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ABSTRACT 43 

Developing robust methods for evaluating protein-ligand interactions has been a 44 

long-standing problem. Here, we propose a novel approach called EquiScore, which 45 

utilizes an equivariant heterogeneous graph neural network to integrate physical prior 46 

knowledge and characterize protein-ligand interactions in equivariant geometric space. 47 

To improve generalization performance, we constructed a dataset called PDBscreen and 48 

designed multiple data augmentation strategies suitable for training scoring methods. 49 

We also analyzed potential risks of data leakage in commonly used data-driven 50 

modeling processes and proposed a more stringent redundancy removal scheme to 51 

alleviate this problem. On two large external test sets, EquiScore outperformed 21 52 

methods across a range of screening performance metrics, and this performance was 53 

insensitive to binding pose generation methods. EquiScore also showed good 54 

performance on the activity ranking task of a series of structural analogs, indicating its 55 

potential to guide lead compound optimization. Finally, we investigated different levels 56 

of interpretability of EquiScore, which may provide more insights into structure-based 57 

drug design.  58 
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INTRODUCTION 59 

After the Human Genome Project, the challenge of translating new knowledge from 60 

genomics into new medicines has arisen. In recent years, there have been breakthroughs 61 

in protein folding algorithms, resulting in dramatic progress in the field of structural 62 

biology1, 2. An ambitious project has been proposed to find specific ligands or probes 63 

for the entire human proteome3. Once a high-quality protein structure is available, we 64 

can use structure-based virtual screening (SBVS) to select only the best-fitting 65 

molecules for synthesis and testing. For example, molecular docking approaches can 66 

be used to explore large chemical space. These approaches are gaining renewed 67 

attention due to the growing availability of many bespoke or make-on-demand virtual 68 

libraries4, 5. While significant progress has been made in this field, developing a scoring 69 

method with higher accuracy in practical application scenarios remains an open 70 

challenge6-8. 71 

The scoring method based on machine learning has made significant progress with 72 

the explosive growth of experimental protein-ligand interaction data. Various machine 73 

learning algorithms and neural network architectures, such as three-dimensional 74 

convolutional neural networks (3D-CNNs)9, 10, and graph convolutional neural 75 

networks (GNNs)11-16 have shown improvements in screening and scoring power on 76 

benchmarks9-15. However, the performance of these data-driven models is often system-77 

dependent and difficult to generalize to protein or ligand chemical types that are not 78 

included in the model training process. A comparative analysis revealed that machine 79 

learning scoring methods do not outperform traditional scoring methods on unseen 80 

targets in their training set18. This highlights the need for more robust and reliable 81 

methods to better address such out-of-distribution (OOD) challenges. 82 

Two factors primarily limit the generalizability of scoring methods: the data used to 83 

train the model and the algorithms that learn from the data. PDBbind19 and DUD-E20 84 

represent the two most commonly used types of datasets. PDBbind contains protein-85 

ligand binding complex structures and associated binding affinity data that can be used 86 

to train regression models between the structure and activity. In contrast, DUD-E 87 
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contains both "real" and "decoy" protein-ligand binding complex structures, which are 88 

generally used to train classification models that can distinguish positive and negative 89 

samples. Although the first type of dataset is more favorable because the regression 90 

method can quantitatively predict binding affinity and have more applicable scenarios, 91 

the amount of such association data is limited, and they do not contain negative samples. 92 

This can easily lead to a high false positive rate in virtual screening (VS) settings for 93 

methods derived from these datasets. The second type of dataset contains more negative 94 

samples, and the resulting classification methods may have an advantage in 95 

discriminating negative samples and reducing the false positive rate. However, many 96 

active compounds in such datasets have similar chemical structures or the same 97 

skeleton, resulting in a significant properties distribution bias between positive and 98 

negative samples. Many studies have found that machine learning-based scoring 99 

methods tend to memorize the inherent biases of the training data rather than learning 100 

features of protein-ligand interactions, resulting in limited generalization ability21-23.  101 

In summary, problems with training data primarily relate to two aspects. First, 102 

positive sample volumes and diversity are often insufficient, resulting in limited 103 

information that the model can utilize. Second, many public datasets suffer from 104 

internal data distribution biases that may prevent the model from learning the protein-105 

ligand interactions we seek to understand.  106 

Regarding the factor of algorithms, various neural network architectures suitable for 107 

solving different types of data problems have been leveraged in developing scoring 108 

methods. However, directly applying these architectures to address protein-ligand 109 

interaction prediction still has many deficiencies. For instance, 3D-CNNs9, 10 require 110 

extensive data augmentation to account for equivariance in 3D rotation and translation 111 

of atoms. GNNs11-16 may ignore some important information in the complex, such as 112 

building edges with a specific distance threshold, which loses the prior knowledge of 113 

the chemical structure and cannot accurately characterize distance-dependent 114 

interatomic physical interactions in the protein-ligand complex. For example, hydrogen 115 

bonds and van der Waals interactions are more sensitive to interatomic distance than 116 

electrostatic interactions. The frequently used one-hot encoding that indicates whether 117 
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an atom is aromatic does not reflect well the non-local contribution of an aromatic ring 118 

to intermolecular interactions, such as π-π interactions between aromatic ring systems. 119 

Introducing physical prior information into the scoring method is another key issue that 120 

can help further improve generalization ability13, 24, 25. Recently, equivariant models 121 

have shown potential for more accurate and efficient predictions of intermolecular 122 

interactions26-29. This is because they have more expressive operations on important 123 

geometric tensor interactions27, such as multiple dipoles or hydrogen bonding 124 

interactions30, 31. Despite these advances, the introduction of physical inductive bias is 125 

still not well considered in these models. Therefore, there is a high demand to 126 

investigate novel equivariant neural network architectures that can better learn protein-127 

ligand interactions by integrating physical prior knowledge with data-driven modeling. 128 

This study aims to improve the deep learning-based scoring method in two ways. 129 

Firstly, we collect more positive samples and use a molecular deep generative model32 130 

to generate more deceptive and diverse decoy molecules, to reduce possible biases in 131 

constructing a VS training dataset. Secondly, we introduce an equivariant graph neural 132 

network that integrates physical prior knowledge into a heterogeneous graph and adopts 133 

a new update mechanism to enable better information interaction. We use the designed 134 

data set and the heterogeneous graph network to train the final scoring method, named 135 

