

1 **100 years of anthropogenic impact causes changes in freshwater functional biodiversity**

2 Niamh Eastwood^{*1}, Jiarui Zhou^{*1}, Romain Derelle¹, Mohamed Abou-Elwafa Abdallah²,

3 William A. Stubbings², Yunlu Jia³, Sarah E. Crawford³, Thomas A. Davidson⁴, John K.

4 Colbourne¹, Simon Creer⁵, Holly Bik⁶, Henner Hollert^{3,7,8} and Luisa Orsini^{1, 9}

5

6 ¹Environmental Genomics Group, School of Biosciences, the University of Birmingham,

7 Birmingham B15 2TT, UK

8 ²School of Geography, Earth & Environmental Sciences, University of Birmingham,

9 Birmingham, B15 2TT, UK

10 ³ Department Evolutionary Ecology & Environmental Toxicology, Faculty of Biological

11 Sciences, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main,

12 Germany

13 ⁴Lake Group, Department of Ecosystem Science, Aarhus University, C.F. Møllers Allé, 8000 Aarhus,

14 Denmark

15 ⁵School of Natural Sciences, Environment Centre Wales, Deiniol Road, Bangor University,

16 Gwynedd LL57 2UW, UK

17 ⁶Department Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens,

18 Georgia, USA

19 ⁷LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG),

20 Senckenberganlage 25, 60325 Frankfurt am Main, Germany

21 ⁸Department Media-related Toxicology, Institute for Molecular Biology and Applied Ecology

22 (IME), Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany

23 ⁹The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK

24

25

26 *These authors contributed equally

27 Corresponding author:

28 Niamh Eastwood

29 Environmental Genomics Group

30 NXE435@student.bham.ac.uk

31

32

33 Keywords: sedaDNA, machine learning, freshwater, multilocus metabarcoding, functional

34 biodiversity

35

36 **Abstract**

37 Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate.
38 Unless we find transformative solutions to preserve biodiversity, future generations may not
39 be able to enjoy nature's services.

40 We have developed a conceptual framework that establishes the links between
41 biodiversity dynamics and abiotic change through time and space using artificial intelligence.
42 Here, we apply this framework to a freshwater ecosystem with a known history of human
43 impact and study 100 years of community-level biodiversity, climate change and chemical
44 pollution trends. We apply explainable network models with multimodal learning to
45 community-level functional biodiversity measured with multilocus metabarcoding, to establish
46 correlations with biocides and climate change records. We observed that the freshwater
47 community assemblage and functionality changed over time without returning to its original
48 state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined
49 with extreme temperature events and precipitation, explained up to 90% of the functional
50 biodiversity changes. The community-level biodiversity approach used here reliably explained
51 freshwater ecosystem shifts. These shifts were not observed when using traditional quality
52 indices (e.g. Trophic Diatom Index).

53 Our study advocates the use of high throughput systemic approaches on long-term
54 trends over species-focused ecological surveys to identify the environmental factors that cause
55 loss of biodiversity and disrupt ecosystem functions.

56

57

Introduction

58

Biodiversity is the foundation of provisioning, regulating, supporting, and cultural ecosystem services ¹, which underpin economic prosperity, social well-being and quality of life ². Global biodiversity has been lost at an alarming rate in the past century, leading to what some have called the sixth mass extinction - biodiversity loss caused by human population growth and activities ³. Biodiversity is threatened by agricultural land use, climate change, invasive species, pollution and unsustainable production and consumption ⁴. Freshwater ecosystems have suffered the greatest biodiversity loss because of these anthropogenic drivers ⁵. Experimental manipulation of biodiversity has demonstrated the causal links between biodiversity loss and loss of ecosystem functions ⁶. However, studies on multi trophic levels are scarce and largely focus on terrestrial and marine ecosystems; freshwater ecosystems, especially lakes and ponds, are not well represented in multitrophic experimental manipulations, ⁷. These holistic studies are critical to understand the context-dependency of biodiversity-ecosystem functions relationships and to implement management measures to conserve biodiversity. However, a better understanding of the environmental factors with the largest impact on biodiversity, and their cumulative effect over time is urgently needed ⁸.

73

Biodiversity action plans have been devised since the 1990s. However, most strategies have failed to stop or even reduce biodiversity decline ⁹. This is because:

74

i) Biodiversity loss occurs at different spatial and temporal scales, and dynamic changes in community composition are the result of long-term ecological processes ^{10,11}. State-of-the-art environmental and biological monitoring typically captures single snapshots in time of long-term ecological dynamics, failing to identify biodiversity shifts that may arise from cumulative impacts over time ^{10,11}. Recent initiatives like BioTIME started collating databases with species presence and abundance recorded from time series across different ecosystems ⁷. However, freshwater ecosystems are poorly represented in these studies which at most encompass the last 10-25 years ¹². Although the large geographic breath of these studies is good to understand overall trends of biodiversity change, they are inadequate to identify drivers of biodiversity dynamics ^{8,12}. Moreover, the taxonomic species assignment in these databases is oftentimes derived from traditional observational methods (e.g. microscopy), which cannot resolve cryptic diversity ¹². High cryptic diversity is common in freshwater invertebrates and primary producers, potentially impacting the assessment of biodiversity in these ecosystems more severely than in terrestrial or marine ecosystems ¹³. More recently, *sedaDNA* (environmental DNA extracted from sediment) has emerged as a promising tool to study decade-long biological dynamics ¹⁴. However, these studies focus on specific taxonomic groups e.g. microbes ¹⁵; ciliates ¹⁶, failing to capture the community-level changes in any given ecosystem.

92

ii) Biodiversity is threatened by multiple factors. Only by quantifying trajectories of abiotic, biotic, and functional systemic change over time, can we begin to identify the causes of biodiversity and ecosystem function loss ¹⁷. Studies are emerging that investigate the impact of chemicals ¹⁸ or climate change ¹⁹ on biodiversity. Yet, understanding the combined effect of these abiotic factors on biodiversity is still challenging.

97

iii) The lack of paired biological and abiotic long-term monitoring data is a limiting factor in establishing meaningful and achievable conservation goals. Even well-monitored species have time series spanning a few decades at best ^{8,17}. Moreover, conservation efforts have historically focused on ecological surveys of few indicator species, the identification of which require specialist skills (e.g., light microscopy and taxonomy) and are low throughput ²⁰. High throughput system-level approaches providing biological, abiotic and functional changes over multiple decades are needed to understand links between biodiversity loss, drivers of changes and potential consequences on ecosystem functionality ¹⁰.

105

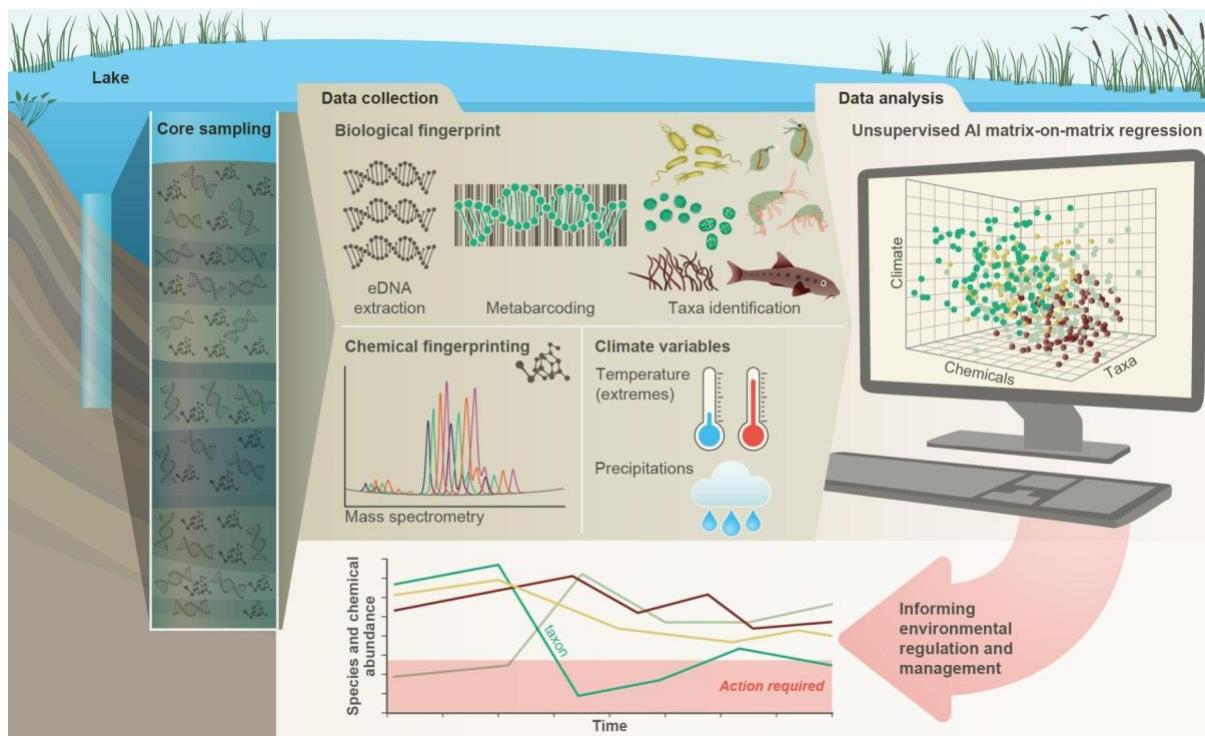
Recently, we have developed a conceptual framework that helps establish the links between biodiversity dynamics and abiotic environmental changes using artificial intelligence,

106

107 examines emergent impacts on ecosystem functions, and forecasts the likely future of
108 ecosystem services and their socioeconomic impact under different pollution and climate
109 scenarios ¹⁰. Here, we illustrate the first component of this framework in a freshwater
110 ecosystem (Lake Ring, Denmark) with a well-documented human-impact over 100 years ²¹
111 by quantifying the interrelations between community-level functional biodiversity, biocides
112 and climate (Fig. 1). Historical records, supported by empirical evidence show that Lake Ring
113 experienced semi-pristine conditions until the early 1940s ²². In the late 1950s, sewage inflow
114 caused severe eutrophication. When the sewage inflow was diverted at the end of the 1970s,
115 agricultural land use intensified, leading to substantial biocides leaching ²¹. The lake partially
116 recovered from eutrophication and land use in modern times (>1999) but, as with every lake
117 ecosystem in Europe, it experienced an increase in average temperature ^{23,24}. We apply
118 multilocus metabarcoding and mass spectrometry analysis to a dated sedimentary archive of
119 Lake Ring. These data, complemented by biocides sale records and climate records, were
120 studied with explainable network models with multimodal learning to identify drivers of
121 functional biodiversity changes across major ecosystem shifts ²⁵ (Fig. 1). The combination of
122 explainable networks and multimodal learning allow the simultaneous interrogation of data
123 matrices describing different types of data. A symmetric matrix-on-matrix regression is
124 typically used to identify the components that covary within a matrix (e.g., environmental
125 variables), and among matrices (e.g., environmental variables and eDNA taxonomic units).
126 Given the well-documented human-impact over time, Lake Ring represents an excellent
127 natural system to demonstrate the power of systemic approaches in biological and functional
128 monitoring.

129 **Figure 1. Conceptual framework.** A sedimentary archive spanning 100 years was sampled
130 from Lake Ring, Denmark and dated using radioisotopes. Both biotic and abiotic changes were
131 empirically quantified through time: 1) community-level biodiversity was reconstructed by
132 applying multilocus metabarcoding to environmental DNA isolated from sediment layers
133 (biological fingerprinting); 2) chemical signatures were quantified from the same sediment
134 layers using mass spectrometry analysis (chemical fingerprinting); 3) climate data were
135 collected from publicly available databases. Explainable network models with multimodal
136 learning were applied to identify significant correlations between system-level biodiversity,
137 chemical fingerprinting, and climate variables. Taxonomic units (families) impacted by
138 environmental factors were identified and environmental factors ranked based on their effects
139 on community biodiversity. This approach enables the prioritisation of conservation and
140 mitigation interventions.

141



142

143

144 **Results**

145 **Freshwater community dynamics across 100 years**

146 A sedimentary archive was collected from Lake Ring in November 2016 with a gravity corer;
147 the core was sliced in 34 layers of 0.5 cm, which corresponded to a temporal resolution of about
148 3 years per layer across 100 years. This estimate was based on a radiometric chronology of the
149 core completed in 2018 (see Methods). Lake Ring has a well-known and documented history
150 of human impact over the past century. The lake transitioned over time from a semi-pristine
151 environment to eutrophication, and later to high pesticide pollution due to intensification of
152 agricultural land-use in the area surrounding the lake. In modern times (>1999), the lake
153 partially recovered (see methods for more details)²¹. Hereafter, we refer to the lake transitions
154 across these statuses as lake phases.

155 We quantified community-level biodiversity over a century (1916 - 2016) by applying
156 high throughput multilocus metabarcoding (18S, 16SV1, 16SV4, COI and rbcL barcodes) to
157 bulk environmental DNA (eDNA) extracted from layers of a dated sedimentary archive from
158 Lake Ring. After denoising, the number of unique ASVs and total number of reads across all
159 samples (including median number of reads per sample) found per barcode were as follows:
160 18S - 2,023 ASVs, 569,761 total reads (median 12,893 reads); 16SV1 - 4,022 ASVs, 842,619
161 total reads (median 20,798 reads); 16SV4 - 5,270 ASVs, 552,064 total reads (median 13,816
162 reads); COI - 822 ASVs, 362,616 total reads (median 9,595 reads); rbcL - 417 ASVs, 366,489
163 total reads (median 9,443 reads). Alpha diversity did not significantly vary across the lake
164 phases for both prokaryotes and eukaryotes (Supplementary Fig. 1) and was proportionally
165 higher in the prokaryotic (16S barcodes) than in the eukaryotic community (18S barcode).
166 Conversely, the invertebrate community (COI barcode), and the diatom community (rbcL
167 barcode), showed significant changes over time across the lake phases, reflecting taxon-
168 specific patterns over time (Supplementary Fig. 1). Even though the alpha diversity varied over
169 time, it was not consistently lower in historical than modern communities across the barcodes,
170 allowing us to exclude bias in the preservation state of environmental DNA.

