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Abstract 23 

Corrective feedback received on perceptual decisions is crucial for adjusting decision-making 24 

strategies to improve future choices. However, its complex interaction with other decision 25 

components, such as previous stimuli and choices, challenges a principled account of how it 26 

shapes subsequent decisions. One popular approach, based on animal behavior and extended 27 

to human perceptual decision-making, employs ‘reinforcement learning,’ a principle proven 28 

successful in reward-based decision-making. The core idea behind this approach is that 29 

decision-makers, although engaged in a perceptual task, treat corrective feedback as rewards 30 

from which they learn choice values. Here, we explore an alternative idea, which is that humans 31 

consider corrective feedback on perceptual decisions as evidence of the actual state of the 32 

world rather than as rewards for their choices. By implementing these ‘feedback-as-reward’ and 33 

‘feedback-as-evidence’ hypotheses on a shared learning platform, we show that the latter 34 

outperforms the former in explaining how corrective feedback adjusts the decision-making 35 

strategy along with past stimuli and choices. Our work suggests that humans learn about what 36 

has happened in their environment rather than the values of their own choices through 37 

corrective feedback during perceptual decision-making. 38 

  39 

Introduction 40 

Perceptual decision-making (PDM) means committing to a proposition about an objective world 41 

state (e.g., “The temperature today is low.”). Decision-makers adjust future commitments based 42 

on what they experienced from past commitments, including what they perceived, what they 43 

chose, and what the environment gave them in return. Among these history factors, trial-to-trial 44 

corrective feedback—feedback about the correctness of a decision maker’s choices on a trial-45 
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to-trial basis—is widely used by experimenters to train subjects on PDM tasks. Despite this 46 

clear utility of feedback and a pile of evidence for its impact on subsequent PDM behavior 47 

across species and sensory modalities [1–11], much remains elusive about how corrective 48 

feedback, in conjunction with other history factors, exerts its trial-to-trial influence on subsequent 49 

decisions. 50 

Unlike PDM, value-based decision-making (VDM) involves making choices based on 51 

decision makers’ subjective preferences (e.g., ‘choosing between two drinks based on their 52 

tastes’). Reinforcement learning (RL) algorithms have proven effective in explaining how past 53 

rewards affect future VDM based on error-driven incremental mechanisms [12–18]. Intriguingly, 54 

there have been attempts to explain the impact of past feedback on subsequent PDM by 55 

grafting an RL algorithm onto the PDM processes [3,4,8–10]. This grafting premises that 56 

decision-makers treat corrective feedback in PDM similarly to reward feedback in VDM. On this 57 

premise, this RL-grafting account proposes that decision-makers update the value of their 58 

choice to minimize the difference between the expected reward and the actual reward received, 59 

called ‘reward prediction error’ (red dashed arrows in Fig 1A). Importantly, the amount of reward 60 

prediction error is inversely related to the strength of sensory evidence—i.e., the extent to which 61 

a given sensory measurement of the stimulus supports the choice—because the expected value 62 

becomes low as the sensory evidence becomes weak. For example, suppose a decision-maker 63 

committed to a proposition, “The temperature today is low.” Then, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback to that 64 

commitment increases the value of the ‘low’ choice since the positive reward for the ‘low’ choice 65 

leads to the positive reward prediction error, which indicates the need to heighten the value of 66 

the ‘low’ choice. Importantly, the amount of value-updating is greater when the experienced 67 

temperature is moderately cold (e.g., −2°c, weak sensory evidence for the ‘low’ choice) 68 

compared to when it is very cold (e.g., −15°c, strong sensory evidence for the ‘low’ choice) 69 

because the expected reward is smaller in the former, which leads to a greater level of reward 70 
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prediction error compared to the latter (as illustrated in the left panel of Fig 1B). A recent study 71 

[9] referred to this sensory evidence-dependent impact of feedback as “confidence-guided 72 

choice updating” based on the tight linkage between decision confidence and sensory evidence. 73 

This RL-grafting account, referred to as the value-updating scenario hereinafter, appears natural 74 

given that corrective feedback is typically provided as physical rewards such as juice or water in 75 

animal PDM experiments [4,5,8–10,19–21]. The value-updating scenario seems plausible from 76 

the perspective that PDM and VDM might share common mechanisms [22], as suggested by 77 

some empirical studies [23,24]. 78 

 79 
 80 

Fig 1. Two possible scenarios for what humans learn from feedback for PDM and their distinct 81 
predictions of feedback effects. (A) Decision-making platform for perceptual binary classification. The 82 
gray arrows depict how a sensory measurement 𝑚 and feedback 𝐹 are generated from a stimulus 𝑆, 83 
which is sampled from the 𝑤𝑜𝑟𝑙𝑑, and a choice 𝐶. The black arrows depict the computational process, 84 
where, for a given choice 𝑜𝑝𝑡𝑖𝑜𝑛, a decision-maker computes its expected value 𝑄234526 by multiplying the 85 
probability that the choice is correct 𝑝234526 given 𝑚 and the class boundary 𝐵 with the value of that 86 
choice 𝑉234526 and make a choice 𝐶 based on 𝑄234526. In principle, the decision-maker may update either 87 
𝑉234526 (red dashed arrows; value-updating) or 𝑤𝑜𝑟𝑙𝑑 (green dashed arrows; world-updating) from 𝑚, 𝐶, 88 
and 𝐹. (B) Distinct sensory-evidence-dependent feedback effects predicted by the value-updating and 89 
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world-updating scenarios. According to the value-updating scenario (left), as sensory evidence becomes 90 
stronger, 𝑝234526 increases, and accordingly, so does 𝑄234526. As a result, reward prediction errors become 91 
smaller but remain in the direction congruent with feedback, which predicts that feedback effects on 92 
subsequent trials diminish asymptotically as a function of the strength of sensory evidence. According to 93 
the world-updating scenario (right), as sensory evidence becomes stronger, the stimulus distribution, and 94 
accordingly 𝐵 too, becomes shifted farther towards the stimulus in the direction counteracting the 95 
influence of feedback. As a result, the direction of feedback effects is the same as that predicted by the 96 
value-updating scenario for weak sensory evidence but eventually reverses to the direction incongruent 97 
with feedback as sensory evidence becomes stronger.  98 
 99 

Nevertheless, value-updating might not be the only route through which feedback effects 100 

transpire in PDM, especially for humans receiving corrective feedback without any physical 101 

rewards. Alternatively, decision-makers may treat feedback not as rewards but as a logical 102 

indicator of whether the proposition they committed to is true or false in the world. In this 103 

scenario, decision-makers update their belief about world statistics (i.e., stimulus distribution) by 104 

combining the information about the trueness of their choice, which is informed by feedback, 105 

and the information about the stimulus, which is informed by a sensory measurement (dashed 106 

arrow from 𝑚 in Fig 1A). Suppose you have recently arrived in Canada for the first time in the 107 

winter and felt the chilly air. You remarked, "The temperature today is low." Your friend, who has 108 

lived for long in Canada, may agree or disagree with you, and this will provide you with 109 

information on the typical temperature distribution during the Canadian winter. The 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 110 

feedback from your friend (e.g., "Actually, it's not low at all today.”) indicates that the 111 

temperature experienced today falls on the higher side of the actual distribution, making you 112 

adjust your belief about the distribution to the lower side. On the contrary, the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback 113 

(e.g., “Yes, it’s low today.”) will lead you to adjust your belief about the distribution to the higher 114 

side. It is important to note that, besides the feedback from your friend, the temperature felt by 115 

yourself also informs you of the statistical distribution of temperature since it is a sample from 116 

that distribution. For instance, if the temperature felt moderately cold (e.g., −2°c), your belief 117 

about the temperature distribution will only slightly shift towards the lower side. However, if it felt 118 

very cold (e.g., −15°c), your belief will shift towards the same lower side, but with a much 119 
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greater amount, which can counteract the impact of the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback on your belief (i.e., 120 

adjusting your belief to the higher side). 121 

Therefore, according to this alternative scenario, referred to as the word-updating 122 

scenario hereinafter, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback to “The temperature today is low.” will increase the 123 

tendency to classify the next day’s temperature as ‘low,’ just like the value-updating scenario. 124 

However, unlike the value-updating scenario, the world-updating scenario implies that when 125 

sensory evidence is too strong, such a tendency can be reversed, leading to a counterintuitive 126 

increase in the tendency to classify the next day’s temperature as ‘high,’ (as illustrated in the 127 

right panel of Fig 1B). The world-updating scenario is conceptually parsimonious because it 128 

does not require any component outside the PDM processes, such as the RL algorithms 129 

developed in the VDM. Especially in Bayesian Decision Theory (BDT) [25,26], which has been 130 

providing compelling accounts for PDM behavior, world statistics is a crucial knowledge that is 131 

required to infer a world state in PDM [27–30]. 132 

Here we tested which of the two scenarios better explains the effects of corrective 133 

feedback—without any physical reward—on humans’ PDM. To do so, we implemented the 134 

value-updating and world-updating scenarios into a variant of RL model [9] and a Bayesian 135 

model, respectively, and directly compared the two models’ accountability for the feedback 136 

effects on humans’ PDM behavior. As a PDM task, we opted for a binary classification task, one 137 

most widely used PDM task in which decision-makers sort items into two discrete classes by 138 

setting a boundary since the two scenarios make distinct predictions about the stimulus-139 

dependent feedback effects in this task. As was described intuitively above and will be 140 

explained rigorously later, the value-updating scenario predicts that feedback, which acts like 141 

rewards, “uni-directionally” fosters and suppresses the rewarded (𝑐𝑜𝑟𝑟𝑒𝑐𝑡) and unrewarded 142 

(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) choices, respectively, in subsequent trials while diminishing its impact asymptotically 143 

as sensory evidence becomes stronger, due to the reduction in reward prediction error (the red 144 
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curve in Fig 1B). By contrast, the world-updating scenario predicts that the feedback effects not 145 

just diminish but eventually become reversed to the opposite side as sensory evidence 146 

becomes stronger, as the shift of the class boundary towards the previous stimulus counteracts 147 

the boundary shift due to feedback (the green curve in Fig 1B). 148 

 We found the world-updating model superior to the value-updating model in explaining 149 

human history effects of corrective feedback on PDM. Critically, the value-updating model fails 150 

to account for the observed stimulus-dependent feedback effects. Our findings suggest that 151 

humans are likely to treat corrective feedback in PDM as logical indicators of the trueness of the 152 

proposition to which they committed, rather than as rewards, and update their knowledge of 153 

world statistics, rather than the values of their choices, based on feedback in conjunction with 154 

the other history factors—previous stimuli and choices. 155 

Results 156 

Quantifying the retrospective and prospective history effects 157 

of feedback on binary classification  158 

To study the stimulus-dependent feedback effects in PDM, we acquired long sequences (170 159 

trials/sequence) of binary choices (𝐶 ∈ {𝑠𝑚𝑎𝑙𝑙, 𝑙𝑎𝑟𝑔𝑒}) many times (30 sequences/participant) 160 

from each of 30 human participants while varying the ring size (𝑆 ∈ {−2,−1,0,1,2}) and providing 161 

corrective feedback (𝐹 ∈ {𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡}) (Fig 2A). On each trial, participants viewed a ring, 162 

judged whether its size is 𝑠𝑚𝑎𝑙𝑙 or 𝑙𝑎𝑟𝑔𝑒 as accurately as possible while receiving feedback, 163 

which indicated by color whether the choice was correct or incorrect (Fig 2B). We ensured the 164 

ring size varied sufficiently—including the ones very easy and difficult for classification—so that 165 

the two scenarios’ distinct predictions on the stimulus-dependent feedback effects could be 166 

readily compared. Also, we used stochastic feedback, where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback 167 
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was occasionally given to incorrect and correct choices, respectively, to cover the entire 3D 168 

space of decision-making episodes defined orthogonally over ‘stimulus’, ‘choice’, and ‘feedback’ 169 

(5 × 2 × 2 = 20	episodes; Fig 2C; Materials and methods).  170 

 171 

Fig 2. Experimental design and definition of retrospective and prospective history effects. (A) A 172 
chain of PDM episodes over a single sequence of trials. Each trial sequence consists of 170 column 173 
vectors of PDM episode [stimulus; choice; feedback]. In this example, the trial of interest (toi) is 174 
characterized by an episode vector [0; 	𝑙𝑎𝑟𝑔𝑒; 	𝑐𝑜𝑟𝑟𝑒𝑐𝑡] and demarcated by thick outlines. The trials that 175 
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precede and follow toi can be labeled as toi-1 and toi+1, respectively. (B) Trial structure. Participants 176 
viewed a randomly sampled ring with their eyes fixed, classified its size, and then received feedback 177 
indicating whether the classification was correct or incorrect by the color around the fixation. (C) The 3D 178 
state space of the PDM episodes in the experiment. The example episode of toi in (A) is marked by the 179 
black cube. (D) Definition of retrospective and prospective history effects. As illustrated in (A) and (C), for 180 
any given episode of toi, all the trials labeled with toi-1 and toi+1 are stacked and used to derive the 181 
psychometric curves, respectively. The PSEs estimated for the toi-1 and toi+1 psychometric curves 182 
quantify the retrospective and prospective history effects, respectively. In this example, the black and 183 
gray curves were defined for toi = [0; 	𝑙𝑎𝑟𝑔𝑒; 	𝑐𝑜𝑟𝑟𝑒𝑐𝑡] and toi = [0; 	𝑠𝑚𝑎𝑙𝑙; 	𝑐𝑜𝑟𝑟𝑒𝑐𝑡], respectively, with 184 
circles and bars representing the mean and s.e.m. across 30 participants, respectively. The data 185 
underlying this figure (D) can be found in S1 Data.   186 

To rigorously evaluate the correspondence between model prediction and human 187 

behavior, we quantified the history effects in both retrospective and prospective directions of 188 

time, as follows (Fig 2D). First, we localized the trials in which a PDM episode of interest 189 

occurred (trial of interest, toi) and stacked the trials that preceded (the retrospective block of 190 

trials, toi-1) and those that followed (the prospective block of trials, toi+1) the toi.  Second, we 191 

derived the two psychometric curves from the retrospective and prospective blocks of trials, 192 

respectively, and fit the cumulative normal distribution function to these curves to estimate the 193 

point-of-subjective-equality (PSE) measures, which have previously been used [19–21] and 194 

known to reliably estimate the history-dependent choice biases in PDM [31]. Thus, the PSEs of 195 

the retrospective and prospective trials quantify the choice biases that exist before and after the 196 

PDM episode of interest occurs, respectively, with negative and positive values signifying that 197 

choices are biased to 𝑙𝑎𝑟𝑔𝑒 and 𝑠𝑚𝑎𝑙𝑙, respectively. 198 

Decision-making processes for binary classification 199 

As a first step of evaluating the value-updating and world-updating scenarios, we constructed a 200 

common platform of decision-making for binary classification where both scenarios play out. 201 

This platform consists of three processing stages (Fig 3A). At the stage of ‘perception’, the 202 

decision-maker infers the class probabilities, i.e., the probabilities that the ring size (𝑆) is larger 203 

and smaller, respectively, than the class boundary (𝐵) given a noisy sensory measurement (𝑚), 204 

as follows: 205 
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𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒) = 𝑝(𝑆 > 𝐵|𝑚) = ∫ 𝑝(𝑆|𝑚)𝑑𝑆P
Q ; 206 

𝑝(𝐶𝐿 = 𝑠𝑚𝑎𝑙𝑙) = 1 − 𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒), 207 

where 𝐶𝐿 stands for the class variable with the two (𝑠𝑚𝑎𝑙𝑙 and 𝑙𝑎𝑟𝑔𝑒) states. 208 

At the stage of ‘valuation’, the decision-maker forms the expected values for the two 209 

choices (𝑄RSTUV and 𝑄WXSRR) by multiplying the class probabilities by the learned values of the 210 

corresponding choices (𝑉RSTUV and 𝑉WXSRR) as follows: 211 

𝑄RSTUV = 𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒) × 𝑉RSTUV; 212 

𝑄WXSRR = 𝑝(𝐶𝐿 = 𝑠𝑚𝑎𝑙𝑙) × 𝑉WXSRR. 213 

 Lastly, at the stage of ‘decision’, the decision-maker commits to the choice whose 214 

expected value is greater than the other. In this platform, choice bias may originate from the 215 

perception or valuation stage. Suppose the decision-maker’s belief about size distribution at the 216 

perception stage is not fixed but changes depending on previous PDM episodes (Fig 3B, top). 217 

