

1 Nociception in chicken embryos, Part III: Analysis of movements before and 2 after application of a noxious stimulus

3

4 Stephanie C. Süß¹, Julia Werner¹, Anna M. Saller¹, Larissa Weiss¹, Judith Reiser¹, Janie M. Ondracek²,
5 Yury Zablotski³, Sandra Kollmansperger⁴, Malte Anders⁴, Benjamin Schusser⁵, Thomas Fenzl⁴, Christine
6 Baumgartner^{1*}

7 ¹Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, Germany

8 ²Chair of Zoology, TUM School of Life Sciences Weihenstephan, Technical University of Munich

9 ³Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Bavaria, Germany

10 ⁴Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, Germany

11 ⁵Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan,
12 Technical University of Munich, Germany

13

14 *Corresponding author: Prof. Dr. Christine Baumgartner, Center for Preclinical Research, TUM School of
15 Medicine, Technical University of Munich, Munich, Germany, Christine.Baumgartner@tum.de

16 Abstract

17 Many potentially noxious interventions are performed on chicken embryos in research and in the
18 poultry industry. It is therefore in the interest of animal welfare to define the point at which a chicken
19 embryo is capable of nociception. The present part III of a comprehensive study examined the
20 movements of developing chicken embryos with the aim of identifying behavioral responses to a
21 noxious stimulus. For this purpose, a noxious mechanical stimulus and a control stimulus were applied.
22 The recorded movements of the embryos were evaluated using the markerless pose estimation
23 software DeepLabCut and manual observations. After the application of the noxious stimulus, a
24 significant increase in beak movement was identified in 15- to 18-day-old embryos. In younger
25 embryos, no behavioral changes related to the noxious stimulus were observed. The results indicate
26 that noxious stimuli at the beak base evoke a nocifensive reaction in chicken embryos starting at
27 embryonic day 15.

28 Introduction

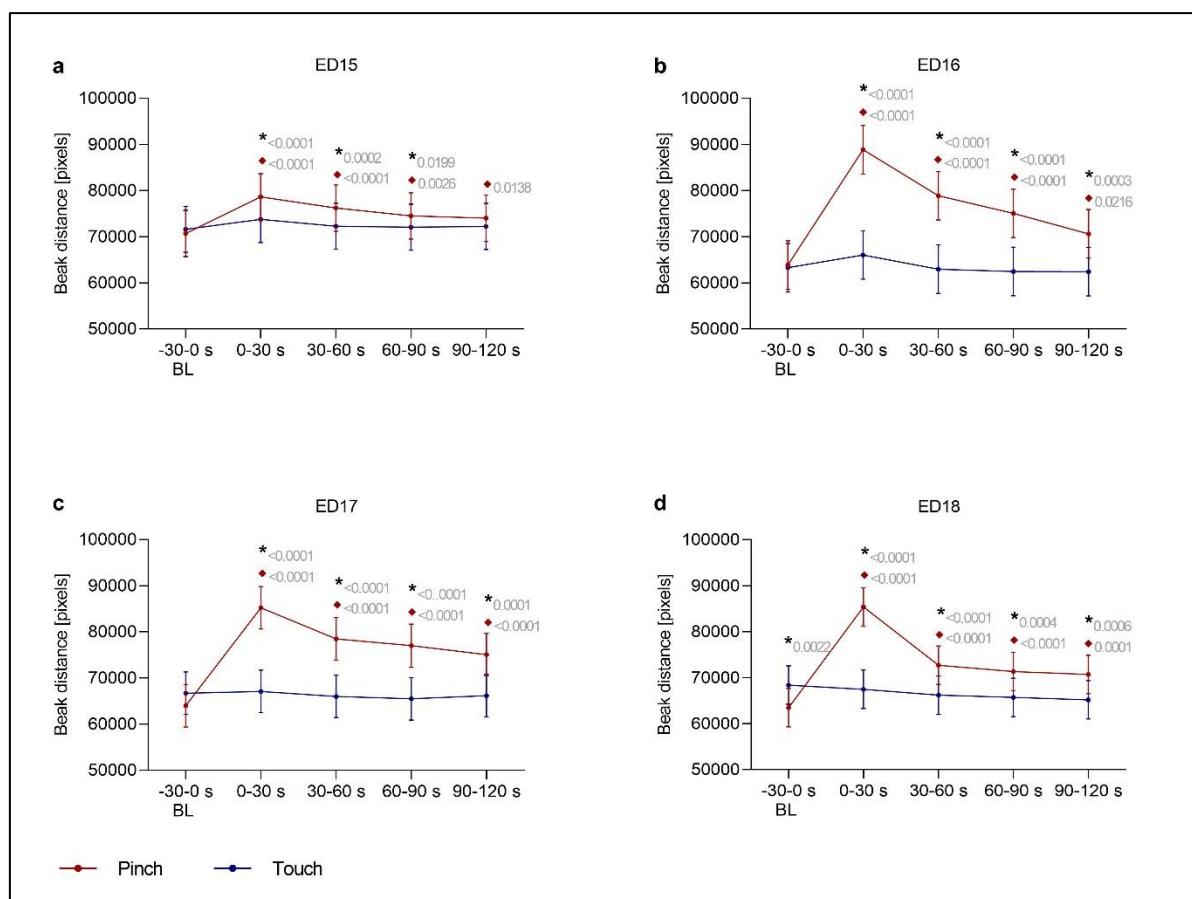
29 The behavior of birds can profoundly differ from the behavior of mammals, especially in terms of
30 indications of pain¹. For a long time, birds were not believed to feel pain¹. At present, it is generally
31 accepted that birds are capable of nociception and can feel pain^{1,2}. Several studies have established
32 that birds have mechanothermal, mechanical and thermal nociceptors with high stimulus thresholds^{2,3}.
33 Furthermore, peripheral and central processing of a potentially noxious stimulus in birds occurs in a
34 similar manner to that in mammals⁴. Raja et al. define pain as an aversive experience of an individual
35 that includes both sensory perception and emotional aspects⁵. This experience may be caused by a
36 potential or actual lesion of the tissue⁵. Nociception, on the other hand, is described as the detection
37 of a potentially damaging stimulus by primary sensory neurons and its processing in the nervous
38 system^{5,6}. The inability to communicate does not exclude the possibility that pain is felt, for example,
39 by animals or neonates^{1,5}. Another definition of pain more suitable for assessing pain in animals
40 includes changes in species-specific behavior as a possible consequence of a painful experience⁷.
41 Because pain is a subjective experience, its assessment is difficult in humans and is even more
42 challenging in animals^{1,5}. Detection and quantification of pain in animals involves inference from
43 parameters associated with pain in humans¹.

44 Birds show only subtle behaviors of discomfort or pain due to the disadvantage of showing weakness
45 in a social group or as a prey species in general as well as the potential predominance of the flight
46 reflex⁸. In addition, bird behavior varies greatly among species and individuals, making it necessary to
47 closely examine the typical behavior of the observed individual. This makes it possible to assess
48 deviations in typical behavior as a sign of pain⁹. Although pain-associated behavior is difficult to
49 identify, its major advantage is that it can be observed immediately and noninvasively^{3,9}. This makes
50 behavioral observation an essential part of a comprehensive pain assessment in birds.

51 Behavioral studies have been conducted in a variety of avian species¹⁰. Many of these studies used
52 chickens (*Gallus gallus domesticus*) and evaluated nociceptive responses to procedures that are
53 assumed to be painful or elicit discomfort^{10,11}. The typical behavior of chicken embryos has long

54 attracted scientific interest^{10,11}. In the 1960s, the motility of chicken embryos was intensively studied.
55 Movements and motility patterns, along with other aspects, were observed from days 3.5 to 20 of
56 incubation¹²⁻¹⁵. In contrast, little is known about nociception in the chicken embryo or about
57 nocifensive behavioral responses. According to current understanding, nociception in chicken embryos
58 does not occur before the seventh day of incubation¹⁶⁻¹⁸.

