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Abstract

Corrective feedback received on perceptual decisions is crucial for adjusting decision-making
strategies to improve future choices. However, its complex interaction with other decision
components, such as previous stimuli and choices, challenges a principled account of how it
shapes subsequent decisions. One popular approach, based on animal behavior and extended
to human perceptual decision-making, employs ‘reinforcement learning,’ a principle proven
successful in reward-based decision-making. The core idea behind this approach is that
decision-makers, although engaged in a perceptual task, treat corrective feedback as rewards
from which they learn choice values. Here, we explore an alternative idea, which is that humans
consider corrective feedback on perceptual decisions as evidence of the actual state of the
world rather than as rewards for their choices. By implementing these ‘feedback-as-reward’ and
‘feedback-as-evidence’ hypotheses on a shared learning platform, we show that the latter
outperforms the former in explaining how corrective feedback adjusts the decision-making
strategy along with past stimuli and choices. Our work suggests that humans learn about what
has happened in their environment rather than the values of their own choices through

corrective feedback during perceptual decision-making.

Introduction

Perceptual decision-making (PDM) means committing to a proposition about an objective world
state (e.g., “The temperature today is low.”). Decision-makers adjust future commitments based
on what they experienced from past commitments, including what they perceived, what they

chose, and what the environment gave them in return. Among these history factors, trial-to-trial

corrective feedback—feedback about the correctness of a decision maker’s choices on a trial-
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to-trial basis—is widely used by experimenters to train subjects on PDM tasks. Despite this
clear utility of feedback and a pile of evidence for its impact on subsequent PDM behavior
across species and sensory modalities [1-11], much remains elusive about how corrective
feedback, in conjunction with other history factors, exerts its trial-to-trial influence on subsequent

decisions.

Unlike PDM, value-based decision-making (VDM) involves making choices based on
decision makers’ subjective preferences (e.g., ‘choosing between two drinks based on their
tastes’). Reinforcement learning (RL) algorithms have proven effective in explaining how past
rewards affect future VDM based on error-driven incremental mechanisms [12—-18]. Intriguingly,
there have been attempts to explain the impact of past feedback on subsequent PDM by
grafting an RL algorithm onto the PDM processes [3,4,8—10]. This grafting premises that
decision-makers treat corrective feedback in PDM similarly to reward feedback in VDM. On this
premise, this RL-grafting account proposes that decision-makers update the value of their
choice to minimize the difference between the expected reward and the actual reward received,
called ‘reward prediction error’ (red dashed arrows in Fig 1A). Importantly, the amount of reward
prediction error is inversely related to the strength of sensory evidence—i.e., the extent to which
a given sensory measurement of the stimulus supports the choice—because the expected value
becomes low as the sensory evidence becomes weak. For example, suppose a decision-maker
committed to a proposition, “The temperature today is low.” Then, correct feedback to that
commitment increases the value of the ‘low’ choice since the positive reward for the ‘low’ choice
leads to the positive reward prediction error, which indicates the need to heighten the value of
the ‘low’ choice. Importantly, the amount of value-updating is greater when the experienced
temperature is moderately cold (e.g., —2°c, weak sensory evidence for the ‘low’ choice)
compared to when it is very cold (e.g., —15°c, strong sensory evidence for the ‘low’ choice)

because the expected reward is smaller in the former, which leads to a greater level of reward
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prediction error compared to the latter (as illustrated in the left panel of Fig 1B). A recent study
[9] referred to this sensory evidence-dependent impact of feedback as “confidence-guided
choice updating” based on the tight linkage between decision confidence and sensory evidence.
This RL-grafting account, referred to as the value-updating scenario hereinafter, appears natural
given that corrective feedback is typically provided as physical rewards such as juice or water in
animal PDM experiments [4,5,8—10,19-21]. The value-updating scenario seems plausible from
the perspective that PDM and VDM might share common mechanisms [22], as suggested by

some empirical studies [23,24].
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Fig 1. Two possible scenarios for what humans learn from feedback for PDM and their distinct
predictions of feedback effects. (A) Decision-making platform for perceptual binary classification. The
gray arrows depict how a sensory measurement m and feedback F are generated from a stimulus S,
which is sampled from the world, and a choice C. The black arrows depict the computational process,
where, for a given choice option, a decision-maker computes its expected value Qi by multiplying the

probability that the choice is correct p,,.;,, given m and the class boundary B with the value of that
choice V,,+i0, and make a choice C based on Q0. IN principle, the decision-maker may update either
Voption (red dashed arrows; value-updating) or world (green dashed arrows; world-updating) from m, C,
and F. (B) Distinct sensory-evidence-dependent feedback effects predicted by the value-updating and
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90  world-updating scenarios. According to the value-updating scenario (left), as sensory evidence becomes
91  stronger, p,,¢ion iNCreases, and accordingly, so does Q,p0n- As a result, reward prediction errors become
92 smaller but remain in the direction congruent with feedback, which predicts that feedback effects on

93 subsequent trials diminish asymptotically as a function of the strength of sensory evidence. According to
94  the world-updating scenario (right), as sensory evidence becomes stronger, the stimulus distribution, and
95 accordingly B too, becomes shifted farther towards the stimulus in the direction counteracting the

96 influence of feedback. As a result, the direction of feedback effects is the same as that predicted by the
97  value-updating scenario for weak sensory evidence but eventually reverses to the direction incongruent
98  with feedback as sensory evidence becomes stronger.

100 Nevertheless, value-updating might not be the only route through which feedback effects
101 transpire in PDM, especially for humans receiving corrective feedback without any physical

102 rewards. Alternatively, decision-makers may treat feedback not as rewards but as a logical

103 indicator of whether the proposition they committed to is true or false in the world. In this

104  scenario, decision-makers update their belief about world statistics (i.e., stimulus distribution) by
105 combining the information about the trueness of their choice, which is informed by feedback,
106  and the information about the stimulus, which is informed by a sensory measurement (dashed
107 arrow from m in Fig 1A). Suppose you have recently arrived in Canada for the first time in the
108  winter and felt the chilly air. You remarked, "The temperature today is low." Your friend, who has
109 lived for long in Canada, may agree or disagree with you, and this will provide you with

110 information on the typical temperature distribution during the Canadian winter. The incorrect
111  feedback from your friend (e.g., "Actually, it's not low at all today.”) indicates that the

112  temperature experienced today falls on the higher side of the actual distribution, making you
113 adjust your belief about the distribution to the lower side. On the contrary, the correct feedback
114  (e.g., “Yes, it's low today.”) will lead you to adjust your belief about the distribution to the higher
115 side. It is important to note that, besides the feedback from your friend, the temperature felt by
116  yourself also informs you of the statistical distribution of temperature since it is a sample from
117  that distribution. For instance, if the temperature felt moderately cold (e.g., —2°c), your belief
118 about the temperature distribution will only slightly shift towards the lower side. However, if it felt

119 very cold (e.g., —15°c), your belief will shift towards the same lower side, but with a much
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greater amount, which can counteract the impact of the correct feedback on your belief (i.e.,

adjusting your belief to the higher side).

Therefore, according to this alternative scenario, referred to as the word-updating
scenario hereinafter, correct feedback to “The temperature today is low.” will increase the
tendency to classify the next day’s temperature as ‘low,’ just like the value-updating scenario.
However, unlike the value-updating scenario, the world-updating scenario implies that when
sensory evidence is too strong, such a tendency can be reversed, leading to a counterintuitive
increase in the tendency to classify the next day’s temperature as ‘high,’ (as illustrated in the
right panel of Fig 1B). The world-updating scenario is conceptually parsimonious because it
does not require any component outside the PDM processes, such as the RL algorithms
developed in the VDM. Especially in Bayesian Decision Theory (BDT) [25,26], which has been
providing compelling accounts for PDM behavior, world statistics is a crucial knowledge that is

required to infer a world state in PDM [27-30].

Here we tested which of the two scenarios better explains the effects of corrective
feedback—without any physical reward—on humans’ PDM. To do so, we implemented the
value-updating and world-updating scenarios into a variant of RL model [9] and a Bayesian
model, respectively, and directly compared the two models’ accountability for the feedback
effects on humans’ PDM behavior. As a PDM task, we opted for a binary classification task, one
most widely used PDM task in which decision-makers sort items into two discrete classes by
setting a boundary since the two scenarios make distinct predictions about the stimulus-
dependent feedback effects in this task. As was described intuitively above and will be
explained rigorously later, the value-updating scenario predicts that feedback, which acts like
rewards, “uni-directionally” fosters and suppresses the rewarded (correct) and unrewarded
(incorrect) choices, respectively, in subsequent trials while diminishing its impact asymptotically

as sensory evidence becomes stronger, due to the reduction in reward prediction error (the red
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145  curve in Fig 1B). By contrast, the world-updating scenario predicts that the feedback effects not
146  just diminish but eventually become reversed to the opposite side as sensory evidence
147  becomes stronger, as the shift of the class boundary towards the previous stimulus counteracts

148 the boundary shift due to feedback (the green curve in Fig 1B).

149 We found the world-updating model superior to the value-updating model in explaining
150 human history effects of corrective feedback on PDM. Critically, the value-updating model fails
151 to account for the observed stimulus-dependent feedback effects. Our findings suggest that

152  humans are likely to treat corrective feedback in PDM as logical indicators of the trueness of the
153  proposition to which they committed, rather than as rewards, and update their knowledge of
154  world statistics, rather than the values of their choices, based on feedback in conjunction with

155 the other history factors—previous stimuli and choices.

156 Results

157 Quantifying the retrospective and prospective history effects

158 of feedback on binary classification

159  To study the stimulus-dependent feedback effects in PDM, we acquired long sequences (170
160 trials/sequence) of binary choices (C € {small, large}) many times (30 sequences/participant)
161  from each of 30 human participants while varying the ring size (S € {-2,—-1,0,1,2}) and providing
162  corrective feedback (F € {correct,incorrect}) (Fig 2A). On each trial, participants viewed a ring,
163  judged whether its size is small or large as accurately as possible while receiving feedback,
164  which indicated by color whether the choice was correct or incorrect (Fig 2B). We ensured the
165  ring size varied sufficiently—including the ones very easy and difficult for classification—so that
166 the two scenarios’ distinct predictions on the stimulus-dependent feedback effects could be

167 readily compared. Also, we used stochastic feedback, where correct and incorrect feedback
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168 was occasionally given to incorrect and correct choices, respectively, to cover the entire 3D

169 space of decision-making episodes defined orthogonally over ‘stimulus’, ‘choice’, and ‘feedback’

170 (5 x 2 x 2 = 20 episodes; Fig 2C; Materials and methods).
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172 Fig 2. Experimental design and definition of retrospective and prospective history effects. (A) A
173 chain of PDM episodes over a single sequence of trials. Each trial sequence consists of 170 column
174  vectors of PDM episode [stimulus; choice; feedback]. In this example, the trial of interest (toi) is
175

characterized by an episode vector [0; large; correct] and demarcated by thick outlines. The trials that
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176 precede and follow foi can be labeled as foi-1 and toi+1, respectively. (B) Trial structure. Participants
177  viewed a randomly sampled ring with their eyes fixed, classified its size, and then received feedback
178 indicating whether the classification was correct or incorrect by the color around the fixation. (C) The 3D
179 state space of the PDM episodes in the experiment. The example episode of toi in (A) is marked by the
180 black cube. (D) Definition of retrospective and prospective history effects. As illustrated in (A) and (C), for
181 any given episode of foi, all the trials labeled with foi-71 and foi+1 are stacked and used to derive the
182 psychometric curves, respectively. The PSEs estimated for the toi-1 and toi+1 psychometric curves
183 quantify the retrospective and prospective history effects, respectively. In this example, the black and
184  gray curves were defined for toi = [0; large; correct] and toi = [0; small; correct], respectively, with
185 circles and bars representing the mean and s.e.m. across 30 participants, respectively. The data

186  underlying this figure (D) can be found in S1 Data.

187 To rigorously evaluate the correspondence between model prediction and human

188  behavior, we quantified the history effects in both retrospective and prospective directions of
189 time, as follows (Fig 2D). First, we localized the trials in which a PDM episode of interest

190 occurred (trial of interest, toi) and stacked the trials that preceded (the retrospective block of
191 trials, foi-1) and those that followed (the prospective block of trials, foi+7) the toi. Second, we
192  derived the two psychometric curves from the retrospective and prospective blocks of trials,
193  respectively, and fit the cumulative normal distribution function to these curves to estimate the
194  point-of-subjective-equality (PSE) measures, which have previously been used [19-21] and
195  known to reliably estimate the history-dependent choice biases in PDM [31]. Thus, the PSEs of
196 the retrospective and prospective trials quantify the choice biases that exist before and after the
197 PDM episode of interest occurs, respectively, with negative and positive values signifying that

198 choices are biased to large and small, respectively.

