subjected to 12 hrs cycles of light/dark. Mortality was monitored daily for 8
206 days. The experiment was performed twice, each time in triplicate.

207

208 **RESULTS**

209 **Surface growth induces production of 3-oxo-C₁₂-HSL in the absence of LasR.** In *P.*
210 *aeruginosa* prototypical strains such as PA14, the quorum sensing regulatory cascade is
211 considered to be primarily activated by the *las* system. LasR, once activated by the binding of 3-
212 oxo-C₁₂-HSL, regulates the transcription of target genes, including the gene coding the LasI
213 synthase. This process induces the production of more 3-oxo-C₁₂-HSL, resulting in a positive
214 feedback loop. In standard laboratory liquid cultures of *P. aeruginosa*, production of 3-oxo-C₁₂-
215 HSL peaks early and decreases overtime ((11); **Fig. 1A**). We note the same pattern of production
216 in wild-type *P. aeruginosa* PA14 (WT) cells grown on an agar surface (**Fig. 1A**). Surprisingly, in
217 a LasR-negative background, the production pattern of 3-oxo-C₁₂-HSL is influenced by
218 suspended vs surface culture conditions (**Fig. 1**). As expected, production of the LasR ligand is
219 barely detectable at the stationary phase of a $\Delta lasR$ mutant in broth cultures. However, its
220 concentration is elevated during surface growth (**Figs. 1A and B**). In WT culture, the peak
221 concentration is observed during the exponential growth phase while it shifts to late-stationary

222 phase in the $\Delta lasR$ mutant, solely when growing on the surface. This shift might indicate a role
223 for other regulators in the activation of *lasI* transcription in the absence of LasR.
224

225 **Production of 3-oxo-C₁₂-HSL and expression of *lasI* are RhlR-dependant in LasR-negative**
226 **backgrounds.** Expression of the gene coding the LasI synthase, responsible for the synthesis of
227 3-oxo-C₁₂-HSL, is typically considered to be regulated by LasR. Therefore, little to no
228 production of this AHL is expected in LasR-defective strains, which is what is observed in
229 planktonic cultures. However, upon surface growth, 3-oxo-C₁₂-HSL is produced in the absence
230 of LasR. To make sure the production of 3-oxo-C₁₂-HSL in this condition still requires LasI
231 activity, we measured concentrations of this AHL in a $\Delta lasI$ mutant grown under the same
232 surface-associated conditions. As expected, 3-oxo-C₁₂-HSL is not detectable in a $\Delta lasI$ mutant,
233 irrespective of the growth phase (Fig. 2A). This result suggests that transcription of *lasI* can
234 occur in absence of LasR upon surface growth. To further investigate this, we measured the
235 activity of a chromosomal *lasI-lux* reporter in a $\Delta lasR$ background in both planktonic and
236 surface-grown cells. In agreement with the production of 3-oxo-C₁₂-HSL, transcription of *lasI*
237 was observed in LasR-negative background grown on a surface (Fig. 2B).
238

239 We have previously reported that RhlR can act as a surrogate regulator of LasR-dependent
240 factors in the absence of LasR (38). In *P. aeruginosa* planktonic cultures, this activation is seen
241 by the production of 3-oxo-C₁₂-HSL at late stationary phase in LasR-negative backgrounds.
242 However, as shown in Fig. 1A, the concentration of this AHL in a $\Delta lasR$ mutant in broth cultures
243 remains extremely low early on. In contrast, surface growth readily induces production and the
244 corresponding upregulation of *lasI* transcription in a $\Delta lasR$ mutant (Figs. 1A and 2B). To verify
245 if RhlR is responsible for this upregulation, we measured concentrations of 3-oxo-C₁₂-HSL in a
246 $\Delta rhlR$ and a double *lasR rhlR* mutant (Figs. 3 and S1) upon surface growth. The production
247 profile of 3-oxo-C₁₂-HSL is similar between the WT and a $\Delta rhlR$ mutant, peaking at exponential
248 growth phase and decaying overtime (Fig. S1). The concomitant inactivation of *lasR* and *rhlR*
249 abrogates 3-oxo-C₁₂-HSL production, which concurs with our previous finding of RhlR being
250 the alternative activator of *lasI* in LasR-negative backgrounds (Figs. 3 and S1). This result
251 suggests that the transcription of *lasI* is mediated by RhlR in surface-grown cells.
252

253 Thus, in the absence of LasR, surface-grown cells appear to rely on the activity of the *rhl* system
254 to control QS-regulated factors, including the production of 3-oxo-C₁₂-HSL. Since the full
255 activity of RhlR depends on both C₄-HSL and PqsE (13), we measured the concentration of 3-
256 oxo-C₁₂-HSL in the double mutants $\Delta lasR \Delta rhlR$ and *lasR* $\Delta pqsE$ in order to further elucidate the
257 role of the Rhl system in this mechanism. As expected, inactivating *rhlR* or *pqsE* in a *lasR*
258 background severely affects the production of 3-oxo-C₁₂-HSL (Fig. 3) and confirm that the
259 production of 3-oxo-C₁₂-HSL by LasR- cells growing on a surface is dependent on the RhlR-
260 mediated transcription of *lasI*.
261

262 **Induction of the production of 3-oxo-C₁₂-HSL upon surface growth is a widespread**
263 **response among *P. aeruginosa* strains.** Conserved regulation pathways strongly suggest the
264 importance of bacterial responses to their fitness (52). We have observed that surface growth
265 induces production of 3-oxo-C₁₂-HSL in an engineered *lasR* deletion mutant of *P. aeruginosa*
266 PA14. To verify if this response is restricted to this prototypical strain, we measured
267 concentrations of this AHL in six naturally occurring *LasR*-defective *P. aeruginosa* isolates:
268 three strains we recently identified among a collection of environmental isolates (32) and the
269 other three are *LasR*-defective CF clinical isolates (E41, E113 and E167) from the Early
270 *Pseudomonas* Infection Control (EPIC) study (31, 37). Timing of sampling was chosen based on
271 the 3-oxo-C₁₂-HSL production profile of PA14 $\Delta lasR$, which peaks at late exponential phase
272 (**Fig. 1**). Considering that growth curves can differ greatly between *P. aeruginosa* strains, we
273 decided to also include a 24h time-point. Environmental and clinical *LasR*-negative strains
274 behave similarly to the engineered PA14 $\Delta lasR$ mutant, with production of 3-oxo-C₁₂-HSL being
275 augmented upon surface growth when compared to planktonic (**Fig. 4**). The production profile
276 varies among the *LasR*-negative backgrounds: strain 18G steadily produces 3-oxo-C₁₂-HSL
277 during surface growth. At 24h, there is 6-fold more in surface than in the planktonic growth
278 conditions. The environmental strain 32R and the clinical strain E113 have production profiles
279 similar to PA14 $\Delta lasR$, and the concentration of 3-oxo-C₁₂-HSL peaks at the late exponential
280 phase (**Figs. 4 and S2**). Production is advanced (compared with PA14 $\Delta lasR$) in strains 78RV
281 and E167. In these strains, AHL production peaks at early exponential phase (**Figs. 4 and S2**).
282 Finally, upregulation of 3-oxo-C₁₂-HSL production upon surface growth was not observed for
283 the clinical strain E41 under our test conditions. Taken together, these results confirm that the
284 absence of a functional *LasR* generally induces the production of 3-oxo-C₁₂-HSL in response to
285 growth in association with surfaces, despite the general requirement of *LasR* to produce this
286 AHL in standard laboratory planktonic culture conditions.
287

288 **3-oxo-C₁₂-HSL induces the expression of pyocyanin in the absence of LasR.** The
289 conservation of surface-primed induction of 3-oxo-C₁₂-HSL production in *LasR*-defective
290 isolates strongly suggests that this signaling molecule mediates significant biological responses
291 in this context. Because 3-oxo-C₁₂-HSL is only/essentially known as the autoinducing ligand of
292 *LasR*, in a *LasR*-defective background, its production could be considered as a waste of
293 resources. Thus, a plausible explanation for the conservation is that, in the absence of a
294 functional *LasR*, 3-oxo-C₁₂-HSL remains beneficial when *P. aeruginosa* is growing on a surface.
295 Pyocyanin production relies on the expression of the redundant operons *phzA1B1C1D1E1F1G1*
296 (*phz1*) and *phzA2B2C2D2E2F2G2* (*phz2*) – culminating in the synthesis of phenazine-1-
297 carboxylic acid (PCA). PCA is converted to several phenazines, including pyocyanin, the blue
298 pigment characteristic of *P. aeruginosa* cultures (53). Transcription of the *phz1* operon relies on
299 RhlR (13, 54). To verify if 3-oxo-C₁₂-HSL could be implicated in RhlR-dependant QS, we
300 evaluated the level of transcription from the *phz1* promoter during surface-growth, using a
301 chromosomal *phzA1-lux* fusion reporter, in an AHL- and *LasR*-negative triple mutant