59 The results presented are part of a comprehensive study investigating the developmental day at which
60 chicken embryos are capable of nociception and pain perception. The aim of the present part III of the
61 study was to evaluate the acute behavioral responses of chicken embryos at different developmental
62 stages to a noxious mechanical stimulus. The markerless pose estimation software DeepLabCut (DLC)
63 and manual observations were used to analyze embryonic behavior¹⁹⁻²¹. In addition, cardiovascular²²
64 and electrophysiological²³ parameters were investigated in parts I and II of the comprehensive study.

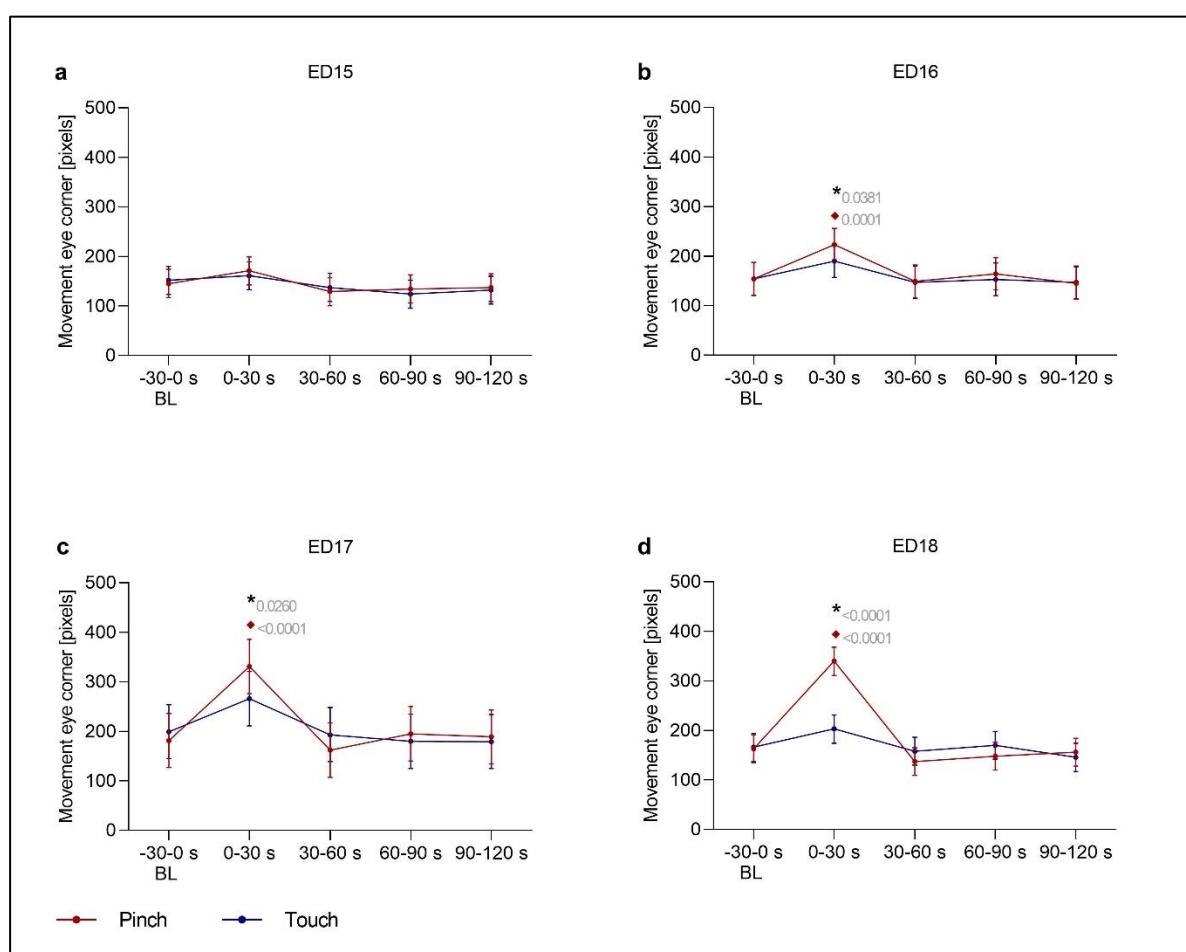

65 Results

66 Beak movements in response to a noxious stimulus

67 To analyze the movements of chicken embryos, the markerless pose estimation software DLC was
68 used. The angle (*Beak Angle*) and distance (*Beak Distance*) between the upper and lower beak were
69 calculated to reflect the opening of the beak as a potential response to a noxious mechanical stimulus
70 applied at the base of the beak. The mechanical stimulation of the beak led to a change in the beak
71 position at embryonic day (ED) 9 and ED12; thus, evaluation with DLC was distorted and could not be
72 interpreted. At ED13 and ED14, *Beak Distance* did not differ between any time intervals during the two
73 minutes after the control touch stimulus (hereafter, *Post Touch*) and the time intervals during the two
74 minutes after the noxious pinch stimulus (hereafter, *Post Pinch*) (Supplementary Fig. 1). At ED15,
75 significant increases in *Beak Distance* as a response to *Pinch* were detected (Fig. 1). Additionally, in
76 ED15 embryos, beak movements *Post Pinch* increased significantly over the first 120 seconds
77 compared to *Baseline Pinch* and over the first 90 seconds compared to *Post Touch*. On ED16, ED17 and
78 ED18, a significant increase in *Beak Distance* was observed over all time intervals *Post Pinch* compared

79 to *Baseline Pinch* and *Post Touch*. The greatest increase in *Beak Distance* occurred during the first
80 30 seconds of *Post Pinch*. The group of ED18 embryos that received an injection of the local anesthetic
81 lidocaine (ED18 w/ Lido) did not exhibit reduced beak movements compared to same-age embryos
82 that did not receive analgesia (Supplementary Fig. 2). *Beak Distance* was still significantly increased in
83 ED18 w/ Lido in the first 30 seconds of *Post Pinch* ($p<0.0001$).

84 *Beak Angle* results are displayed in the Supplementary Information (Supplementary Fig. 3). Briefly,
85 *Beak Angle* showed a similar pattern of changes as *Beak Distance*. Additionally, significant increases in
86 *Beak Angle* during *Post Pinch* were observed from ED15 onward.


87

88 **Figure 1. Beak Distance.** This variable was defined as the distance between the upper and lower beak of
89 embryos. It was measured at **a** ED15 (n=16), **b** ED16 (n=16), **c** ED17 (n=16) and **d** ED18 (n=15), before
90 and after application of a control (*Touch*) or noxious stimulus (*Pinch*). The total distance in pixels across
91 30-second intervals (1500 frames) was evaluated. Plots show the estimated mean \pm 95 % confidence
92 intervals at the following 30-second intervals from Baseline (BL) to Post stimulation, with stimulation
93 occurring at 0 s: -30–0, 0–30, 30–60, 60–90, and 90–120 seconds. Robust linear mixed effects were
94 applied for all analysis. All contrasts (differences) between particular groups were assessed after
95 model-fitting by the estimated marginal means with Tukey P value correction for multiple comparisons.
96 *Touch*: blue; *Pinch*: red. * Significant difference between *Pinch* and *Touch*; ♦ Significant difference from
97 baseline. P values shown.

98 Head movements in response to a noxious stimulus

99 The medial eye corner was tracked to analyze the head movements of chicken embryos. Changes were
100 particularly observed on ED13 and ED16 to ED18 in the first 30 seconds of *Post Pinch*. On these days,
101 the embryos showed a significant increase in head movements after *Pinch* compared to after *Touch*
102 (ED13: p=0.0254; ED16: p=0.0381; ED17: p=0.026; ED18: p<0.0001) and during *Baseline Pinch*
103 (ED13: p=0.0256; ED16: p=0.0001; ED17: p<0.0001; ED18: p<0.0001). At ED12, head movements
104 increased significantly at 30–60 seconds after *Pinch* compared to those 30–60 seconds after
105 *Touch* (p=0.0372). At ED14, head movements also increased significantly in the first 30 seconds after

106 the stimulus compared to those in the corresponding baseline period. These movements were
107 observed after both stimuli (*Pinch*: $p=0.0153$; *Touch*: $p=0.0069$). In addition, a significant difference
108 between head movements in response to *Pinch* and those in response to *Touch* was observed at 30–
109 60 seconds after the stimulus ($p=0.0175$). Head movements were significantly reduced in ED18 w/ Lido
110 embryos in the first 30 seconds of *Post Pinch* compared to those of ED18 embryos in the same period
111 ($p<0.0001$). Head movements on ED15 to ED18 are displayed in Fig. 2, while data on ED9, ED12 to ED14
112 and ED18 w/ Lido embryos is provided in the Supplementary Information (Supplementary Figs. 4
113 and 5).