199 Decision-making processes for binary classification

200 As afirst step of evaluating the value-updating and world-updating scenarios, we constructed a
201  common platform of decision-making for binary classification where both scenarios play out.
202  This platform consists of three processing stages (Fig 3A). At the stage of ‘perception’, the

203  decision-maker infers the class probabilities, i.e., the probabilities that the ring size (S) is larger
204  and smaller, respectively, than the class boundary (B) given a noisy sensory measurement (m),

205 as follows:
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p(CL = large) = p(S > Blm) = [, p(SIm)ds;

p(CL = small) =1 — p(CL = large),
where CL stands for the class variable with the two (small and large) states.

At the stage of ‘valuation’, the decision-maker forms the expected values for the two

choices (Qiqrge and Qsmqyr) by multiplying the class probabilities by the learned values of the

corresponding choices (Vig,ge @and Vspgqy;) as follows:

Qlarge = p(CL = large) X Vlarge;

Qsman = p(CL = small) X Vsmau-

Lastly, at the stage of ‘decision’, the decision-maker commits to the choice whose
expected value is greater than the other. In this platform, choice bias may originate from the
perception or valuation stage. Suppose the decision-maker’s belief about size distribution at the
perception stage is not fixed but changes depending on previous PDM episodes (Fig 3B, top).
Such changes lead to the changes in PSE of the psychometric curve because the class
probabilities change as the class boundary changes (Fig 3B, bottom). Alternatively, suppose the
decision-maker’s learned values of the choices are not fixed but change similarly (Fig 3C, top).
These changes also lead to the changes in PSE of the psychometric curve because the

expected values change as the choice values change (Fig 3C, bottom).

10
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Fig 3. Implementation of the value-updating and world-updating scenarios into computational
models in a common PDM platform. (A) Computational elements along the three stages of PDM for
binary classification. At the ‘perception’ stage, the probabilities that the class variable takes its binary
states small and large—p(CL = large) and p(CL = small)—are computed by comparing the belief on
the stimulus size p(S|m) against the belief on the class boundary B—the mean of the belief on stimulus
distribution in the world p(S). At the ‘valuation’ stage, the outcomes of the perception stage are multiplied
by the learned values Vs to produce the expected values @s. At the ‘decision’ stage, the choice with the
greater expected value is selected. (B, C) lllustration of two potential origins of choice biases, one at the
‘perception’ stage (B) and the other at the ‘valuation’ stage (C). The color indicates the direction of choice
bias (yellow for bias to large; balck for no bias; blue for bias to small). (D, E) lllustration of the
architectures (left panels) and predictions on the stimulus-dependent feedback effects (right panels) of
BMBU (D) and the belief-based RL model (E). In the left panels, the dashed arrows represent the ways
the history factors (feedback and stimulus) exert their contribution to choice bias. In the right panels,
PSE,,i+1, Which quantifies the choice bias in the trials following a certain PDM episode at toi=[0; large;
correct], is plotted as a function of the stimulus size at foi. The color indicates the direction of choice bias,
as in (B) and (C).

The belief-based RL model

11
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To implement the value-updating scenario, we adapted the belief-based RL model [9] to the
current experimental setup. Here, feedback acts like a reward by positively or negatively

reinforcing the value of choice (Vi4rge(smary) With the deviation of the reward outcome (r) from

the expected value of that choice (Q;arge(smair)), @s follows:

Vlarge(small) < Vlarge(small) + aé;

6d=r— Qlarge(small) =1 — p(CL = large(small)) x Vlarge(small)’

where a, §, and r are the learning rate, the reward prediction error, and the reward,
respectively. The state of feedback determines the value of r: r = 1 for correct; r = 0 for
incorrect. Note that § has the statistical decision confidence at the perception stage, i.e.,

p(CL = large(small)), as one of its three arguments. As stressed by the authors who
developed this algorithm [9], this feature makes the strength of sensory evidence—i.e.,
statistical decision confidence—modulate the degree to which the decision-maker updates the
chosen value based on feedback (Fig 3E, left). Hence, this belief (confidence)-based
modulation of value-updating underlies the stimulus-dependent feedback effects: the amount of
feedback effects decreases as sensory evidence becomes stronger since the reward prediction
error decreases as a function of p(CL = large(small)), which is proportional to sensory

evidence (Fig 3E, right).

The Bayesian model of boundary-updating (BMBU)

To implement the world-updating scenario, we developed BMBU, which updates the class
boundary based on the previous PDM episode in the framework of BDT. Specifically, given ‘a
state of the class variable that is indicated jointly by feedback and choice’, CL, and ‘a noisy
memory recall of the sensory measurement (, which will be referred to as “mnemonic
measurement” hereinafter)’, m’, BMBU infers the mean of the size distribution (i.e., class

boundary), B, by updating its prior belief about B, p(B), with the likelihood of B, p(m', CL|B), by

12
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inverting its learned generative model of how m' and CL are generated (Fig 3D, left; Equations
3-6 in Materials and methods for the detailed formalisms for the learned generative model), as

follows:

p(BIm’,CL) « p(m',CL|B)p(B) = p(m’,C,F|B)p(B).

This inference uses multiple pieces of information from the PDM episode just
experienced, including the mnemonic measurement, choice, and feedback, to update the belief
about the location of the class boundary (refer to Equations 8-14 in Materials and methods for
more detailed formalisms for the inference). In what follows, we will explain why and how this
inference leads to the specific stimulus-dependent feedback effects predicted by the world-

updating scenario (Fig 3D, right), where world knowledge is continuously updated.

Suppose a decision-maker currently believes that the size distribution is centered around
0. Let’s first consider a case where the decision-maker experiences a PDM episode with
an ambiguous stimulus: the ring with size 0 is presented and produces a sensory measurement
m that is only slightly greater than 0 (through the stochastic process where m is generated from
S; Equation 5), which leads to the large choice since the inferred S from such m is greater than
the center of the size distribution (Equation 4 and 7), and then followed by correct feedback.
BMBU predicts that after this PDM episode, the decision-maker will update the belief about the
size distribution by shifting it towards the smaller side. Hence, the choice in the next trial will be
biased towards the larger option, resulting in a negatively biased PSE for the psychometric
curve defined by the trials following the episode of interest. This is because the impact of the
mnemonic measurement on boundary-updating is minimal whereas that of the informed class
variable is substantial. After the above episode, the decision-maker’s noisy mnemonic
measurement m’ is also likely to be slightly larger than 0 since m’ is an unbiased random

sample of the sensory measurement m (Equation 6). Thus, the impact of m’ on boundary
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289  updating is minimal because m' is close to 0 and thus only slightly attracts the class boundary.
290 On the contrary, the impact of the informed state of the class variable CL on boundary updating
291 s relatively substantial, pushing the class boundary towards the regime consistent with the

292  informed state of CL (Equations 9-12), which is the smaller side. As a result, the class boundary
293  is negatively (towards-small-side) biased, which leads to the negative bias in the PSE of the
294  psychometric curve defined from the trials following the episode of interest (as depicted by the

295  left (yellow) regime in the plot of Fig. 3D).

296 Next, to appreciate the stimulus-dependent nature of feedback effects in the world-

297  updating scenario, let’s consider another case where the decision-maker experiences a PDM
298 episode with an unambiguous stimulus: the ring with size 2 is presented and produces a

299 sensory measurement m that falls around 2, which leads to the large choice and then followed
300 by correct feedback. After this episode, as in the previous case with an ambiguous stimulus,
301 the informed state of the class variable (CL = large) shifts the class boundary to the smaller
302 side. However, unlike the previous case, the impact of the mnemonic measurement m’ on

303  boundary-updating, which is likely to be around 2, is substantial, resulting in a shift of the

304 boundary towards the far larger side. Consequently, the class boundary becomes positively
305 (towards-large-side) biased. Here, the mnemonic measurement and the informed state of the
306 class variable exert conflicting influences on boundary updating. Since the mnemonic

307 measurement increases as the stimulus size grows (e.g., S = 0 —» 1 — 2), the relative impact of
308 the mnemonic measurement on boundary-updating is increasingly greater as the stimulus size
309 grows, eventually overcoming the counteracting influence of the informed state of the class
310 variable (S1 Fig). As a result, the bias in the class boundary is initially negative but is

311  progressively reversed to be positive as the stimulus size grows, which leads to the bias

312 reversal in the PSE of the psychometric curve defined from the trials following the episode of

313 interest (as depicted by the right (blue) regime in the plot of Fig 3D).
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We stress that this ‘stimulus-dependent bias reversal’ is a hallmark of the world-updating
scenario’s prediction of the history effects in PDM. Specifically, the direction of bias reversal is
always from small to large as long as the feedback in conjunction with the choice indicates
CL =small (e.9.,,{S=0->—-1- —-2,C =small,F = correct}or{S=0->-1- -2,C =
large, F = incorrect}) and always from large to small as long as the feedback in conjunction
with the choice indicates CL = large (e.9.,{S=0-1- 2,C = large,F = correct}or{S=0 -
1 - 2,C = small, F = incorrect}). Critically, the value-updating scenario does not predict the
bias reversal (Fig 3E, right). It predicts that the feedback effects only asymptotically decrease as
a function of sensory evidence but never switch to the other direction. This is because the
decision confidence, p(CL = large(small)), only modulates the amount of value-updating but

never changes the direction of value-updating.

Ex ante simulation of the feedback effects under the two

scenarios

Above, we have conceptually explained why and how the two scenarios imply the distinct
patterns of stimulus-dependent feedback effects. Though this implication seems intuitively
apparent, it must be confirmed under the experimental setting of the current study. Moreover,
there are good reasons to expect any history effect to exhibit complex dynamics over trials.
First, sensory and mnemonic measurements are subject to stochastic noises, which propagates
through decision-making and value/boundary-updating processes to subsequent trials (e.g., a
sensory measurement that happens to fall on a relatively small side is likely to lead to a small
choice, which affects the subsequent value/boundary-updating process, and so on). Second,
provided that any deterministic value/boundary-updating processes are presumed to be at work,
the PDM episode on a given trial must, in principle, be probabilistically conditioned on the

episodes in past trials (e.g., the current small choice on the ring of S = 0 is likely to have
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followed the previous episodes leading to ‘boundary-updating in the large direction’ or ‘positive

value-updating of the small choice’). Third, two steps of deterministic value/boundary-updating

occur between what can be observed at toi — 1 and at toi + 1 (as indicated by the psychometric

curves in Fig 4A), once following the episode at toi — 1 (Usy;—1 in Fig 4A) and next following the

episode at toi (Us,; in Fig 4A). Thus, the differences between the retrospective and prospective

history effects should be construed as reflecting not only U,,; but also U;,;_,. The nuanced

impacts of this hidden updating on the history effects must be complicated, and thus be

inspected with realistic simulations. Further, considering that these multiple stochastic and

deterministic events interplay to create diverse temporal contexts, history effects are supposed

to reveal themselves in multiplexed dynamics.
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Fig 4. Ex ante simulation results for the PDM episodes with correct feedback. (A) lllustration of how
the retrospective (left) and prospective (right) history effects relate to the value updates and boundary
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updates (bottom) occurring over the trials overarching the trial of interest. While the updating occurs
latently at every trial (as indicated by Uy,;_1, Usoi> Usoi+1), itS behavioral consequences are observable
only at the pre-updating phase at foi-71 and toi+1. (B-D) The observable retrospective (B) and prospective
(D) history effects and latent value-updating processes (C) for the value-updating model agent. (C) Since
correct feedback is treated as a positive reward, the chosen value is updated positively while the amount
of value-updating varies depending on the strength of sensory evidence, as indicated by the length of the
vertical arrows in different colors (weak sensory evidence, pale blue; strong sensory evidence, dark blue).
The short horizontal bars and arrow heads of the colored arrows indicate the chosen values before and
after U,,;, respectively. (E-G) The observable retrospective (E) and prospective (G) history effects and
latent boundary-updating processes (F) for the world-updating model agent. (F) Since correct feedback is
treated as a logical indicator of the true state of the class variable (i.e., the true inequality between the
class boundary and the stimulus), the class boundary shifts as a joint function of feedback and sensory
evidence, where the boundary shift due to sensory evidence (solid black arrows) counteracts that due to
feedback (dotted black arrows), as indicated by the arrows in different colors (weak sensory evidence,
pale blue; strong sensory evidence, dark blue). The short vertical bars and arrow heads of the colored
arrows at the top indicate the class boundary before and after U,,;, respectively. (H) Juxtaposition of the
differences between the retrospective and prospective history effects displayed by the two model agents.
(C, F) The contributions of both sensory and feedback evidence are indicated by S-evidence and F-
evidence, respectively. (B, D, E, G) Data points are the means and s.e.m.s across the parameter sets
used in ex ante simulations (see Materials and methods). The data underlying this figure (B, D, E, G, H)
can be found in S1 Data.

