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43  ABSTRACT

44 Developing robust methods for evaluating protein-ligand interactions has been a
45  long-standing problem. Here, we propose a novel approach called EquiScore, which
46  utilizes an equivariant heterogeneous graph neural network to integrate physical prior
47  knowledge and characterize protein-ligand interactions in equivariant geometric space.
48  To improve generalization performance, we constructed a dataset called PDBscreen and
49  designed multiple data augmentation strategies suitable for training scoring methods.
50 We also analyzed potential risks of data leakage in commonly used data-driven
51  modeling processes and proposed a more stringent redundancy removal scheme to
52  alleviate this problem. On two large external test sets, EquiScore outperformed 21
53  methods across a range of screening performance metrics, and this performance was
54  insensitive to binding pose generation methods. EquiScore also showed good
55  performance on the activity ranking task of a series of structural analogs, indicating its
56  potential to guide lead compound optimization. Finally, we investigated different levels
57  ofinterpretability of EquiScore, which may provide more insights into structure-based

58  drug design.
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59 INTRODUCTION

60 After the Human Genome Project, the challenge of translating new knowledge from
61  genomics into new medicines has arisen. In recent years, there have been breakthroughs
62  in protein folding algorithms, resulting in dramatic progress in the field of structural
63  biology" 2. An ambitious project has been proposed to find specific ligands or probes
64  for the entire human proteome’. Once a high-quality protein structure is available, we
65 can use structure-based virtual screening (SBVS) to select only the best-fitting
66  molecules for synthesis and testing. For example, molecular docking approaches can
67 be used to explore large chemical space. These approaches are gaining renewed
68  attention due to the growing availability of many bespoke or make-on-demand virtual
69 libraries*>. While significant progress has been made in this field, developing a scoring
70  method with higher accuracy in practical application scenarios remains an open
71 challenge®®.

72 The scoring method based on machine learning has made significant progress with
73 the explosive growth of experimental protein-ligand interaction data. Various machine
74 learning algorithms and neural network architectures, such as three-dimensional
75  convolutional neural networks (3D-CNNs)* !°, and graph convolutional neural
76  networks (GNNs)!!"!6 have shown improvements in screening and scoring power on
77 benchmarks® '3, However, the performance of these data-driven models is often system-
78  dependent and difficult to generalize to protein or ligand chemical types that are not
79  included in the model training process. A comparative analysis revealed that machine
80 learning scoring methods do not outperform traditional scoring methods on unseen
81 targets in their training set'®. This highlights the need for more robust and reliable
82  methods to better address such out-of-distribution (OOD) challenges.

83 Two factors primarily limit the generalizability of scoring methods: the data used to
84  train the model and the algorithms that learn from the data. PDBbind!® and DUD-E*
85  represent the two most commonly used types of datasets. PDBbind contains protein-
86  ligand binding complex structures and associated binding affinity data that can be used

87  to train regression models between the structure and activity. In contrast, DUD-E
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88  contains both "real" and "decoy" protein-ligand binding complex structures, which are
89  generally used to train classification models that can distinguish positive and negative
90 samples. Although the first type of dataset is more favorable because the regression
91  method can quantitatively predict binding affinity and have more applicable scenarios,
92  the amount of such association data is limited, and they do not contain negative samples.
93  This can easily lead to a high false positive rate in virtual screening (VS) settings for
94  methods derived from these datasets. The second type of dataset contains more negative
95 samples, and the resulting classification methods may have an advantage in
96  discriminating negative samples and reducing the false positive rate. However, many
97 active compounds in such datasets have similar chemical structures or the same
98  skeleton, resulting in a significant properties distribution bias between positive and
99 negative samples. Many studies have found that machine learning-based scoring
100  methods tend to memorize the inherent biases of the training data rather than learning
101  features of protein-ligand interactions, resulting in limited generalization ability*!*>.
102 In summary, problems with training data primarily relate to two aspects. First,
103  positive sample volumes and diversity are often insufficient, resulting in limited
104  information that the model can utilize. Second, many public datasets suffer from
105 internal data distribution biases that may prevent the model from learning the protein-
106  ligand interactions we seek to understand.
107 Regarding the factor of algorithms, various neural network architectures suitable for
108  solving different types of data problems have been leveraged in developing scoring
109  methods. However, directly applying these architectures to address protein-ligand
110  interaction prediction still has many deficiencies. For instance, 3D-CNNs” '° require
111  extensive data augmentation to account for equivariance in 3D rotation and translation
112 of atoms. GNNs''"'® may ignore some important information in the complex, such as
113 building edges with a specific distance threshold, which loses the prior knowledge of
114  the chemical structure and cannot accurately characterize distance-dependent
115  interatomic physical interactions in the protein-ligand complex. For example, hydrogen
116  bonds and van der Waals interactions are more sensitive to interatomic distance than

117  electrostatic interactions. The frequently used one-hot encoding that indicates whether
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118  an atom is aromatic does not reflect well the non-local contribution of an aromatic ring
119  to intermolecular interactions, such as 77 interactions between aromatic ring systems.
120  Introducing physical prior information into the scoring method is another key issue that
121 can help further improve generalization ability!® >* 25 Recently, equivariant models
122 have shown potential for more accurate and efficient predictions of intermolecular
123 interactions?®%?. This is because they have more expressive operations on important
124  geometric tensor interactions®’, such as multiple dipoles or hydrogen bonding
125  interactions*® 3!, Despite these advances, the introduction of physical inductive bias is
126 still not well considered in these models. Therefore, there is a high demand to
127  investigate novel equivariant neural network architectures that can better learn protein-
128  ligand interactions by integrating physical prior knowledge with data-driven modeling.
129 This study aims to improve the deep learning-based scoring method in two ways.
130  Firstly, we collect more positive samples and use a molecular deep generative model*?
131  to generate more deceptive and diverse decoy molecules, to reduce possible biases in
132  constructing a VS training dataset. Secondly, we introduce an equivariant graph neural
133 network that integrates physical prior knowledge into a heterogeneous graph and adopts
134  anew update mechanism to enable better information interaction. We use the designed
135  data set and the heterogeneous graph network to train the final scoring method, named
136 EquiScore. For evaluation, we (1) compare EquiScore with a comprehensive set of
137  newly reported deep learning scoring methods on two external test sets, DUD-E** and
138 DEKOIS2.0** 3, to evaluate its screening power on unseen protein systems; (2)
139  compare EquiScore with a range of different methods on a lead optimization dataset,
140  LeadOpt®, to evaluate its activity ranking ability for structural analogs; and (3) use
141  different docking methods to generate binding poses to further evaluate the robustness
142  of EquiScore as a rescoring method. Finally, we analyzed the interpretability of the
143  model to examine whether it learned the key intermolecular interactions we are