114
115 **Figure 2. Eye Corner Movement.** This variable was used to detect head movements of embryos at **a** ED15
116 ($n=16$), **b** ED16 ($n=16$), **c** ED17 ($n=16$) and **d** ED18 ($n=15$), before and after application of two stimuli
117 (Touch and Pinch). The total distance in pixels across 30-second intervals (1500 frames) was evaluated.
118 Plots show the estimated mean \pm 95 % confidence intervals at the following 30-second intervals from
119 Baseline (BL) to Post stimulation, with stimulation occurring at 0 s: -30–0, 0–30, 30–60, 60–90, and 90–
120 120 seconds. Robust linear mixed effects were applied for all analysis. All contrasts (differences)
121 between particular groups were assessed after model-fitting by the estimated marginal means with
122 Tukey P value correction for multiple comparisons. *Touch*: blue; *Pinch*: red. * Significant difference
123 between *Pinch* and *Touch*; ♦ Significant difference from baseline. P values shown.

124 Limb movements in response to a noxious stimulus
125 To track limb movements, the movements of the *Elbow*, *Metatarsus* and *Tarsus* (ED9) were analyzed.
126 Significant differences in limb movements between *Baseline Pinch* and *Post Pinch* and between
127 *Post Pinch* and *Post Touch* were observed only on ED18 (Supplementary Figs. 6 and 7). An increase in
128 elbow movements was observed between *Baseline Pinch* and *Post Pinch* ($p=0.0023$) as well as between
129 *Post Pinch* and *Post Touch* ($p=0.0096$) during the first 30 seconds after the stimulus. Regarding the
130 metatarsus movements, ED18 embryos showed a significant increase between *Baseline Pinch* and
131 *Post Pinch* ($p<0.0001$) as well as between *Post Pinch* and *Post Touch* ($p=0.0002$) during the first
132 30 seconds after the stimulus. For ED18 w/ Lido embryos, no significant differences in limb movements
133 were observed between *Baseline* and the first 30 seconds of *Post Stimulus*. There was also no
134 significant difference between the ED18 embryos and the ED18 w/ Lido embryos. Other significant
135 changes in limb movements were observed at specific time intervals over development.

136 Characterization of beak movements in response to a noxious stimulus
137 In particular, DLC analysis identified changes in beak movement during *Post Pinch* in embryos from
138 ED15 to ED18. To characterize beak movements in further detail, manual observations were
139 performed. The focus of the manual observations was on four behaviors: *Beak Shift*, *Mandibulation*,
140 *Beak Opening* and *Wide Beak Opening*. An overview of the percentage of animals that exhibited each
141 behavior at specific time intervals is shown in Table 1. In addition, the counts of each behavior are
142 shown in Supplementary Figs. 8–11.

143 *Beak Opening* was rarely displayed during *Baseline* and was observed in only 10.0 % of animals from
144 ED9 to ED18. *Beak Opening* was particularly rare on ED9 and ED12 to ED14. Before ED12, a maximum
145 of 10.0 % of animals exhibited this behavior within a single time interval; up to ED14, a maximum of
146 20.0 % of animals exhibited this behavior within a single time interval. Starting from ED15, an
147 increasing frequency (31.3 %) of *Beak Opening* was observed after the application of the noxious
148 stimulus. At ED16, 87.5 % of embryos showed *Beak Opening* in the first 30 seconds of *Post Pinch*.
149 Additionally, 50.0 % of ED17 embryos and 62.5 % of ED18 embryos showed this behavioral response

150 to *Pinch*. During these days, at least twice as many embryos showed *Beak Opening* during *Post Pinch*
151 as those during *Post Touch*.

152 *Wide Beak Opening*, characterized by visible tongue movement, was observed only sporadically during
153 *Baseline* on all developmental days. This behavior was observed in only one animal each on ED13, ED14
154 and in ED18 w/ Lido embryos during baseline. Moreover, this specific beak movement was not
155 observed during *Post Pinch* and *Post Touch* for ED9 to ED13 embryos and was observed only once
156 during *Post Pinch* on ED14. On ED15 and ED16, this behavior was increasingly observed. A total of
157 18.8 % (ED15) and 25.0 % (ED16) of embryos exhibited *Wide Beak Opening* in the first 30 seconds of
158 *Post Pinch*. A total of 81.3 % and 87.5 % of embryos on ED17 and ED18, respectively, showed more
159 *Wide Beak Opening* in the first 30 seconds of *Post Pinch*. However, this behavior was never observed
160 during *Post Touch* or corresponding baseline periods at these ages.

161 *Beak Shift* was observed from ED12 onward, but it did not appear to be associated with *Pinch*.
162 *Mandibulation* was also observed across all embryonic days. Changes were observed in *Mandibulation*
163 in all time in *Post Pinch* and *Post Touch* and regularly during both baseline periods.

164 Since *Beak Opening* and *Wide Beak Opening* were the most noticeable *Post Pinch* responses, the focus
165 of comparisons with the additional control group that received local anesthetic (ED18 w/ Lido) was on
166 these two movements, as the application of lidocaine reduced these behaviors. In the ED18 w/ Lido
167 group, 40.0 % of the embryos reacted with *Wide Beak Opening* to the noxious mechanical stimulus; in
168 the ED18 embryos without a lidocaine injection, 87.5 % exhibited this behavior. *Beak Opening* was
169 observed in 20.0 % of the ED18 w/ Lido animals and 62.5 % of the untreated ED18 embryos. Neither
170 *Mandibulation* or *Beak Shift* appeared to be associated with a specific reaction in any time interval,
171 similar to embryos without lidocaine treatment. In other words, no noticeable increase or decrease in
172 these behaviors was observed after a stimulus.

173 **Table 1. Percentage of chicken embryos showing beak movements.** Overview of the percentage of chicken embryos that showed beak movements (*Beak Shift*,
 174 *Mandibulation*, *Beak Opening*, or *Wide Beak Opening*) during the 30 seconds before (*Baseline*) and 30 seconds after (*Post*) the stimulus.

Amount of embryos [%]		ED9 n=10		ED12 n=10		ED13 n=10		ED14 n=16		ED15 n=16		ED16 n=16		ED17 n=16		ED18 n=16		ED18 w/ Lido n=5	
		Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch	Touch	Pinch
Beak Shift	Baseline	0.0	0.0	0.0	0.0	10.0	30.0	18.8	25.0	31.3	0.0	18.8	25.0	25.0	31.3	25.0	6.3	40.0	40.0
	Post	0.0	0.0	30.0	30.0	20.0	20.0	18.8	31.3	31.3	25.0	18.8	18.8	25.0	18.8	31.3	6.3	20.0	60.0
Mandibulation	Baseline	20.0	30.0	40.0	30.0	10.0	50.0	12.5	12.5	37.5	12.5	62.5	25.0	43.8	37.5	31.3	37.5	80.0	80.0
	Post	30.0	20.0	50.0	60.0	50.0	40.0	56.3	56.3	62.5	81.3	68.8	93.8	62.5	87.5	68.8	87.5	80.0	60.0
Beak Opening	Baseline	10.0	0.0	10.0	10.0	10.0	10.0	6.3	0.0	0.0	6.3	0.0	6.3	6.3	6.3	0.0	0.0	0.0	20.0
	Post	0.0	0.0	00.0	10.0	10.0	20.0	0.0	12.5	12.5	31.3	31.3	87.5	18.8	50.0	18.8	62.5	0.0	20.0
Wide Beak Opening	Baseline	0.0	0.0	0.0	0.0	10.0	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0
	Post	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	12.5	18.8	6.3	25.0	0.0	81.3	0.0	87.5	0.0	40.0

175

176 Discussion

177 In this study, we investigated the movements of chicken embryos in response to a noxious stimulus at
178 different developmental stages. We used DeepLabCut, a Python-based markerless pose estimation
179 software, as well as manual observations to determine their responses.