302 ($\Delta lasR\Delta lasI\Delta rhlII$). As expected, no transcription is seen in the control condition or when only 3-
303 oxo-C₁₂-HSL is provided, and upon addition of exogenous C₄-HSL, *phz1* transcription is
304 induced, consistent with the requirement of C₄-HSL for RhlR activity (**Fig. 5A**). However,
305 unexpectedly, combined addition of C₄-HSL and 3-oxo-C₁₂-HSL further induces the expression
306 of *phz1* (**Fig. 5A**). The synergistic activation of these signal molecules is also seen for pyocyanin
307 production (**Fig. 5B**). The concomitant addition of C₄-HSL and 3-oxo-C₁₂-HSL induces by
308 almost 3-fold the production of this redox-active molecule compared to the addition of C₄-HSL
309 alone. Similar to the observed *phz1* expression, 3-oxo-C₁₂-HSL alone is not sufficient to induce
310 pyocyanin production. These results clearly demonstrate that 3-oxo-C₁₂-HSL modulates QS-
311 regulated responses even in the absence of its cognate response regulator LasR. This activity
312 depends on the presence of C₄-HSL, thus likely on the function of RhlR.
313

314 **3-oxo-C₁₂-HSL produced by LasR-negative strains positively regulates the LasB virulence**
315 **determinant in cocultures.** AHLs are conserved extracellular intraspecies signaling molecules.
316 Based on this characteristic, we wondered if 3-oxo-C₁₂-HSL produced by LasR-defective isolates
317 could be used by surrounding LasR-active cells to induce LasR-dependent factors. These factors
318 include several exoproducts such as proteases (e.g. LasA and LasB) that can be used by the
319 whole population (“public goods”). To verify this, we measured the activity of the chromosomal
320 *lasB-lux* reporter inserted in $\Delta lasI$ mutant ($\Delta lasI$::CTX *lasB-lux* background) in a surface-
321 associated coculture with a $\Delta lasR$ mutant. Because the $\Delta lasI$ mutant is unable to produce 3-oxo-
322 C₁₂-HSL, the *las* system cannot be activated in this background; however, this strain is LasR-
323 active and prone to induction by exogenous 3-oxo-C₁₂-HSL. As expected, *lasB* transcription is at
324 basal levels in $\Delta lasI$ mutant monoculture (**Fig. 6**). Coculture with $\Delta lasR$, which produces 3-oxo-
325 C₁₂-HSL under these surface culture conditions, induces the transcription of the *lasB-lux* reporter
326 by more than 4-fold at late stationary phase in which the concentration of LasR-inducing 3-oxo-
327 C₁₂-HSL is at its peak. This upregulation depends solely on the production of 3-oxo-C₁₂-HSL by
328 the $\Delta lasR$ mutant, as it is not seen in cocultures with the double mutant $\Delta lasR\Delta lasI$. Thus, 3-oxo-
329 C₁₂-HSL produced by LasR-negative strains can be used by surrounding LasR-active cells,
330 modulating the expression of the QS-regulated genes at the communal level.
331

332 **Virulence of *P. aeruginosa* is positively modulated by LasR-defective cells in coinfection.**
333 Even in absence of a functional LasR or endogenous production of its cognate autoinducer,
334 virulence traits are positively regulated by 3-oxo-C₁₂-HSL at the individual and community
335 levels (**Figs. 5 and 6**). Thus, we postulated that a coinfection with a mixture of LasR-responsive
336 and LasR-defective strains would be more virulent than a separate infection with the respective
337 strains. To test this, we used the fruit fly *Drosophila melanogaster* as an infection host – in
338 which *P. aeruginosa* cause a disease and mortality (51). We fed fruit flies with *P. aeruginosa*
339 cells and monitored survival of the flies for 8 days post-infection. Feeding assay mimics a
340 chronic infection (55). Virulence of WT PA14 (LasR-active) and $\Delta lasR$ mutant (LasR-defective)
341 were tested, as well as a coinfection with a 7:3 ratio of each, respectively (**Figs. 7 and S3**). To

342 address the role of 3-oxo-C₁₂-HSL in this response, we also assessed the virulence of the double
343 mutant $\Delta lasR\Delta lasI$ in individual and coinfection settings (**Figs. 7 and S3**). Under our conditions,
344 fly death was accelerated at the beginning by coinfection of PA14 and $\Delta lasR$, while overall
345 survival was similar between the later and WT PA14. However, virulence of the coinfection
346 PA14 and $\Delta lasR\Delta lasI$ was severely attenuated, indicating that 3-oxo-C₁₂-HSL modulates
347 virulence in coinfection settings.

348

349 **DISCUSSION**

350 The characteristics and behaviors displayed by bacteria within biofilms have been extensively
351 investigated over the years. These surface-associated communities exhibit features that clearly
352 distinguish them from the free-living counterpart. This is due to a sequential and highly regulated
353 process that mediate the transition from planktonic to sessile lifestyle (56). Although QS
354 regulates social behaviors, often also modulated by aspects related to the sessile way of life, it
355 has been essentially characterized genetically and biochemically in cells grown in broth. In the
356 present study, we show that surface-association is sufficient to induce the LasR-independent
357 expression of *lasI* in *P. aeruginosa* and that 3-oxo-C₁₂-HSL modulates the expression of
358 virulence determinants even in the absence of the cognate transcriptional regulator LasR.

359

360 Surface-sensing has been previously linked to differential bacterial responses. For instance, we
361 have shown that regulation of the small RNAs RsmY/RsmZ is modulated differently in broth
362 versus surface-grown cells, probably aiding bacterial adaptation to growth conditions (57).
363 Similarly, expression of *lasR* increases in a surface-dependent manner, culminating in a surface-
364 primed QS activation, due to the sensitization of surface-grown cells to the cognate AHL 3-oxo-
365 C₁₂-HSL (39). Therefore, QS of *P. aeruginosa* responds differently to the same concentration of
366 3-oxo-C₁₂-HSL: weaker QS activation is seen in planktonic cultures, in contrast to high QS
367 activation in surface-associated cells. This mechanism is reported to rely on type IV (TFP) pili
368 retraction, as surface-primed *lasR* upregulation is lost in the absence of the motors PilT and PilU
369 (39). Thus, a relationship between QS and surface sensing is established but its complexity
370 remains to be clearly defined.

371

372 LasR-defective *P. aeruginosa* isolates have been generally related to human chronic infections,
373 in which this bacterium persists in the lungs of people with CF as a biofilm. Recently, the
374 general high occurrence of such isolates challenged this long-held notion (32, 33). Loss of LasR
375 function appears to be a widespread adaptation feature of this bacterium (32). Our results support
376 a model in which surface attachment, a growth condition often encountered by *P. aeruginosa*,
377 induces RhlR-dependent production of 3-oxo-C₁₂-HSL in LasR-defective background –
378 sustaining QS-responsiveness in this condition. Why is RhlR-dependent expression of LasI
379 observed in a LasR-deficient background more prominent in sessile cells? Compared to
380 planktonic growth, both sessile LasR-active and LasR-defective cells produce more C₄-HSL
381 (**Fig. S4**), which could lead to a stronger activation of the *rhl* system, culminating in the

382 upregulation of RhlR-dependent factors. However, the RhlR-dependent 3-oxo-C₁₂-HSL
383 overproduction in sessile cells is seen only in LasR-defective backgrounds.

384
385 Irrespective of the mechanism, the production of 3-oxo-C₁₂-HSL appears to have important
386 biological implications. As mentioned before, surface-association upregulates LasR, thus
387 sensitizing cells to 3-oxo-C₁₂-HSL (39). Upregulation of 3-oxo-C₁₂-HSL in LasR-defective
388 background does not appear dependent on this mechanism, as the TFP retraction motors PilT and
389 PilU are not required for this response (Fig. S5).