Hence, we simulated ex ante the two models over a reasonable range of parameters by
making the model agents perform the binary classification task on the sequences of stimuli that
will be used in the actual experiment (Table A in S1 Appendix, S4 Fig, and Materials and
methods). The simulation results confirmed our intuition, as summarized in Fig 4, which shows
the retrospective and prospective history effects for the PDM episodes with correct feedback.
Notably, the retrospective history effects indicate that both value-updating and world-updating
agents were already slightly biased to the choice they are about to make in the—following—toi
(Fig 4B and 4E). One readily intuits that such retrospective biases are more pronounced when
conditioned on the toi with weak sensory evidence because the stochastic bias consistent with
the choice that would be made in the toi is required more in those trials. This testifies to the
presence of the complex dynamics of history effects discussed above and is also consistent
with what has been previously observed (e.g., see Figure 2 of the previous study [9]).
Importantly, in line with our conceptual conjecture (Fig 3D and 3E), the two agents evidently
disagree on the prospective history effects. While the value-updating agent always exhibits the

feedback-congruent bias but never reverses the direction of bias, the world-updating agent
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shows the feedback-congruent bias after viewing the ambiguous stimulus but progressively
reversed the direction of bias as the stimulus evidence supporting the decision becomes

stronger (Fig 4C, 4D, and 4F-4H).

Next, Fig 5 summarizes the history effects for the PDM episodes with incorrect
feedback. The retrospective history effects show that both agents exhibit the choice bias
consistent with the choice they will make next trial, as in the case for correct feedback, but the
amounts of bias are much greater compared to those in the correct-feedback condition (Fig 5B
and 5E). These pronounced retrospective effects conditioned on the incorrect-feedback
episodes are intuitively understood as follows: the value-updating agent’s value ratio or the
world-updating agent’s class boundary was likely to be somehow “unusually and strongly”
biased before the toi, given that they make an incorrect—thus “unusual’—choice in the toi.
Supporting this intuition, the retrospective bias increases as sensory evidence increases, since
the prior value ratio or class boundary must be strongly biased to result in that particular
incorrect choice despite such strong sensory evidence. Importantly, despite these large
retrospective biases, the prospective history effects indicate that both agents adjust their value
and class boundary, respectively, in their own manners identical to those for the correct-
feedback episodes (Fig 5C, 5D, 5F, and 5G). Thus, as in the case of the correct-feedback
episodes, the direction reversal is displayed only by the world-updating agent, but not by the

value-updating agent (Fig 5H).
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Fig 5. Ex ante simulation results for the PDM episodes with incorrect feedback. The format is
identical to that in Fig 4. The data underlying this figure (B, D, E, G, H) can be found in S1 Data.

In sum, the ex ante simulation confirmed that the bias reversal of the stimulus-

dependent feedback effects occurs only under the world-updating scenario but not under the

value-updating scenario, regardless of the (correct or incorrect) states of feedback. The

simulation results also confirmed that, with the current experimental setting, we can empirically

determine which of the two scenarios provides a better account of feedback effects.

Evaluating the two scenarios for the goodness of fit to

human decision-making data
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418 Having confirmed the distinct predictions of the two scenarios via ex ante simulation, we

419  evaluated their goodness of fit to human data. As points of reference for evaluation in the model
420 space (Fig 6A), we created three reference models. The ‘Base’ model sets the class boundary
421  at the unbiased value (B = 0) and does not update any choice values, thus incorporating neither
422  arbitrary choice preference nor adaptive updating. The ‘Fixed’ model is identical to the Base

423  model except that it incorporates arbitrary choice preference by fitting the constant class

424  boundary to the data. The ‘Hybrid’ model incorporated both value-updating and world-updating
425  algorithms. We quantified the models’ ability to predict human classification choices using log
426 likelihood (Fig 6B) and compared their abilities using the Akaike information criterion corrected

427  for sample size (AlCc [32]; Fig 6C)).

A B

intrinsic| adaptive 200 -
choice | updating |params. T
Model | phias? ? # | I
Base No No 1 =5 {
Fixed  Yes No 2 =100r 1
o l
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428

429 Fig 6. Model goodness of fit to human choice behavior. (A) Specification of the models constituting
430 the model space. The color labels also apply to the rest of the panels in (B-D). (B-C) Model comparisons
431 in goodness of fit in terms of log likelihood (B) and AlCc (C). The height of bars represents the across-
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432 participant average differences from the goodness-of-fit measures of the Base model (N=30,

433 meanzs.e.m.). Both difference measures indicate a better fit for higher values. Dashed lines in purple
434 (Hybrid model) and gray (Fixed model) provide the reference points for evaluating the value-updating and
435  world-updating models’ accountability of the trial-to-trial choice variability (see Main text for their exact
436 meanings). Pair-wise model comparisons were performed using paired one-tailed t-tests (asterisks

437 indicate significance: *, P<0.05; **, P<0.005; ***, P<10®) (D) Model comparisons in the hierarchical

438 Bayesian Model Selection measures. Height of bars, expected posterior probabilities; error bars, standard
439 deviation of posterior probabilities. Dots marked with short dashes, protected exceedance probability.
440 Dashed lines, chance level (p = 0.2), indicating the probability that a model is favored over others in

441 describing the data by random chance. Bayesian omnibus risk (BOR), the estimated probability that

442 observed differences in model frequencies may be due to chance, is reported (BOR = 1.7636x107'%). The
443  data underlying this figure (B, C, D) can be found in S1 Data.

444

445 The Fixed model’s performance relative to the Base model’s (gray dashed lines in Fig
446 6B, 6C) reflects the fraction of choice variability that is attributed to arbitrary choice preference.
447  On the other hand, the Hybrid model’'s performance relative to the Base model’'s (purple dashed
448 lines in Fig 6B, 6C) reflects the maximum fraction of choice variability that can be potentially
449  explained by either the value-updating model, the world-updating model, or both. Thus, the

450  difference in performance between the Hybrid and Fixed models (the space spanned between
451  the gray and purple dashed lines in Fig 6B, 6C) quantifies the meaningful fraction of choice

452  variability that the two competing models of interest are expected to capture. Prior to model

453  evaluation, we confirmed that the two competing models (the value-updating and world-updating
454  models) and two reference models (the Base and Hybrid models) are empirically distinguishable

455 by carrying out a model recovery test (S3 Fig).

456 With this target fraction of choice variability to be explained, we evaluated the two

457  competing models by comparing them against the Fixed and Hybrid models' performances while
458  taking into account model complexity with AICc. The value-updating model was moderately

459  better than the Fixed model (paired one-tailed t-test, {(29) = —2.8540, P = 0.0039) and

460  substantially worse than the Hybrid model (paired one-tailed t-test, t{(29) = 7.6996, P =

461  8.6170x10°) and the world-updating model (paired one-tailed t-test, #(29) = 8.3201, P =

462  1.7943x10®). By contrast, the world-updating model was substantially better than the Fixed

463  model (paired one-tailed t-test, {(29) = —10.3069, P = 1.6547x10"") but not significantly better
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464  than the Hybrid model (paired one-tailed t-test, {(29) = —1.0742, P = 0.1458). These results
465 indicate (i) that the world-updating model is better than the value-updating model in accounting
466  for the choice variability and (ii) that adding the value-updating algorithm to the world-updating

467  algorithm does not improve the accountability of the choice variability.

468 To complement the above pair-wise comparisons, we took the hierarchical Bayesian
469  Model Selection approach [33—35] using AICc model evidence, to assess how probable it is that
470  each of the five models prevails in the population (expected posterior probability; vertical bars in
471  Fig 6D) and how likely it is that any given model is more frequent than the other models

472  (protected exceedance probability; dots with horizontal bars in Fig 6D). Both measures

473  corroborated the outcomes of the pair-wise comparisons: the world-updating model

474  predominated in expected posterior probability (0.5992) and protected exceedance probability

475  (0.8938).

476 In sum, the world-updating scenario was superior to the value-updating scenario in

477  predicting the choice behavior of human participants performing the binary classification task.

478 Ex post simulation of the feedback effects under the two

479 scenarios

480 The goodness-of-fit results summarized above simply indicate that the world-updating model is
481  better than the value-updating model in predicting the trial-to-trial variability in choice behavior
482  while taking into account model complexity. Our study aims to examine whether these two

483  competing models of interest can account for the stimulus-dependent feedback effects observed
484 in human decision-makers. To do so, we carried out ex post simulations based on the

485  goodness-of-fit results [36] by testing whether the value-updating and world-updating models

486  can reproduce the observed stimulus-dependent feedback effects.
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The ex post simulation was identical to the ex ante simulation except that each decision-
maker's best-fit model parameters were used (Table B in S1 Appendix; Materials and
methods). We assessed how well the models reproduce the human history effects of feedback
in two different ways. First, we compared the models and the humans similarly to the ex ante
simulation (Fig 7A-7C). We included the PDM episodes with non-veridical feedback (symbols
with dotted lines in Fig 7A-7C) though those episodes infrequently occurred (12.09+0.02%
(meants.e.m.) out of total foi episode trials; bars with dotted outlines in Fig 7D). As a result, we
inspected the retrospective and prospective history effects, and their differences, for all the
possible combinations of ‘stimulus,’ ‘choice,” and ‘feedback’ (20 PDM episodes in total), which
resulted in a total of 60 PSE pairs to compare. The PSEs simulated by the world-update model
closely matched the human PSEs, in both pattern and magnitude (Fig 7A and 7C), whereas
those by the value-update model substantively deviated from the human PSEs (Fig 7A and 7B).
The statistical comparison (paired two-tailed t-tests with Bonferroni correction) indicates that the
value-updating model’s PSEs significantly deviated from the corresponding human PSEs for
almost half of the entire pairs (29 out of 60 pairs) whereas none of the world-updating model’s
PSEs significantly differed from the human PSEs (0 out of 60 pairs). Notably, most mismatches
occurred because the value-updating model does not reverse the direction of feedback effects
as sensory evidence becomes stronger while humans do so (compare the third columns of Fig

7A and 7B).
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Fig 7. Ex post simulation results. (A-C) Retrospective (left columns), prospective (middle columns), and
subtractive (right columns) history effects in PSE for the human (A), value-updating (B), and world-
updating (C) decision-makers. Top and bottom rows in each panel show the PSEs associated with the toi
episodes involving correct and incorrect feedback. Symbols with error bars, meants.e.m. across 30
decision-makers. See S5 Fig for the results from the Hybrid model decision-makers. (D) Frequency of
PDM episodes in the human data (mean and SD across participants). (E, F) Maps of significant
deviations of the value-updating (E) and world-updating (F) model agents from the human decision-
makers in the retrospective (left) and prospective (right) history effects. Gray and black cells of the maps
mark the insignificant and significant deviations (paired two-tailed t-tests with the Bonferroni correction for
multiple comparisons). Empty cells are data points with NaN values due to insufficient trials. The data
underlying this figure (A, B, C, D, E, F) can be found in S1 Data.

Second, we compared the models and the humans in the probability distribution of
retrospective and prospective episodes conditioned on each episode of toi (Fig 7D-7F). This
comparison allows us to assess the models’ reproducibility not just for feedback effects but also

for the history effects in general and to explore the origin of the value-based model’s failure. By
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collapsing all the preceding and following trials onto each of the 20 toi episodes (the columns of
Fig 7E and 7F) and computing their probability distributions across—again—the 20 foi-1 and 20
toi+1 episodes (the rows of Fig 7E and 7F), respectively, we could create 400 joint-probability

cells.

We carried out repeated t-tests with Bonferroni correction to see where the model-
human mismatches occur (data were missing for a few cells—mostly those including non-
veridical-feedback episodes, as indicated by the empty cells in Fig 7E and 7F, because those
episodes were too rare (Fig 7D) to occur for all participants). For the remaining cells, the world-
updating model showed a remarkable level of correspondence with the humans, deviating from
the humans at only two cells (out of 790 cells, 0.25%; Fig 7F). By contrast, the value-updating
model failed to match the humans for 94 cells (out of 792 cells, 11.87%; Fig 7E). Here, the
mismatches occurred systematically: they were frequent when the preceding episode defining
any given cell (i.e., episodes at foi-1 for the retrospective cells or episodes at toi for the
prospective cells) was featured with strong sensory evidence (as indicated by the arrows in Fig
7E). This systematic deviation precisely reflects the incapability of the value-updating model to

reverse the direction of feedback effects as sensory evidence strengthens.

In sum, the stimulus-dependent history effects of feedback observed in humans could be

reproduced by the world-updating scenario but not by the value-based scenario.

Discussion

Here, we explored the two possible scenarios for what humans learn from corrective feedback

in a PDM task. We implemented the value-updating scenario with the belief-based RL model
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[9,10], originally developed to account for the stimulus-dependent effects of reward feedback on
animals’ PDM. As an alternative, we implemented the world-updating scenario with BMBU,
where decision-makers continuously update their internal knowledge about stimulus distribution
based on sensory measurements and corrective feedback. The latter excels over the former in
predicting the choice behavior and reproducing the stimulus-dependent feedback effects in
human PDM, suggesting that humans update their knowledge about world statistics upon

corrective feedback for PDM.