EquiScore. For evaluation, we (1) compare EquiScore with a comprehensive set of 136 

newly reported deep learning scoring methods on two external test sets, DUD-E20 and 137 

DEKOIS2.033, 34, to evaluate its screening power on unseen protein systems; (2) 138 

compare EquiScore with a range of different methods on a lead optimization dataset, 139 

LeadOpt35, to evaluate its activity ranking ability for structural analogs; and (3) use 140 

different docking methods to generate binding poses to further evaluate the robustness 141 

of EquiScore as a rescoring method. Finally, we analyzed the interpretability of the 142 

model to examine whether it learned the key intermolecular interactions we are 143 

interested in. This information could provide meaningful clues for rational drug design. 144 
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RESULTS AND DISCUSSION  145 

Data preparation 146 

A recent study identified three possible biases in constructing VS training datasets: 147 

artificial enrichment, analog bias, and false negative bias36. Artificial enrichment arises 148 

from distinct differences in physical and chemical properties between positive and 149 

negative samples, making it easy for the model to distinguish between them. Analog 150 

bias occurs when many positive compounds in a dataset have similar chemical 151 

structures or the same skeleton, leading to high enrichment performance. False negative 152 

bias arises from using positive samples as negative samples during dataset construction. 153 

These biases can limit the trained model's generalization ability and increase the 154 

probability of false positives. Therefore, minimizing the occurrence of these biases 155 

when constructing a dataset is a key challenge. 156 

Accordingly, we improved the construction of datasets for the training scoring 157 

method in three ways, as shown in the schematic diagram Fig.1 (Refer to the method 158 

section for details). First, we collected complex crystal structures from the PDB 159 

database to increase the diversity of positive samples and alleviate the dataset's analog 160 

bias problem. Second, we retained the near-native poses, i.e., with Root-Mean Square 161 

Deviation (RMSD) less than 2Å to crystal pose, after re-docking and the pose with the 162 

highest docking score as additional positive samples. This procedure aims to introduce 163 

noises generated by pose generation methods to increase the model's generalization 164 

ability. Third, for negative sample construction, we first constructed negative samples 165 

by cross-docking to ensure that each ligand appears in both positive and negative 166 

samples, which we called" label reversal" experiment37. This way, the model cannot 167 

distinguish positive and negative samples simply by remembering the ligand 168 

substructures, and will be forced to learn more difficult higher-level protein-ligand 169 

interaction information. To further limit the artificial enrichment bias in the dataset, we 170 

generated 500 decoys with similar physical and chemical properties to the ligands of 171 

each complex using the generative model DeepCoy38. The resulting samples were then 172 
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docked and clustered by the Shape Screening module39 in Schrödinger (Schrödinger, 173 

LLC, New York, NY, 2020). We only kept the top 5 decoys whose shape is closest to 174 

the crystal ligand pose as negative samples, which can further increase the difficulty of 175 

the model for correct recognition, thus alleviating the artificial enrichment bias. The 176 

above data augmentation strategies aim to help the model learn representations that can 177 

generalize across proteins. 178 

Finally, we named the resulting dataset PDBscreen, and its statistics are shown in 179 

Table 1. In contrast to PDBbind, this dataset includes more crystal complexes without 180 

ligand binding affinity data, as well as samples generated through data augmentation 181 

strategies. 182 

 183 

 184 

Fig.1 | The pipeline of collecting complex data from the PDB database and data 185 
augmentation strategies.  186 
 187 

Table 1 | Statistics of PDBscreen 188 

Dataset Number of 
PDB IDs 

Active 
Samples 

Inactive Samples 
(Cross-docking) 

Inactive Samples 
(Generated decoys) 

PDBscreen 25084 92858 248049 108218 

PDBscreen 
(deduplication) 19361 71701 191120 82031 

 189 
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The typical training and testing process has the risk of data leakage  190 

PDBbind, CASF-2016, DUD-E, and DEKOIS2.0 are commonly used datasets for 191 

training and testing scoring methods. However, there is "hard overlap" or "soft overlap" 192 

data in these databases17, which may lead to data leakage and overestimate the method's 193 

generalization performance. For example, there are many scoring methods that have 194 

been trained on the PDBbind dataset, and "externally" tested on CASF-2016, DUD-E 195 

and/or DEKOIS2.013-16, 40. Proteins that appear in both the training set and the test set 196 

were usually remained or simply deduplicated based on their PDB IDs. However, this 197 

data preparation scheme may result in the presence of identical proteins in both the 198 

training and testing sets, i.e. "soft overlap"17, and their bound ligands may share high 199 

similarity or similar scaffolds, leading to significant data leakage issues. Here, in 200 

Supplementary Fig. 1, we firstly analyzed the overlapping data issue between CASF-201 

2016 and PDBbind2020. We found that there are a total of 67 proteins (with unique 202 

UniPort IDs) in CASF-2016, all of which have been included in the PDBbind2020 203 

dataset, corresponding to a total of 4471 different complexes (with unique PDB IDs). 204 

Using a ligand similarity threshold of 0.5, we found that over 70% (203/285) of the 205 

ligands in CASF-2016 have structural analogs that bind to the same protein in 206 

PDBbind2020 (after deduplicating with CASF-2016 by PDB IDs). This potential data 207 

leakage issue can lead to an overestimation of performance metrics when using the 208 

CASF-2016 to evaluate the models trained on the PDBbind2020. In Table 2, we 209 

summarized the number of overlapping data among commonly used datasets. It can be 210 

observed that there are similar situations for DEKOIS2.0 and DUD-E (Supplementary 211 

Fig. 1). Therefore, we believe that a more rigorous deduplication method must be used 212 

to better evaluate the performance of a scoring method, especially its generalization 213 

ability to proteins and ligands not seen in the training set.  214 

In this study, we evaluated the generalization ability for unseen targets using DUD-215 

E and DEKOIS2.0 as external test sets. Firstly, we removed data from the training data 216 

with the same UniPort ID as the proteins in these two datasets (data statistics after 217 

deduplication are shown in Table 1). We then divided the training/validation data by 218 
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Uniport IDs. Table 1 and Table 2 show that although we collected more data from the 219 