171 The community composition (beta diversity) changed significantly in the transition between
172 lake phases (Table 1; Fig. 2A; Supplementary Fig. 2). The overall eukaryotic community
173 composition changed over time across all lake phases (Table 1; Fig. 2A; 18S). However, the
174 composition of the primary producers (e.g. rbcL) changed significantly only in the transition
175 between the pesticide and the eutrophic phases, whereas the invertebrate's community (e.g.
176 COI) changed significantly only between the pesticide and the recovery phases (Table 1; Fig.
177 2A; rbcL, COI). The significant changes in community composition identified by the
178 PERMANOVA analysis were driven by two families of primary producers [*Chlorophyceae*
179 (green algae), *Mediophyceae* (diatoms)] and seven families of invertebrates, [Monhysterida
180 (nematode worms), *Oligohymenophorea* (ciliates), *Calanoida* (zooplankton), *Ploimida*
181 (rotifers), *Chaetonotida* (gastrotrichs), *Thoracosphaeraceae* (dinoflagellates) and *Calanoida*
182 (copepods)] (Fig. 2B; 18S). In the transition from the semi-pristine to the eutrophic phase, the
183 relative abundance of rotifers and green algae declined in favour of calanoids and diatoms (Fig.
184 2B; 18S). The proportion of diatoms, worms and nematodes increased in the transition from
185 the eutrophic to the pesticide phase, while the proportion of calanoids and gastrotricha declined
186 (Fig. 2B; 18S). The taxonomic composition of the recovery phase showed a relative increase
187 in ciliates and gastrotricha as compared to the pesticide environment (Fig. 2B; 18S).
188 *Vampyrellidae* (Vampire amoebae feeding on algae) were relatively more abundant in the
189 eutrophic than in the other phases, in which primary producers were also more abundant (Fig.
190 2B, 18S). The composition of the recovery and semi-pristine phases differed significantly,
191 suggesting an incomplete recovery of the lake over time to this date (Table 1; Fig. 2A; 18S).

192 The prokaryotic community significantly changed at each major transition between lake
193 phases, consistently across the two barcodes (Table 1; 16SV1 and 16SV4). We observed two

194 patterns in the prokaryotic community composition over time: some taxonomic groups changed
195 with the redox status of the sediment [e.g. acidophilus archaea (*Thermoplasmata*) and
196 methanogenic archaea (*Methanomassiliicoccaceae*), which declined from the semi-pristine to
197 the recovery phase (Fig. 2B, 16SV4)]; others changed over time consistently with the nutrient
198 levels of the ecosystem. For example *Nitrospiraceae* (nitrite oxidizers) were more abundant in
199 high nutrient environments (eutrophic and pesticides) than in lower nutrient environments
200 (semi-pristine and recovery) (Fig. 2B; 16SV1)].

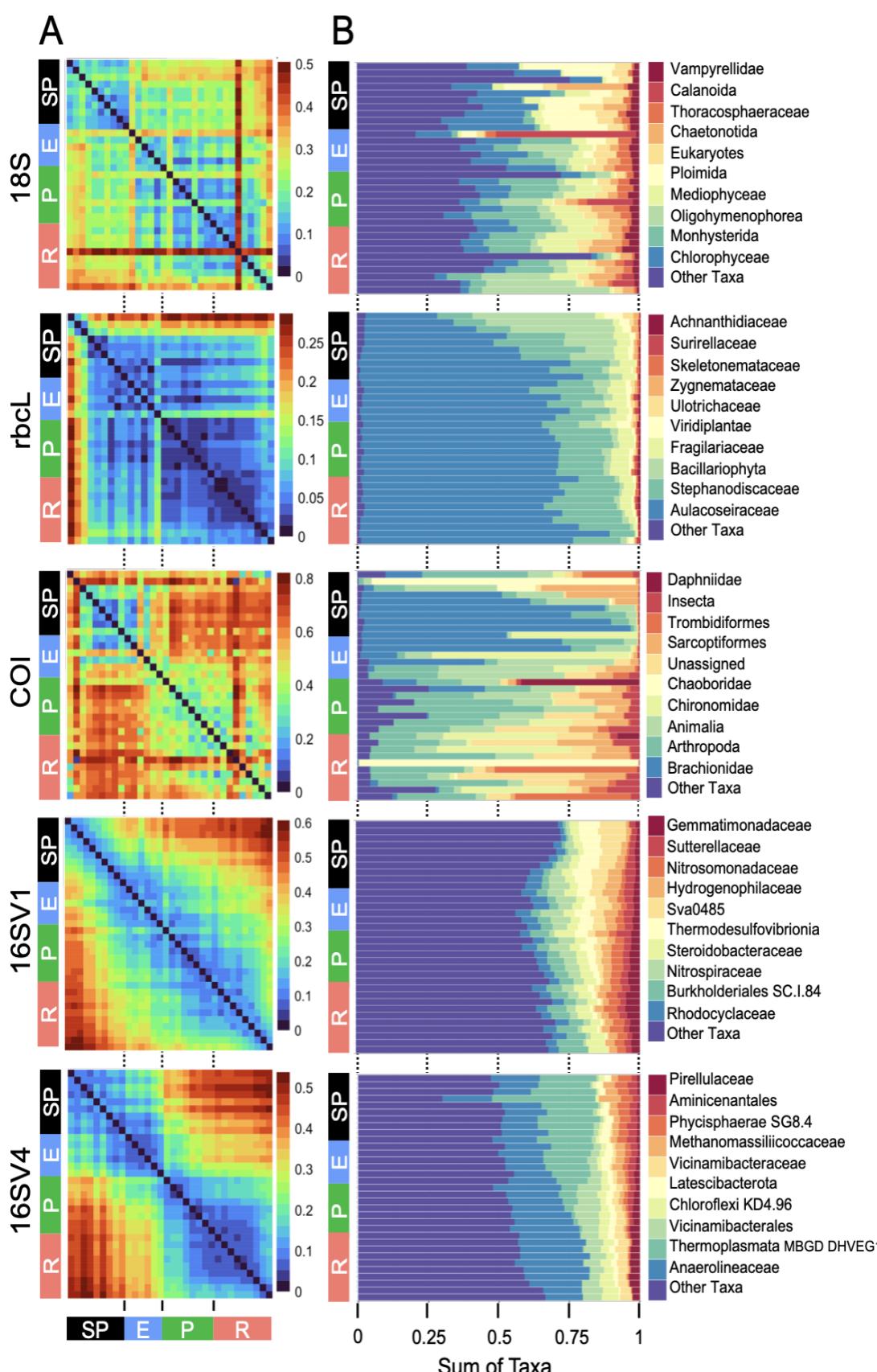
201 Changes in the invertebrate community were driven by *Brachionideae* (rotifers) that
202 were most abundant in the semi-pristine phase and declined over time; *Chironomidae* (lake
203 flies) that were proportionally more abundant in the eutrophic and recovery phases and showed
204 the lowest abundance in the pesticides phase; *Chaoboridae* (phantom midge larvae) that were
205 only present in the semi-pristine and recovery phases; and *Daphniidae* (waterfleas) that were
206 most abundant in the pesticide phase, but present throughout the 100 years of sampling (Fig.
207 2B; COI). The diatom composition was stable over time, with only the semi-pristine phase
208 having a more distinctive diatom assemblage profile dominated by *Bacillariophyta* (Fig. 2B;
209 rbcL). Diatoms are commonly used by regulators to derive the status of freshwater within the
210 Water Framework Directive both for lakes and rivers²⁶. We used our rbcL data to derive a
211 Lake Trophic Diatom Index (LTDI2) for Lake Ring following²⁷. This result confirmed our
212 beta diversity analysis of non-significant changes over time of the diatom community
213 (Supplementary Fig. 3).

214 **Table 1. PERMANOVA on beta diversity.** Permutational Multivariate Analysis of Variance
215 using weighted Unifrac distances ASV matrices testing for pairwise differences between lake
216 phases across the five barcodes used in the study (16SV1, 16SV4, 18S, COI, rbcL) with 999
217 permutations. Significant terms (p-values <0.05 after applying Benjamini & Hochberg
218 correction for multiple testing) are in bold. The lake phases are as follows: SP - semi-pristine;
219 E - Eutrophic; P - pesticides; R - recovery.
220

Phase		16SV1		16Sv4		18S		COI		rbcL	
1	2	R2	p adj								
SP	E	0.4349	0.0067	0.5533	0.0017	0.2968	0.0033	0.0432	0.705	0.2879	0.0914
SP	P	0.6290	0.0025	0.8515	0.0017	0.4459	0.0033	0.3868	0.0033	0.3920	0.0125
SP	R	0.6956	0.0025	0.9026	0.0017	0.3841	0.0033	0.3178	0.0033	0.5084	0.0033
E	P	0.3959	0.006	0.7399	0.0017	0.1249	0.15	0.3198	0.005	0.1555	0.1511
E	R	0.5656	0.0025	0.8520	0.0017	0.1816	0.0075	0.2806	0.0033	0.6019	0.0033
P	R	0.3026	0.0025	0.3724	0.0017	0.1029	0.15	0.1924	0.012	0.3605	0.0033

221
222

223 **Figure 2. Biodiversity compositional changes.** (A) Weighted unifrac beta diversity heatmaps
224 between each pair of sediment layers spanning a century (1916-2016) for the five barcodes
225 used in this study (18S, rbcL, COI, 16SV1 and 16SV4). The PERMANOVA statistics in Table
226 1 support these plots. The scale used may be different among the heatmaps. (B) Taxonomic bar
227 plots including the top 10 most abundant families identified across five barcodes (18S, rbcL,
228 COI, 16SV1 and 16SV4). shown per lake phase: SP - semi-pristine; E - eutrophic; P -
229 pesticides; R - recovery.

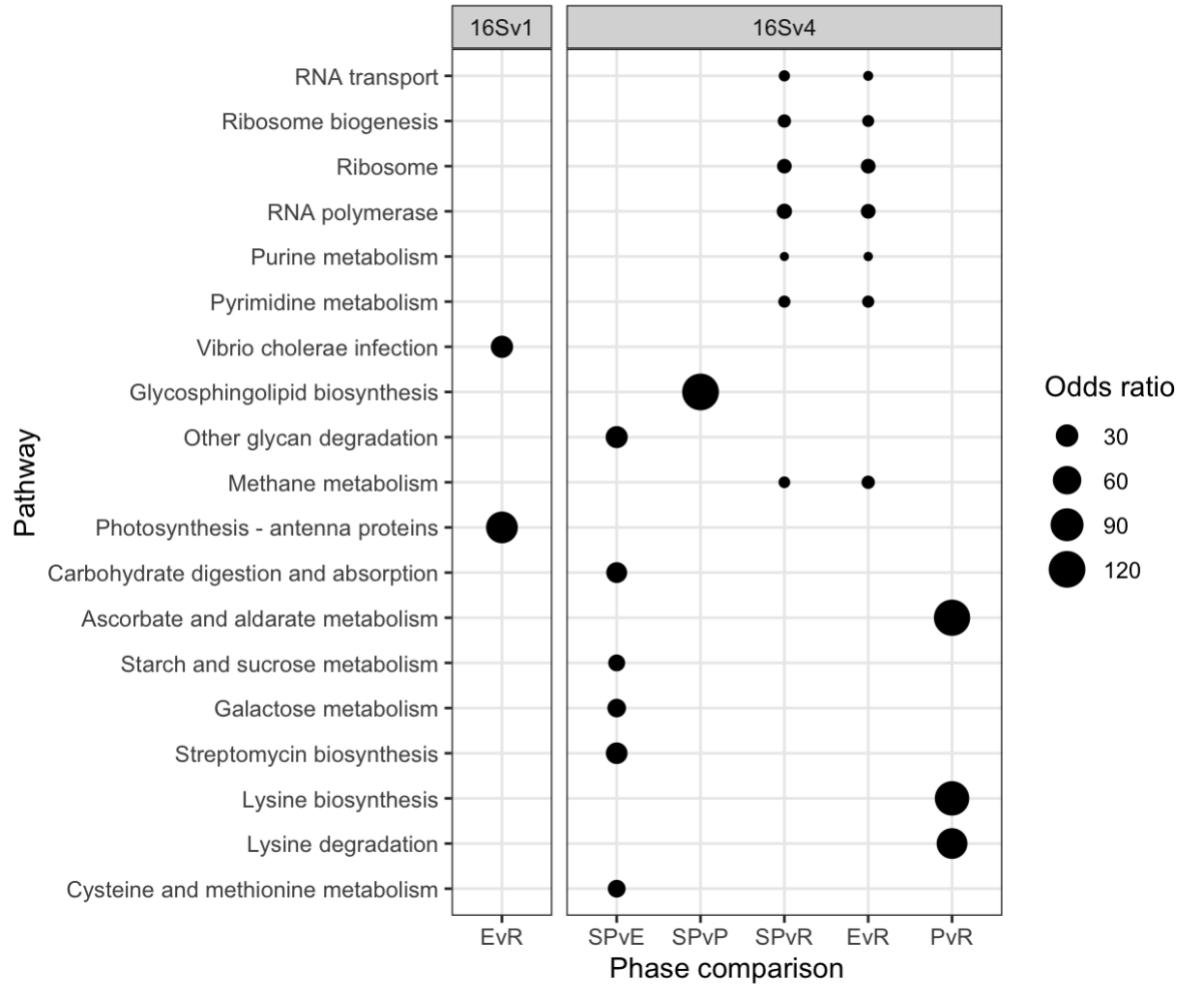


232 **Functional changes linked to community compositional shifts**

233 Changes in freshwater community composition corresponded to significant shifts in the
234 predicted functioning of the prokaryotic community (Fig 3). We predicted different functions
235 between each pair of lake phases by identifying molecular functions enriched as quantified by
236 functional orthologs (KO terms). A functional ortholog was defined from functions
237 experimentally assigned to the prokaryotes identified with the 16S rRNA in each lake phase.
238 We predicted a total of 6,257 Kegg Orthologs (KO) terms from the 16SV1 and 6,828 from the
239 16Sv4 barcode across the lake phases. Of the total number of KO terms, 1,418 were
240 significantly differentially abundant across the lake phases in the 16SV1 and 1,064 terms in the
241 16SV4 dataset, respectively. The functional KEGG pathways enriched within these KO terms
242 and significantly differentially enriched between lake phases (Fisher's exact test, p-adj < 0.05)
243 were 19 (17 for the 16Sv4 and 2 for the 16SV1) (Fig. 3). Seven differentially enriched
244 pathways were found between the semi-pristine and recovery phases and seven were found
245 between the eutrophic and recovery phases (Fig. 3; 16SV4). These pathways were linked to
246 catabolic functions (purine and pyrimidine metabolism), RNA transport and biogenesis,
247 fundamental for gene expression and protein folding. Six functional pathways were
248 differentially enriched between the semi-pristine and the eutrophic phases that were linked to
249 metabolism (including methane metabolism), degradation and biosynthesis (Fig. 3; 16SV4).
250 Three functional pathways that underpin carbohydrates metabolism, lysine biosynthesis and
251 degradation were differentially enriched between the pesticide and recovery phases. The latter
252 two functions are critical for mitochondrial function. A single pathway was differentially
253 enriched between the semi-pristine and the pesticide phases, linked to lipid metabolism
254 (glycosphingolipid biosynthesis; Fig. 3; 16SV4). Two differentially enriched pathways were
255 identified between the eutrophic and the recovery phases and underpin infection response and
256 photosynthesis (Fig. 3; 16SV1).