144  interested in. This information could provide meaningful clues for rational drug design.
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145  RESULTS AND DISCUSSION

146  Data preparation

147 A recent study identified three possible biases in constructing VS training datasets:
148 artificial enrichment, analog bias, and false negative bias*¢. Artificial enrichment arises
149  from distinct differences in physical and chemical properties between positive and
150  negative samples, making it easy for the model to distinguish between them. Analog
151  bias occurs when many positive compounds in a dataset have similar chemical
152  structures or the same skeleton, leading to high enrichment performance. False negative
153  bias arises from using positive samples as negative samples during dataset construction.
154  These biases can limit the trained model's generalization ability and increase the
155  probability of false positives. Therefore, minimizing the occurrence of these biases
156  when constructing a dataset is a key challenge.

157 Accordingly, we improved the construction of datasets for the training scoring
158  method in three ways, as shown in the schematic diagram Fig.1 (Refer to the method
159  section for details). First, we collected complex crystal structures from the PDB
160  database to increase the diversity of positive samples and alleviate the dataset's analog
161  bias problem. Second, we retained the near-native poses, i.e., with Root-Mean Square
162  Deviation (RMSD) less than 2A to crystal pose, after re-docking and the pose with the
163 highest docking score as additional positive samples. This procedure aims to introduce
164  noises generated by pose generation methods to increase the model's generalization
165  ability. Third, for negative sample construction, we first constructed negative samples
166 by cross-docking to ensure that each ligand appears in both positive and negative

167  samples, which we called" label reversal" experiment®’

. This way, the model cannot
168  distinguish positive and negative samples simply by remembering the ligand
169  substructures, and will be forced to learn more difficult higher-level protein-ligand
170  interaction information. To further limit the artificial enrichment bias in the dataset, we

171 generated 500 decoys with similar physical and chemical properties to the ligands of

172 each complex using the generative model DeepCoy?8. The resulting samples were then
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docked and clustered by the Shape Screening module®® in Schrodinger (Schrddinger,
LLC, New York, NY, 2020). We only kept the top 5 decoys whose shape is closest to
the crystal ligand pose as negative samples, which can further increase the difficulty of
the model for correct recognition, thus alleviating the artificial enrichment bias. The
above data augmentation strategies aim to help the model learn representations that can
generalize across proteins.

Finally, we named the resulting dataset PDBscreen, and its statistics are shown in
Table 1. In contrast to PDBbind, this dataset includes more crystal complexes without
ligand binding affinity data, as well as samples generated through data augmentation

strategies.

- 0 O =
Protein Data Bank

All protein-ligand complexes in Protein —_— I
Data Bank(PDB) database(180,207 ~° Complexes
entries as of July 2021). DeepCoy
@ ] ,L.pfw
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between 150 Dalton and 900 Dalton. {7 ' Z LT
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Fig.1 | The pipeline of collecting complex data from the PDB database and data
augmentation strategies.

Table 1 | Statistics of PDBscreen

Dataset Number of  Active  Inactive Samples Inactive Samples
PDBIDs  Samples  (Cross-docking)  (Generated decoys)
PDBscreen 25084 92858 248049 108218
PDBscreen
(deduplicationy 1001 71701 191120 82031
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190  The typical training and testing process has the risk of data leakage

191 PDBbind, CASF-2016, DUD-E, and DEKOIS2.0 are commonly used datasets for
192  training and testing scoring methods. However, there is "hard overlap" or "soft overlap"
193  data in these databases!’, which may lead to data leakage and overestimate the method's
194  generalization performance. For example, there are many scoring methods that have
195  been trained on the PDBbind dataset, and "externally" tested on CASF-2016, DUD-E
196  and/or DEKOIS2.0'3-1%4° Proteins that appear in both the training set and the test set
197  were usually remained or simply deduplicated based on their PDB IDs. However, this
198  data preparation scheme may result in the presence of identical proteins in both the

199  training and testing sets, i.e. "soft overlap"!’

, and their bound ligands may share high
200  similarity or similar scaffolds, leading to significant data leakage issues. Here, in
201 Supplementary Fig. 1, we firstly analyzed the overlapping data issue between CASF-
202 2016 and PDBbind2020. We found that there are a total of 67 proteins (with unique
203  UniPort IDs) in CASF-2016, all of which have been included in the PDBbind2020
204  dataset, corresponding to a total of 4471 different complexes (with unique PDB IDs).
205 Using a ligand similarity threshold of 0.5, we found that over 70% (203/285) of the
206  ligands in CASF-2016 have structural analogs that bind to the same protein in
207  PDBbind2020 (after deduplicating with CASF-2016 by PDB IDs). This potential data
208  leakage issue can lead to an overestimation of performance metrics when using the
209 CASF-2016 to evaluate the models trained on the PDBbind2020. In Table 2, we
210  summarized the number of overlapping data among commonly used datasets. It can be
211  observed that there are similar situations for DEKOIS2.0 and DUD-E (Supplementary
212 Fig. 1). Therefore, we believe that a more rigorous deduplication method must be used
213  to better evaluate the performance of a scoring method, especially its generalization
214  ability to proteins and ligands not seen in the training set.

215 In this study, we evaluated the generalization ability for unseen targets using DUD-
216  E and DEKOIS2.0 as external test sets. Firstly, we removed data from the training data
217  with the same UniPort ID as the proteins in these two datasets (data statistics after

218  deduplication are shown in Table 1). We then divided the training/validation data by
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219  Uniport IDs. Table 1 and Table 2 show that although we collected more data from the
220  PDB database, EquiScore used fewer complexes for training than PDBbind2020 due to

221 the deduplication.