PDB database, EquiScore used fewer complexes for training than PDBbind2020 due to 220 

the deduplication. 221 

 222 

Table 2 | Statistics of PDBbind2020, CASF-2016, DUD-E, and DEKOIS2.0 223 

 224 

Architecture of EquiScore 225 

EquiScore is a binary classification model that assesses the binding potential between 226 

a protein and a ligand by inputting the heterogeneous graph constructed by the protein 227 

pocket region and the ligand. Fig. 2 illustrates the architecture of EquiScore. The first 228 

step involves constructing a heterogeneous graph with protein pocket and ligand. The 229 

second step initializes the representation of the graph's nodes and edges through their 230 

corresponding embedding layer. The third step involves sending the initialized graph to 231 

the EquiScore layer to learn its representation. Finally, in task layer, the atomic 232 

representation on the ligand is read out, and the output score of the multi-layer 233 

perceptron is used for downstream tasks. 234 

In the first step, we designed a heterogeneous graph construction scheme. Aside from 235 

abstracting the existing atoms into nodes, we also added a virtual node for each aromatic 236 

ring based on expert prior knowledge to better represent the aromatic system. To 237 

construct edges, we established geometric distance-based edges (Egeometric) between 238 

nodes and structure-based edges (Estructural) through chemical bonds. We also added a 239 

class of edges in Estructural  based on protein–ligand empirical interaction components 240 

(IFP) calculated by ProLIF41 to include prior physical knowledge about intermolecular 241 

Dataset Number of 
PDB IDs 

Number of 
Uniport IDs 

Number of 
duplicated Uniport 

IDs in PDBbind2020 

Number of PDB IDs 
with duplicated 
Uniport IDs in 
PDBbind2020 

PDBbind2020 19443 3973 - - 
CASF-2016 285 67 67 4471 
DEKOIS2.0 81 77 68 2433 

DUD-E 102 100 89 4097 
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interaction. In the second step, we used embedding layers to obtain a latent 242 

representation for each type of edge and node on the heterogeneous graph.  243 

 The EquiScore layer consists of three sub-modules: the info-aware attention module, 244 

the node update module, and the edge update module. First, the info-aware attention 245 

module uses the distance gating mechanism to model the distance-dependent message 246 

passing between atomic pairs. It does this by leveraging the distance information on the 247 

Egeometric to gate the attention coefficient between atomic pairs. Additionally, the module 248 

takes the information on the Estructural as the bias item of attention. This allows it to 249 

introduce the knowledge of the chemical structure into the model. Second, after 250 

obtaining the attention coefficient with geometric and structure information, the info-251 

aware attention module uses it as the coefficient of both vector and scaler features of 252 

the neighbor node to update the features of the center node. This ensures the 253 

equivariance of the network42 in the node update module. Third, when learning the 254 

information interaction on different edges43, the edge update module uses the attention 255 

information on the Egeometric to update the features of other types of edges. This allows 256 

the information in different types of edges to be better integrated and fused with node 257 

information for feature fusion. Finally, after representation learning in EquiScore layers, 258 

the ligand's features are sent to a task layer to predict protein-ligand interaction. 259 
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 260 
Fig. 2 | The overall architecture of EquiScore. a: Constructing a heterogeneous graph 261 
as input. b: Embedding layers are used to initialize features into latent space. c: 262 
EquiScore layers are used for feature extraction and fusion. d: ligand's features are sent 263 
to a task layer to predict protein-ligand interaction. e: Application scenarios.  264 

 265 

EquiScore shows improved VS capability on unseen proteins  266 

As analyzed above, the VS capability on proteins not seen in the training set is the 267 

most important indicator for evaluating the generalization performance of a scoring 268 

method in real-world applications. For comparison, we selected different scoring 269 
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methods as baselines, including 15 from an earlier evaluation6, and added six recently 270 

reported models: Kdeep13, 3D-GNN13, PIGNet13, TANKBind40, RTMScore14, and 271 

DeepDock16. For the models that have been evaluated previously, we directly referred 272 

to the performance metrics reported in the original literature6. For the methods that have 273 

not been evaluated, we listed the results calculated using their officially reported code 274 

and weights. As discussed above, all the previously evaluated methods are established 275 

based on the PDBbind dataset, which has a high level of "soft overlap" with the external 276 

test sets. To check whether such data leakage would lead to overestimated performance, 277 

we removed those samples with proteins that had already appeared in training set for 278 

these methods (The target information after deduplication is shown in Supplementary 279 

Table 1 and Supplementary Table 2) and added an asterisk annotation to model names 280 

to distinguish the new evaluation results (Fig. 3 and Fig. 4).   281 

We first verified the effectiveness of EquiScore as a rescoring method with the 282 

putative binding pose generated via Glide SP. The overall performance was evaluated 283 

in terms of area under the receiver operating characteristic curve44 (AUROC), 284 

Boltzmann-Enhanced Discrimination of ROC45 (BEDROC）, and enrichment factor46 285 

(EF), as shown in Fig. 3. EF is defined as the percentage of true binders observed among 286 

all of the true binders for a given percentile of the top-ranked candidates (0.5%, 1.0%, 287 

or 5.0%) of a chemical library6. The BEDROC score considers all compounds rather 288 

than a proportion of the chemical library and can be modulated by a parameter α to 289 

adjust the weight given to the top-ranked compounds. Here, the α-value was set to 80.5, 290 

meaning that the top 2% of ranked molecules accounted for 80% of the BEDROC 291 

score6. 292 
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 293 

Fig. 3 | Evaluation of 22 scoring methods on DEKOIS2.0 in terms of a: AUROC, b: 294 
BEDROC (α = 80.5) and c: 5.0% EF. The blue triangles in the boxplots represent the 295 
means for each bin. All methods are sorted by their mean value. The performance before 296 
and after deduplication are marked with blue highlights and asterisks, respectively. 297 
Arrowed lines denote the changes in performance ranking. 298 
 299 

In Fig. 3, we presented the results of our analysis on DEKOIS2.0, which is composed 300 

of 81 targets. Each protein has 40 positive compounds extracted from BindingDB47 and 301 

1200 decoys generated from ZINC48. EquiScore achieved the highest AUROC score of 302 

0.821, which is significantly higher than the second-place RTMscore's score of 0.756 303 

