

1 **The heme oxygenase-1 metalloporphyrin inhibitor stannsoporfin enhances the bactericidal
2 activity of a novel regimen for multidrug-resistant tuberculosis in a murine model**

3

4 **Jennie Ruelas Castillo**¹, Pranita Neupane¹, Styliani Karanika¹, Stefanie Krug^{1,†}, Darla Quijada¹,
5 Andrew Garcia¹, Samuel Ayeh¹, Addis Yilma¹, Diego L. Costa^{3,4}, Alan Sher⁵, Nader Fotouhi⁶,
6 Natalya Serbina⁶, Petros C. Karakousis^{1,2,7*}

7 ¹ Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School
8 of Medicine, Baltimore, MD, USA

9 ² Department of International Health, Johns Hopkins Bloomberg School of Public Health,
10 Baltimore, MD, USA

11 ³ Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto,
12 Universidade de São Paulo, Ribeirão Preto, Brazil

13 ⁴ Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo,
14 São Paulo, Brazil

15 ⁵ Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and
16 Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

17 ⁶ TB Alliance, New York, NY, USA

18 ⁷ Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of
19 Public Health, Baltimore, MD, USA

20 [†] Department of Microbiology, University of Washington School of Medicine, Seattle, WA
21 98195, USA

22
23 * Correspondence:

24 Center for Tuberculosis Research

25 CRB-2
26 1550 Orleans St., Room 110
27 Baltimore, MD 21287
28 petros@jhmi.edu
29

30 **Abstract:**

31 Multidrug-resistant (MDR) *Mycobacterium tuberculosis* (Mtb) poses significant challenges to
32 global tuberculosis (TB) control efforts. Host-directed therapies (HDT) offer a novel approach
33 for TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies
34 found that inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism,
35 with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-
36 administered with the first-line antitubercular regimen. Here we evaluated the adjunctive HDT
37 activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB
38 regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a
39 new oxazolidinone, TBI-223 (O) (collectively, SPaO) in Mtb-infected BALB/c mice. After 4
40 weeks of treatment, SPaO + SnMP 5 mg/kg reduced mean lung bacillary burden by an additional
41 0.69 log₁₀ (P=0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP
42 adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes, and
43 CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP
44 adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment,
45 SPaO + SnMP 10 mg/kg reduced lung bacterial burdens to $0.71 \pm 0.23 \log_{10}$ CFU, a 0.78 log-
46 fold greater decrease in lung CFU compared to SPaO alone (P=0.005). However, adjunctive
47 SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was
48 well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a
49 promising HDT candidate requiring further study in combination with regimens for drug-
50 resistant TB.

51

52 Keywords: *Mycobacterium tuberculosis*, Host-directed therapies, Heme-oxygenase 1,
53 chemotherapy, drug resistance

54

55 **Introduction:**

56 *Mycobacterium tuberculosis* (Mtb) is the causative agent of tuberculosis (TB), a deadly disease
57 that claims millions of lives yearly. The emergence of multidrug-resistant TB (MDR TB), which
58 is resistant to at least two of the most potent first-line drugs, rifampin, and isoniazid, is a
59 significant challenge to global health [1], [2]. The World Health Organization estimated that in
60 2021, there were 465,000 new cases of MDR TB worldwide, and only 60% of these cases were
61 treated successfully [1]. MDR-TB treatment is lengthy, complex, expensive, and requires the use
62 of second-line drugs that are less effective and more toxic, highlighting the urgent need for novel
63 therapeutics [3], [4]. Given the global burden of MDR TB, host-directed therapies (HDT)
64 targeted at boosting the immune system have the potential to contribute to tuberculosis control to
65 prevent further cross-resistance with current antibiotics [5], [6].

66 Heme oxygenase-1 (HO-1) is an enzyme involved in the degradation of heme into biliverdin,
67 carbon monoxide (CO), and iron [7]–[10]. HO-1 is a known biomarker for active TB in humans
68 [11]. HO-1 also plays a crucial role in the survival of Mtb inside the host by suppressing immune
69 responses and promoting bacterial growth [12]. Several studies have shown that Mtb infection
70 induces HO-1 expression in macrophages [8], [13], leading to the generation of CO, which has
71 immunomodulatory properties and can suppress the production of pro-inflammatory cytokines,
72 such as TNF- α , IL-1 β , and IL-6 [14], [15]. Additionally, the production of CO can inhibit the
73 activity of T cells and natural killer cells, which are essential components of the host immune
74 response against Mtb [16]. HO-1 induction can drive macrophage polarization towards an anti-

75 inflammatory, M2 phenotype, which is associated with reduced microbicidal activity [17], [18]
76 and increased persistence of Mtb in the host [19].
77 Several studies have highlighted the potential utility of HO-1 inhibitors as HDT for TB. Costa *et*
78 *al.* showed previously that pharmacological inhibition of HO-1 with the metalloporphyrin tin
79 protoporphyrin (SnPP) during the chronic phase of infection in the C57BL/6 murine model of
80 TB reduced the lung bacillary burden alone and also augmented the activity of the standard
81 regimen against drug-susceptible TB [20]. HO-1 inhibition promoted the differentiation of CD4⁺
82 T cells into interferon gamma (IFN γ)-producing Th1 cells. Additionally, SnPP enhanced IFN- γ -
83 dependent, nitric oxide synthase 2 (NOS2)-induced nitric oxide production by macrophages,
84 resulting in enhanced control of bacterial growth [21]. Another compound in this class, the HO-1
85 inhibitor stannsoporfin (SnMP), has been in clinical development as a therapy for
86 hyperbilirubinemia in neonates [22]. SnMP has been shown to induce the activation,
87 proliferation, and maturation of naïve CD4⁺ and CD8⁺ T cells via interactions with CD14⁺
88 monocytes *in vitro* [23].
89 In the current study, we compared the adjunctive bactericidal activity of SnPP and SnMP when
90 co-administered with a novel MDR-TB regimen containing TBAJ-876 (S), pretomanid (Pa), and
91 TBI-223 (O); (collectively, SPaO) or the first-line drug regimen rifampin (R), isoniazid (H), and
92 pyrazinamide (Z); (collectively, RHZ) against chronic lung infection with drug-susceptible Mtb
93 in BALB/c mice. In addition, we tested the ability of adjunctive SnMP to shorten the duration of
94 curative treatment in a murine model of microbiological relapse.
95
96 **Results:**

97 **In chronically infected BALB/c mice, adjunctive therapy with SnMP increases the**
98 **bactericidal activity of SPaO**

99 We investigated SnPP and SnMP as adjunctive HDT agents in BALB/c mice infected with Mtb
100 H37Rv (Fig 1A). Each compound was given alone or co-administered with human-equivalent
101 doses of the first-line regimen RHZ for a total of 6 weeks or the enhanced-potency MDR
102 regimen SPaO for a total of 4 weeks. In a previous study [20], SnPP was dosed at 5 mg/kg, but,
103 in the current study, the dose was increased to 10 mg/kg to more closely approximate the drug
104 exposures observed with SnMP 5 mg/kg. Briefly, plasma pharmacokinetics profiles were
105 determined for SnPP and SnMP up to 24 hours following drug administration. The last time
106 point with detectable blood concentrations was after 8 hours. SnPP 10 mg/kg and SnMP 5 mg/kg
107 achieved similar 24-hour drug exposures in plasma (Fig S1), supporting the selection of these
108 doses for the primary study. Over the course of the study, vehicle-treated animals maintained a
109 steady lung colony-forming units (CFU) plateau, while each of the other regimens reduced the
110 mean lung CFU burden steadily over time (Fig 1B). After 2 weeks of treatment (Fig 1C, Table1),
111 monotherapy with SnPP 10 mg/kg or SnMP 5 mg/kg reduced the mean lung bacillary burden by
112 $0.88 \log_{10}$ ($P = 0.0001$) and $0.67 \log_{10}$ CFU ($P = 0.0004$), respectively, relative to the vehicle
113 control. Similarly, after 4 and 6 weeks of treatment, SnPP 10 mg/kg reduced the mean lung
114 bacterial burden by $1.2 \log_{10}$ CFU ($P = 0.0001$) and $1.1 \log_{10}$ CFU ($P = 0.0001$), respectively,
115 relative to the vehicle control (Figs 1D, 1E). Although SnMP 5 mg/kg significantly reduced the
116 mean lung bacterial burden by $1.1 \log_{10}$ CFU ($P = 0.001$; Fig 1D) relative to the vehicle control
117 after 4 weeks of treatment, this bactericidal effect was not sustained at 6 weeks ($0.4 \log_{10}$ CFU, P
118 $= 0.09$; Fig 1E). After 2 weeks of treatment, neither SnPP nor SnMP adjunctive therapy showed
119 an additive effect when co-administered with SPaO (Fig 1C). However, after 4 weeks of

120 treatment (Fig 1D), SPaO + SnMP 5 mg/kg reduced the mean lung bacillary burden to $2.49 \pm$
121 $0.12 \log_{10}$ CFU, representing an additional $0.69 \log_{10}$ CFU reduction compared to SPaO alone (P
122 = 0.01). Adjunctive treatment with SnMP 5 mg/kg or SnPP 10 mg/kg did not significantly
123 enhance the bactericidal activity of RHZ at 4 weeks (P = 0.52 and P = 0.89, respectively; Fig 1D)
124 or 6 weeks (P = 0.97 and P = 0.86, respectively; Fig 1E).