Given RL models’ success in VDM and the presence of physical rewards, it is not
surprising for the belief-based RL model to be considered as an account of the feedback effects
in animals’ PDM. The original work [9] supported this model using six datasets, including one
human dataset [37]. However, the current work indicates that the way humans learn from
corrective feedback—without any physical or monetary reward—in PDM deviates from the
value-updating scenario. The critical deviation occurred for the PDM episodes with strong
sensory evidence: past correct feedback should, albeit weakly, reinforce the choice made in the
past according to the value-updating scenario, whereas humans made the opposite choice
more frequently. In fact, the human dataset previously analyzed in the study [9] exhibits the
same deviations (see their Figure 8c,d). When this dataset was analyzed in our way, it
displayed the patterns almost identical to those of our dataset (S7A Fig). For that matter,
another published human dataset [31] substantially deviated from the value-updating scenario
(S7B Fig). We remain cautious about the possibility that even animals may demonstrate such
deviations as well. However, this possibility seems worth exploring though, given that the main
dataset from the 16 rats engaged in an olfactory PDM task also exhibited patterns similar to
those found in humans when corrected for the bias present in previous trials (see Figure 2i in
the study [9]). Notably, in these studies [9,31,37], the class boundary existed either implicitly

(e.g., a perfectly balanced odor mixture [9]) or explicitly (e.g., a reference stimulus presented in
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570 another interval [37]). This suggests the possibility that the bias reversal of feedback effects

571 may be a general phenomenon that can be observed in diverse types of binary classification
572  tasks. However, further empirical tests are required to confirm this possibility. The bias reversal
573  of feedback effects should not be treated lightly as a nuisance because any variant of the RL
574  algorithm cannot reverse the direction of reinforcement in principle, as demonstrated in our work
575 and in the modeling results of the same study [9] (shown in their Figure 3). By contrast, BMBU
576  provides a principled account of these effects by treating correct and incorrect feedback as

577  what they supposedly mean, a teaching signal indicating the true state of the class variable.

578 To be sure, the idea of shifting the decision or class boundary toward past stimuli per se
579 is not new and has been previously hypothesized [38,39] or implemented into various models
580 [40-44]. However, BMBU goes beyond these efforts by offering a normative formalism of

581 incorporating correct and incorrect feedback as evidence for the class boundary such that it
582  has an equal footing as sensory evidence in PDM tasks. This integration of feedback and

583  sensory evidence within the framework of BDT advances the current computational account of
584  the history effects because it addresses the history factors in the complete dimensions of PDM
585  (‘stimulus’, ‘choice’, and ‘feedback’), which is important given the multiplexed nature of history
586 effects emphasized by prior studies [8—11,31,45]. Our modeling work joins recent computational
587  and empirical efforts of incorporating feedback in the normative evidence accumulation model
588 [6,46], a framework commonly employed in various classic PDM tasks, such as a random-dot
589  motion task. Furthermore, a study on rats' binary classification behavior has shown that rats can
590 use information about the correct class state (referred to as "second-order prior" by the authors)
591 by integrating their own choices with feedback (reward outcome) and that the population neural
592  activity in the orbitofrontal cortex represents this information [11]. Together with these studies,
593  our work supports a general view that decision-makers use corrective feedback as evidence for

594  updating their world knowledge pertinent to the PDM task engaging them. Having mentioned the
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general view on the role of feedback in human PDM, future efforts are needed to further verify

the stimulus-dependent feedback effects under various sensory modalities and PDM tasks.

Previously, the so-called “Anna Karenina” account was presented to describe the
seemingly idiosyncratic incorrect feedback effects [9]. The Anna-Karenina account leaves the
crucial aspect of feedback effects—the different consequences of correct vs incorrect
feedback—unexplained. Since the belief-based RL model predicts the specific pattern of
feedback effects for incorrect trials, as shown via ex ante simulation, endorsing the Anna-
Karenina account admits that the belief-based RL model fails to account for the effects of
incorrect feedback observed in animals. For that matter, past studies on the history effects in
PDM paid little attention to incorrect trials because they are, owing to their infrequency,
considered too noisy and unreliable to be properly analyzed. By contrast, BMBU accounts for
the effects of feedback in a principled way, regardless of whether the feedback is correct or
incorrect. Furthermore, BMBU explains why the feedback effects appear different between the
correct and incorrect trials on the surface (compare the prospective history effects between Fig
4 and Fig 5): the correct and incorrect trials share the same deterministic boundary-updating
process but had different histories of their own stochastic events, which led to correct versus

incorrect choices, respectively.

As mentioned earlier, the history effects are dynamic and multiplexed in nature. This
calls for an effort to establish a rigorous framework to probe behavioral data for the history
effects. Several recent studies made such efforts by taking various approaches, yet all
emphasizing the presence of distinct sources of biases. One study [47] assumed two sources
with differing time scales and took a regression-based approach to separate their influences on
choice bias by incorporating them as independent regressors to predict choices. Another group
of researchers [6,9] also noted the presence of slow fluctuations and raised a concern about the

conventional practice of inspecting only the prospective history effects because non-systematic
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slow fluctuations in the decision-making strategy may cause the observed effects. This group
dealt with this concern by subtracting the retrospective history effects from the prospective
ones. A more recent study [48] shared this concern but disagreed about its remedy by showing
that the subtraction method cannot fairly recover diverse systematic updating strategies.
Alternatively, they took a model-based approach to separate any given updating strategy from
random drifts in decision criteria. We acknowledge the importance of the efforts by these studies
and share the same concern. But we emphasize that BMBU successfully reproduced human
history effects in both directions of time without incorporating any non-systematic components
arising from random drifts. BMBU’s concurrent reproduction of the retrospective and prospective
history effects was confirmed not just for the summary statistics (the PSEs in Fig 7C) but also
for the individual data points spanning almost the entire space of PDM episode pairs (Fig 7F).
This suggests that it is an empirical matter of whether the decision criterion slowly drifts or not,
raising another concern that systematic history effects might be explained away as non-existing
slow drifts. In this sense, we propose that researchers should treat the retrospective history
effects not as a baseline or control condition but as what must be explained, the phenomenon
equally important as the prospective history effects, before resorting to any non-systematic
sources. We believe that such a treatment is the way historians treat historical events [49], and

that our approach showcases its one rigorous example.

29


https://doi.org/10.1101/2023.01.11.523567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523567; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

available under aCC-BY-NC-ND 4.0 International license.

Materials and methods

Ethics statement

The study protocol was approved by the Seoul National University Institutional Review Board
(No. 1310/001-020). All the experiments were conducted in accordance with the principles
expressed in the Declaration of Helsinki. All subjects gave prior written informed consent to

participate in the experiments.

Participants

All participants (13 females and 17 males, aged 18—30 years) were recruited from the Seoul

National University (SNU) community and were compensated approximately $10/h.

Procedure

Stimuli. The stimulus was a thin (.07 deg in visual angle), Gaussian-noise filtered, black-and-
white ring flickering at 20 Hz on a gray luminance background. On each trial, a fixation first
appeared for 0.5 s on average (fixation duration uniformly jittered from 0.3 s to 0.7 s on a trial-
to-trial basis) before the onset of a ring stimulus. Five different ring sizes (radii of 3.84, 3.92,
4.00, 4.08, 4.16 deg in visual angle (d.v.a.), denoted by —2, —1, 0, 1, 2, respectively, in the main

text) were randomized within every block of 5 trials.

Task. Participants performed a binary classification task on ring size with trial-to-trial corrective
feedback. Each individual participated in 5 daily sessions, each consisting of 6 runs, each
consisting of 170 trials, ended up performing a total of 5,100 trials. In any given trial, participants
viewed one of the five rings and indicated its class (small or large) within 1.2 s after stimulus

onset by pressing one of the two keys using their index and middle fingers. The assignment of
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computer keys for small and large choices alternated between successive sessions to prevent
any unwanted choice bias possibly associated with finger preference. The response period was
followed by a feedback period of 0.5 s, during which the color of the fixation mark informed the
participants of whether their response was correct (green) or not (red). In case no response had
been made within the response period, the fixation mark turned yellow, reminding participants
that a response must be made in time. These late-response trials comprised 0.5418% of the
entire trials across participants and were included in data analysis. Meanwhile, the trials on
which a response was not made at all comprised 0.0948% of the entire trials. These trials were
excluded from analysis and model fitting. As a result, the number of valid trials per participant
ranged from 5,073 to 5,100 with an average of 5,095.2 trials. Before each run, we showed
participants the ring stimulus of the median size (4.00 d.v.a. in radius) on the screen for 15 s
while instructing them to use that ring as a reference for future trials, i.e., to judge whether a test
ring is smaller or larger than this reference ring. This procedure was introduced for the purpose
of minimizing any possible carryovers from the belief they formed about the class boundary in

the previous session. Participants were encouraged to maximize the fraction of correct trials.

Feedback Manipulation. We provided participants with stochastic feedback using a ‘virtual’
criterion sampled from a normal distribution N(trrye, Orrue)- Orrue Was always fixed at 1.28
throughout the entire runs. In each run, pg.. was initially (up to 40—50 trials) set to 0 and then
to one of the three values (ur. = {—0.4,0,0.4}) with the equal proportion (10 runs for each
value) for the rest of trials. The stochastic feedback was introduced this particular way to create
PDM episodes with (occasional) non-veridical feedback while mimicking a real-world situation

where references are slightly noisy and biased in an unnoticeable manner.

Data analysis
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686  For any given PDM episode at a trial of interest (foi), we quantified the retrospective and
687  prospective history effects by probing the psychometric curves at the trials before and after toi,
688  respectively. The psychometric function (y(x)) was estimated by fitting the cumulative Gaussian

689  distribution (F) to the curves using Psignifit package [50-52] (https://github.com/wichmann-

690 lab/psignifit), as follows:

691 Y(x;u,0) = F(x; u,0),

692  where u and ¢ are the mean and standard deviation of F. By finding the best-fitting value of u,
693  we defined the point of subjective equality (PSE; the stimulus level with equal probability for a
694  small or large choice), which was used as the summary statistics that quantifies the history
695 effects associated with a given PDM episode. To ensure reliable PSE estimates, we acquired
696  bootstrap samples (N=5,000) of psychometric curves based on the binomial random process
697  and took their average as the final estimate for each PDM episode. In our main data analysis,
698 the results of which are displayed in Fig 7, we chose not to include the parameters for guess or
699 lapse rates in estimating PSEs. This was done to prevent unfair overfitting problems from

700  occurring in infrequent episode types with small numbers of trials available for fitting. On the
701  other hand, to preclude any potential confounding problem related to the task difficulty

702  associated with PDM episode types, we also repeated the above PSE estimation procedure
703  with guess (y) and lapse (1) rates included as free parameters: ¥(x; u,0,y,) =y+ (1 —y —
704  A)F(x;u,0). The results did not differ between the original estimation procedure without the
705 lapse and guess rates and the procedure with the lapse and guess rates (Bonferroni-corrected
706 P =0.2023 ~ 1.000; paired two-tailed t-tests; see S2 Data for detailed statistical information).

707

708 Value-updating model

709  As a model of the value-updating scenario, we used the belief-based RL model proposed in the

710  previous work [9,10]. This model incorporates RL algorithm into the conventional Bayesian
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711  formalism of decision confidence—also known as statistical decision confidence using a partially
712  observable Markov decision process (Fig 3E). In this model, the decision-maker, given sensory

713  measurement m, computes the probability that the stimulus belongs to ‘large’ (p,) or ‘small’

714  (ps = 1 —p,) class (hereinafter the p-computation), where p, = f#‘:p(slm)ds. This probability

715  will be referred to as a ‘belief-state’, as in the original work [9,10]. Here, the probability

716  distribution p(S|m) is defined as a normal distribution with mean m and standard deviation o,,.
717  Whereas u, was assumed to be zero in the original work, we set u, free as a constant

718  parameter to allow the belief-based RL model to deal with any potential individuals’ idiosyncratic
719  choice bias, as we will allow the world-updating model (BMBU) to do so (see below). Next, the
720  expected values of the two choices Qs and @, can be obtained by ps and p; multiplied with the
721  learned values of the options of small and large, Vs and V;, respectively. Accordingly, the

722  expected value Q. is also defined separately for the choice made between small and large:
723 Qs and Q;.

724 In the original work, the argmax rule was applied to determine the choice (i.e., the higher

725  Q determines the choice C). Instead, here we applied the softmax rule, which selects large with

- exp (fQL) . . . .
726  probability 0 (B0s)+ oxp (B (the higher Q preferentially selects C) where £ is an inverse

727  temperature. This feature did not exist in the original model but was introduced here to allow the
728 belief-based RL model to deal with stochastic noise at the decision stage, as we allow the

729  world-updating model (BMBU) to do so.

730 The initial values of small and large choices were set identically as a free parameter
731 Ve Upon receiving feedback on the decision, the decision-maker updates the value of the

732 selected choice V, by the reward prediction error § with learning rate a:
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No temporal discounting is assumed for simplicity. Since the decision-maker treats
corrective feedback as rewards (correct: r = +1, incorrect: r = 0), the reward prediction error
6 is computed as the deviation of the reward from the expected value:

§=r—Qc=r—-pcVc. (2)

Note that the belief state p. (i.e., statistical decision confidence) modulates § such that 6
increases as p. decreases, which is the crucial relationship constraining the belief-based RL
model’s key prediction on the stimulus-dependent feedback effects. Specifically, upon correct
feedback, & will take a positive value and reinforce the choice value. However, as p. increases,
the magnitude of such reinforcement will decrease. Critically, despite the decrease of
reinforcement as a function of p., the sign of reinforcement will never be reversed until the
expected value Q reaches the maximum reward value (r = 1). Based on the same ground, the
sign of reinforcement will never be reversed either in the case of incorrect feedback. The free

parameters of the value-updating model are 6 = {uy, o.,, @, B, Vinit}-

World-updating model

As a model of the world-updating scenario, we developed the Bayesian model of boundary-
updating (BMBU). BMBU shares the same platform for PDM with the belief-based RL model (as
depicted in Figs 1A and 3A) but, as a BDT model, makes decisions using its “learned”
generative model while continually updating its belief about the class boundary B, the key latent

variable of that internal model (as depicted in the left panel of Fig 3D).