257

258 **Figure 3. Functional analysis.** Functional pathways that are significantly differentially
259 enriched between lake phases are shown for the 16SV1 and the 16SV4 barcodes. The lake
260 phases are as in Figure 2: SP - semi-pristine; E - eutrophic; P - pesticides; R - recovery. Odds
261 ratios indicate the representation of each pathway in the pairwise comparisons.
262



263

264

265

266

267

268

269

270

271 **Drivers of biodiversity change**

272 To discover drivers of biodiversity change we applied sparse canonical correlation
273 analysis (sCCA) to community biodiversity data and other parameters measured from Lake
274 Ring, namely climate records collected from a weather station proximal to the lake, and sales
275 records of biocides in Denmark between 1955 and 2015 from the Danish national archives. The
276 biocide sales records proved to be a good representation of persistent chemicals in the lake
277 sediment, as the quantification of the persistent halogenated pesticide DDT in the sliced
278 sedimentary archive showed by producing a very similar profile as the sales records over time
279 (see methods section).

280 We discovered that insecticides and fungicides best explained changes in overall
281 biodiversity, possessing the highest CCA loadings across the barcodes, followed by pesticides
282 and herbicides (Supplementary Table 1A). Among the climate variables, yearly minimum
283 temperature explained the largest biodiversity changes, whereas other climate variables had a
284 variable impact across the barcodes and hence taxonomic groups (Supplementary Table 1B).

285 Having ranked biocides and climate variables that best explained changes in overall
286 biodiversity, we identified correlations between taxonomic groups (assigned at family level
287 where possible) and individual abiotic variables. Correlations were identified between a total
288 of 36 eukaryotic families and abiotic variables; of these correlations, 28 were with biocides and
289 25 with climate variables (some correlations involved the same taxonomic group correalting
290 with multiple environmental factors). Of the 28 families negatively correlated with biocides,
291 the largest proportion co-varied significantly with insecticides (21 families - 75%) and
292 fungicides (14 families - 50%), followed by herbicides (7 families - 25%) and pesticides (2
293 families - 7.1%) (Supplementary Table 2). Of the 25 families correlated with climate variables,
294 the largest proportion co-varied with summer precipitation (12 families - 37%); of these, 8
295 families were positively correlated and 4 were negatively correlated with summer precipitation.
296 An equal number of families (8 families - 32%) co-varied with mean minimum temperature (6
297 positive and 2 negative correlations), highest recorded temperature (7 positive and 1 negative
298 correlations), and summer atmospheric pressure (6 positive and 2 negative correlations)
299 (Supplementary Table 2).

300 The number of unique prokaryote families significantly negatively correlated with
301 biocides was 99, 19 of which were identified by both 16S barcodes. Following from the sCCA
302 analysis, significant negative correlations were observed between 60 (60.6%) families and
303 insecticides, followed by 59 families and fungicides (59.6%), 40 families and herbicides
304 (40.4%), and 25 families and pesticides (25.3%) (Supplementary Table 2; overall). A total of
305 105 non-redundant correlations were identified between prokaryotic families and climate
306 variables, 6 of which were found in both 16S barcodes. Of the total families correlating with
307 climate variables, 69 (65.7%) significantly correlated with mean minimum temperature. Of
308 these, 38 were positive and 31 were negative correlations. Thirty-five families (33.3%)
309 significantly correlated with summer precipitation; of these, 11 were positively and 23 were
310 negatively correlated. Twenty-nine families (27.6%) significantly correlated with the lowest
311 recorded temperature; of these 20 were positive and 9 were negative correlations. Twenty-six
312 families (24.8%) significantly correlated with mean summer temperature; of these 13 were
313 positively and 13 negatively correlated. Twenty-three families (21.9%) significantly correlated
314 with maximum daily precipitation; of these, 3 were positively and 20 were negatively
315 correlated. Eleven families (10.4%) significantly correlated with highest recorded temperature;
316 of these 3 were positively and 8 were negatively correlated (Supplementary Table 2).

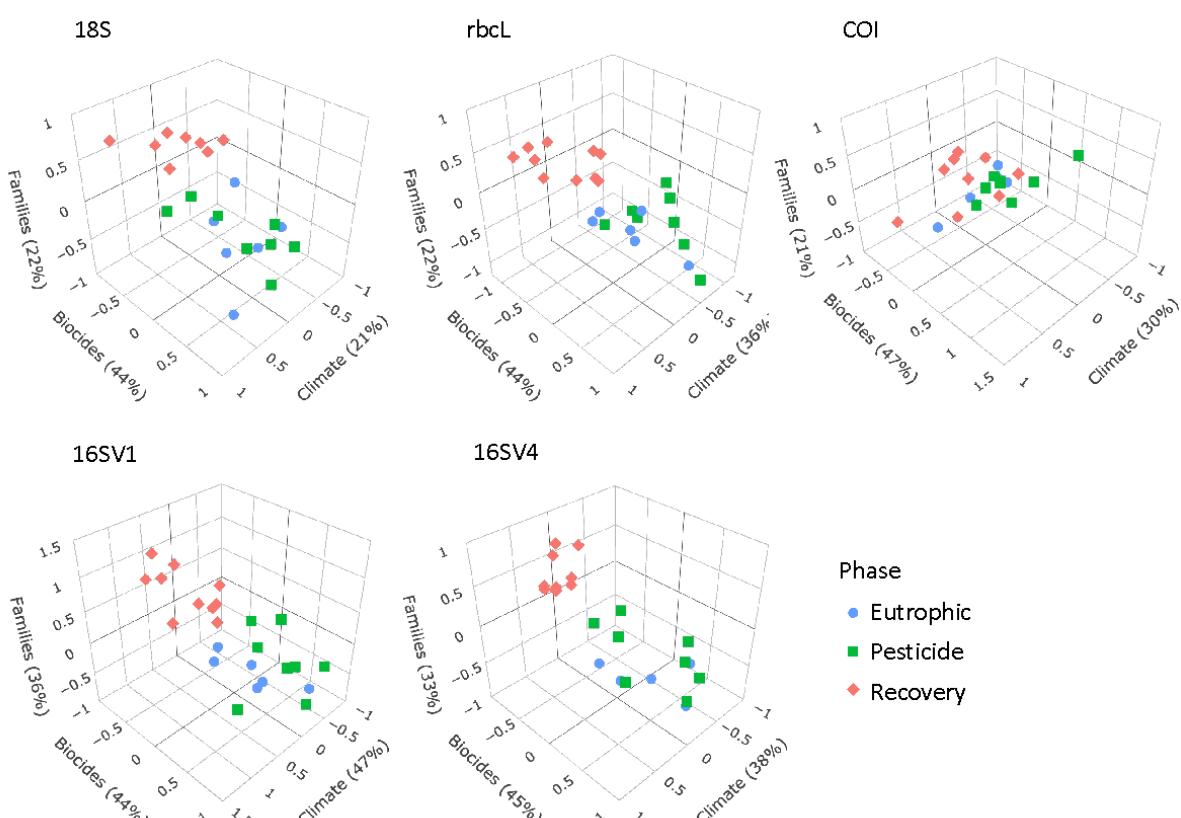
317 We applied sCCA to identify families that correlated both with climate variables and
318 biocides (Fig. 4). As biocides were introduced only in 1960, only the most recent three lake
319 phases were included in this analysis. The eukaryotic biodiversity compositional change was

320 predominantly explained by biocides (Fig. 4; 18S; Biocides: 44%), followed by climate
321 variables (Fig. 4; 18S; climate variables: 22%). Up to 22% of the diatoms compositional change
322 was explained by biocides (44%) and climate variables (36%). However, the abiotic variables
323 only separated the recovery from the other two lake phases (Fig. 4), supporting significant
324 biodiversity compositional shifts observed in the beta diversity analysis (Fig. 2A; Table 1).
325 Similarly, the invertebrate community compositional changes were explained prevalently by
326 biocides (47%), followed by climate variables (30%), which only separated the recovery phase
327 from the other two lake phases. Climate and biocides almost equally explained up to 36% of
328 the prokaryote biodiversity compositional change across the lake phases (16SV1 - biocides:
329 44%, climate variables 47%; 16SV4 - biocides 45%, climate variable 38%). Following from
330 this analysis, joint effects of biocides and climate variables were observed for 23 prokaryote
331 (16S) and two eukaryote (18S) families (Fig. 5A), whereas no joint effects were identified on
332 the diatom (*rbcL*) and the invertebrate (COI) communities (Fig 5A; Supplementary Table 3).
333 The most frequent joint effects on prokaryotes involved insecticides and mean minimum
334 temperature (Fig. 5A; Supplementary Table 3). Joint effects between herbicides and maximum
335 daily precipitation or between herbicides and lowest recorded temperature were rare (Fig. 5A;
336 Supplementary Table 3). The joint effects on the eukaryotic community were observed between
337 insecticides and summer precipitation (Fig. 5A; Supplementary Table 3).

338 The biocide types showing joint effects with environmental variables were ranked
339 based on their correlation coefficient over time (Supplementary Table 3). The top ranked
340 insecticides most frequently showing these joint effects with climate variables and an adverse
341 effect on both prokaryotes and eukaryotes were: oxydemeton-methyl (organothiophosphate
342 insecticide, primarily used to control aphids, mites, and thrips), mevinphos (organophosphate
343 insecticide used to control insects in a wide range of crops) and dicofol (organochlorine
344 miticide pesticide chemically related to DDT). Additionally, parathion (organophosphate
345 insecticide and acaricide), carbaryl (1-naphthyl methylcarbamate used chiefly as an
346 insecticide), dieldrin (organochlorine insecticide, developed in alternative to DDT) and
347 thiometon (organic thiophosphate insecticide) showed adverse effects with only the
348 prokaryotic community. Examples of joint effects on specific families are shown in Figure 5B
349 and 5C. The temporal dynamics of Isochrysidales, a coccolith-producing microalgae, was
350 affected by the joint effect of summer precipitation and insecticides (Fig. 5B), whereas the
351 temporal dynamics of the PeM15 group of Actinobacteria was affected by the joint effect of
352 insecticides and mean minimum temperature (Fig. 5C).

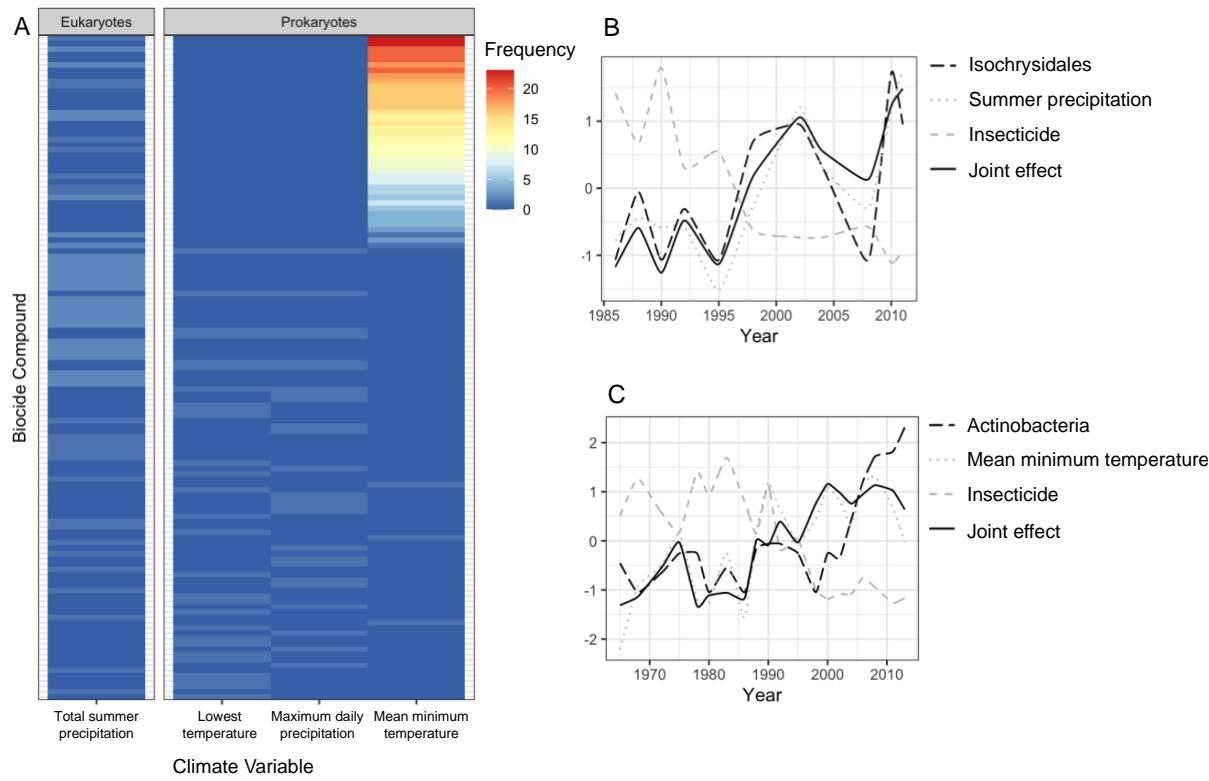
353
354
355
356
357
358
359
360

Figure 4. sCCA 3D plots. Sparse canonical correlation analysis 3D plots for the five barcodes used (18S, rbcL, COI, 16SV1 and 16SV4), showing the proportion of biodiversity variance explained by the biocides and climate variables. As biocides were introduced around the 1960s, this analysis spans the most recent three lake phases (Eutrophic, Pesticide and Recovery). Interactive version available: https://environmental-omics-group.github.io/Biodiversity_Monitoring/



361
362

363 **Figure 5. Joint effects of environmental variables on biodiversity.** A) heatmap showing the
364 frequency of joint effects of biocides and climate variables in eukaryotes (data from the 18S
365 barcode) and prokaryotes (combined data from 16Sv1 and 16Sv4 barcodes). The biocides are
366 ranked based on their correlation coefficient with taxonomic units and climate variables.
367 Ranking of biocide types is provided in Table S3; B) temporal correlation between the family
368 Isochrysidales, summer precipitation and insecticides. The joint effect of summer precipitation
369 and insecticides is also shown; C) temporal correlation between Pleosporales, insecticides and
370 mean minimum temperature. The joint effect of insecticides and mean minimum temperature
371 is also shown. The families' relative abundance over time in plots B and C are standardized
372 values.