125

126 **HO-1 inhibition does not exacerbate lung inflammation and regulates pro-inflammatory
127 immune responses.**

128 The chronic stages of TB disease are characterized by severe lung inflammation, which results in
129 long-term lung dysfunction in one quarter of cases despite microbiological cure [24], [25]. After
130 4-6 weeks of infection, the gross pulmonary pathology of Mtb-infected BALB/c mice is
131 characterized by pronounced tubercular lesions. At the histopathological level, macrophage and
132 lymphocyte inflammatory aggregates fill the alveolar spaces, representing cellular
133 granulomatous lesions [26]. HO-1^{-/-} knock-out mice develop a progressive inflammatory state
134 [13], [27], and splenocytes isolated from these mice respond to lipopolysaccharide stimulation by
135 producing inflammatory cytokines [4], [13]. Chronic treatment with SnPP in wild-type mice can
136 induce tubulointerstitial inflammation and fibrosis [28], while SnMP induces the expression of
137 pro-inflammatory cytokines in human peripheral blood mononuclear cells [29]. Robust
138 expression of pro-inflammatory cytokines can exacerbate lung inflammation, however, when
139 controlled, it can offer antimycobacterial protection to the host [30].

140 To determine whether HO-1 inhibition modulates TB-associated lung pathology, we first
141 analyzed the lung weight to body weight ratio (lung/body weight) of Mtb-infected mice treated
142 with SnPP or SnMP alone or as adjunctive HDT with RHZ or SPaO as a gross indicator of lung

143 inflammation. An increase in this ratio reflects an increase in lung inflammation caused by
144 cellular infiltration and the presence of tissue lesions consistent with disease exacerbation [26],
145 [31]. Antitubercular treatment with RHZ for 4 or 6 weeks or with SPaO for 2 or 4 weeks
146 significantly reduced ($P < 0.0001$) the mean lung/body weight ratio relative to vehicle (Fig 2A-
147 C). SnMP or SnPP monotherapy for 2 or 6 weeks also significantly reduced the lung/body
148 weight ratio relative to vehicle (Fig 2A, C), although the decrease in this ratio was not
149 statistically significant after 4 weeks of treatment (Fig 2B). The lung/body weight ratio was
150 significantly ($P < 0.0001$) correlated with the lung CFU burden in each of the treatment groups,
151 as assessed by the Pearson correlation coefficient ($r = 0.9074$ after 2 weeks of treatment; $r =$
152 0.8251 after 4 weeks of treatment; and $r = 0.9282$ after 6 weeks of treatment) (Fig S2). Grossly,
153 after 4 weeks of treatment, the lungs of mice treated with vehicle, SnPP or SnMP contained more
154 pronounced tubercle lesions compared to those of mice receiving the antitubercular drug
155 regimens (Fig 2D).

156 Given the adjunctive activity of SnMP with SPaO after 4 weeks of treatment, we next quantified
157 the percentage of lung surface area (μm^2) affected by inflammation at this time point using
158 hematoxylin and eosin staining to determine if adjunctive SnMP had any impact on macrophage
159 and lymphocytic infiltration in TB lung lesions (Fig 2E). The predominant inflammatory lesions
160 observed were cellular granulomas containing myeloid cores and lymphocytic cuffs. As
161 expected, the percentage of lung surface area involved by inflammation was significantly
162 reduced by the antitubercular regimens RHZ ($10.71\% \pm 4.9$), SPaO ($5.65\% \pm 1.9$) relative to the
163 vehicle control ($29.26\% \pm 6.4$; $P = 0.011$, and $P = 0.003$ respectively). However, there was no
164 significant difference in percentage of lung surface area involved by inflammation between
165 vehicle ($29.26\% \pm 6.4$) and SnMP monotherapy ($29.26\% \pm 2.3$) ($P > 0.99$). Similarly, SnMP

166 adjunctive therapy did not significantly reduce the percentage of lung surface area inflammation
167 relative to RHZ alone ($10.71\% \pm 4.9$ vs 5.74 ± 1.2 , $P = 0.41$) or SPaO alone ($5.65\% \pm 1.9$ vs 5.74
168 ± 1.2 , $P > 0.99$).

169 In order to further investigate the adjunctive contribution of SnMP to the bactericidal activity of
170 SPaO observed at 4 weeks of treatment (Table 1), we used RT-qPCR to evaluate the expression
171 of genes encoding pro-inflammatory cytokines and macrophage markers in lung homogenates at
172 week 2, at which time a significant difference in lung bacillary burden was observed between
173 treatment groups. Interferon-gamma (IFN- γ) and tumor necrosis factor-alpha (TNF- α) are
174 important macrophage-activating cytokines [32], [33]. NOS2 expression in macrophages is
175 upregulated in response to Mtb infection and IFN- γ activation is required for successful bacterial
176 load reduction following pharmacological inhibition of HO-1 [21]. SnMP monotherapy was
177 associated with reduced expression of *Tnf- α* ($P = 0.005$, Fig 3C) relative to vehicle. SPaO alone
178 was associated with a further reduction in expression of *Ifn- γ* ($P = 0.002$, Fig 3B), and *Tnf- α* ($P =$
179 0.001 , Fig 3C); while SPaO + SnMP showed reduced expression of *Nos2* ($P = 0.03$, Fig 3A), *Ifn-*
180 γ ($P = 0.006$, Fig 3B), and *Tnf- α* ($P = 0.03$, Fig 3C) relative to vehicle. These results are
181 consistent with decreased cytokine production in response to reduced mean lung bacterial
182 burdens in these groups. *Nos2*, *Ifn- γ* , and *Tnf- α* expression was comparable in the lungs of mice
183 treated with SPaO or SPaO + SnMP (Fig 3A-C). Next, we looked for expression changes in the
184 mouse macrophage markers CD38 and early growth response protein 2 (EGR2), a transcriptional
185 regulator/M1 marker and a negative T-cell regulator/M2 marker, respectively [34], [35]. SnMP
186 monotherapy, but not SnMP adjunctive therapy in combination with SPaO, was associated with
187 significantly higher expression of *Cd38* ($P < 0.0001$) compared to any other treatment group (Fig
188 3D). In contrast, *Egr2* expression (Fig 3E) did not differ significantly among groups. Overall,

189 these data are consistent with reduced expression of pro-inflammatory cytokine genes as a result
190 of reduced mean lung CFU in the different treatment groups as compared to the vehicle group
191 (Table 1). However, SnMP treatment also appeared to induce the expression of *Cd38*, potentially
192 polarizing lung macrophages to an M1 phenotype, which is more effective in killing intracellular
193 *Mtb*.

194

195 **SnMP adjunctive therapy enhances the bactericidal efficacy of SPaO after 6 weeks of
196 treatment without altering relapse rates**

197 Next, we evaluated the adjunctive sterilizing activity of SnMP at different dosages (5 mg/kg and
198 10 mg/kg) in combination with SPaO. We selected treatment durations expected to yield > 50%
199 relapse rates for the backbone regimen based on the prior literature [36]. The mice were treated
200 for a total of 5 or 6 weeks, at which time the treatment was discontinued, and microbiological
201 relapse was assessed 3 months later (Fig 4A). Adjunctive therapy with SnMP 5 mg/kg (SnMP5)
202 did not significantly alter lung bacillary burdens relative to the SPaO regimen at the time points
203 assessed. However, after 6 weeks of treatment, SPaO + SnMP 10 mg/kg (SnMP10) reduced
204 mean lung bacterial burdens to $0.71 \pm 0.23 \log_{10}$ CFU, representing an additional $0.78 \log_{10}$ CFU
205 reduction ($P = 0.005$) when compared to SPaO alone (Fig 4B, Table 1). As in the bactericidal
206 activity study, the lung/body weight ratios of mice treated with adjunctive SnMP5 or SnMP10
207 did not differ statistically from that of mice treated with the SPaO control regimen after 6 weeks
208 of treatment (Fig S3A). Additionally, the lung/body weight ratios were maintained in each of the
209 treatment groups at each relapse time point (Fig S3B). After 5 weeks of treatment, all mice
210 experienced microbiological relapse with SPaO or SPaO + SnMP10 (Fig 4C). Similarly, the

211 proportion of relapsing animals was equivalent in the groups receiving SPaO and SPaO +
212 SnMP10 (66%) (Fig 4D).

213

214 **Discussion:**

215 Inhibition of HO-1 has been proposed as a potential HDT strategy associated with reduced Mtb
216 growth in vitro [37] and in vivo [20], [21]. Our study investigated the adjunctive bactericidal
217 activity of a clinical-stage HO-1 inhibitor, SnMP, in a mouse model of chronic TB, as well as its
218 adjunctive sterilizing activity when combined with an MDR-TB regimen in a murine model of
219 microbiological relapse. We found that adjunctive therapy of SnMP enhanced the bactericidal
220 activity of the SPaO regimen, but not that of the RHZ regimen, without exacerbating lung
221 inflammation. Although adjunctive therapy with SnMP10 continued to enhance the bactericidal
222 activity of SPaO after 6 weeks, it did not alter relapse rates compared to SPaO alone.