Such changes lead to the changes in PSE of the psychometric curve because the class 218 

probabilities change as the class boundary changes (Fig 3B, bottom). Alternatively, suppose the 219 

decision-maker’s learned values of the choices are not fixed but change similarly (Fig 3C, top). 220 

These changes also lead to the changes in PSE of the psychometric curve because the 221 

expected values change as the choice values change (Fig 3C, bottom). 222 
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 223 

Fig 3. Implementation of the value-updating and world-updating scenarios into computational 224 
models in a common PDM platform. (A) Computational elements along the three stages of PDM for 225 
binary classification. At the ‘perception’ stage, the probabilities that the class variable takes its binary 226 
states 𝑠𝑚𝑎𝑙𝑙	and 𝑙𝑎𝑟𝑔𝑒—𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒) and 𝑝(𝐶𝐿 = 𝑠𝑚𝑎𝑙𝑙)—are computed by comparing the belief on 227 
the stimulus size 	𝑝(𝑆|𝑚) against the belief on the class boundary 𝐵—the mean of the belief on stimulus 228 
distribution in the world 𝑝(𝑆). At the ‘valuation’ stage, the outcomes of the perception stage are multiplied 229 
by the learned values 𝑉s to produce the expected values 𝑄s. At the ‘decision’ stage, the choice with the 230 
greater expected value is selected. (B, C) Illustration of two potential origins of choice biases, one at the 231 
‘perception’ stage (B) and the other at the ‘valuation’ stage (C). The color indicates the direction of choice 232 
bias (yellow for bias to 𝑙𝑎𝑟𝑔𝑒; balck for no bias; blue for bias to 𝑠𝑚𝑎𝑙𝑙). (D, E) Illustration of the 233 
architectures (left panels) and predictions on the stimulus-dependent feedback effects (right panels) of 234 
BMBU (D) and the belief-based RL model (E). In the left panels, the dashed arrows represent the ways 235 
the history factors (feedback and stimulus) exert their contribution to choice bias. In the right panels, 236 
𝑃𝑆𝐸425[\, which quantifies the choice bias in the trials following a certain PDM episode at toi=[0; 𝑙𝑎𝑟𝑔𝑒; 237 
correct], is plotted as a function of the stimulus size at toi. The color indicates the direction of choice bias, 238 
as in (B) and (C). 239 

The belief-based RL model  240 
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To implement the value-updating scenario, we adapted the belief-based RL model [9] to the 241 

current experimental setup. Here, feedback acts like a reward by positively or negatively 242 

reinforcing the value of choice (𝑉RSTUV(WXSRR)) with the deviation of the reward outcome (𝑟) from 243 

the expected value of that choice (𝑄RSTUV(WXSRR)), as follows:	244 

𝑉RSTUV(WXSRR) ← 𝑉RSTUV(WXSRR) + 𝛼𝛿; 245 

𝛿 = 𝑟 −	𝑄RSTUV(WXSRR) = 𝑟 − 	𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒(𝑠𝑚𝑎𝑙𝑙)) × 𝑉RSTUV(WXSRR), 246 

where 𝛼, 𝛿, and 𝑟 are the learning rate, the reward prediction error, and the reward, 247 

respectively. The state of feedback determines the value of 𝑟: 𝑟 = 1 for 𝑐𝑜𝑟𝑟𝑒𝑐𝑡; 𝑟 = 0 for 248 

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡. Note that 𝛿 has the statistical decision confidence at the perception stage, i.e., 249 

𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒(𝑠𝑚𝑎𝑙𝑙)), as one of its three arguments. As stressed by the authors who 250 

developed this algorithm [9], this feature makes the strength of sensory evidence—i.e., 251 

statistical decision confidence—modulate the degree to which the decision-maker updates the 252 

chosen value based on feedback (Fig 3E, left). Hence, this belief (confidence)-based 253 

modulation of value-updating underlies the stimulus-dependent feedback effects: the amount of 254 

feedback effects decreases as sensory evidence becomes stronger since the reward prediction 255 

error decreases as a function of 𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒(𝑠𝑚𝑎𝑙𝑙)), which is proportional to sensory 256 

evidence (Fig 3E, right). 257 

The Bayesian model of boundary-updating (BMBU) 258 

To implement the world-updating scenario, we developed BMBU, which updates the class 259 

boundary based on the previous PDM episode in the framework of BDT. Specifically, given ‘a 260 

state of the class variable that is indicated jointly by feedback and choice’, 𝐶𝐿, and ‘a noisy 261 

memory recall of the sensory measurement (, which will be referred to as “mnemonic 262 

measurement” hereinafter)’, 𝑚′, BMBU infers the mean of the size distribution (i.e., class 263 

boundary), 𝐵, by updating its prior belief about 𝐵, 𝑝(𝐵), with the likelihood of 𝐵, 𝑝(𝑚′, 𝐶𝐿|𝐵), by 264 
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inverting its learned generative model of how 𝑚′ and 𝐶𝐿 are generated (Fig 3D, left; Equations 265 

3-6 in Materials and methods for the detailed formalisms for the learned generative model), as 266 

follows: 267 

𝑝(𝐵|𝑚b, 𝐶𝐿) ∝ 𝑝(𝑚b, 𝐶𝐿|𝐵)𝑝(𝐵) ≡ 𝑝(𝑚b, 𝐶, 𝐹|𝐵)𝑝(𝐵). 268 

 This inference uses multiple pieces of information from the PDM episode just 269 

experienced, including the mnemonic measurement, choice, and feedback, to update the belief 270 

about the location of the class boundary (refer to Equations 8-14 in Materials and methods for 271 

more detailed formalisms for the inference). In what follows, we will explain why and how this 272 

inference leads to the specific stimulus-dependent feedback effects predicted by the world-273 

updating scenario (Fig 3D, right), where world knowledge is continuously updated.  274 

 Suppose a decision-maker currently believes that the size distribution is centered around 275 

0. Let’s first consider a case where the decision-maker experiences a PDM episode with  276 

an ambiguous stimulus: the ring with size 0 is presented and produces a sensory measurement 277 

𝑚 that is only slightly greater than 0 (through the stochastic process where 𝑚 is generated from 278 

𝑆; Equation 5), which leads to the 𝑙𝑎𝑟𝑔𝑒 choice since the inferred 𝑆 from such 𝑚 is greater than 279 

the center of the size distribution (Equation 4 and 7), and then followed by 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. 280 

BMBU predicts that after this PDM episode, the decision-maker will update the belief about the 281 

size distribution by shifting it towards the smaller side. Hence, the choice in the next trial will be 282 

biased towards the larger option, resulting in a negatively biased PSE for the psychometric 283 

curve defined by the trials following the episode of interest. This is because the impact of the 284 

mnemonic measurement on boundary-updating is minimal whereas that of the informed class 285 

variable is substantial. After the above episode, the decision-maker’s noisy mnemonic 286 

measurement 𝑚b is also likely to be slightly larger than 0 since 𝑚b is an unbiased random 287 

sample of the sensory measurement 𝑚 (Equation 6). Thus, the impact of 𝑚b on boundary 288 
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updating is minimal because 𝑚b is close to 0 and thus only slightly attracts the class boundary. 289 

On the contrary, the impact of the informed state of the class variable 𝐶𝐿 on boundary updating 290 

is relatively substantial, pushing the class boundary towards the regime consistent with the 291 

informed state of 𝐶𝐿 (Equations 9-12), which is the smaller side. As a result, the class boundary 292 

is negatively (towards-𝑠𝑚𝑎𝑙𝑙-side) biased, which leads to the negative bias in the PSE of the 293 

psychometric curve defined from the trials following the episode of interest (as depicted by the 294 

left (yellow) regime in the plot of Fig. 3D). 295 

 Next, to appreciate the stimulus-dependent nature of feedback effects in the world-296 

updating scenario, let’s consider another case where the decision-maker experiences a PDM 297 

episode with an unambiguous stimulus: the ring with size 2	is presented and produces a 298 

sensory measurement 𝑚 that falls around 2, which leads to the 𝑙𝑎𝑟𝑔𝑒 choice and then followed 299 

by 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. After this episode, as in the previous case with an ambiguous stimulus, 300 

the informed state of the class variable (𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒) shifts the class boundary to the smaller 301 

side. However, unlike the previous case, the impact of the mnemonic measurement 𝑚b on 302 

boundary-updating, which is likely to be around 2, is substantial, resulting in a shift of the 303 

boundary towards the far larger side. Consequently, the class boundary becomes positively 304 

(towards-𝑙𝑎𝑟𝑔𝑒-side) biased. Here, the mnemonic measurement and the informed state of the 305 

class variable exert conflicting influences on boundary updating. Since the mnemonic 306 

measurement increases as the stimulus size grows (e.g., 𝑆 = 0 → 1 → 2), the relative impact of 307 

the mnemonic measurement on boundary-updating is increasingly greater as the stimulus size 308 

grows, eventually overcoming the counteracting influence of the informed state of the class 309 

variable (S1 Fig). As a result, the bias in the class boundary is initially negative but is 310 

progressively reversed to be positive as the stimulus size grows, which leads to the bias 311 

reversal in the PSE of the psychometric curve defined from the trials following the episode of 312 

interest (as depicted by the right (blue) regime in the plot of Fig 3D). 313 
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 We stress that this ‘stimulus-dependent bias reversal’ is a hallmark of the world-updating 314 

scenario’s prediction of the history effects in PDM. Specifically, the direction of bias reversal is 315 

always from 𝑠𝑚𝑎𝑙𝑙 to 𝑙𝑎𝑟𝑔𝑒 as long as the feedback in conjunction with the choice indicates 316 

𝐶𝐿 = 𝑠𝑚𝑎𝑙𝑙 (e.g., {𝑆 = 0 → −1 → −2, 𝐶 = 𝑠𝑚𝑎𝑙𝑙, 𝐹 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡}	𝑜𝑟	{𝑆 = 0 → −1 → −2, 𝐶 =317 

𝑙𝑎𝑟𝑔𝑒, 𝐹 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡}) and always from 𝑙𝑎𝑟𝑔𝑒	to 𝑠𝑚𝑎𝑙𝑙 as long as the feedback in conjunction 318 

with the choice indicates 𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒 (e.g., {𝑆 = 0 → 1 → 2, 𝐶 = 𝑙𝑎𝑟𝑔𝑒, 𝐹 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡}	𝑜𝑟	{𝑆 = 0 →319 

1 → 2, 𝐶 = 𝑠𝑚𝑎𝑙𝑙, 𝐹 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡}). Critically, the value-updating scenario does not predict the 320 

bias reversal (Fig 3E, right). It predicts that the feedback effects only asymptotically decrease as 321 

a function of sensory evidence but never switch to the other direction. This is because the 322 

decision confidence, 𝑝(𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒(𝑠𝑚𝑎𝑙𝑙)), only modulates the amount of value-updating but 323 

never changes the direction of value-updating. 324 

Ex ante simulation of the feedback effects under the two 325 

scenarios 326 

Above, we have conceptually explained why and how the two scenarios imply the distinct 327 

patterns of stimulus-dependent feedback effects. Though this implication seems intuitively 328 

apparent, it must be confirmed under the experimental setting of the current study. Moreover, 329 

there are good reasons to expect any history effect to exhibit complex dynamics over trials. 330 

First, sensory and mnemonic measurements are subject to stochastic noises, which propagates 331 

through decision-making and value/boundary-updating processes to subsequent trials (e.g., a 332 

sensory measurement that happens to fall on a relatively 𝑠𝑚𝑎𝑙𝑙 side is likely to lead to a 𝑠𝑚𝑎𝑙𝑙 333 

choice, which affects the subsequent value/boundary-updating process, and so on). Second, 334 

provided that any deterministic value/boundary-updating processes are presumed to be at work, 335 

the PDM episode on a given trial must, in principle, be probabilistically conditioned on the 336 

episodes in past trials (e.g., the current 𝑠𝑚𝑎𝑙𝑙 choice on the ring of 𝑆 = 0 is likely to have 337 
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followed the previous episodes leading to ‘boundary-updating in the 𝑙𝑎𝑟𝑔𝑒 direction’ or ‘positive 338 

value-updating of the 𝑠𝑚𝑎𝑙𝑙 choice’). Third, two steps of deterministic value/boundary-updating 339 

occur between what can be observed at 𝑡𝑜𝑖 − 1 and at 𝑡𝑜𝑖 + 1 (as indicated by the psychometric 340 

curves in Fig 4A), once following the episode at 𝑡𝑜𝑖 − 1 (𝑈425g\ in Fig 4A) and next following the 341 

episode at 𝑡𝑜𝑖 (𝑈425 in Fig 4A). Thus, the differences between the retrospective and prospective 342 

history effects should be construed as reflecting not only 𝑈425 but also 𝑈425g\. The nuanced 343 

impacts of this hidden updating on the history effects must be complicated, and thus be 344 

inspected with realistic simulations. Further, considering that these multiple stochastic and 345 

deterministic events interplay to create diverse temporal contexts, history effects are supposed 346 

to reveal themselves in multiplexed dynamics. 347 

 348 

Fig 4. Ex ante simulation results for the PDM episodes with 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 feedback. (A) Illustration of how 349 
the retrospective (left) and prospective (right) history effects relate to the value updates and boundary 350 
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updates (bottom) occurring over the trials overarching the trial of interest. While the updating occurs 351 
latently at every trial (as indicated by 𝑈425g\, 𝑈425, 𝑈425[\), its behavioral consequences are observable 352 
only at the pre-updating phase at toi-1 and toi+1. (B-D) The observable retrospective (B) and prospective 353 
(D) history effects and latent value-updating processes (C) for the value-updating model agent. (C) Since 354 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback is treated as a positive reward, the chosen value is updated positively while the amount 355 
of value-updating varies depending on the strength of sensory evidence, as indicated by the length of the 356 
vertical arrows in different colors (weak sensory evidence, pale blue; strong sensory evidence, dark blue). 357 
The short horizontal bars and arrow heads of the colored arrows indicate the chosen values before and 358 
after 𝑈425, respectively. (E-G) The observable retrospective (E) and prospective (G) history effects and 359 
latent boundary-updating processes (F) for the world-updating model agent. (F) Since 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback is 360 
treated as a logical indicator of the true state of the class variable (i.e., the true inequality between the 361 
class boundary and the stimulus), the class boundary shifts as a joint function of feedback and sensory 362 
evidence, where the boundary shift due to sensory evidence (solid black arrows) counteracts that due to 363 
feedback (dotted black arrows), as indicated by the arrows in different colors (weak sensory evidence, 364 
pale blue; strong sensory evidence, dark blue). The short vertical bars and arrow heads of the colored 365 
arrows at the top indicate the class boundary before and after 𝑈425, respectively. (H) Juxtaposition of the 366 
differences between the retrospective and prospective history effects displayed by the two model agents. 367 
(C, F) The contributions of both sensory and feedback evidence are indicated by S-evidence and F-368 
evidence, respectively. (B, D, E, G) Data points are the means and s.e.m.s across the parameter sets 369 
used in ex ante simulations (see Materials and methods). The data underlying this figure (B, D, E, G, H) 370 
can be found in S1 Data.   371 
 372 

Hence, we simulated ex ante the two models over a reasonable range of parameters by 373 

making the model agents perform the binary classification task on the sequences of stimuli that 374 

will be used in the actual experiment (Table A in S1 Appendix, S4 Fig, and Materials and 375 

methods). The simulation results confirmed our intuition, as summarized in Fig 4, which shows 376 

the retrospective and prospective history effects for the PDM episodes with 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. 377 

Notably, the retrospective history effects indicate that both value-updating and world-updating 378 

agents were already slightly biased to the choice they are about to make in the—following—toi 379 

(Fig 4B and 4E). One readily intuits that such retrospective biases are more pronounced when 380 

conditioned on the toi with weak sensory evidence because the stochastic bias consistent with 381 

the choice that would be made in the toi is required more in those trials. This testifies to the 382 

presence of the complex dynamics of history effects discussed above and is also consistent 383 

with what has been previously observed (e.g., see Figure 2 of the previous study [9]). 384 