373

374

375

376

377

378

379

380

381 **Discussion**

382

383 *Continuous long-term biomonitoring from a pristine baseline*

384 State-of-the-art paleoecological monitoring typically uses direct observations (light
385 microscopy) of species remains to assess the ecological status of freshwater ecosystems. These
386 approaches are low throughput and require specialist skills ²⁸. Direct observations are
387 inherently biased towards species that leave fossil remains; species identification is strongly
388 reliant on well-preserved remains in environmental matrices; and cryptic species diversity
389 cannot be resolved ¹³. Recently, automated acquisition of microfossil data using artificial
390 intelligence has been proposed as an alternative to human inspection for reconstructing long-
391 term biological changes ²⁹. However, this approach relies on the completeness of reference
392 databases and of the fossil remains, suffering from the same limitations of direct observations
393 minus the low throughput aspects. Efforts to catalogue temporal changes in biodiversity have
394 recently started to understand changes in species richness and assemblages in different
395 geographic regions of the globe ¹². These efforts are important to understand the extent of
396 overall biodiversity loss. However, there are only a handful of existing datasets that span more
397 than 50 years and many of the multidecal biodiversity time series are limited to terrestrial and
398 marine ecosystem, with freshwater ecosystems being marginally represented ¹². Moreover,
399 long-term freshwater studies tend to focus on indicator species or specific taxonomic groups
400 (e.g. invertebrates), rather than capturing community-level patterns ⁷. Developments in the field
401 of *sedaDNA* have addressed the limitations of direct observations, utilising the properties of
402 eDNA ¹⁵. However, *sedaDNA* studies have predominantly focused on microorganisms as
403 proxies for ecosystems' health (e.g. cyanobacteria ³⁰; ciliates ¹⁶; parasitic taxa ³¹), with other
404 taxonomic groups less well represented. Our study addresses some of the challenges of direct
405 observations as it is not reliant on fossil remains. However, the completeness of the community
406 taxonomic assignment depends on the completeness of reference databases. We acknowledge
407 that our taxonomic classification may be incomplete. Whereas the application of high
408 throughput sequencing technologies requires training, these technologies are well established
409 with publicly available standard operating procedures. As compared to direct observations,
410 high throughput sequencing provides replicable results regardless of the operator. Moreover,
411 the application of metabarcoding to *sedaDNA* or more generally eDNA can be outsourced to
412 established environmental services, removing the need for training if it is a limiting factor.

413 Studies of temporal dynamics typically start from an already shifted baseline and rely
414 on discrete observations ¹⁶. Our study alleviates these limitations by providing a continuous
415 community-level analysis of biological changes over recent evolutionary times and starting
416 from a relatively undisturbed environment. However, eDNA-based studies suffer from
417 limitations linked to the level of preservation of nucleotides in environmental matrices.
418 Although it has been shown that DNA can be recovered from lacustrine and marine sediments
419 as far back as the Holocene ³², biases might still exist due to the degradation of eDNA,
420 especially over geological times ³³ and in warmer climates ³⁴. In addition, physio-chemical
421 changes in sediment and soil may affect the assemblage and composition of prokaryotic
422 communities that can survive in extreme conditions, including anoxic environments. However,
423 it has been shown that slightly alkaline water (pH 7–9) facilitates DNA preservation ³³.
424 Whereas we cannot exclude that the eDNA in our study suffers from some of the mentioned
425 biases, we expect DNA degradation not to have affected our study significantly. This is because
426 we observed non-significant difference in species richness over time in both the prokaryotic
427 (16S barcode) and eukaryotic (18S barcode) communities. DNA degradation would have
428 instead resulted in lower alpha diversity with increasing age of the sediment. Preservation of
429 DNA in our study is also favoured by the time frame studied (100 years as opposed to
430 millennia), the stable pH since the 1960s (data prior to 1960s were not recorded), and the

431 latitude of Lake Ring associated with average yearly temperatures below 15°C. All these
432 factors are known to reduce microbial activity, allowing a better preservation of DNA in
433 sediment³⁵.

434 Whereas the overall species richness did not change significantly over time, species
435 assemblages significantly changed over time. Small changes in alpha diversity coupled with
436 significant changes in beta diversity over time have been reported for existing time series
437 biodiversity data in marine and terrestrial environments, even if the length of the time series
438 rarely exceeded four decades¹².

439
440

441 *Insecticides and extreme temperatures drive changes in functional biodiversity*

442 Threats to biodiversity pose a significant challenge because they change over time and
443 may result in additive adverse effects⁴. Long-term continuous observations are preferable to
444 short-term observations because they can reveal correlations and possible causation between
445 biological changes and abiotic drivers of change²⁰. Using eDNA-based data on multitrophic
446 biodiversity over the past 100 years, we identified the taxonomic groups within the prokaryotic
447 and eukaryotic communities that significantly contributed to community assemblages shifts.
448 Whereas the prokaryotic community was overall changing at each major transition between
449 lake phases, changes in the eukaryotic community were driven by different taxonomic groups
450 in the transition between lake phases. The diatom community, typically used by regulators as
451 an indicator of freshwater ecological status, did not change significantly over time, as the beta
452 diversity and the LTDI2 index revealed. These results strongly suggest that a system-level
453 approach, like the one proposed here, may be more appropriate than species or taxon-specific
454 approaches. Our approach showed that diatom communities are not a reliable representation of
455 the ecological status of freshwater ecosystems and are not good indicators of environmental
456 change. Our approach provides a major advantage over traditional direct observations by
457 identifying both taxonomic and functional changes of freshwater biodiversity in a high
458 throughput fashion. The analysis of temporal trends of biodiversity from a pristine baseline
459 through impacted environment provides a new reference point for regulators to define
460 biodiversity in semi-pristine conditions.

461 Even if Lake Ring partially recovered from eutrophication and biocide pollution in
462 modern times, both the contemporary eukaryotic and prokaryotic communities are significantly
463 different from the semi-pristine historical community, as the PERMANOVA on beta diversity
464 demonstrates. Our findings align with other studies using *sed*aDNA on decennial timeframes
465 focusing on prokaryotes (e.g. cyanobacteria³⁶), whereas studies on eukaryotic compositional
466 changes are just emerging to enable quantitative comparative assessments³⁷. Studies on
467 prokaryotic and eukaryotic assemblages based on short experimental manipulations suggest
468 that natural communities can return to their original state before a perturbation occurs³⁸.
469 However, longer-term experimental manipulations show a different perspective with
470 irreversible changes in biodiversity composition and function³⁹. These long(er)-term
471 experimental manipulations and our study suggest that empirical observation of multi trophic
472 changes over time in natural systems are critical to understand the context-dependency of
473 biodiversity-environmental impact relationships and assess the resilience of natural
474 ecosystems.

475 Changes in community assemblages are important because they can be associated
476 with changes in functional biodiversity. Although biodiversity variables include taxonomic,
477 phylogenetic, and functional attributes, most studies have focused on generic taxonomic
478 diversity measures - usually measured as species richness or abundance, ignoring functional
479 biodiversity⁴⁰. Biomass and changes in biomass only capture productivity, while disregarding
480 other metrics, such as decomposition or resource turnover⁴¹. A complete assessment of

481 biodiversity should include functionality⁶. In particular, enzyme activities are relevant because
482 they exhibit the functions encoded in genes and reflect the role of microbiota in the transfer of
483 matter and energy from low to high trophic levels in ecosystems. Changes in biological
484 assemblages over time and across lake phases in our study resulted in significant changes in
485 functional biodiversity, observable through changes in metabolic, biosynthesis and degradation
486 functions of the prokaryotic community demonstrated by differentially abundant KEGG
487 pathways between lake phases. Catabolic functions, metabolism (including methane
488 metabolism), degradation and biosynthesis were differentially enriched between the recovery
489 and other lake phases. These are key functions for the survival of organisms. For example,
490 change in metabolic potency and the ability to break down complex molecules into smaller
491 ones (catabolism and degradation) may affect survival and fitness of living organisms by
492 influencing the uptake of nutrients.

493 Predicting the functional profiles of prokaryotic communities based on their taxonomic
494 composition has its limitations. Predictions of functions linked to human gut microbes tend to
495 be more accurate than predictions on other communities because reference databases are
496 developed on currently available genomes, which are biased towards microorganisms
497 associated with human health and biotechnology⁴². Because of the bias in reference databases,
498 functional predictions may be more accurate for basic metabolic and housekeeping functions
499 (essential cellular functions that are evolutionary conserved), which are more commonly
500 annotated⁴³. Therefore, it is possible that we underestimated the predicted changes in
501 functional biodiversity driven by environmental change in our study. Yet, we were able to
502 detect important functional changes (e.g., metabolism and biosynthesis essential for survival)
503 in correspondence with major ecosystem shifts (e.g., from semi-pristine to recovery phase).

504 In recent years, an increasing number of studies have documented impacts on
505 biodiversity driven by climate change¹⁹, whereas chemicals are thought to pose a negligible
506 threat to biodiversity because living organisms can adapt and evolve¹⁸. Adaptation to
507 environmental change can happen, but it comes at a cost that can reduce resilience of natural
508 populations to multiple stressors or novel stress⁴⁴. Our study showed that chemicals and
509 climate variables each explain up to 47% of biodiversity compositional changes and that the
510 joint effect of insecticides/fungicides and yearly extreme temperature/summer precipitation
511 best explained changes in overall biodiversity. The joint effects of insecticides and extreme
512 temperature events affected prokaryotes by altering their functionality and changing their
513 metabolic, biosynthesis and degradation functions. The joint effect of insecticides and summer
514 precipitation best explained changes in primary producers and grazers. This result aligns with
515 previous studies showing that the effect of chemicals on freshwater can be exacerbated by
516 temperature/precipitation, because of changes in the bioavailability, adsorption, elimination
517 and relative toxicity of chemicals by water organisms⁴⁵. Higher temperatures increase
518 diffusion of chemical molecules, resulting in faster uptake by living organisms and hence
519 toxicity⁴⁶. In some cases, higher temperatures result in effects on the organism's metabolic
520 ability to reduce a chemical's toxicity. Our study hints at examples of both mechanisms,
521 distinguishing between families that are negatively and positively correlated with climate
522 variables.

523 The resolution and reliability of our data-driven systemic approach goes beyond current
524 state-of-the-art, enabling us to identify the specific abiotic factors, down to the commercial
525 name of biocides, that in isolation or combined with climate variables affected specific families
526 of prokaryotes and eukaryotes. Our algorithm provides a high degree of confidence that
527 surpasses state-of-the-art analysis, which predominantly identify patterns of co-occurrence of
528 taxa within communities (e.g., Correlation-Centric Network approach⁴⁷). A step in the right
529 direction to capture complex interactions between biotic and abiotic variables is the network
530 analysis of co-occurrence patterns among physico-chemical and biological variables using

531 random forest machine learning algorithms (e.g. ⁴⁸). This approach is hypothesis-free and
532 allows the identification of synchronicity between various environmental variables and
533 *sedaDNA* sequence variation. However, even when applied to temporal trends, it does not
534 quantify joint effects of environmental factors on biodiversity. So far, random forest machine
535 learning algorithms have only been applied to prokaryotic communities, disregarding other
536 taxonomic groups and providing a partial understanding of community-level patterns and
537 responses ⁴⁸.

538 A potential limitation of our approach is that correlations identified in field surveys do
539 not demonstrate causation. However, they generate testable hypotheses that can be proven
540 experimentally in controlled mesocosm experiments as explained in ¹⁰, providing a potentially
541 transformative approach.

542

543 *Implications for conservation and management of biodiversity*

544 Some of the greatest challenges in biodiversity conservation faced by water resource
545 managers is the limited information available on a time scale sufficient to assess long-term
546 changes of aquatic ecosystems. Large scale models that link environmental drivers to biological
547 indicators are lacking ⁴⁹, even if some countries have tried to introduce semi-quantitative
548 indices to assess the ecological status of freshwater ⁵⁰. Regulators must rely on approaches
549 ingrained into environmental law, even though they have been proven inadequate (e.g. TDI),
550 as the continuous decline in biodiversity demonstrates ¹⁹. Even when direct links between
551 biological indicators and abiotic drivers can be established, these rely on indicator species (e.g.
552 a fish, an alga and an invertebrate) used as proxies for ecosystem health ⁵¹. Our data-driven
553 approach provides a novel way to address regulatory needs. However, the use of data-driven,
554 systemic approaches requires critical changes in current environmental practice and a shift to
555 whole-system evidence-based approaches. The transition to the novel methodologies proposed
556 here will require changes in regulatory frameworks, following a test and acceptance phase, as
557 well as a buy-in from regulators. Our study is a proof of concept that the drivers of biodiversity
558 loss can be identified with higher accuracy than currently possible, generating hypotheses that
559 can be tested experimentally. Our data-driven approach enabled us to identify insecticides and
560 temperature as strong drivers of biodiversity loss, both in prokaryotes and eukaryotes. The
561 confirmation of these findings across multiple freshwater ecosystems has the potential to
562 inform conservation and mitigation interventions, leading to an improved preservation of
563 functional biodiversity.