390
391 The conservation of surface-primed induction of 3-oxo-C₁₂-HSL in naturally occurring LasR-
392 defective isolates of *P. aeruginosa* is an indicator of its importance. We observed this response
393 in naturally-evolved LasR-defective isolates from both clinical and environmental origins (32,
394 43). The environmental isolates used here, namely 18G, 32R and 78RV were recently
395 characterized as LasR-defective strains based on their inability to perform LasR-dependent
396 activities in liquid cultures (32). Of note, due to the ability to mediate RhlR-regulated QS, LasR-
397 defective 78RV was characterized as a RAIL strain (32), like the CF isolates E113 and E167,
398 which also have functional RhlR-dependent QS responses (37). In the absence of a functional
399 LasR, surface-association induces the production of the 3-oxo-C₁₂-HSL signal irrespective of the
400 QS-responsiveness mediated by LasR-independent RhlR. This response is prevalent, but not
401 universal. Isolate E41 produces trace concentrations of 3-oxo-C₁₂-HSL and its production was
402 not induced by surface-association when compared with planktonic cells. Response variability is
403 not surprising considering the diversity of *P. aeruginosa* isolates, but our results highlight that
404 LasR-deficient *P. aeruginosa* isolated from both clinical and environmental settings are often
405 proficient in the production of 3-oxo-C₁₂-HSL when adopting an attached growth mode. Thus,
406 this ability appears to be an intrinsic and beneficial feature of this species.

407
408 Mutations in the cognate synthase gene, *lasI*, are much less frequently detected than those found
409 in the *lasR* gene (33). The most accepted explanation for this discrepancy is social cheating.
410 Cheaters are individuals that benefit of a shared beneficial product or function (“public good”)
411 while contributing less than average to the metabolic cost. Inactivation of LasI would not prevent
412 response to 3-oxo-C₁₂-HSL produced by neighboring WT cells and thus activate a functional
413 LasR. LasR-defective isolates emerge even in experimental conditions that do not apparently
414 require QS-induced products (and thus cheating) (58). An alternative explanation for a lower
415 frequency of *lasI*-null isolates is that 3-oxo-C₁₂-HSL might contribute an alternative function
416 beyond LasR activation. This interpretation is supported by our results, where LasR-defective
417 strains retain the ability to respond to the presence of 3-oxo-C₁₂-HSL. Indeed, expression of
418 *phz1*, a QS-regulated operon required for pyocyanin production, is controlled by RhlR and its
419 cognate ligand C₄-HSL. Concomitant addition of 3-oxo-C₁₂-HSL further induces *phz1*
420 transcription, and positively regulates pyocyanin production suggesting a response to this non-
421 cognate AHL (Fig. 5). The induction of RhlR-controlled *phz1* expression by 3-oxo-C₁₂-HSL is

422 also seen in the double mutant $\Delta lasR\Delta lasI$ (Fig. S6). Basal expression of *phz1* is due to the self-
423 produced C₄-HSL. Addition of 3-oxo-C₁₂-HSL further enhances *phz1* transcription activity and
424 the highest expression is seen when C₄-HSL is added with 3-oxo-C₁₂-HSL. The RhlR-dependent
425 response to the non-cognate signal 3-oxo-C₁₂-HSL remains to be understood, but further
426 supports the importance of maintaining LasI activity in the absence of LasR.

427

428 Producing 3-oxo-C₁₂-HSL in the absence of LasR can also have a positive community outcome.
429 Because it is exported, we have shown that this AHL can have exogenous effects in surrounding
430 cells in a surface-associated setting. Thus, localized production of 3-oxo-C₁₂-HSL by LasR-
431 negative clusters could induce the expression of QS-regulated virulence factors in LasR-active
432 cells, with minimal metabolic cost to the LasR-negative producers. Moreover, the production
433 profile is delayed in LasR-defective strains when compared to the WT. Therefore, the mixed
434 population composed of both LasR-active and LasR-defective cells would be subjected to steady
435 levels of 3-oxo-C₁₂-HSL. Furthermore, in natural habitats, *P. aeruginosa* is part of complex
436 polymicrobial communities. Microbes within these communities can actively respond to one
437 another, and these interactions range from cooperation to competition (59). Steady production of
438 3-oxo-C₁₂-HSL by *P. aeruginosa* might be relevant in shaping the biological activities of the
439 population. Accordingly, LuxR homologues BtaR1 and BtaR2 – from *Burkholderia*
440 *thailandensis* – are promiscuous and prone to activation by 3-oxo-C₁₂-HSL (60). Importantly, *P.*
441 *aeruginosa* and *B. thailandensis* are soil saprophytes and thus, may occupy the same
442 environmental niches (61). The ecological relevance of sensing signals produced by
443 neighbouring cells is seen by the conservation of an orphan LuxR homologue (SdiA) in
444 *Salmonella enterica* serovar Typhimurium, a bacterium unable to produce AHLs (62). This
445 ability to “eavesdrop” the environment, by sensing AHL produced by other bacteria is likely not
446 unique in this bacterium and might modulate interspecies interactions and justify the benefit of
447 sustained production of 3-oxo-C₁₂-HSL in *P. aeruginosa*. This idea is further supported by the
448 marine sponge symbiont *Ruegeria* sp, a bacterium with a solo LuxI homologue, thus unable to
449 utilize this molecule in a traditional QS-regulated pathway (63).

450

451 QS signals also play a pivotal role in host-pathogen interactions. QS-regulated molecules can act
452 as interkingdom QS signals, thus responsible for the communication of bacteria with mammalian
453 cells and the modulation of host immune systems. Indeed, this was reported for 3-oxo-C₁₂-HSL
454 (recently reviewed by (64)). Due to the long acyl chain of this autoinducer, the molecule has
455 lipophilic properties and, by directly interacting with biological membranes, can enter
456 mammalian cells and directly interact with intracellular molecules (65). Presence of 3-oxo-C₁₂-
457 HSL induces apoptosis of haematopoietic cells and cytotoxicity of non-haematopoietic cells,
458 including those of the airway epithelium (66-70). The host immune responses are also
459 suppressed by 3-oxo-C₁₂-HSL, negatively impacting cytokines production, T cell differentiation
460 as well as the function of antigen-presenting cells (71-73). Thus, this signal molecule is central to
461 virulence and pathogenesis of *P. aeruginosa* and the sustained production of 3-oxo-C₁₂-HSL by

462 biofilm-growing LasR-deficient isolates in infected hosts might account for worse clinical
463 outcomes. In infected hosts, could the immunomodulatory activity of 3-oxo-C₁₂-HSL, rather than
464 its role as quorum sensing signal, justify the regulatory by-pass in the absence of LasR?

465

466 Sustained production of 3-oxo-C₁₂-HSL in the absence of LasR in response to surface growth,
467 the most common lifestyle adopted by *P. aeruginosa* in its natural environments, appears to be
468 beneficial to the colonization of many environmental niches. Combined with the widespread
469 feature underlying the emergence of LasR-defective isolates, it raises an important question: do
470 these isolates emerge solely to benefit from the cooperating individuals or could they play a
471 positive role in shaping the bacterial community responses?

472

473

474 **ACKNOWLEDGMENTS**

475 We thank George A. O'Toole (Dartmouth) and Matthew T. Cabeen (Oklahoma State University)
476 for gifts of strains and plasmids used in this work. TOP was the recipient of PhD scholarships
477 from the Fondation Armand-Frappier. This research was supported by Canadian Institutes of
478 Health Research (CIHR) operating grant MOP-142466.

