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Abstract 36 

Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate. 37 

Unless we find transformative solutions to preserve biodiversity, future generations may not 38 
be able to enjoy nature’s services.  39 

We have developed a conceptual framework that establishes the links between 40 
biodiversity dynamics and abiotic change through time and space using artificial intelligence. 41 
Here, we apply this framework to a freshwater ecosystem with a known history of human 42 

impact and study 100 years of community-level biodiversity, climate change and chemical 43 

pollution trends. We apply explainable network models with multimodal learning to 44 
community-level functional biodiversity measured with multilocus metabarcoding, to establish 45 
correlations with biocides and climate change records. We observed that the freshwater 46 
community assemblage and functionality changed over time without returning to its original 47 

state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined 48 
with extreme temperature events and precipitation, explained up to 90% of the functional 49 
biodiversity changes. The community-level biodiversity approach used here reliably explained 50 

freshwater ecosystem shifts. These shifts were not observed when using traditional quality 51 
indices (e.g. Trophic Diatom Index).  52 

Our study advocates the use of high throughput systemic approaches on long-term 53 
trends over species-focused ecological surveys to identify the environmental factors that cause 54 
loss of biodiversity and disrupt ecosystem functions. 55 
   56 
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Introduction 57 
Biodiversity is the foundation of provisioning, regulating, supporting, and cultural 58 

ecosystem services 1, which underpin economic prosperity, social well-being and quality of life 59 
2. Global biodiversity has been lost at an alarming rate in the past century, leading to what some 60 
have called the sixth mass extinction - biodiversity loss caused by human population growth 61 
and activities 3. Biodiversity is threatened by agricultural land use, climate change, invasive 62 
species, pollution and unsustainable production and consumption 4. Freshwater ecosystems 63 
have suffered the greatest biodiversity loss because of these anthropogenic drivers 5. 64 

Experimental manipulation of biodiversity has demonstrated the causal links between 65 

biodiversity loss and loss of ecosystem functions 6. However, studies on multi trophic levels 66 
are scarce and largely focus on terrestrial and marine ecosystems; freshwater ecosystems, 67 
especially lakes and ponds, are not well represented in multitrophic experimental 68 
manipulations, 7. These holistic studies are critical to understand the context-dependency of 69 

biodiversity-ecosystem functions relationships and to implement management measures to 70 
conserve biodiversity. However, a better understanding of the environmental factors with the 71 
largest impact on biodiversity, and their cumulative effect over time is urgently needed 8.   72 

   Biodiversity action plans have been devised since the 1990s. However, most 73 
strategies have failed to stop or even reduce biodiversity decline 9. This is because:  74 

i) Biodiversity loss occurs at different spatial and temporal scales, and dynamic changes in 75 
community composition are the result of long-term ecological processes 10,11. State-of-the-art 76 
environmental and biological monitoring typically captures single snapshots in time of long-77 
term ecological dynamics, failing to identify biodiversity shifts that may arise from cumulative 78 

impacts over time 10,11. Recent initiatives like BioTIME started collating databases with species 79 
presence and abundance recorded from time series across different ecosystems 7. However, 80 

freshwater ecosystems are poorly represented in  these studies which at most encompass the 81 
last 10-25 years 12. Although the large geographic breath of these studies is good to understand 82 
overall trends of biodiversity change, they are inadequate to identify drivers of biodiversity 83 
dynamics 8,12. Moreover, the taxonomic species assignment in these databases is oftentimes 84 

derived from traditional observational methods (e.g. microscopy), which cannot resolve cryptic 85 

diversity 12. High cryptic diversity is common in freshwater invertebrates and primary 86 
producers, potentially impacting the assessment of biodiversity in these ecosystems more 87 
severely than in terrestrial or marine ecosystems 13. More recently, sedaDNA (environmental 88 

DNA extracted from sediment) has emerged as a promising tool to study decade-long 89 
biological dynamics 14. However, these studies focus on specific taxonomic groups e.g. 90 

microbes 15; ciliates 16, failing to capture the community-level changes in any given ecosystem.  91 
ii) Biodiversity is threatened by multiple factors. Only by quantifying trajectories of abiotic, 92 
biotic, and functional systemic change over time, can we begin to identify the causes of 93 

biodiversity and ecosystem function loss 17. Studies are emerging that investigate the impact of 94 
chemicals 18 or climate change 19 on biodiversity. Yet, understanding the combined effect of 95 

these abiotic factors on biodiversity is still challenging. 96 

iii) The lack of paired biological and abiotic long-term monitoring data is a limiting factor in 97 
establishing meaningful and achievable conservation goals. Even well-monitored species have 98 
time series spanning a few decades at best 8,17. Moreover, conservation efforts have historically 99 
focused on ecological surveys of few indicator species, the identification of which require 100 

specialist skills (e.g., light microscopy and taxonomy) and are low throughput 20. High 101 
throughput system-level approaches providing biological, abiotic and functional changes over 102 

multiple decades are needed to understand links between biodiversity loss, drivers of changes 103 
and potential consequences on ecosystem functionality 10. 104 
Recently, we have developed a conceptual framework that helps establish the links between 105 

biodiversity dynamics and abiotic environmental changes using artificial intelligence,  106 
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examines emergent impacts on ecosystem functions, and forecasts the likely future of 107 
ecosystem services and their socioeconomic impact under different pollution and climate 108 
scenarios 10. Here, we illustrate the first component of this framework in a freshwater 109 

ecosystem (Lake Ring, Denmark) with a well-documented human-impact over 100 years 21 110 
by quantifying the interrelations between community-level functional biodiversity, biocides 111 
and climate (Fig. 1). Historical records, supported by empirical evidence show that Lake Ring 112 
experienced semi-pristine conditions until the early 1940s 22. In the late 1950s, sewage inflow 113 
caused severe eutrophication. When the sewage inflow was diverted at the end of the 1970s, 114 

agricultural land use intensified, leading to substantial biocides leaching 21. The lake partially 115 

recovered from eutrophication and land use in modern times (>1999) but, as with every lake 116 
ecosystem in Europe, it experienced an increase in average temperature 23,24. We apply 117 
multilocus metabarcoding and mass spectrometry analysis to a dated sedimentary archive of 118 
Lake Ring. These data, complemented by biocides sale records and climate records, were 119 

studied with explainable network models with multimodal learning to identify drivers of 120 
functional biodiversity changes across major ecosystem shifts 25 (Fig. 1). The combination of 121 
explainable networks and multimodal learning allow the simultaneous interrogation of data 122 

matrices describing different types of data. A symmetric matrix-on-matrix regression is 123 
typically used to identify the components that covary within a matrix (e.g., environmental 124 

variables), and among matrices (e.g., environmental variables and eDNA taxonomic units). 125 
Given the well-documented human-impact over time, Lake Ring represents an excellent 126 
natural system to demonstrate the power of systemic approaches in biological and functional 127 
monitoring.    128 
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Figure 1. Conceptual framework. A sedimentary archive spanning 100 years was sampled 129 
from Lake Ring, Denmark and dated using radioisotopes. Both biotic and abiotic changes were 130 
empirically quantified through time: 1) community-level biodiversity was reconstructed by 131 

applying multilocus metabarcoding to environmental DNA isolated from sediment layers 132 
(biological fingerprinting); 2) chemical signatures were quantified from the same sediment 133 
layers using mass spectrometry analysis (chemical fingerprinting); 3) climate data were 134 
collected from publicly available databases. Explainable network models with multimodal 135 
learning were applied to identify significant correlations between system-level biodiversity, 136 

chemical fingerprinting, and climate variables. Taxonomic units (families) impacted by 137 

environmental factors were identified and environmental factors ranked based on their effects 138 
on community biodiversity. This approach enables the prioritisation of conservation and 139 
mitigation interventions.   140 
 141 