223 In contrast with prior work [20], we did not detect additive bactericidal activity of SnPP with
224 RHZ in Mtb-infected mice. These discrepant findings may be explained by methodological
225 differences in the two studies. In the current study, the administration of R was separated from
226 that of HZ to limit drug interactions [38], [39], whereas the three antibiotics were administered
227 together in the study by Costa *et al.* Furthermore, in the study by Costa *et al.*, C57BL/6 mice
228 were used, while our study used BALB/c mice. Relative to BALB/c mice, C57BL/6 mice are
229 able to more effectively limit the replication of Mtb through the development of T-cell-mediated
230 immunity [40], [41]. Interestingly, this discrepancy was observed only when SnPP was given as
231 adjunctive therapy, as we found that SnPP monotherapy reduced lung bacillary burden, as was
232 reported previously [20]. These findings highlight the challenges associated with preclinical
233 studies of HDT for TB, as the host-directed activity of these agents may be model-specific.

234

235 Our studies showed that SnMP administered alone regulated the expression of the gene encoding
236 TNF- α in the lungs. Scharn *et al.* have shown previously that SnPP reduced the secretion of
237 proinflammatory cytokines, including TNF- α , in Mtb-infected U937 cells [37], [24]. Notably,
238 CD38 expression was upregulated in Mtb-infected mouse lungs following treatment with SnMP
239 alone. Although CD38 is necessary for immune cell activation and is expressed by many
240 immune cell types [42], it appears to be a specific marker for M1 macrophage phenotypes in
241 murine models [35]. In humans and in mice, M1 macrophages play an essential role in
242 propagating a host-protective response against Mtb (reviewed in Ahmad *et al.*, 2022) [43], [44].
243 Collectively, these results highlight an immunoregulatory role for the HO-1 inhibitor SnMP
244 during Mtb infection. Additional studies are needed to further characterize the molecular
245 mechanisms by which SnMP promotes Mtb clearance by the host.

246 Based on published data suggesting the SPaO regimen, at the doses of, S 12.5 mg/kg; Pa 100
247 mg/kg; and O 100 mg/kg, is able to eradicate lung infection in Mtb-infected mice by week 6
248 [36], the relapse time points of 5 and 6 weeks were selected to evaluate the adjunctive sterilizing
249 activity of SnMP. In the current study, we found that, although SnMP increased the bactericidal
250 activity of SPaO, adjunctive therapy did not reduce relapse rates compared to the background
251 SPaO regimen. Future studies will focus on testing higher doses of SnMP and extending the
252 duration of treatment to determine the potential of SnMP adjunctive therapy in shortening the
253 duration of curative MDR treatment.

254 Consistent with prior preclinical studies [20], [21], [37], we have found that HO-1 inhibition is a
255 promising HDT strategy for TB. We show for the first time that the novel HO-1 inhibitor, SnMP,
256 enhances the bactericidal activity of the novel MDR-TB regimen SPaO in mice and modulates

257 the expression of several pro-inflammatory cytokine and macrophage marker genes, which have
258 been implicated in the control of Mtb replication in vivo, although adjunctive therapy with SnMP
259 10 mg/kg did not reduce relapse rates relative to SPaO. SnMP was well tolerated and did not
260 alter gross lung pathology or histological inflammation in the lungs. Overall, this study advances
261 our understanding of HO-1 inhibitors as potential adjunctive HDT agents for TB, but further
262 research is needed to determine the potential utility of targeting this pathway against drug-
263 susceptible and drug-resistant TB. In addition, to enhance the translational relevance of this HDT
264 approach, future medicinal chemistry studies should focus on the development of formulations
265 with favorable oral bioavailability and toxicity profiles.

266

267 **Materials and Methods:**

268 Pharmacokinetic analyses:

269 Single-dose PK studies were conducted by BioDuro Inc. (Beijing, China). SnMP and SnPP were
270 formulated in sodium phosphate buffer (pH 7.4 – 7.8) and administered by the intraperitoneal
271 route to 9–11-week-old female BALB/c mice. Three mice were used per each time point with 8
272 time points for each dose group. Blood was collected on 0.25, 0.5, 1, 2-, 4-, 8-, and 24-hours
273 post-administration and levels of compounds in plasma were quantified by liquid
274 chromatography-tandem mass spectrometry using AB Sciex API 4000 LC/MS/MS
275 instrumentation. The following PK parameters were calculated from plasma drug concentrations:
276 t_{1/2}, t_{max}, C_{max}, AUClast, AUC_{Inf}. All parameters were determined by noncompartmental
277 analysis using WinNonLin software 8.0.

278

279 Bacteria and growth conditions:

280 Wild-type Mtb H37Rv was grown in Middlebrook 7H9 broth (Difco, Sparks, MD) supplemented
281 with 10% oleic acid-albumin-dextrose- catalase (OADC) (Difco, Sparks, MD), 0.2% glycerol,
282 and 0.05% Tween-80 at 37°C in a roller bottle.

283

284 *M. tuberculosis* infection of mice:

285 Wild-type Mtb H37Rv cultures were grown to an OD₆₀₀ of 0.8-1, followed by 1:200 dilution in
286 7H9 broth (as stated above). 10 mL of the diluted bacterial culture was used as the inoculum for
287 aerosol infection. Female BALB/c (6-8-week-old, Jackson Laboratory) were aerosol-infected
288 with ~100 bacilli of Mtb H37Rv using the Glas-Col Inhalation Exposure System (Terre Haute,
289 IN). Animals were equally distributed in the five chambers of the Glas-Col machine to ensure
290 equal infection amongst all animals. The inoculating culture was plated in serial tenfold dilutions
291 on the day of infection on Middlebrook 7H11 agar containing 10% OADC. On the day post-
292 infection, 5 mice were sacrificed, the lungs were homogenized using glass homogenizers and
293 plated on 7H11 agar containing 10% OADC to enumerate the implanted CFU (Fig 1).

294

295 Antibiotic and HDT treatment preparation:

296 Protoporphyrin IX (SnPP) (Evotec, US) and stannsoporfin (SnMP) (Evotec, US) were prepared
297 with sodium phosphate buffer (pH to 7.4-7.8 with HCl). Rifampin (R), isoniazid (H) and
298 pyrazinamide (Z) (Sigma-Aldrich) were dissolved in deionized water. Pretomanid (Pa) (RTI)
299 was dissolved in deionized water containing cyclodextrin micelle (CM-2) formulation, 10%
300 hydroxypropyl-β-cyclodextrin (HPCD) (Sigma) and 10% lecithin (ICN Pharmaceuticals Inc.,
301 Aurora, OH); TBAJ-876 (S) (Evotec, US) was prepared in 20% HPCD solution acidified with
302 1.5% 1N HCl, pH 3; and TBI-223 (O) (Evotec, US) was prepared in 0.5% Methylcellulose. The

303 vehicle administered was either CM-2 formulation containing 10% HPCD (Sigma) and 10%
304 lecithin (ICN Pharmaceuticals Inc., Aurora, OH) to mock Pa, 0.5% methylcellulose to mock O or
305 20% HPCD solution acidified with 1.5% 1N HCl to mock S. Vehicle of drugs were made in big
306 batches and the drugs were dissolved into their corresponding vehicles weekly.

307

308 Antibiotic and HDT doses and administration:

309 In the bactericidal activity studies, the mice received one of the following regimens beginning 28
310 days after aerosol infection: 1) Vehicle (negative control); 2) SnPP 10 mg/kg; 3) SnMP 5 mg/kg;
311 4) R 10 mg/kg, H 25 mg/kg, Z 150 mg/kg (collectively, RHZ); 5) S 6.25 mg/kg, Pa 30 mg/kg
312 and O 45 mg/kg (collectively, SPaO); 6) R 10 mg/kg, H 25 mg/kg, P 150 mg/kg, SnPP 10
313 mg/kg; 7) R 10 mg/kg, H 25 mg/kg, P 150 mg/kg, SnMP 5 mg/kg; 8) S 6.25 mg/kg, Pa 30
314 mg/kg, O 45 mg/kg, SnPP 10 mg/kg; 9) S 6.25 mg/kg, Pa 30 mg/kg, O 45 mg/kg, SnMP 5 mg/kg
315 . The HO-1 inhibitors were given once daily by intraperitoneal injection (IP). PK analysis of the
316 HO-1 inhibitors was conducted at 5 mg/kg and 10 mg/kg to test which dosages achieved similar
317 plasma concentrations. There results also confirmed that the dosages achieved human-equivalent
318 doses [45]. The other drugs were given orally by esophageal cannulation once daily, except for
319 Pa and O, which were given twice daily separated by at least 4 hours. For the RHZ regimen, R
320 was given first, and two hours later, H and Z were administered. The vehicle was administered
321 via gavage to control mice concurrently with treatments containing active compounds to
322 experimental mice.