222
223 Table 2 | Statistics of PDBbind2020, CASF-2016, DUD-E, and DEKOIS2.0
Number of Number of PDB IDs
Number of  Number of : . with duplicated
Dataset . duplicated Uniport . .
PDB IDs  Uniport IDs IDs in PDBbind2020 Uniport IDs in
n PDBbind2020
PDBbind2020 19443 3973 - -
CASF-2016 285 67 67 4471
DEKOIS2.0 81 77 68 2433
DUD-E 102 100 89 4097
224
225  Architecture of EquiScore
226 EquiScore is a binary classification model that assesses the binding potential between

227  aprotein and a ligand by inputting the heterogeneous graph constructed by the protein
228  pocket region and the ligand. Fig. 2 illustrates the architecture of EquiScore. The first
229  step involves constructing a heterogeneous graph with protein pocket and ligand. The
230  second step initializes the representation of the graph's nodes and edges through their
231  corresponding embedding layer. The third step involves sending the initialized graph to
232 the EquiScore layer to learn its representation. Finally, in task layer, the atomic
233  representation on the ligand is read out, and the output score of the multi-layer
234  perceptron is used for downstream tasks.

235 In the first step, we designed a heterogeneous graph construction scheme. Aside from
236  abstracting the existing atoms into nodes, we also added a virtual node for each aromatic
237 ring based on expert prior knowledge to better represent the aromatic system. To
238  construct edges, we established geometric distance-based edges (Egeometic) between
239  nodes and structure-based edges (Estuctural) through chemical bonds. We also added a
240  class of edges in Egucural based on protein—ligand empirical interaction components

241  (IFP) calculated by ProLIF*! to include prior physical knowledge about intermolecular
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242  interaction. In the second step, we used embedding layers to obtain a latent
243  representation for each type of edge and node on the heterogeneous graph.

244 The EquiScore layer consists of three sub-modules: the info-aware attention module,
245  the node update module, and the edge update module. First, the info-aware attention
246 module uses the distance gating mechanism to model the distance-dependent message
247  passing between atomic pairs. It does this by leveraging the distance information on the
248  Egeometric to gate the attention coefficient between atomic pairs. Additionally, the module
249  takes the information on the Eswuctural as the bias item of attention. This allows it to
250 introduce the knowledge of the chemical structure into the model. Second, after
251  obtaining the attention coefficient with geometric and structure information, the info-
252  aware attention module uses it as the coefficient of both vector and scaler features of
253  the neighbor node to update the features of the center node. This ensures the
254  equivariance of the network* in the node update module. Third, when learning the
255  information interaction on different edges*, the edge update module uses the attention
256  information on the Egeometric to update the features of other types of edges. This allows
257  the information in different types of edges to be better integrated and fused with node
258  information for feature fusion. Finally, after representation learning in EquiScore layers,

259  the ligand's features are sent to a task layer to predict protein-ligand interaction.
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260
261  Fig. 2| The overall architecture of EquiScore. a: Constructing a heterogeneous graph
262 as input. b: Embedding layers are used to initialize features into latent space. c:
263  EquiScore layers are used for feature extraction and fusion. d: ligand's features are sent
264  to atask layer to predict protein-ligand interaction. e: Application scenarios.

265

266  EquiScore shows improved VS capability on unseen proteins

267 As analyzed above, the VS capability on proteins not seen in the training set is the
268  most important indicator for evaluating the generalization performance of a scoring

269  method in real-world applications. For comparison, we selected different scoring


https://doi.org/10.1101/2023.06.18.545464
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545464; this version posted June 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

270  methods as baselines, including 15 from an earlier evaluation®, and added six recently
271  reported models: Kdeep'’, 3D-GNN!3, PIGNet'}, TANKBind*’, RTMScore!*, and
272 DeepDock!S. For the models that have been evaluated previously, we directly referred
273 to the performance metrics reported in the original literature®. For the methods that have
274  not been evaluated, we listed the results calculated using their officially reported code
275 and weights. As discussed above, all the previously evaluated methods are established
276  based on the PDBbind dataset, which has a high level of "soft overlap" with the external
277  test sets. To check whether such data leakage would lead to overestimated performance,
278  we removed those samples with proteins that had already appeared in training set for
279  these methods (The target information after deduplication is shown in Supplementary
280  Table 1 and Supplementary Table 2) and added an asterisk annotation to model names
281  to distinguish the new evaluation results (Fig. 3 and Fig. 4).

282 We first verified the effectiveness of EquiScore as a rescoring method with the
283  putative binding pose generated via Glide SP. The overall performance was evaluated

284 in terms of area under the receiver operating characteristic curve** (AUROC),

285  Boltzmann-Enhanced Discrimination of ROC* (BEDROC) , and enrichment factor*®

286  (EF), as shown in Fig. 3. EF is defined as the percentage of true binders observed among
287  all of the true binders for a given percentile of the top-ranked candidates (0.5%, 1.0%,
288  or 5.0%) of a chemical library®. The BEDROC score considers all compounds rather
289  than a proportion of the chemical library and can be modulated by a parameter a to
290  adjust the weight given to the top-ranked compounds. Here, the a-value was set to 80.5,
291  meaning that the top 2% of ranked molecules accounted for 80% of the BEDROC

292 score®.
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294  Fig. 3 | Evaluation of 22 scoring methods on DEKOIS2.0 in terms of a: AUROC, b:
295 BEDROC (a = 80.5) and c¢: 5.0% EF. The blue triangles in the boxplots represent the
296  means for each bin. All methods are sorted by their mean value. The performance before
297 and after deduplication are marked with blue highlights and asterisks, respectively.
298  Arrowed lines denote the changes in performance ranking.