479

480 **REFERENCES**

- 481 1. Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-
482 LuxI family of cell density-responsive transcriptional regulators. *J Bacteriol* 176:269-
483 275.
- 484 2. Azimi S, Klementiev AD, Whiteley M, Diggle SP. 2020. Bacterial quorum sensing
485 during infection. *Annu Rev Microbiol* 74:201-219.
- 486 3. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP.
487 1994. Structure of the autoinducer required for expression of *Pseudomonas aeruginosa*
488 virulence genes. *Proceedings of the National Academy of Sciences* 91:197-201.
- 489 4. Pearson JP, Passador L, Iglewski BH, Greenberg EP. 1995. A second *N*-acylhomoserine
490 lactone signal produced by *Pseudomonas aeruginosa*. *Proceedings of the National*
491 *Academy of Sciences* 92:1490-1494.
- 492 5. Gambello MJ, Iglewski BH. 1991. Cloning and characterization of the *Pseudomonas*
493 *aeruginosa lasR* gene, a transcriptional activator of elastase expression. *J Bacteriol*
494 173:3000-3009.
- 495 6. Schuster M, Urbanowski ML, Greenberg EP. 2004. Promoter specificity in *Pseudomonas*
496 *aeruginosa* quorum sensing revealed by DNA binding of purified LasR. *Proceedings of*
497 *the National Academy of Sciences* 101:15833-15839.
- 498 7. Seed PC, Passador L, Iglewski BH. 1995. Activation of the *Pseudomonas aeruginosa lasI*
499 gene by LasR and the *Pseudomonas* autoinducer PAI: an autoinduction regulatory
500 hierarchy. *Journal of Bacteriology* 177:654-659.
- 501 8. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. 2001. A
502 quorum sensing-associated virulence gene of *Pseudomonas aeruginosa* encodes a LysR-
503 like transcription regulator with a unique self-regulatory mechanism. *Proc Natl Acad Sci*
504 *U S A* 98:14613-14618.
- 505 9. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. 2002. Functions
506 required for extracellular quinolone signaling by *Pseudomonas aeruginosa*. *J Bacteriol*
507 184:6472-6480.
- 508 10. Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. 2004.
509 Analysis of *Pseudomonas aeruginosa* 4-hydroxy-2-alkylquinolines (HAQs) reveals a role
510 for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. *Proc Natl Acad Sci U S*
511 *A* 101:1339-1344.
- 512 11. Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme
513 LG. 2005. The contribution of MvfR to *Pseudomonas aeruginosa* pathogenesis and
514 quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are
515 modulated without affecting *lasRI*, *rhlRI* or the production of *N*-acyl-L-homoserine
516 lactones. *Mol Microbiol* 55:998-1014.
- 517 12. Farrow JM, 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC. 2008. PqsE
518 functions independently of PqsR-*Pseudomonas* quinolone signal and enhances the *rhl*
519 quorum-sensing system. *J Bacteriol* 190:7043-7051.

520 13. Groleau M-C, de Oliveira Pereira T, Dekimpe V, Déziel E. 2020. PqsE Is essential for
521 RhlR-dependent quorum sensing regulation in *Pseudomonas aeruginosa*. *mSystems*
522 5:e00194-20.

523 14. Letizia M, Mellini M, Fortuna A, Visca P, Imperi F, Leoni L, Rampioni G. 2022. PqsE
524 expands and differentially modulates the RhlR quorum sensing regulon in *Pseudomonas*
525 *aeruginosa*. *Microbiol Spectr* 10:e0096122.

526 15. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC. 2005.
527 Regulation of *Pseudomonas* quinolone signal synthesis in *Pseudomonas aeruginosa*.
528 *Journal of Bacteriology* 187:4372-4380.

529 16. Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay M-H, Milot S, Tampakaki AP,
530 Stachel SE, Rahme LG. 2006. MvfR, a key *Pseudomonas aeruginosa* pathogenicity
531 LTTR-class regulatory protein, has dual ligands. *Molecular Microbiology* 62:1689-1699.

532 17. de Kievit TR, Kakai Y, Register JK, Pesci EC, Iglewski BH. 2002. Role of the
533 *Pseudomonas aeruginosa* *las* and *rhl* quorum-sensing systems in *rhlI* regulation. *FEMS*
534 *Microbiology Letters* 212:101-106.

535 18. Pesci EC, Pearson JP, Seed PC, Iglewski BH. 1997. Regulation of *las* and *rhl* quorum
536 sensing in *Pseudomonas aeruginosa*. *Journal of Bacteriology* 179:3127-3132.

537 19. Mattick JS. 2002. Type IV pili and twitching motility. *Annu Rev Microbiol* 56:289-314.

538 20. O'Toole GA, Wong GC. 2016. Sensational biofilms: surface sensing in bacteria. *Current*
539 *Opinion in Microbiology* 30:139-146.

540 21. Kearns DB. 2010. A field guide to bacterial swarming motility. *Nature Reviews*
541 *Microbiology* 8:634-644.

542 22. Galán JE, Collmer A. 1999. Type III secretion machines: bacterial devices for protein
543 delivery into host cells. *Science* 284:1322-1328.

544 23. Siryaporn A, Kuchma SL, O'Toole GA, Gitai Z. 2014. Surface attachment induces
545 *Pseudomonas aeruginosa* virulence. *Proceedings of the National Academy of Sciences*
546 111:16860-16865.

547 24. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. 2015. Type IV pili
548 mechanochemically regulate virulence factors in *Pseudomonas aeruginosa*. *Proceedings*
549 *of the National Academy of Sciences* 112:7563-7568.

550 25. Williams BJ, Dehnboestel J, Blackwell TS. 2010. *Pseudomonas aeruginosa*: Host defence
551 in lung diseases. *Respirology* 15:1037-1056.

552 26. Alhede M, Bjarnsholt T, Givskov M, Alhede M. 2014. *Pseudomonas aeruginosa*
553 biofilms: mechanisms of immune evasion. *Adv Appl Microbiol* 86:1-40.

554 27. Moreau-Marquis S, Stanton BA, O'Toole GA. 2008. *Pseudomonas aeruginosa* biofilm
555 formation in the cystic fibrosis airway. *Pulm Pharmacol Ther* 21:595-599.

556 28. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller
557 SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. 2006.
558 Genetic adaptation by *Pseudomonas aeruginosa* to the airways of cystic fibrosis patients.
559 *Proceedings of the National Academy of Sciences* 103:8487-8492.

560 29. D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, Nguyen H,
561 Ernst RK, Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S,
562 Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI. 2007. Growth phenotypes of
563 *Pseudomonas aeruginosa lasR* mutants adapted to the airways of cystic fibrosis patients.
564 Mol Microbiol 64:512-533.

565 30. Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller SI.
566 2009. *Pseudomonas aeruginosa lasR* mutants are associated with cystic fibrosis lung
567 disease progression. J Cyst Fibros 8:66-70.

568 31. Feltner J, Wolter D, Pope C, Groleau M, Smalley N, Greenberg E, Mayer-Hamblett N,
569 Burns J, Déziel E, Hoffman L, Dandekar A. 2016. LasR variant cystic fibrosis isolates
570 reveal an adaptable quorum-sensing hierarchy in *Pseudomonas aeruginosa*. mBio
571 7:e01513-16.

572 32. Groleau MC, Taillefer H, Vincent AT, Constant P, Déziel E. 2022. *Pseudomonas*
573 *aeruginosa* isolates defective in function of the LasR quorum sensing regulator are
574 frequent in diverse environmental niches. Environ Microbiol 24:1062-1075.

575 33. O'Connor K, Zhao CY, Mei M, Diggle SP. 2022. Frequency of quorum-sensing
576 mutations in *Pseudomonas aeruginosa* strains isolated from different environments.
577 Microbiology (Reading) 168.

578 34. Chen R, Déziel E, Groleau M-C, Schaefer AL, Greenberg EP. 2019. Social cheating in a
579 *Pseudomonas aeruginosa* quorum-sensing variant. Proceedings of the National Academy
580 of Sciences 116:7021-7026.

581 35. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA. 2019.
582 Evolution of the *Pseudomonas aeruginosa* quorum-sensing hierarchy. Proceedings of the
583 National Academy of Sciences 116:7027-7032.

584 36. Cruz R, Asfahl K, Van den Bossche S, Coenye T, Crabbé A, Dandekar A. 2020. RhlR-
585 regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of
586 *Pseudomonas aeruginosa*. mBio 11:e00532-20.

587 37. Asfahl KL, Smalley NE, Chang AP, Dandekar AA. 2022. Genetic and transcriptomic
588 characteristics of RhlR-dependent quorum sensing in cystic fibrosis isolates of
589 *Pseudomonas aeruginosa*. mSystems 7:e0011322.

590 38. Dekimpe V, Déziel E. 2009. Revisiting the quorum-sensing hierarchy in *Pseudomonas*
591 *aeruginosa*: the transcriptional regulator RhlR regulates LasR-specific factors.
592 Microbiology (Reading) 155:712-723.