323

324 In the relapse model studies, the mice received one of the following regimens beginning 28 days
325 after aerosol infection: 1) Vehicle (negative control); 2) S 6.25 mg/kg, Pa 30 mg/kg, O 45 mg/kg;

326 3) S 6.25 mg/kg, Pa 30 mg/kg, O 45 mg/kg, SnMP 5 mg/kg; or 4) S 6.25 mg/kg, Pa 30 mg/kg, O
327 45 mg/kg, SnMP 10mg/kg. The discrepancies in numbers of animals between relapse groups is
328 due to unexpected mortality from excessive gavage volume when the drugs were prepared
329 separately at the start of therapy. Beginning in week 2, 2X concentrations of Pa and O were
330 made and, at the time of administration, Pa and O were mixed at equal volumes to make a single
331 gavage volume of 0.2 mL, which was tolerated well by the mice.

332

333 For both studies (except for the relapse time points, for which both lobes of the lung were
334 homogenized and plated), the right lung and 3/5 of the left lung of each mouse were
335 homogenized using glass homogenizers, and serial tenfold dilutions of lung homogenates in PBS
336 were plated on Middlebrook 7H11 agar containing 0.4% activated charcoal to reduce the effects
337 of drug carryover at the indicated time points; entire lung homogenates from relapse animals
338 were plated on charcoal-containing 7H11 agar for consistency. Plates were incubated at 37°C
339 and CFU were counted 4 weeks later. The CFU per lung data were calculated using lung
340 weights, which were measured at the time of organ harvest. For the animals in the relapse
341 groups, the entire lung was used for CFU determination. Microbiological relapse was defined as
342 the presence of 1 or more colonies in plated lung homogenates. All procedures were performed
343 according to protocols approved by the Johns Hopkins University Institutional Animal Care and
344 Use Committee.

345

346 Measurement of lung/body weight ratio:

347 Lung and body weight measurements in milligrams (mg) and grams (g), respectively, were taken
348 at the time of harvest using weight scales. The lung/body weight ratio was calculated by dividing
349 lung(g)/body(g) weight and then multiplying by 100.

350

351 Quantitative analysis of lung histopathology

352 At the time of harvest, the left lung medial apex to base was sectioned and fixed with
353 4% paraformaldehyde (PFA). After a 24-hour incubation in 4% PFA, the lung section was
354 transferred to PBS and sent in for processing. The paraffin blocks of lung samples were
355 processed to obtain three sections per lung spaced 12 μ m apart for hematoxylin and eosin
356 staining. Each lung section was sectioned to 4 μ m. Each slide was scanned by a brightfield
357 microscope at the JHU Oncology Tissue Core Center to obtain digital 40X images. Quantitative
358 analysis was performed by JRC and AY blinded to treatment allocation and mouse strain. For
359 each treatment group, a total of 15 scanned slides (3 slides per mice) were reviewed. Regions of
360 interest corresponding to the absolute areas of total lung surface area and inflammation were
361 manually drawn and their area quantified using the open-source software QuPath
362 (<https://qupath.github.io/>). Inflammation was defined as: 1. “Lymphocytic cuffs”, areas of high
363 cell density due to the predominance of lymphocytes, which are smaller cells with scant
364 cytoplasm; 2. Regions dense with macrophages, which have relatively large amounts of
365 cytoplasm. The lung inflammation to whole surface area was quantified and multiplied by 100 to
366 obtain the percentage.

367

368 Cytokine or cell marker gene expression:

369 A section of the left lower lobe (~ 1/5 of the left lung) was flash-frozen in liquid nitrogen at the
370 time of harvest and later lysed in TRIzol using a hard tissue homogenizing kit (CK28-R,
371 Percellys) with the manufacturer-recommended bead-beating protocol (Percellys Evolution;
372 8,500 rpm, three 15-s cycles with 30-s breaks on ice after each cycle). Total RNA was extracted
373 using the miRNeasy minikit (217004, Qiagen). RT-qPCR sequences for each primer pair were
374 ordered from IDT and are listed in the supplementary material Table 2. Two-step RT-qPCR was
375 performed on a StepOnePlus real-time PCR system (ThermoFisher Scientific) using the high-
376 capacity RNA-to-cDNA kit (4387406, ThermoFisher Scientific), followed by Power SYBR
377 green PCR master mix (436877, Applied Biosystems). All samples were tested with three
378 technical replicates. Target gene expression (cycle threshold (Ct) values) were normalized
379 relative to the housekeeping gene *β-actin*. The Ct value for each gene in infected test samples
380 was then normalized to that of uninfected samples and mRNA expression fold change was
381 determined by the $\Delta\Delta Ct$ method.

382

383 **Statistics:**

384 The differences between groups were assessed using an ordinary one-way ANOVA followed by
385 different multiple comparison tests or Welch's ANOVA test (depending on the spread of the
386 data) as stated on the figure panel description. The Prism software (GraphPad, San Diego, CA,
387 USA) version 9 was utilized for this analysis. Results were considered statistically significant
388 when the p-value was less than 0.05. The Pearson's correlation coefficient was calculated using
389 the Prism software.

390

391 **Supplemental material:**

392 **Figure S1:** Plasma pharmacokinetic parameters for SnPP and SnMP in mice.

393 **Figure S2:** Lung/body weight ratio correlates with lung bacterial burden after 2, 4 and 6 weeks

394 of treatment.

395 **Figure S3:** Mouse lung/body weight ratio after 6 weeks of treatment and at the relapse time

396 point.

397 **Table 1:** Lung CFU count for time course and relapse study.

398 **Table 2:** RT-qPCR sequences for each primer pair.

399

400 **Author Contributions:**

401 PN, SKa, NS, and PCK conceived and designed the time course study. NS provided data and the

402 description for the pharmokinetic study. PN, SKa, SA administered the therapies; PN, SKa, SKr,

403 performed animal haversting, tissue sectioning and weight collection, imaged lungs, plated the

404 homogenates of the infected lungs, collected CFU and analysed CFU data for the time course

405 study. JRC performed data analysis for the lung/body weight ratio, and the lung/body weight

406 ratio vs CFU correlation. JRC & AY performed the quantitative histology analysis. JRC

407 extracted RNA from lung tissue. JRC and DQ performed RTqPCR experiements, and performed

408 data analysis. JRC, PN, Ska, NS, and PCK conceived and designed the relapse study. JRC, and

409 PN administered the therapies for the relapse study. JRC, PN, and Ska performed animal

410 haversting, tissue sectioning and weight collection; PN, JRC, and AG plated the homogenates of

411 the infected lungs; JRC, PN performed CFU data collection and analysis for the relapse study.

412 JRC, and PCK drafted the manuscript. JRC, PN, Ska, SKr, DQ, AG, SA, AY, DLC, AS, NF, NS,

413 and PCK interpreted the data and edited the manuscript. All authors edited and approved the

414 final manuscript.

415

416 **Acknowledgments:** These studies were supported by NIAID/NIH grant K24AI143447 and a
417 grant from the TB Alliance to PCK. AS is supported by the intramural research program of the
418 NIAID. We thank the Oncology Tissue Services (SKCCC) at JHU supported by the P30
419 CA006973 grant for their services and for imaging the H&E-stained slides. We gratefully
420 acknowledge the assistance of Michael Urbanowski, MD, PhD, for his training and guidance in
421 the histopathological quantification of the lung tissues.

422

423 **Ethics statement:** The animal study was reviewed and approved by Johns Hopkins University
424 Institutional Animal Care and Use Committee. The animal welfare assurance number is D16-
425 00173 (A3272-01). JHU is registered with the USDA to conduct animal research and has
426 maintained active AAALAC accreditation since 10/4/1974.

427

428 **References:**

429 [1] World Health Organization, “Global Tuberculosis Report 2022,” 2022. [Online].
430 Available: <http://apps.who.int/bookorders>.

431 [2] K. J. Seung, S. Keshavjee, and M. L. Rich, “Multidrug-resistant tuberculosis and
432 extensively drug-resistant tuberculosis,” *Cold Spring Harb Perspect Med*, vol. 5, no. 9,
433 Sep. 2015, doi: 10.1101/cshperspect.a017863.

434 [3] E. Pontali *et al.*, “Regimens to treat multidrug-resistant tuberculosis: Past, present and
435 future perspectives,” *European Respiratory Review*, vol. 28, no. 152. European
436 Respiratory Society, 2019. doi: 10.1183/16000617.0035-2019.

437 [4] C. Lange, D. Chesov, J. Heyckendorf, C. C. Leung, Z. Udwadia, and K. Dheda, “Drug-
438 resistant tuberculosis: An update on disease burden, diagnosis and treatment,”
439 *Respirology*, vol. 23, no. 7, pp. 656–673, Jul. 2018, doi: 10.1111/resp.13304.

440 [5] D. J. Frank *et al.*, “Remembering the host in tuberculosis drug development,” in *Journal*
441 *of Infectious Diseases*, Oxford University Press, May 2019, pp. 1518–1524. doi:
442 10.1093/infdis/jiy712.

443 [6] G. Kilinç, A. Saris, T. H. M. Ottenhoff, and M. C. Haks, “Host-directed therapy to combat
444 mycobacterial infections*,” *Immunological Reviews*, vol. 301, no. 1. John Wiley and Sons
445 Inc, pp. 62–83, May 01, 2021. doi: 10.1111/imr.12951.