Importantly, in line with our conceptual conjecture (Fig 3D and 3E), the two agents evidently 385 

disagree on the prospective history effects. While the value-updating agent always exhibits the 386 

feedback-congruent bias but never reverses the direction of bias, the world-updating agent 387 
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shows the feedback-congruent bias after viewing the ambiguous stimulus but progressively 388 

reversed the direction of bias as the stimulus evidence supporting the decision becomes 389 

stronger (Fig 4C, 4D, and 4F-4H). 390 

 Next, Fig 5 summarizes the history effects for the PDM episodes with 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 391 

feedback. The retrospective history effects show that both agents exhibit the choice bias 392 

consistent with the choice they will make next trial, as in the case for 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback, but the 393 

amounts of bias are much greater compared to those in the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡-feedback condition (Fig 5B 394 

and 5E). These pronounced retrospective effects conditioned on the 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡-feedback 395 

episodes are intuitively understood as follows: the value-updating agent’s value ratio or the 396 

world-updating agent’s class boundary was likely to be somehow “unusually and strongly” 397 

biased before the toi, given that they make an	𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡—thus “unusual”—choice in the toi. 398 

Supporting this intuition, the retrospective bias increases as sensory evidence increases, since 399 

the prior value ratio or class boundary must be strongly biased to result in that particular 400 

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 choice despite such strong sensory evidence. Importantly, despite these large 401 

retrospective biases, the prospective history effects indicate that both agents adjust their value 402 

and class boundary, respectively, in their own manners identical to those for the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡-403 

feedback episodes (Fig 5C, 5D, 5F, and 5G). Thus, as in the case of the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡-feedback 404 

episodes, the direction reversal is displayed only by the world-updating agent, but not by the 405 

value-updating agent (Fig 5H). 406 
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 407 

Fig 5. Ex ante simulation results for the PDM episodes with 𝒊𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 feedback. The format is 408 
identical to that in Fig 4. The data underlying this figure (B, D, E, G, H) can be found in S1 Data.   409 
 410 

In sum, the ex ante simulation confirmed that the bias reversal of the stimulus-411 

dependent feedback effects occurs only under the world-updating scenario but not under the 412 

value-updating scenario, regardless of the (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 or 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) states of feedback. The 413 

simulation results also confirmed that, with the current experimental setting, we can empirically 414 

determine which of the two scenarios provides a better account of feedback effects. 415 

Evaluating the two scenarios for the goodness of fit to 416 

human decision-making data  417 
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Having confirmed the distinct predictions of the two scenarios via ex ante simulation, we 418 

evaluated their goodness of fit to human data. As points of reference for evaluation in the model 419 

space (Fig 6A), we created three reference models. The ‘Base’ model sets the class boundary 420 

at the unbiased value (𝐵 = 0) and does not update any choice values, thus incorporating neither 421 

arbitrary choice preference nor adaptive updating. The ‘Fixed’ model is identical to the Base 422 

model except that it incorporates arbitrary choice preference by fitting the constant class 423 

boundary to the data. The ‘Hybrid’ model incorporated both value-updating and world-updating 424 

algorithms. We quantified the models’ ability to predict human classification choices using log 425 

likelihood (Fig 6B) and compared their abilities using the Akaike information criterion corrected 426 

for sample size (AICc [32]; Fig 6C)). 427 

 428 

Fig 6. Model goodness of fit to human choice behavior. (A) Specification of the models constituting 429 
the model space. The color labels also apply to the rest of the panels in (B-D). (B-C) Model comparisons 430 
in goodness of fit in terms of log likelihood (B) and AICc (C). The height of bars represents the across-431 
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participant average differences from the goodness-of-fit measures of the Base model (N=30, 432 
mean±s.e.m.). Both difference measures indicate a better fit for higher values. Dashed lines in purple 433 
(Hybrid model) and gray (Fixed model) provide the reference points for evaluating the value-updating and 434 
world-updating models’ accountability of the trial-to-trial choice variability (see Main text for their exact 435 
meanings). Pair-wise model comparisons were performed using paired one-tailed t-tests (asterisks 436 
indicate significance: *, P<0.05; **, P<0.005; ***, P<10-8) (D) Model comparisons in the hierarchical 437 
Bayesian Model Selection measures. Height of bars, expected posterior probabilities; error bars, standard 438 
deviation of posterior probabilities. Dots marked with short dashes, protected exceedance probability. 439 
Dashed lines, chance level (p = 0.2), indicating the probability that a model is favored over others in 440 
describing the data by random chance. Bayesian omnibus risk (BOR), the estimated probability that 441 
observed differences in model frequencies may be due to chance, is reported (BOR = 1.7636×10-10). The 442 
data underlying this figure (B, C, D) can be found in S1 Data.   443 
 444 

The Fixed model’s performance relative to the Base model’s (gray dashed lines in Fig 445 

6B, 6C) reflects the fraction of choice variability that is attributed to arbitrary choice preference. 446 

On the other hand, the Hybrid model’s performance relative to the Base model’s (purple dashed 447 

lines in Fig 6B, 6C) reflects the maximum fraction of choice variability that can be potentially 448 

explained by either the value-updating model, the world-updating model, or both. Thus, the 449 

difference in performance between the Hybrid and Fixed models (the space spanned between 450 

the gray and purple dashed lines in Fig 6B, 6C) quantifies the meaningful fraction of choice 451 

variability that the two competing models of interest are expected to capture. Prior to model 452 

evaluation, we confirmed that the two competing models (the value-updating and world-updating 453 

models) and two reference models (the Base and Hybrid models) are empirically distinguishable 454 

by carrying out a model recovery test (S3 Fig).  455 

With this target fraction of choice variability to be explained, we evaluated the two 456 

competing models by comparing them against the Fixed and Hybrid models' performances while 457 

taking into account model complexity with AICc. The value-updating model was moderately 458 

better than the Fixed model (paired one-tailed t-test, t(29) = −2.8540, P = 0.0039) and 459 

substantially worse than the Hybrid model (paired one-tailed t-test, t(29) = 7.6996, P = 460 

8.6170×10-9) and the world-updating model (paired one-tailed t-test, t(29) = 8.3201, P = 461 

1.7943×10-9). By contrast, the world-updating model was substantially better than the Fixed 462 

model (paired one-tailed t-test, t(29) = −10.3069, P = 1.6547×10-11) but not significantly better 463 
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than the Hybrid model (paired one-tailed t-test, t(29) = −1.0742, P = 0.1458). These results 464 

indicate (i) that the world-updating model is better than the value-updating model in accounting 465 

for the choice variability and (ii) that adding the value-updating algorithm to the world-updating 466 

algorithm does not improve the accountability of the choice variability.  467 

To complement the above pair-wise comparisons, we took the hierarchical Bayesian 468 

Model Selection approach [33–35] using AICc model evidence, to assess how probable it is that 469 

each of the five models prevails in the population (expected posterior probability; vertical bars in 470 

Fig 6D) and how likely it is that any given model is more frequent than the other models 471 

(protected exceedance probability; dots with horizontal bars in Fig 6D). Both measures 472 

corroborated the outcomes of the pair-wise comparisons: the world-updating model 473 

predominated in expected posterior probability (0.5992) and protected exceedance probability 474 

(0.8938). 475 

In sum, the world-updating scenario was superior to the value-updating scenario in 476 

predicting the choice behavior of human participants performing the binary classification task. 477 

Ex post simulation of the feedback effects under the two 478 

scenarios  479 

The goodness-of-fit results summarized above simply indicate that the world-updating model is 480 

better than the value-updating model in predicting the trial-to-trial variability in choice behavior 481 

while taking into account model complexity. Our study aims to examine whether these two 482 

competing models of interest can account for the stimulus-dependent feedback effects observed 483 

in human decision-makers. To do so, we carried out ex post simulations based on the 484 

goodness-of-fit results [36] by testing whether the value-updating and world-updating models 485 

can reproduce the observed stimulus-dependent feedback effects. 486 
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The ex post simulation was identical to the ex ante simulation except that each decision-487 

maker's best-fit model parameters were used (Table B in S1 Appendix; Materials and  488 

methods). We assessed how well the models reproduce the human history effects of feedback 489 

in two different ways. First, we compared the models and the humans similarly to the ex ante 490 

simulation (Fig 7A-7C). We included the PDM episodes with non-veridical feedback (symbols 491 

with dotted lines in Fig 7A-7C) though those episodes infrequently occurred (12.09±0.02% 492 

(mean±s.e.m.) out of total toi episode trials; bars with dotted outlines in Fig 7D). As a result, we 493 

inspected the retrospective and prospective history effects, and their differences, for all the 494 

possible combinations of ‘stimulus,’ ‘choice,’ and ‘feedback’ (20 PDM episodes in total), which 495 

resulted in a total of 60 PSE pairs to compare. The PSEs simulated by the world-update model 496 

closely matched the human PSEs, in both pattern and magnitude (Fig 7A and 7C), whereas 497 

those by the value-update model substantively deviated from the human PSEs (Fig 7A and 7B). 498 

The statistical comparison (paired two-tailed t-tests with Bonferroni correction) indicates that the 499 

value-updating model’s PSEs significantly deviated from the corresponding human PSEs for 500 

almost half of the entire pairs (29 out of 60 pairs) whereas none of the world-updating model’s 501 

PSEs significantly differed from the human PSEs (0 out of 60 pairs). Notably, most mismatches 502 

occurred because the value-updating model does not reverse the direction of feedback effects 503 

as sensory evidence becomes stronger while humans do so (compare the third columns of Fig 504 

7A and 7B). 505 
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 506 

Fig 7. Ex post simulation results. (A-C) Retrospective (left columns), prospective (middle columns), and 507 
subtractive (right columns) history effects in PSE for the human (A), value-updating (B), and world-508 
updating (C) decision-makers. Top and bottom rows in each panel show the PSEs associated with the toi 509 
episodes involving 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. Symbols with error bars, mean±s.e.m. across 30 510 
decision-makers. See S5 Fig for the results from the Hybrid model decision-makers. (D) Frequency of 511 
PDM episodes in the human data (mean and SD across participants). (E, F) Maps of significant 512 
deviations of the value-updating (E) and world-updating (F) model agents from the human decision-513 
makers in the retrospective (left) and prospective (right) history effects. Gray and black cells of the maps 514 
mark the insignificant and significant deviations (paired two-tailed t-tests with the Bonferroni correction for 515 
multiple comparisons). Empty cells are data points with NaN values due to insufficient trials. The data 516 
underlying this figure (A, B, C, D, E, F) can be found in S1 Data.   517 
 518 

Second, we compared the models and the humans in the probability distribution of 519 

retrospective and prospective episodes conditioned on each episode of toi (Fig 7D-7F). This 520 

comparison allows us to assess the models’ reproducibility not just for feedback effects but also 521 

for the history effects in general and to explore the origin of the value-based model’s failure. By 522 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.01.11.523567doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

collapsing all the preceding and following trials onto each of the 20 toi episodes (the columns of 523 

Fig 7E and 7F) and computing their probability distributions across—again—the 20 toi-1 and 20 524 

toi+1 episodes (the rows of Fig 7E and 7F), respectively, we could create 400 joint-probability 525 

cells.  526 

We carried out repeated t-tests with Bonferroni correction to see where the model-527 

human mismatches occur (data were missing for a few cells—mostly those including non-528 

veridical-feedback episodes, as indicated by the empty cells in Fig 7E and 7F, because those 529 

episodes were too rare (Fig 7D) to occur for all participants). For the remaining cells, the world-530 

updating model showed a remarkable level of correspondence with the humans, deviating from 531 

the humans at only two cells (out of 790 cells, 0.25%; Fig 7F). By contrast, the value-updating 532 

model failed to match the humans for 94 cells (out of 792 cells, 11.87%; Fig 7E). Here, the 533 

mismatches occurred systematically: they were frequent when the preceding episode defining 534 

any given cell (i.e., episodes at toi-1 for the retrospective cells or episodes at toi for the 535 

prospective cells) was featured with strong sensory evidence (as indicated by the arrows in Fig 536 

7E). This systematic deviation precisely reflects the incapability of the value-updating model to 537 

reverse the direction of feedback effects as sensory evidence strengthens. 538 

In sum, the stimulus-dependent history effects of feedback observed in humans could be 539 

reproduced by the world-updating scenario but not by the value-based scenario. 540 

 541 

Discussion 542 

Here, we explored the two possible scenarios for what humans learn from corrective feedback 543 

in a PDM task. We implemented the value-updating scenario with the belief-based RL model 544 
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[9,10], originally developed to account for the stimulus-dependent effects of reward feedback on 545 

animals’ PDM. As an alternative, we implemented the world-updating scenario with BMBU, 546 

where decision-makers continuously update their internal knowledge about stimulus distribution 547 

based on sensory measurements and corrective feedback. The latter excels over the former in 548 

predicting the choice behavior and reproducing the stimulus-dependent feedback effects in 549 

human PDM, suggesting that humans update their knowledge about world statistics upon 550 

corrective feedback for PDM. 551 

 Given RL models’ success in VDM and the presence of physical rewards, it is not 552 

surprising for the belief-based RL model to be considered as an account of the feedback effects 553 

in animals’ PDM. The original work [9] supported this model using six datasets, including one 554 

human dataset [37]. However, the current work indicates that the way humans learn from 555 

corrective feedback—without any physical or monetary reward—in PDM deviates from the 556 

value-updating scenario. The critical deviation occurred for the PDM episodes with strong 557 

sensory evidence: past 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback should, albeit weakly, reinforce the choice made in the 558 

past according to the value-updating scenario, whereas humans made the opposite choice 559 

more frequently. In fact, the human dataset previously analyzed in the study [9] exhibits the 560 

same deviations (see their Figure 8c,d). When this dataset was analyzed in our way, it 561 

displayed the patterns almost identical to those of our dataset (S7A Fig). For that matter, 562 

another published human dataset [31] substantially deviated from the value-updating scenario 563 

(S7B Fig). We remain cautious about the possibility that even animals may demonstrate such 564 

deviations as well. However, this possibility seems worth exploring though, given that the main 565 

dataset from the 16 rats engaged in an olfactory PDM task also exhibited patterns similar to 566 

those found in humans when corrected for the bias present in previous trials (see Figure 2i in 567 

the study [9]). Notably, in these studies [9,31,37], the class boundary existed either implicitly 568 

(e.g., a perfectly balanced odor mixture [9]) or explicitly (e.g., a reference stimulus presented in 569 
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another interval [37]). This suggests the possibility that the bias reversal of feedback effects 570 

may be a general phenomenon that can be observed in diverse types of binary classification 571 

tasks. However, further empirical tests are required to confirm this possibility. The bias reversal 572 

of feedback effects should not be treated lightly as a nuisance because any variant of the RL 573 

algorithm cannot reverse the direction of reinforcement in principle, as demonstrated in our work 574 

and in the modeling results of the same study [9] (shown in their Figure 3). By contrast, BMBU 575 

provides a principled account of these effects by treating 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback as 576 

what they supposedly mean, a teaching signal indicating the true state of the class variable. 577 

To be sure, the idea of shifting the decision or class boundary toward past stimuli per se 578 

is not new and has been previously hypothesized [38,39] or implemented into various models 579 

[40–44]. However, BMBU goes beyond these efforts by offering a normative formalism of 580 

incorporating 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback as evidence for the class boundary such that it 581 

has an equal footing as sensory evidence in PDM tasks. This integration of feedback and 582 

sensory evidence within the framework of BDT advances the current computational account of 583 

the history effects because it addresses the history factors in the complete dimensions of PDM 584 

(‘stimulus’, ‘choice’, and ‘feedback’), which is important given the multiplexed nature of history 585 

effects emphasized by prior studies [8–11,31,45]. Our modeling work joins recent computational 586 

and empirical efforts of incorporating feedback in the normative evidence accumulation model 587 

[6,46], a framework commonly employed in various classic PDM tasks, such as a random-dot 588 

motion task. Furthermore, a study on rats' binary classification behavior has shown that rats can 589 

use information about the correct class state (referred to as "second-order prior" by the authors) 590 

by integrating their own choices with feedback (reward outcome) and that the population neural 591 

activity in the orbitofrontal cortex represents this information [11]. Together with these studies, 592 

our work supports a general view that decision-makers use corrective feedback as evidence for 593 

updating their world knowledge pertinent to the PDM task engaging them. Having mentioned the 594 
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general view on the role of feedback in human PDM, future efforts are needed to further verify 595 

the stimulus-dependent feedback effects under various sensory modalities and PDM tasks. 596 