 142 
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Results  144 
Freshwater community dynamics across 100 years 145 
A sedimentary archive was collected from Lake Ring in November 2016 with a gravity corer; 146 

the core was sliced in 34 layers of 0.5 cm, which corresponded to a temporal resolution of about 147 
3 years per layer across 100 years. This estimate was based on a radiometric chronology of the 148 
core completed in 2018 (see Methods). Lake Ring has a well-known and documented history 149 
of human impact over the past century. The lake transitioned over time from a semi-pristine 150 
environment to eutrophication, and later to high pesticide pollution due to intensification of 151 

agricultural land-use in the area surrounding the lake. In modern times (>1999), the lake 152 

partially recovered (see methods for more details)21. Hereafter, we refer to the lake transitions 153 
across these statuses as lake phases.   154 

We quantified community-level biodiversity over a century (1916 - 2016) by applying 155 
high throughput multilocus metabarcoding (18S, 16SV1, 16SV4, COI and rbcL barcodes) to 156 

bulk environmental DNA (eDNA) extracted from layers of a dated sedimentary archive from 157 
Lake Ring. After denoising, the number of unique ASVs and total number of reads across all 158 
samples (including median number of reads per sample) found per barcode were as follows: 159 

18S - 2,023 ASVs, 569,761 total reads (median 12,893 reads); 16SV1 - 4,022 ASVs, 842,619 160 
total reads (median 20,798 reads); 16SV4 - 5,270 ASVs, 552,064 total reads (median 13,816 161 

reads); COI - 822 ASVs, 362,616 total reads (median 9,595 reads); rbcL - 417 ASVs, 366,489 162 
total reads (median 9,443 reads). Alpha diversity did not significantly vary across the lake 163 
phases for both prokaryotes and eukaryotes (Supplementary Fig. 1) and was proportionally 164 
higher in the prokaryotic (16S barcodes) than in the eukaryotic community (18S barcode). 165 

Conversely, the invertebrate community (COI barcode), and the diatom community (rbcL 166 
barcode), showed significant changes over time across the lake phases, reflecting taxon-167 

specific patterns over time (Supplementary Fig. 1). Even though the alpha diversity varied over 168 
time, it was not consistently lower in historical than modern communities across the barcodes, 169 
allowing us to exclude bias in the preservation state of environmental DNA.  170 
The community composition (beta diversity) changed significantly in the transition between 171 

lake phases (Table 1; Fig. 2A; Supplementary Fig. 2). The overall eukaryotic community 172 

composition changed over time across all lake phases (Table 1; Fig. 2A; 18S). However, the 173 
composition of the primary producers (e.g. rbcL) changed significantly only in the transition 174 
between the pesticide and the eutrophic phases, whereas the invertebrate’s community (e.g. 175 

COI) changed significantly only between the pesticide and the recovery phases (Table 1; Fig. 176 
2A; rbcL, COI). The significant changes in community composition identified by the 177 

PERMANOVA analysis were driven by two families of primary producers [Chlorophyceae 178 
(green algae), Mediophyceae (diatoms)] and seven families of invertebrates, [Monhysterida 179 
(nematode worms), Oligohymenophorea (ciliates), Calanoida (zooplankton), Ploimida 180 

(rotifers), Chaetonotida (gastrotrichs), Thoracosphaeraceae (dinoflagellates) and Calanoida 181 
(copepods)] (Fig. 2B; 18S). In the transition from the semi-pristine to the eutrophic phase, the 182 

relative abundance of rotifers and green algae declined in favour of calanoids and diatoms (Fig. 183 

2B; 18S). The proportion of diatoms, worms and nematodes increased in the transition from 184 
the eutrophic to the pesticide phase, while the proportion of calanoids and gastrotricha declined 185 
(Fig. 2B; 18S). The taxonomic composition of the recovery phase showed a relative increase 186 
in ciliates and gastrotricha as compared to the pesticide environment (Fig. 2B; 18S). 187 

Vampirellidae (Vampire amoebae feeding on algae) were relatively more abundant in the 188 
eutrophic than in the other phases, in which primary producers were also more abundant (Fig. 189 

2B, 18S). The composition of the recovery and semi-pristine phases differed significantly, 190 
suggesting an incomplete recovery of the lake over time to this date (Table 1; Fig. 2A;18S).   191 

The prokaryotic community significantly changed at each major transition between lake 192 

phases, consistently across the two barcodes (Table 1; 16SV1 and 16SV4). We observed two 193 
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patterns in the prokaryotic community composition over time: some taxonomic groups changed 194 
with the redox status of the sediment [e.g. acidophilus archaea (Thermoplasmata) and 195 
methanogenic archaea (Methanomassiliicoccaceae), which declined from the semi-pristine to 196 

the recovery phase (Fig. 2B, 16SV4)]; others changed over time consistently with the nutrient 197 
levels of the ecosystem. For example Nitrospiraceae (nitrite oxidizers) were more abundant in 198 
high nutrient environments (eutrophic and pesticides) than in lower nutrient environments 199 
(semi-pristine and recovery) (Fig. 2B; 16SV1)]. 200 

Changes in the invertebrate community were driven by Brachionideae (rotifers) that 201 

were most abundant in the semi-pristine phase and declined over time; Chironomidae (lake 202 

flies) that were proportionally more abundant in the eutrophic and recovery phases and showed 203 
the lowest abundance in the pesticides phase; Chaoboridae (phantom midge larvae) that were 204 
only present in the semi-pristine and recovery phases; and Daphniidae (waterfleas) that were 205 
most abundant in the pesticide phase, but present throughout the 100 years of sampling (Fig. 206 

2B; COI). The diatom composition was stable over time, with only the semi-pristine phase 207 
having a more distinctive diatom assemblage profile dominated by Bacillariophyta (Fig. 2B; 208 
rbcL). Diatoms are commonly used by regulators to derive the status of freshwater within the 209 