299

300 In Fig. 3, we presented the results of our analysis on DEKOIS2.0, which is composed
301  of 81 targets. Each protein has 40 positive compounds extracted from BindingDB*’ and
302 1200 decoys generated from ZINC*. EquiScore achieved the highest AUROC score of
303  0.821, which is significantly higher than the second-place RTMscore's score of 0.756
304  (Fig. 3a). To further compare the early recognition ability of rescoring methods, we
305 calculated and compared the BEDROC metric of all methods shown in Fig. 3b.
306  EquiScore outperformed all the baselines except RTMscore and achieved a BEDROC
307  score of 0.460. Remarkably, when considering only the targets not seen during training,
308 the RTMScore performance dropped significantly, from 0.541 to 0.352 (RTMscore*),
309  much lower than EquiScore's 0.460. In Fig. 3, We also observed the same phenomenon
310 in the performance of other methods trained based on PDBbind2020. Regarding EFs, a
311  similar performance drop can be observed when considering both the top 0.5% and 1.0%
312  of ranked compounds (Supplementary Fig. 2). When considering the top 5.0% of

313  ranked compounds, EquiScore achieved the highest performance again and had an even
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greater advantage over other methods when only considering the results on the unseen
targets during training. The above results demonstrated that EquiScore's overall ranking
ability significantly exceeds that of existing methods under more rigorous tests.
Furthermore, EquiScore's VS enrichment ability on unseen targets exceeded both

traditional scoring methods and deep learning methods®.
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Fig. 4 | Evaluation of 22 scoring methods on DUD-E in terms of a: AUROC, b:
BEDROC (o = 80.5) and ¢: 5.0% EF. The blue triangles in the boxplots represent the
means for each bin. All methods are sorted by their mean value. The performance before
and after deduplication are marked with blue highlights and asterisks, respectively.
Arrowed lines denote the changes in performance ranking.

Subsequently, we extended our evaluation to the DUD-E dataset, which is composed
of 102 targets from 8 diverse protein families containing millions of compounds. This
allowed us to further verify the screening power of EquiScore in a larger-scale screening
scenario. On the DUD-E dataset, TANKBind achieved the best performance on
AUROC with a score of 0.778, which has a slight advantage over EquiScore's 0.776.
However, similar to the previous analysis results, we found that the TANKBind's
performance has significantly decreased to 0.583 (TANKBind*) for unseen targets

during the training process, even dropping from first to last place. On the other two
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335 metrics, BEDROC and 5.0%EF, TANKBind* also showed the worst performance,
336 indicating risk of overfitting during training. Overall, the results on DUD-E were
337  consistent with those of DEKOIS2.0. Other methods trained based on PDBbind2020
338 also show significant drops in performance on AUROC, BEDROC, and EFs when only
339  considering the unseen targets. In contrast, EquiScore demonstrated advantages over
340  other methods on unseen targets with BEDROC, 1.0%EF, and 5.0%EF scores of 0.432,
341  17.675, and 7.819, respectively (see Fig. 4 and Supplementary Fig. 3).

342
343  EquiScore shows activity ranking capability on homologous compounds

344 In the high-throughput VS scenario, a good scoring method must distinguish active
345  molecules from a large batch of inactive molecules by ranking active molecules ahead
346  of inactive molecules through scoring. In contrast, lead compound optimization
347  involves active molecules with similar structures or common scaffolds. In this case, a
348  good method must distinguish subtle differences in activity among these structural
349  analogs. Methods with strong VS capabilities may not have decent analog ranking
350 power, and vice versa. Generally, methods with strong analog ranking power require
351  significantly higher computational cost, such as free energy perturbation® (FEP).
352  Currently, very few methods that can simultaneously demonstrate good VS and analog
353  ranking capabilities while lacking rigorous external validation. To further verify the
354  potential of EquiScore in lead compound optimization scenarios, we collected a dataset
355  containing eight groups of homologues and their activity data from the literature® to
356 test the ranking capability of EquiScore. We named this dataset LeadOpt. For each
357  group of analogs, we computed the scores based on the provided protein-ligand
358 complex structures and compared EquiScore with different methods in terms of
359  Spearman correlation coefficients between the corresponding scores and the activity
360  values. As previously reported®>, we averaged the total coefficient values weighted by
361  the number of ligands in each group.

362 To eliminate potential data leakage risks, EquiScore was retrained with the
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363  PDBscreen dataset after deduplication based on the Uniport IDs of proteins in LeadOpt.
364  Data statistics after deduplication with LeadOpt are summarized in Supplementary
365  Table 3. For the methods that had been previously evaluated, we referred directly to the
366  performance metrics reported in the original literature®®. For the methods that have not
367  been evaluated, we listed the results calculated using their officially reported weights!>
2p8 141640

369 FEP+ is a commercial FEP calculation tool implemented in Schrodinger, which has
370  demonstrated extremely high calculation accuracy in previous report®. As shown in
371  Table 4, EquiScore (0.57) ranked second only to FEP+ (0.73) on LeadOpt. This result
372  indicates that EquiScore has ability to distinguish small differences between similar
373  compounds, which is reflected in its ranking performance. While it is still distant from
374  FEP+ in terms of performance, the results are still meaningful as our method is orders

375  of magnitude faster than FEP+.

376
377 Table 3 | Results on LeadOpt
Method
Target N  DeepDock PIGNet  Kdeep 3D-GNN TANKBind RTMScore Glide SP FEP+ EquiScore
BACE 36 -0.13 -0.20 0.42 0.41 -0.19 -0.05 0.11 0.74 0.53
CDK2 16 0.11 -0.41 0.84 0.80 0.73 -0.42 -0.36 0.41 0.66
INK1 21 0.62 0.70 0.45 -0.51 0.41 0.66 0.27 0.90 0.69
MCLL1 42 0.49 0.13 0.45 0.21 0.70 0.45 0.50 0.78 0.48
p38 34 0.24 0.03 0.37 0.48 0.51 0.66 -0.24 0.64 0.53
PTPIB 23 -0.36 -0.12 0.70 0.75 0.76 0.45 0.23 0.82 0.61
Thrombin 11 -0.07 0.91 0.75 0.55 0.80 0.81 0.49 0.62 0.50
Tyk2 16 -0.13 0.69 0.52 0.71 0.49 0.59 0.79 0.87 0.71
Total 199 0.14 0.13 0.51 0.39 0.47 0.38 0.20 0.73 0.57
378

379  EquiScore demonstrates robust rescoring capabilities

380 As previously mentioned, the EquiScore model was trained based on putative
381  binding poses generated by Glide SP docking. However, deep learning methods are
382 prone to overfitting the training data. Therefore, we investigated EquiScore's

383  generalizability to poses generated by other docking methods. We collected putative
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384  binding poses generated by different docking software (AutoDock Vina, GOLD
385  CHEMPLP, Surflex-Dock, LeDock, Glide SP) on the DEKOIS2.0 dataset and rescored
386  them using EquiScore. Our goal was to determine whether EquiScore, combined with
387  different docking methods, can maintain VS capability. The performance metrics are
388  consistent with those used in previous sections.