593 39. Chuang SK, Vrla GD, Fröhlich KS, Gitai Z. 2019. Surface association sensitizes
594 *Pseudomonas aeruginosa* to quorum sensing. Nature Communications 10:4118.

595 40. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of
596 pyocyanin and fluorescin. J Lab Clin Med 44:301-307.

597 41. Rahme LG, Stevens EJ, Wolfson SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common
598 virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899-
599 1902.

600 42. Hogan DA, Vik A, Kolter R. 2004. A *Pseudomonas aeruginosa* quorum-sensing
601 molecule influences *Candida albicans* morphology. *Mol Microbiol* 54:1212-1223.

602 43. Déziel E, Paquette G, Villemur R, Lepine F, Bisaillon J. 1996. Biosurfactant production
603 by a soil *Pseudomonas* strain growing on polycyclic aromatic hydrocarbons. *Applied and*
604 *Environmental Microbiology* 62:1908-1912.

605 44. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG. 2008.
606 Discerning the complexity of community interactions using a *Drosophila* model of
607 polymicrobial infections. *PLoS Pathogens* 4:e1000184.

608 45. Cabeen MT. 2014. Stationary phase-specific virulence factor overproduction by a *lasR*
609 mutant of *Pseudomonas aeruginosa*. *PLoS ONE* 9:e88743.

610 46. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, Lin C, Irie Y,
611 Storek KM, Yang JJ, Siehnel RJ, Howell PL, Singh PK, Tolker-Nielsen T, Parsek MR,
612 Schweizer HP, Harrison JJ. 2015. Precision-engineering the *Pseudomonas aeruginosa*
613 genome with two-step allelic exchange. *Nature Protocols* 10:1820-1841.

614 47. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T,
615 Ausubel FM. 2006. An ordered, nonredundant library of *Pseudomonas aeruginosa* strain
616 PA14 transposon insertion mutants. *Proc Natl Acad Sci U S A* 103:2833-2838.

617 48. Becher A, Schweizer HP. 2000. Integration-proficient *Pseudomonas aeruginosa* vectors
618 for isolation of single-copy chromosomal *lacZ* and *lux* gene fusions. *Biotechniques*
619 29:948-950, 952.

620 49. Lépine F, Milot S, Groleau M-C, Déziel E. 2018. Liquid chromatography/mass
621 spectrometry (LC/MS) for the detection and quantification of *N*-acyl-L-homoserine
622 lactones (AHLs) and 4-hydroxy-2-alkylquinolines (HAQs). doi:10.1007/978-1-4939-
623 7309-5_4:49-59.

624 50. Mould Dallas L, Botelho Nico J, Hogan Deborah A. 2020. Intraspecies signaling between
625 common variants of *Pseudomonas aeruginosa* increases production of quorum-sensing-
626 controlled virulence factors. *mBio* 11:e01865-20.

627 51. Apidianakis Y, Rahme LG. 2009. *Drosophila melanogaster* as a model host for studying
628 *Pseudomonas aeruginosa* infection. *Nat Protoc* 4:1285-1294.

629 52. Jordan IK, Rogozin IB, Wolf YI, Koonin EV. 2002. Essential genes are more
630 evolutionarily conserved than are nonessential genes in bacteria. *Genome Res* 12:962-
631 968.

632 53. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. 2001.
633 Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide
634 from *Pseudomonas aeruginosa* PAO1. *J Bacteriol* 183:6454-6465.

635 54. Whiteley M, Greenberg EP. 2001. Promoter specificity elements in *Pseudomonas*
636 *aeruginosa* quorum-sensing-controlled genes. *Journal of Bacteriology* 183:5529-5534.

637 55. Purdy AE, Watnick PI. 2011. Spatially selective colonization of the arthropod intestine
638 through activation of *Vibrio cholerae* biofilm formation. *Proceedings of the National*
639 *Academy of Sciences* 108:19737-19742.

640 56. Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. *Nature Reviews Microbiology* 18:571-586.

641 57. Jean-Pierre F, Tremblay J, Déziel E. 2017. Broth versus surface-grown cells: differential regulation of RsmY/Z small RNAs in *Pseudomonas aeruginosa* by the Gac/HptB system. *Front Microbiol* 7:2168.

642 58. Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. 2022. Metabolic basis for the evolution of a common pathogenic *Pseudomonas aeruginosa* variant. *eLife* 11:e76555.

643 59. Mitri S, Richard Foster K. 2013. The genotypic view of social interactions in microbial communities. *Annual Review of Genetics* 47:247-273.

644 60. Wellington S, Greenberg EP. 2019. Quorum sensing signal selectivity and the potential for interspecies cross talk. *mBio* 10:e00146-19.

645 61. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, Cavalcoli JD, Vandevanter DR, Murray S, Li JZ, Young VB, Lipuma JJ. 2012. Decade-long bacterial community dynamics in cystic fibrosis airways. *Proceedings of the National Academy of Sciences* 109:5809-5814.

646 62. Dyszel JL, Smith JN, Lucas DE, Soares JA, Swearingen MC, Vross MA, Young GM, Ahmer BM. 2010. *Salmonella enterica* serovar Typhimurium can detect acyl homoserine lactone production by *Yersinia enterocolitica* in mice. *J Bacteriol* 192:29-37.

647 63. Zan J, Choi O, Meharena H, Uhlson CL, Churchill MEA, Hill RT, Fuqua C. 2015. A solo luxI-type gene directs acylhomoserine lactone synthesis and contributes to motility control in the marine sponge symbiont Ruegeria sp. KLH11. *Microbiology* 161:50-56.

648 64. Fan Q, Wang H, Mao C, Li J, Zhang X, Grenier D, Yi L, Wang Y. 2022. Structure and signal regulation mechanism of interspecies and interkingdom quorum sensing system receptors. *Journal of Agricultural and Food Chemistry* 70:429-445.

649 65. Ritchie AJ, Whittall C, Lazenby JJ, Chhabra SR, Pritchard DI, Cooley MA. 2007. The immunomodulatory *Pseudomonas aeruginosa* signalling molecule *N*-(3-oxododecanoyl)-L-homoserine lactone enters mammalian cells in an unregulated fashion. *Immunol Cell Biol* 85:596-602.

650 66. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere Jean C, Standiford Theodore J, Ishiguro M, Yamaguchi K. 2003. The *Pseudomonas aeruginosa* autoinducer *N*-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. *Infection and Immunity* 71:5785-5793.

651 67. Li H, Wang L, Ye L, Mao Y, Xie X, Xia C, Chen J, Lu Z, Song J. 2009. Influence of *Pseudomonas aeruginosa* quorum sensing signal molecule *N*-(3-oxododecanoyl) homoserine lactone on mast cells. *Med Microbiol Immunol* 198:113-121.

652 68. Schwarzer C, Fu Z, Patanwala M, Hum L, Lopez-Guzman M, Illek B, Kong W, Lynch SV, Machen TE. 2012. *Pseudomonas aeruginosa* biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. *Cell Microbiol* 14:698-709.

679 69. Shiner EK, Terentyev D, Bryan A, Sennoune S, Martinez-Zaguilan R, Li G, Gyorke S,
680 Williams SC, Rumbaugh KP. 2006. *Pseudomonas aeruginosa* autoinducer modulates
681 host cell responses through calcium signalling. *Cell Microbiol* 8:1601-1610.

682 70. Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Wood MR, Brogan
683 AP, Lehmann M, Mee JM, Iwata K, Pan Q, Fearn C, Knaus UG, Meijler MM, Janda
684 KD, Ulevitch RJ. 2006. *N*-(3-oxo-acyl)homoserine lactones signal cell activation through
685 a mechanism distinct from the canonical pathogen-associated molecular pattern
686 recognition receptor pathways. *J Biol Chem* 281:28822-28830.

687 71. Ritchie AJ, Jansson A, Stallberg J, Nilsson P, Lysaght P, Cooley MA. 2005. The
688 *Pseudomonas aeruginosa* quorum-sensing molecule *N*-3-(oxododecanoyl)-L-homoserine
689 lactone inhibits T-cell differentiation and cytokine production by a mechanism involving
690 an early step in T-cell activation. *Infect Immun* 73:1648-1655.