Previously, the so-called “Anna Karenina” account was presented to describe the 597 

seemingly idiosyncratic 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback effects [9]. The Anna-Karenina account leaves the 598 

crucial aspect of feedback effects—the different consequences of 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	vs 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 599 

feedback—unexplained. Since the belief-based RL model predicts the specific pattern of 600 

feedback effects for incorrect trials, as shown via ex ante simulation, endorsing the Anna-601 

Karenina account admits that the belief-based RL model fails to account for the effects of 602 

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback observed in animals. For that matter, past studies on the history effects in 603 

PDM paid little attention to incorrect trials because they are, owing to their infrequency, 604 

considered too noisy and unreliable to be properly analyzed. By contrast, BMBU accounts for 605 

the effects of feedback in a principled way, regardless of whether the feedback is 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 or 606 

𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡. Furthermore, BMBU explains why the feedback effects appear different between the 607 

correct and incorrect trials on the surface (compare the prospective history effects between Fig 608 

4 and Fig 5): the correct and incorrect trials share the same deterministic boundary-updating 609 

process but had different histories of their own stochastic events, which led to correct versus 610 

incorrect choices, respectively. 611 

As mentioned earlier, the history effects are dynamic and multiplexed in nature. This 612 

calls for an effort to establish a rigorous framework to probe behavioral data for the history 613 

effects. Several recent studies made such efforts by taking various approaches, yet all 614 

emphasizing the presence of distinct sources of biases. One study [47] assumed two sources 615 

with differing time scales and took a regression-based approach to separate their influences on 616 

choice bias by incorporating them as independent regressors to predict choices. Another group 617 

of researchers [6,9] also noted the presence of slow fluctuations and raised a concern about the 618 

conventional practice of inspecting only the prospective history effects because non-systematic 619 
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slow fluctuations in the decision-making strategy may cause the observed effects. This group 620 

dealt with this concern by subtracting the retrospective history effects from the prospective 621 

ones. A more recent study [48] shared this concern but disagreed about its remedy by showing 622 

that the subtraction method cannot fairly recover diverse systematic updating strategies. 623 

Alternatively, they took a model-based approach to separate any given updating strategy from 624 

random drifts in decision criteria. We acknowledge the importance of the efforts by these studies 625 

and share the same concern. But we emphasize that BMBU successfully reproduced human 626 

history effects in both directions of time without incorporating any non-systematic components 627 

arising from random drifts. BMBU’s concurrent reproduction of the retrospective and prospective 628 

history effects was confirmed not just for the summary statistics (the PSEs in Fig 7C) but also 629 

for the individual data points spanning almost the entire space of PDM episode pairs (Fig 7F). 630 

This suggests that it is an empirical matter of whether the decision criterion slowly drifts or not, 631 

raising another concern that systematic history effects might be explained away as non-existing 632 

slow drifts. In this sense, we propose that researchers should treat the retrospective history 633 

effects not as a baseline or control condition but as what must be explained, the phenomenon 634 

equally important as the prospective history effects, before resorting to any non-systematic 635 

sources. We believe that such a treatment is the way historians treat historical events [49], and 636 

that our approach showcases its one rigorous example. 637 

638 
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Materials and methods 639 

Ethics statement 640 

The study protocol was approved by the Seoul National University Institutional Review Board 641 

(No. 1310/001-020). All the experiments were conducted in accordance with the principles 642 

expressed in the Declaration of Helsinki. All subjects gave prior written informed consent to 643 

participate in the experiments.  644 

 645 

Participants 646 

All participants (13 females and 17 males, aged 18−30 years) were recruited from the Seoul 647 

National University (SNU) community and were compensated approximately $10/h.  648 

 649 

Procedure  650 

Stimuli. The stimulus was a thin (.07 deg in visual angle), Gaussian-noise filtered, black-and-651 

white ring flickering at 20 Hz on a gray luminance background. On each trial, a fixation first 652 

appeared for 0.5 s on average (fixation duration uniformly jittered from 0.3 s to 0.7 s on a trial-653 

to-trial basis) before the onset of a ring stimulus. Five different ring sizes (radii of 3.84, 3.92, 654 

4.00, 4.08, 4.16 deg in visual angle (d.v.a.), denoted by −2, −1, 0, 1, 2, respectively, in the main 655 

text) were randomized within every block of 5 trials.  656 

Task. Participants performed a binary classification task on ring size with trial-to-trial corrective 657 

feedback. Each individual participated in 5 daily sessions, each consisting of 6 runs, each 658 

consisting of 170 trials, ended up performing a total of 5,100 trials. In any given trial, participants 659 

viewed one of the five rings and indicated its class (𝑠𝑚𝑎𝑙𝑙 or 𝑙𝑎𝑟𝑔𝑒) within 1.2 s after stimulus 660 

onset by pressing one of the two keys using their index and middle fingers. The assignment of 661 
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computer keys for 𝑠𝑚𝑎𝑙𝑙 and 𝑙𝑎𝑟𝑔𝑒 choices alternated between successive sessions to prevent 662 

any unwanted choice bias possibly associated with finger preference. The response period was 663 

followed by a feedback period of 0.5 s, during which the color of the fixation mark informed the 664 

participants of whether their response was correct (green) or not (red). In case no response had 665 

been made within the response period, the fixation mark turned yellow, reminding participants 666 

that a response must be made in time. These late-response trials comprised 0.5418% of the 667 

entire trials across participants and were included in data analysis. Meanwhile, the trials on 668 

which a response was not made at all comprised 0.0948% of the entire trials. These trials were 669 

excluded from analysis and model fitting. As a result, the number of valid trials per participant 670 

ranged from 5,073 to 5,100 with an average of 5,095.2 trials. Before each run, we showed 671 

participants the ring stimulus of the median size (4.00 d.v.a. in radius) on the screen for 15 s 672 

while instructing them to use that ring as a reference for future trials, i.e., to judge whether a test 673 

ring is smaller or larger than this reference ring. This procedure was introduced for the purpose 674 

of minimizing any possible carryovers from the belief they formed about the class boundary in 675 

the previous session. Participants were encouraged to maximize the fraction of correct trials. 676 

Feedback Manipulation. We provided participants with stochastic feedback using a ‘virtual’ 677 

criterion sampled from a normal distribution 𝑁(𝜇qTrV, 𝜎qTrV). 𝜎qTrV  was always fixed at 1.28 678 

throughout the entire runs. In each run, 𝜇qTrV  was initially (up to 40−50 trials) set to 0 and then 679 

to one of the three values (𝜇qTrV = {−0.4,0,0.4}) with the equal proportion (10 runs for each 680 

value) for the rest of trials. The stochastic feedback was introduced this particular way to create 681 

PDM episodes with (occasional) non-veridical feedback while mimicking a real-world situation 682 

where references are slightly noisy and biased in an unnoticeable manner.   683 

 684 

Data analysis 685 
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For any given PDM episode at a trial of interest (toi), we quantified the retrospective and 686 

prospective history effects by probing the psychometric curves at the trials before and after toi, 687 

respectively. The psychometric function (𝜓(𝑥)) was estimated by fitting the cumulative Gaussian 688 

distribution (𝐹) to the curves using Psignifit package [50–52] (https://github.com/wichmann-689 

lab/psignifit), as follows:  690 

𝜓(𝑥; 𝜇, 𝜎) = 𝐹(𝑥; 𝜇, 𝜎), 691 

where 𝜇 and 𝜎	are the mean and standard deviation of 𝐹. By finding the best-fitting value of 𝜇, 692 

we defined the point of subjective equality (PSE; the stimulus level with equal probability for a 693 

𝑠𝑚𝑎𝑙𝑙 or 𝑙𝑎𝑟𝑔𝑒 choice), which was used as the summary statistics that quantifies the history 694 

effects associated with a given PDM episode. To ensure reliable PSE estimates, we acquired 695 

bootstrap samples (N=5,000) of psychometric curves based on the binomial random process 696 

and took their average as the final estimate for each PDM episode. In our main data analysis, 697 

the results of which are displayed in Fig 7, we chose not to include the parameters for guess or 698 

lapse rates in estimating PSEs. This was done to prevent unfair overfitting problems from 699 

occurring in infrequent episode types with small numbers of trials available for fitting. On the 700 

other hand, to preclude any potential confounding problem related to the task difficulty 701 

associated with PDM episode types, we also repeated the above PSE estimation procedure 702 

with guess (𝛾) and lapse (𝜆) rates included as free parameters: 𝜓(𝑥; 𝜇, 𝜎, 𝛾, 𝜆) = 𝛾 + (1 − 𝛾 −703 

𝜆)𝐹(𝑥; 𝜇, 𝜎). The results did not differ between the original estimation procedure without the 704 

lapse and guess rates and the procedure with the lapse and guess rates (Bonferroni-corrected 705 

P = 0.2023 ~ 1.000; paired two-tailed t-tests; see S2 Data for detailed statistical information). 706 

 707 

Value-updating model 708 

As a model of the value-updating scenario, we used the belief-based RL model proposed in the 709 

previous work [9,10]. This model incorporates RL algorithm into the conventional Bayesian 710 
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formalism of decision confidence—also known as statistical decision confidence using a partially 711 

observable Markov decision process (Fig 3E). In this model, the decision-maker, given sensory 712 

measurement 𝑚, computes the probability that the stimulus belongs to ‘𝑙𝑎𝑟𝑔𝑒’ (𝑝z) or ‘𝑠𝑚𝑎𝑙𝑙’ 713 

(𝑝{ = 1 − 𝑝z)	class (hereinafter the 𝑝-computation), where 𝑝z = ∫ 𝑝(𝑆|𝑚)𝑑𝑆∞
|}

. This probability 714 

will be referred to as a ‘belief-state’, as in the original work [9,10]. Here, the probability 715 

distribution 𝑝(𝑆|𝑚) is defined as a normal distribution with mean 𝑚 and standard deviation 𝜎X. 716 

Whereas 𝜇~ was assumed to be zero in the original work, we set 𝜇~ free as a constant 717 

parameter to allow the belief-based RL model to deal with any potential individuals’ idiosyncratic 718 

choice bias, as we will allow the world-updating model (BMBU) to do so (see below). Next, the 719 

expected values of the two choices 𝑄{ and 𝑄z can be obtained by 𝑝{ and 𝑝z multiplied with the 720 

learned values of the options of 𝑠𝑚𝑎𝑙𝑙 and 𝑙𝑎𝑟𝑔𝑒, 𝑉{ and 𝑉z, respectively. Accordingly, the 721 

expected value 𝑄� is also defined separately for the choice made between 𝑠𝑚𝑎𝑙𝑙 and 𝑙𝑎𝑟𝑔𝑒: 722 

𝑄{	and 𝑄z.  723 

In the original work, the argmax rule was applied to determine the choice (i.e., the higher 724 

𝑄 determines the choice 𝐶). Instead, here we applied the softmax rule, which selects 𝑙𝑎𝑟𝑔𝑒 with 725 

probability ���	(���)
���(���)[	���	(���)

 (the higher 𝑄 preferentially selects 𝐶) where 𝛽 is an inverse 726 

temperature. This feature did not exist in the original model but was introduced here to allow the 727 

belief-based RL model to deal with stochastic noise at the decision stage, as we allow the 728 

world-updating model (BMBU) to do so.  729 

 The initial values of 𝑠𝑚𝑎𝑙𝑙 and 𝑙𝑎𝑟𝑔𝑒 choices were set identically as a free parameter 730 

𝑉5654. Upon receiving feedback on the decision, the decision-maker updates the value of the 731 

selected choice 𝑉� by the reward prediction error 𝛿 with learning rate 	𝛼: 732 

𝑉� ← 𝑉� + 	𝛼𝛿. (1) 733 
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No temporal discounting is assumed for simplicity. Since the decision-maker treats 734 

corrective feedback as rewards (𝑐𝑜𝑟𝑟𝑒𝑐𝑡: 𝑟 = +1, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡: 𝑟 = 0), the reward prediction error 735 

𝛿 is computed as the deviation of the reward from the expected value: 736 

𝛿 = 𝑟 − 𝑄� = 𝑟 − 𝑝�𝑉�. (2) 737 

Note that the belief state 𝑝� (i.e., statistical decision confidence) modulates 𝛿 such that 𝛿 738 

increases as 𝑝� decreases, which is the crucial relationship constraining the belief-based RL 739 

model’s key prediction on the stimulus-dependent feedback effects. Specifically, upon 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 740 

feedback, 𝛿 will take a positive value and reinforce the choice value. However, as 𝑝� increases, 741 

the magnitude of such reinforcement will decrease. Critically, despite the decrease of 742 

reinforcement as a function of 𝑝�, the sign of reinforcement will never be reversed until the 743 

expected value 𝑄 reaches the maximum reward value (𝑟 = 1). Based on the same ground, the 744 

sign of reinforcement will never be reversed either in the case of 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. The free 745 

parameters of the value-updating model are 𝜃 = {𝜇~, 𝜎X,𝛼, 𝛽, 𝑉5654}.  746 

 747 

World-updating model 748 

As a model of the world-updating scenario, we developed the Bayesian model of boundary-749 

updating (BMBU). BMBU shares the same platform for PDM with the belief-based RL model (as 750 

depicted in Figs 1A and 3A) but, as a BDT model, makes decisions using its “learned” 751 

generative model while continually updating its belief about the class boundary 𝐵, the key latent 752 

variable of that internal model (as depicted in the left panel of Fig 3D). 753 

“Learned” generative model. In BDT, the learned generative model refers to the decision-754 

maker’s subjective internal model that relates task-relevant variables (𝑚, 𝑚′, and 𝐵 in the left 755 

panel of Fig 3D) to external stimuli and behavioral choices (𝑆 and 𝐶𝐿, respectively, in the left 756 

panel of Fig 3D). As previously known [53,54], the decision-maker’s internal model is likely to 757 

deviate from the “actual” generative model that accurately reflects how the experimenter 758 
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generated external stimuli due to one’s limitations in the sensory and memory apparatus. In the 759 

current experimental setup, we assumed that the internal model of the decision-maker deviates 760 

from that of the experimenter in the following aspect: due to the noise in the sensory and 761 

memory encoding processes, the decision-maker is likely to believe that many rings of different 762 

sizes are presented, although the experimenter used only five discrete-size rings. The post-763 

experiment interviews supported this: none of the participants reported perceiving discrete 764 

stimuli during the experiment. A deviation like this is known to occur commonly in 765 

psychophysical experiments where a discrete number of stimuli were used [40,54,55].  766 

We incorporated the above deviation into the decision-maker’s internal model by 767 

assuming that the stimulus at any given trial is randomly sampled from a Gaussian distribution 768 

with mean 𝐵 and variance 𝜎{� (as depicted by 𝐵 → 𝑆 in Fig 3D): 769 

𝑝(𝑆|𝐵) = 𝑁(𝑆; 𝐵, 𝜎{�), (3) 770 

which defines the probability distribution of stimuli conditioned on the class boundary, where 𝜎{� 771 

corresponds to the extent to which a given decision-maker assumes that stimuli are distributed. 772 

Next, the inequality between the class boundary and the stimulus determines the state of the 773 

class 𝐶𝐿 (as depicted by the converging causal relations involving the class variable, 𝐵 → 𝐶𝐿 ←774 

𝑆, in Fig 3D): 775 

𝐶𝐿 = 𝑙𝑎𝑟𝑔𝑒	(𝑠𝑚𝑎𝑙𝑙)	𝑖𝑓	𝑆 > (<)	𝐵, (4) 776 

which defines the correct answer of the perceptual task. On the other hand, the sensory 777 

measurement 𝑚 at any given trial is randomly sampled from a Gaussian distribution with mean 778 

𝑆 and variance 𝜎X�  (as depicted by 𝑆 → 𝑚 in Fig 3D): 779 

𝑝(𝑚|𝑆) = 𝑁(𝑚; 𝑆, 𝜎X� ), (5) 780 

which defines the probability distribution of sensory measurements conditioned on the stimulus, 781 

where 𝜎X�  corresponds to the extent to which the decision-maker’s sensory system is noisy. 782 
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Lastly, the mnemonic measurement 𝑚′ at any given trial is randomly sampled from a Gaussian 783 

distribution with mean 𝑚 and variance 𝜎X�
�  (as depicted by 𝑚 → 𝑚′ in Fig 3D): 784 