(Fig. 3a). To further compare the early recognition ability of rescoring methods, we 304 

calculated and compared the BEDROC metric of all methods shown in Fig. 3b. 305 

EquiScore outperformed all the baselines except RTMscore and achieved a BEDROC 306 

score of 0.460. Remarkably, when considering only the targets not seen during training, 307 

the RTMScore performance dropped significantly, from 0.541 to 0.352 (RTMscore*), 308 

much lower than EquiScore's 0.460. In Fig. 3, We also observed the same phenomenon 309 

in the performance of other methods trained based on PDBbind2020. Regarding EFs, a 310 

similar performance drop can be observed when considering both the top 0.5% and 1.0% 311 

of ranked compounds (Supplementary Fig. 2). When considering the top 5.0% of 312 

ranked compounds, EquiScore achieved the highest performance again and had an even 313 
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greater advantage over other methods when only considering the results on the unseen 314 

targets during training. The above results demonstrated that EquiScore's overall ranking 315 

ability significantly exceeds that of existing methods under more rigorous tests. 316 

Furthermore, EquiScore's VS enrichment ability on unseen targets exceeded both 317 

traditional scoring methods and deep learning methods6. 318 

 319 

 320 
Fig. 4 | Evaluation of 22 scoring methods on DUD-E in terms of a: AUROC, b: 321 
BEDROC (α = 80.5) and c: 5.0% EF. The blue triangles in the boxplots represent the 322 
means for each bin. All methods are sorted by their mean value. The performance before 323 
and after deduplication are marked with blue highlights and asterisks, respectively. 324 
Arrowed lines denote the changes in performance ranking. 325 
 326 

Subsequently, we extended our evaluation to the DUD-E dataset, which is composed 327 

of 102 targets from 8 diverse protein families containing millions of compounds. This 328 

allowed us to further verify the screening power of EquiScore in a larger-scale screening 329 

scenario. On the DUD-E dataset, TANKBind achieved the best performance on 330 

AUROC with a score of 0.778, which has a slight advantage over EquiScore's 0.776. 331 

However, similar to the previous analysis results, we found that the TANKBind's 332 

performance has significantly decreased to 0.583 (TANKBind*) for unseen targets 333 

during the training process, even dropping from first to last place. On the other two 334 
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metrics, BEDROC and 5.0%EF, TANKBind* also showed the worst performance, 335 

indicating risk of overfitting during training. Overall, the results on DUD-E were 336 

consistent with those of DEKOIS2.0. Other methods trained based on PDBbind2020 337 

also show significant drops in performance on AUROC, BEDROC, and EFs when only 338 

considering the unseen targets. In contrast, EquiScore demonstrated advantages over 339 

other methods on unseen targets with BEDROC, 1.0%EF, and 5.0%EF scores of 0.432, 340 

17.675, and 7.819, respectively (see Fig. 4 and Supplementary Fig. 3).  341 

 342 

EquiScore shows activity ranking capability on homologous compounds  343 

In the high-throughput VS scenario, a good scoring method must distinguish active 344 

molecules from a large batch of inactive molecules by ranking active molecules ahead 345 

of inactive molecules through scoring. In contrast, lead compound optimization 346 

involves active molecules with similar structures or common scaffolds. In this case, a 347 

good method must distinguish subtle differences in activity among these structural 348 

analogs. Methods with strong VS capabilities may not have decent analog ranking 349 

power, and vice versa. Generally, methods with strong analog ranking power require 350 

significantly higher computational cost, such as free energy perturbation35 (FEP). 351 

Currently, very few methods that can simultaneously demonstrate good VS and analog 352 

ranking capabilities while lacking rigorous external validation. To further verify the 353 

potential of EquiScore in lead compound optimization scenarios, we collected a dataset 354 

containing eight groups of homologues and their activity data from the literature35  to 355 

test the ranking capability of EquiScore. We named this dataset LeadOpt. For each 356 

group of analogs, we computed the scores based on the provided protein-ligand 357 

complex structures and compared EquiScore with different methods in terms of 358 

Spearman correlation coefficients between the corresponding scores and the activity 359 

values. As previously reported35, we averaged the total coefficient values weighted by 360 

the number of ligands in each group. 361 

To eliminate potential data leakage risks, EquiScore was retrained with the 362 
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PDBscreen dataset after deduplication based on the Uniport IDs of proteins in LeadOpt. 363 

Data statistics after deduplication with LeadOpt are summarized in Supplementary 364 

Table 3. For the methods that had been previously evaluated, we referred directly to the 365 

performance metrics reported in the original literature35. For the methods that have not 366 

been evaluated, we listed the results calculated using their officially reported weights13, 367 

14, 16, 40. 368 

FEP+ is a commercial FEP calculation tool implemented in Schrödinger, which has 369 

demonstrated extremely high calculation accuracy in previous report35. As shown in 370 

Table 4, EquiScore (0.57) ranked second only to FEP+ (0.73) on LeadOpt. This result 371 

indicates that EquiScore has ability to distinguish small differences between similar 372 

compounds, which is reflected in its ranking performance. While it is still distant from 373 

FEP+ in terms of performance, the results are still meaningful as our method is orders 374 

of magnitude faster than FEP+. 375 

 376 

Table 3 | Results on LeadOpt 377 

 378 

EquiScore demonstrates robust rescoring capabilities  379 

As previously mentioned, the EquiScore model was trained based on putative 380 

binding poses generated by Glide SP docking. However, deep learning methods are 381 

prone to overfitting the training data. Therefore, we investigated EquiScore's 382 

generalizability to poses generated by other docking methods. We collected putative 383 

Method 
Target N DeepDock PIGNet Kdeep 3D-GNN TANKBind RTMScore Glide SP FEP+ EquiScore 
BACE 36 -0.13 -0.20 0.42 0.41 -0.19 -0.05 0.11 0.74 0.53 
CDK2 16 0.11 -0.41 0.84 0.80 0.73 -0.42 -0.36 0.41 0.66 
JNK1 21 0.62 0.70 0.45 -0.51 0.41 0.66 0.27 0.90 0.69 
MCL1 42 0.49 0.13 0.45 0.21 0.70 0.45 0.50 0.78 0.48 

p38 34 0.24 0.03 0.37 0.48 0.51 0.66 -0.24 0.64 0.53 
PTP1B 23 -0.36 -0.12 0.70 0.75 0.76 0.45 0.23 0.82 0.61 

Thrombin 11 -0.07 0.91 0.75 0.55 0.80 0.81 0.49 0.62 0.50 
Tyk2 16 -0.13 0.69 0.52 0.71 0.49 0.59 0.79 0.87 0.71 
Total 199 0.14 0.13 0.51 0.39 0.47 0.38 0.20 0.73 0.57 
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binding poses generated by different docking software (AutoDock Vina, GOLD 384 