446 [7] R. Tenhunen, H. S. Marver, and R. Schmid, “The enzymatic conversion of heme to
447 bilirubin by microsomal heme oxygenase.,” *Proc Natl Acad Sci U S A*, vol. 61, no. 2, pp.
448 748–55, Oct. 1968, doi: 10.1073/pnas.61.2.748.

449 [8] S. W. Ryter and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: From metabolism
450 to molecular therapy,” *American Journal of Respiratory Cell and Molecular Biology*, vol.
451 41, no. 3. pp. 251–260, Sep. 01, 2009. doi: 10.1165/rcmb.2009-0170TR.

452 [9] M. D. Maines, “THE HEME OXYGENASE SYSTEM: A Regulator of Second
453 Messenger Gases,” 1997. [Online]. Available: www.annualreviews.org

454 [10] S. W. Ryter and R. M. Tyrrell, “The heme synthesis and degradation pathways: role in
455 oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties.,” *Free*
456 *Radic Biol Med*, vol. 28, no. 2, pp. 289–309, Jan. 2000, doi: 10.1016/s0891-
457 5849(99)00223-3.

458 [11] N. Rockwood *et al.*, “Mycobacterium tuberculosis induction of heme oxygenase-1
459 expression is dependent on oxidative stress and reflects treatment outcomes,” *Front
460 Immunol*, vol. 8, no. MAY, May 2017, doi: 10.3389/fimmu.2017.00542.

461 [12] A. Kumar, A. Farhana, L. Guidry, V. Saini, M. Hondalus, and A. J. C. Steyn, “Redox
462 homeostasis in mycobacteria: the key to tuberculosis control?,” *Expert reviews in
463 molecular medicine*, vol. 13. 2011. doi: 10.1017/s1462399411002079.

464 [13] M. H. Kapturczak *et al.*, “Animal Model Heme Oxygenase-1 Modulates Early
465 Inflammatory Responses Evidence from the Heme Oxygenase-1-Deficient Mouse,” 2004.

466 [14] B. Wegiel *et al.*, “Carbon monoxide expedites metabolic exhaustion to inhibit tumor
467 growth,” *Cancer Res*, vol. 73, no. 23, pp. 7009–7021, Dec. 2013, doi: 10.1158/0008-
468 5472.CAN-13-1075.

469 [15] L. E. Otterbein *et al.*, “Carbon monoxide has anti-inflammatory effects involving the
470 mitogen-activated protein kinase pathway,” *Nat Med*, vol. 6, no. 4, pp. 422–428, Apr.
471 2000, doi: 10.1038/74680.

472 [16] M. P. Soares and F. H. Bach, “Heme oxygenase-1: from biology to therapeutic potential,”
473 *Trends Mol Med*, vol. 15, no. 2, pp. 50–58, Feb. 2009, doi:
474 10.1016/j.molmed.2008.12.004.

475 [17] Y. Naito, T. Takagi, and Y. Higashimura, “Heme oxygenase-1 and anti-inflammatory M2
476 macrophages,” *Archives of Biochemistry and Biophysics*, vol. 564. Academic Press Inc.,
477 pp. 83–88, Dec. 15, 2014. doi: 10.1016/j.abb.2014.09.005.

478 [18] S. C. Funes, M. Rios, J. Escobar-Vera, and A. M. Kalergis, “Implications of macrophage
479 polarization in autoimmunity,” *Immunology*, vol. 154, no. 2. Blackwell Publishing Ltd,
480 pp. 186–195, Jun. 01, 2018. doi: 10.1111/imm.12910.

481 [19] S. O'Leary, M. P. O'Sullivan, and J. Keane, "IL-10 blocks phagosome maturation in
482 Mycobacterium tuberculosis-infected human macrophages," *Am J Respir Cell Mol Biol*,
483 vol. 45, no. 1, pp. 172–180, Jul. 2011, doi: 10.1165/rcmb.2010-0319OC.

484 [20] D. L. Costa *et al.*, "Pharmacological inhibition of host heme oxygenase-1 suppresses
485 mycobacterium tuberculosis infection in vivo by a mechanism dependent on T
486 lymphocytes," *mBio*, vol. 7, no. 5, Sep. 2016, doi: 10.1128/mBio.01675-16.

487 [21] D. L. Costa *et al.*, "Heme oxygenase-1 inhibition promotes IFN γ - and NOS2-mediated
488 control of Mycobacterium tuberculosis infection," *Mucosal Immunol*, vol. 14, no. 1, pp.
489 253–266, Jan. 2021, doi: 10.1038/s41385-020-00342-x.

490 [22] American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, "Management of
491 hyperbilirubinemia in the newborn infant 35 or more weeks of gestation.," *Pediatrics*, vol.
492 114, no. 1, pp. 297–316, Jul. 2004, doi: 10.1542/peds.114.1.297.

493 [23] T. D. Burt, L. Seu, J. E. Mold, A. Kappas, and J. M. McCune, "Naive Human T Cells Are
494 Activated and Proliferate in Response to the Heme Oxygenase-1 Inhibitor Tin
495 Mesoporphyrin," *The Journal of Immunology*, vol. 185, no. 9, pp. 5279–5288, Nov. 2010,
496 doi: 10.4049/jimmunol.0903127.

497 [24] B. W. Allwood *et al.*, "Post-tuberculosis lung health: Perspectives from the First
498 International Symposium," in *International Journal of Tuberculosis and Lung Disease*,
499 International Union Against Tuberculosis and Lung Disease (The Union), Aug. 2020, pp.
500 820–828. doi: 10.5588/ijtld.20.0067.

501 [25] J. G. Pasipanodya *et al.*, "Pulmonary impairment after tuberculosis and its contribution to
502 TB burden," *BMC Public Health*, vol. 10, 2010, doi: 10.1186/1471-2458-10-259.

503 [26] F. J. Leong, V. Dartois, and T. Dick, Eds., *A Color Atlas of Comparative Pathology of*
504 *Pulmonary Tuberculosis*, 1st Edition. CRC Press, 2010. doi: 10.1201/EBK1439835272.

505 [27] K. D. Poss and S. Tonegawa, “Heme oxygenase 1 is required for mammalian iron
506 reutilization,” 1997. [Online]. Available: www.pnas.org.

507 [28] J. P. Juncos *et al.*, “Anomalous renal effects of tin protoporphyrin in a murine model of
508 sickle cell disease,” *American Journal of Pathology*, vol. 169, no. 1, pp. 21–31, 2006, doi:
509 10.2353/ajpath.2006.051195.

510 [29] C. E. Bunse *et al.*, “Modulation of heme oxygenase-1 by metalloporphyrins increases anti-
511 viral T cell responses,” *Clin Exp Immunol*, vol. 179, no. 2, pp. 265–276, Feb. 2015, doi:
512 10.1111/cei.12451.

513 [30] J. M. Cicchese *et al.*, “Dynamic balance of pro- and anti-inflammatory signals controls
514 disease and limits pathology,” *Immunol Rev*, vol. 285, no. 1, pp. 147–167, Sep. 2018, doi:
515 10.1111/imr.12671.

516 [31] M. K. K. Niazi, G. Beamer, and M. N. Gurcan, “Detecting and characterizing cellular
517 responses to *Mycobacterium tuberculosis* from histology slides,” *Cytometry A*, vol. 85,
518 no. 2, pp. 151–61, Feb. 2014, doi: 10.1002/cyto.a.22424.

519 [32] N. V. Serbina and J. L. Flynn, “Early Emergence of CD8 T Cells Primed for Production of
520 Type 1 Cytokines in the Lungs of *Mycobacterium tuberculosis*-Infected Mice,” 1999.

521 [33] I. E. A. Flesch and S. H. E. Kaufmann, “Activation of Tuberculostatic Macrophage
522 Functions by Gamma Interferon, Interleukin-4, and Tumor Necrosis Factor,” 1990.

523 [34] M. Safford *et al.*, “Egr-2 and Egr-3 are negative regulators of T cell activation,” *Nat*
524 *Immunol*, vol. 6, no. 5, pp. 472–480, 2005, doi: 10.1038/ni1193.

525 [35] K. A. Jablonski *et al.*, “Novel markers to delineate murine M1 and M2 macrophages,”
526 *PLoS One*, vol. 10, no. 12, Dec. 2015, doi: 10.1371/journal.pone.0145342.

527 [36] S. Y. Li *et al.*, “Next-Generation Diarylquinolines Improve Sterilizing Activity of
528 Regimens with Pretomanid and the Novel Oxazolidinone TBI-223 in a Mouse
529 Tuberculosis Model,” *Antimicrob Agents Chemother*, vol. 67, no. 4, Apr. 2023, doi:
530 10.1128/aac.00035-23.

531 [37] C. R. Scharn *et al.*, “Heme Oxygenase-1 Regulates Inflammation and Mycobacterial
532 Survival in Human Macrophages during *Mycobacterium tuberculosis* Infection,” *The
533 Journal of Immunology*, vol. 196, no. 11, pp. 4641–4649, Jun. 2016, doi:
534 10.4049/jimmunol.1500434.

535 [38] J. Grosset, C. Truffot-Pernot, C. Lacroix, and B. Ji, “Antagonism between isoniazid and
536 the combination pyrazinamide-rifampin against tuberculosis infection in mice.,”
537 *Antimicrob Agents Chemother*, vol. 36, no. 3, pp. 548–51, Mar. 1992, doi:
538 10.1128/AAC.36.3.548.