𝑝(𝑚′|𝑚) = 𝑁�𝑚′;𝑚, 𝜎X�
� �, (6) 785 

which defines the probability distribution of mnemonic measurements conditioned on the 786 

sensory measurement, where 𝜎X�
�  corresponds to the extent to which the decision-maker’s 787 

working memory system is noisy. This generative process (𝑚 → 𝑚′) is required because the 788 

sensory evidence of the stimulus is no longer available in the sensory system—due to a brief 789 

(0.3 sec; Fig 2B) stimulus duration—at the moment of updating the state of the class boundary 790 

(as will be shown below in the subsection titled “Boundary-updating”) and instead must be 791 

retrieved from the working memory system. The mnemonic recall of the stimulus is known to be 792 

noisy, becoming quickly deteriorated right away after stimulus offset, especially for continuous 793 

visual evidence such as color and orientation [56,57]. The generative process relating 𝑚 to 𝑚b 794 

has been adopted for the same reason by recent studies [58,59], including our group [55], and 795 

is consistent with the non-zero levels of memory noise in the model-fit results (𝜎X�
�  = [1.567, 796 

5.606]). The substantial across-individual variability of the fitted levels of 𝜎X�
�  is also consistent 797 

with the previous studies [55,58,59].   798 

With the learned generative model defined above, the decision-maker commits to a 799 

decision by inferring the current state of the class variable 𝐶𝐿 from the current sensory 800 

measurement 𝑚 and then updates the current state of the boundary variable from both the 801 

current mnemonic measurement 𝑚b and the current feedback 𝐹. 802 

Decision-making. As for decision-making, BMBU, unlike the belief-based RL model, does not 803 

consider the choice values but completely relies on the 𝑝-computation by selecting the 𝑙𝑎𝑟𝑔𝑒 804 

class if 𝑝z > 0.5 and the 𝑠𝑚𝑎𝑙𝑙 class if 𝑝z < 0.5. The 𝑝-computation is carried out by propagating 805 

the sensory measurement 𝑚 within its learned generative model: 806 
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𝑝z = � 𝑝(𝑆|𝑚)𝑑𝑆,
P

Q�
(7) 807 

where the finite limit of the integral is defined by the inferred state of the boundary 𝐵�, which is 808 

continually updated on a trial-to-trial basis (as will be described below). This means that the 809 

behavioral choice can vary depending on 𝐵� even for the same value of 𝑚 (as depicted in the 810 

‘perception’ stage of Fig 3A and Fig 3B).   811 

Boundary-updating. After having experienced a PDM episode in any given trial 𝑡, BMBU (i) 812 

computes the likelihood of the class boundary by concurrently propagating the mnemonic 813 

measurement 𝑚4
b  and the “informed” state of the class variable 𝐶𝐿4, which can be informed by 814 

feedback 𝐹4 and choice 𝐶4 in the current PDM episode, within its learned generative model 815 

(𝑝(𝑚4
b , 𝐶𝐿4|𝐵4)) and then (ii) forms a posterior distribution of the class boundary (𝑝(𝐵4|𝑚4

b , 𝐶𝐿4)) 816 

by combining that likelihood with its prior belief about the class boundary at the moment (𝑝(𝐵4)), 817 

which is inherited from the posterior distribution formed in the previous trial 𝑡 − 1 818 

(𝑝(𝐵4g\|𝑚4g\
b , 𝐶𝐿4g\)). Intuitively put, as BMBU undergoes successive trials, its posterior belief in 819 

the previous trial becomes the prior in the current trial, being used as the class boundary for 820 

decision-making and then being combined with the likelihood to be updated as the posterior 821 

belief in the current trial. Below, we will first describe the computations for (i) and then those for 822 

(ii). As explained above (Equation 6), we stress that the likelihood computation must be based 823 

not on the sensory measurement 𝑚4 but on the mnemonic measurement 𝑚4
b  because 𝑚4 is no 824 

longer available at the moment of boundary-updating. 825 

As for the boundary likelihood computation (i), BMBU posits that the decision-maker 826 

infers how likely the current PDM episode—i.e., the combination of the mnemonic measurement 827 

𝑚4
b , the choice 𝐶4, and the corrective feedback 𝐹4—is generated by hypothetical values of the 828 

class boundary (𝑝(𝑚4
b , 𝐶4, 𝐹4|𝐵4)). Since the “true” state of the class variable 𝐶𝐿4 is deduced from 829 

any given pair of 𝐶4 and 𝐹4 states in binary classification as follows, 830 
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 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒 𝑖𝑓	𝐶4 = 𝑙𝑎𝑟𝑔𝑒	𝑎𝑛𝑑	𝐹4 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑜𝑟	𝑖𝑓	𝐶4 = 𝑠𝑚𝑎𝑙𝑙	𝑎𝑛𝑑	𝐹4 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡; 831 

	𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 832 

the likelihood can be defined using only	𝑚4
b  and	𝐶𝐿4: 𝑝(𝑚4

b , 𝐶4, 𝐹4|𝐵4) ≡ 𝑝(𝑚4
b , 𝐶𝐿4|𝐵4). Hence, the 833 

likelihood of the class boundary is computed by propagating 𝑚4
b 	and 𝐶𝐿4 inversely over the 834 

learned generative model (as defined by Equations 3-6): 835 

𝑝(𝑚4
b , 𝐶𝐿4|𝐵4) = �𝑝(𝑚4

b , 𝐶𝐿4 , 𝑆4|𝐵4)𝑑𝑆4 = �𝑝(𝑚4
b|𝑆)𝑝(𝐶𝐿4|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4,	 (8) 836 

which entails the marginalization over every possible state of 𝑆4, a variable unknown to the 837 

decision-maker. Here, since the binary states of 𝐶𝐿4 (𝐶𝐿4 ∈ {𝑠𝑚𝑎𝑙𝑙, 𝑙𝑎𝑟𝑔𝑒}) indicates the 838 

inequality between 𝑆4 and 𝐵4 (Equation 4), 𝐵4 is used as the finite limit of the integrals to 839 

decompose the original integral into the one marginalized over the range of 𝑆4 satisfying 𝐶𝐿4 =840 

𝑠𝑚𝑎𝑙𝑙 and the other marginalized over the range of 𝑆4 satisfying 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒: 841 

�𝑝(𝑚4
b|𝑆)𝑝(𝐶𝐿4|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4 = 842 

= � 𝑝(𝑚4
b|𝑆4)𝑝(𝐶𝐿4|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4

Q�

gP
+ � 𝑝(𝑚4

b|𝑆4)𝑝(𝐶𝐿4|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4,
[P

Q�
	 (9) 843 

Note that the boundary likelihood function is computed based on 𝐶𝐿4 informed by 844 

feedback. The right-hand side of Equation 9 can further be simplified for the informed state 𝐶𝐿4 845 

by replacing the infinite limits with finite values (Equation S5 in Text in S1 Appendix). For the 846 

case of 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒, 𝑝(𝐶𝐿4|𝑆4, 𝐵4) in the left and right integral terms on the right-hand side of 847 

Equation 9 becomes 0 and 1, respectively, while becoming 1 and 0 for the case of 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙 848 

in the ranges of 𝑆4 of the corresponding integrals (Equation S3-S6 in Text in S1 Appendix). 849 

Hence, we find the likelihood of the class boundary in a reduced form, separately for 𝐶𝐿4 =850 

𝑙𝑎𝑟𝑔𝑒 and 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙, as follows: 851 

𝑝(𝑚4
b , 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙|𝐵4) = ∫ 𝑝(𝑚4

b|𝑆4)𝑝(𝑆4|𝐵4)𝑑𝑆4
Q�
gP ; 852 

𝑝(𝑚4
b , 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒|𝐵4) = ∫ 𝑝(𝑚4

b|𝑆4)𝑝(𝑆4|𝐵4)𝑑𝑆4
[P
Q�

	 (10)  853 
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where 𝑝(𝑚4
b|𝑆4) = 𝑁(𝑚4

b ; 𝑆4, 𝜎X�
� + 𝜎X� 	), according to the “chain” relations defined in the learned 854 

generative model (𝑆 → 𝑚 → 𝑚′ in the left panel of Fig 3D; Equation 5-6; see Equation S2 for 855 

derivations in Text in S1 Appendix). Equation 10 indicates that BMBU calculates how likely 856 

hypothetical boundary states bring about the mnemonic measurement (𝐵 → 𝑆 → 𝑚 → 𝑚′) while 857 

taking into account the informed state of the class variable (𝐵 → 𝐶𝐿 ← 𝑆), by constraining the 858 

possible range of the stimulus states. To help readers intuitively appreciate these respective 859 

contributions of the mnemonic measurement and the informed state of the class variable 860 

(feedback) to the boundary likelihood, we further elaborated on how Equation 9 is reduced to 861 

Equation 10 depending on the informed state of 𝐶𝐿4 (see Text in SI Appendix and S1 Fig). 862 

  Lastly, we evaluate the integral for 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙 in Equation 10 by substituting 𝑝(𝑆4|𝐵4) =863 

𝑁(𝑆4;𝐵4, 𝜎{�) and 𝑝(𝑚4
b|𝑆4) = 𝑁(𝑚4

b ; 𝑆4, 𝜎X�
� + 𝜎X� 	), from the defined statistical knowledge in the 864 

learned generative model (Equation 3 and Equation 5-6, respectively) and find: 865 

𝑝(𝑚4
b , 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙|𝐵4) =

1

�2𝜋 � 𝜎𝑀
2 𝜎𝑆

2

(𝜎𝑀2 + 𝜎𝑆
2)�

� 𝑒

−
�𝑆𝑡−

𝐵𝑡𝜎𝑀
2 +𝑚𝑡

′𝜎𝑆
2

𝜎𝑀
2 +𝜎𝑆

2 �
2

2
𝜎𝑀
2 𝜎𝑆

2

(𝜎𝑀2 +𝜎𝑆2) 𝑑𝑆𝑡
𝐵𝑡

−∞
×

1

�2𝜋(𝜎𝑀2 + 𝜎𝑆
2)
𝑒
−
�Q�gX�

��2

2(𝜎𝑀2 +𝜎𝑆2) . 866 

(11)  867 

where 	𝜎�� = 𝜎X�
� +	𝜎X� . For the other state in feedback, we evaluate the integral in the same 868 

manner and find:  869 

𝑝(𝑚4
b , 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒|𝐵4) =

1

�2𝜋 � 𝜎𝑀
2 𝜎𝑆

2

(𝜎𝑀2 + 𝜎𝑆
2)�

� 𝑒

−
�𝑆𝑡−

𝐵𝑡𝜎𝑀
2 +𝑚𝑡

′𝜎𝑆
2

𝜎𝑀
2 +𝜎𝑆

2 �
2

2
𝜎𝑀
2 𝜎𝑆

2

(𝜎𝑀2 +𝜎𝑆2) 𝑑𝑆𝑡
∞

𝐵𝑡

×
1

�2𝜋(𝜎𝑀2 + 𝜎𝑆
2)
𝑒
−
�Q�gX�

��2

2(𝜎𝑀2 +𝜎𝑆2) . 870 

(12)  871 
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Having calculated the likelihood of 𝐵4, we turn to describe (ii) how BMBU combines that 872 

likelihood with a prior distribution on trial 𝑡, which forms a posterior distribution of 𝐵4 according to 873 

Bayes rule: 874 

𝑝(𝐵4|𝑚4
b , 𝐶𝐿4) ∝ 𝑝(𝑚4

b , 𝐶𝐿4|𝐵4)𝑝(𝐵4). (13) 875 

We assumed that, at the beginning of the current trial 𝑡, the decision-maker recalls the 876 

posterior belief 𝑝(𝐵4g\|𝑚4g\
b , 𝐶𝐿4g\) formed (Equation 13) from the previous trial—to use it as 877 

the prior of 𝐵4—into the current working memory space, and it is thus subject both to decay 𝜆 878 

and diffusive noise 𝜎 5¡¡rW526 during the recall process. As a result, the prior 𝑝(𝐵4) is basically 879 

the recalled posterior, defined as the normal distribution 𝑁(𝐵�4	, 𝜎Q4
�) as follows: 880 

𝐵�4 = 𝜆𝐵�4g\
32W4 + (1 − 𝜆)𝜇~; 881 

𝜎Q4
� = 𝜆𝜎�4g\

32W4 + 𝜎 5¡¡rW526� , (14) 882 

where 𝐵�4g\
32W4  and 𝜎�4g\

32W4 denote mean and variance of the previous trial’s posterior distribution. 883 

Note that the decay parameter 𝜆 = ¢}£

¢}£[¢£�¤¥
¦§¨� influences the width and location of the 884 

belief distribution, and that the diffusive noise of 𝜎 5¡¡rW526 > 0 helps to keep the width of the 885 

distribution over multiple trials, thus avoiding sharpening and stopping the updating process 886 

[60]. In this way, 𝜆 and 𝜎 5¡¡rW526 allows BMBU to address the idiosyncratic choice bias and 887 

noise, as we allow the belief-based RL model to so with 𝜇~ and the sofmax rule. 888 

In sum, BMBU posits that human individuals carry out a sequence of binary classification 889 

trials with their learned generative model while continually updating their belief about the 890 

location of the class boundary in that generative model. BMBU describes these decision-making 891 

and boundary-updating processes using a total of 6 parameter (𝜃 = {𝜇~, 	𝜎X, 𝜎W, 𝜎~, 	𝜎X�,892 

𝜎 5¡¡rW526}), which are set free to account for individual differences. 893 

 894 

Reference models 895 
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As the references for evaluating the belief-based RL model and BMBU in predicting the 896 

variability of human choices, we created three reference models. The ‘Base’ model captures the 897 

choice variability that can be explained by the 𝑝-computation with the class boundary fixed at 0 898 

unanimously for all participants and without any value-updating process. Thus, it has only a 899 

single free parameter representing the variability of the sensory measurement (𝜃 = {𝜎X}). The 900 

‘Fixed’ model captures the choice variability that can be explained by the 𝑝-computation with the 901 

class boundary set free to a fixed constant 𝜇~ for each participant and without any value-902 

updating process. Thus, it has two free parameters (𝜃 = {𝜇~, 𝜎X}). The ‘Hybrid’ model captures 903 

the choice variability that can be explained both by the 𝑝-computation with the inferred class 904 

boundary by BMBU and by the value-updating process implemented by the belief-based RL 905 

model. Thus, it has nine free parameters (𝜃 = {𝜇~, 𝜎X, 𝜎W, 	𝜎~, 𝜎X�, 𝜎 5¡¡rW526, 𝛼, 𝛽, 𝑉5654}). In Fig 906 

6B-6D, the differential goodness-of-fit measures on the y-axis indicate the subtractions of the 907 

performance of the ‘Base’ model from those of the remaining models.  908 

 909 

Model fitting 910 

For each participant, we fitted the models to human choices over N valid trials (N≤170) of 911 

M(=10) experimental runs under K(=3) conditions, where invalid trials were the trials in which 912 

the participants did not make any response. For any given model, we denote the log likelihood 913 

of a set of parameters 𝜃 given the data as follows: 914 

𝐿𝐿(𝜃,𝑚𝑜𝑑𝑒𝑙) = log 𝑝(𝑑𝑎𝑡𝑎| 𝜃,𝑚𝑜𝑑𝑒𝑙) = ­ ­ ­ log 𝑝�𝐶5,®,¯° 𝜃,𝑚𝑜𝑑𝑒𝑙)
±�²³´µ¨

5¶\

�²·¸¨

®¶\

¹º§¸»

¯¶\

, 915 

where 𝐶5,®,¯	denotes the participant’s choice (𝑙𝑎𝑟𝑔𝑒 or 𝑠𝑚𝑎𝑙𝑙) on the 𝑖-th trial of the 𝑗-th run under 916 

the 𝑗-th condition. Computation of this 𝐿𝐿 is analytically intractable given the stochastic nature of 917 

choice determination. So, we used inverse binomial sampling (IBS [61]), an efficient way of 918 

generating unbiased estimates via numerical simulations. The maximum-likelihood estimate of 919 
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the model parameters was obtained with Bayesian Adaptive Direct Search (BADS) [62], a 920 

hybrid Bayesian optimization to find the parameter vector 𝜃∗ that maximizes the log likelihood, 921 

which works well with stochastic target functions. To reduce the risk of being stuck at local 922 

optima, we repeated 20 independent fittings by setting the starting positions randomly using 923 