180 Recently, the use of artificial intelligence and deep learning systems in behavioral studies has
181 increased, and the availability of free software such as DLC allows such techniques to be used by
182 researchers with less sophisticated programming experience²⁴⁻²⁶. In our study, we trained a model to
183 provide satisfactory accuracy of tracking individual body parts on each embryonic day. One of the
184 major advantages of using the markerless pose estimation software DLC is that it enables unbiased
185 analysis. Calculations of distances are not based on subjective perception by an observer and are
186 therefore quantifiable and reliable. Therefore, deep learning systems in general and DLC in particular
187 offer a means of detecting and classifying behaviors that may not be detectable to the naked eye.
188 However, the DLC analysis did not allow us to distinguish between types of beak movements. Thus, for
189 better differentiation of beak movements, we added manual observation of these movements and
190 identified four different patterns.

191 Pain behavior in general is influenced by a variety factors specific to the stimulus or the affected
192 animal. For example, noxious agents can differ in duration (acute or chronic), source (somatic or
193 visceral) and severity (mild to severe), each of which may provoke a different reaction^{9,10,27}. Since
194 behavioral responses vary extensively depending on the species and stimulus, any description is valid
195 only for the specifically described case and cannot be transferred to another species without re-
196 evaluation¹⁰. In our study, we applied an acute mechanical stimulus to the beak base of chicken
197 embryos. The beak of chicken is known to be equipped with nociceptors²⁸ and therefore represents a
198 pain-sensitive area¹¹. The beak has also been reported as the region in chicken embryos where the
199 earliest response to stimuli is observed²⁹. Chumak observed reflex movements in the form of flexions
200 of the head on day 7 of incubation in response to pinpricks in the beak region, describing reflexes

201 provoked by external stimuli (isolated movements of the head or wing) and spontaneous voluntary
202 movements (involving generalized head, trunk, and limb movements)²⁹.

203 Nociceptive reflexes have evolved as protective mechanisms³⁰. A noxious stimulus is transmitted via
204 peripheral nociceptors to the spinal cord and transmitted to motor neurons, resulting in muscle
205 contraction and thus the nociceptive reflex³⁰⁻³². Chumak reported more specific responses, including
206 increased defensive movements, in chicken embryos at ED14/15, but characterized these responses
207 as reflexive²⁹. Hamburger and Oppenheim reported that coordinated movements appear around
208 ED17¹⁴. Since our study was based solely on observations of movements by chicken embryos, a
209 conclusion regarding whether the observed movements are reflexes or coordinated movements can
210 therefore not be drawn.

211 We analyzed the movements of chicken embryos in response to a noxious stimulus applied to the beak
212 from ED9 to ED18. Consistent with the assumption that a response to a stimulus is expected at the site
213 of stimulus application, as was shown for well-innervated regions such as the beak¹⁰, our DLC data for
214 *Beak Angle* and *Beak Distance* showed the most noticeable changes after the stimulus. Both
215 parameters, *Beak Angle* and *Beak Distance*, quantified beak movements. A significant increase in beak
216 movements was detected immediately after *Pinch* from ED15 to ED18. As the increase in beak
217 movements during *Post Pinch* was significant compared to those during *Baseline Pinch* and *Post Touch*,
218 we assumed that the increase in beak movements was a reaction to the noxious stimulus and was not
219 a random movement of the chicken embryos.

220 Further differentiation of the movements through manual observation revealed that *Beak Opening*
221 (starting on ED16) and *Wide Beak Opening* (starting on ED17) were recurring movements in response
222 to the noxious stimulus. Individual, slow beak openings have been described in connection with the
223 penetration of the air sac membrane shortly before hatching, at the end of day 18¹⁴. This description,
224 however, does not match the rapid and clustered movements that we observed following the stimulus.
225 Since these beak openings do not appear to be part of the typical behavior of chick embryos and
226 markedly occurred only after a noxious stimulus, they may represent a nocifensive response by the

227 embryo. Whether this can be interpreted as the presence of pain sensation remains unclear because
228 an experience of pain presupposes consciousness³³, and no indications can be made about this in the
229 context of this part of the study.

230 Hamburger and Oppenheim also described a behavior that they called beak clapping, which involves
231 rapid opening and closing of the beak in sequences that occurred at irregular intervals¹⁴. The
232 description and random occurrence of this behavior matches *Mandibulation* in our study. Likewise,
233 the movement was randomly observed across time intervals and had no clear connection to any of the
234 stimuli. However, a similar behavior was observed in adult chickens as a response to low atmospheric
235 pressure stunning before slaughter³⁴. In this case, the mandibulation was discussed as a possible sign
236 of reduced welfare or a physiological reaction to hypoxia³⁴. As in the other studies, the embryos in our
237 study underwent stress from the opening of the egg, the preparation, and the stimuli. Therefore, it is
238 possible that *Mandibulation* is also a sign of stress in chicken embryos.

239 Application of the local anesthetic lidocaine did not yield a significant reduction in the beak movements
240 of chicken embryos on ED18 according to the DLC analysis. However, in the manual observations,
241 application of lidocaine reduced the percentage of embryos that responded to stimuli with
242 *Wide Beak Opening* and *Beak Opening* by about half. Furthermore, local anesthetics are known to be
243 effective in birds³⁵⁻³⁷ and can be used in chickens, e.g., for spinal anesthesia³⁸ or a brachial plexus
244 blockade³⁹. However, there are no reliable empirical data regarding the mode of action of local
245 anesthetics in chicken embryos. Additionally, we emphasize that only a small number of embryos were
246 examined; thus, the results must be interpreted with caution. The inability of local anesthesia to
247 reduce beak movements could also stem from the injection of lidocaine, which itself constitutes a
248 noxious stimulus. In addition, numbness in the beak due to local anesthesia could have led to
249 behavioral changes⁴⁰. This is supported by the fact that head movements were significantly reduced
250 by applying lidocaine at ED18.

251 Overall, stress could not be completely eliminated within the experimental setup; thus, its potential
252 influence on behavior must be considered. The fenestrated egg does not represent a completely

253 typical environment for the embryo because of the increased exposure to environmental influences,
254 such as light. Additionally, the invasiveness of the preparation itself can induce stress, which is known
255 to alter the behavior of birds⁹. We attempted to reduce external influences by standardizing the
256 temperature and humidity during the experiments and adjusting them to match the typical incubation
257 conditions as closely as possible. However, since direct access to the embryo was necessary for
258 stimulation, and the embryo had to be visible to assess responses, some stressors were unavoidable.
259 We were also interested in whether limb movements changed after the noxious stimulus; however,
260 we did not detect any overarching pattern until ED17. Occasional significant differences in limb
261 movements during *Post Pinch* compared to those during *Baseline Pinch* or *Post Touch* were
262 inconsistent over several EDs or time intervals and are therefore likely due to random movements,
263 which have been described previously in^{12-14,41-45}. Hamburger and Oppenheim stated that before ED15,
264 the observed leg motility was not connected to any sensory input but appeared randomly due to
265 autonomous cell discharges¹⁵. Wu et al. counted unilateral and bilateral simultaneous limb movements
266 and found one maximum of movements between ED10 and ED13 for the former and two maxima on
267 ED13 and ED17 for the latter⁴⁶. In the present study, we detected a significant increase in elbow and
268 metatarsal movements during the first 30 seconds of *Post Pinch* compared to those during the first
269 30 seconds of *Baseline Pinch* and *Post Touch* on only ED18, suggesting that these movements may
270 represent an actual response to the noxious stimulus.

271 Conclusion

272 We observed the movements of chicken embryos from ED9 to ED18 before and after noxious
273 stimulation. During *Post Pinch*, the observed movement changes in ED15 to ED18 embryos were most
274 likely a response to the noxious mechanical stimulus and can therefore be interpreted as nocifensive
275 behavior. The results of our current movement analysis in combination with the corresponding results
276 of the cardiovascular changes²² and the evaluation of the onset of physiological neuronal signals²³ in
277 chicken embryos during this developmental period provide valuable information that enhances our
278 understanding of the development of nociception and pain perception in chicken.