CHEMPLP, Surflex-Dock, LeDock, Glide SP) on the DEKOIS2.0 dataset and rescored 385 

them using EquiScore. Our goal was to determine whether EquiScore, combined with 386 

different docking methods, can maintain VS capability. The performance metrics are 387 

consistent with those used in previous sections. 388 

Fig. 5 illustrates the VS performance of each docking method and the comparison 389 

after EquiScore rescoring. It is satisfying to notice that EquiScore significantly 390 

enhances the VS performance of all docking methods. For the four docking methods 391 

with relatively poor performance, three of them can surpass or be comparable to the 392 

industry-leading commercial docking method, Glide SP, after EquiScore rescoring. The 393 

performance improvement after rescoring on 1% EF is two to three times compared to 394 

the original docking methods. EquiScore rescoring can also increase Glide SP's 395 

performance, achieving the highest 1% EF of 16.83 among all combinations. 396 

Unlike EF at 1%, BEDROC and AUROC take all compounds into consideration, 397 

rather than just a proportion of the chemical library. Using these two metrics, we may 398 

find that EquiScore rescoring improves the screening ability of the original docking 399 

methods, and four of them outperform Glide SP after rescoring (see Fig. 5b and Fig. 400 

5c). Overall, although EquiScore was trained based on putative binding poses generated 401 

by Glide SP, it is not sensitive to changes in pose generation during the inference 402 

process. This robust rescoring ability may extend the versatility and adaptability of 403 

EquiScore, allowing it to seamlessly integrate with various molecular docking methods. 404 

 405 
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 406 
Fig. 5 | Performance comparison of EquiScore for rescoring the docking poses 407 
generated by different docking methods, in terms of a: EF (top 1.0%), b: BEDROC 408 
(α=80.5) and c: AUROC.  409 
 410 
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Ablation study of main strategies  411 

 412 
Fig. 6 | Ablation results for VS and analogs ranking tasks. a: VS performance is 413 
measured by 1.0% EF on DEKOIS2.0. The white points in the violin plots represent the 414 
means for each bin. b: Analogs ranking is measured by Spearman's coefficient on 415 
LeadOpt. The white points represent the average of coefficient values weighted by the 416 
number of ligands in each group. 417 
 418 

In order to verify the contributions of different modules in Equiscore, we conducted 419 

in-depth ablation experiments that ranged from model components to data 420 

augmentation strategies.  421 

In the VS scenario, the performance is measured by 1.0% EF on DEKOIS2.0 (Fig. 422 

6a). We found that all modules made significant contributions, and removing any of 423 

them would lead to performance degradation. Among them, the modules related to data 424 
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augmentation appeared to be more important and yielded greater effects compared to 425 

changes in model architecture. VS is a process to identify a small number of positive 426 

samples from a large collection of negative samples. Introducing more challenging 427 

negative samples can improve the discriminative ability of the model, thereby reducing 428 

the false positive rate and improving the screening enrichment rate. This plays a role 429 

similar to generative adversarial learning49. When constructing negative samples, we 430 

generated decoy molecules that have physical, chemical, and 3D shape patterns similar 431 

to active molecules, which forces the model to learn higher-level molecular interaction 432 

patterns for correct classification. As a result, we found that this decoy generation 433 

strategy indeed had the most prominent performance contribution. The second largest 434 

contribution to improving the model is augmenting the positive sample data. This 435 

involves introducing near-native poses of active compounds with RMSD < 2Å. As 436 

discussed in the previous section, this strategy can increase the model's robustness. 437 

During a VS campaign, it is impossible to access the true binding pose of an active 438 

molecule. Therefore, using putative binding poses with noises for modeling can make 439 

the model more suitable for real-world applications and significantly improve its 440 

performance.  441 

In the analogs ranking scenario, the performance is measured by Spearman's 442 

coefficient on LeadOpt (Fig. 6b). Similar to previous findings, we discovered that all 443 

the modules contributed to the results. Interestingly, in this scenario, the contributions 444 

of the modules were completely different from those in VS, and some changes to the 445 

model architecture were found more important than data augmentation. We speculate 446 

that this may be due to the characteristics of the application. Data augmentation is 447 

primarily used to improve the model's ability to distinguish between positive and 448 

negative samples. It may be less suitable for the task of analogs ranking, where most or 449 

even all samples are positive. In contrast, the changes in model architecture, particularly 450 

the inclusion of physical and chemical knowledge about intermolecular interactions, 451 

may enable the model to better capture subtle differences in the interactions between 452 

proteins and thus make a more significant contribution to performance.  453 

 454 
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EquiScore is interpretable for structure-activity relationship 455 

 456 
Fig. 7 | Interpretation of EquiScore by visualizing attention distribution. a: 457 
Attention score distribution on IFP edges and covalent edges. Attention weights on the 458 
ligand b: PTP1B 23484 and c: PTP1B 23485 (the greater the weight, the darker the 459 
color). d: The putative binding mode of PTP1B 23485 to human PTP1B (PBD: 2QBS). 460 
e: Attention weights of the interaction between the methyl (orange node) of PTP1B 461 
23485 and protein pocket atoms (blue nodes).  462 

The EquiScore uses the self-attention module in the Transformer50 architecture. 463 
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Therefore, it is interesting to examine the distribution of attention. Although there is no 464 

guarantee that these attention weights are humanly interpretable, in many popular 465 

architectures, they do accurately map onto existing concepts51. Fig. 7a compares the 466 

attention weight distribution on IPF edges and covalent edges across 8 attention heads. 467 

We can find that all attention heads have different attention weight distributions, 468 

suggesting that each head may have learned different components or dependencies of 469 

protein-ligand interactions. In our method, IPF edges are constructed based on 470 

empirical intermolecular interactions, while covalent edges are built based on covalent 471 

bonds. We may notice that the attention weight distributions on these two types of edges 472 

are similar in the head 2, but significantly different in the other heads. Multiple heads 473 

were originally proposed as a way to address the limited descriptive power of a single 474 

head in self-attention50. The diversity of attention distributions within and across heads 475 

may explain why EquiScore is capable of distinguishing between positive and negative 476 

samples, as well as ranking positive samples with close similarity. 477 

In Fig. 7b-e, we demonstrate the multi-level interpretability of EquiScore using a lead 478 

compound optimization case in LeadOpt. Specifically, in this case, adding  a methyl 479 

group to the thiophene ring of PTP1B 23484 (Fig. 7b) leads to PTP1B 23485 (Fig. 7c), 480 

which exhibits a "magic methyl effect" 52, changing ΔG from -7.7 kcal/mol to -11.01 481 

kcal/mol. By visualizing the attention distribution on the two analogs, we found that 482 

the added methyl group was assigned a significantly high weight, indicating its 483 

importance. In Fig. 7d, we observed that the introduction of the methyl group makes 484 

the ligand and the protein pocket more complementary in shape, and brings the 485 

molecule and the carbon atoms of the hydrophobic amino acid residues ILE219 and 486 