Latin hypercube sampling (lhsdesign_modifed.m by Nassim Khlaled, 924 

https://www.mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube), then picked the 925 

fitting with the highest log likelihood. To avoid infinite loops from using IBS, we did not impose 926 

individual lapse rates in an arbitrary manner. Instead, we calculated the average of the lapse 927 

rate and guess rate from the cumulative Gaussian fit to a given individual’s grand mean (based 928 

on the entire trials) psychometric curve. With these individual lapse probabilities (mean rate of 929 

0.05, which ranged [0.0051, 0.1714]), trials were randomly designated as lapse trials, in which 930 

the choice was randomly determined to be either 𝑠𝑚𝑎𝑙𝑙 or 𝑙𝑎𝑟𝑔𝑒. 931 

  932 

Model comparison in goodness-of-fit 933 

We compared the goodness-of-fit of the models using corrected Akaike information criterion 934 

(AICc) based on maximum-likelihood estimation fitting, as follows:  935 

𝐴𝐼𝐶𝑐 =	−2 ∙ LL(𝜃∗) + 2𝑝 +	
2𝑝(𝑝 + 1)

(𝑁	x	𝑀	x	𝐾) − 𝑝 − 1
	, 936 

where 𝑝 is the number of parameters of the model and the total number of trials in the dataset is 937 

𝑁 ×𝑀 × 𝐾. Log model evidence was obtained for each participant by multiplying AICc by −1/2 938 

[35]. Furthermore, we took a hierarchical Bayesian Model Selection approach that infers the 939 

posterior over model frequencies in the population based on log model evidence values in each 940 

subject. To conclude whether a given model is the most likely model above and beyond chance, 941 

we also reported protected exceedance probabilities for each model (see Fig 6E and 6F). The 942 
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random effects model selection at the group level relied on the function VBA_groupBMC.m of 943 

the Variational Bayesian Analysis toolbox (https://mbb-team.github.io/VBA-toolbox/) [63]. 944 

 945 

Model recovery analysis  946 

We performed a model recovery analysis to further validate our model fitting pipeline. In the 947 

analysis, we considered the two competing models of interest (the world-updating and value-948 

updating models) and the two reference models (the Base and Hybrid models). Using the same 949 

parameter set, we generated synthetic data for each participant’s true stimulus sequences. For 950 

the realistic synthetic data, the parameter values were chosen based on the best-fitting 951 

parameter estimates from each individual. We generated 30 sets of synthetic data for each 952 

model, with 153,000 trials in each set.  We then fit all four models to each synthetic dataset, 953 

resulting in 480 fitting problems.  We assessed the models using the AICc-based log model 954 

evidence and computed exceedance probabilities. Our analysis showed that all models were 955 

distinguishable, which confirms the validity of our model fitting pipeline (S3 Fig). 956 

 957 

Ex ante and Ex post model simulations  958 

We conducted ex ante model simulations to confirm and preview the value-updating and world-959 

updating models’ distinct predictions on the stimulus-dependent feedback effects under the 960 

current experimental setting. Model simulations were conducted using trial sequences (i.e., 961 

stimulus order and correct answers) identical to those administered to human participants. The 962 

model parameters used in the ex ante simulation are summarized in the Table A in S1 963 

Appendix. Note that the 25 levels (uniformly-spaced [0.15, 3.27]) of 𝜎X, the only parameter 964 

common to the two models, were used. As for the other parameters specific to each model, we 965 

selected the values that generated human-level task performances (see S4 Fig for details and 966 

statistical results). Simulations were repeated 100 times, resulting in the 100 × 𝑁 ×𝑀 × 𝐾 = 967 
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507,300~510,000 trials per participant. For simplicity, we assumed neither lapse trials nor any 968 

arbitrary choice bias.   969 

 The procedure of ex post model simulations was identical to that of ex ante model 970 

simulations except that the best-fitting model parameters and lapse trials were used.  971 

 972 

Statistical tests 973 

Unless otherwise mentioned, the statistical comparisons were performed using paired t-tests 974 

(two-tailed, N=30). To test the reversed feedback effects under conditions of strong sensory 975 

evidence, we applied one-sample t-tests (one-tailed, N=27 for S7A Fig, N=8 for S7B Fig). 976 

Repeated t-tests on PSEs between data and model (Fig 7B-C, S5 Fig) were performed (two-977 

tailed, N=30). In Table D in S1 Appendix, we reported the number of test conditions of 978 

significant deviation from the data (Bonferroni-corrected threshold; *: P<0.00083, **: 979 

P<0.000167, ***: P<0.0000167). Additionally, Wilcoxon signed-rank tests were performed with 980 

the same threshold applied (Table D in S1 Appendix). Repeated t-tests on each cell of episode 981 

frequency maps between the data and the models (Fig 7E and 7F; S6 Fig) were performed, and 982 

P-values were subjected to Bonferroni correction (two-tailed, N=30; value-updating, 983 

P<0.0000631; world-updating, P<0.0000633). Task performances between human agents 984 

(N=30) and model agents with different sets of parameters (N=25) were compared based on 985 

unpaired t-tests (two-tailed, S4 Fig).  986 
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Supporting Information  1136 

S1 Fig. Schematic illustration of BMBU’s account of how the joint contribution of 1137 
the sensory and feedback evidence to boundary updating leads to the reversal of 1138 
choice bias as a function of sensory evidence strength.  1139 
(A) Reversal of subsequent choice bias—expressed in PSE—as a function of sensory 1140 
evidence strength and boundary inference—expressed in likelihood computation—1141 
based on a PDM episode. Left panel: The circles with different colors (indicated by (b-1142 
d), which points to the corresponding panels below (B-D)) represent the PSEs 1143 
associated with the boundary updating for three example PDM episodes, where the 1144 
stimulus (𝑆4) varies from 0 to 2 while the choice (𝐶4) and feedback (𝐹4) are 𝑙𝑎𝑟𝑔𝑒 and 1145 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡, respectively. Right panel: At the core of boundary inference is the computation 1146 
of the likelihood of the class boundary based on the mnemonic measurement (𝑚4

b) and 1147 
the informed state of the class variable (𝐶𝐿4), where 𝐶𝐿4 is jointly determined by 𝐹4 and 1148 
𝐶4 (see Materials and methods for the full computation of boundary inference in 1149 
BMBU). (B-D) The likelihoods of the class boundary given the three example PDM 1150 
episodes defined in (A), where sensory evidence varies from the low (B), to the 1151 
intermediate (C), and to the high (D) level. To help understand why and how, given the 1152 
same feedback evidence, the direction of boundary updating reverses as the sensory 1153 
evidence strengthens, we visualize the boundary likelihoods as a product of two 1154 
functions (Equation 12), indicated by sub-panels marked as (1) and (2). Top row: As 1155 
indicated by (1), we plot each boundary likelihood when only the mnemonic 1156 
measurement is considered, assuming that no feedback is provided. Note that these 1157 
likelihood functions are centered around the values of 𝑚4

b , by attracting the class 1158 
boundary toward themselves, driving a shift towards the 𝑙𝑎𝑟𝑔𝑒 side (i.e. positive side on 1159 
the boundary axis). Middle-Bottom rows: When the feedback evidence is given—i.e., 1160 
when the informed state of 𝐶𝐿4 is revealed as 𝑙𝑎𝑟𝑔𝑒—in addition to the mnemonic 1161 
measurement, an additional piece of information about the class boundary arises. As 1162 
indicated by (1)×(2), we plot each boundary likelihood (defined in (A)). As indicated by 1163 
(2), we plot each function (Middle row), as the result of (Bottom row) divided by (Top 1164 
row). The complementary cumulative distribution functions shown here are also 1165 
centered around 𝑚4

b  because the 𝑙𝑎𝑟𝑔𝑒 state of 𝐶𝐿4 means that the class boundary is 1166 
located somewhere smaller than 𝑚4

b . Note that these skewed distributions push the 1167 
inferred class boundary away from the state of 𝐶𝐿4 informed by feedback, driving a shift 1168 
towards the 𝑠𝑚𝑎𝑙𝑙 side (i.e. negative side on the boundary axis). Consequently, the 1169 
influences from the sensory evidence and the feedback evidence counteract each other 1170 
(Bottom row). Note that the likelihood functions are centered in the 𝑠𝑚𝑎𝑙𝑙 side when the 1171 
sensory evidence is weak (B), in the neutral side when intermediate (C), and in the 1172 
large side when strong (D). These systematic shifts of the class-boundary likelihood as 1173 
a function of the strength of sensory evidence predict that the PSE of the psychometric 1174 
curve for the subsequent trial (t+1) reverses its sign from negative to positive as a 1175 
function of the stimulus size, as shown in (A).  1176 
(TIF) 1177 
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S2 Fig. Example trial courses of estimated class boundary. (A) An example trial 1178 
history to show how a temporal trajectory of the class boundary inferred by BMBU. For 1179 
example, at trial #1 (x-axis), a physical stimulus (symbol x) was 0, a sensory 1180 
measurement (symbol o) was a positive value when the boundary belief (solid black 1181 
bar; y-axis) was centered at 0. BMBU’s choice was 𝑙𝑎𝑟𝑔𝑒 (symbol square on the top of 1182 
y-axis), and correct feedback (same square filled with green color) was provided, which 1183 
indicates that the class variable at trial #1 𝐶𝐿\ was 𝑙𝑎𝑟𝑔𝑒 (arrow’s direction indicates the 1184 
effect of the trial class variable on the subsequent boundary-updating). BMBU updates 1185 
one’s belief based on evidence from stimulus (colored symbol o) and feedback (𝐶𝐿\), 1186 
available at the time of boundary-updating. To illustrate cases where the bias reversal 1187 
we defined in Fig 3D in the main text happen and do not happen, same examples were 1188 
intentionally used as those we used in S1 Fig where we further detailed on the model’s 1189 
mechanisms. Depending on colors, sensory evidence is weak (yellow symbol o) or 1190 
strong (purple symbol o), which leads to whether or not the reversal happens. Trial 1191 
cases featured in a red box indicates that the “Reinforcement” principle is held 1192 
(predicting subsequent choices to repeat 𝑙𝑎𝑟𝑔𝑒 choice) while those featured in a green 1193 
box indicates that the “Reversal” happens (predicting subsequent choices to reverse the 1194 
previously made 𝑙𝑎𝑟𝑔𝑒 choice). (B) Temporal trajectories of the class boundary when 1195 
the same 6-trial sequence of physical stimuli in (A) was simulated for 100 times. This 1196 
means different 𝑚 and 𝑚b were realized. The data underlying this figure (A, B) can be 1197 
found in S1 Data. 1198 
(TIF) 1199 
 1200 
S3 Fig. Model recovery analysis. Each square represents exceedance probability pexc 1201 
from model recovery procedure. The ‘ground-truth’ model to simulate synthetic behavior 1202 
was correctly recovered with pexc >0.9 for all 4 models considered in the study. The light 1203 
shade of the diagonal squares indicates that the ground-truth model was the best-fitting 1204 
model, leading to a successful model recovery. Numerical values can also be found in 1205 
S1 Data. 1206 
(TIF) 1207 

S4 Fig. Histograms of classification accuracies of the human participants and 1208 
their model partners in the ex ante simulations.  1209 
(A, B) Across-individual distributions of the classification accuracy of the belief-based 1210 
RL model (A) and BMBU (B) overlaid on those of the human participants. The models’ 1211 
choices were generated via ex ante simulations with a specific set of model parameters 1212 
(Table A in S1 Appendix), the results of which are depicted in Fig 4 and Fig 5. The 1213 
classification accuracy is measured by calculating the percentage of the trials in which 1214 
the choice matched the feedback used in the actual experiment. The empty bars 1215 
correspond to the histogram of human performances, the range of which is demarcated 1216 
by the dashed vertical lines ([min, max]=[60.65%, 73.94%]). The average human 1217 
classification accuracy was 67.85%. (A) Comparison of classification accuracy between 1218 
the belief-based RL model’s simulation (red color) and the human choices. The model’s 1219 
ex ante simulation accuracy was not different from the human accuracy (t(53) = 1.4429, 1220 
P = 0.1549; Null hypothesis: model’s performance vector and humans’ performance 1221 
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vector come from populations with equal means, unpaired two-tailed t-test). (B) 1222 
Comparison of classification accuracy between BMBU’s simulation (green color) and 1223 
the human choices. The model’s ex ante simulation accuracy was not different from the 1224 
human accuracy (t(53) = 0.9707, P = 0.3361, unpaired two-tailed t-test). There was no 1225 
significant difference in classification accuracy between the value-updating model and 1226 
BMBU (t(48) = 0.5733, P = 0.5691, unpaired two-tailed t-test). The data underlying this 1227 
figure (A, B) can be found in S1 Data. 1228 
(TIF) 1229 

S5 Fig. Retrospective (left columns), prospective (middle columns), and 1230 
subtractive (right columns) history effects in PSE for the ‘Hybrid’ model’s ex post 1231 
model simulations.  1232 
Top and bottom rows in each panel show the PSEs associated with the toi episodes 1233 
involving 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback at toi. Symbols with error bars, mean±s.e.m. 1234 
across the 30 model agents, which correspond to their 30 human partners. The colors 1235 
of the symbols and lines label choices (blue: 𝑠𝑚𝑎𝑙𝑙 and yellow: 𝑙𝑎𝑟𝑔𝑒). The data 1236 
underlying this figure can be found in S1 Data. 1237 
(TIF) 1238 

S6 Fig. Maps of frequency deviations of the value-updating (A) and world-1239 
updating (B) model agents’ classifications in the ex post simulations from the 1240 
human decision-makers in the retrospective (left) and prospective (right) history 1241 
effects.  1242 
Each cell represents a pair of PDM episodes, as specified by the column and row 1243 
labels. At each cell, the color represents how much the episode frequency observed in 1244 
the model agents deviates from that observed in the corresponding human decision-1245 
makers. The results of statistical tests on these deviations are summarized in Fig 7E 1246 
and 7F. The data underlying this figure (A, B) can be found in S1 Data. 1247 
(TIF) 1248 