279 **Material and Methods**

280

281 **Animals and incubation**

282 Chicken embryos from ED9 to ED18 were analyzed. An overview of the experimental groups is provided
283 in Table 2. Fertilized Lohman Selected Leghorn eggs were obtained from the Technical University of
284 Munich (TUM) Animal Research Centre, Thalhausen. Eggs were disinfected (Röhnfried Desinfektion
285 Pro, Dr. Hesse Tierpharma GmbH & Co. KG, Hohenlockstedt Germany), weighed and stored in a
286 refrigerator at 15 °C until use. The maximum storage time from the day of laying until the start of the
287 incubation was seven days. Before incubation, the eggs were placed at room temperature for 24 hours.
288 On the day of incubation, eggs were transferred at 8:30 am into a standard incubator (HEKA
289 Favorit-Olymp 192 Spezial, HEKA-Brutgeräte, Rietberg, Germany) and incubated under the following
290 conditions: 37.8 °C temperature and 55 % humidity. The eggs were turned six times a day until
291 fenestration on ED3. The first day of incubation was defined as ED0.

292 **Table 2. Number of chicken embryos.** Overview of the number of chicken embryos analyzed on each
293 embryonic day and the sex distribution.

	ED9	ED12	ED13	ED14	ED15	ED16	ED17	ED18	ED18 w/ Lido
Amount of embryos (n)	10	10	10	16	16	16	16	16	5
Sex male/female	5/5	3/7	5/5	9/7	7/9	7/8	7/9	7/9	2/3

294 On ED3, eggs were placed horizontally for two minutes, and 5–7 ml of albumin was withdrawn through
295 a small hole at the pointed pole using a cannula. A small window was cut in the top of the eggshell,
296 and 0.5 ml of penicillin–streptomycin (10 000 units penicillin, 10 mg streptomycin/ml, P4333 – 100 ml,
297 Sigma–Aldrich, St. Louis, USA) were added. Eggs were sealed with plastic film and tape. With the eggs
298 in a horizontal position, the incubation proceeded until the desired embryonic day⁴⁷.

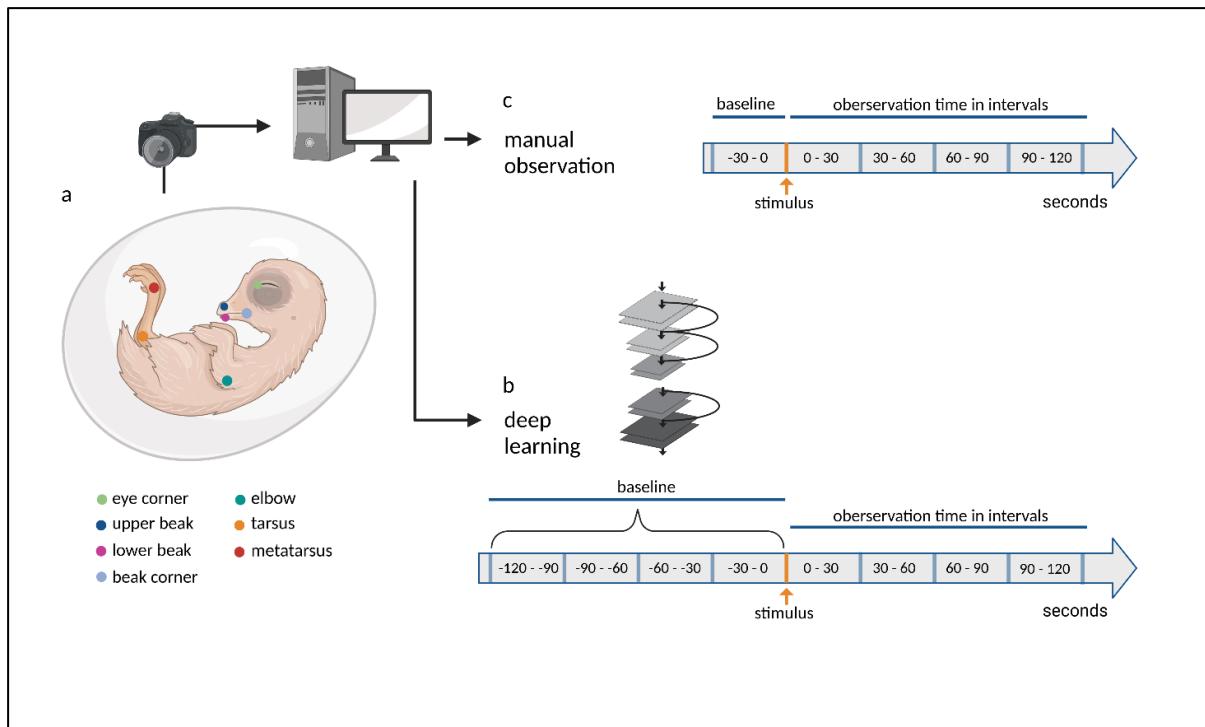
299 At the end of the experiments, the embryos were euthanized by an intravenous injection of
300 pentobarbital-sodium (Narcoren, 16 g/100 ml, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am

301 Rhein, Germany; ED9: 0.05 ml, ED12 to ED15: 0.1 ml, and ED16 to ED18: 0.2 ml), followed by
302 decapitation. Afterwards, the sex of ED12 to ED18 embryos was identified macroscopically by the
303 determination of the gonads. For ED9 embryos, sexing was performed with PCR of genomic DNA
304 samples isolated from pectoral and wing muscle. Screening was performed according to an established
305 protocol⁴⁸ using primers targeting the Z chromosome [5' AAGCATAGAAACAATGTGGGAC 3' (forward)
306 and 5' AACTCTGTCTGGAAGGACTT 3' (reverse)] and female-specific primers targeting the W
307 chromosome [5' CTATGCCTACCAACMTTCCTATTGC 3' (forward) and 5' AACTCTGTCTGGAAGGACTT 3'
308 (reverse)]. The expected lengths of the DNA fragments were 250 bp and 375 bp, respectively, for
309 female embryos and 250 bp for male embryos. An overview of the sex ratio on each ED is shown in
310 Table 2.

311 **Preparation process**

312 All experiments were performed between 9:00 am and 7:30 pm by the same two persons to
313 standardize the procedure. To keep the environmental conditions as similar as possible to typical
314 brooding conditions, experiments were conducted in a special heated chamber. The chamber was
315 equipped with a heat mat (ThermoLux Wärmeunterlage, Witte + Sutor GmbH, Murrhardt, Germany),
316 heat lamp (Wärmestrahlgerät, Taschenlampenwerk ARTAS GmbH, Arnstadt, Germany) and an air
317 humidifier (Series 2000 Luftbefeuchter HU4811/10R1, Philips, Amsterdam, Netherlands). Humidity
318 was kept at a constant level at 55.5 % ± 4.5. Additionally, the eggs were embedded in warm (38.0 °C)
319 Armor Beads (Lab Armor BeadsTM, Sheldon Manufacturing, Cornelius, USA). In this manner, the inner
320 egg temperature was kept at 37.9 °C ± 0.9 during the entire experiment. To observe the entire embryo,
321 the window in the eggshell was enlarged. Next, the chorioallantoic membrane (CAM) was carefully cut
322 open and removed from the field of view. If necessary, blood vessels were ligated to prevent bleeding.
323 However, to the extent possible, ligating or cutting vessels was avoided to prevent disruption of blood
324 circulation. To gain access to the embryo and improve visibility, the amnion was carefully opened. A
325 Desmarres lid retractor (Fuhrmann GmbH, Much, Germany) was carefully placed underneath the beak
326 of the embryo to ensure beak visibility. In the case of ED9 embryos, a small wire loop was used.

327 **Experimental setup**


328 All experiments were filmed with a camera (Panasonic LUMIX DC-G110V with a
329 Panasonic Lumix G 30 m lens, Matsushita Electric Industrial Co., Ltd., Osaka, Japan; for ED9 to ED16:
330 HOYA SUPER PRO1 Revo Filter SMC Cir-PL, Kenko Tokina Co, Ltd., Tokyo, Japan) with a frame rate of
331 50 frames per second.