691 72. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS,
692 Bycroft BW, Pritchard DI. 1998. The *Pseudomonas aeruginosa* quorum-sensing signal
693 molecule *N*-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity.
694 *Infect Immun* 66:36-42.

695 73. Li Y, Zhou H, Zhang Y, Chen C, Huang B, Qu P, Zeng J, Shunmei E, Zhang X, Liu J.
696 2015. *N*-3-(oxododecanoyl)-L-homoserine lactone promotes the induction of regulatory
697 T-cells by preventing human dendritic cell maturation. *Exp Biol Med (Maywood)*
698 240:896-903.

699

700

701 **FIGURE LEGENDS**

702 **Figure 1. Surface growth induces 3-oxo-C₁₂-HSL production in PA14 LasR-null strain.** (A) 3-oxo-
703 C₁₂-HSL concentration was measured in PA14 and the isogenic $\Delta lasR$ mutant (PA14 $\Delta lasR$) at different
704 time points during planktonic (broth culture) and surface growth (surface of agar-solidified culture media)
705 by liquid chromatography/mass spectrometry. Values were normalized by the viable cell counts and
706 shown in ng CFU⁻¹ (B) Growth in broth and surface conditions was determined by the count of viable
707 cells per millilitre (CFU mL⁻¹). The arrow indicates the time-point at which 3-oxo-C₁₂-HSL is induced in
708 a $\Delta lasR$ mutant in (A). The values are means \pm standard deviation (error bars) from three replicates.

709

710 **Figure 2. Transcription of lasI can occur in absence of LasR in cells growing on a surface.** (A) 3-
711 oxo-C₁₂-HSL was measured in PA14 and its isogenic $\Delta lasI$ mutant at different time points during surface
712 growth by liquid chromatography/mass spectrometry. (B) Transcription activity from the chromosomal
713 *lasI-lux* reporter in a $\Delta lasR$ background.

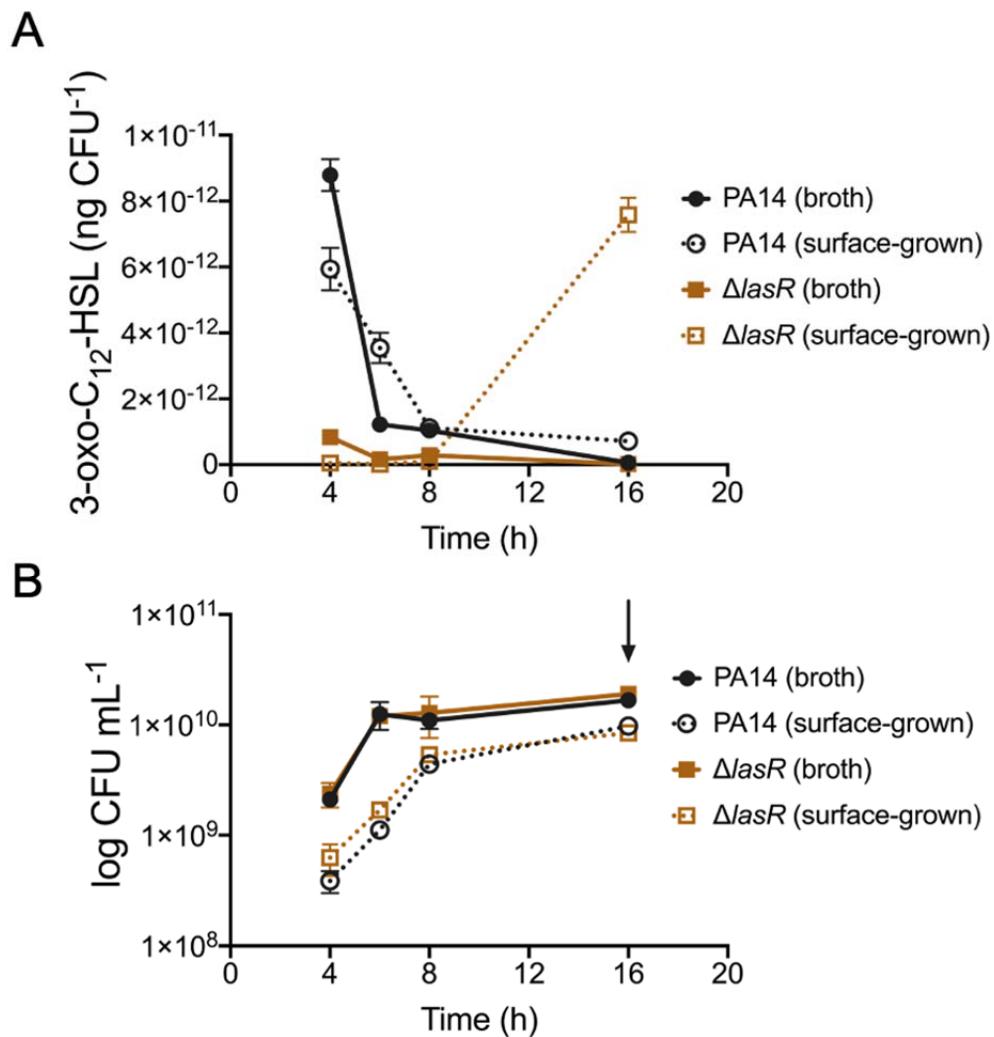
714

715 **Figure 3. Activity of the Rhl system is required to induce the production of 3-oxo-C₁₂-HSL upon
716 surface growth.** 3-oxo-C₁₂-HSL was measured in PA14, isogenic single-mutants $\Delta lasR$ and $\Delta rhlR$, and
717 the double-mutants *lasRrhlR*, $\Delta lasR\Delta rhlI$, and *lasRΔpqsE* at 16h of surface growth by LC/MS.
718 Concentration was normalized by the viable cell count. The values are means \pm standard deviation (error
719 bars) from three replicates. One-way analysis of variance (ANOVA) and Tukey's multiple comparisons
720 posttest was used to quantify statistical significance. **** $P \leq 0.0001$.

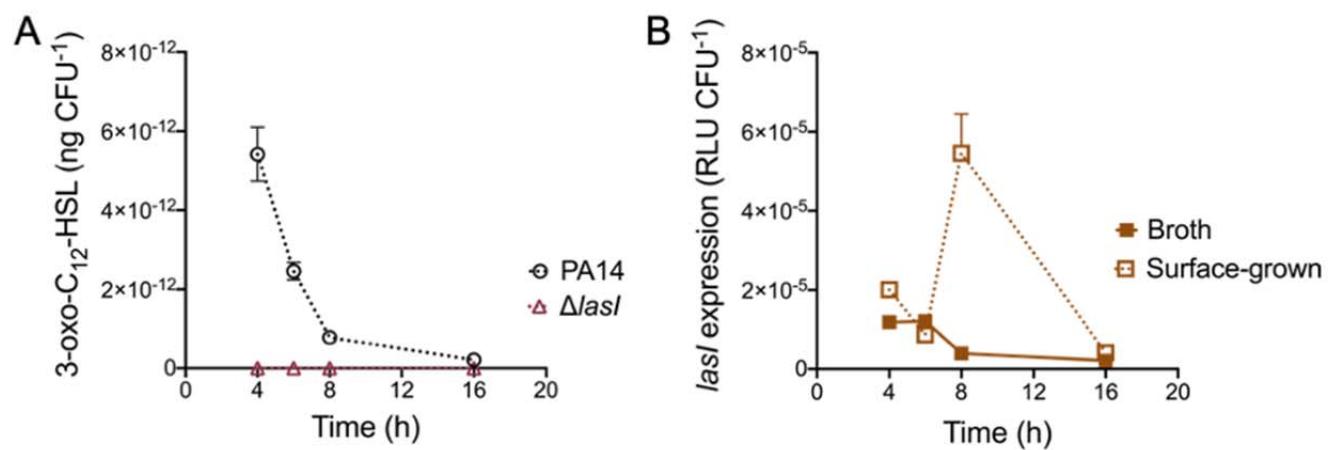
721 **Figure 4. Production of 3-oxo-C₁₂-HSL is a widespread feature among LasR-defective strains
722 growing on a surface.** 3-oxo-C₁₂-HSL was measured at different time-points during planktonic and
723 surface growth by LC/MS of naturally evolved LasR-defective strains. (A) 18G. (B) 32R. (C) 78RV. (D)
724 E41. (E) E113. (F) E167. Concentration was normalized by viable cell count and is shown in ng CFU⁻¹.
725 The values are means \pm standard deviation (error bars) from three replicates.