VAL49 in the pocket closer in distance. As shown, the carbon-carbon atom pairs are at 487 

a distance of around 3.5Å, which could form favorable hydrophobic interaction13. 488 

Further visualization of the protein-ligand interaction in Fig. 7e reveals that the model 489 

assigned a high weight to the introduced methyl with the carbon atoms on ILE219, 490 

indicating that the model can well capture ligand atoms and receptors interactions 491 

between pairs of atoms through the EquiScore layer. Overall, this interpretability could 492 

help us locate key amino acids on protein and optimizable motifs on the ligand, 493 
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providing a reference for rational drug design. 494 

CONCLUSION  495 

In this study, we developed a generic protein-ligand interaction scoring method 496 

called EquiScore. Firstly, we analyzed common distribution biases and the data leakage 497 

issue in developing scoring methods. Based on these analyses, we constructed a new 498 

dataset called PDBscreen using multiple data augmentation strategies, such as enlarging 499 

the positive sample size with near-native ligand binding poses and the negative sample 500 

size with generated highly deceptive decoys. Secondly, leveraging the PDBscreen 501 

dataset, we trained a model using an equivariant heterogeneous graph attention 502 

architecture that incorporates different physical and prior knowledge about protein-503 

ligand interaction. For example, we defined more types of nodes and edges, including 504 

virtual nodes for aromatic rings, spatial distance edges, and empirical molecular 505 

interaction edges. Thirdly, we evaluated the performance of the resulting EquiScore 506 

model. In the VS scenario, we compared EquiScore with 21 existing scoring methods 507 

and found that EquiScore outperformed others on unseen proteins, with the best 508 

performance measured by three different metrics: AUROC, BEDROC, EFs scores, on 509 

two external datasets DEKOIS2.0 and DUD-E. In the lead compound optimization 510 

scenario, we compared EquiScore with eight different types of methods and found that 511 

EquiScore showed only lower ranking ability than FEP+. Considering the significantly 512 

higher computational expenses required for FEP+ calculations, EquiScore 513 

demonstrated the advantage of more balanced speed and accuracy. Additionally, we 514 

found that EquiScore demonstrates robust rescoring capabilities when applied to poses 515 

generated by different docking methods, and rescoring with EquiScore can enhance the 516 

VS performance of all the evaluated methods. Finally, we analyzed the model's 517 

interpretability by studying the self-attention weight distribution of EquiScore and 518 

found that the model can capture key inter-molecular interactions, demonstrating the 519 

model's rationality and providing useful clues for rational drug design. Robust 520 

prediction of protein-ligand interactions will provide valuable opportunities to learn 521 
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about the biology of proteins and determine their impact on future drug treatments. We 522 

envision that EquiScore may contribute to a greater understanding of human health and 523 

disease, and catalyze the discovery of novel medicines. 524 

METHODS 525 

Data preparation 526 

Data collection and redocking 527 

We followed the process of building a VS database from Adeshina Y O et al.53, which 528 

involved the following steps: (1) Downloading all protein-ligand complexes in the PDB 529 

database (180,207 entries as of July 2021). (2) Retaining crystal structures with 530 

resolution better than 2.5 Å. (3) Filtering out complexes with ligand that include 531 

nucleotide-like molecules (e.g., ATP), Amina acid-like molecules (e.g., EPW), 532 

cofactors (e.g., NAD), crystallographic additive (e.g., polyethylene glycol), or covalent 533 

ligand by chemical composition dictionary54. The specific pipeline is shown in Fig.1. 534 

After redocking the complexes, we kept only the poses with a Root-Mean Square 535 

Deviation (RMSD) less than 2Å and the pose with the highest ranking after redocking 536 

while keeping a maximum of five poses for each complex. It should be noted that to 537 

ensure the data quality of PDBscreen further, we only kept poses with docking scores 538 

less than -5kcal/mol in PDBscreen. 539 

Docking setup 540 

The optimization of all proteins was performed using the Protein Preparation Wizard 541 

of Maestro55 module of  Schrödinger (version 12.6; Schrödinger, LLC: New York, NY, 542 

2020). This included adding hydrogens, assigning bond orders, filling missing side 543 

chains and loops, removing water molecules beyond 5 Å from the ligand, optimizing 544 

the H-bond network, and minimizing the system with the OPLS-200556 force field until 545 

the root-mean-square deviation of heavy atoms converged to 0.30 Å.  546 

In LigPrep46, the Epik55 module was used to obtain possible molecular ionization 547 

states at a target pH value of 7.0 ± 2.0. The OPLS-2005 force field was then used to 548 

generate the ligand conformation with the lowest energy, which served as the starting 549 
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point for further docking experiments. It is important to note that a single molecule may 550 

have multiple tautomers/stereoisomers, which could introduce the analog bias caused 551 

by over-represented scaffolds57. To mitigate this issue, only the isomers with the best 552 

docking scores were saved for further analyses. This means that each molecule with a 553 

unique identity had only one docking pose.  554 

The Receptor Grid Generation module generated the receptor grids in Schrödinger 555 

with the size of the binding box set to 10 × 10 × 10 Å centered on the co-crystallized 556 

ligand. Finally, all the ligand-protein docking was performed with the Glide46 module 557 

(version 8.9) within Schrödinger using the standard precision (SP) mode. 558 

Cross-docking  559 

We use the Uniport58 website to map Uniport IDs with PDB IDs in PDBscreen. 560 

Uniport is a protein database that contains protein sequences and functional information. 561 

Using Uniport ID as a protein identity, the cross-docking process can ensure that the 562 

ligands in a PDB ID cannot be docked to related PDB IDs of the same protein. It should 563 

be noted that PDBscreen will have the same small molecules under different proteins. 564 

In the cross-docking process, we convert all the ligands into the canonical SMILES 565 

format, and the same SMILES format is considered to be the same ligand, which further 566 

avoids the occurrence of false negatives. Finally, negative samples obtained by cross-567 

docking are ten times larger than positive samples. 568 

Generated decoys 569 

To expand the chemical space of ligands in complexes, we use the generative model 570 