332 After preparation, a resting period of three minutes was allotted. Baseline behavior was recorded for
333 two (ED15 to ED18) or three (ED9 to ED14) minutes; subsequently, two stimuli were applied in a
334 randomized order. The stimuli used were a noxious mechanical stimulus (*Pinch*) using a manual
335 instrument and a light touch (*Touch*) as a negative control. Both were applied at the base of the beak.

336 For ED15 to ED18 embryos, a mosquito clamp (Fine Science Tools, Foster City, USA) was used to
337 administer the stimulus. To better monitor the applied force, a mosquito clamp combined with an
338 analgesia meter (Rodent Pincher Analgesia Meter, Bioseb, Vitrolles, France) was used for experiments
339 conducted with ED12 to ED14 embryos. Stimulus 1 (*Pinch* or *Touch*) was administered and followed by
340 an observation duration of three minutes. After a second baseline period, stimulus 2 (*Touch* or *Pinch*)
341 was administered, followed by another three minutes of observation. Because of their small size,
342 microsurgical anatomical forceps (Fine Science Tools, Foster City, USA) had to be used to administer
343 the stimulus to ED9 embryos. An additional group of ED18 embryos (ED18 w/ Lido) was injected with
344 0.02 ml of lidocaine (Xylocitin® 2 %, Mibe GmbH Arzneimittel, Brehna, Germany) in the upper and lower
345 beak region five minutes before the first baseline. Experiments were then performed according to the
346 above protocol.

347 **Analyses: Hardware, software and statistical analyses**

348 All videos were edited in the same way using the “daVinci Resolve” software (Blackmagic Design
349 Pty. Ltd, Port Melbourne, Australia) before analysis. For each embryo, four single videos were cut
350 referring to the sections of the experimental design: *Baseline Pinch*, *Baseline Touch*, *Post Pinch* and
351 *Post Touch*.

352
353 **Figure 3. Flowchart of experimental procedures.** a Recordings of the embryo were collected *in ovo*, and
354 video data was transferred to a computer for editing. The body parts of chicken embryos tracked by DLC
355 are labeled in the schema. b The neural network was trained and the video material was analyzed
356 according to the timeline. c The video material was manual analyzed according to the timeline. (Created
357 with BioRender.com).

358 **DeepLabCut**

359 To track body parts of the embryo, the markerless pose estimation software DLC (version 2.2.1.1)^{19,21}
360 was used on a computer (MSI MAG Infinite 11TC-1222AT, Intl Core i7-11700F, 16 GB RAM, nVidia
361 GeForce RTX3060). The neural network was trained for each ED individually with video footage
362 according to the protocol provided by the developers²¹. Manual labeling was always performed by the
363 same person. The training was performed with the default settings and using a ResNet-50-based neural
364 network^{49,50}. A test error below 8.5 was obtained for every ED. After the model training was completed,
365 the four experimental videos (*Baseline Pinch*, *Baseline Touch*, *Post Pinch*, and *Post Touch*) were
366 analyzed for each embryo. For each labeled body part, DLC created three outputs for each frame of
367 the video: an x coordinate, a y coordinate, and a likelihood value. These values were analyzed with
368 custom-written code using MATLAB (MATLAB Version: 9.12.0.1927505 (R2022a) Update 1,
369 MathWorks). In all cases, a likelihood value cutoff of 0.75 was used.

370 Visualization of the data clusters

371 In the analysis, the focus was on the following body parts:

372 – Beak

373 – Head

374 – Limbs

375 – Stationary points on the egg, the Desmarres lid retractor, and the wire loop (for ED9) were
376 used as a reference control.

377 As a first step, the labeled data clusters for each analyzed body part were visualized in the
378 x-y coordinate space. This enabled refinement of the dataset through identification of outliers or
379 mislabeled body parts. The videos were then checked for errors, and if any real outlier was found in a
380 frame, its value was manually excluded.

381 Distance between the upper and lower beak

382 The distance between the upper and lower boundaries of the beak was calculated in terms of the
383 Euclidian distance between two points:

$$384 d = \sqrt{[(x_u - x_l)^2 + (y_u - y_l)^2]}$$

385 where x_u is the x coordinate of the upper beak label, x_l is the x coordinate of the lower beak label, y_u
386 is the y coordinate of the upper beak label, and y_l is the y coordinate of the lower beak label. The
387 Euclidian distance was calculated (in pixels) for every frame of the video.

388 Angle between the upper and lower beak

389 The angle between the upper and lower beak was computed by calculating the angle between two
390 lines P_0 to P_1 and P_0 to P_2 , where P_0 is the fulcrum between the beak parts, P_1 is the upper beak point
391 and P_2 is the lower beak point. The angle was then calculated as follows:

$$392 \text{Angle} = \text{atan2} \left(\text{norm}(\text{det}([n_2; n_1])), \text{dot}(n_2, n_1) \right)$$

393 where *atan2* is the four-quadrant inverse tangent, *det* is the matrix determinant, *dot* is the dot
394 product, and n_2, n_1 are the Euclidean normalized vectors for P_0 to P_1 and P_0 to P_2 , respectively. The

395 angle between the upper and lower beak was calculated for all frames of the video in radians and then
396 converted to degrees.

397 Movement

398 The movement of the body parts of interest was calculated in terms of the Euclidean distance between
399 identical labels across consecutive frames:

400

$$d = \sqrt{[(x_{f1} - x_{f2})^2 + (y_{f1} - y_{f2})^2]}$$

401 where x_{f1} is the x coordinate in frame 1, x_{f2} is the x coordinate in frame 2, y_{f1} is the y coordinate in
402 frame 1, and y_{f2} is the y coordinate in frame 2. The distances were calculated for all consecutive
403 frames. From ED12 to ED18, movements of the medial eye corner, elbow and metatarsus were
404 analyzed. For the body movements on ED9, the tarsus (instead of the metatarsus) was used to assess
405 leg movement, as the tissue of the metatarsus was translucent and prone to errors in tracking.

406 To simplify the analyses, 30-second intervals were evaluated. For each parameter, i.e., *Beak Distance*,
407 *Beak Angle*, *Movement Eye Corner*, *Movement Elbow*, and *Movement Metatarsus*, the sum of the
408 1500 frame values of the interval was calculated. In Post Stimulus, this resulted in four intervals: 0–30,
409 30–60, 60–90, and 90–120 seconds. The beginning of the first poststimulus interval was defined as the
410 moment from which the clamp was no longer in contact with the beak. The median of the four
411 30-second intervals prior to the stimulus was considered the baseline. Missing values, which arose
412 after the exclusion of low likelihood values, were manually imputed. For each missing value series, the
413 median was determined for half of the adjacent data and used in place of the missing value. If more
414 than 5 % of the data in an interval were missing, the interval was excluded from the analysis. Due to a
415 lack of visibility, one ED14 embryo and one ED18 embryo were completely excluded from the DLC
416 analysis. A precise overview of the number of datasets ultimately included in the analysis is provided
417 in Supplementary Table 1.

418 Due to the presence of repeated measures, generalized linear mixed effects models with the individual
419 embryo as a random effect were chosen for analysis. Due to the violation of numerous model
420 assumptions (normality of residual distribution, heteroscedasticity of residuals, heterogeneity of
421 variances between groups and presence of outliers), only robust linear mixed-effects models were
422 applied for all analyses (R package - robustlmm). All contrasts (differences) between particular groups
423 were assessed after model-fitting by the estimated marginal means (R package - emmeans) with Tukey
424 P value correction for multiple comparisons. The results with a P value < 0.05 were considered
425 statistically significant. Data analysis was performed using R 4.2.1 (2022-06-23).

426 **Manual observation**

427 The same video footage as used in the DLC analyses was used for manual observations. Since
428 preliminary observations and data from the DLC analyses indicated that changes in beak position were
429 frequent after *Pinch*, manual observations focused on beak movements. Four different patterns of
430 beak movements were identified from the video material:

- 431 – *Beak Shift* – a small horizontal shift of the upper and lower beak against each other
- 432 – *Mandibulation* – a small vertical opening of the beak, often executed several times, and
- 433 reminiscent of a chewing movement
- 434 – *Beak Opening* – single, swift, vertical opening of the beak
- 435 – *Wide Beak Opening* – single, wide, vertical opening of the beak; accompanied by a
- 436 characteristic tongue movement

437 In an analogous approach to the one described above, the baseline and poststimulus observations
438 were divided into intervals of 30 seconds. For manual observations, 30 seconds before the stimulus
439 was used as a baseline. For each interval, the occurrences of the described beak movements were
440 counted.