Water Framework Directive both for lakes and rivers 26. We used our rbcL data to derive a 210 
Lake Trophic Diatom Index (LTDI2) for Lake Ring following 27. This result confirmed our 211 

beta diversity analysis of non-significant changes over time of the diatom community 212 
(Supplementary Fig. 3).  213 
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Table 1. PERMANOVA on beta diversity. Permutational Multivariate Analysis of Variance 214 
using weighted Unifrac distances ASV matrices testing for pairwise differences between lake 215 
phases across the five barcodes used in the study (16SV1, 16SV4, 18S, COI, rbcL) with 999 216 

permutations. Significant terms (p-values <0.05 after applying Benjamini & Hochberg 217 
correction for multiple testing) are in bold. The lake phases are as follows: SP - semi-pristine; 218 
E - Eutrophic; P - pesticides; R - recovery. 219 
 220 

Phase  16SV1  16Sv4  18S  COI  rbcL  

1 2 R2 p adj R2 p adj R2 p adj R2 p adj R2 p adj 

SP E 0.4349 0.0067 0.5533 0.0017 0.2968 0.0033 0.0432 0.705 0.2879 0.0914 

SP P 0.6290 0.0025 0.8515 0.0017 0.4459 0.0033 0.3868 0.0033 0.3920 0.0125 

SP R 0.6956 0.0025 0.9026 0.0017 0.3841 0.0033 0.3178 0.0033 0.5084 0.0033 

E P 0.3959 0.006 0.7399 0.0017 0.1249 0.15 0.3198 0.005 0.1555 0.1511 

E R 0.5656 0.0025 0.8520 0.0017 0.1816 0.0075 0.2806 0.0033 0.6019 0.0033 

P R 0.3026 0.0025 0.3724 0.0017 0.1029 0.15 0.1924 0.012 0.3605 0.0033 

 221 

  222 
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Figure 2. Biodiversity compositional changes. (A) Weighted unifrac beta diversity heatmaps 223 
between each pair of sediment layers spanning a century (1916-2016) for the five barcodes 224 
used in this study (18S, rbcL, COI, 16SV1 and 16SV4). The PERMANOVA statistics in Table 225 

1 support these plots. The scale used may be different among the heatmaps. (B) Taxonomic bar 226 
plots including the top 10 most abundant families identified across five barcodes (18S, rbcL, 227 
COI, 16SV1 and 16SV4). shown per lake phase:  SP - semi-pristine; E - eutrophic; P - 228 
pesticides; R - recovery.  229 
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Functional changes linked to community compositional shifts 232 

Changes in freshwater community composition corresponded to significant shifts in the 233 

predicted functioning of the prokaryotic community (Fig 3). We predicted different functions 234 
between each pair of lake phases by identifying molecular functions enriched as quantified by 235 
functional orthologs (KO terms). A functional ortholog was defined from functions 236 
experimentally assigned to the prokaryotes identified with the 16S rRNA in each lake phase. 237 
We predicted a total of 6,257 Kegg Orthologs (KO) terms from the 16SV1 and 6,828 from the 238 

16Sv4 barcode across the lake phases. Of the total number of KO terms, 1,418 were 239 

significantly differentially abundant across the lake phases in the 16SV1 and 1,064 terms in the 240 
16SV4 dataset, respectively. The functional KEGG pathways enriched within these KO terms 241 
and significantly differentially enriched between lake phases (Fisher's exact test, p-adj < 0.05) 242 
were 19 (17 for the 16SV4 and 2 for the 16SV1) (Fig. 3). Seven differentially enriched 243 

pathways were found between the semi-pristine and recovery phases and seven were found 244 
between the eutrophic and recovery phases (Fig. 3; 16SV4). These pathways were linked to 245 
catabolic functions (purine and pyrimidine metabolism), RNA transport and biogenesis, 246 

fundamental for gene expression and protein folding. Six functional pathways were 247 
differentially enriched between the semi-pristine and the eutrophic phases that were linked to 248 

metabolism (including methane metabolism), degradation and biosynthesis (Fig. 3; 16SV4). 249 
Three functional pathways that underpin carbohydrates metabolism, lysine biosynthesis and 250 
degradation were differentially enriched between the pesticide and recovery phases. The latter 251 
two functions are critical for mitochondrial function. A single pathway was differentially 252 

enriched between the semi-pristine and the pesticide phases, linked to lipid metabolism 253 
(glycosphingolipid biosynthesis; Fig. 3; 16SV4). Two differentially enriched pathways were 254 

identified between the eutrophic and the recovery phases and underpin infection response and 255 
photosynthesis (Fig. 3; 16SV1).  256 
  257 
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Figure 3. Functional analysis. Functional pathways that are significantly differentially 258 
enriched between lake phases are shown for the 16SV1 and the 16SV4 barcodes. The lake 259 
phases are as in Figure 2: SP - semi-pristine; E - eutrophic; P - pesticides; R - recovery. Odds 260 

ratios indicate the representation of each pathway in the pairwise comparisons.  261 
 262 

 263 
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Drivers of biodiversity change 271 

To discover drivers of biodiversity change we applied sparse canonical correlation 272 

analysis (sCCA) to community biodiversity data and other parameters measured from Lake 273 
Ring, namely climate records collected from a weather station proximal to the lake, and sales 274 
records of biocides in Denmark between 1955 and 2015 from the Danish national archives. The 275 
biocide sales records proved to be a good representation of persistent chemicals in the lake 276 
sediment, as the quantification of the persistent halogenated pesticide DDT in the sliced 277 

sedimentary archive showed by producing a very similar profile as the sales records over time 278 

(see methods section). 279 
We discovered that insecticides and fungicides best explained changes in overall 280 

biodiversity, possessing the highest CCA loadings across the barcodes, followed by pesticides 281 
and herbicides (Supplementary Table 1A). Among the climate variables, yearly minimum 282 

temperature explained the largest biodiversity changes, whereas other climate variables had a 283 
variable impact across the barcodes and hence taxonomic groups (Supplementary Table 1B).  284 

Having ranked biocides and climate variables that best explained changes in overall 285 

biodiversity, we identified correlations between taxonomic groups (assigned at family level 286 
where possible) and individual abiotic variables. Correlations were identified between a total 287 

of 36 eukaryotic families and abiotic variables; of these correlations, 28 were with biocides and 288 
25 with climate variables (some correlations involved the same taxonomic group correalting 289 
with multiple environmental factors). Of the 28 families negatively correlated with biocides, 290 
the largest proportion co-varied significantly with insecticides (21 families - 75%) and 291 

fungicides (14 families - 50%), followed by herbicides (7 families - 25%) and pesticides (2 292 
families - 7.1%) (Supplementary Table 2). Of the 25 families correlated with climate variables, 293 

the largest proportion co-varied with summer precipitation (12 families - 37%); of these, 8 294 
families were positively correlated and 4 were negatively correlated with summer precipitation. 295 
An equal number of families (8 families - 32%) co-varied with mean minimum temperature (6 296 
positive and 2 negative correlations), highest recorded temperature (7 positive and 1 negative 297 

correlations), and summer atmospheric pressure (6 positive and 2 negative correlations) 298 