539 [39] Z. Ahmad *et al.*, “Comparison of the ‘Denver regimen’ against acute tuberculosis in the
540 mouse and guinea pig.,” *J Antimicrob Chemother*, vol. 65, no. 4, pp. 729–34, Apr. 2010,
541 doi: 10.1093/jac/dkq007.

542 [40] A. M. Cooper, “Cell-mediated immune responses in tuberculosis,” *Annual Review of
543 Immunology*, vol. 27, pp. 393–422, 2009. doi: 10.1146/annurev.immunol.021908.132703.

544 [41] J. L. Flynn and J. Chan, “Immunology of tuberculosis.,” *Annu Rev Immunol*, vol. 19, pp.
545 93–129, 2001, doi: 10.1146/annurev.immunol.19.1.93.

546 [42] W. Li *et al.*, “CD38: A Significant Regulator of Macrophage Function,” *Frontiers in
547 Oncology*, vol. 12. Frontiers Media S.A., Feb. 17, 2022. doi: 10.3389/fonc.2022.775649.

548 [43] F. Ahmad *et al.*, “Macrophage: A Cell With Many Faces and Functions in Tuberculosis,”
549 *Frontiers in Immunology*, vol. 13. Frontiers Media S.A., May 06, 2022. doi:
550 10.3389/fimmu.2022.747799.

551 [44] A. Khan *et al.*, “Human M1 macrophages express unique innate immune response genes
552 after mycobacterial infection to defend against tuberculosis,” *Commun Biol*, vol. 5, no. 1,
553 Dec. 2022, doi: 10.1038/s42003-022-03387-9.

554 [45] Food and Drug Administration and GASTROINTESTINAL DRUGS ADVISORY
555 COMMITTEE and the PEDIATRIC ADVISORY COMMITTEE, “Stannsoporfin -
556 Proposed for the treatment of neonates greater than or equal to 35 weeks of gestational age
557 with indicators of hemolysis who are at risk of developing severe hyperbilirubinemia,”
558 May 2018. Accessed: Aug. 01, 2023. [Online]. Available:
559 <https://fda.report/media/112936/FDA-Briefing-Information-for-the-May-3--2018-Joint->
560 [Meeting-of-the-Gastrointestinal-Drugs-Advisory-Committee-and-the-Pediatric-Advisory-](https://fda.report/media/112936/FDA-Briefing-Information-for-the-May-3--2018-Joint-)
561 [Committee.pdf](https://fda.report/media/112936/FDA-Briefing-Information-for-the-May-3--2018-Joint-)

562

563 **Figures:**

564

565 **Figure 1: HO-1 inhibitors increase the antitubercular activity of a novel MDR regimen in a
566 mouse model of chronic TB.**

567 A) Experimental design of mouse experiments. Each line represents a different treatment group
568 and length of treatment. BALB/c mice were aerosol-infected with ~100 bacilli of Mtb H37Rv.
569 Treatment was initiated 4 weeks after aerosol infection. B) CFU means \pm standard deviation (SD)
570 of lung bacillary burden after treatment initiation (week 0). Scatterplot of lung mycobacterial
571 burden after 2 weeks C), 4 weeks D) or 6 weeks E) of treatment. Each point represents the CFU

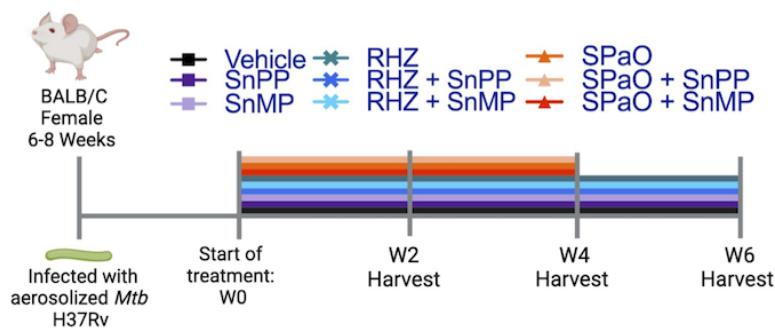
572 per mouse lung from individual, the error bars represent the mean \pm SD. RHZ:
573 rifampin/isoniazid/pyrazinamide; SPaO: TBAJ-876/pretomanid/TBI-223; SnPP: tin-
574 protoporphyrin IX; SnMP: stannsoporfin; CFU: colony-forming units. For panels B-E, each
575 experimental group consisted of four to five mice. For panels C-E, statistical analysis was
576 performed by an ordinary one-way ANOVA followed by Dunnett's correction to control for
577 multiple comparisons and Bonferroni correction for treatment groups with the same antibiotic
578 backbone. * = $P < 0.05$; ** = $P < 0.01$; *** = $P < 0.001$; **** = $P < 0.0001$; ns: not significant.

579

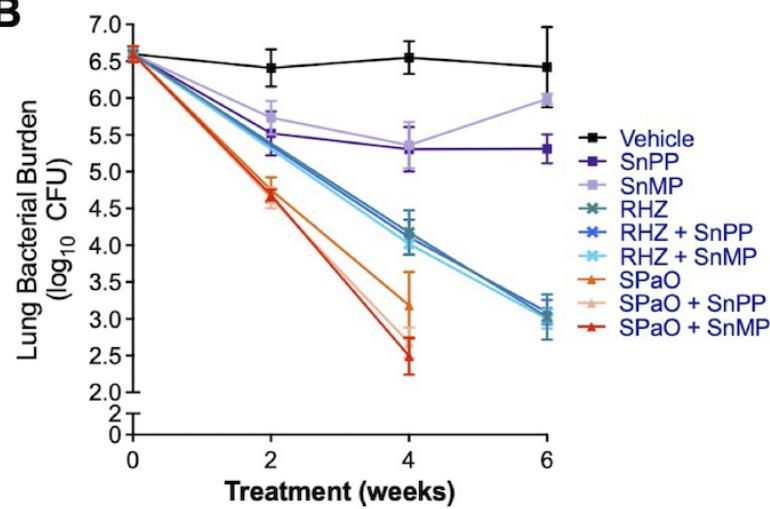
580 **Figure 2: SnMP adjunctive therapy does not exacerbate gross lung inflammation.**
581 A, B, C) Scatterplot of lung/body weight ratio. D) Image of the right lung at time of harvest after
582 4 weeks of treatment. Scale bar = 1 cm. E) Hematoxylin and eosin staining of left lung medial
583 apex to base sections demonstrating the histopathology of different treatment groups after 4
584 weeks of treatment. Top row are representative histopathology images of the groups. Bottom row
585 are areas of inflammation within the images above (magnification of the black boxes above). F)
586 Quantitative analysis of histopathology after 4 weeks of treatment for selected groups. g: grams;
587 RHZ: rifampin/isoniazid/pyrazinamide; SPaO: TBAJ-876 (S)/pretomanid (Pa)/TBI-223 (O);
588 SnPP: tin-protoporphyrin IX; SnMP: stannsoporfin. For panels A-C and F, each point represents
589 data from individual mice, each experimental group consisted of four to five mice, and the bar
590 represents the means \pm SD. Statistical analysis was performed by an ordinary one-way ANOVA
591 followed by Tukeys multiple comparison test for panels A-C and for panel F, Welch's ANOVA
592 test was conducted. ns: not significant; ** = $P < 0.001$; *** = $P < 0.001$; **** = $P < 0.0001$.

593

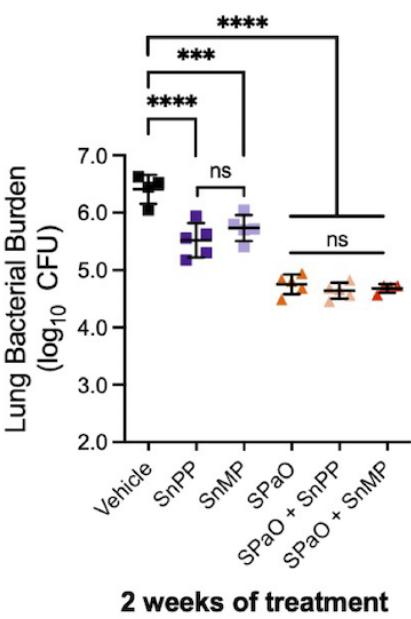
594 **Figure 3: Genes encoding M1 macrophage markers were upregulated in the lungs after two**
595 **weeks of treatment with SnMP.**

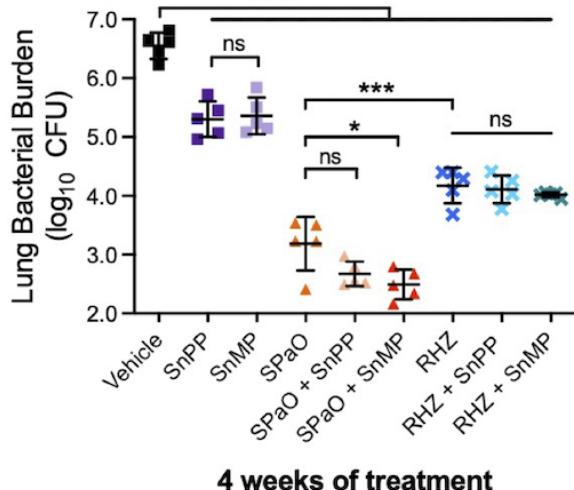

596 RT-cPCR was performed for the expression of the following genes in snap-frozen lung
597 homogenates: A) *Nos2*; B) *Ifn- γ* ; C) *Tnf- α* ; D) *Cd38*; E) *Egr2*. The dotted line represents the
598 uninfected normalization of mRNA expression, SPaO: TBAJ-876 (S)/Pretomanid (Pa)/TBI-223
599 (O); SnMP: stannsoporfin. Each bar represents a treatment group consisting of three to five mice.
600 Data represent individual data points with means \pm SD of the results. Panel A was analysed by
601 the Welch's ANOVA test while panels B-E were tested by an ordinary one-way ANOVA
602 followed by Tukeys multiple comparison test. ns: not significant. * = $P < 0.05$; ** = $P < 0.001$;
603 *** = $P < 0.001$, **** = $P < 0.0001$.