441

442 **Data availability**

443 Raw data are available upon reasonable request to the corresponding author.

444 **Code availability**

445 All MATLAB analysis code used in this study is available in a public GitHub repository:

446 <https://github.com/ondracej/dlcAnalysisEmbryo>.

447 **References**

- 448 1 Livingston, A. Pain and Analgesia in Domestic Animals. In: *Comparative and Veterinary*
449 *Pharmacology* (eds Cunningham, F., Elliott, J., Lees, P.) 159-189 (Springer Berlin, Heidelberg,
450 Germany, 2010).
- 451 2 Gentle, M. J. Pain in Birds. *Animal. Welf.* **1**, 235-247 (1992).
- 452 3 Paul-Murphy, J., Hawkins, M. G. Bird-Specific Considerations: Recognizing Pain Behavior in Pet
453 Birds. In: *Handbook of Veterinary Pain Management: Third Edition* 536-554 (Elsevier Inc.,
454 Amsterdam, The Netherlands, 2014).
- 455 4 Douglas, J. M., Sanchez-Migallon Guzman, D., Paul-Murphy, J. Pain in Birds: The Anatomical
456 and Physiological Basis. *Vet. Clin. North Am. Exot. Anim Pract* **21**, 17-31 (2018).
- 457 5 Raja, S. N. *et al.* The Revised IASP definition of pain: concepts, challenges, and compromises.
458 *PAIN* **161**, 1976-1982 (2020).
- 459 6 Julius, D., Basbaum, A. I. Molecular mechanisms of nociception. *Nature* **413**, 203-210 (2001).
- 460 7 Zimmermann, M. Ethical considerations in relation to pain in animal experimentation. *Acta.*
461 *Physiol.* **554**, 221-233 (1986).
- 462 8 Korbel, R., Lierz, M. Vögel. In: *Anästhesie und Analgesie beim Klein- und Heimtier mit Exoten,*
463 *Labortieren, Vögeln, Reptilien, Amphibien und Fischen* (eds Erhardt, W., Henke, J., Haberstroh,
464 J., Baumgartner, C., Tacke, S.) 790-834 (Schattauer GmbH, Stuttgart, Germany, 2012).

465 9 Mikoni, N. A., Sanchez-Migallon Guzman, D., Paul-Murphy, J. Pain Recognition and Assessment
466 in Birds. *Vet. Clin. North Am. Exot. Anim Pract* **26**, 65-81 (2023).

467 10 Mikoni, N. A., Sanchez-Migallon Guzman, D., Fausak, E., Paul-Murphy, J. Recognition and
468 Assessment of Pain-Related Behaviors in Avian Species: An Integrative Review. *J. Avian Med.*
469 *Surg.* **36**, 153-172 (2022).

470 11 Gentle, M. J. Pain issues in poultry. *Appl. Anim. Behav. Sci.* **135**, 252-258 (2011).

471 12 Hamburger, V., Balaban, M. Observations and Experiments on Spontaneous Rhythmic
472 Behavior in the Chick Embryo. *Dev. Biol.* **6**, 533-545 (1963).

473 13 Hamburger, V., Balaban, M., Oppenheim, R., Wenger, E. Periodic Motility of Normal and Spinal
474 Chick Embryos Between 8 and 17 Days of Incubation. *J. Exp. Zool.* **159**, 1-13 (1965).

475 14 Hamburger, V., Oppenheim, R. Prehatching Motility and Hatching Behavior in the Chick. *J. Exp.*
476 *Zool.* **166**, 171-203 (1967).

477 15 Hamburger, V., Wenger, E. & Oppenheim, R. Motility in the chick embryo in the absence of
478 sensory input. *J. Exp. Zool.* **162**, 133-159 (1966).

479 16 Peters, J. J., Vonderahe, A. R., Powers, T. H. The functional chronology in developing chick
480 nervous system. *J. Exp. Zool.* **133**, 505-518 (1956).

481 17 Eide, A. L., Glover, J. C. Developmental dynamics of functionally specific primary sensory
482 afferent projections in the chicken embryo. *Anat. Embryol. (Berl.)* **195**, 237-250 (1997).

483 18 Eide, A. L., Glover, J. C. Development of the longitudinal projection patterns of lumbar primary
484 sensory afferents in the chicken embryo. *J. Comp. Neurol.* **353**, 247-259 (1995).

485 19 Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep
486 learning. *Nat. Neurosci.* **21**, 1281-1289 (2018).

487 20 Mathis, A., Warren, R. On the inference speed and video-compression robustness of
488 DeepLabCut. Preprint at: <https://www.biorxiv.org/content/10.1101/457242v1> (2018).

489 21 Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and
490 behaviors. *Nat. Protoc.* **14**, 2152-2176 (2019).

491 22 Weiss, L. et al. Nociception in chicken embryos, Part I: Analysis of cardiovascular responses to
492 a mechanical noxious stimulus. Preprint at: <https://www.biorxiv.org/content/10.1101/2023.04.14.536899v1> (2023).

493 23 Kollmansperger, S., Anders, M. et al. Nociception in chicken embryos, Part II: Embryonal
494 development of electroencephalic neuronal activity in ovo as a prerequisite for nociception.
495 Preprint at: <https://www.biorxiv.org/content/10.1101/2023.04.14.536947v2> (2023).

496 24 Mathis, M. W., Mathis, A. Deep learning tools for the measurement of animal behavior in
497 neuroscience. *Curr. Opin. Neurobiol.* **60**, 1-11 (2020).

498 25 von Ziegler, L., Sturman, O., Bohacek, J. Big behavior: challenges and opportunities in a new
499 era of deep behavior profiling. *Neuropsychopharmacology*. **46**, 33-44 (2021).

500 26 Hardin, A., Schlupp, I. Using machine learning and DeepLabCut in animal behavior. *Acta Ethol.*
501 **25**, 125-133 (2022).

502 27 Henke, J., Tacke, S. Erhardt, W., Analgesie. In: *Anästhesie und Analgesie beim Klein- und*
503 *Heimtier: mit Exoten, Labortieren, Vögeln, Reptilien, Amphibien und Fischen* (eds Erhardt, W.,
504 Henke, J., Haberstroh, J., Baumgartner, C., Tacke, S.) 383-431 (Schattauer GmbH, Stuttgart,
505 Germany, 2012).

506 28 Kuenzel, W. J. Neurobiological Basis of Sensory Perception: Welfare Implications of Beak
507 Trimming. *Poult. Sci.* **86**, 1273-1282 (2007).

508 29 Chumak, V. I. Dinamika reflektomykh reaktsii i vkluchenie retseptornykh apparatov u
509 embriona kuritsy (Dynamics of reflex reactions and initiation of receptor systems in the chick
510 embryo) In: *Voprosy fiziologii i patologii tsentral'noi nervnoi sistemy cheloveka i zhivotnykh v*
511 *ontogeneze* (Moskva, Russia, 1961).

512 30 Antognini, J. F., Carstens, E. In vivo characterization of clinical anaesthesia and its components.
513 *Br. J. Anaesth.* **89**, 156-166 (2002).

514 31 Diener, M., Gerstberger, R. Zentrales Nervensystem. In: *Physiologie der Haustiere* (eds von
515 Engelhardt, W., Breves, G., Diener, M., Gäbel, G.) 121-145 (Enke, Stuttgart, Germany, 2015).

517 32 Willis, W. D., Westlund, K. N. Neuroanatomy of the Pain System and of the Pathways That
518 Modulate Pain. *J. Clin. Neurophysiol.* **14**, 2-31 (1997).

519 33 Diesch, T. J., Mellor, D. J., Johnson, C. B., Lentle, R. G. Responsiveness to painful stimuli in
520 anaesthetised newborn and young animals of varying neurological maturity (wallaby joeys, rat
521 pups and lambs). *AATEX*. **14**, 549-552 (2008).