389 Fig. 5 illustrates the VS performance of each docking method and the comparison
390 after EquiScore rescoring. It is satisfying to notice that EquiScore significantly
391  enhances the VS performance of all docking methods. For the four docking methods
392  with relatively poor performance, three of them can surpass or be comparable to the
393  industry-leading commercial docking method, Glide SP, after EquiScore rescoring. The
394  performance improvement after rescoring on 1% EF is two to three times compared to
395 the original docking methods. EquiScore rescoring can also increase Glide SP's
396  performance, achieving the highest 1% EF of 16.83 among all combinations.

397 Unlike EF at 1%, BEDROC and AUROC take all compounds into consideration,
398  rather than just a proportion of the chemical library. Using these two metrics, we may
399  find that EquiScore rescoring improves the screening ability of the original docking
400  methods, and four of them outperform Glide SP after rescoring (see Fig. Sb and Fig.
401 Sc). Overall, although EquiScore was trained based on putative binding poses generated
402 by Glide SP, it is not sensitive to changes in pose generation during the inference
403  process. This robust rescoring ability may extend the versatility and adaptability of
404  EquiScore, allowing it to seamlessly integrate with various molecular docking methods.

405
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411  Ablation study of main strategies
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412
413  Fig. 6 | Ablation results for VS and analogs ranking tasks. a: VS performance is

414  measured by 1.0% EF on DEKOIS2.0. The white points in the violin plots represent the
415 means for each bin. b: Analogs ranking is measured by Spearman's coefficient on
416  LeadOpt. The white points represent the average of coefficient values weighted by the
417  number of ligands in each group.

418

419 In order to verify the contributions of different modules in Equiscore, we conducted
420 in-depth ablation experiments that ranged from model components to data
421  augmentation strategies.

422 In the VS scenario, the performance is measured by 1.0% EF on DEKOIS2.0 (Fig.
423  6a). We found that all modules made significant contributions, and removing any of

424 them would lead to performance degradation. Among them, the modules related to data
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425  augmentation appeared to be more important and yielded greater effects compared to
426  changes in model architecture. VS is a process to identify a small number of positive
427  samples from a large collection of negative samples. Introducing more challenging
428  negative samples can improve the discriminative ability of the model, thereby reducing
429  the false positive rate and improving the screening enrichment rate. This plays a role
430  similar to generative adversarial learning*. When constructing negative samples, we
431  generated decoy molecules that have physical, chemical, and 3D shape patterns similar
432  to active molecules, which forces the model to learn higher-level molecular interaction
433  patterns for correct classification. As a result, we found that this decoy generation
434  strategy indeed had the most prominent performance contribution. The second largest
435  contribution to improving the model is augmenting the positive sample data. This
436  involves introducing near-native poses of active compounds with RMSD < 2A. As
437  discussed in the previous section, this strategy can increase the model's robustness.
438  During a VS campaign, it is impossible to access the true binding pose of an active
439  molecule. Therefore, using putative binding poses with noises for modeling can make
440  the model more suitable for real-world applications and significantly improve its
441  performance.

442 In the analogs ranking scenario, the performance is measured by Spearman's
443  coefficient on LeadOpt (Fig. 6b). Similar to previous findings, we discovered that all
444  the modules contributed to the results. Interestingly, in this scenario, the contributions
445  of the modules were completely different from those in VS, and some changes to the
446  model architecture were found more important than data augmentation. We speculate
447  that this may be due to the characteristics of the application. Data augmentation is
448  primarily used to improve the model's ability to distinguish between positive and
449  negative samples. It may be less suitable for the task of analogs ranking, where most or
450  even all samples are positive. In contrast, the changes in model architecture, particularly
451  the inclusion of physical and chemical knowledge about intermolecular interactions,
452  may enable the model to better capture subtle differences in the interactions between
453  proteins and thus make a more significant contribution to performance.

454
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EquiScore is interpretable for structure-activity relationship
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Fig. 7 | Interpretation of EquiScore by visualizing attention distribution. a:
Attention score distribution on IFP edges and covalent edges. Attention weights on the
ligand b: PTP1B 23484 and c¢: PTP1B 23485 (the greater the weight, the darker the
color). d: The putative binding mode of PTP1B 23485 to human PTP1B (PBD: 2QBS).
e: Attention weights of the interaction between the methyl (orange node) of PTP1B
23485 and protein pocket atoms (blue nodes).

The EquiScore uses the self-attention module in the Transformer™ architecture.
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464  Therefore, it is interesting to examine the distribution of attention. Although there is no
465  guarantee that these attention weights are humanly interpretable, in many popular
466  architectures, they do accurately map onto existing concepts”!. Fig. 7a compares the
467  attention weight distribution on IPF edges and covalent edges across 8 attention heads.
468  We can find that all attention heads have different attention weight distributions,
469  suggesting that each head may have learned different components or dependencies of
470  protein-ligand interactions. In our method, IPF edges are constructed based on
471  empirical intermolecular interactions, while covalent edges are built based on covalent
472  bonds. We may notice that the attention weight distributions on these two types of edges
473 are similar in the head 2, but significantly different in the other heads. Multiple heads
474  were originally proposed as a way to address the limited descriptive power of a single
475  head in self-attention®. The diversity of attention distributions within and across heads
476  may explain why EquiScore is capable of distinguishing between positive and negative
477  samples, as well as ranking positive samples with close similarity.