“Learned” generative model. In BDT, the learned generative model refers to the decision-

maker’s subjective internal model that relates task-relevant variables (m, m', and B in the left
panel of Fig 3D) to external stimuli and behavioral choices (S and CL, respectively, in the left
panel of Fig 3D). As previously known [53,54], the decision-maker’s internal model is likely to

deviate from the “actual” generative model that accurately reflects how the experimenter
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759  generated external stimuli due to one’s limitations in the sensory and memory apparatus. In the
760  current experimental setup, we assumed that the internal model of the decision-maker deviates
761  from that of the experimenter in the following aspect: due to the noise in the sensory and

762  memory encoding processes, the decision-maker is likely to believe that many rings of different
763  sizes are presented, although the experimenter used only five discrete-size rings. The post-

764  experiment interviews supported this: none of the participants reported perceiving discrete

765  stimuli during the experiment. A deviation like this is known to occur commonly in

766  psychophysical experiments where a discrete number of stimuli were used [40,54,55].

767 We incorporated the above deviation into the decision-maker’s internal model by

768  assuming that the stimulus at any given trial is randomly sampled from a Gaussian distribution
769  with mean B and variance ¢Z (as depicted by B - S in Fig 3D):

770 p(SIB) = N(S; B, ad), 3
771  which defines the probability distribution of stimuli conditioned on the class boundary, where 52
772  corresponds to the extent to which a given decision-maker assumes that stimuli are distributed.
773  Next, the inequality between the class boundary and the stimulus determines the state of the
774  class CL (as depicted by the converging causal relations involving the class variable, B — CL «
775 S, in Fig 3D):

776 CL = large (small) if S > (<) B, (4)
777  which defines the correct answer of the perceptual task. On the other hand, the sensory

778 measurement m at any given trial is randomly sampled from a Gaussian distribution with mean
779 S and variance 2 (as depicted by S - m in Fig 3D):

780 p(mlS) = N(m; S, o), (5)
781  which defines the probability distribution of sensory measurements conditioned on the stimulus,

782  where o2 corresponds to the extent to which the decision-maker’'s sensory system is noisy.
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Lastly, the mnemonic measurement m' at any given trial is randomly sampled from a Gaussian
distribution with mean m and variance 0731' (as depicted by m — m' in Fig 3D):

p(m'lm) = N(m’; m, ajl,), (6)
which defines the probability distribution of mnemonic measurements conditioned on the
sensory measurement, where 0731' corresponds to the extent to which the decision-maker’s
working memory system is noisy. This generative process (m — m’) is required because the
sensory evidence of the stimulus is no longer available in the sensory system—due to a brief
(0.3 sec; Fig 2B) stimulus duration—at the moment of updating the state of the class boundary
(as will be shown below in the subsection titled “Boundary-updating”) and instead must be
retrieved from the working memory system. The mnemonic recall of the stimulus is known to be
noisy, becoming quickly deteriorated right away after stimulus offset, especially for continuous
visual evidence such as color and orientation [56,57]. The generative process relating m to m’
has been adopted for the same reason by recent studies [58,59], including our group [55], and

is consistent with the non-zero levels of memory noise in the model-fit results (ajl, = [1.567,

5.606]). The substantial across-individual variability of the fitted levels of 0731' is also consistent
with the previous studies [55,58,59].

With the learned generative model defined above, the decision-maker commits to a
decision by inferring the current state of the class variable CL from the current sensory
measurement m and then updates the current state of the boundary variable from both the

current mnemonic measurement m’ and the current feedback F.

Decision-making. As for decision-making, BMBU, unlike the belief-based RL model, does not
consider the choice values but completely relies on the p-computation by selecting the large
class if p;, > 0.5 and the small class if p, < 0.5. The p-computation is carried out by propagating

the sensory measurement m within its learned generative model:
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po= | plsimas, @

B
where the finite limit of the integral is defined by the inferred state of the boundary B, which is
continually updated on a trial-to-trial basis (as will be described below). This means that the
behavioral choice can vary depending on B even for the same value of m (as depicted in the

‘perception’ stage of Fig 3A and Fig 3B).

Boundary-updating. After having experienced a PDM episode in any given trial t, BMBU (i)
computes the likelihood of the class boundary by concurrently propagating the mnemonic
measurement m; and the “informed” state of the class variable CL;, which can be informed by
feedback F; and choice C; in the current PDM episode, within its learned generative model
(p(m¢, CL¢|B;)) and then (ii) forms a posterior distribution of the class boundary (p(B;|m¢, CL;))
by combining that likelihood with its prior belief about the class boundary at the moment (p(B,)),
which is inherited from the posterior distribution formed in the previous trial t — 1

(p(B¢—1lmi_q1, CL:_1)). Intuitively put, as BMBU undergoes successive trials, its posterior belief in
the previous trial becomes the prior in the current trial, being used as the class boundary for
decision-making and then being combined with the likelihood to be updated as the posterior
belief in the current trial. Below, we will first describe the computations for (i) and then those for
(ii). As explained above (Equation 6), we stress that the likelihood computation must be based
not on the sensory measurement m, but on the mnemonic measurement m; because m; is no
longer available at the moment of boundary-updating.

As for the boundary likelihood computation (i), BMBU posits that the decision-maker
infers how likely the current PDM episode—i.e., the combination of the mnemonic measurement
m¢, the choice C;, and the corrective feedback F,—is generated by hypothetical values of the
class boundary (p(m¢, C;, F¢|B;)). Since the “true” state of the class variable CL; is deduced from

any given pair of C; and F; states in binary classification as follows,
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CL; = large if C; = large and F, = correct or if C; = small and F; = incorrect;

CL; = small otherwise,
the likelihood can be defined using only m; and CL;: p(m¢, C;, F¢|B;) = p(m¢, CL:|B;). Hence, the
likelihood of the class boundary is computed by propagating m; and CL, inversely over the

learned generative model (as defined by Equations 3-6):
p(my, CL¢|By) = fp(mér CL¢, S¢|By)dS, = fP(m£|S)P(CLt|St:Bt)P(St|Bt)dSt: (8

which entails the marginalization over every possible state of S;, a variable unknown to the
decision-maker. Here, since the binary states of CL; (CL, € {small, large}) indicates the
inequality between S; and B; (Equation 4), B; is used as the finite limit of the integrals to
decompose the original integral into the one marginalized over the range of S; satisfying CL; =

small and the other marginalized over the range of S; satisfying CL; = large:

f p(mL1S)P(CLe1S,, BOP(S,|BO)dS, =

Bt +00
- f p(m}1SOP(CLeIS,, BOD(S,|BI S, + f p(mlISOP(CLIS,, BOP(S,|BOAS,  (9)

_ B,

Note that the boundary likelihood function is computed based on CL; informed by
feedback. The right-hand side of Equation 9 can further be simplified for the informed state CL;
by replacing the infinite limits with finite values (Equation S5 in Text in S1 Appendix). For the
case of CL; = large, p(CL:|S;, B;) in the left and right integral terms on the right-hand side of
Equation 9 becomes 0 and 1, respectively, while becoming 1 and 0 for the case of CL; = small
in the ranges of S; of the corresponding integrals (Equation S3-S6 in Text in S1 Appendix).

Hence, we find the likelihood of the class boundary in a reduced form, separately for CL; =

large and CL; = small, as follows:

p(m;, CL, = smalllB,) = [° p(m}|S)p(S,|B,)dS:;
p(mi, CL, = large|B) = [, p(mi|S)p(S;|BdS: (10)
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854  where p(m¢|S;) = N(m; S;, 0731' + 0%, according to the “chain” relations defined in the learned
855  generative model (S - m — m' in the left panel of Fig 3D; Equation 5-6; see Equation S2 for
856  derivations in Text in S1 Appendix). Equation 10 indicates that BMBU calculates how likely
857  hypothetical boundary states bring about the mnemonic measurement (B - S - m — m') while
858 taking into account the informed state of the class variable (B — CL « S), by constraining the
859  possible range of the stimulus states. To help readers intuitively appreciate these respective
860  contributions of the mnemonic measurement and the informed state of the class variable

861 (feedback) to the boundary likelihood, we further elaborated on how Equation 9 is reduced to
862  Equation 10 depending on the informed state of CL; (see Text in S| Appendix and S1 Fig).

863 Lastly, we evaluate the integral for CL; = small in Equation 10 by substituting p(S;|B;) =
864  N(S;; By, o) and p(my|S,) = N(mg;St,ajl, + 02 ), from the defined statistical knowledge in the

865 learned generative model (Equation 3 and Equation 5-6, respectively) and find:

2, 2\2
(S BtaM+mt05)
_SCMTTS
¢ oytos

e — 12
1 B, 2( ‘;MUSZ) 1 _(zB(t_mt))
866 p(m;,CL; = small|B;) = f e outos)  dS, x ———e 2loutos)
- ( o_lzwo_g ) —o0 1/ 27'[(0',2\,1 + 0‘?)
(UM + 05)
867 (11)

868  where g = 0731' + o. For the other state in feedback, we evaluate the integral in the same

869 manner and find:

, 2
Bta,z\,,+mta§
Se—— 22

ayto
. o T . (B=m})’
870 p(m;,CL; = large|B;) = e Gt g5 x o 2ohtad)
. ( alzwag ) B, ‘ 1/271(0,2\4 + ag)
(UM + 05)
871 (12)
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Having calculated the likelihood of B;, we turn to describe (ii) how BMBU combines that
likelihood with a prior distribution on trial t, which forms a posterior distribution of B; according to
Bayes rule:

p(B¢lm¢, CLy) < p(my¢, CL¢|B)p(By). (13)

We assumed that, at the beginning of the current trial t, the decision-maker recalls the
posterior belief p(B;_;|m;_, CL;_1) formed (Equation 13) from the previous trial—to use it as
the prior of B;—into the current working memory space, and it is thus subject both to decay A

and diffusive noise oy;ffysion during the recall process. As a result, the prior p(B,) is basically
the recalled posterior, defined as the normal distribution N (B, ,aBg) as follows:

By = ABP%F + (1 — D po;
post
O-B? = ’10_21—“—1 + O-t%iffusion' (14’)

=~ ost . . T . L .
where Bf_"ft and 02?_1 denote mean and variance of the previous trial’s posterior distribution.

2
Note that the decay parameter 4 = % influences the width and location of the
Og+0%¢—q

belief distribution, and that the diffusive noise of o4;¢fysion > 0 helps to keep the width of the
distribution over multiple trials, thus avoiding sharpening and stopping the updating process
[60]. In this way, A and ag;ffysion allows BMBU to address the idiosyncratic choice bias and

noise, as we allow the belief-based RL model to so with y, and the sofmax rule.

In sum, BMBU posits that human individuals carry out a sequence of binary classification
trials with their learned generative model while continually updating their belief about the
location of the class boundary in that generative model. BMBU describes these decision-making
and boundary-updating processes using a total of 6 parameter (8 = {uy, o1, 05,00, O,

Oaiffusion})» Which are set free to account for individual differences.

Reference models
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896  As the references for evaluating the belief-based RL model and BMBU in predicting the

897  variability of human choices, we created three reference models. The ‘Base’ model captures the
898 choice variability that can be explained by the p-computation with the class boundary fixed at 0
899  unanimously for all participants and without any value-updating process. Thus, it has only a

900 single free parameter representing the variability of the sensory measurement (6 = {g,,}). The
901 ‘Fixed’ model captures the choice variability that can be explained by the p-computation with the
902 class boundary set free to a fixed constant y, for each participant and without any value-

903 updating process. Thus, it has two free parameters (68 = {u,, 6,,}). The ‘Hybrid’ model captures
904 the choice variability that can be explained both by the p-computation with the inferred class
905 boundary by BMBU and by the value-updating process implemented by the belief-based RL
906 model. Thus, it has nine free parameters (6 = {uo, o, 05, 00, O ', GaifFusions @ B Vinie})- In Fig
907 6B-6D, the differential goodness-of-fit measures on the y-axis indicate the subtractions of the
908 performance of the ‘Base’ model from those of the remaining models.