564

565 **Materials and Methods**

566 *Environmental and paleoecological profile of Lake Ring*

567 Lake Ring is a shallow mixed lake in Jutland, Denmark (55°57'51.83'' N, 9°35'46.87''
568 E) with a well-known history of human impact ²¹. A sedimentary archive was collected from
569 Lake Ring in November 2016 with an HTH-type gravity corer; the core was sliced in 34 layers
570 of 0.5 cm and stored in dark and cold (-20 °C) conditions. A radiometric chronology of this
571 sediment was completed in 2018 by Goldsmith Ecology Ltd following standard protocols ⁵²,
572 and provided an accurate dating of the sediment to the year 1916. According to this chronology
573 the core covered 100 years at a resolution of ca. 3 years intervals. To reduce potential
574 contamination when handling older sediment layers each layer of sediment was handled in a
575 PCR-free and DNA-free environment. Dating of sediment was conducted by direct gamma
576 assay, using ORTEC HPGe GWL series well-type coaxial low background intrinsic

577 germanium detector. Sediment samples with known radionuclide profiles were used for
578 calibration following ⁵².

579 We used, historical records, direct chemical analysis of sediment, and physico-chemical
580 records to reconstruct the paleoecological environment of Lake Ring. According to historical
581 records, the lake was semi-pristine until the 1940s. In the late 1950s, sewage inflow from a
582 nearby town increased nutrient levels resulting in eutrophication. The sewage inflow was
583 diverted at the end of the 1970s, but this period coincided with agricultural land-use
584 intensification (>1980), causing biocides leaching into the lake. The lake partially recovered in
585 modern times (>1999), experiencing a partial return to its original trophic state and reduced
586 impact from biocides ²¹.

587 Physico-chemical variables were measured in the lake between 1970 and 2016, even
588 though data are sparse and discontinuous, limiting their use in a machine learning or statistical
589 framework (Supplementary Fig. 4A). To complement the historical records, we obtained
590 climate data from the Danish Meteorological Institute (Supplementary Table 4). The climate
591 data were collected from a weather station 80 km from Lake Ring. Air and water surface
592 temperature typically have a positive correlation for shallow streams and lakes ^{53,54}. Hence, we
593 used the data from the weather station as an estimate of the lake water temperature. We also
594 observed a tight correlation between the recorded water temperature in Lake Ring and the
595 summer air temperature recorded by the weather station (Supplementary Fig. 4A). In addition,
596 we procured sales records of biocides in Denmark between 1955 and 2015 from the Danish
597 national archives (Supplementary Fig. 4B; Supplementary Table 4). To assess whether the
598 biocide sales records were a good representation of persistent chemicals in the lake sediment,
599 we quantified the persistent halogenated pesticide DDT in the sliced sedimentary archive of
600 Lake Ring, applying gas chromatography with mass spectrometry analysis (Supplementary
601 Fig. 4C). Sediment samples were lyophilized and freeze dried in a lyophilizator using a Christ
602 Beta 1-8 LSCplus freeze-dryer, (Martin Christ GmbH, Osterode am Harz, Germany), to avoid
603 analyte loss during water removal. Following lyophilization, the sediment samples were sieved
604 through 0.4 mm meshes and homogenised. Approximately 1g of dry sediment was weighed
605 into pre-cleaned glass tubes and spiked with 100 ng of deuterated [2H8- 4,4'- DDT], used as
606 an internal (surrogate) standard, followed by 1 g of copper powder (Merck, Dorset, UK)] for
607 sulphur removal. The sediment samples were extracted using 5ml of hexane: acetone (3:1 v/v),
608 vortexed for 5 min, followed by ultrasonication for 15 min and centrifugation for 3 min at
609 5000 rpm. The supernatant was transferred to a clean, dry tube and the process was repeated
610 twice for each sample. The combined extract was then evaporated to dryness under a gentle
611 stream of N2 and reconstituted in 2 mL of hexane. Sulphuric acid (3 ml) was used to wash the
612 reconstituted crude extract. The organic phase was allowed to separate on top of the acid layer
613 then transferred to another clean dry test tube. The remaining acid layer was washed twice,
614 each with 2 ml of Hexane. The combined clean extract and washes was evaporated under a
615 gentle stream of Nitrogen, reconstituted into 150 μ l of iso-octane containing 100 pg/ μ l of PCB
616 131 used as syringe (recovery) standard. Quantification of target DDTs was conducted on a
617 TRACE 1310TM GC coupled to an ISQTM single quadrupole mass spectrometer (Thermo Fisher
618 Scientific, Austin, TX, USA) operated in electron ionization (EI) mode according to a previously
619 reported method ⁵⁵.

620

621 *Biodiversity fingerprinting across 100 years*

622 *eDNA extraction and metabarcoding sequencing.* We applied multilocus metabarcoding or
623 marker gene sequencing to environmental DNA (eDNA) extracted from the 34 layers of
624 sediment from the biological archive of Lake Ring using a laminar flow hood in a PCR-free

625 environment to obtain a fine-grained temporal quantification of taxonomic diversity and
626 relative abundance of taxonomic groups. eDNA was extracted from the dated sediment layers
627 - *sedaDNA* - using the DNeasy PowerSoil kit (Qiagen), following the manufacturer's
628 instructions. Negative aerial and PCR controls were used; in addition, positive controls for PCR
629 consisting of duplicates of three random samples from the sedimentary archive, were used. The
630 duplicated samples were very similar, providing confidence in the approach used
631 (Supplementary Fig. 2). Triplicates of each *sedaDNA* sample were amplified with a suite of
632 five nuclear and mitochondrial PCR primers (barcodes) to capture presence and relative
633 abundance of eukaryotes (18S)⁵⁶, macroinvertebrates (COI)⁵⁷, primary producers (focus on
634 diatoms; rbcL)⁵⁸, and prokaryotes (16SV1 and 16SV4)⁵⁹ using Q5 HS High-Fidelity Master
635 Mix (New England Biolabs) and following the manufacturer's instructions. A negative control
636 in triplicate per plate was used. Paired end 250 bp amplicon libraries were obtained using a 2
637 step PCR protocol with 96x96 dual tag barcoding to facilitate multiplexing and to reduce
638 crosstalk between samples in downstream analyses⁶⁰ by EnviSion, BioSequencing and
639 BioComputing at the University of Birmingham (<https://www.envision-service.com/>). PCR1
640 and PCR2 primers, as well as annealing temperatures per primer pair in PCR1 are in
641 Supplementary Table 5. Excess primer dimers and dinucleotides from PCR1 were removed
642 using Thermostable alkaline phosphatase (Promega) and Exonuclease I (New England
643 Biolabs). PCR2 amplicons were purified using High Prep PCR magnetic beads (Auto Q
644 Biosciences) and quantitated using a 200 pro plate reader (TECAN) using qubit dsDNA HS
645 solution (Invitrogen). A standard curve was created by running standards of known
646 concentration on each plate against which sample concentration was determined. PCR2
647 amplicons were mixed in equimolar quantities (at a final concentration of 12 pmol) using a
648 biomek FXp liquid handling robot (Beckman Coulter). The final molarity of the pools was
649 confirmed using a HS D1000 tapestation screentape (Agilent) prior to 250 bp paired-end
650 sequencing on an Illumina MiSeq platform.
651

652 *Bioinformatics*. The reads were demultiplexed using the forward PCR1 primer sequence using
653 cutadapt 3.7.4 with an error rate of 0.07, equating to one allowed mismatch. The quality of
654 sequences was assessed with FASTQC⁶¹ and multiqc⁶². Sequences were then imported into
655 QIIME2 v 2021.2⁶³, trimmed, filtered, merged and denoised using the QIIME2 DADA2
656 module⁶⁴ using default parameters and trimming low quality sections and reverse primer
657 [forward read 0-10 trimmed front, 214-225 truncation; reverse read 17-26 trimmed front, 223-
658 247 truncation]. After denoising, the following samples had zero reads remaining: 16SV1,
659 16SV4, rbcL and COI negative PCR controls; COI aerial negatives A and B; 16SV1 sampleID
660 8. The taxonomic assignment was completed with the naive-bayes taxonomic classifiers trained
661 using different reference databases, depending on the barcode: the SILVA v138 database was
662 used for the assignment of the 16SV1, 16SV4 and 18S reads⁶⁵; the diatbarcode v9.2 was used
663 for the assignment of rbcL reads⁶⁶; and the Barcode of Life Database was used for the COI
664 reads⁶⁷. The taxonomy was assigned using qiime feature-classifier classify-sklearn and used
665 at family level where possible⁶⁸. When classification was not possible at family level, the
666 lowest classification possible was used. The taxonomic barplots were plotted per barcode using
667 ggplot2 v3.3.5⁶⁹ in R v4.0.2⁷⁰ and including the top ten most abundant families. All other taxa
668 were collapsed in the plots under 'other taxa'.

669 All samples were rarefied (16SV1 at 10,250 reads; 16SV4 at 10,400 reads; 18S at 9,070 reads;
670 COI at 3,580 reads; rbcL at 4,650 reads) to achieve normalisation for calculating Alpha and
671 Beta diversity metrics with QIIME2⁶³. The following samples did not meet the rarefaction
672 cutoff: 16SV1: aerial negatives A, B, C; 16SV4: aerial negatives A, B, C and sampleID 62
673 sample; 18S: aerial negatives A,B,C, negative PCR control, sampleID 18, positive control
674 replicate 62; rbcL: aerial negative A, B, and sampleIDs 50, 54, 60; COI sampleIDs 40, 64.

675 Alpha diversity differences among lake phases, using shannon entropy, were tested with
676 Kruskal-Wallis test and beta diversity differences among lake phases, calculated as weighted
677 unifrac distances, were established with a PERMANOVA test ⁷¹. Alpha diversity was plotted
678 using ggplot2 v3.3.5 with R v4.0.2. Heatmaps of weighted unifrac Beta diversity between each
679 pair of sediment layers were plotted with the pheatmap v1.0.12 in R v4.0.2 ⁷².
680 The function of the microbial communities across the four lake phases were predicted with
681 PICRUSt2 ⁷³ plugin in QIIME2 ⁶³, using the rarefied reads. Differentially abundant KEGG
682 Orthology (KO) terms between pairs of lake phases were identified using the ANCOM plugin
683 ⁷⁴ in QIIME2 ⁶³ and were mapped onto KEGG pathways with enriched pathways identified
684 using a Fisher Exact test.
685

686 *Drivers of biodiversity change*

687 To identify correlations between biological assemblages (families identified through the
688 sedaDNA sequencing) and drivers of change, we focused on biocides and climate variables,
689 using sparse Canonical Correlation Analysis (sCCA; it can be thought of as consensus PCA on
690 multiple data matrices) followed by Sliding Window (Pearson) Correlation (SWC) analysis
691 (Supplementary Fig. 5). Physico-chemical variables were not used in this analysis because of
692 their sparsity (data rarely met the Sliding Window correlation criteria of 5 continuous values)
693 and low variation over time (Supplementary Figure 6). sCCA is a tool for integrating and
694 discovering complex, group-wise patterns among high-dimensional datasets ⁷⁵. While most
695 forms of machine learning require large sample sizes, sCCA uses fewer observations to identify
696 the most correlated components among data matrices and captures the multivariate variability
697 of the most important features ⁷⁶.

698 Matrices consisting of rarefied ASV reads per barcode, climate data and biocide types were
699 used as input in the analytical pipeline summarised in Supplementary Fig 4. After the sCCA
700 analysis the ASVs were assigned to family level where possible or at the next lowest classifier.
701 The first step of the pipeline is preparing input matrices for ASVs, climate variables and
702 biocides (Supplementary Fig. 5; Step 1). The following step is a matrix-on-matrix regression,
703 applied to correlate families called from the ASVs with either biocide type or climate variables
704 (Supplementary Fig. 5; Step 2). The top five components of the correlations, based on loading
705 values, that explained the largest covariance between matrices were extracted from the sCCA,
706 and the abiotic factors (climate variable and biocide type, separately) ranked according to their
707 contribution to the overall covariance. A Sliding Window (Pearson) Correlation (SWC)
708 analysis followed this step and was applied to each pair of vectors represented by the top ranked
709 abiotic factor and the families. This approach was used to identify abiotic factors (either climate
710 variables or biocide types) that significantly correlated with families over time, using the
711 criterion that their Pearson correlation coefficient should be larger than 0.5 (i.e., large effect
712 size ⁷⁷) with an FDR adjusted p-value (padj) < 0.05 following 10,000 permutations
713 (Supplementary Fig. 5; Step 3). The minimum sliding window size was set to 5 time points,
714 corresponding to 15% of the total time window for which families, biocides and climate data
715 were available (the 34 sediment layers from the sedimentary archive span 100 years). Time
716 intervals with more than 50% zero values in either the biotic or the abiotic data were discarded
717 from downstream analyses to reduce false positives. A recall rate was used to quantify the
718 number of ASVs within a family that were individually significantly correlated with the abiotic
719 variables over all ASVs in a given family ⁷⁸. The families that co-varied with either biocide
720 types or climate variables over time were retained if they showed a Pearson correlation
721 coefficient > 0.5, a padj < 0.05 and a recall rate > 0.5 (90% quantile of the recall rates of all
722 families) (Supplementary Fig. 5; Step 4). This conservative approach enabled us to reduce
723 noise from spurious correlations and improve accuracy.