DeepCoy38 to generate 500 decoys for each PDB ID and dock these decoys. Finally, we 571 

calculate the 3D degree of overlap of the poses after docking with the ligand in the 572 

crystal using the Shape Screening module of Schrödinger. We sort them according to 573 

the degree of overlap and only keep the top five poses as final generated decoys. These 574 

decoys will work together with the protein as negative samples. 575 

Data deduplication  576 

To verify the generalization ability of EquiScore, we removed the "soft overlap" data 577 

from the training set by using Uniport IDs to match external test data. This means any 578 

sample in the training set that can match the same protein in the external sets DUD-E 579 
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and DEKOIS2.0 will be excluded. This ensures the proteins of the external sets are 580 

unseen during model training. 581 

Data pre-processing  582 

When constructing a protein-ligand interaction graph, we only considered residues 583 

in the range of 8Å around the ligand and treated atoms as nodes on the graph. For edge 584 

construction, we established geometric distance-based edges (Egeometric) between nodes 585 

that were less than 5.5 Å apart and regarded chemical bonds as edges (Estructural). We 586 

added a virtual central node to any aromatic ring that appeared in either the ligand or 587 

protein, and established virtual edges between the virtual node and the nodes of the ring. 588 

Additionally, we calculated IFP by ProLIF41 and established IFP edges between pairs 589 

of atoms associated with this interaction. We used the average values of nodes on the 590 

relevant ring as the virtual node coordinates and features. The IFP edge feature is a 591 

learnable vector, and other defined features are shown in Table 4. 592 

 593 

Table 4 | List of Node and Edge Features 594 

Node Feature Description 

Atom from ligand or protein Identity in pocket or ligand [0, 1] (one-hot) 

Atom type C, N, O, S, F, P, Cl, Br, B, H (one-hot) 

Degree of atom Number of covalent bonds [0, 1, 2, 3, 4, 5] (one-hot) 

Hydrogens Number of connected hydrogens [0, 1, 2, 3, 4] (one-hot) 

Aromatic Whether the atom is part of an aromatic ring [0, 1] (one-hot) 

Formal charge Electrical charge (integer) 

Radical electrons Number of radical electrons (integer) 

Hybridization [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot) 

Chirality Whether the atom is a chiral center [0, 1] (one-hot) 

Chirality type [R, S] (one-hot) 

Edge Feature Description 

Bond type [single, double, triple, aromatic] (one-hot) 

Conjugation Whether the bond is conjugated [0/1] (one-hot) 

Ring Whether the bond is in a ring [0/1] (one-hot) 

Stereo [StereoNone, StereoAny, StereoZ, StereoE] (one-hot) 
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 595 

Model  596 

EquiScore accepts protein-ligand binding pose as input and outputs a score value. 597 

For the convenience of description, unless otherwise specified, we use italics to 598 

represent variables and bold to represent matrices. Let G = (V, Egeometric, Estructural) denote 599 

a protein-ligand interaction graph (more description in data preparation). Here, V = {v1, 600 

v2, v3, …, vn}is a set of nodes, where n is the number of the V, Egeometric = {e1, e2, e3, …, 601 

em} is a set of edges based on geometric distance, where m is the number of the edges 602 

in Egeometric, Estructural = {e1, e2, e3, …, ek} is a set of edges based on covalent bonds or 603 

IFP information, where k is the number of edges in Estructural. Every node (vi) or edge (ei) 604 

has a vector hi or mi to represent its relative information, respectively. 605 

In this paper, we integrate prior knowledge about physical intermolecular interaction 606 

into the heterogeneous graph by introducing new types of nodes and edges. It is also 607 

feasible to include a portion of it or introduce other types of nodes or edges during the 608 

graph construction phase.  609 

Graph Neural Network (GNN) 610 

GNNs aim to learn a representation of nodes or graphs. Typically, modern GNNs 611 

follow a learning schema that iteratively updates the representation of a node by 612 

aggregating representations of its first or higher-order neighbors59, which can 613 

be described using the Message Passing Neural Networks (MPNN) framework60. This 614 

method includes message aggregation, update, and read out three steps. In the message 615 

passing phase, the hidden states t
ih   at each node in the graph will update t times 616 

according to the equation  (1) and (2). 617 

 1

( )
Aggregate( , , )t t t t

i i j ij
j N i

m h h m+

∈

=    (1) 618 

 1 1Update( , )t t t
i i jh h m+ +=   (2) 619 

The neighbors of each node and relative edges generate messages and aggregate 620 

together by an aggregate function. Then, the node updates to the new hidden state 1t
ih +  621 
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through the aggregated information by the update function. For a graph-level task, a 622 

read out function is also required to obtain the representation of the graph. This read 623 

out function in the equation (3) must be invariant to permutations of the node states for 624 

the MPNN to be invariant to graph isomorphism60 625 

 { }1Readout({ | 1,2,3,...,n )t
iG h i+= ∈   (3) 626 

Attention mechanism 627 

Our model combines the advantages of graph neural networks and transformer 628 

architectures, in which the self-attention module is the main building block. 629 

Let T n d
1 2 3[ , , ,..., ]t t t t

nh h h h ×= ∈H   is the input matrix of the self-attention module, d is 630 

the dimension of the hidden state t
nh , and the calculation process of self-attention with 631 

the following equations: 632 

 d d, Q
Q Q

×= ∈Q HW W    (4) 633 

 n d, K
K K

×∈K = HW W    (5) 634 

 n d, V
V V

×∈V = HW W    (6) 635 

 T / Kd=score QK   (7) 636 

Where , ,Q K VW W W  are the projection matrices of H  , the n n×∈score    reflects the 637 

similarity of the queries in Q and the keys in K . For the convenience of expression, 638 

we only express the calculation of single-head attention and omit the bias term. 639 

EquiScore framework 640 

(1) Embedding layer: The features of nodes and edges are mapped to the continuous 641 

hidden layer space using a fully connected layer for representation learning. 642 