S7 Fig. Retrospective (left columns), prospective (middle columns), and 1249 
subtractive (right columns) history effects in PSE for the human classification 1250 
performances of Urai et al. (2017)’s work [37] (A) and Hachen et al. (2021)’s work 1251 
[31] (B).  1252 
(A, B) We downloaded both publicly available datasets, analyzed them in the same way 1253 
that we analyzed human observers in our work, and plotted the results in the same 1254 
format used for Fig 7A. Top and bottom rows in each panel show the PSEs associated 1255 
with the toi episodes involving 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. Symbols with error bars, 1256 
mean±s.e.m. across human observers. The colors of the symbols and lines label 1257 
choices (blue: 𝑠𝑚𝑎𝑙𝑙 and yellow: 𝑙𝑎𝑟𝑔𝑒). The overall patterns of the PSEs plotted here 1258 
appear similar to those plotted in Fig 7A, displaying the reversals in direction of 1259 
stimulus-dependent feedback effects. When the same statistical tests used in our work 1260 
were carried out, some of the data points at the stimuli with strong sensory evidence at 1261 
toi significantly deviated from zero in the direction opposite to the feedback effect 1262 
predicted by the value-updating scenario, as indicated by the asterisks. (A) Sequential 1263 
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features of human observers (N=27) analyzed in our way from human dataset that once 1264 
had been published [37], which is openly available 1265 
(http://dx.doi.org/10.6084/m9.figshare.4300043), then analyzed in the previous study 1266 
[9]. In this study, the participants performed a binary classification task on the difference 1267 
in motion coherence by sorting the pairs of random-dot-kinematogram stimuli shown in 1268 
two intervals (s1 and s2) into one of the two classes (‘s1<s2’ vs. ‘s1>s2’) over 1269 
consecutive trials. The presented stimuli were taken from 3 sets of difficulty levels (the 1270 
difference between motion coherence of the test and the reference stimulus; easy: [2.5, 1271 
5, 10, 20, 30], medium: [1.25, 2.5, 5, 10, 30], hard: [0.625, 1.25, 2.5, 5, 20]). As done in 1272 
the original study [9], we binned the trials into 8 levels by merging the trials of two 1273 
neighboring coherence levels (e.g., the coherence levels of [0.625, 1.25]) into a single 1274 
bin. Note that the coherence bins of [20, 35, 45, 48.75, 51.25, 55, 65, 80] (%s1) on the 1275 
x-axis (50% represents the equal coherence between s1 and s2) are matched to the x-1276 
axis in Figure 8 of the previous study in which the same dataset had been used. 1277 
Asterisks mark the significance of one-sample t-tests (uncorrected P<0.05, one-tailed in 1278 
the direction of feedback effects) on the panel toi+1 (stimulus 80%: t(26) = 2.0138, P = 1279 
0.0272) and on the panel subtracted (stimulus 20%: t(26) = −3.1900, P = 0.0018, 1280 
stimulus 80%: t(26) = 3.8810, P = 0.0003). (B) Sequential features of human observers 1281 
(N=8) published in another previous study [31]. We used the human dataset openly 1282 
available as part of the repository (https://osf.io/hux4n). In this study, the participants 1283 
performed a binary classification task on the speed of vibrotactile stimuli by classifying 1284 
the speed of the presented vibration as ‘low-speed (weak)’ or ‘high-speed (strong)’. 1285 
Note that the nine-level stimuli of [−4,−3,−2,−1,0,1,2,3,4] on the x-axis followed how 1286 
data were encoded by the original study [31]. Asterisks mark the significance of one-1287 
sample t-tests (uncorrected P<0.05, one-tailed in the direction of feedback effects) on 1288 
the panel toi+1 (stimulus −4: t(7) = −3.6757, P = 0.004, stimulus −3: t(7) = −3.5252, P 1289 
= 0.0048, and stimulus −2: t(7) = −2.0325, P = 0.04) and on the panel subtracted 1290 
(stimulus −4: t(7) = −1.9848, P = 0.044). The data underlying this figure (A, B) can be 1291 
found in S1 Data. 1292 
(TIF) 1293 
 1294 
 1295 
S1 Appendix. Supporting details  1296 
Supplemental details (Text) on additional model specifications of BMBU are 1297 
provided. Supplementary tables (A-D Tables) to support the Results section are 1298 
provided. Table A. Parameters used for ex ante simulations. Table B. Parameters 1299 
recovered from fitting the main models, world-updating and value-updating 1300 
models, to human choices (N=30). Table C. Parameters recovered from fitting the 1301 
rest of the models to human choices (N=30). Table D. Statistical results on model 1302 
behavior versus human behavior in terms of PSE measures.  1303 
(DOCX) 1304 
 1305 
S1 Data. Excel spreadsheet containing, in separate sheets, the underlying 1306 
numerical data for Figs 2D, 4B, 4D, 4E, 4G, 4H, 5B, 5D, 5E, 5G, 5H, 6B, 6C, 6D, 7A, 1307 
7B, 7C, 7D, 7E, 7F, S2A, S2B, S3, S4A, S4B, S5, S6A, S6B, S7A, and S7B. 1308 
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(XLSX) 1309 
 1310 
S2 Data. Excel spreadsheet containing detailed statistical information comparing 1311 
alternative PSE estimation methods.    1312 
(XLSX)  1313 
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 1314 

S1 Fig. Schematic illustration of BMBU’s account of how the joint contribution of 1315 
the sensory and feedback evidence to boundary updating leads to the reversal of 1316 
choice bias as a function of sensory evidence strength.  1317 
(A) Reversal of subsequent choice bias—expressed in PSE—as a function of sensory 1318 
evidence strength and boundary inference—expressed in likelihood computation—1319 
based on a PDM episode. Left panel: The circles with different colors (indicated by (b-1320 
d), which points to the corresponding panels below (B-D)) represent the PSEs 1321 
associated with the boundary updating for three example PDM episodes, where the 1322 
stimulus (𝑆4) varies from 0 to 2 while the choice (𝐶4) and feedback (𝐹4) are 𝑙𝑎𝑟𝑔𝑒 and 1323 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡, respectively. Right panel: At the core of boundary inference is the computation 1324 
of the likelihood of the class boundary based on the mnemonic measurement (𝑚4

b) and 1325 
the informed state of the class variable (𝐶𝐿4), where 𝐶𝐿4 is jointly determined by 𝐹4 and 1326 
𝐶4 (see Materials and methods for the full computation of boundary inference in 1327 
BMBU). (B-D) The likelihoods of the class boundary given the three example PDM 1328 
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episodes defined in (A), where sensory evidence varies from the low (B), to the 1329 
intermediate (C), and to the high (D) level. To help understand why and how, given the 1330 
same feedback evidence, the direction of boundary updating reverses as the sensory 1331 
evidence strengthens, we visualize the boundary likelihoods as a product of two 1332 
functions (Equation 12), indicated by sub-panels marked as (1) and (2). Top row: As 1333 
indicated by (1), we plot each boundary likelihood when only the mnemonic 1334 
measurement is considered, assuming that no feedback is provided. Note that these 1335 
likelihood functions are centered around the values of 𝑚4

b , by attracting the class 1336 
boundary toward themselves, driving a shift towards the 𝑙𝑎𝑟𝑔𝑒 side (i.e. positive side on 1337 
the boundary axis). Middle-Bottom rows: When the feedback evidence is given—i.e., 1338 
when the informed state of 𝐶𝐿4 is revealed as 𝑙𝑎𝑟𝑔𝑒—in addition to the mnemonic 1339 
measurement, an additional piece of information about the class boundary arises. As 1340 
indicated by (1)×(2), we plot each boundary likelihood (defined in (A)). As indicated by 1341 
(2), we plot each function (Middle row), as the result of (Bottom row) divided by (Top 1342 
row). The complementary cumulative distribution functions shown here are also 1343 
centered around 𝑚4

b  because the 𝑙𝑎𝑟𝑔𝑒 state of 𝐶𝐿4 means that the class boundary is 1344 
located somewhere smaller than 𝑚4

b . Note that these skewed distributions push the 1345 
inferred class boundary away from the state of 𝐶𝐿4 informed by feedback, driving a shift 1346 
towards the 𝑠𝑚𝑎𝑙𝑙 side (i.e. negative side on the boundary axis). Consequently, the 1347 
influences from the sensory evidence and the feedback evidence counteract each other 1348 
(Bottom row). Note that the likelihood functions are centered in the 𝑠𝑚𝑎𝑙𝑙 side when the 1349 
sensory evidence is weak (B), in the neutral side when intermediate (C), and in the 1350 
large side when strong (D). These systematic shifts of the class-boundary likelihood as 1351 
a function of the strength of sensory evidence predict that the PSE of the psychometric 1352 
curve for the subsequent trial (t+1) reverses its sign from negative to positive as a 1353 
function of the stimulus size, as shown in (A).  1354 
  1355 
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 1356 
 1357 

S2 Fig. Example trial courses of estimated class boundary. (A) An example trial 1358 
history to show how a temporal trajectory of the class boundary inferred by BMBU. For 1359 
example, at trial #1 (x-axis), a physical stimulus (symbol x) was 0, a sensory 1360 
measurement (symbol o) was a positive value when the boundary belief (solid black 1361 
bar; y-axis) was centered at 0. BMBU’s choice was 𝑙𝑎𝑟𝑔𝑒 (symbol square on the top of 1362 
y-axis), and correct feedback (same square filled with green color) was provided, which 1363 
indicates that the class variable at trial #1 𝐶𝐿\ was 𝑙𝑎𝑟𝑔𝑒 (arrow’s direction indicates the 1364 
effect of the trial class variable on the subsequent boundary-updating). BMBU updates 1365 
one’s belief based on evidence from stimulus (colored symbol o) and feedback (𝐶𝐿\), 1366 
available at the time of boundary-updating. To illustrate cases where the bias reversal 1367 
we defined in Fig 3D in the main text happen and do not happen, same examples were 1368 
intentionally used as those we used in S1 Fig where we further detailed on the model’s 1369 
mechanisms. Depending on colors, sensory evidence is weak (yellow symbol o) or 1370 
strong (purple symbol o), which leads to whether or not the reversal happens. Trial 1371 
cases featured in a red box indicates that the “Reinforcement” principle is held 1372 
(predicting subsequent choices to repeat 𝑙𝑎𝑟𝑔𝑒 choice) while those featured in a green 1373 
box indicates that the “Reversal” happens (predicting subsequent choices to reverse the 1374 
previously made 𝑙𝑎𝑟𝑔𝑒 choice). (B) Temporal trajectories of the class boundary when 1375 
the same 6-trial sequence of physical stimuli in (A) was simulated for 100 times. This 1376 
means that different 𝑚 and 𝑚b were realized. The data underlying this figure (A, B) can 1377 
be found in S1 Data. 1378 

 1379 
  1380 
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 1381 
 1382 
S3 Fig. Model recovery analysis. Each square represents exceedance probability pexc 1383 
from model recovery procedure. The ‘ground-truth’ model to simulate synthetic behavior 1384 
was correctly recovered with pexc >0.9 for all 4 models considered in the study. The light 1385 
shade of the diagonal squares indicates that the ground-truth model was the best-fitting 1386 
model, leading to a successful model recovery. Numerical values can also be found in 1387 
S1 Data. 1388 
 1389 
  1390 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.01.11.523567doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 59 

 1391 

S4 Fig. Histograms of classification accuracies of the human participants and 1392 
their model partners in the ex ante simulations.  1393 
(A, B) Across-individual distributions of the classification accuracy of the belief-based 1394 
RL model (A) and BMBU (B) overlaid on those of the human participants. The models’ 1395 
choices were generated via ex ante simulations with a specific set of model parameters 1396 
(Table A in S1 Appendix), the results of which are depicted in Fig 4 and Fig 5. The 1397 
classification accuracy is measured by calculating the percentage of the trials in which 1398 
the choice matched the feedback used in the actual experiment. The empty bars 1399 
correspond to the histogram of human performances, the range of which is demarcated 1400 
by the dashed vertical lines ([min, max]=[60.65%, 73.94%]). The average human 1401 
classification accuracy was 67.85%. (A) Comparison of classification accuracy between 1402 
the belief-based RL model’s simulation (red color) and the human choices. The model’s 1403 
ex ante simulation accuracy was not different from the human accuracy (t(53) = 1.4429, 1404 
P = 0.1549; Null hypothesis: model’s performance vector and humans’ performance 1405 
vector come from populations with equal means, unpaired two-tailed t-test). (B) 1406 
Comparison of classification accuracy between BMBU’s simulation (green color) and 1407 
the human choices. The model’s ex ante simulation accuracy was not different from the 1408 
human accuracy (t(53) = 0.9707, P = 0.3361, unpaired two-tailed t-test). There was no 1409 
significant difference in classification accuracy between the value-updating model and 1410 
BMBU (t(48) = 0.5733, P = 0.5691, unpaired two-tailed t-test). The data underlying this 1411 
figure (A, B) can be found in S1 Data. 1412 
  1413 
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 1414 
S5 Fig. Retrospective (left columns), prospective (middle columns), and 1415 
subtractive (right columns) history effects in PSE for the ‘Hybrid’ model’s ex post 1416 
model simulations.  1417 
Top and bottom rows in each panel show the PSEs associated with the toi episodes 1418 
involving 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback at toi. Symbols with error bars, mean±s.e.m 1419 
across the 30 model agents, which correspond to their 30 human partners. The colors 1420 
of the symbols and lines label choices (blue: 𝑠𝑚𝑎𝑙𝑙 and yellow: 𝑙𝑎𝑟𝑔𝑒). The data 1421 
underlying this figure can be found in S1 Data.  1422 
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 1424 

S6 Fig. Maps of frequency deviations of the value-updating (A) and world-1425 
updating (B) model agents’ classifications in the ex post simulations from the 1426 
human decision-makers in the retrospective (left) and prospective (right) history 1427 
effects.  1428 
Each cell represents a pair of PDM episodes, as specified by the column and row 1429 
labels. At each cell, the color represents how much the episode frequency observed in 1430 
the model agents deviates from that observed in the corresponding human decision-1431 
makers. The results of statistical tests on these deviations are summarized in Fig 7E 1432 
and 7F. The data underlying this figure (A, B) can be found in S1 Data. 1433 
  1434 
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 1435 
 1436 
S7 Fig. Retrospective (left columns), prospective (middle columns), and 1437 
subtractive (right columns) history effects in PSE for the human classification 1438 
performances of Urai et al. (2017)’s work [37] (A) and Hachen et al. (2021)’s work 1439 
[31] (B).  1440 
(A, B) We downloaded both publicly available datasets, analyzed them in the same way 1441 
that we analyzed human observers in our work, and plotted the results in the same 1442 
format used for Fig 7A. Top and bottom rows in each panel show the PSEs associated 1443 
with the toi episodes involving 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	and 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 feedback. Symbols with error bars, 1444 
mean±s.e.m. across human observers. The colors of the symbols and lines label 1445 
choices (blue: 𝑠𝑚𝑎𝑙𝑙 and yellow: 𝑙𝑎𝑟𝑔𝑒). The overall patterns of the PSEs plotted here 1446 
appear similar to those plotted in Fig 7A, displaying the reversals in direction of 1447 
stimulus-dependent feedback effects. When the same statistical tests used in our work 1448 
were carried out, some of the data points at the stimuli with strong sensory evidence at 1449 
toi significantly deviated from zero in the direction opposite to the feedback effect 1450 
predicted by the value-updating scenario, as indicated by the asterisks. (A) Sequential 1451 
features of human observers (N=27) analyzed in our way from human dataset that once 1452 
had been published [37], which is openly available 1453 
(http://dx.doi.org/10.6084/m9.figshare.4300043), then analyzed in the previous study 1454 
[9]. In this study, the participants performed a binary classification task on the difference 1455 
in motion coherence by sorting the pairs of random-dot-kinematogram stimuli shown in 1456 
two intervals (s1 and s2) into one of the two classes (‘s1<s2’ vs. ‘s1>s2’) over 1457 
consecutive trials. The presented stimuli were taken from 3 sets of difficulty levels (the 1458 
difference between motion coherence of the test and the reference stimulus; easy: [2.5, 1459 
5, 10, 20, 30], medium: [1.25, 2.5, 5, 10, 30], hard: [0.625, 1.25, 2.5, 5, 20]). As done in 1460 
the original study [9], we binned the trials into 8 levels by merging the trials of two 1461 
neighboring coherence levels (e.g., the coherence levels of [0.625, 1.25]) into a single 1462 
bin. Note that the coherence bins of [20, 35, 45, 48.75, 51.25, 55, 65, 80] (%s1) on the 1463 
x-axis (50% represents the equal coherence between s1 and s2) are matched to the x-1464 
axis in Figure 8 of the previous study in which the same dataset had been used. 1465 
Asterisks mark the significance of one-sample t-tests (uncorrected P<0.05, one-tailed in 1466 
the direction of feedback effects) on the panel toi+1 (stimulus 80%: t(26) = 2.0138, P = 1467 
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0.0272) and on the panel subtracted (stimulus 20%: t(26) = −3.1900, P = 0.0018, 1468 
stimulus 80%: t(26) = 3.8810, P = 0.0003). (B) Sequential features of human observers 1469 
(N=8) published in another previous study [31]. We used the human dataset openly 1470 
available as part of the repository (https://osf.io/hux4n). In this study, the participants 1471 
performed a binary classification task on the speed of vibrotactile stimuli by classifying 1472 
the speed of the presented vibration as ‘low-speed (weak)’ or ‘high-speed (strong)’. 1473 
Note that the nine-level stimuli of [−4,−3,−2,−1,0,1,2,3,4] on the x-axis followed how 1474 
data were encoded by the original study [31]. Asterisks mark the significance of one-1475 
sample t-tests (uncorrected P<0.05, one-tailed in the direction of feedback effects) on 1476 
the panel toi+1 (stimulus −4: t(7) = −3.6757, P = 0.004, stimulus −3: t(7) = −3.5252, P 1477 
= 0.0048, and stimulus −2: t(7) = −2.0325, P = 0.04) and on the panel subtracted 1478 
(stimulus −4: t(7) = −1.9848, P = 0.044). The data underlying this figure (A, B) can be 1479 
found in S1 Data. 1480 
 1481 
  1482 
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Corrective feedback guides human perceptual decision-making  1483 

by informing about the world state rather than rewarding its choice 1484 

 1485 
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 1497 
Supplemental details (Text) on additional model specifications of BMBU 1498 
 1499 
Here, we will elaborate on "World-updating model", a subsection found in the Materials and methods 1500 

of the main text. We will provide more details on the boundary-updating operation of BMBU by 1501 

explaining how Equation 10 is derived from Equation 9 in the main text. 1502 

 Equation 8 in the main text defines how the likelihood function of the class boundary 𝐵4  given 1503 

two pieces of evidence, the mnemonic measurement 𝑚4
b—i.e., noisy memory recall of the sensory 1504 

measurement 𝑚4 in working memory—and the state of the class variable 𝐶𝐿4  informed by feedback. The 1505 

boundary likelihood, which represents the probabilities of those two observations under any hypothesized 1506 

state of 𝐵4 , is calculated through integration (marginalization) over all possible states of the unknown 1507 

variable 𝑆4 , and can be re-written as: 1508 

𝑝(𝑚4
b , 𝐶𝐿4|𝐵4) = �𝑝(𝑚4

b|𝑆4)𝑝(𝐶𝐿4|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4 = �𝐿X�
�(𝑆4)𝐿�z�(𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4,	 (𝑆1)	1510 

where each integrand is elaborated in the following.  1509 

The factor 𝑝(𝑚4
b|𝑆4) in Equation S1 corresponds to the information about the stimulus offered by 1511 

the mnemonic measurement 𝑚4
b . The likelihood of any hypothetical state of 𝑆4  given 𝑚4

b  refers to the 1512 
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probability of 𝑚4
b  if that hypothetical state is true. Here, we denote 𝑝(𝑚4

b|𝑆4) by a likelihood function, 1513 

𝐿X�
�(𝑆4). 1514 

Through marginalization over 𝑚4 from the learned generative model, which is described by 1515 