(Supplementary Table 2).  299 
The number of unique prokaryote families significantly negatively correlated with 300 

biocides was 99, 19 of which were identified by both 16S barcodes. Following from the sCCA 301 

analysis, significant negative correlations were observed between 60 (60.6%) families and 302 
insecticides, followed by 59 families and fungicides (59.6%), 40 families and herbicides 303 

(40.4%), and 25 families and pesticides (25.3%) (Supplementary Table 2; overall). A total of 304 
105 non-redundant correlations were identified between prokaryotic families and climate 305 
variables, 6 of which were found in both 16S barcodes. Of the total families correlating with 306 

climate variables, 69 (65.7%) significantly correlated with mean minimum temperature. Of 307 
these, 38 were positive and 31 were negative correlations. Thirty-five families (33.3%) 308 

significantly correlated with summer precipitation; of these, 11 were positively and 23 were 309 

negatively correlated. Twenty-nine families (27.6%) significantly correlated with the lowest 310 
recorded temperature; of these 20 were positive and 9 were negative correlations. Twenty-six 311 
families (24.8%) significantly correlated with mean summer temperature; of these 13 were 312 
positively and 13 negatively correlated. Twenty-three families (21.9%) significantly correlated 313 

with maximum daily precipitation; of these, 3 were positively and 20 were negatively 314 
correlated. Eleven families (10.4%) significantly correlated with highest recorded temperature; 315 

of these 3 were positively and 8 were negatively correlated (Supplementary Table 2).  316 
We applied sCCA to identify families that correlated both with climate variables and 317 

biocides (Fig. 4). As biocides were introduced only in 1960, only the most recent three lake 318 

phases were included in this analysis. The eukaryotic biodiversity compositional change was 319 
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predominantly explained by biocides (Fig. 4; 18S; Biocides: 44%), followed by climate 320 
variables (Fig. 4; 18S; climate variables: 22%). Up to 22% of the diatoms compositional change 321 
was explained by biocides (44%) and climate variables (36%). However, the abiotic variables 322 

only separated the recovery from the other two lake phases (Fig. 4), supporting significant 323 
biodiversity compositional shifts observed in the beta diversity analysis (Fig. 2A; Table 1). 324 
Similarly, the invertebrate community compositional changes were explained prevalently by 325 
biocides (47%), followed by climate variables (30%), which only separated the recovery phase 326 
from the other two lake phases. Climate and biocides almost equally explained up to 36% of 327 

the prokaryote biodiversity compositional change across the lake phases (16SV1 - biocides: 328 

44%, climate variables 47%; 16SV4 - biocides 45%, climate variable 38%). Following from 329 
this analysis, joint effects of biocides and climate variables were observed for 23 prokaryote 330 
(16S) and two eukaryote (18S) families (Fig. 5A), whereas no joint effects were identified on 331 
the diatom (rbcL) and the invertebrate (COI) communities (Fig 5A; Supplementary Table 3). 332 

The most frequent joint effects on prokaryotes involved insecticides and mean minimum 333 
temperature (Fig. 5A; Supplementary Table 3). Joint effects between herbicides and maximum 334 
daily precipitation or between herbicides and lowest recorded temperature were rare (Fig. 5A; 335 

Supplementary Table 3). The joint effects on the eukaryotic community were observed between 336 
insecticides and summer precipitation (Fig. 5A; Supplementary Table 3).  337 

The biocide types showing joint effects with environmental variables were ranked 338 
based on their correlation coefficient over time (Supplementary Table 3). The top ranked 339 
insecticides most frequently showing these joint effects with climate variables and an adverse 340 
effect on both prokaryotes and eukaryotes were: oxydemeton-methyl (organothiophosphate 341 

insecticide, primarily used to control aphids, mites, and thrips), mevinphos (organophosphate 342 
insecticide used to control insects in a wide range of crops) and dicofol (organochlorine 343 

miticide pesticide chemically related to DDT). Additionally, parathion (organophosphate 344 
insecticide and acaricide), carbaryl (1-naphthyl methylcarbamate used chiefly as an 345 
insecticide), dieldrin (organochlorine insecticide, developed in alternative to DDT) and 346 
thiometon (organic thiophosphate insecticide) showed adverse effects with only the 347 

prokaryotic community. Examples of joint effects on specific families are shown in Figure 5B 348 

and 5C. The temporal dynamics of Isochrysidales, a coccolith-producing microalgae, was 349 
affected by the joint effect of summer precipitation and insecticides (Fig. 5B), whereas the 350 
temporal dynamics of the PeM15 group of Actinobacteria was affected by the joint effect of 351 

insecticides and mean minimum temperature (Fig. 5C).    352 
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 353 
Figure 4. sCCA 3D plots. Sparse canonical correlation analysis 3D plots for the five 354 
barcodes used (18S, rbcL, COI, 16SV1 and 16SV4), showing the proportion of biodiversity 355 

variance explained by the biocides and climate variables. As biocides were introduced around 356 
the 1960s, this analysis spans the most recent three lake phases (Eutrophic, Pesticide and 357 
Recovery). Interactive version available: https://environmental-omics-358 
group.github.io/Biodiversity_Monitoring/ 359 
 360 

 361 

  362 
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Figure 5. Joint effects of environmental variables on biodiversity. A) heatmap showing the 363 
frequency of joint effects of biocides and climate variables in eukaryotes (data from the 18S 364 
barcode) and prokaryotes (combined data from 16Sv1 and 16Sv4 barcodes). The biocides are 365 

ranked based on their correlation coefficient with taxonomic units and climate variables. 366 
Ranking of biocide types is provided in Table S3; B) temporal correlation between the family 367 
Isochrysidales, summer precipitation and insecticides. The joint effect of summer precipitation 368 
and insecticides is also shown; C) temporal correlation between Pleosporales, insecticides and 369 
mean minimum temperature. The joint effect of insecticides and mean minimum temperature 370 

is also shown. The families’ relative abundance over time in plots B and C are standardized 371 

values.  372 
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Discussion 381 
 382 
Continuous long-term biomonitoring from a pristine baseline 383 