(2) EquiScore layer: Fig. 2b. shows the details for the EquiScore layer. There are 643 

three sub-modules in the EquiScore layer: the info-aware attention module, the 644 

equivariant message passing module (node update module), and the edge update 645 

module. 646 

(2.1) Info-aware attention module: This module enables the attention mechanism 647 

to aware prior information. After equations (4)-(7), the attention coefficient matrix 648 
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represents the similarity between each node and other nodes on the graph. However, 649 

this method cannot let the model know the 3D structural information on the graph. To 650 

use inductive bias from the 3D information to help the model capture distance 651 

dependence, the relative distance matrix geometricE   on geometric-based edges is 652 

transformed by the following equation: 653 

 geometric geometricFFN( )=E E   (8) 654 

Then, through the equation (9): 655 

 distance-gated geometricscore = score E   (9) 656 

Here, geometricE is used as a gating mechanism to control the strength of the information 657 

flow of each node to the target node. 658 

To further utilize the information of the geometry-based edges in the graph while 659 

preserving the chemical prior information of the complex, an edge bias module is 660 

introduced. In this module, the pre-defined feature matrix structuralE  on covalent edges 661 

will be a bias term by the following equation:  662 

 structural structuralLinear(Embedding( ))=E E   (10) 663 

 info-aware distance-gated structural⊕score = score E   (11) 664 

(2.2) Equivariant message passing module (Node update module): Following 665 

EGNN42 ensures the equivariant properties of EquiScore by simultaneously updating 666 

the node's scaler and vector representation using the following equations: 667 

 2( , , || || , )t t t t
ij e i j i j ijm h h x x aφ= −   (12) 668 

 1 ( ) ( )t t t t
i i i j x ij

j i
x x x x mφ+

≠

= + −   (13) 669 

 
( )i

i ij
j N

m m
∈

=    (14) 670 

 1 ( , )t t
i h i ih h mφ+ =   (15) 671 

In the equation (12) ija   is an element in the score matrix info-awarescore  , which 672 

represents edge features, and eφ  is an edge operation function to obtain a massage from 673 

input information. In the equation (13), EGNN updates the position of each node as a 674 
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vector field in a radial direction. In other words, the position of each node is updated 675 

by the weighted sum of all relative differences ( )
j

l l
i jx x ∀−  , and the weights of this sum 676 

are provided as the output of function xφ  42. Since our task is an invariant task and 677 

positions are static, there is no need to update the atom's position x. Consequently, we 678 

tried both manners and we notice there have some improvement by updating positions, 679 

so we kept this step (but only reserve the invariant output to task layer). Finally, 680 

equations (14)-(15) follow the same update steps as standard GNNs, like the equation 681 

(1) and (2). 682 

(2.3) Edge-update module: Many current works11, 61-63 also demonstrate that 683 

alternate iterative updates of edges and nodes increase the expressiveness and 684 

generalization of the model. To further fuse the information carried on different types 685 

of edges, we draw inspiration from the work of Dwivedi et al. 64 and design an edge 686 

update module. 687 

First, we calculate the attention matrix info-awarescore  through equations (8)-(11), and 688 

then read out and project the attention matrix to the hidden space with the same 689 

dimension as the edge features through a project module consisting of a two-layer 690 

neural network and a nonlinear activation function following the equation: 691 

 project score info-awareProject (Readout( ))=F score   (16) 692 

Finally, we add this part of the information through the equation (17) to update the 693 

features matrix on structural-based edges.  694 

 structural structural structural projectProject ( )+E = E F   (17) 695 

After the above modules, our model acquires rich node and edge representation 696 

information, which will be fed into the following parts. 697 

(3) Task Layer: After the multi-layer EquiScore layers convolution operation, nodes 698 

belonging to the ligand in the ligand-protein interaction graph are read out and fed into 699 

a task layer. In this step, we only reserve the invariant output and discard the equivariant 700 

output (e.g. updated 3D coordinates) since the goal of this module is to provide 701 

invariant features. To ensure permutation invariance, we use the weighted sum 702 
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operation as the read out pooling function to get the graph-level representation through 703 

the following equation: 704 

 ligand WeightedSum
n

t
i

i
G h=   (18) 705 

After the graph-level representation ligandG   using the pooling operation, the 706 

representation is sent to the multi-layer perceptron layer ( taskMLP  ) following the 707 

equation (19). The multi-layer perceptron layer consists of three linear layers with 708 

nonlinear activation function65 and finally outputs the predicted probability.  709 

 task ligandMLP ( )prob G=   (19) 710 

Finally, EquiScore uses cross-entropy as the loss function. Its expression is as the 711 

following equation: 712 

 CrossEntropy( )loss label,prob=   (20) 713 

(4) Model training: We optimized the model using the Adam66 optimizer, with a 714 

batch size of 64 and a learning rate of 10e−4 without weight decay. The model training 715 

proceeded unless the best validation loss did not change in 50 successive epochs. 716 

External test datasets 717 

Lead compound optimization datasets 718 

Schrödinger has reported a lead compound optimization dataset with a broad range 719 

of target protein types. The Schrödinger FEP+ workflow was used to calculate the 720 

relative binding free energies and correlation coefficients were calculated35. To further 721 

evaluate the ranking performance of EquiScore and its application potential in lead 722 

compound optimization scenarios, we used this dataset, named LeadOpt, as an external 723 

test. The statistics of proteins and compounds in LeadOpt are shown in Table 3. 724 

Virtual screening datasets 725 

To evaluate the model in different VS scenarios, we chose two benchmark datasets 726 

DEKOIS2.034 and DUD-E20. DUD-E contains a total of 22886 positive ligands against 727 

102 targets from 8 diverse protein families, including 5 G-protein-coupled receptors 728 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.18.545464doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545464
http://creativecommons.org/licenses/by-nc-nd/4.0/


(GPCRs), 26 kinases, 11 nuclear receptors, 15 proteases, 2 ion channels, 2 cytochrome 729 

P450s, 36 other enzymes, and 5 miscellaneous proteins. These positive compounds 730 

were originally retrieved from the ChEMBL09 database67. For each positive compound, 731 

50 decoys with similar physicochemical properties but dissimilar 2D topology were 732 

generated from ZINC48. DEKOIS 2.0 contains 81 structurally diverse targets, each 733 

target has 40 positive compounds extracted from BindingDB47 and 1200 decoys 734 

generated from ZINC. The details of these datasets are available in references6. 735 

 736 
Data availability 737 
 738 
The PDBscreen dataset supporting this study's findings is available in Zenodo with the 739 
identifier https://doi.org/10.5281/zenodo.8049380.  740 
The test dataset supporting this study's findings is available in Zenodo with the 741 
identifier https://doi.org/10.5281/zenodo.8047224. 742 
Preprocessed data are provided in this paper.  743 
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