478 In Fig. 7b-e, we demonstrate the multi-level interpretability of EquiScore using a lead
479  compound optimization case in LeadOpt. Specifically, in this case, adding a methyl
480  group to the thiophene ring of PTP1B 23484 (Fig. 7b) leads to PTP1B 23485 (Fig. 7c),
481  which exhibits a "magic methyl effect" 3, changing AG from -7.7 kcal/mol to -11.01
482  kcal/mol. By visualizing the attention distribution on the two analogs, we found that
483  the added methyl group was assigned a significantly high weight, indicating its
484  importance. In Fig. 7d, we observed that the introduction of the methyl group makes
485  the ligand and the protein pocket more complementary in shape, and brings the
486  molecule and the carbon atoms of the hydrophobic amino acid residues ILE219 and
487  VALA49 in the pocket closer in distance. As shown, the carbon-carbon atom pairs are at
488  a distance of around 3.5A, which could form favorable hydrophobic interaction'.
489  Further visualization of the protein-ligand interaction in Fig. 7e reveals that the model
490  assigned a high weight to the introduced methyl with the carbon atoms on ILE219,
491  indicating that the model can well capture ligand atoms and receptors interactions
492  between pairs of atoms through the EquiScore layer. Overall, this interpretability could

493  help us locate key amino acids on protein and optimizable motifs on the ligand,
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494  providing a reference for rational drug design.

495  CONCLUSION

496 In this study, we developed a generic protein-ligand interaction scoring method
497  called EquiScore. Firstly, we analyzed common distribution biases and the data leakage
498  issue in developing scoring methods. Based on these analyses, we constructed a new
499  dataset called PDBscreen using multiple data augmentation strategies, such as enlarging
500 the positive sample size with near-native ligand binding poses and the negative sample
501  size with generated highly deceptive decoys. Secondly, leveraging the PDBscreen
502  dataset, we trained a model using an equivariant heterogeneous graph attention
503 architecture that incorporates different physical and prior knowledge about protein-
504  ligand interaction. For example, we defined more types of nodes and edges, including
505  virtual nodes for aromatic rings, spatial distance edges, and empirical molecular
506 interaction edges. Thirdly, we evaluated the performance of the resulting EquiScore
507 model. In the VS scenario, we compared EquiScore with 21 existing scoring methods
508 and found that EquiScore outperformed others on unseen proteins, with the best
509 performance measured by three different metrics: AUROC, BEDROC, EFs scores, on
510 two external datasets DEKOIS2.0 and DUD-E. In the lead compound optimization
511  scenario, we compared EquiScore with eight different types of methods and found that
512  EquiScore showed only lower ranking ability than FEP+. Considering the significantly
513  higher computational expenses required for FEP+ calculations, EquiScore
514  demonstrated the advantage of more balanced speed and accuracy. Additionally, we
515  found that EquiScore demonstrates robust rescoring capabilities when applied to poses
516  generated by different docking methods, and rescoring with EquiScore can enhance the
517 VS performance of all the evaluated methods. Finally, we analyzed the model's
518 interpretability by studying the self-attention weight distribution of EquiScore and
519  found that the model can capture key inter-molecular interactions, demonstrating the
520 model's rationality and providing useful clues for rational drug design. Robust

521  prediction of protein-ligand interactions will provide valuable opportunities to learn
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522  about the biology of proteins and determine their impact on future drug treatments. We
523  envision that EquiScore may contribute to a greater understanding of human health and

524  disease, and catalyze the discovery of novel medicines.

525 METHODS

526  Data preparation

527  Data collection and redocking

528 We followed the process of building a VS database from Adeshina Y O et al.>*, which
529  involved the following steps: (1) Downloading all protein-ligand complexes in the PDB
530 database (180,207 entries as of July 2021). (2) Retaining crystal structures with
531  resolution better than 2.5 A. (3) Filtering out complexes with ligand that include
532  nucleotide-like molecules (e.g., ATP), Amina acid-like molecules (e.g., EPW),
533  cofactors (e.g., NAD), crystallographic additive (e.g., polyethylene glycol), or covalent
534  ligand by chemical composition dictionary>*. The specific pipeline is shown in Fig.1.
535 After redocking the complexes, we kept only the poses with a Root-Mean Square
536 Deviation (RMSD) less than 2A and the pose with the highest ranking after redocking
537  while keeping a maximum of five poses for each complex. It should be noted that to
538  ensure the data quality of PDBscreen further, we only kept poses with docking scores
539 less than -5kcal/mol in PDBscreen.

540  Docking setup

541 The optimization of all proteins was performed using the Protein Preparation Wizard
542  of Maestro® module of Schrédinger (version 12.6; Schrddinger, LLC: New York, N,
543  2020). This included adding hydrogens, assigning bond orders, filling missing side
544  chains and loops, removing water molecules beyond 5 A from the ligand, optimizing
545  the H-bond network, and minimizing the system with the OPLS-2005% force field until
546  the root-mean-square deviation of heavy atoms converged to 0.30 A.

547 In LigPrep*, the Epik®> module was used to obtain possible molecular ionization
548  states at a target pH value of 7.0 = 2.0. The OPLS-2005 force field was then used to

549  generate the ligand conformation with the lowest energy, which served as the starting
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550  point for further docking experiments. It is important to note that a single molecule may
551  have multiple tautomers/stereoisomers, which could introduce the analog bias caused
552 by over-represented scaffolds®’. To mitigate this issue, only the isomers with the best
553  docking scores were saved for further analyses. This means that each molecule with a
554  unique identity had only one docking pose.

555 The Receptor Grid Generation module generated the receptor grids in Schrodinger
556  with the size of the binding box set to 10 x 10 x 10 A centered on the co-crystallized
557  ligand. Finally, all the ligand-protein docking was performed with the Glide*® module
558  (version 8.9) within Schrodinger using the standard precision (SP) mode.

559  Cross-docking

560 We use the Uniport®® website to map Uniport IDs with PDB IDs in PDBscreen.
561  Uniport is a protein database that contains protein sequences and functional information.
562  Using Uniport ID as a protein identity, the cross-docking process can ensure that the
563  ligands in a PDB ID cannot be docked to related PDB IDs of the same protein. It should
564  be noted that PDBscreen will have the same small molecules under different proteins.
565 In the cross-docking process, we convert all the ligands into the canonical SMILES
566  format, and the same SMILES format is considered to be the same ligand, which further
567  avoids the occurrence of false negatives. Finally, negative samples obtained by cross-
568  docking are ten times larger than positive samples.