726

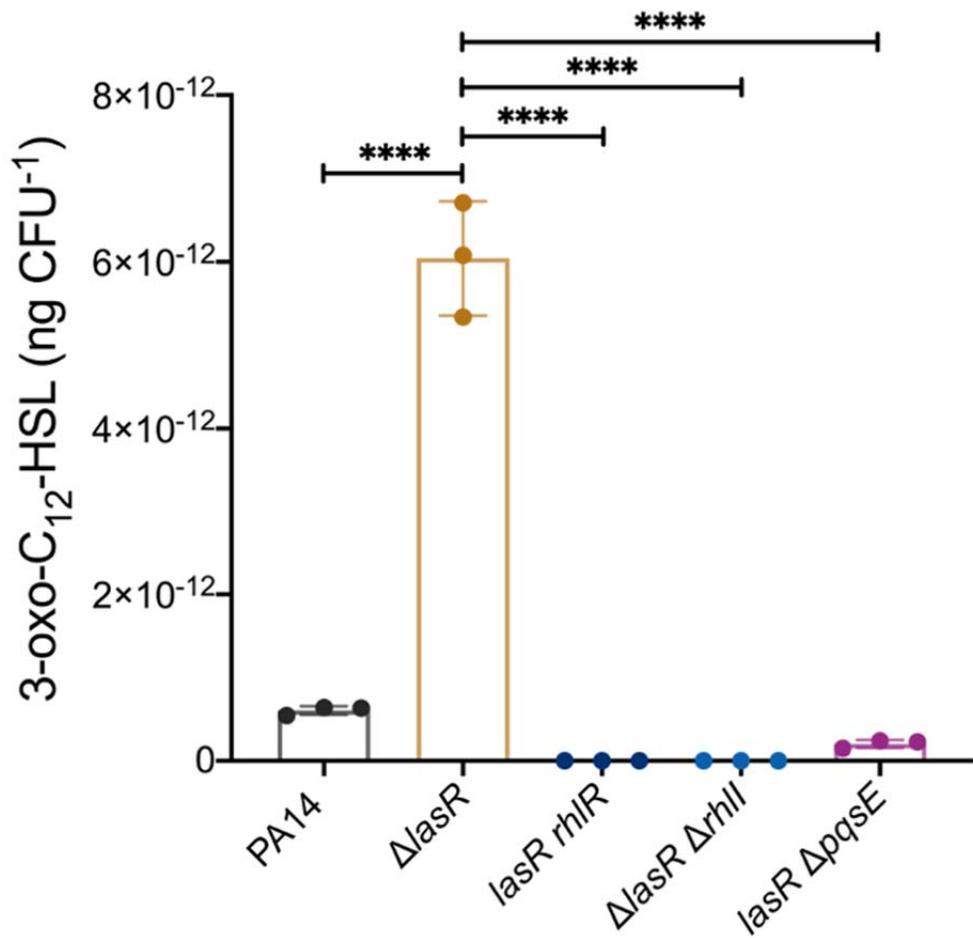
727 **Figure 5. Exogenous 3-oxo-C₁₂-HSL induces transcription of the operon *phzI* and pyocyanin
728 production in a lasR negative background.** (A) Luminescence of the *phzA1-lux* chromosomal reporter
729 was measured in the AHL-negative LasR-defective background ($\Delta lasR\Delta lasI\Delta rhlI$) after the addition of
730 1.5 μ M of C₄-HSL, 3 μ M of 3-oxo-C₁₂-HSL or both molecules at late stationary phase (24h). Acetonitrile
731 alone was used as control. Relative light units were normalized by viable cell counts and shown in RLU
732 CFU⁻¹. (B) Pyocyanin produced by $\Delta lasR\Delta lasI\Delta rhlI$ in response to exogenous AHLs was chloroform-
733 extracted at 24h. Production was normalized by cell viable counts and shown in OD₅₂₀ CFU⁻¹. The values
734 are means \pm standard deviations (error bars) from six replicates. Statistical analyses were performed using
735 ANOVA and Tukey's multiple comparisons posttest with * $P \leq 0.05$; ** $P \leq 0.01$ and **** $P \leq 0.0001$.

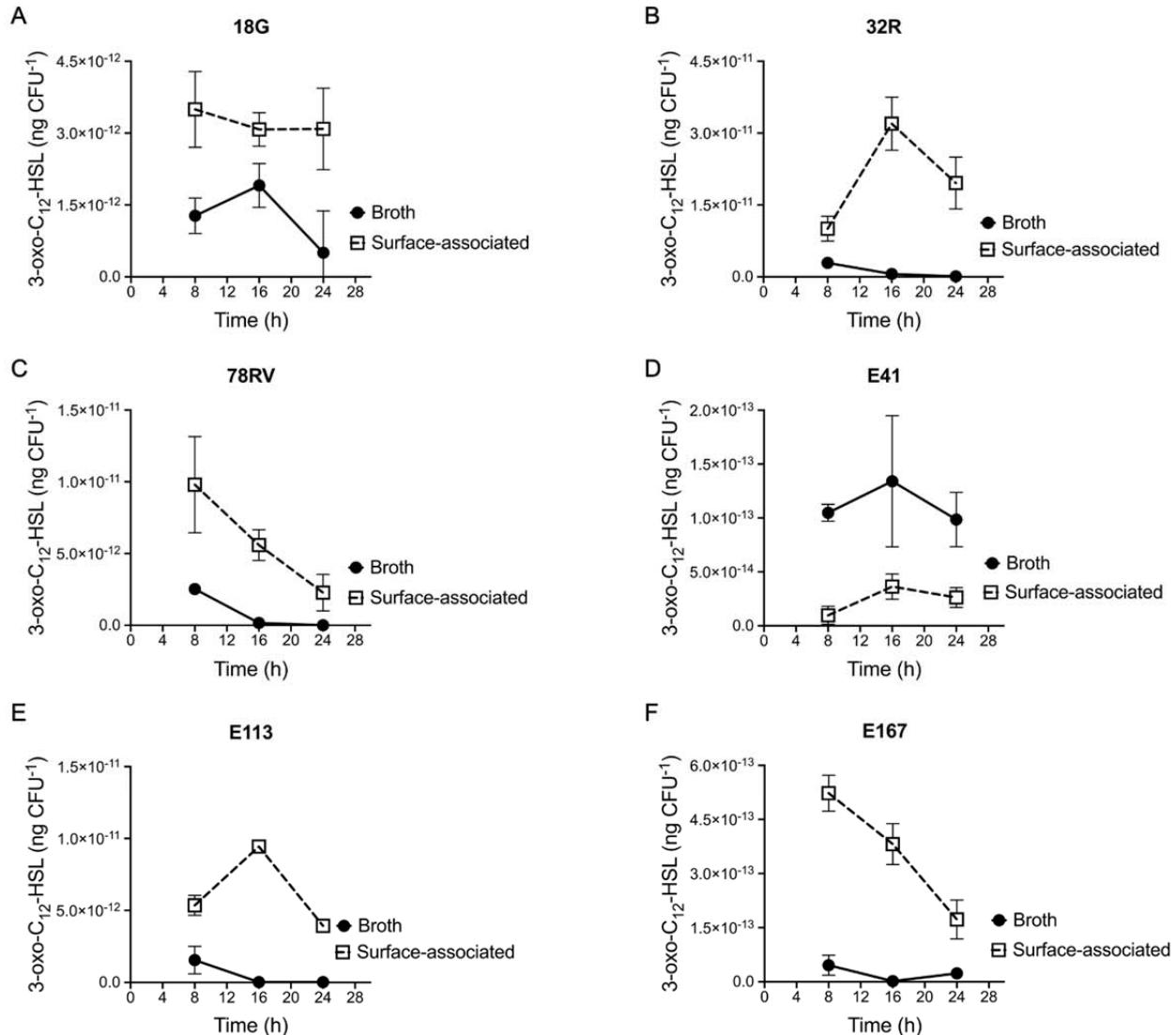

736 **Figure 6. Surface-grown LasR-active cells utilize 3-oxo-C₁₂-HSL produced by surrounding LasR-
737 defective mutants, inducing lasB expression.** Luminescence reading of a *lasB-lux* chromosomal
738 reporter inserted in a LasR-active $\Delta lasI$ mutant ($\Delta lasI$::CTX *lasB-lux*). Monoculture of $\Delta lasI$ was used as
739 control (gray). Coculture $\Delta lasI$ and $\Delta lasR$ with 7:3 $\Delta lasI$ -to- $\Delta lasR$ cell initial ration (yellow). Coculture
740 of $\Delta lasI$ and $\Delta lasR$ $\Delta lasI$ with 7:3 $\Delta lasI$ -to- $\Delta lasR\Delta lasI$ cell initial ratio (red). Relative light unit was
741 normalized by viable cell count of $\Delta lasI$::CTX *lasB-lux* strain at 16h and is shown in RLU CFU⁻¹. The