724 The combined effect of environmental factors may have an augmented impact on biodiversity.
725 To identify the combined effect of climate variables and biocides on the lake community
726 biodiversity, we applied again sCCA analysis (Supplementary Fig. 5; Step 5). For this analysis,
727 we selected the climate variables and biocide types contributing the largest covariances in the
728 correlation analysis in Step 4. Their combined effect on a family was considered to be
729 significant if the biocide type and the climate variable were each significantly correlated with
730 the family over the same time window, and their average Pearson correlation was > 0.5 with
731 $p_{adj} < 0.05$ (SWC analysis with 10,000 permutations) (Supplementary Fig. 5; Step 6). The
732 biocide type and the climate variable were interpreted to have an joint effect on a given family
733 if the linear combination of the biocide type and the climate variable had a larger Pearson
734 correlation coefficient than each of the correlations between the family and the biocide type
735 and the family and the climate variable individually, in the same time interval with $p_{adj} < 0.05$
736 (with 10,000 permutations in the SWC analysis).
737 Within each biocide type that significantly correlated with a family, we established their
738 ranking based on the correlation coefficient (Supplementary Fig. 5; Step 6). Significant Pearson
739 correlations that identified the joint effect of climate variables and individual biocides on a
740 given family were identified with the same criteria outlined above (Pearson correlation > 0.5 ;
741 $p_{adj} < 0.05$; SWC with 10,000 permutations). Chemicals with more than 50% null values or
742 Pearson correlation coefficients < 0.5 were discarded.
743

744 **Data availability**

745 The metabarcoding sequences generated for this project are available at Biosample ID
746 SAMN22315717- SAMN22315798.
747

748 **Code availability**

749
750 Code used to process and analyse the data in this study are available at
751 https://github.com/Environmental-Omics-Group/Biodiversity_Monitoring
752

753 **References**

- 754 1 Baert, J. M., Janssen, C. R., Sabbe, K. & De Laender, F. Per capita interactions and
755 stress tolerance drive stress-induced changes in biodiversity effects on ecosystem
756 functions. *Nat Commun* **7**, 12486, doi:10.1038/ncomms12486 (2016).
- 757 2 Cardinale, B. J. *et al.* Biodiversity loss and its impact on humanity. *Nature* **486**, 59-
758 67, doi:10.1038/nature11148 (2012).
- 759 3 Naggs, F. Saving Living Diversity in the Face of the Unstoppable 6th Mass
760 Extinction: A Call for Urgent International Action. *Population and Sustainability* **1**,
761 67-81 (2017).
- 762 4 Bonebrake, T. C. *et al.* Integrating Proximal and Horizon Threats to Biodiversity for
763 Conservation. *Trends Ecol Evol* **34**, 781-788, doi:10.1016/j.tree.2019.04.001 (2019).
- 764 5 Ruckelshaus, M. H. *et al.* The IPBES Global Assessment: Pathways to Action. *Trends
765 Ecol Evol* **35**, 407-414, doi:10.1016/j.tree.2020.01.009 (2020).
- 766 6 Eisenhauer, N. *et al.* A multitrophic perspective on biodiversity-ecosystem
767 functioning research. *Adv Ecol Res* **61**, 1-54, doi:10.1016/bs.aecr.2019.06.001 (2019).
- 768 7 Dornelas, M. *et al.* BioTIME: A database of biodiversity time series for the
769 Anthropocene. *Glob Ecol Biogeogr* **27**, 760-786, doi:10.1111/geb.12729 (2018).

- 770 8 Halpern, B. S. *et al.* Spatial and temporal changes in cumulative human impacts on
771 the world's ocean. *Nat Commun* **6**, 7615, doi:10.1038/ncomms8615 (2015).
- 772 9 Rounsevell, M. D. A. *et al.* A biodiversity target based on species extinctions. *Science*
773 **368**, 1193-1195, doi:10.1126/science.aba6592 (2020).
- 774 10 Eastwood, N. *et al.* The Time Machine framework: monitoring and prediction of
775 biodiversity loss. *Trends Ecol Evol* **37**, 138-146, doi:10.1016/j.tree.2021.09.008
(2022).
- 777 11 Nogues-Bravo, D. *et al.* Cracking the Code of Biodiversity Responses to Past Climate
778 Change. *Trends Ecol Evol* **33**, 765-776, doi:10.1016/j.tree.2018.07.005 (2018).
- 779 12 Blowes, S. A. *et al.* The geography of biodiversity change in marine and terrestrial
780 assemblages. *Science* **366**, 339-345, doi:10.1126/science.aaw1620 (2019).
- 781 13 Hirai J, K. S., Kasai H, Nagai S. . Cryptic zooplankton diversity revealed by a
782 metagenetic approach to monitoring metazoan communities in the coastal waters of
783 the okhotsk sea, northeastern Hokkaido. *Frontiers in Marine Science* **4** (2017).
- 784 14 Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-
785 based methods in paleolimnology: New opportunities for investigating long-term
786 dynamics of lacustrine biodiversity. *Journal of Paleolimnology* **58**, 1-21 (2017).
- 787 15 Capo, E. *et al.* How does environmental inter-annual variability shape aquatic
788 microbial communities? A 40-Year annual record of sedimentary DNA from a Boreal
789 Lake (Nylandssjön, Sweden). *Frontiers in Ecology and Evolution* **7**, 245 (2019).
- 790 16 Barouillet, C. *et al.* Paleoreconstructions of ciliate communities reveal long-term
791 ecological changes in temperate lakes. *Sci Rep* **12**, 7899, doi:10.1038/s41598-022-
792 12041-7 (2022).
- 793 17 Bonebrake, T. C., Christensen, J., Boggs, C. L. & Ehrlich, P. R. Population decline
794 assessment, historical baselines, and conservation. *Conservation Letters* **3** (2010).
- 795 18 Groh, K., Vom Berg, C., Schirmer, K. & Tlili, A. Anthropogenic Chemicals As
796 Underestimated Drivers of Biodiversity Loss: Scientific and Societal Implications.
797 *Environ Sci Technol* **56**, 707-710, doi:10.1021/acs.est.1c08399 (2022).
- 798 19 Pecl, G. T. *et al.* Biodiversity redistribution under climate change: Impacts on
799 ecosystems and human well-being. *Science* **355**, doi:10.1126/science.aai9214 (2017).
- 800 20 Gillson, L. & Marchant, R. From myopia to clarity: sharpening the focus of
801 ecosystem management through the lens of palaeoecology. *Trends Ecol Evol* **29**, 317-
802 325, doi:10.1016/j.tree.2014.03.010 (2014).
- 803 21 Cuenca - Cambronero, M. *et al.* Predictability of the impact of multiple stressors on
804 the keystone species Daphnia *Scientific Reports* **8**, 17572 (2018).
- 805 22 Cambronero, C. M., Beasley, J., Kissane, S. & Orsini, L. Evolution of thermal
806 tolerance in multifarious environments. *Mol Ecol* **27**, 4529-4541,
807 doi:10.1111/mec.14890 (2018).
- 808 23 Cuenca Cambronero, M., Beasley, J., Kissane, S. & Orsini, L. Evolution of thermal
809 tolerance in multifarious environments. *Mol Ecol* **27**, 4529-4541,
810 doi:10.1111/mec.14890 (2018).
- 811 24 Cuenca Cambronero, M., Zeis, B. & Orsini, L. Haemoglobin-mediated response to
812 hyper-thermal stress in the keystone species Daphnia magna. *Evol Appl* **11**, 112-120,
813 doi:10.1111/eva.12561 (2018).
- 814 25 Baltrusaitis, T., Ahuja, C. & Morency, L. P. Multimodal Machine Learning: A Survey
815 and Taxonomy. *IEEE Trans Pattern Anal Mach Intell* **41**, 423-443,
816 doi:10.1109/TPAMI.2018.2798607 (2019).
- 817 26 Agency, E. Phytobenthos - Diatoms for Assessing River and Lake Ecological Quality
818 (River DARLEQ3). (Sterling, UK, 2020).

- 819 27 Bennion, H. *et al.* Assessment of ecological status in UK lakes using benthic diatoms. *Freshwater Science* **33**, 639-654 (2014).
- 820 28 Moraitis, M. L., Valavanis, V. D. & Karakassis, I. Modelling the effects of climate change on the distribution of benthic indicator species in the Eastern Mediterranean Sea. *Sci Total Environ* **667**, 16-24, doi:10.1016/j.scitotenv.2019.02.338 (2019).
- 821 29 Itaki, T. *et al.* Innovative microfossil (radiolarian) analysis using a system for automated image collection and AI-based classification of species. *Sci Rep* **10**, 21136, doi:10.1038/s41598-020-77812-6 (2020).
- 822 30 Picard, M. *et al.* Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes. *Sci Rep* **12**, 12810, doi:10.1038/s41598-022-14216-8 (2022).
- 823 31 Talas, L., Stivrins, N., Veski, S., Tedersoo, L. & Kisand, V. Sedimentary Ancient DNA (sedaDNA) Reveals Fungal Diversity and Environmental Drivers of Community Changes throughout the Holocene in the Present Boreal Lake Lielais Svetinu (Eastern Latvia). *Microorganisms* **9**, doi:10.3390/microorganisms9040719 (2021).
- 824 32 Slon, V. *et al.* Extended longevity of DNA preservation in Levantine Paleolithic sediments, Sefunim Cave, Israel. *Sci Rep* **12**, 14528, doi:10.1038/s41598-022-17399-2 (2022).
- 825 33 Jia, W. *et al.* Preservation of sedimentary plant DNA is related to lake water chemistry. *Environmental DNA* **4**, 425–439 (2022).
- 826 34 Mauvisseau, Q. *et al.* The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. *Environ Sci Technol* **56**, 5322-5333, doi:10.1021/acs.est.1c07638 (2022).
- 827 35 Giguet-Covex, C. *et al.* Long livestock farming history and human landscape shaping revealed by lake sediment DNA. *Nat Commun* **5**, 3211, doi:10.1038/ncomms4211 (2014).
- 828 36 Cao, X. *et al.* Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities. *Water Res* **183**, 116077, doi:10.1016/j.watres.2020.116077 (2020).
- 829 37 Zhang, H., Huo, S., Yeager, K. M. & Wu, F. Sedimentary DNA record of eukaryotic algal and cyanobacterial communities in a shallow Lake driven by human activities and climate change. *Sci Total Environ* **753**, 141985, doi:10.1016/j.scitotenv.2020.141985 (2021).
- 830 38 Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. *Ecol Lett* **23**, 575-585, doi:10.1111/ele.13457 (2020).
- 831 39 Fordham, D. A. Mesocosms Reveal Ecological Surprises from Climate Change. *PLoS Biol* **13**, e1002323, doi:10.1371/journal.pbio.1002323 (2015).
- 832 40 Li, F. *et al.* Human activities' fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. *Glob Chang Biol* **26**, 6867-6879, doi:10.1111/gcb.15357 (2020).
- 833 41 Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. *Nat Commun* **9**, 4825, doi:10.1038/s41467-018-07238-2 (2018).
- 834 42 Choi, J. *et al.* Strategies to improve reference databases for soil microbiomes. *ISME J* **11**, 829-834, doi:10.1038/ismej.2016.168 (2017).
- 835 43 Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic Acids Res* **47**, D419-D426, doi:10.1093/nar/gky1038 (2019).

- 869 44 Cuenca-Cambronero, M. *et al.* Evolutionary mechanisms underpinning fitness
870 response to multiple stressors in *Daphnia*. *Evol Appl* **14**, 2457-2469,
871 doi:10.1111/eva.13258 (2021).
- 872 45 Pinheiro, J. P. S., Windsor, F. M., Wilson, R. W. & Tyler, C. R. Global variation in
873 freshwater physico-chemistry and its influence on chemical toxicity in aquatic
874 wildlife. *Biol Rev Camb Philos Soc* **96**, 1528-1546, doi:10.1111/brv.12711 (2021).
- 875 46 Patra, R. W., Chapman, J. C., Lim, R. P., Gehrke, P. C. & Sunderam, R. M.
876 Interactions between water temperature and contaminant toxicity to freshwater fish.
877 *Environmental Toxicology and Chemistry* **34**, 1809–1817 (2015).
- 878 47 Yang, P. *et al.* Correlation-Centric Network (CCN) representation for microbial co-
879 occurrence patterns: new insights for microbial ecology. *NAR Genom Bioinform* **2**,
880 lqaa042, doi:10.1093/nargab/lqaa042 (2020).
- 881 48 Tse, T. J. *et al.* Combining High-Throughput Sequencing of sedaDNA and Traditional
882 Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial
883 Communities. *Environ Sci Technol* **52**, 6842-6853, doi:10.1021/acs.est.7b06386
884 (2018).
- 885 49 Solimini, A. G., Cardoso, A. C. & Haiskanen, A.-S. Linkages between chemical and
886 biological quality of surface waters. 1-262 (Joint Research Centre, Ispra, Italy, 2005).
- 887 50 Archaimbault, V. & Dumont, B. The normalized global biological index (IBGN):
888 principles and evolution within the framework of the European framework directive
889 on water. *Sciences Eaux & Territoires*, doi:[https://doi.org/10.14758/SET-
890 REVUE.2010.1.08](https://doi.org/10.14758/SET-REVUE.2010.1.08) (2010).
- 891 51 Kanno, J. Introduction to the concept of signal toxicity. *J Toxicol Sci* **41**, SP105-
892 SP109, doi:10.2131/jts.41.SP105 (2016).
- 893 52 Appleby, P. G. *Chronostratigraphic techniques in recent sediments*. Vol. 1 (Kluwer
894 Academic Publisher, 2001).
- 895 53 Livingstone, D. M. & Lotter, A. F. The relationship between air and water
896 temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological
897 implications. *Journal of Paleolimnology* **19**, 181–198 (1998).
- 898 54 Preudhomme, E. B. & Stefan, H. G. Relationship between water temperatures and air
899 temperatures for central U.S. streams. (University of Minnesota, Duluth, Minnesota,
900 1992).
- 901 55 Wong, F., Robson, M., Diamond, M. L., Harrad, S. & Truong, J. Concentrations and
902 chiral signatures of POPs in soils and sediments: a comparative urban versus rural
903 study in Canada and UK. *Chemosphere* **74**, 404-411,
904 doi:10.1016/j.chemosphere.2008.09.051 (2009).
- 905 56 Hadziavdic, K. *et al.* Characterization of the 18S rRNA gene for designing universal
906 eukaryote specific primers. *PLoS One* **9**, e87624, doi:10.1371/journal.pone.0087624
907 (2014).
- 908 57 Leray, M. *et al.* A new versatile primer set targeting a short fragment of the
909 mitochondrial COI region for metabarcoding metazoan diversity: application for
910 characterizing coral reef fish gut contents. *Front Zool* **10**, 34, doi:10.1186/1742-9994-
911 10-34 (2013).
- 912 58 Zimmermann, J. *et al.* Taxonomic reference libraries for environmental barcoding: a
913 best practice example from diatom research. *PLoS One* **9**, e108793,
914 doi:10.1371/journal.pone.0108793 (2014).
- 915 59 Caporaso, J. G. *et al.* Global patterns of 16S rRNA diversity at a depth of millions of
916 sequences per sample. *P Natl Acad Sci USA* **108**, 4516-4522,
917 doi:10.1073/pnas.1000080107 (2011).