569  Generated decoys

570 To expand the chemical space of ligands in complexes, we use the generative model
571  DeepCoy?® to generate 500 decoys for each PDB ID and dock these decoys. Finally, we
572  calculate the 3D degree of overlap of the poses after docking with the ligand in the
573  crystal using the Shape Screening module of Schrédinger. We sort them according to
574  the degree of overlap and only keep the top five poses as final generated decoys. These
575  decoys will work together with the protein as negative samples.

576  Data deduplication

577 To verify the generalization ability of EquiScore, we removed the "soft overlap" data
578  from the training set by using Uniport IDs to match external test data. This means any

579  sample in the training set that can match the same protein in the external sets DUD-E
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580 and DEKOIS2.0 will be excluded. This ensures the proteins of the external sets are
581  unseen during model training.

582  Data pre-processing

583 When constructing a protein-ligand interaction graph, we only considered residues
584  in the range of 8A around the ligand and treated atoms as nodes on the graph. For edge
585  construction, we established geometric distance-based edges (Egeometric) between nodes
586  that were less than 5.5 A apart and regarded chemical bonds as edges (Estructural). We
587  added a virtual central node to any aromatic ring that appeared in either the ligand or
588  protein, and established virtual edges between the virtual node and the nodes of the ring.
589  Additionally, we calculated IFP by ProLIF*! and established IFP edges between pairs
590 of atoms associated with this interaction. We used the average values of nodes on the
591  relevant ring as the virtual node coordinates and features. The IFP edge feature is a

592 learnable vector, and other defined features are shown in Table 4.

593
594 Table 4 | List of Node and Edge Features
Node Feature Description
Atom from ligand or protein Identity in pocket or ligand [0, 1] (one-hot)
Atom type C,N, O, S, F, P, Cl, Br, B, H (one-hot)
Degree of atom Number of covalent bonds [0, 1, 2, 3, 4, 5] (one-hot)
Hydrogens Number of connected hydrogens [0, 1, 2, 3, 4] (one-hot)
Aromatic Whether the atom is part of an aromatic ring [0, 1] (one-hot)
Formal charge Electrical charge (integer)
Radical electrons Number of radical electrons (integer)
Hybridization [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)
Chirality Whether the atom is a chiral center [0, 1] (one-hot)
Chirality type [R, S] (one-hot)
Edge Feature Description
Bond type [single, double, triple, aromatic] (one-hot)
Conjugation Whether the bond is conjugated [0/1] (one-hot)
Ring Whether the bond is in a ring [0/1] (one-hot)

Stereo [StereoNone, StereoAny, StereoZ, StereoE] (one-hot)
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595
506  Model
597 EquiScore accepts protein-ligand binding pose as input and outputs a score value.

598  For the convenience of description, unless otherwise specified, we use italics to
599  represent variables and bold to represent matrices. Let G = (V, Egeometric, Estructural) denote
600  aprotein-ligand interaction graph (more description in data preparation). Here, V = {vi,
601 V2, Vs, ..., Vn}is a set of nodes, where n is the number of the V, Egeometic = {€1, €2, €3, ...,
602  em} is a set of edges based on geometric distance, where m is the number of the edges
603  in Egeometric, Estructural = {€1, €2, €3, ..., €k} 1s a set of edges based on covalent bonds or
604  IFPinformation, where k is the number of edges in Esiructural. Every node (vi) or edge (ei)
605  has a vector /; or m; to represent its relative information, respectively.

606 In this paper, we integrate prior knowledge about physical intermolecular interaction
607 into the heterogeneous graph by introducing new types of nodes and edges. It is also
608  feasible to include a portion of it or introduce other types of nodes or edges during the
609  graph construction phase.

610  Graph Neural Network (GNN)

611 GNNs aim to learn a representation of nodes or graphs. Typically, modern GNNs
612  follow a learning schema that iteratively updates the representation of a node by
613  aggregating representations of its first or higher-order neighbors®®, which can
614  be described using the Message Passing Neural Networks (MPNN) framework®’. This

615 method includes message aggregation, update, and read out three steps. In the message
616  passing phase, the hidden states /' at each node in the graph will update ¢ times

617  according to the equation (1) and (2).

618 m" = " Aggregate(h',h!,m, (1)
JeN (i)
t+ _ t 1+l
619 k" =Update(h;,m| (2)
620 The neighbors of each node and relative edges generate messages and aggregate

621  together by an aggregate function. Then, the node updates to the new hidden state 4"
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622  through the aggregated information by the update function. For a graph-level task, a
623  read out function is also required to obtain the representation of the graph. This read
624  out function in the equation (3) must be invariant to permutations of the node states for
625 the MPNN to be invariant to graph isomorphism®

626 G =Readout({™ |ie{1,2,3,...,n}) 3)

627  Attention mechanism
628 Our model combines the advantages of graph neural networks and transformer

629  architectures, in which the self-attention module is the main building block.

630 Let H=[A/, /), h,....h']" € R™ is the input matrix of the self-attention module, d is

631  the dimension of the hidden state /4, , and the calculation process of self-attention with

632  the following equations:

633 Q=HW,,W,e R"® (4)
634 K=HW,,W, e R™% (5)
635 V=HW,,W, e R™" (6)
636 score= QK" /\[d, (7)

637  Where W, W,,W, are the projection matrices of H, the scoree R™ reflects the

638  similarity of the queries in Q and the keys in K . For the convenience of expression,

639  we only express the calculation of single-head attention and omit the bias term.

640  EquiScore framework

641 (1) Embedding layer: The features of nodes and edges are mapped to the continuous
642  hidden layer space using a fully connected layer for representation learning.

643 (2) EquiScore layer: Fig. 2b. shows the details for the EquiScore layer. There are
644  three sub-modules in the EquiScore layer: the info-aware attention module, the
645  equivariant message passing module (node update module), and the edge update
646  module.