State-of-the-art paleoecological monitoring typically uses direct observations (light 384 
microscopy) of species remains to assess the ecological status of freshwater ecosystems. These 385 
approaches are low throughput and require specialist skills 28. Direct observations are 386 
inherently biased towards species that leave fossil remains; species identification is strongly 387 
reliant on well-preserved remains in environmental matrices; and cryptic species diversity 388 

cannot be resolved 13. Recently, automated acquisition of microfossil data using artificial 389 

intelligence has been proposed as an alternative to human inspection for reconstructing long-390 
term biological changes 29. However, this approach relies on the completeness of reference 391 
databases and of the fossil remains, suffering from the same limitations of direct observations 392 
minus the low throughput aspects. Efforts to catalogue temporal changes in biodiversity have 393 

recently started to understand changes in species richness and assemblages in different 394 
geographic regions of the globe 12. These efforts are important to understand the extent of 395 
overall biodiversity loss. However, there are only a handful of existing datasets that span more 396 

than 50 years and many of the multidecal biodiversity time series are limited to terrestrial and 397 
marine ecosystem, with freshwater ecosystems being marginally represented 12. Moreover, 398 

long-term freshwater studies tend to focus on indicator species or specific taxonomic groups 399 
(e.g. invertebrates), rather than capturing community-level patterns 7. Developments in the field 400 
of sedaDNA have addressed the limitations of direct observations, utilising the properties of 401 
eDNA 15. However, sedaDNA studies have predominantly focused on microorganisms as 402 

proxies for ecosystems’ health (e.g. cyanobacteria 30; ciliates 16; parasitic taxa 31), with other 403 
taxonomic groups less well represented. Our study addresses some of the challenges of direct 404 

observations as it is not reliant on fossil remains. However, the completeness of the community 405 
taxonomic assignment depends on the completeness of reference databases. We acknowledge 406 
that our taxonomic classification may be incomplete. Whereas the application of high 407 
throughput sequencing technologies requires training, these technologies are well established 408 

with publicly available standard operating procedures. As compared to direct observations, 409 

high throughput sequencing provides replicable results regardless of the operator. Moreover, 410 
the application of metabarcoding to sedaDNA or more generally eDNA can be outsourced to 411 
established environmental services, removing the need for training if it is a limiting factor. 412 

Studies of temporal dynamics typically start from an already shifted baseline and rely 413 
on discrete observations 16. Our study alleviates these limitations by providing a continuous 414 

community-level analysis of biological changes over recent evolutionary times and starting 415 
from a relatively undisturbed environment. However, eDNA-based studies suffer from 416 
limitations linked to the level of preservation of nucleotides in environmental matrices. 417 

Although it has been shown that DNA can be recovered from lacustrine and marine sediments 418 
as far back as the Holocene 32, biases might still exist due to the degradation of eDNA, 419 

especially over geological times 33 and in warmer climates 34. In addition, physio-chemical 420 

changes in sediment and soil may affect the assemblage and composition of prokaryotic 421 
communities that can survive in extreme conditions, including anoxic environments. However, 422 
it has been shown that slightly alkaline water (pH 7–9) facilitates DNA preservation 33. 423 
Whereas we cannot exclude that the eDNA in our study suffers from some of the mentioned 424 

biases, we expect DNA degradation not to have affected our study significantly. This is because 425 
we observed non-significant difference in species richness over time in both the prokaryotic 426 

(16S barcode) and eukaryotic (18S barcode) communities. DNA degradation would have 427 
instead resulted in lower alpha diversity with increasing age of the sediment. Preservation of 428 
DNA in our study is also favoured by the time frame studied (100 years as opposed to 429 

millennia), the stable pH since the 1960s (data prior to 1960s were not recorded), and the 430 
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latitude of Lake Ring associated with average yearly temperatures below 15℃. All these 431 
factors are known to reduce microbial activity, allowing a better preservation of DNA in 432 
sediment 35.  433 

Whereas the overall species richness did not change significantly over time, species 434 
assemblages significantly changed over time. Small changes in alpha diversity coupled with 435 
significant changes in beta diversity over time have been reported for existing time series 436 
biodiversity data in marine and terrestrial environments, even if the length of the time series 437 
rarely exceeded four decades 12.  438 

 439 

 440 
Insecticides and extreme temperatures drive changes in functional biodiversity  441 

Threats to biodiversity pose a significant challenge because they change over time and 442 
may result in additive adverse effects 4. Long-term continuous observations are preferable to 443 

short-term observations because they can reveal correlations and possible causation between 444 
biological changes and abiotic drivers of change 20. Using eDNA-based data on multitrophic 445 
biodiversity over the past 100 years, we identified the taxonomic groups within the prokaryotic 446 

and eukaryotic communities that significantly contributed to community assemblages shifts. 447 
Whereas the prokaryotic community was overall changing at each major transition between 448 

lake phases, changes in the eukaryotic community were driven by different taxonomic groups 449 
in the transition between lake phases. The diatom community, typically used by regulators as 450 
an indicator of freshwater ecological status, did not change significantly over time, as the beta 451 
diversity and the LTDI2 index revealed. These results strongly suggest that a system-level 452 

approach, like the one proposed here, may be more appropriate than species or taxon-specific 453 
approaches. Our approach showed that diatom communities are not a reliable representation of 454 

the ecological status of freshwater ecosystems and are not good indicators of environmental 455 
change. Our approach provides a major advantage over traditional direct observations by 456 
identifying both taxonomic and functional changes of freshwater biodiversity in a high 457 
throughput fashion. The analysis of temporal trends of biodiversity from a pristine baseline 458 

through impacted environment provides a new reference point for regulators to define 459 

biodiversity in semi-pristine conditions.  460 
Even if Lake Ring partially recovered from eutrophication and biocide pollution in 461 

modern times, both the contemporary eukaryotic and prokaryotic communities are significantly 462 

different from the semi-pristine historical community, as the PERMANOVA on beta diversity 463 
demonstrates. Our findings align with other studies using sedaDNA on decennial timeframes 464 

focusing on prokaryotes (e.g. cyanobacteria 36), whereas studies on eukaryotic compositional 465 
changes are just emerging to enable quantitative comparative assessments 37. Studies on 466 
prokaryotic and eukaryotic assemblages based on short experimental manipulations suggest 467 

that natural communities can return to their original state before a perturbation occurs 38. 468 
However, longer-term experimental manipulations show a different perspective with 469 

irreversible changes in biodiversity composition and function 39. These long(er)-term 470 

experimental manipulations and our study suggest that empirical observation of multi trophic 471 
changes over time in natural systems are critical to understand the context-dependency of 472 
biodiversity-environmental impact relationships and assess the resilience of natural 473 
ecosystems.  474 