909

910 Model fitting

911 For each participant, we fitted the models to human choices over N valid trials (N<170) of
912  M(=10) experimental runs under K(=3) conditions, where invalid trials were the trials in which
913  the participants did not make any response. For any given model, we denote the log likelihood

914  of a set of parameters 6 given the data as follows:

Kcond Mruns Ntrials

915 LL(6,model) = logp(data| 8, model) = Z Z Z logp(Ci,j_k| 0, model),
k=1 j

j=1 i=1
916  where (; j denotes the participant’s choice (large or small) on the i-th trial of the j-th run under
917 the j-th condition. Computation of this LL is analytically intractable given the stochastic nature of
918 choice determination. So, we used inverse binomial sampling (IBS [61]), an efficient way of

919 generating unbiased estimates via numerical simulations. The maximume-likelihood estimate of
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the model parameters was obtained with Bayesian Adaptive Direct Search (BADS) [62], a
hybrid Bayesian optimization to find the parameter vector 6 that maximizes the log likelihood,
which works well with stochastic target functions. To reduce the risk of being stuck at local
optima, we repeated 20 independent fittings by setting the starting positions randomly using
Latin hypercube sampling (lhsdesign _modifed.m by Nassim Khlaled,
https://www.mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube), then picked the
fitting with the highest log likelihood. To avoid infinite loops from using IBS, we did not impose
individual lapse rates in an arbitrary manner. Instead, we calculated the average of the lapse
rate and guess rate from the cumulative Gaussian fit to a given individual’s grand mean (based
on the entire trials) psychometric curve. With these individual lapse probabilities (mean rate of
0.05, which ranged [0.0051, 0.1714]), trials were randomly designated as lapse trials, in which

the choice was randomly determined to be either small or large.

Model comparison in goodness-of-fit

We compared the goodness-of-fit of the models using corrected Akaike information criterion
(AICc) based on maximum-likelihood estimation fitting, as follows:

2p(p + 1)
(NxMxK)—-p—1'

AlCc = —2-LL(8") +2p +

where p is the number of parameters of the model and the total number of trials in the dataset is
N x M x K. Log model evidence was obtained for each participant by multiplying AlCc by —1/2
[35]. Furthermore, we took a hierarchical Bayesian Model Selection approach that infers the
posterior over model frequencies in the population based on log model evidence values in each
subject. To conclude whether a given model is the most likely model above and beyond chance,

we also reported protected exceedance probabilities for each model (see Fig 6E and 6F). The
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943  random effects model selection at the group level relied on the function VBA groupBMC.m of

944  the Variational Bayesian Analysis toolbox (https://mbb-team.github.io/VBA-toolbox/) [63].

945

946 Model recovery analysis

947  We performed a model recovery analysis to further validate our model fitting pipeline. In the
948  analysis, we considered the two competing models of interest (the world-updating and value-
949  updating models) and the two reference models (the Base and Hybrid models). Using the same
950 parameter set, we generated synthetic data for each participant’s true stimulus sequences. For
951 the realistic synthetic data, the parameter values were chosen based on the best-fitting

952  parameter estimates from each individual. We generated 30 sets of synthetic data for each

953  model, with 153,000 trials in each set. We then fit all four models to each synthetic dataset,
954  resulting in 480 fitting problems. We assessed the models using the AlCc-based log model
955  evidence and computed exceedance probabilities. Our analysis showed that all models were
956 distinguishable, which confirms the validity of our model fitting pipeline (S3 Fig).

957

958 Ex ante and Ex post model simulations

959  We conducted ex ante model simulations to confirm and preview the value-updating and world-
960 updating models’ distinct predictions on the stimulus-dependent feedback effects under the
961 current experimental setting. Model simulations were conducted using trial sequences (i.e.,
962  stimulus order and correct answers) identical to those administered to human participants. The
963 model parameters used in the ex ante simulation are summarized in the Table A in S1

964  Appendix. Note that the 25 levels (uniformly-spaced [0.15, 3.27]) of g,,, the only parameter
965 common to the two models, were used. As for the other parameters specific to each model, we
966  selected the values that generated human-level task performances (see S4 Fig for details and

967  statistical results). Simulations were repeated 100 times, resulting in the 100 X N X M X K =
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968 507,300~510,000 trials per participant. For simplicity, we assumed neither lapse trials nor any
969  arbitrary choice bias.

970 The procedure of ex post model simulations was identical to that of ex ante model

971 simulations except that the best-fitting model parameters and lapse trials were used.

972

973 Statistical tests

974  Unless otherwise mentioned, the statistical comparisons were performed using paired t-tests
975  (two-tailed, N=30). To test the reversed feedback effects under conditions of strong sensory
976  evidence, we applied one-sample t-tests (one-tailed, N=27 for S7A Fig, N=8 for S7B Fig).

977 Repeated t-tests on PSEs between data and model (Fig 7B-C, S5 Fig) were performed (two-
978 tailed, N=30). In Table D in S1 Appendix, we reported the number of test conditions of

979 significant deviation from the data (Bonferroni-corrected threshold; *: P<0.00083, **:

980 P<0.000167, ***: P<0.0000167). Additionally, Wilcoxon signed-rank tests were performed with
981 the same threshold applied (Table D in S1 Appendix). Repeated t-tests on each cell of episode
982 frequency maps between the data and the models (Fig 7E and 7F; S6 Fig) were performed, and
983  P-values were subjected to Bonferroni correction (two-tailed, N=30; value-updating,

984  P<0.0000631; world-updating, P<0.0000633). Task performances between human agents

985 (N=30) and model agents with different sets of parameters (N=25) were compared based on

986  unpaired t-tests (two-tailed, S4 Fig).

987
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1136 Supporting Information

1137 81 Fig. Schematic illustration of BMBU’s account of how the joint contribution of
1138 the sensory and feedback evidence to boundary updating leads to the reversal of
1139 choice bias as a function of sensory evidence strength.

1140 (A) Reversal of subsequent choice bias—expressed in PSE—as a function of sensory
1141 evidence strength and boundary inference—expressed in likelihood computation—
1142 based on a PDM episode. Left panel: The circles with different colors (indicated by (b-
1143  d), which points to the corresponding panels below (B-D)) represent the PSEs

1144  associated with the boundary updating for three example PDM episodes, where the
1145  stimulus (S;) varies from 0 to 2 while the choice (C;) and feedback (F;) are large and
1146  correct, respectively. Right panel: At the core of boundary inference is the computation
1147  of the likelihood of the class boundary based on the mnemonic measurement (m;) and
1148 the informed state of the class variable (CL;), where CL; is jointly determined by F, and
1149 C, (see Materials and methods for the full computation of boundary inference in

1150 BMBU). (B-D) The likelihoods of the class boundary given the three example PDM
1151 episodes defined in (A), where sensory evidence varies from the low (B), to the

1152 intermediate (C), and to the high (D) level. To help understand why and how, given the
1153 same feedback evidence, the direction of boundary updating reverses as the sensory
1154 evidence strengthens, we visualize the boundary likelihoods as a product of two

1155 functions (Equation 12), indicated by sub-panels marked as (1) and (2). Top row: As
1156 indicated by (1), we plot each boundary likelihood when only the mnemonic

1157 measurement is considered, assuming that no feedback is provided. Note that these
1158 likelihood functions are centered around the values of m;, by attracting the class

1159 boundary toward themselves, driving a shift towards the large side (i.e. positive side on
1160 the boundary axis). Middle-Bottom rows: When the feedback evidence is given—i.e.,
1161  when the informed state of CL, is revealed as large—in addition to the mnemonic

1162 measurement, an additional piece of information about the class boundary arises. As
1163 indicated by (1)x(2), we plot each boundary likelihood (defined in (A)). As indicated by
1164  (2), we plot each function (Middle row), as the result of (Bottom row) divided by (Top
1165 row). The complementary cumulative distribution functions shown here are also

1166  centered around m; because the large state of CL, means that the class boundary is
1167 located somewhere smaller than m;. Note that these skewed distributions push the
1168 inferred class boundary away from the state of CL, informed by feedback, driving a shift
1169 towards the small side (i.e. negative side on the boundary axis). Consequently, the
1170 influences from the sensory evidence and the feedback evidence counteract each other
1171  (Bottom row). Note that the likelihood functions are centered in the small side when the
1172  sensory evidence is weak (B), in the neutral side when intermediate (C), and in the
1173  large side when strong (D). These systematic shifts of the class-boundary likelihood as
1174  a function of the strength of sensory evidence predict that the PSE of the psychometric
1175 curve for the subsequent trial (t+7) reverses its sign from negative to positive as a

1176  function of the stimulus size, as shown in (A).

1177 (TIF)
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S2 Fig. Example trial courses of estimated class boundary. (A) An example trial
history to show how a temporal trajectory of the class boundary inferred by BMBU. For
example, at trial #1 (x-axis), a physical stimulus (symbol x) was 0, a sensory
measurement (symbol o) was a positive value when the boundary belief (solid black
bar; y-axis) was centered at 0. BMBU’s choice was large (symbol square on the top of
y-axis), and correct feedback (same square filled with green color) was provided, which
indicates that the class variable at trial #1 CL, was large (arrow’s direction indicates the
effect of the trial class variable on the subsequent boundary-updating). BMBU updates
one’s belief based on evidence from stimulus (colored symbol o) and feedback (CL,),
available at the time of boundary-updating. To illustrate cases where the bias reversal
we defined in Fig 3D in the main text happen and do not happen, same examples were
intentionally used as those we used in S1 Fig where we further detailed on the model’s
mechanisms. Depending on colors, sensory evidence is weak (yellow symbol 0) or
strong (purple symbol o), which leads to whether or not the reversal happens. Trial
cases featured in a red box indicates that the “Reinforcement” principle is held
(predicting subsequent choices to repeat large choice) while those featured in a green
box indicates that the “Reversal” happens (predicting subsequent choices to reverse the
previously made large choice). (B) Temporal trajectories of the class boundary when
the same 6-trial sequence of physical stimuli in (A) was simulated for 100 times. This
means different m and m’ were realized. The data underlying this figure (A, B) can be
found in S1 Data.

(TIF)

S3 Fig. Model recovery analysis. Each square represents exceedance probability pexc
from model recovery procedure. The ‘ground-truth’ model to simulate synthetic behavior
was correctly recovered with pexc >0.9 for all 4 models considered in the study. The light
shade of the diagonal squares indicates that the ground-truth model was the best-fitting
model, leading to a successful model recovery. Numerical values can also be found in
S1 Data.

(TIF)

S$4 Fig. Histograms of classification accuracies of the human participants and
their model partners in the ex ante simulations.

(A, B) Across-individual distributions of the classification accuracy of the belief-based
RL model (A) and BMBU (B) overlaid on those of the human participants. The models’
choices were generated via ex ante simulations with a specific set of model parameters
(Table A in S1 Appendix), the results of which are depicted in Fig 4 and Fig 5. The
classification accuracy is measured by calculating the percentage of the trials in which
the choice matched the feedback used in the actual experiment. The empty bars
correspond to the histogram of human performances, the range of which is demarcated
by the dashed vertical lines ([min, max]=[60.65%, 73.94%]). The average human
classification accuracy was 67.85%. (A) Comparison of classification accuracy between
the belief-based RL model’s simulation (red color) and the human choices. The model’s
ex ante simulation accuracy was not different from the human accuracy (t(53) = 1.4429,
P =0.1549; Null hypothesis: model's performance vector and humans’ performance
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vector come from populations with equal means, unpaired two-tailed t-test). (B)
Comparison of classification accuracy between BMBU’s simulation (green color) and
the human choices. The model’s ex ante simulation accuracy was not different from the
human accuracy (£#(53) = 0.9707, P = 0.3361, unpaired two-tailed t-test). There was no
significant difference in classification accuracy between the value-updating model and
BMBU (#(48) = 0.5733, P = 0.5691, unpaired two-tailed t-test). The data underlying this
figure (A, B) can be found in S1 Data.

(TIF)

S5 Fig. Retrospective (left columns), prospective (middle columns), and
subtractive (right columns) history effects in PSE for the ‘Hybrid’ model’s ex post
model simulations.

Top and bottom rows in each panel show the PSEs associated with the toi episodes
involving correct and incorrect feedback at toi. Symbols with error bars, meants.e.m.
across the 30 model agents, which correspond to their 30 human partners. The colors
of the symbols and lines label choices (blue: small and yellow: large). The data
underlying this figure can be found in S1 Data.

(TIF)

S6 Fig. Maps of frequency deviations of the value-updating (A) and world-
updating (B) model agents’ classifications in the ex post simulations from the
human decision-makers in the retrospective (left) and prospective (right) history
effects.

Each cell represents a pair of PDM episodes, as specified by the column and row
labels. At each cell, the color represents how much the episode frequency observed in
the model agents deviates from that observed in the corresponding human decision-
makers. The results of statistical tests on these deviations are summarized in Fig 7E
and 7F. The data underlying this figure (A, B) can be found in S1 Data.

(TIF)

S7 Fig. Retrospective (left columns), prospective (middle columns), and
subtractive (right columns) history effects in PSE for the human classification
performances of Urai et al. (2017)’s work [37] (A) and Hachen et al. (2021)’s work
[31] (B).