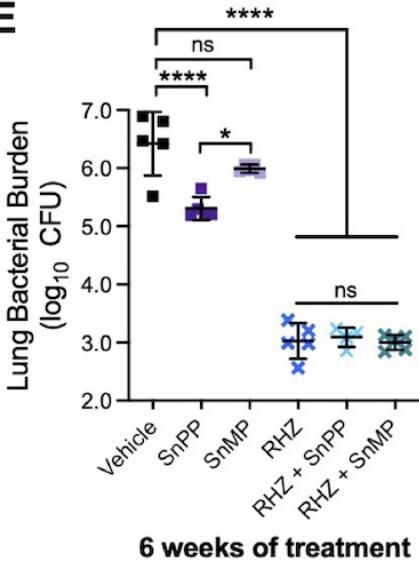
604

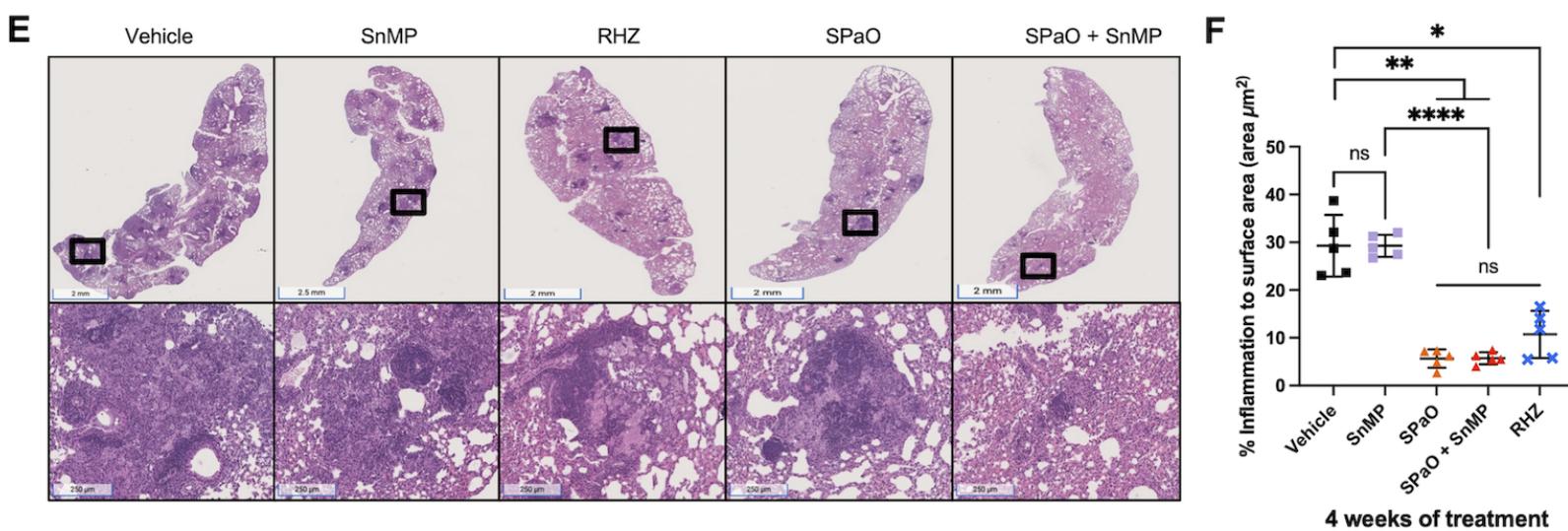
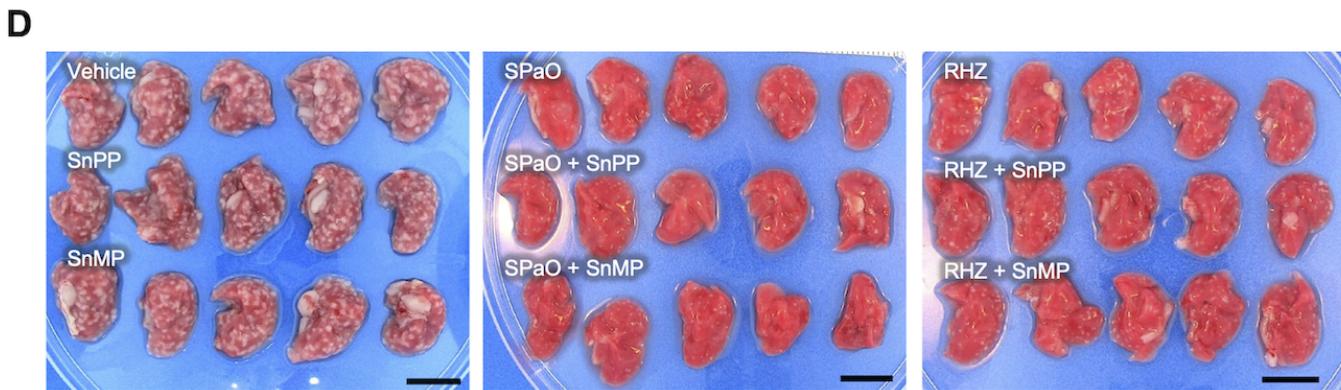
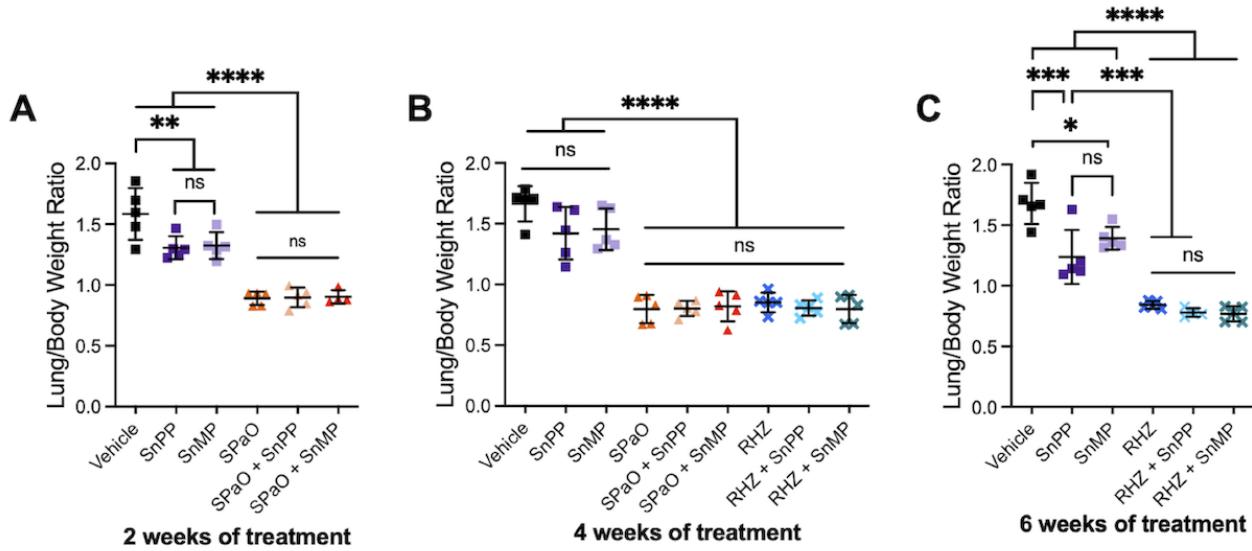

605 **Figure 4: Adjunctive treatment with SnMP did not help reduce relapse rates after 6 weeks**
606 **of treatment.**