    Changes in community assemblages are important because they can be associated 475 
with changes in functional biodiversity. Although biodiversity variables include taxonomic, 476 

phylogenetic, and functional attributes, most studies have focused on generic taxonomic 477 
diversity measures - usually measured as species richness or abundance, ignoring functional 478 
biodiversity 40. Biomass and changes in biomass only capture productivity, while disregarding 479 

other metrics, such as decomposition or resource turnover 41. A complete assessment of 480 
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biodiversity should include functionality 6. In particular, enzyme activities are relevant because 481 
they exhibit the functions encoded in genes and reflect the role of microbiota in the transfer of 482 
matter and energy from low to high trophic levels in ecosystems. Changes in biological 483 

assemblages over time and across lake phases in our study resulted in significant changes in 484 
functional biodiversity, observable through changes in metabolic, biosynthesis and degradation 485 
functions of the prokaryotic community demonstrated by differentially abundant KEGG 486 
pathways between lake phases. Catabolic functions, metabolism (including methane 487 
metabolism), degradation and biosynthesis were differentially enriched between the recovery 488 

and other lake phases. These are key functions for the survival of organisms. For example, 489 

change is metabolic potency and the ability to break down complex molecules into smaller 490 
ones (catabolism and degradation) may affect survival and fitness of living organisms by 491 
influencing the uptake of nutrients.  492 

Predicting the functional profiles of prokaryotic communities based on their taxonomic 493 

composition has its limitations. Predictions of functions linked to human gut microbes tend to 494 
be more accurate than predictions on other communities because reference databases are 495 
developed on currently available genomes, which are biased towards microorganisms 496 

associated with human health and biotechnology 42. Because of the bias in reference databases, 497 
functional predictions may be more accurate for basic metabolic and housekeeping functions 498 

(essential cellular functions that are evolutionary conserved), which are more commonly 499 
annotated 43. Therefore, it is possible that we underestimated the predicted changes in 500 
functional biodiversity driven by environmental change in our study. Yet, we were able to 501 
detect important functional changes (e.g., metabolism and biosynthesis essential for survival) 502 

in correspondence with major ecosystem shifts (e.g., from semi-pristine to recovery phase).   503 
In recent years, an increasing number of studies have documented impacts on 504 

biodiversity driven by climate change 19, whereas chemicals are thought to pose a negligible 505 
threat to biodiversity because living organisms can adapt and evolve 18. Adaptation to 506 
environmental change can happen, but it comes at a cost that can reduce resilience of natural 507 
populations to multiple stressors or novel stress 44. Our study showed that chemicals and 508 

climate variables each explain up to 47% of biodiversity compositional changes and that the 509 

joint effect of insecticides/fungicides and yearly extreme temperature/summer precipitation 510 
best explained changes in overall biodiversity. The joint effects of insecticides and extreme 511 
temperature events affected prokaryotes by altering their functionality and changing their 512 

metabolic, biosynthesis and degradation functions. The joint effect of insecticides and summer 513 
precipitation best explained changes in primary producers and grazers. This result aligns with 514 

previous studies showing that the effect of chemicals on freshwater can be exacerbated by 515 
temperature/precipitation, because of changes in the bioavailability, adsorption, elimination 516 
and relative toxicity of chemicals by water organisms 45. Higher temperatures increase 517 

diffusion of chemical molecules, resulting in faster uptake by living organisms and hence 518 
toxicity 46. In some cases, higher temperatures result in effects on the organism’s metabolic 519 

ability to reduce a chemical’s toxicity. Our study hints at examples of both mechanisms, 520 

distinguishing between families that are negatively and positively correlated with climate 521 
variables.  522 

The resolution and reliability of our data-driven systemic approach goes beyond current 523 
state-of-the-art, enabling us to identify the specific abiotic factors, down to the commercial 524 

name of biocides, that in isolation or combined with climate variables affected specific families 525 
of prokaryotes and eukaryotes. Our algorithm provides a high degree of confidence that 526 

surpasses state-of-the-art analysis, which predominantly identify patterns of co-occurrence of 527 
taxa within communities (e.g., Correlation-Centric Network approach47). A step in the right 528 
direction to capture complex interactions between biotic and abiotic variables is the network 529 

analysis of co-occurrence patterns among physico-chemical and biological variables using 530 
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random forest machine learning algorithms (e.g. 48). This approach is hypothesis-free and 531 
allows the identification of synchronicity between various environmental variables and 532 
sedaDNA sequence variation. However, even when applied to temporal trends, it does not 533 

quantify joint effects of environmental factors on biodiversity. So far, random forest machine 534 
learning algorithms have only been applied to prokaryotic communities, disregarding other 535 
taxonomic groups and providing a partial understanding of community-level patterns and 536 
responses 48.  537 

A potential limitation of our approach is that correlations identified in field surveys do 538 

not demonstrate causation. However, they generate testable hypotheses that can be proven 539 

experimentally in controlled mesocosm experiments as explained in 10, providing a potentially 540 
transformative approach.  541 
 542 
Implications for conservation and management of biodiversity 543 

Some of the greatest challenges in biodiversity conservation faced by water resource 544 
managers is the limited information available on a time scale sufficient to assess long-term 545 
changes of aquatic ecosystems. Large scale models that link environmental drivers to biological 546 

indicators are lacking 49, even if some countries have tried to introduce semi-quantitative 547 
indices to assess the ecological status of freshwater 50. Regulators must rely on approaches 548 

ingrained into environmental law, even though they have been proven inadequate (e.g. TDI), 549 
as the continuous decline in biodiversity demonstrates 19. Even when direct links between 550 
biological indicators and abiotic drivers can be established, these rely on indicator species (e.g. 551 
a fish, an alga and an invertebrate) used as proxies for ecosystem health 51. Our data-driven 552 

approach provides a novel way to address regulatory needs. However, the use of data-driven, 553 
systemic approaches requires critical changes in current environmental practice and a shift to 554 

whole-system evidence-based approaches. The transition to the novel methodologies proposed 555 
here will require changes in regulatory frameworks, following a test and acceptance phase, as 556 
well as a buy-in from regulators. Our study is a proof of concept that the drivers of biodiversity 557 
loss can be identified with higher accuracy than currently possible, generating hypotheses that 558 

can be tested experimentally. Our data-driven approach enabled us to identify insecticides and 559 

temperature as strong drivers of biodiversity loss, both in prokaryotes and eukaryotes. The 560 
confirmation of these findings across multiple freshwater ecosystems has the potential to 561 
inform conservation and mitigation interventions, leading to an improved preservation of 562 

functional biodiversity.         563 
 564 

Materials and Methods 565 

Environmental and paleoecological profile of Lake Ring 566 
Lake Ring is a shallow mixed lake in Jutland, Denmark (55°57’51.83’’ N, 9°35’46.87’’ 567 