(A, B) We downloaded both publicly available datasets, analyzed them in the same way
that we analyzed human observers in our work, and plotted the results in the same
format used for Fig 7A. Top and bottom rows in each panel show the PSEs associated
with the toi episodes involving correct and incorrect feedback. Symbols with error bars,
meanzts.e.m. across human observers. The colors of the symbols and lines label
choices (blue: small and yellow: large). The overall patterns of the PSEs plotted here
appear similar to those plotted in Fig 7A, displaying the reversals in direction of
stimulus-dependent feedback effects. When the same statistical tests used in our work
were carried out, some of the data points at the stimuli with strong sensory evidence at
toi significantly deviated from zero in the direction opposite to the feedback effect
predicted by the value-updating scenario, as indicated by the asterisks. (A) Sequential
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1264  features of human observers (N=27) analyzed in our way from human dataset that once
1265 had been published [37], which is openly available

1266  (http://dx.doi.org/10.6084/m9.figshare.4300043), then analyzed in the previous study
1267  [9]. In this study, the participants performed a binary classification task on the difference
1268 in motion coherence by sorting the pairs of random-dot-kinematogram stimuli shown in
1269 two intervals (s1 and s2) into one of the two classes (‘s1<s2’ vs. ‘s1>s2’) over

1270 consecutive trials. The presented stimuli were taken from 3 sets of difficulty levels (the
1271  difference between motion coherence of the test and the reference stimulus; easy: [2.5,
1272 5,10, 20, 30], medium: [1.25, 2.5, 5, 10, 30], hard: [0.625, 1.25, 2.5, 5, 20]). As done in
1273  the original study [9], we binned the trials into 8 levels by merging the trials of two

1274  neighboring coherence levels (e.g., the coherence levels of [0.625, 1.25]) into a single
1275 bin. Note that the coherence bins of [20, 35, 45, 48.75, 51.25, 55, 65, 80] (%s1) on the
1276  x-axis (50% represents the equal coherence between s1 and s2) are matched to the x-
1277  axis in Figure 8 of the previous study in which the same dataset had been used.

1278  Asterisks mark the significance of one-sample t-tests (uncorrected P<0.05, one-tailed in
1279  the direction of feedback effects) on the panel toi+7 (stimulus 80%: #(26) = 2.0138, P =
1280 0.0272) and on the panel subtracted (stimulus 20%: #(26) = —3.1900, P = 0.0018,

1281  stimulus 80%: {(26) = 3.8810, P = 0.0003). (B) Sequential features of human observers
1282  (N=8) published in another previous study [31]. We used the human dataset openly
1283 available as part of the repository (https://osf.io/hux4n). In this study, the participants
1284  performed a binary classification task on the speed of vibrotactile stimuli by classifying
1285 the speed of the presented vibration as ‘low-speed (weak)’ or ‘high-speed (strong)’.
1286  Note that the nine-level stimuli of [-4,—-3,-2,—1,0,1,2,3,4] on the x-axis followed how
1287 data were encoded by the original study [31]. Asterisks mark the significance of one-
1288 sample t-tests (uncorrected P<0.05, one-tailed in the direction of feedback effects) on
1289 the panel toi+1 (stimulus —4: {(7) = —3.6757, P = 0.004, stimulus —3: t(7) = —3.5252, P
1290 =0.0048, and stimulus —2: {7) = —2.0325, P = 0.04) and on the panel subtracted

1291  (stimulus —4: {(7) = —1.9848, P = 0.044). The data underlying this figure (A, B) can be
1292  found in S1 Data.

1293  (TIF)

1294

1295

1296  S1 Appendix. Supporting details

1297 Supplemental details (Text) on additional model specifications of BMBU are

1298 provided. Supplementary tables (A-D Tables) to support the Results section are
1299 provided. Table A. Parameters used for ex ante simulations. Table B. Parameters
1300 recovered from fitting the main models, world-updating and value-updating

1301 models, to human choices (N=30). Table C. Parameters recovered from fitting the
1302 rest of the models to human choices (N=30). Table D. Statistical results on model
1303  behavior versus human behavior in terms of PSE measures.

1304 (DOCX)

1305

1306 S1 Data. Excel spreadsheet containing, in separate sheets, the underlying
1307 numerical data for Figs 2D, 4B, 4D, 4E, 4G, 4H, 5B, 5D, 5E, 5G, 5H, 6B, 6C, 6D, 7A,
1308 7B, 7C, 7D, 7E, 7F, S2A, S2B, S3, S4A, S4B, S5, S6A, S6B, S7A, and S7B.
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1309 (XLSX)
1310

1311 S2 Data. Excel spreadsheet containing detailed statistical information comparing
1312  alternative PSE estimation methods.
1313 (XLSX)
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S$1 Fig. Schematic illustration of BMBU’s account of how the joint contribution of
the sensory and feedback evidence to boundary updating leads to the reversal of
choice bias as a function of sensory evidence strength.

(A) Reversal of subsequent choice bias—expressed in PSE—as a function of sensory
evidence strength and boundary inference—expressed in likelihood computation—
based on a PDM episode. Left panel: The circles with different colors (indicated by (b-
d), which points to the corresponding panels below (B-D)) represent the PSEs
associated with the boundary updating for three example PDM episodes, where the
stimulus (S;) varies from 0 to 2 while the choice (C;) and feedback (F;) are large and
correct, respectively. Right panel: At the core of boundary inference is the computation
of the likelihood of the class boundary based on the mnemonic measurement (m}) and
the informed state of the class variable (CL;), where CL, is jointly determined by F, and
C; (see Materials and methods for the full computation of boundary inference in
BMBU). (B-D) The likelihoods of the class boundary given the three example PDM
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1329 episodes defined in (A), where sensory evidence varies from the low (B), to the

1330 intermediate (C), and to the high (D) level. To help understand why and how, given the
1331 same feedback evidence, the direction of boundary updating reverses as the sensory
1332  evidence strengthens, we visualize the boundary likelihoods as a product of two

1333  functions (Equation 12), indicated by sub-panels marked as (1) and (2). Top row: As
1334  indicated by (1), we plot each boundary likelihood when only the mnemonic

1335 measurement is considered, assuming that no feedback is provided. Note that these
1336 likelihood functions are centered around the values of m;, by attracting the class

1337  boundary toward themselves, driving a shift towards the large side (i.e. positive side on
1338 the boundary axis). Middle-Bottom rows: When the feedback evidence is given—i.e.,
1339  when the informed state of CL, is revealed as large—in addition to the mnemonic

1340 measurement, an additional piece of information about the class boundary arises. As
1341 indicated by (1)x(2), we plot each boundary likelihood (defined in (A)). As indicated by
1342  (2), we plot each function (Middle row), as the result of (Bottom row) divided by (Top
1343  row). The complementary cumulative distribution functions shown here are also

1344  centered around m; because the large state of CL, means that the class boundary is
1345 located somewhere smaller than m;. Note that these skewed distributions push the
1346 inferred class boundary away from the state of CL; informed by feedback, driving a shift
1347 towards the small side (i.e. negative side on the boundary axis). Consequently, the
1348 influences from the sensory evidence and the feedback evidence counteract each other
1349  (Bottom row). Note that the likelihood functions are centered in the small side when the
1350 sensory evidence is weak (B), in the neutral side when intermediate (C), and in the
1351 large side when strong (D). These systematic shifts of the class-boundary likelihood as
1352  a function of the strength of sensory evidence predict that the PSE of the psychometric
1353  curve for the subsequent trial (t+7) reverses its sign from negative to positive as a

1354  function of the stimulus size, as shown in (A).

1355
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S2 Fig. Example trial courses of estimated class boundary. (A) An example trial
history to show how a temporal trajectory of the class boundary inferred by BMBU. For
example, at trial #1 (x-axis), a physical stimulus (symbol x) was 0, a sensory
measurement (symbol o) was a positive value when the boundary belief (solid black
bar; y-axis) was centered at 0. BMBU’s choice was large (symbol square on the top of
y-axis), and correct feedback (same square filled with green color) was provided, which
indicates that the class variable at trial #1 CL, was large (arrow’s direction indicates the
effect of the trial class variable on the subsequent boundary-updating). BMBU updates
one’s belief based on evidence from stimulus (colored symbol o) and feedback (CL,),
available at the time of boundary-updating. To illustrate cases where the bias reversal
we defined in Fig 3D in the main text happen and do not happen, same examples were
intentionally used as those we used in S1 Fig where we further detailed on the model’s
mechanisms. Depending on colors, sensory evidence is weak (yellow symbol o) or
strong (purple symbol 0), which leads to whether or not the reversal happens. Trial
cases featured in a red box indicates that the “Reinforcement” principle is held
(predicting subsequent choices to repeat large choice) while those featured in a green
box indicates that the “Reversal” happens (predicting subsequent choices to reverse the
previously made large choice). (B) Temporal trajectories of the class boundary when
the same 6-trial sequence of physical stimuli in (A) was simulated for 100 times. This
means that different m and m' were realized. The data underlying this figure (A, B) can
be found in S1 Data.
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1383  S3 Fig. Model recovery analysis. Each square represents exceedance probability pexc
1384  from model recovery procedure. The ‘ground-truth’ model to simulate synthetic behavior
1385 was correctly recovered with pexc >0.9 for all 4 models considered in the study. The light
1386 shade of the diagonal squares indicates that the ground-truth model was the best-fitting
1387 model, leading to a successful model recovery. Numerical values can also be found in
1388 S1 Data.
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1392 S4 Fig. Histograms of classification accuracies of the human participants and
1393 their model partners in the ex ante simulations.

1394 (A, B) Across-individual distributions of the classification accuracy of the belief-based
1395 RL model (A) and BMBU (B) overlaid on those of the human participants. The models’
1396 choices were generated via ex ante simulations with a specific set of model parameters
1397 (Table A in S1 Appendix), the results of which are depicted in Fig 4 and Fig 5. The

1398 classification accuracy is measured by calculating the percentage of the trials in which
1399 the choice matched the feedback used in the actual experiment. The empty bars

1400 correspond to the histogram of human performances, the range of which is demarcated
1401 by the dashed vertical lines ([min, max]=[60.65%, 73.94%)]). The average human

1402 classification accuracy was 67.85%. (A) Comparison of classification accuracy between
1403  the belief-based RL model’s simulation (red color) and the human choices. The model's
1404  ex ante simulation accuracy was not different from the human accuracy (t(53) = 1.4429,
1405 P =0.1549; Null hypothesis: model’s performance vector and humans’ performance
1406  vector come from populations with equal means, unpaired two-tailed t-test). (B)

1407  Comparison of classification accuracy between BMBU’s simulation (green color) and
1408 the human choices. The model’'s ex ante simulation accuracy was not different from the
1409 human accuracy (£(53) = 0.9707, P = 0.3361, unpaired two-tailed t-test). There was no
1410 significant difference in classification accuracy between the value-updating model and
1411 BMBU (#(48) = 0.5733, P = 0.5691, unpaired two-tailed t-test). The data underlying this
1412  figure (A, B) can be found in S1 Data.
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1414
1415 S5 Fig. Retrospective (left columns), prospective (middle columns), and

1416  subtractive (right columns) history effects in PSE for the ‘Hybrid’ model’s ex post
1417 model simulations.

1418 Top and bottom rows in each panel show the PSEs associated with the toi episodes
1419 involving correct and incorrect feedback at toi. Symbols with error bars, meants.e.m
1420 across the 30 model agents, which correspond to their 30 human partners. The colors
1421  of the symbols and lines label choices (blue: small and yellow: large). The data

1422  underlying this figure can be found in S1 Data.
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S6 Fig. Maps of frequency deviations of the value-updating (A) and world-
updating (B) model agents’ classifications in the ex post simulations from the
human decision-makers in the retrospective (left) and prospective (right) history
effects.

Each cell represents a pair of PDM episodes, as specified by the column and row
labels. At each cell, the color represents how much the episode frequency observed in
the model agents deviates from that observed in the corresponding human decision-
makers. The results of statistical tests on these deviations are summarized in Fig 7E
and 7F. The data underlying this figure (A, B) can be found in S1 Data.
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1436

1437  S7 Fig. Retrospective (left columns), prospective (middle columns), and

1438 subtractive (right columns) history effects in PSE for the human classification
1439 performances of Urai et al. (2017)’s work [37] (A) and Hachen et al. (2021)’s work
1440 [31] (B).

1441 (A, B) We downloaded both publicly available datasets, analyzed them in the same way
1442  that we analyzed human observers in our work, and plotted the results in the same
1443  format used for Fig 7A. Top and bottom rows in each panel show the PSEs associated
1444  with the toi episodes involving correct and incorrect feedback. Symbols with error bars,
1445 meanzs.e.m. across human observers. The colors of the symbols and lines label

1446  choices (blue: small and yellow: large). The overall patterns of the PSEs plotted here
1447  appear similar to those plotted in Fig 7A, displaying the reversals in direction of

1448  stimulus-dependent feedback effects. When the same statistical tests used in our work
1449  were carried out, some of the data points at the stimuli with strong sensory evidence at
1450 toi significantly deviated from zero in the direction opposite to the feedback effect

1451  predicted by the value-updating scenario, as indicated by the asterisks. (A) Sequential
1452  features of human observers (N=27) analyzed in our way from human dataset that once
1453  had been published [37], which is openly available

1454  (http://dx.doi.org/10.6084/m9.figshare.4300043), then analyzed in the previous study
1455  [9]. In this study, the participants performed a binary classification task on the difference
1456  in motion coherence by sorting the pairs of random-dot-kinematogram stimuli shown in
1457  two intervals (s1 and s2) into one of the two classes (‘s1<s2’ vs. ‘s1>s2’) over

1458  consecutive trials. The presented stimuli were taken from 3 sets of difficulty levels (the
1459 difference between motion coherence of the test and the reference stimulus; easy: [2.5,
1460 5, 10, 20, 30], medium: [1.25, 2.5, 5, 10, 30], hard: [0.625, 1.25, 2.5, 5, 20]). As done in
1461 the original study [9], we binned the trials into 8 levels by merging the trials of two

1462  neighboring coherence levels (e.g., the coherence levels of [0.625, 1.25]) into a single
1463  bin. Note that the coherence bins of [20, 35, 45, 48.75, 51.25, 55, 65, 80] (%s1) on the
1464  x-axis (50% represents the equal coherence between s1 and s2) are matched to the x-
1465 axis in Figure 8 of the previous study in which the same dataset had been used.