- 918 60 MacConaill, L. E. *et al.* Unique, dual-indexed sequencing adapters with UMIs
919 effectively eliminate index cross-talk and significantly improve sensitivity of
920 massively parallel sequencing. *BMC Genomics* **19**, 30, doi:10.1186/s12864-017-4428-
921 5 (2018).
- 922 61 Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and
923 quality control. *F1000Res* **7**, 1338 (2018).
- 924 62 Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis
925 results for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047-
926 3048, doi:10.1093/bioinformatics/btw354 (2016).
- 927 63 Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data
928 science using QIIME 2. *Nat Biotechnol* **37**, 852-857, doi:10.1038/s41587-019-0209-9
929 (2019).
- 930 64 Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina
931 amplicon data. *Nat Methods* **13**, 581-583, doi:10.1038/nmeth.3869 (2016).
- 932 65 Yilmaz, P. *et al.* The SILVA and "All-species Living Tree Project (LTP)" taxonomic
933 frameworks. *Nucleic Acids Res* **42**, D643-648, doi:10.1093/nar/gkt1209 (2014).
- 934 66 Rimet, F. *et al.* Diat.barcode, an open-access curated barcode library for diatoms. *Sci
935 Rep* **9**, 15116, doi:10.1038/s41598-019-51500-6 (2019).
- 936 67 Robeson, M. S., 2nd *et al.* RESCRIPt: Reproducible sequence taxonomy reference
937 database management. *PLoS Comput Biol* **17**, e1009581,
938 doi:10.1371/journal.pcbi.1009581 (2021).
- 939 68 Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *Journal of Machine
940 Learning Research* **12**, 2825-2830 (2011).
- 941 69 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag, 2016).
- 942 70 Team, R. C. (Vienna, Austria, 2020).
- 943 71 Anderson, M. J. A new method for non-parametric multivariate analysis of variance.
944 *Austral Ecology* **26**, 32-46 (2001).
- 945 72 Kolde, R. *Pretty Heatmaps*, <<https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf>> (2019).
- 946 73 Douglas, G. M. *et al.* PICRUSt2 for prediction of metagenome functions. *Nat
947 Biotechnol* **38**, 685-688, doi:10.1038/s41587-020-0548-6 (2020).
- 948 74 Mandal, S. *et al.* Analysis of composition of microbiomes: a novel method for
949 studying microbial composition. *Microb Ecol Health Dis* **26**, 27663,
950 doi:10.3402/mehd.v26.27663 (2015).
- 951 75 Lin, D. *et al.* Group sparse canonical correlation analysis for genomic data
952 integration. *BMC Bioinformatics* **14**, 245, doi:10.1186/1471-2105-14-245 (2013).
- 953 76 Parkhomenko, E., Tritchler, D. & Beyene, J. Sparse Canonical Correlation Analysis
954 with Application to Genomic Data Integration. *Statistical Applications in Genetics
955 and Molecular Biology* **8**, 1-34 (2009).
- 956 77 Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical
957 significance: a practical guide for biologists. *Biol Rev Camb Philos Soc* **82**, 591-605,
958 doi:10.1111/j.1469-185X.2007.00027.x (2007).
- 959 78 Buckland, M. & Gey, F. The relationship between recall and precision. *Journal of the
960 American society for information science* **45**, 12-19 (1994).
- 961

962

963 **Acknowledgments**

964 We thank Kerry Walsh and Glenn Watts, the UK Environment Agency, for helpful discussions
965 on the application of the approach presented here within regulatory frameworks. The

966 metabarcoding data were generated by EnviSion, BioSeqencing and BioComputing at the
967 University of Birmingham (<https://www.envision-service.com/>). The DDT chemical data were
968 generated by the GEES Mass Spectrometry Facility at University of Birmingham. Sediment
969 sampling and dating was completed by Goldsmith Ecology, Somerset. We thank Stephen
970 Kissane for technical assistance in generating high throughput sequencing data, Dr Xiaojing Li
971 for helpful discussions on functional analysis and Chantal Jackson for the artwork of Figure 1.
972 This work was funded by the Alan Turing Institute (under EPSRC grant R-BIR-001); and the
973 NERC highlights grant LOFRESH (NE/N005716/1). Niamh Eastwood is supported by the
974 Midlands Integrative Biosciences Training Partnership (MIBTP; BB/M01116X/1). SEC and
975 HH have been supported by the RobustNature Cluster of Excellence Initiative (internal
976 pre-funding of Goethe University Frankfurt).
977

978 **Author contributions**

979 NE produced and analysed the metabarcoding data. JZ created the code and ran the machine
980 learning analyses. RD completed preliminary bioinformatics analyses. MA-EA and WS
981 generated the DDT data. YJ, SEC and HH optimised chemical assays. TAD provided the
982 sedimentary archive, the climate and the biocides sales data. HB provided the 96x96 unique
983 barcode design. LO conceived and coordinated the study and data analysis. All co-authors
984 contributed to paper writing and approved the final manuscript.
985

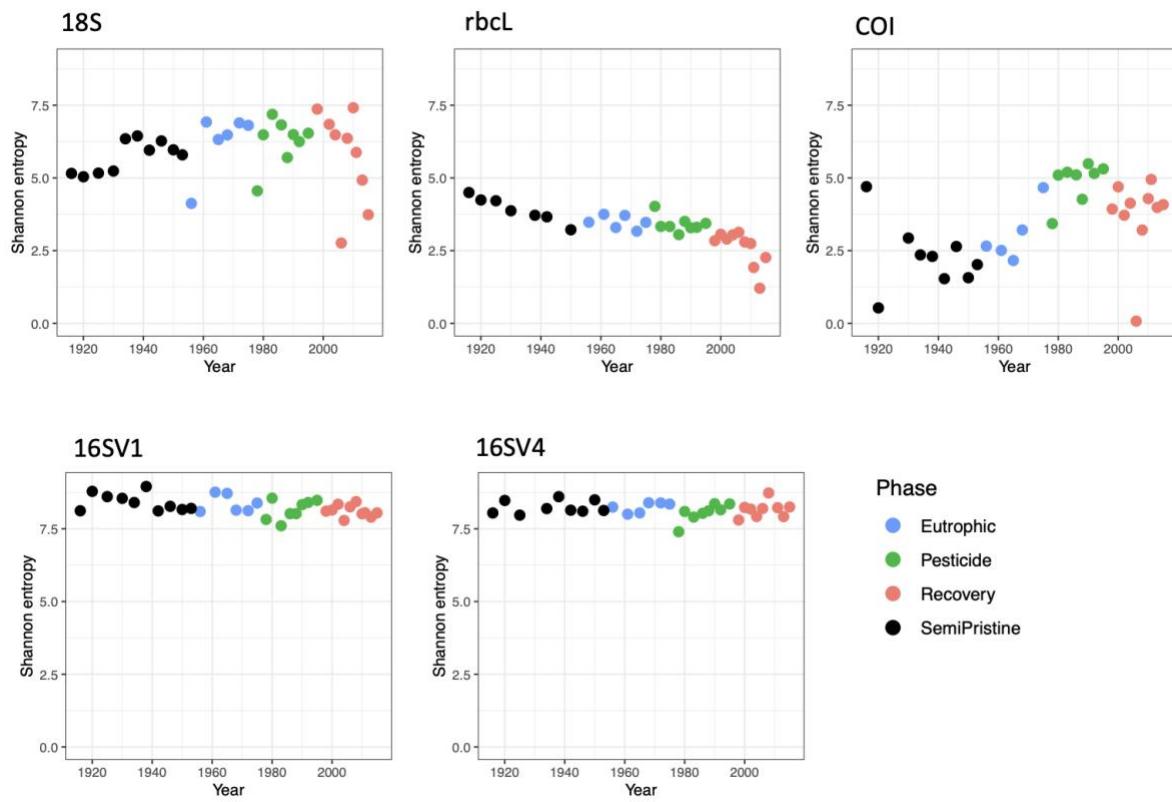
986 **Competing interests**

987 The authors declare no competing interests.

988 **Supplementary information**

989 Supplementary Figures and Tables

990 **Supplementary Figure 1. Alpha diversity.** Alpha diversity, measured as Shannon entropy,
991 is shown for the five barcodes used in this study (16SV1, 16SV4, 18S, COI and rbcL) between
992 1916-2016. The four lake phases are colour-coded as follows: Black - Semi-pristine; blue -
993 Eutrophic; green - Pesticides; red - Recovery. Kruskal-Wallis test across all phases: 18S: h
994 4.199, Pval = 0.241; rbcL: h 21.677, Pval<0.000; COI: h 16.958, Pval = 0.001; 16SV1: h
995 7.001, Pval = 0.072; 16SV4: h 2.220, Pval = 0.528.

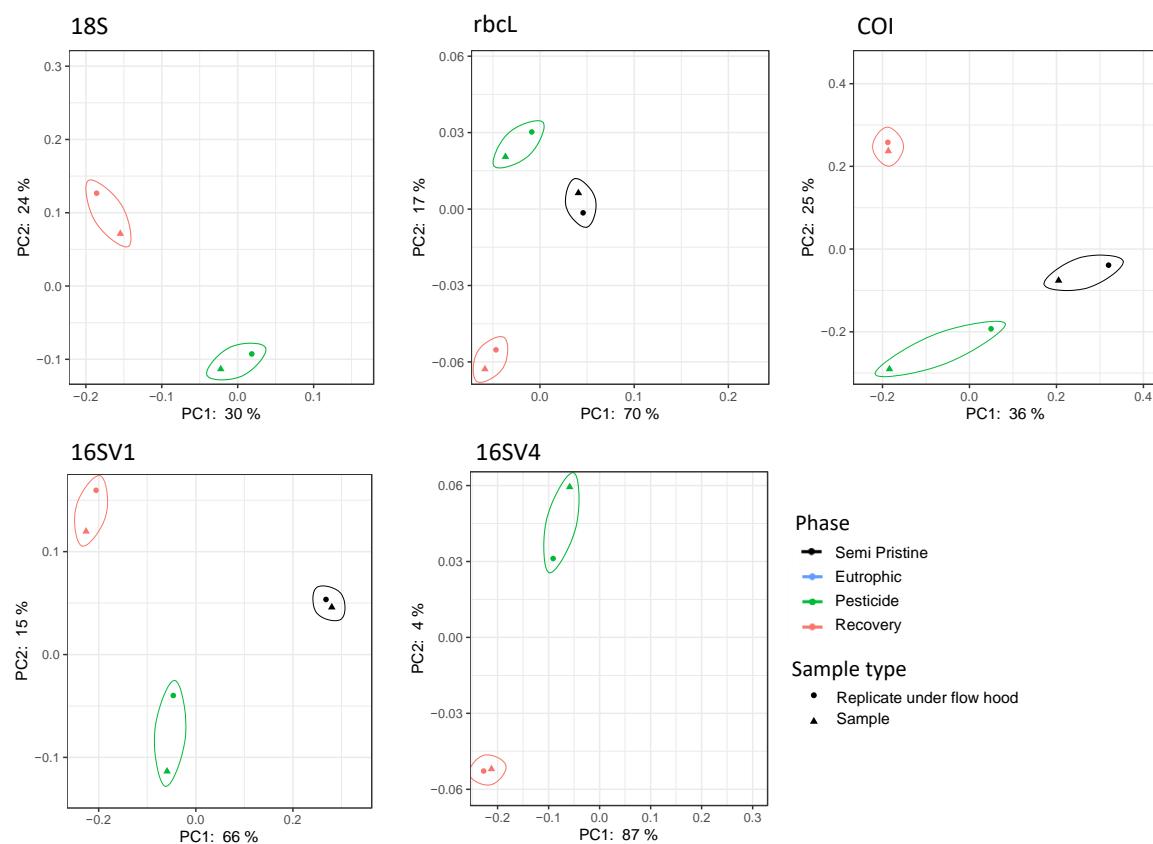


996

997

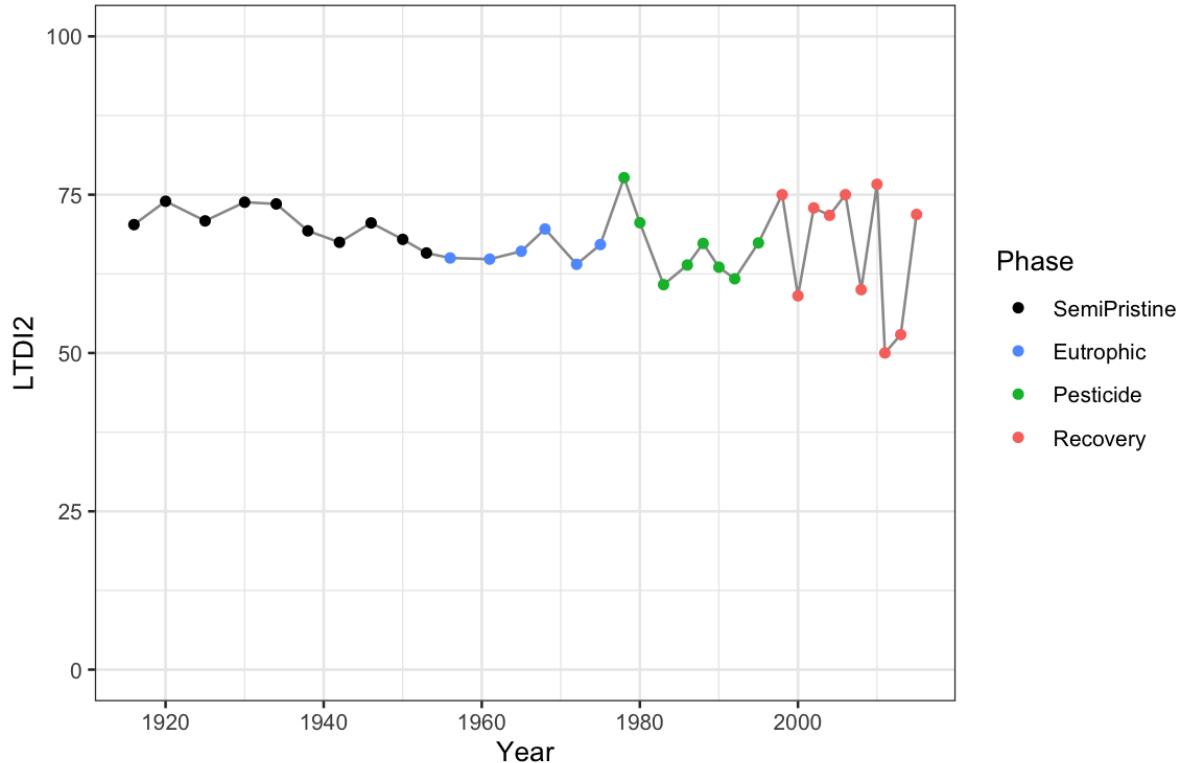
998 **Supplementary Figure 2. Principal Coordinate Analysis.** PCoA visualization of weighted
999 unifrac distance between samples. Positive controls for PCR consist of duplicates of up to three
1000 samples from the sedimentary archive for each of the five barcodes used in the study (16SV1,
1001 16SV4, 18S, rbcL and COI). Replicated samples are circled. The four lake phases are colour-
1002 coded as follows: Black - Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery.