E) with a well-known history of human impact 21. A sedimentary archive was collected from 568 
Lake Ring in November 2016 with an HTH-type gravity corer; the core was sliced in 34 layers 569 
of 0.5 cm and stored in dark and cold (-20 °C) conditions. A radiometric chronology of this 570 
sediment was completed in 2018 by Goldsmith Ecology Ltd following standard protocols 52, 571 
and provided an accurate dating of the sediment to the year 1916. According to this chronology 572 

the core covered 100 years at a resolution of ca. 3 years intervals. To reduce potential 573 

contamination when handling older sediment layers each layer of sediment was handled in a 574 
PCR-free and DNA-free environment. Dating of sediment was conducted by direct gamma 575 

assay, using ORTEC HPGe GWL series well-type coaxial low background intrinsic 576 
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germanium detector. Sediment samples with known radionuclide profiles were used for 577 
calibration following 52. 578 
We used, historical records, direct chemical analysis of sediment, and physico-chemical 579 

records to reconstruct the paleoecological environment of Lake Ring. According to historical 580 
records, the lake was semi-pristine until the 1940s. In the late 1950s, sewage inflow from a 581 
nearby town increased nutrient levels resulting in eutrophication. The sewage inflow was 582 
diverted at the end of the 1970s, but this period coincided with agricultural land-use 583 
intensification (>1980), causing biocides leaching into the lake. The lake partially recovered in 584 

modern times (>1999), experiencing a partial return to its original trophic state and reduced 585 

impact from biocides 21.  586 
Physico-chemical variables were measured in the lake between 1970 and 2016, even 587 

though data are sparse and discontinuous, limiting their use in a machine learning or statistical 588 
framework (Supplementary Fig. 4A). To complement the historical records, we obtained 589 

climate data from the Danish Meteorological Institute (Supplementary Table 4). The climate 590 
data were collected from a weather station 80 km from Lake Ring. Air and water surface 591 
temperature typically have a positive correlation for shallow streams and lakes 53,54. Hence, we 592 

used the data from the weather station as an estimate of the lake water temperature. We also 593 
observed a tight correlation between the recorded water temperature in Lake Ring and the 594 

summer air temperature recorded by the weather station (Supplementary Fig. 4A). In addition, 595 
we procured sales records of biocides in Denmark between 1955 and 2015 from the Danish 596 
national archives (Supplementary Fig. 4B; Supplementary Table 4). To assess whether the 597 
biocide sales records were a good representation of persistent chemicals in the lake sediment, 598 

we quantified the persistent halogenated pesticide DDT in the sliced sedimentary archive of 599 
Lake Ring, applying gas chromatography with mass spectrometry analysis (Supplementary 600 

Fig. 4C). Sediment samples were lyophilized and freeze dried in a lyophilizator using a Christ 601 
Beta 1-8 LSCplus freeze-dryer, (Martin Christ GmbH, Osterode am Harz, Germany), to avoid 602 
analyte loss during water removal. Following lyophilization, the sediment samples were sieved 603 
through 0.4 mm meshes and homogenised. Approximately 1g of dry sediment was weighed 604 

into pre-cleaned glass tubes and spiked with 100 ng of deuterated [2H8- 4,4`- DDT], used as 605 

an internal (surrogate) standard, followed by 1 g of copper powder (Merck, Dorset, UK)] for 606 
sulphur removal. The sediment samples were extracted using 5ml of hexane: acetone (3:1 v/v), 607 
vortexed for 5 min, followed by ultrasonication for 15 min and centrifugation for 3 min at 608 

5000 rpm. The supernatant was transferred to a clean, dry tube and the process was repeated 609 
twice for each sample. The combined extract was then evaporated to dryness under a gentle 610 

stream of N2 and reconstituted in 2 mL of hexane. Sulphuric acid (3 ml) was used to wash the 611 
reconstituted crude extract. The organic phase was allowed to separate on top of the acid layer 612 
then transferred to another clean dry test tube. The remaining acid layer was washed twice, 613 

each with 2 ml of Hexane. The combined clean extract and washes was evaporated under a 614 
gentle stream of Nitrogen, reconstituted into 150 µl of iso-octane containing 100 pg/µl of PCB 615 

131 used as syringe (recovery) standard. Quantification of target DDTs was conducted on a 616 

TRACE 1310™ GC coupled to an ISQ™ single quadrupole mass spectrometer (Thermo Fisher 617 
Scientific, Austin, TX, USA) operated in electron ionization (EI) mode according to a previously 618 
reported method 55. 619 

  620 

Biodiversity fingerprinting across 100 years 621 
eDNA extraction and metabarcoding sequencing. We applied multilocus metabarcoding or 622 

marker gene sequencing to environmental DNA (eDNA) extracted from the 34 layers of 623 

sediment from the biological archive of Lake Ring using a laminar flow hood in a PCR-free 624 
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environment to obtain a fine-grained temporal quantification of taxonomic diversity and 625 
relative abundance of taxonomic groups. eDNA was extracted from the dated sediment layers 626 
- sedaDNA - using the DNeasy PowerSoil kit (Qiagen), following the manufacturer's 627 

instructions. Negative aerial and PCR controls were used; in addition, positive controls for PCR 628 
consisting of duplicates of three random samples from the sedimentary archive, were used. The 629 
duplicated samples were very similar, providing confidence in the approach used 630 
(Supplementary Fig. 2). Triplicates of each sedaDNA sample were amplified with a suite of 631 
five nuclear and mitochondrial PCR primers (barcodes) to capture presence and relative 632 

abundance of eukaryotes (18S) 56, macroinvertebrates (COI) 57, primary producers (focus on 633 

diatoms; rbcL) 58, and prokaryotes (16SV1 and 16SV4) 59 using Q5 HS High-Fidelity Master 634 
Mix (New England Biolabs) and following the manufacturer's instructions. A negative control 635 
in triplicate per plate was used. Paired end 250 bp amplicon libraries were obtained using a 2 636 
step PCR protocol with 96x96 dual tag barcoding to facilitate multiplexing and to reduce 637 

crosstalk between samples in downstream analyses 60 by EnviSion, BioSequencing and 638 
BioComputing at the University of Birmingham (https://www.envision-service.com/). PCR1 639 
and PCR2 primers, as well as annealing temperatures per primer pair in PCR1 are in 640 

Supplementary Table 5. Excess primer dimers and dinucleotides from PCR1 were removed 641 
using Thermostable alkaline phosphatase (Promega) and Exonuclease I (New England 642 

Biolabs). PCR2 amplicons were purified using High Prep PCR magnetic beads (Auto Q 643 
Biosciences) and quantitated using a 200 pro plate reader (TECAN) using qubit dsDNA HS 644 
solution (Invitrogen). A standard curve was created by running standards of known 645 
concentration on each plate against which sample concentration was determined. PCR2 646 

amplicons were mixed in equimolar quantities (at a final concentration of 12 pmol) using a 647 
biomek FXp liquid handling robot (Beckman Coulter). The final molarity of the pools was 648 

confirmed using a HS D1000 tapestation screentape (Agilent) prior to 250 bp paired-end 649 
sequencing on an Illumina MiSeq platform.  650 
 651 
Bioinformatics. The reads were demultiplexed using the forward PCR1 primer sequence using 652 

cutadapt 3.7.4 with an error rate of 0.07, equating to one allowed mismatch. The quality of 653 

sequences was assessed with FASTQC 61 and multiqc 62. Sequences were then imported into 654 
QIIME2 v 2021.2 63, trimmed, filtered, merged and denoised using the QIIME2 DADA2 655 
module 64 using default parameters and trimming low quality sections and reverse primer 656 