1466  Asterisks mark the significance of one-sample t-tests (uncorrected P<0.05, one-tailed in
1467 the direction of feedback effects) on the panel toi+7 (stimulus 80%: #(26) = 2.0138, P =
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0.0272) and on the panel subtracted (stimulus 20%: #(26) = —3.1900, P = 0.0018,
stimulus 80%: #(26) = 3.8810, P = 0.0003). (B) Sequential features of human observers
(N=8) published in another previous study [31]. We used the human dataset openly
available as part of the repository (https://osf.io/hux4n). In this study, the participants
performed a binary classification task on the speed of vibrotactile stimuli by classifying
the speed of the presented vibration as ‘low-speed (weak)’ or ‘high-speed (strong)’.
Note that the nine-level stimuli of [-4,—-3,-2,—1,0,1,2,3,4] on the x-axis followed how
data were encoded by the original study [31]. Asterisks mark the significance of one-
sample t-tests (uncorrected P<0.05, one-tailed in the direction of feedback effects) on
the panel toi+1 (stimulus —4: {(7) = —3.6757, P = 0.004, stimulus —3: {(7) = —3.5252, P
= 0.0048, and stimulus —2: {(7) = —2.0325, P = 0.04) and on the panel subtracted
(stimulus —4: {(7) = —1.9848, P = 0.044). The data underlying this figure (A, B) can be
found in S1 Data.
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Corrective feedback guides human perceptual decision-making
by informing about the world state rather than rewarding its choice

S1 Appendix
Supporting details

Hyang-Jung Lee', Heeseung Lee!, Chae Young Lim?, Issac Rhim?, Sang-Hun Lee!

'Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
Department of Statistics, Seoul National University, Seoul, South Korea
3Institute of Neuroscience, University of Oregon, Eugene, OR, USA
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Supplemental details (Text) on additional model specifications of BMBU

Here, we will elaborate on "World-updating model", a subsection found in the Materials and methods
of the main text. We will provide more details on the boundary-updating operation of BMBU by
explaining how Equation 10 is derived from Equation 9 in the main text.

Equation 8 in the main text defines how the likelihood function of the class boundary B; given
two pieces of evidence, the mnemonic measurement m;—i.e., noisy memory recall of the sensory
measurement m; in working memory—and the state of the class variable CL; informed by feedback. The
boundary likelihood, which represents the probabilities of those two observations under any hypothesized
state of B;, is calculated through integration (marginalization) over all possible states of the unknown

variable S¢, and can be re-written as:
Pt CLIBD) = [ pOniISP(CLAS, BIPSIBIAS, = [ Lyg(SOler, (S BOPS:IBIAS,, (1)

where each integrand is elaborated in the following.
The factor p(m¢|S;) in Equation S1 corresponds to the information about the stimulus offered by

the mnemonic measurement m;. The likelihood of any hypothetical state of S; given m; refers to the
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probability of m/ if that hypothetical state is true. Here, we denote p(m(|S;) by a likelihood function,
Lmé (St) .
Through marginalization over m; from the learned generative model, which is described by

Equations 3-6 in the main text, ng(st) = p(m;|S;) can be expressed in a form of the Gaussian function,

as follows:

p(mylSy) = fp(mﬂmt)P(mHSt)dmt = fN(m’t;mt.a,flf)N(mt;St.aé)dmt

S i R
= f e e 2n dm; = N(my;Se, 07 + 03 ), (52)

2
2moy,

where the expressions p(m;|m;)p(m;|S;) are substituted by the two Gaussian noise distributions as
defined in the learned generative model (Equation 5-6 in the main text) and integrated over the possible
states of the sensory measurement variable m;, which is now unknown—inaccessible any longer. Thus,
we find that L,/ (S,), the likelihood of S, follows N(S;;mp, 020 + ai).

Next, the factor p(CL;|S;, B;) in Equation S1 corresponds to the information about the stimulus
and the class boundary offered by the state of the class variable CL; informed by feedback, either small
or large. The likelihood of any hypothetical joint states of S; and B; given CL; refers to the probability of
CL, if that hypothetical state is true. Here, we denote p(CL¢|S;, B;) by a likelihood function, L¢;, (S, By).

Le, (St By) is determined depending on the inequality between S; and B;: in the case of CL, = small,

1, S, <B,
LCLt=small(St' Bt) = p(CLt = Small|5t,Bt) = { 0, St > Bt (53)
0.5, St - Bt
; in the case of CL; = large,
0, St < By
LCLt=large(St' Bt) = p(CLt = laTge|St,Bt) = { 1, St > Bt . (54)
0.5, St - Bt
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1531 Now, let us get back to Equation S1 and denote the boundary likelihood function in the case of

1532  CL; = small (abbreviated as s) by L (B;), which can further be decomposed into two integrals

my,CLi=s
1533  with finite limits (as similarly done for Equation 9 in the main text), as follows:
1534 L ,CLt S(Bt) = p(mt,CLt = SlBt)

St= ' Si=+00 ,
1535 =[5> p(m¢|S)p(CLe = s|S;, Be)p(S¢|Be)dS, + fstt=BJ: p(m¢|Sp(CL: = s|S¢, B)p(S¢|By)dS:,

St=—00

1536  which can be rewritten as follows:

b
1537 = lim _ p(m{lSt)p(CLt = Slst'Bt)P(StlBt)dSt

r—wb-Bg J_ .

T

1538 + ligl i p(mS)p(CL, = slS;, B)p(S;|B)dS,.

r—0,b-Bf Jp
1539 (55)
1540 Since the last term on the right-hand side of Equation S5 becomes zero by Equation S3 (for any

1541  value ranges of S; larger than B;, p(CL; = s|S;, B;) = 0), the boundary likelihood function in the case of

1542  CL; = small is reduced as follows:

Bt
1543 Lt cr,=5s(Be) = p(my, CLy = s|By) = f p(m¢|Se)p(Se|B)dS:. (56)

1544 From Equation 3 in the main text and Equation S2, we know the distributions p(S;|B;)

1545  and p(m}|S;), respectively. Substituting the expression for these distributions gives:
1546 Lt ce=s(Be)

Brot+mpok 2
(St*t_—zt_‘s)

aytos

2 1.2
s e B~ (ze=m)

Q

1547 _ J-Bt ;e 2((7nt+ o) Jl_ e 203 ds, = 1 J-Bt e 2(—012\4?%_) ds, x J;i e_z(aﬁ,ﬁag)’
- 2n(a2,+0%,) 2mo? < 9319% ) e 2m(ofy+o?)
2 (aM+as)
1548 (87)

1549  where of = 051, + ¢2. Equation S7 is equivalent to Equation 11 in the main text.

1550 To aid in intuitive comprehension of L (B:), we can express it as the product of two terms

my,CLi=s

1551  from Equation S7 by rewriting it as follows:

66


https://doi.org/10.1101/2023.01.11.523567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523567; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

available under aCC-BY-NC-ND 4.0 International license.

LmE,CL,_»=s (Bt) =Fx (Bt)LmE (Bt): (58)
where Fy denotes the first term on the right-hand side of Equation S7 (to be detailed in Equation S10),

and ng denotes the second term on the right-hand side of Equation S7 (to be detailed in Equation S9),

which equals to the likelihood function for B, given m; defined under the assumption that no CL; variable
exists in the generative process. To make this point explicit, we used a different likelihood notation £
from the notation L used throughout the paper.

Note that, according to the learned generative model in our study, the decision-maker acquires the
knowledge about B; by evaluating how probable the two observations, m; (sensory evidence in memory;
simply as sensory evidence, hereinafter) and CL, (feedback evidence), are for each possible value of B;.

Contrastingly, ng(Bt) in Equation S8 can be considered the information about B; solely based on the
sensory evidence by computing p(m;|B;). Thus, Lo (B;) represents the “sensory influence” that drives
the boundary update, by pushing the joint boundary likelihood ng,CLt=s (B;) towards m; on the B; axis

(see the first row in S1B-D Fig), as follows:

1 (Bt_m/c)z

ng(Bt) = e 20+ = N(By; my, 05 + 0). (59)

271(0,2\4 + ag)

On the other hand, the term Fy (B;) in Equation S8 can be considered the information about B;
jointly based on the feedback and sensory evidence, while parting out the aforementioned “sensory
influence” (divided by ng(Bt))- Let X be a random variable with cumulative distribution function (CDF)

Fx

B¢

Fx(B,) = fx(S)dS;, (510)

2 r2 2 2
where the probability density function of X, denoted by fy(x) = N (x; Beoitmos M) Since this term

aitas  (ofy+of)
is derived specifically for CL; = small, we can interpret this term as the “feedback influence” that drives

the boundary update with a CDF multiplied, by pushing the boundary likelihood ng,CLt=s (B;) in a more

positive direction on the B; axis. Owing to this contribution by the feedback evidence, the boundary

67


https://doi.org/10.1101/2023.01.11.523567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523567; this version posted September 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1575

1576

1577

1578

1579

1580

1581

1582

1583
1584
1585
1586
1587

1588
1589

1590
1591
1592
1593
1594

available under aCC-BY-NC-ND 4.0 International license.

likelihood ng,CLt=s (B; = b) for a given value b of B; would support that b > m{ is more plausible than

b < m for the current state of the class boundary that generated m; and CL, = small. This aligns with
the intuition from the temperature example described in the main text (Fig 1C).

Similarly, from Equations S5-S7, we derive the boundary likelihood for the case CL; = large:
Lm{,CLt=l(Bt) = f p(m¢|SOp(Se|B)dS, = (1 — FX(Bt))LmE(Bt): (511)
Bt
Contrary to the CL; = small case, the boundary likelihood ng,CLt=l(Bt = b) would support that b < m;

is more plausible than b > m; for B, that generated m; and CL; = large, since the multiplication is

performed, instead with a complementary CDF (see the second row in S1B-D Fig).

Supplementary tables (A-D Tables) fo support the Results section

Table A. Parameters used for ex ante simulations.

World Value
25 levels 25 levels
Om [0.15, 3.27] Om [0.15, 3.27]
Ho 0 Ho 0
0y 5 a 0.35
o 1.5811 B 5
O'ml 25 Vinit 05
Odif fusion 0.8

Table B. Parameters recovered from fitting the main models, world-updating and value-
updating models, to human choices (N=30).

Mean Mean
World (standard Value (standard
deviation) deviation)
o 0.86 o 1.20
m (0.46) m (0.30)
0.04 0.02
Ho (0.62) Ho (0.43)
o 4.27 0.17
0 (1.22) (0.20)
g 0.84 7.43
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(0.92) (7.01)
3.70 0.92
Tm! (1.00) Vinit (0.16)
3.20
Odif fusion (1.57)

Table C. Parameters recovered from fitting the rest of the models to human choices (N=30).

Mean Mean Mean
Hybrid (standard Fixed (standard Base (standard
deviation) deviation) deviation)
- 0.68 - 1.54 - 1.90
(0.33) (0.39) (0.50)
0.01 0.02
Ho (0.61) Ho (0.31)

o 3.55
0 (1.28)
o 0.86
$ (1.03)
oo 3.84
m (1.22)
3.77
Odif fusion (1.87)
a 0.15
(0.11)
6.96
B (2.83)
0.882
Vinit (015)

Table D. Statistical results on model behavior versus human behavior in terms of PSE

measures.
Model toi-1 toi+1 (toi+1) - (toi-1) Total
Data (20 conditions) (20 conditions) (20 conditions) (60 conditions)
;?:rs;'nc:el n.s. significant n.s. significant n.s. significant ” co?lgiiions
Test type t w t w t w t w t w t w t w
M) 1) HERE) (1)
Value | (13) | (13) | »@ | ) | (10) | (9) | *() | *®) | (8) | (9) | »() | =6 | (31) | (31)
***(4) ***(1) ***(8) ***(5) ***(10) ***(5)
World | (20) | (20) (20) | (20) (20) | (20) (60) | (60)
: @B | 0 (1)
Hybrid | (20) | (20) A7) | (19) (19) | (20) (56) | (59)

Test type, t: Paired t-test
Test type, w: Wilcoxon signed-rank test
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1605 *: P<0.00083, Bonferroni-corrected threshold
1606 ** P<0.000167,
1607  ***: P<0.0000167
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