647 (2.1) Info-aware attention module: This module enables the attention mechanism

648  to aware prior information. After equations (4)-(7), the attention coefficient matrix
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649  represents the similarity between each node and other nodes on the graph. However,
650  this method cannot let the model know the 3D structural information on the graph. To

651 use inductive bias from the 3D information to help the model capture distance

652  dependence, the relative distance matrix E on geometric-based edges is

geometric

653  transformed by the following equation:

654 Egeometric = FFN(Egeometric) (8)
655  Then, through the equation (9):
656 scoredistance-gated =score Q E geometric (9)

657 Here, E is used as a gating mechanism to control the strength of the information

geometric

658  flow of each node to the target node.
659 To further utilize the information of the geometry-based edges in the graph while

660  preserving the chemical prior information of the complex, an edge bias module is

661  introduced. In this module, the pre-defined feature matrix E on covalent edges

structural

662  will be a bias term by the following equation:

663 Estructural = Linear(Embedding(Estructural )) ( 1 O)
664 scoreinfo—aware = scoredistance—gated @ Estructural (1 1)
665 (2.2) Equivariant message passing module (Node update module): Following

666 ~EGNN* ensures the equivariant properties of EquiScore by simultaneously updating

667  the node's scaler and vector representation using the following equations:

— 2
668 mzj_¢e(hitﬁhjtaHxit_xjt H aag/) (12)
t+ .t t t
669 XM =x ) (x = x, ) (m,) (13)
J#I
670 m=y m, (14)
jeN(,-)
671 Bt =g, (h',m) (15)
672 In the equation (12) g; is an element in the score matrix score, ..., which

673  represents edge features, and @, is an edge operation function to obtain a massage from

674  input information. In the equation (13), EGNN updates the position of each node as a
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675  vector field in a radial direction. In other words, the position of each node is updated

676 by the weighted sum of all relative differences (x' —x '), ,and the weights of this sum
(x'=x),

677 are provided as the output of function ¢ **. Since our task is an invariant task and

678  positions are static, there is no need to update the atom's position x. Consequently, we
679  tried both manners and we notice there have some improvement by updating positions,
680 so we kept this step (but only reserve the invariant output to task layer). Finally,
681  equations (14)-(15) follow the same update steps as standard GNNss, like the equation
682 (1) and (2).

1. 6163 a]s0 demonstrate that

683 (2.3) Edge-update module: Many current works
684  alternate iterative updates of edges and nodes increase the expressiveness and
685  generalization of the model. To further fuse the information carried on different types

1. 64

686  of edges, we draw inspiration from the work of Dwivedi et al. ® and design an edge

687  update module.

688 First, we calculate the attention matrix score.

mraware through equations (8)-(11), and
689  then read out and project the attention matrix to the hidden space with the same
690 dimension as the edge features through a project module consisting of a two-layer

691  neural network and a nonlinear activation function following the equation:

692 F

project

= Project . (Readout(score, ;. ...)) (16)

score

693 Finally, we add this part of the information through the equation (17) to update the

694  features matrix on structural-based edges.

695 E = PrOj eCtstructural (Estructural + Fproject ) ( 1 7)

structural

696 After the above modules, our model acquires rich node and edge representation
697  information, which will be fed into the following parts.

698 (3) Task Layer: After the multi-layer EquiScore layers convolution operation, nodes
699  belonging to the ligand in the ligand-protein interaction graph are read out and fed into
700  atask layer. In this step, we only reserve the invariant output and discard the equivariant
701 output (e.g. updated 3D coordinates) since the goal of this module is to provide

702  invariant features. To ensure permutation invariance, we use the weighted sum
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703  operation as the read out pooling function to get the graph-level representation through

704  the following equation:
705 Glgand = WeightedSumth (18)

706 After the graph-level representation G,, , using the pooling operation, the

ligan
707  representation is sent to the multi-layer perceptron layer ( MLP, , ) following the

708  equation (19). The multi-layer perceptron layer consists of three linear layers with

709  nonlinear activation function®® and finally outputs the predicted probability.

710 pl"Ob = MLPtask (Gligand) (1 9)

711 Finally, EquiScore uses cross-entropy as the loss function. Its expression is as the

712 following equation:

713 loss = CrossEntropy(label, prob) (20)
714 (4) Model training: We optimized the model using the Adam®® optimizer, with a
715  batch size of 64 and a learning rate of 10e~* without weight decay. The model training

716  proceeded unless the best validation loss did not change in 50 successive epochs.
717  External test datasets

718  Lead compound optimization datasets

719 Schrodinger has reported a lead compound optimization dataset with a broad range
720  of target protein types. The Schrodinger FEP+ workflow was used to calculate the
721  relative binding free energies and correlation coefficients were calculated®. To further
722  evaluate the ranking performance of EquiScore and its application potential in lead
723 compound optimization scenarios, we used this dataset, named LeadOpt, as an external
724  test. The statistics of proteins and compounds in LeadOpt are shown in Table 3.

725  Virtual screening datasets

726 To evaluate the model in different VS scenarios, we chose two benchmark datasets
727 DEKOIS2.0°** and DUD-E?’. DUD-E contains a total of 22886 positive ligands against

728 102 targets from 8 diverse protein families, including 5 G-protein-coupled receptors
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(GPCRs), 26 kinases, 11 nuclear receptors, 15 proteases, 2 ion channels, 2 cytochrome
P450s, 36 other enzymes, and 5 miscellaneous proteins. These positive compounds
were originally retrieved from the ChEMBL09 database®’. For each positive compound,
50 decoys with similar physicochemical properties but dissimilar 2D topology were
generated from ZINC*. DEKOIS 2.0 contains 81 structurally diverse targets, each
target has 40 positive compounds extracted from BindingDB*’ and 1200 decoys

generated from ZINC. The details of these datasets are available in references®.

Data availability

The PDBscreen dataset supporting this study's findings is available in Zenodo with the
identifier https://doi.org/10.5281/zenodo.8049380.

The test dataset supporting this study's findings is available in Zenodo with the
identifier https://doi.org/10.5281/zenodo.8047224.

Preprocessed data are provided in this paper.

Code availability

The code used to generate the results shown in this study is available under an MIT
Licence in the repository https://github.com/CAODH/EquiScore.
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