Equations 3-6 in the main text, 𝐿X�
�(𝑆4) ≡ 𝑝(𝑚4

b|𝑆4) can be expressed in a form of the Gaussian function, 1516 

as follows:  1517 

𝑝(𝑚4
b|𝑆4) = �𝑝(𝑚4

b |𝑚4)𝑝(𝑚4|𝑆4)𝑑𝑚4 = �𝑁�𝑚4
b ;𝑚4, 𝜎X�

� �𝑁(𝑚4; 𝑆4, 𝜎X� )𝑑𝑚4

= �
1

Ä2𝜋𝜎𝑚′
2
𝑒
−
(𝑚𝑡

′−𝑚𝑡)2
2𝜎

𝑚′
2 1

�2𝜋𝜎𝑚2
𝑒
−
(𝑚𝑡−𝑆𝑡)2
2𝜎𝑚2 𝑑𝑚4 = 𝑁�𝑚4

b ; 𝑆4, 𝜎X�
� + 𝜎X� 	�, (𝑆2)

 1518 

where the expressions 𝑝(𝑚4
b |𝑚4)𝑝(𝑚4|𝑆4) are substituted by the two Gaussian noise distributions as 1519 

defined in the learned generative model (Equation 5-6 in the main text) and integrated over the possible 1520 

states of the sensory measurement variable 𝑚4, which is now unknown—inaccessible any longer. Thus, 1521 

we find that 𝐿X�
�(𝑆4), the likelihood of 𝑆4 , follows 𝑁�𝑆4;𝑚4

b , 𝜎X�
� + 𝜎X� 	�.  1522 

Next, the factor 𝑝(𝐶𝐿4|𝑆4, 𝐵4) in Equation S1 corresponds to the information about the stimulus 1523 

and the class boundary offered by the state of the class variable 𝐶𝐿4  informed by feedback, either 𝑠𝑚𝑎𝑙𝑙 1524 

or 𝑙𝑎𝑟𝑔𝑒. The likelihood of any hypothetical joint states of 𝑆4  and	𝐵4  given 𝐶𝐿4  refers to the probability of 1525 

𝐶𝐿4  if that hypothetical state is true. Here, we denote 𝑝(𝐶𝐿4|𝑆4, 𝐵4) by a likelihood function, 𝐿�z�(𝑆4, 𝐵4). 1526 

𝐿�z�(𝑆4, 𝐵4) is determined depending on the inequality between 𝑆4  and	𝐵4: in the case of  𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙,   1527 

𝐿�z�¶WXSRR(𝑆4, 𝐵4) = 𝑝(𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙|𝑆4, 𝐵4) = Å
1, 𝑆4 < 𝐵4
0, 𝑆4 > 𝐵4

0.5, 𝑆4 = 𝐵4	
(𝑆3) 1528 

; in the case of 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒, 1529 

𝐿�z�¶RSTUV(𝑆4, 𝐵4) = 𝑝(𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒|𝑆4, 𝐵4) = Å
0, 𝑆4 < 𝐵4
1, 𝑆4 > 𝐵4

0.5, 𝑆4 = 𝐵4
	. (𝑆4) 1530 
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Now, let us get back to Equation S1 and denote the boundary likelihood function in the case of 1531 

𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙 (abbreviated as 𝑠) by 𝐿X�
�,�z�¶W

(𝐵4), which can further be decomposed into two integrals 1532 

with finite limits (as similarly done for Equation 9 in the main text), as follows:  1533 

𝐿X�
�,�z�¶W

(𝐵4) ≡ 𝑝(𝑚4
b , 𝐶𝐿4 = 𝑠|𝐵4) 1534 

= ∫ 𝑝(𝑚4
b|𝑆4)𝑝(𝐶𝐿4 = 𝑠|𝑆4,𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4

{�¶Q�
{�¶gP

+ ∫ 𝑝(𝑚4
b|𝑆4)𝑝(𝐶𝐿4 = 𝑠|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4

{�¶[P
{�¶Q�

,  1535 

which can be rewritten as follows: 1536 

											= lim
T→P,È→Q�

¤� 𝑝(𝑚4
b|𝑆4)𝑝(𝐶𝐿4 = 𝑠|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4

È

gT
1537 

+ lim
T→P,È→Q�

É
� 𝑝(𝑚4

b|𝑆4)𝑝(𝐶𝐿4 = 𝑠|𝑆4, 𝐵4)𝑝(𝑆4|𝐵4)𝑑𝑆4.
T

È
	 1538 

	 (𝑆5)  1539 

Since the last term on the right-hand side of Equation S5 becomes zero by Equation S3 (for any 1540 

value ranges of 𝑆4  larger than 𝐵4 , 𝑝(𝐶𝐿4 = 𝑠|𝑆4, 𝐵4) = 0), the boundary likelihood function in the case of 1541 

𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙 is reduced as follows: 1542 

𝐿X�
�,�z�¶W

(𝐵4) ≡ 𝑝(𝑚4
b , 𝐶𝐿4 = 𝑠|𝐵4) = � 𝑝(𝑚4

b|𝑆4)𝑝(𝑆4|𝐵4)𝑑𝑆4.
Q�

gP
(𝑆6) 1543 

From Equation 3 in the main text and Equation S2, we know the distributions 𝑝(𝑆4|𝐵4) 1544 

and	𝑝(𝑚4
b|𝑆4), respectively. Substituting the expression for these distributions gives: 1545 

𝐿X�
�,�z�¶W

(𝐵4) 1546 

= ∫ \

Ä�Ê�¢Ë�
£ [¢Ë£ �

𝑒
g

ÌË�
�¤��Í

£

£ÌÎË�
£ É	ÎË

£ Í \

Ä�Ê¢�£
𝑒
g(��¤Ï�)

£

£Î�
£ 𝑑𝑆4

Q�
gP = \

��ÊÐ
ÎÑ
£ Î�

£

�ÎÑ
£ ÉÎ�

£�
Ò

∫ 𝑒
g
Ó��¤

Ï�ÎÑ
£ ÉË�

�Î�
£

ÎÑ
£ ÉÎ�

£ Ô
£

£
ÎÑ
£ Î�

£

�ÎÑ
£ ÉÎ�

£� 𝑑𝑆4
Q�
gP × \

Ä�Ê�¢Ñ£ [¢�£�
𝑒
g
�𝐵𝑡−𝑚𝑡

′ �
£

£�ÎÑ
£ ÉÎ�

£� , 1547 

(𝑆7)  1548 

where 	𝜎�� = 𝜎X�
� + 	𝜎X� . Equation S7 is equivalent to Equation 11 in the main text. 1549 

 To aid in intuitive comprehension of 𝐿X�
�,�z�¶W

(𝐵4), we can express it as the product of two terms 1550 

from Equation S7 by rewriting it as follows:  1551 
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𝐿X�
�,�z�¶W

(𝐵4) = 𝐹Õ(𝐵4)ℒX�
�(𝐵4), (𝑆8) 1552 

where 𝐹Õ denotes the first term on the right-hand side of Equation S7 (to be detailed in Equation S10), 1553 

and ℒX�
�  denotes the second term on the right-hand side of Equation S7 (to be detailed in Equation S9), 1554 

which equals to the likelihood function for 𝐵4  given 𝑚4
b  defined under the assumption that no 𝐶𝐿4  variable 1555 

exists in the generative process. To make this point explicit, we used a different likelihood notation ℒ 1556 

from the notation 𝐿 used throughout the paper. 1557 

Note that, according to the learned generative model in our study, the decision-maker acquires the 1558 

knowledge about 𝐵4  by evaluating how probable the two observations, 𝑚4
b  (sensory evidence in memory; 1559 

simply as sensory evidence, hereinafter) and 𝐶𝐿4  (feedback evidence), are for each possible value of 𝐵4 . 1560 

Contrastingly, ℒX�
�(𝐵4) in Equation S8 can be considered the information about 𝐵4  solely based on the 1561 

sensory evidence by computing 𝑝(𝑚4
b|𝐵4). Thus, ℒX�

�(𝐵4) represents the “sensory influence” that drives 1562 

the boundary update, by pushing the joint boundary likelihood 𝐿X�
�,�z�¶W

(𝐵4)	towards 𝑚4
b  on the 𝐵4	axis 1563 

(see the first row in S1B-D Fig), as follows: 1564 

ℒX�
�(𝐵4) =

1

�2𝜋(𝜎𝑀2 + 𝜎𝑆
2)
𝑒
−
(𝐵𝑡−𝑚𝑡

′ )2
2(𝜎𝑀2 +𝜎𝑆2) = 𝑁(𝐵4;𝑚4

b , 𝜎�� + 𝜎{�). (𝑆9) 1565 

 On the other hand, the term 𝐹Õ(𝐵4) in Equation S8 can be considered the information about 𝐵4  1566 

jointly based on the feedback and sensory evidence, while parting out the aforementioned “sensory 1567 

influence” (divided by ℒX�
�(𝐵4)). Let 𝑋 be a random variable with cumulative distribution function (CDF) 1568 

𝐹Õ  1569 

𝐹Õ(𝐵4) = � 𝑓Õ(𝑆4)𝑑𝑆4
Q�

gP
, (𝑆10) 1570 

where the probability density function of 𝑋, denoted by 𝑓Õ(𝑥) = 𝑁 �𝑥; Q�𝜎𝑀
2 +𝑚𝑡

′ 𝜎𝑆
2

𝜎𝑀
2 +𝜎𝑆

2 , ¢Ñ
£ ¢�

£

�¢Ñ
£ [¢�

£��. Since this term 1571 

is derived specifically for 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙, we can interpret this term as the “feedback influence” that drives 1572 

the boundary update with a CDF multiplied, by pushing the boundary likelihood 𝐿X�
�,�z�¶W

(𝐵4) in a more 1573 

positive direction on the 𝐵4	axis. Owing to this contribution by the feedback evidence, the boundary 1574 
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likelihood 𝐿X�
�,�z�¶W

(𝐵4 = 𝑏) for a given value 𝑏 of 𝐵4  would support that 𝑏 > 𝑚4
b  is more plausible than 1575 

𝑏 < 𝑚4
b for the current state of the class boundary that generated 𝑚4

b  and 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙. This aligns with 1576 

the intuition from the temperature example described in the main text (Fig 1C).  1577 

 Similarly, from Equations S5-S7, we derive the boundary likelihood for the case 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒:  1578 

𝐿X�
�,�z�¶R

(𝐵4) = � 𝑝(𝑚4
b|𝑆4)𝑝(𝑆4|𝐵4)𝑑𝑆4

P

Q�
= (1 − 𝐹Õ(𝐵4))ℒX�

�(𝐵4), (𝑆11) 1579 

Contrary to the 𝐶𝐿4 = 𝑠𝑚𝑎𝑙𝑙 case, the boundary likelihood 𝐿X�
�,�z�¶R

(𝐵4 = 𝑏) would support that 𝑏 < 𝑚4
b  1580 

is more plausible than 𝑏 > 𝑚4
b  for 𝐵4  that generated 𝑚4

b  and 𝐶𝐿4 = 𝑙𝑎𝑟𝑔𝑒, since the multiplication is 1581 

performed, instead with a complementary CDF (see the second row in S1B-D Fig).  1582 

 1583 
 1584 
 1585 
Supplementary tables (A-D Tables) to support the Results section 1586 
 1587 
Table A. Parameters used for ex ante simulations. 1588 
 1589 

World  Value  

𝜎X 25 levels 
[0.15, 3.27] 𝜎X 25 levels 

[0.15, 3.27] 
𝜇~ 0 𝜇~ 0 
𝜎~ 5 𝛼 0.35 
𝜎W 1.5811 𝛽 5 
𝜎X� 2.5 𝑉5654 0.5 

𝜎 5¡¡rW526 0.8   
 1590 
 1591 
Table B. Parameters recovered from fitting the main models, world-updating and value-1592 
updating models, to human choices (N=30). 1593 
 1594 

World 
Mean 

(standard 
deviation) 

Value 
Mean 

(standard 
deviation) 

𝜎X 0.86 
(0.46) 𝜎X 1.20 

(0.30) 

𝜇~ 
0.04 
(0.62) 𝜇~ 

0.02 
(0.43) 

𝜎~ 
4.27 
(1.22) 𝛼 0.17 

(0.20) 
𝜎W 0.84 𝛽 7.43 
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(0.92) (7.01) 

𝜎X� 3.70 
(1.00) 𝑉5654 

0.92 
(0.16) 

𝜎 5¡¡rW526 3.20 
(1.57)   

 1595 
 1596 
Table C. Parameters recovered from fitting the rest of the models to human choices (N=30). 1597 
 1598 

Hybrid 
Mean 

(standard 
deviation) 

Fixed 
Mean 

(standard 
deviation) 

Base 
Mean 

(standard 
deviation) 

𝜎X 0.68 
(0.33) 𝜎X 1.54 

(0.39) 𝜎X 1.90 
(0.50) 

𝜇~ 
0.01 
(0.61) 𝜇~ 

0.02 
(0.31)   

𝜎~ 
3.55 
(1.28)     

𝜎W 
0.86 
(1.03)     

𝜎X� 3.84 
(1.22)     

𝜎 5¡¡rW526 3.77 
(1.87)     

𝛼 0.15 
(0.11)     

𝛽 6.96 
(2.83)     

𝑉5654 
0.882 
(0.15)     

 1599 
Table D. Statistical results on model behavior versus human behavior in terms of PSE 1600 
measures. 1601 
 1602 

Model 
vs. 

Data 

toi-1 
(20 conditions) 

toi+1 
(20 conditions) 

(toi+1) - (toi-1) 
(20 conditions) 

Total 
(60 conditions) 

Statistical 
difference n.s. significant n.s. significant n.s. significant n.s. 

# conditions 
Test type t w t w t w t w t w t w t w 

Value (13) (13) 
*(1) 
**(2) 
***(4) 

*(1) 
**(5) 
***(1) 

(10) (9) 
*(1) 
**(1) 
***(8) 

*(3) 
**(3) 
***(5) 

(8) (9) 
*(1) 
**(1) 

***(10) 
 

**(6) 
***(5) 

(31) (31) 

World (20) (20) . . (20) (20) . . (20) (20) . . (60) (60) 

Hybrid (20) (20) . . (17) (19) 
*(3) 
 

*(1) 
 (19) (20) 

*(1) 
 . (56) (59) 

Test type, t:  Paired t-test 1603 
Test type, w: Wilcoxon signed-rank test 1604 
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   *: P<0.00083, Bonferroni-corrected threshold 1605 
 **: P<0.000167, 1606 
***: P<0.0000167 1607 
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