522 34 Mackie, N., McKeegan, D. E. F. Behavioural responses of broiler chickens during low
523 atmospheric pressure stunning. *Appl. Anim. Behav. Sci.* **174**, 90-98 (2016).

524 35 Glatz, P. C., Murphy, L. B., Preston, A. P. Analgesic therapy of beak-trimmed chickens. *Aust. Vet. J.* **69**, 18 (1992).

526 36 Hocking, P. M., Gentle, M. J., Bernard, R. & Dunn, L. N. Evaluation of a protocol for determining
527 the effectiveness of pretreatment with local analgesics for reducing experimentally induced
528 articular pain in domestic fowl. *Res. Vet. Sci.* **63**, 263-267 (1997).

529 37 Paul-Murphy, J., Ludders, J. W. Avian analgesia. *Vet. Clin. North Am. Exot. Anim. Pract.* **4**, 35-45
530 (2001).

531 38 Khamisabadi, A., Kazemi-Darabadi, S., Akbari, G. Comparison of Anesthetic Efficacy of
532 Lidocaine and Bupivacaine in Spinal Anesthesia in Chickens. *J. Avian. Med. Surg.* **35**, 60-67
533 (2021).

534 39 Figueiredo, J. P. et al. Assessment of brachial plexus blockade in chickens by an axillary
535 approach. *Vet. Anaesth. Analg.* **35**, 511-518 (2008).

536 40 Binshtok, A. M., Bean, B. P. & Woolf, C. J. Inhibition of nociceptors by TRPV1-mediated entry
537 of impermeant sodium channel blockers. *Nature* **449**, 607-610 (2007).

538 41 Provine, R. R., Sharma, S. C., Sandel, T. T., Hamburger, V. Electrical Activity in the Spinal Cord
539 of the Chick Embryo, *in situ*. *Proc. Natl. Acad. Sci.* **65**, 508-515 (1970).

540 42 Provine, R. R. Development of Between - Limb Movement Synchronization in the Chick
541 Embryo. *Dev. Psychobiol.* **13**, 151-163 (1980).

542 43 Sharma, S. C., Provine, R. R., Hamburger, V., Sandel, T. T. Unit Activity in the Isolated Spinal
543 Cord of Chick embryo, *in Situ*. *Proc. Natl. Acad. Sci.* **66**, 40-47 (1970).

544 44 Bekoff, A. Ontogeny of leg motor output in the chick embryo: a neural analysis. *Brain Res.* **106**,
545 271-291 (1976).

546 45 Bradley, N. S., Solanki, D., Zhao, D. Limb Movements During Embryonic Development in the
547 Chick: Evidence for a Continuum in Limb Motor Control Antecedent to Locomotion.
548 *J. Neurophysiol.* **94**, 4401-4411 (2005).

549 46 Wu, K.-C., Streicher, J., Lee, M. L., Hall, B. K., Müller, G. B. Role of Motility in Embryonic
550 Development I: Embryo Movements and Amnion Contractions in the Chick and the Influence
551 of Illumination. *J. Exp. Zool.* **291**, 186-194 (2001).

552 47 Spurlin 3rd, J. Lwigale, P. A Technique to Increase Accessibility to Late-Stage Chick Embryos for
553 In Ovo Manipulations. *Dev. Dyn.* **242**, 148-154 (2013).

554 48 Itoh, Y. et al. Identification of the Sex of a Wide Range of Carinatae Birds by PCR Using Primer
555 Sets Selected from Chicken EE0.6 and Its Related Sequences. *J. Hered.* **92**, 315-321 (2001).

556 49 Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B. DeeperCut: A Deeper,
557 Stronger, and Faster Multi-person Pose Estimation Model. In *Computer Vision–ECCV 2016*
558 **9910** (eds. Leibe, B., Matas, J., Sebe, N., Welling, M.) 34-50 (Springer, Cham, 2016).

559 50 He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learning for Image Recognition. *Proceedings of*
560 *the IEEE conference on computer vision and pattern recognition*. 770-778 (2016).

561 Acknowledgments

562 This work was funded by the German Federal Ministry of Food and Agriculture (BMEL) based on a
563 decision of the Parliament of the Federal Republic of Germany, granted by the Federal Office for
564 Agriculture and Food (BLE; grant number 2821HS005).

565 The authors thank the scientific advisory board with Prof. Dr. Dr. Michael Erhard, Prof. Dr. Wolf
566 Erhardt, Prof. Dr. Harald Luksch, Prof. Dr. Heidrun Potschka, Prof. Dr. Hans Straka and Dr. Britta Wirrer.
567 In addition, the authors thank Marie-Louise Schmid, Dr. Johannes Fischer and Dr. Hicham Sid for their
568 helpful support.

569 **Author contributions**

570 Conceptualization: CB, JW, AMS, JR, TF, and BS. Data curation: SCS, JW, AMS, and JMO. Formal analysis:
571 JMO and YZ. Funding acquisition: CB, TF, and BS. Investigation: SCS, LW, AMS, JW, and JR.
572 Methodology: CB, JW, AMS, JR, SK, MA, TF, and BS. Project administration: CB. Resources: CB and BS.
573 Supervision: CB, TF, and BS. Writing - original draft: SCS. Writing - review & editing: SCS, JW, AMS, SCS,
574 JR, SK, MA, TF, BS, and CB. All authors have read and agreed to the published version of the manuscript.

575 **Declaration of competing interest**

576 The authors declare that they have no competing interests.

577 **Figure legends**

578 **Figure 1. Beak Distance.** This variable was defined as the distance between the upper and lower beak
579 of embryos. It was measured at **a** ED15 (n=16), **b** ED16 (n=16), **c** ED17 (n=16) and **d** ED18 (n=15), before
580 and after application of a control (*Touch*) or noxious stimulus (*Pinch*). The total distance in pixels across
581 30-second intervals (1500 frames) was evaluated. Plots show the estimated mean \pm 95 % confidence
582 intervals at the following 30-second intervals from Baseline (BL) to Post stimulation, with stimulation
583 occurring at 0 s: -30–0, 0–30, 30–60, 60–90, and 90–120 seconds. Robust linear mixed effects were
584 applied for all analysis. All contrasts (differences) between particular groups were assessed after
585 model-fitting by the estimated marginal means with Tukey P value correction for multiple
586 comparisons. *Touch*: blue; *Pinch*: red. * Significant difference between *Pinch* and *Touch*; ♦ Significant
587 difference from baseline. P values shown.

588

589 **Figure 2. Eye Corner Movement.** This variable was used to detect head movements of embryos at
590 **a** ED15 (n=16), **b** ED16 (n=16), **c** ED17 (n=16) and **d** ED18 (n=15), before and after application of two
591 stimuli (*Touch* and *Pinch*). The total distance in pixels across 30-second intervals (1500 frames) was
592 evaluated. Plots show the estimated mean \pm 95 % confidence intervals at the following 30-second
593 intervals from Baseline (BL) to Post stimulation, with stimulation occurring at 0 s: -30–0, 0–30, 30–60,
594 60–90, and 90–120 seconds. Robust linear mixed effects were applied for all analysis. All contrasts
595 (differences) between particular groups were assessed after model-fitting by the estimated marginal
596 means with Tukey P value correction for multiple comparisons. *Touch*: blue; *Pinch*: red. * Significant
597 difference between *Pinch* and *Touch*; ♦ Significant difference from baseline. P values shown.

598 **Figure 3. Flowchart of experimental procedures.** **a** Recordings of the embryo were collected *in ovo*,
599 and video data was transferred to a computer for editing. The body parts of chicken embryos tracked
600 by DLC are labeled in the schema. **b** The neural network was trained and the video material was
601 analyzed according to the timeline. **c** The video material was manual analyzed according to the
602 timeline. (Created with BioRender.com).

603 Table legends

604 **Table 1. Percentage of chicken embryos showing beak movements.** Overview of the percentage of
605 chicken embryos that showed beak movements (*Beak Shift*, *Mandibulation*, *Beak Opening*, or
606 *Wide Beak Opening*) during the 30 seconds before (*Baseline*) and 30 seconds after (*Post*) the stimulus.

607 **Table 2. Number of chicken embryos.** Overview of the number of chicken embryos analyzed on each
608 embryonic day and the sex distribution.