1003



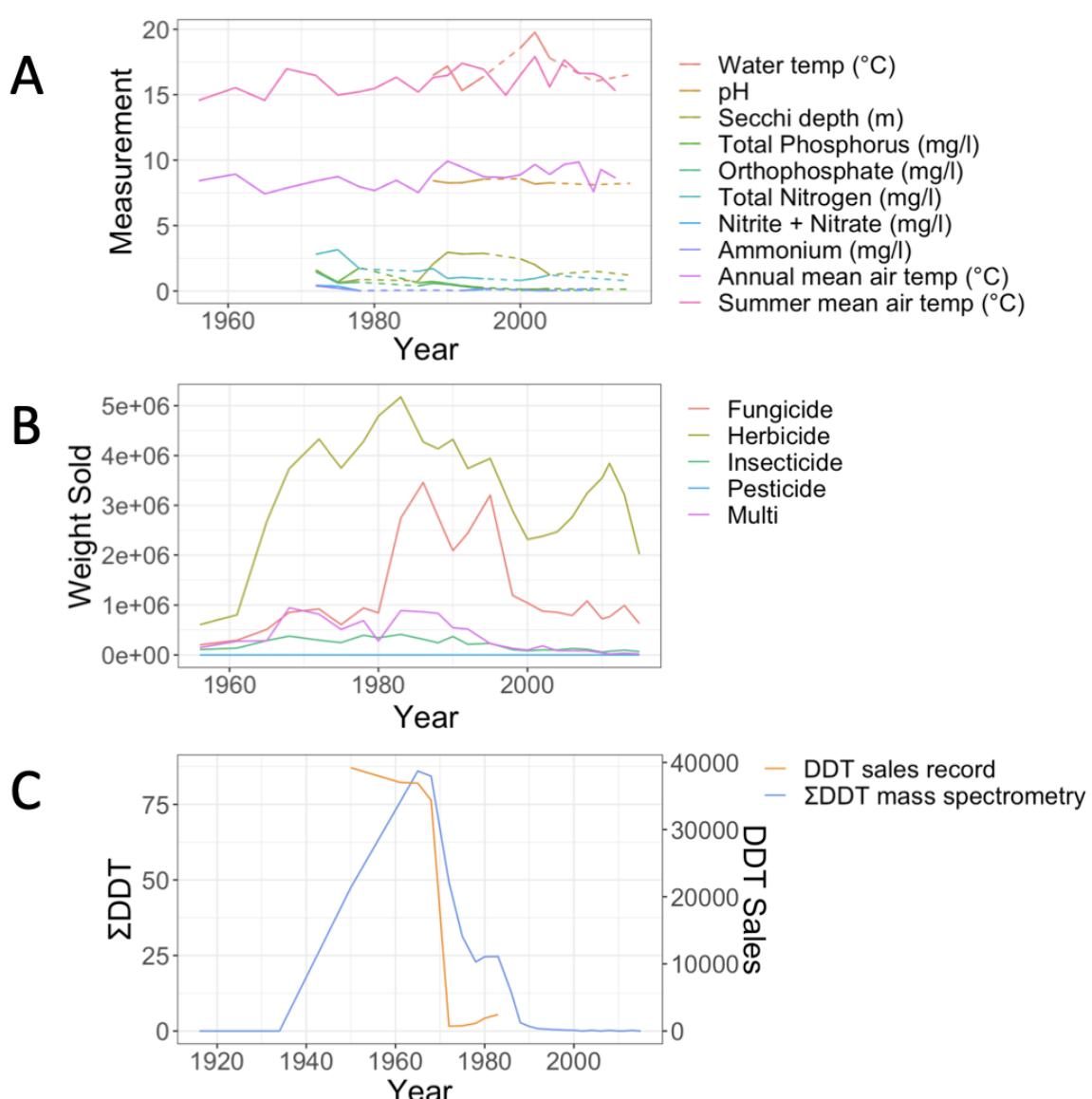
1004

1005 **Supplementary Figure 3. Trophic Diatom Index.** LTDI2 calculated using the diatom
1006 species identified in our study between 1915 and 2015 with the rbcL barcode and the
1007 “DARLEQ3” (Diatoms for Assessing River and Lake Ecological Quality) tool. Mean value
1008 of 67.59, standard deviation 6.3. The four lake phases are colour-coded as follows: Black -
1009 Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery.



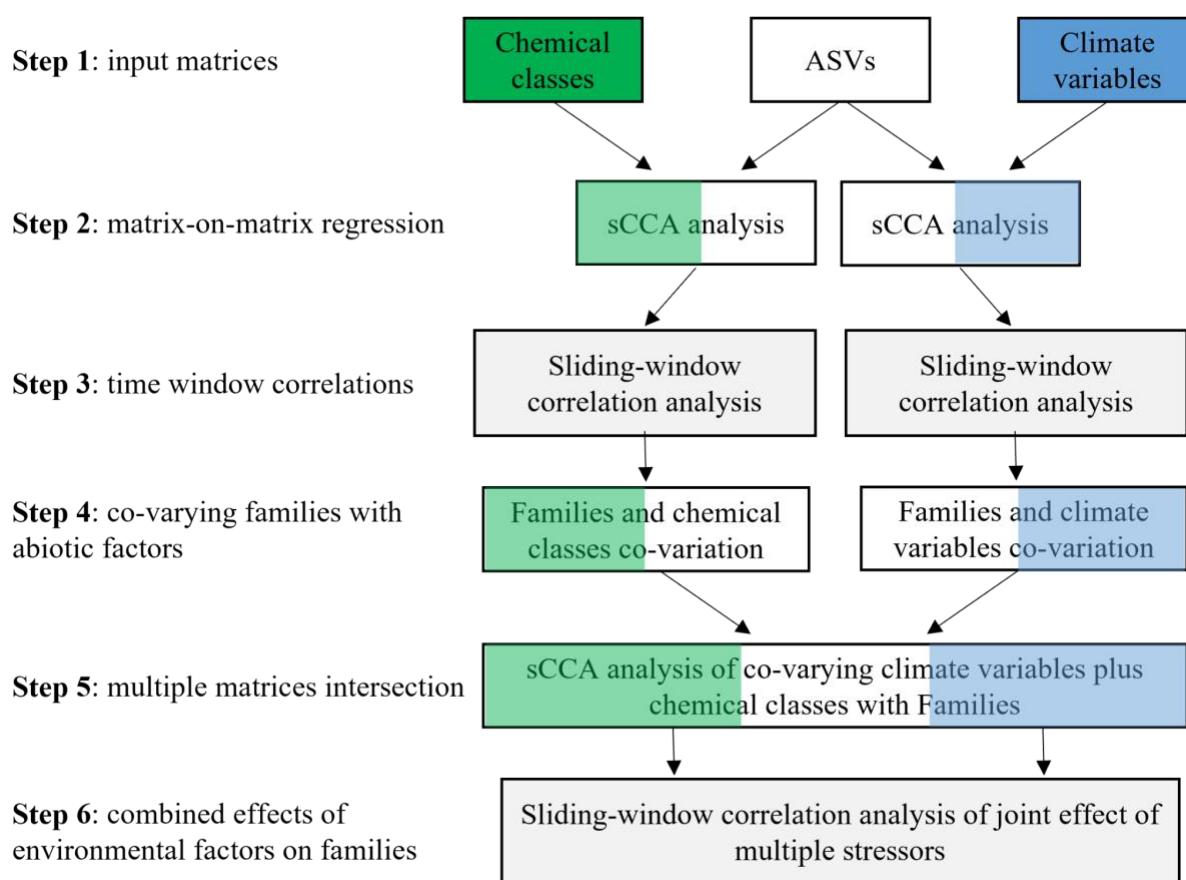
1010
1011
1012

1013 **Supplementary Figure 4. Biocides records.** A) Records of physico-chemical parameters
1014 measured in Lake Ring. Dotted lines indicate missing data points. Summer and annual mean
1015 temperature were recorded at a weather station 80km from Lake Ring. B) Record of biocides
1016 sales in Denmark (Million Tons/Year) between 1950 and 2016, downloaded from the Danish
1017 national archives; C) empirical record of DDT measured from the sediment layers of Lake
1018 Ring using mass spectrometry analysis (ng/g; blue) and plotted against the sales record in
1019 Denmark (Million Tons/year; orange). DDT was banned in Denmark in 1986.



1021 **Figure 5. AI pipeline.** The analytical pipeline consists of six main steps: **Step 1** is the
1022 preparation of input data matrices (ASVs, biocides and climate variables) to be used in the
1023 sCCA analysis. The type of environmental data may vary with the study; **Step 2** is the
1024 matrix-on-matrix regression between the ASVs and another environmental data matrix,
1025 biocides or climate in this study. Following the sCCA analysis, the ASVs are assigned to
1026 family level (or other relevant taxonomic order); **Step 3** consists of a Sliding Window
1027 (Pearson) Correlation (SWC) analysis, used to identify significant temporal correlations
1028 between families and environmental variables from the sCCA analysis; **Step 4** identifies the
1029 families that co-vary with either biocides or climate variables independently; **Step 5** is used
1030 to perform an intersection analysis among multiple matrices (families, biocides and climate
1031 variables); **Step 6** applies a Sliding Window (Pearson) Correlation (SWC) analysis to identify
1032 families, whose relative abundance changes both with biocides and climate variables over
1033 time. The pipeline enables the ranking of environmental variables or their combination
1034 thereof that is inversely correlated to the relative abundance of families over time.

1035



1036

1037

1038 **Supplementary Table 1 – sCCA analysis.** CCA loadings calculated with sparse canonical
1039 correlation analysis for biocides (A) and climate variables (B). The categories of biocides are
1040 insecticides, fungicides, pesticides and herbicides. The environmental variables are mean
1041 minimum temperature, maximum daily precipitation, highest recorded temperature, mean
1042 summer temperature, summer precipitation, annual total precipitation, summer atmospheric
1043 pressure and lowest recorded temperature.

1044

	18S	16V1	16V4	rbcl	COI
A) Biocides					
1	insecticide	insecticide	insecticide	insecticide	fungicide
2	fungicide	fungicide	fungicide	fungicide	insecticide
3	pesticide	pesticide	pesticide	pesticide	pesticide
4	herbicide	herbicide	herbicide	herbicide	herbicide
B) Climate variables					
1	mean minimum temperature	mean minimum temperature	mean minimum temperature	mean minimum temperature	mean minimum temperature
2	summer mean atmospheric pressure	summer total precipitation	maximum daily precipitation	summer total precipitation	annual total precipitation
3	summer mean temperature	highest recorded temp	summer mean temperature	maximum daily precipitation	highest recorded temp
4	highest recorded temp	summer mean temperature	highest recorded temperature	summer mean temperature	summer mean atmospheric pressure
5	summer total precipitation	lowest recorded	summer total precipitation	annual total precipitation	summer mean

		temperature			temperature
--	--	-------------	--	--	-------------

1045

1046 **Supplementary Table 2. Correlations between biodiversity and environmental variables.**
1047 Summary of correlations between taxonomic units identified through the five barcodes (18S,
1048 16SV1, 16SV4, rbcl and COI) and environmental variables, including biocides and climate
1049 factors. The taxonomic name and the number of significant correlations between a taxonomic
1050 unit and environmental variables, is followed by a correlation value, associated p-adjusted
1051 value and recall rate for each variable. The taxonomic units are reported at the lowest
1052 taxonomic assignment possible (f – family; o – order; c- class; p – phylum; null - unassigned).
1053 Results are collated per barcode, each in a separate tab. The last tab lists only taxonomic units
1054 that significantly correlated with the environmental variables based on the combined criteria of
1055 Pearson correlation value greater than 0.5, adjusted P-value smaller than 0.05 and recall rate
1056 greater than 0.5 along with the direction of the correlation.

1057

1058 *See Eastwood_etal_Supplementary Table 2*

1059

1060 **Supplementary Table 3. Joint effects between biocides and climate variable.** The biocides
1061 showing significant joint effect with climate variables are ranked based on their correlation
1062 coefficient. The barcode and identified families that are affected by the joint effect of a climate
1063 variable and biocides type are shown. The order in which the biocide types are ranked is the
1064 same used to plot Figure 5.

1065

1066 *See Eastwood_etal_Supplementary Table 3*

1067

1068 **Supplementary Table 4. Lake Ring metadata.** Dating record for Lake Ring, climate data
1069 collected from a weather station adjacent to the lake, and sales records for biocides are shown.
1070 The year of sampling (year), the sample ID, the depth of the sediment layer measured in
1071 centimetres (Depth), climate variables (annual mean temperature °C, summer mean
1072 temperature °C, mean minimum temperature °C, mean maximum temperature °C, highest
1073 recorded temperature °C, lowest recorded temperature °C, mean atmospheric pressure hPa,
1074 summer mean atmospheric pressure hPa, annual total precipitation mm, summer precipitation
1075 mm, maximum daily precipitation mm, No. of days with snow cover, annual mean cloud cover,
1076 and summer mean cloud cover) and record of biocides sales between the 1950s and 2016 in
1077 tonnes/year and separated per class (insecticides, herbicides, fungicides and pesticides).

1078

1079 *See Eastwood_etal_Supplementary Table 4*

1080

1081 **Supplementary Table 5. PCR primers.** Tab1) PCR1 primers with bibliographic references,
1082 expected fragment size (bp), annealing temperature (°C) and primer sequences (in black) with
1083 overhang to prime the sequencing flow cell; Tab2) PCR2 primers consisting of Nextera
1084 adapters, universal tail and overhang sequence.

1085 *See Eastwood_etal_Supplementary Table 5*

1086

1087