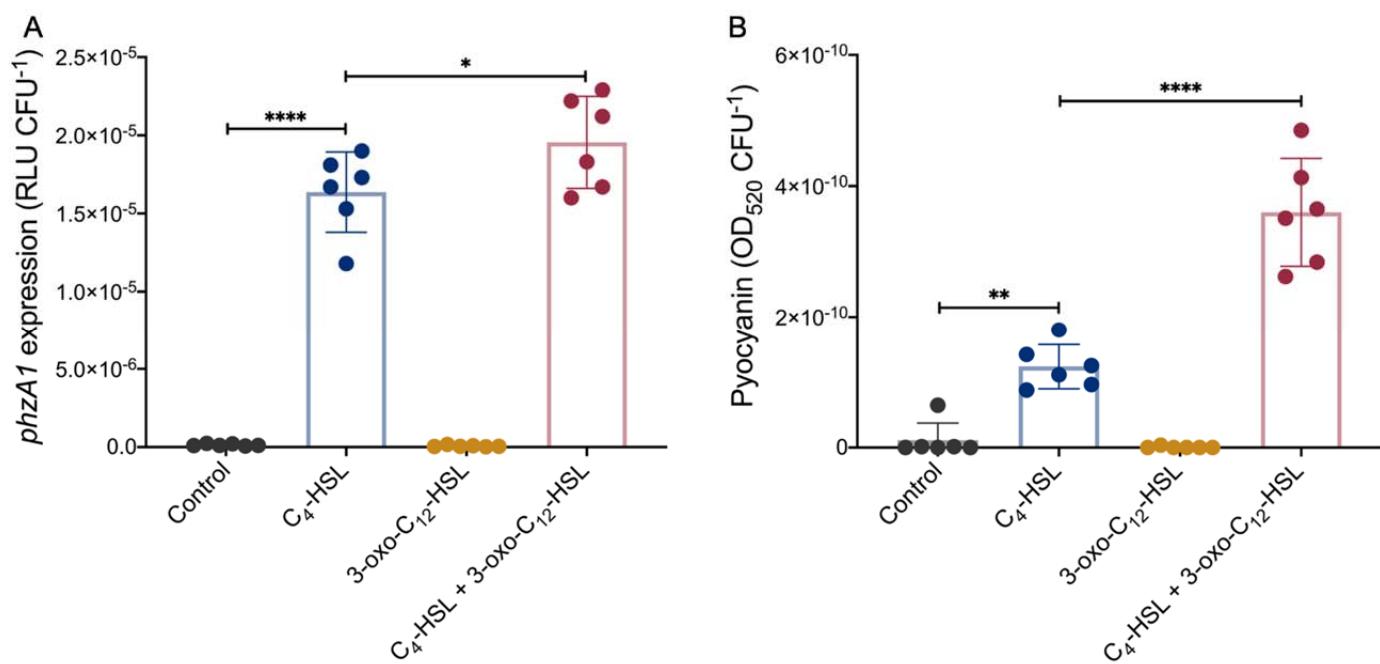
742 values are means \pm standard deviations (error bars) from three replicates. Statistical significance was
743 calculated by ANOVA and Tukey's multiple comparisons posttest with **** $P \leq 0.0001$.


744 **Figure 7. Coinfection of PA14 with the 3-oxo-C₁₂-HSL producing $\Delta lasR$ mutant induces virulence of**
745 ***P. aeruginosa* toward *D. melanogaster*.** Fruit flies were infected with suspended cells in 5% sucrose. Fly
746 survival was monitored over time. $n = 30$ flies per group for each experiment. Experiment was performed
747 independently twice. Statistical significance was determined using Mantel-Cox survival analysis. ns, non-
748 significant, ** $P \leq 0.01$, and *** $P \leq 0.001$.

749
750


751 **FIGURES**


Figure 1


Figure 2

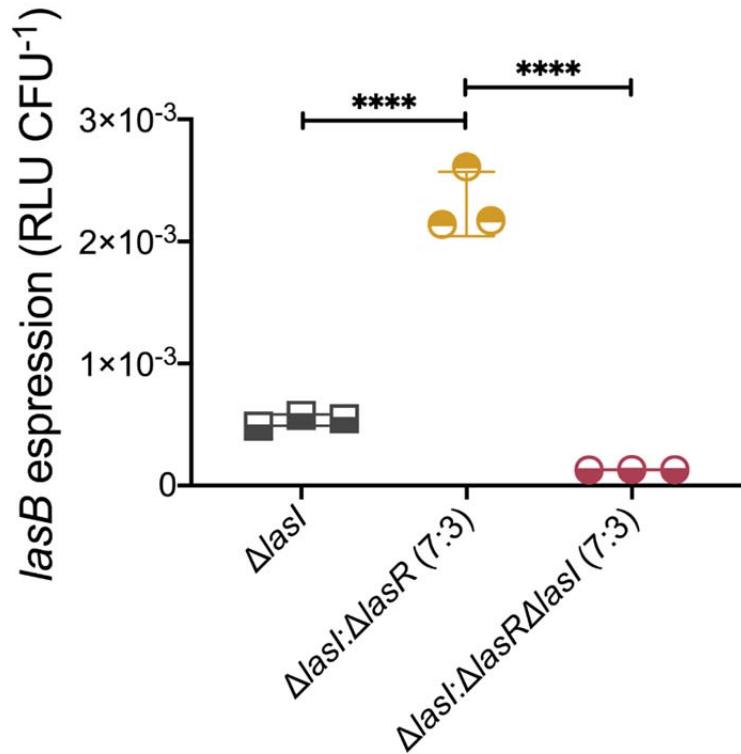

Figure 3

Figure 4

Figure 5

Figure 6

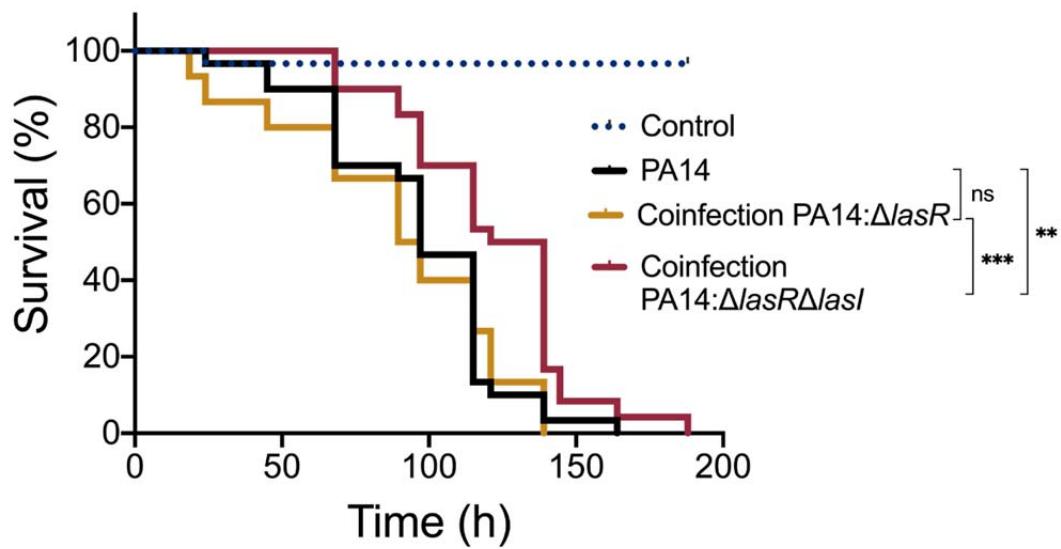


Figure 7