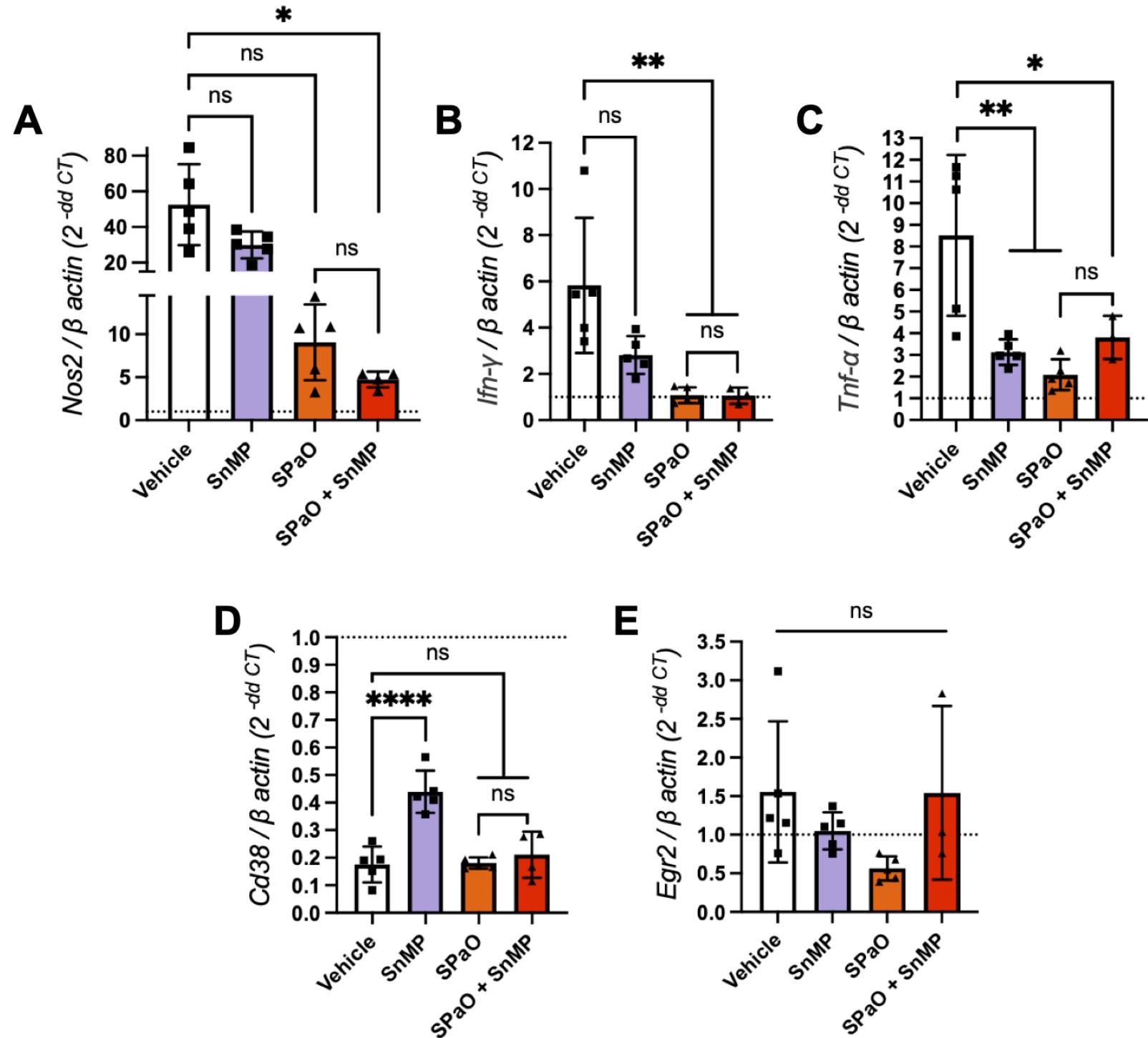
607 A) Experimental design of mouse experiment. Each line represents a different treatment group
608 and length of treatment. B) Lung bacillary burden after 6 weeks of treatment. Relapse study
609 statistics containing the % relapsed animals, and animals above a $3 \log_{10}$ CFU after completing 5
610 C) or 6 D) weeks of treatment and a three month wait period (+ 3M). W0= Week 0, W5= Week
611 5, W6= Week 6, SPaO: TBAJ-876(S)/Pretomanid(Pa)/TBI-223(O), Stannsoporfin: SnMP,
612 SnMP5: SnMP 5 mg/kg, SnMP10: SnMP 10 mg/kg. Data in panel B represent four to five mice
613 per treatment group. Statistical analysis was performed by an ordinary one-way ANOVA
614 followed by Tukeys multiple comparison test. Data in panel C and D represent nine to twenty-
615 two mice per treatment group. * = $P < 0.01$, ** = $P < 0.001$; *** = $P < 0.0001$, ns: not
616 significant.


A

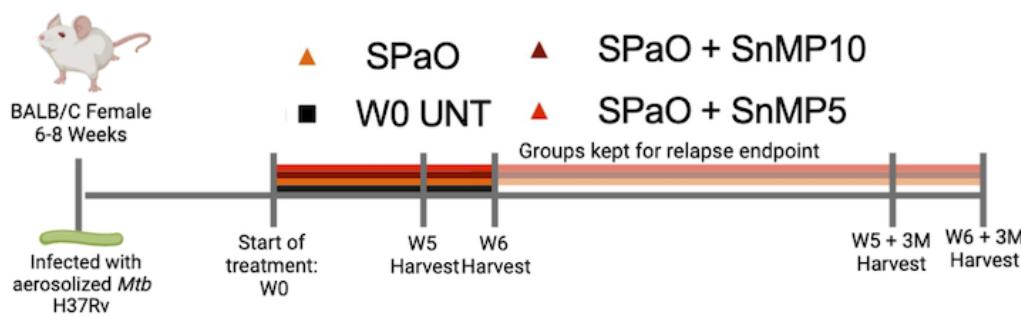

B


C

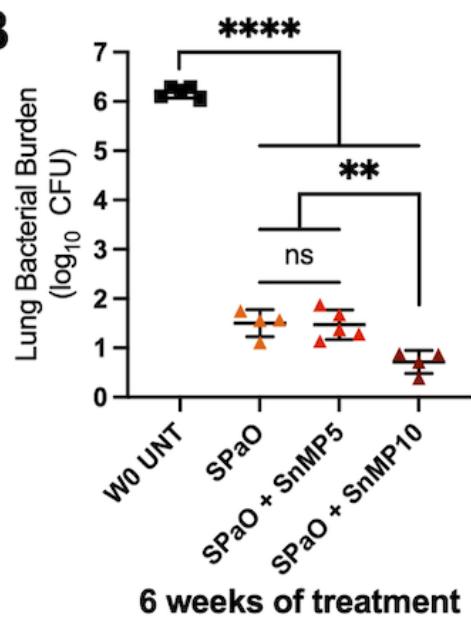



D



E



6 weeks of treatment



A

B

C

5 weeks + 3M group		
Treatment	Animals Relapsed (%)	% Animals above 3 \log_{10} CFU
SPaO	9/9 (100)	100
SPaO + SnMP5	20/22 (90)	80
SPaO + SnMP10	18/18 (100)	61

D

6 weeks + 3M group		
Treatment	Animals Relapsed (%)	% Animals above 3 \log_{10} CFU
SPaO	6/9 (66)	66
SPaO + SnMP5	13/17 (76)	46
SPaO + SnMP10	12/18 (66)	33

Regimen	Mean lung \log_{10} CFU count (\pm SD) at:				
	dpi	W0	W2	W4	W6
Untreated time course		3.19 ± 0.04	6.59 ± 0.10		
Vehicle			6.40 ± 0.25	6.55 ± 0.22	6.42 ± 0.54
SnPP			5.52 ± 0.29	5.30 ± 0.30	5.30 ± 0.19
SnMP			5.73 ± 0.22	5.36 ± 0.31	5.98 ± 0.06
RHZ				4.17 ± 0.30	3.02 ± 0.30
RHZ + SnPP				4.11 ± 0.23	3.09 ± 0.16
RHZ + SnMP				4.01 ± 0.04	3.00 ± 0.12
SPaO			4.75 ± 0.17	3.18 ± 0.45	
SPaO + SnPP			4.64 ± 0.13	2.67 ± 0.20	
SPaO + SnMP5			4.68 ± 0.07	2.49 ± 0.25	
Untreated relapse	2.52 ± 0.10	6.18 ± 0.11			
SPaO					1.49 ± 0.27
SPaO + SnMP5					1.47 ± 0.30
SPaO + SnMP10					0.71 ± 0.23

Table 1: Lung CFU count for time course and relapse study.

dpi = day post infection; W0 = week 0 (start of treatment); W2 = Week 2; W4 = Week 4; W5 = Week 5; W6 = Week 6

Gene name	Forward primer 5' to 3'	Reverse primer 5' to 3'	Reference
<i>β-actin</i>	AGCTGCGTTTACACCCTT	AAGCCATGCCAATGTTGTCT	PMID: 32862202
<i>Nos2</i>	CGAAACGCTTCACTTCAA	TGAGCCTATATTGCTGTGGCT	PMID: 32862202
<i>Ifn-γ</i>	CGATCTTGGCTTGCAGCT	CCTTTTCGCCTTGCTGTTG	PMID: 32862202
<i>Tnf-α</i>	GCCTCTTCTCATTCCCTGCTTG	CTGATGAGAGGGAGGCCATT	PMID: 21810933
<i>Cd38</i>	TCTCTAGGAAAGCCCAGATC	AGAAAAGTGCTTCGTGGTAG	PMID: 36351893
<i>Egr2</i>	CGCCACACCAAGATCCAC	AGCCCCCAGGACCAGAGG	PMID: 22049075

Table 2: RT-qPCR sequences for each primer pair.