[forward read 0-10 trimmed front, 214-225 truncation; reverse read 17-26 trimmed front, 223-657 
247 truncation]. After denoising, the following samples had zero reads remaining: 16SV1, 658 

16SV4, rbcL and COI negative PCR controls; COI aerial negatives A and B; 16SV1 sampleID 659 
8. The taxonomic assignment was completed with the naive-bayes taxonomic classifiers trained 660 
using different reference databases, depending on the barcode: the SILVA v138 database was 661 

used for the assignment of the 16SV1, 16SV4 and 18S reads 65; the diat.barcode v9.2 was used 662 
for the assignment of rbcL reads 66; and the Barcode of Life Database was used for the COI 663 

reads 67. The taxonomy was assigned using qiime feature-classifier classify-sklearn and used 664 

at family level where possible 68. When classification was not possible at family level, the 665 
lowest classification possible was used. The taxonomic barplots were plotted per barcode using 666 
ggplot2 v3.3.5 69 in R v4.0.2 70 and including the top ten most abundant families. All other taxa 667 
were collapsed in the plots under ‘other taxa’. 668 

All samples were rarefied (16SV1 at 10,250 reads; 16SV4 at 10,400 reads; 18S at 9,070 reads; 669 
COI at 3,580 reads; rbcL at 4,650 reads) to achieve normalisation for calculating Alpha and 670 

Beta diversity metrics with QIIME2 63. The following samples did not meet the rarefaction 671 
cutoff: 16SV1: aerial negatives A, B, C; 16SV4: aerial negatives A, B, C and sampleID 62 672 
sample;18S: aerial negatives A,B,C, negative PCR control, sampleID 18, positive control 673 

replicate 62; rbcL: aerial negative A, B, and sampleIDs 50, 54, 60; COI sampleIDs 40, 64. 674 
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Alpha diversity differences among lake phases, using shannon entropy, were tested with 675 
Kruskal-Wallis test and beta diversity differences among lake phases, calculated as weighted 676 
unifrac distances, were established with a PERMANOVA test 71. Alpha diversity was plotted 677 

using ggplot2 v3.3.5 with R v4.0.2. Heatmaps of weighted unifrac Beta diversity between each 678 
pair of sediment layers were plotted with the pheatmap v1.0.12 in R v4.0.2 72.  679 
The function of the microbial communities across the four lake phases were predicted with 680 
PICRUST2 73 plugin in QIIME2 63, using the rarefied reads. Differentially abundant KEGG 681 
Orthology (KO) terms between pairs of lake phases were identified using the ANCOM plugin 682 
74 in QIIME2 63 and were mapped onto KEGG pathways with enriched pathways identified 683 

using a Fisher Exact test. 684 
  685 

Drivers of biodiversity change  686 
To identify correlations between biological assemblages (families identified through the 687 

sedaDNA sequencing) and drivers of change, we focused on biocides and climate variables, 688 
using sparse Canonical Correlation Analysis (sCCA; it can be thought of as consensus PCA on 689 

multiple data matrices) followed by Sliding Window (Pearson) Correlation (SWC) analysis 690 
(Supplementary Fig. 5). Physico-chemical variables were not used in this analysis because of 691 

their sparsity (data rarely met the Sliding Window correlation criteria of 5 continuous values) 692 

and low variation over time (Supplementary Figure 6). sCCA is a tool for integrating and 693 
discovering complex, group-wise patterns among high-dimensional datasets 75. While most 694 
forms of machine learning require large sample sizes, sCCA uses fewer observations to identify 695 

the most correlated components among data matrices and captures the multivariate variability 696 
of the most important features 76. 697 
Matrices consisting of rarefied ASV reads per barcode, climate data and biocide types were 698 

used as input in the analytical pipeline summarised in Supplementary Fig 4. After the sCCA 699 
analysis the ASVs were assigned to family level where possible or at the next lowest classifier. 700 
The first step of the pipeline is preparing input matrices for ASVs, climate variables and 701 

biocides (Supplementary Fig. 5; Step 1). The following step is a matrix-on-matrix regression, 702 
applied to correlate families called from the ASVs with either biocide type or climate variables 703 

(Supplementary Fig. 5; Step 2). The top five components of the correlations, based on loading 704 
values, that explained the largest covariance between matrices were extracted from the sCCA, 705 

and the abiotic factors (climate variable and biocide type, separately) ranked according to their 706 
contribution to the overall covariance. A Sliding Window (Pearson) Correlation (SWC) 707 

analysis followed this step and was applied to each pair of vectors represented by the top ranked 708 

abiotic factor and the families. This approach was used to identify abiotic factors (either climate 709 

variables or biocide types) that significantly correlated with families over time, using the 710 
criterion that their Pearson correlation coefficient should be larger than 0.5 (i.e., large effect 711 
size 77) with an FDR adjusted p-value (padj) < 0.05 following 10,000 permutations 712 
(Supplementary Fig. 5; Step 3). The minimum sliding window size was set to 5 time points, 713 

corresponding to 15% of the total time window for which families, biocides and climate data 714 
were available (the 34 sediment layers from the sedimentary archive span 100 years). Time 715 
intervals with more than 50% zero values in either the biotic or the abiotic data were discarded 716 
from downstream analyses to reduce false positives. A recall rate was used to quantify the 717 
number of ASVs within a family that were individually significantly correlated with the abiotic 718 

variables over all ASVs in a given family 78. The families that co-varied with either biocide 719 

types or climate variables over time were retained if they showed a Pearson correlation 720 
coefficient > 0.5, a padj < 0.05 and a recall rate > 0.5 (90% quantile of the recall rates of all 721 

families) (Supplementary Fig. 5; Step 4). This conservative approach enabled us to reduce 722 
noise from spurious correlations and improve accuracy. 723 
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The combined effect of environmental factors may have an augmented impact on biodiversity. 724 
To identify the combined effect of climate variables and biocides on the lake community 725 
biodiversity, we applied again sCCA analysis (Supplementary Fig. 5; Step 5). For this analysis, 726 

we selected the climate variables and biocide types contributing the largest covariances in the 727 
correlation analysis in Step 4. Their combined effect on a family was considered to be 728 
significant if the biocide type and the climate variable were each significantly correlated with 729 
the family over the same time window, and their average Pearson correlation was > 0.5 with 730 
padj < 0.05 (SWC analysis with 10,000 permutations) (Supplementary Fig. 5; Step 6). The 731 

biocide type and the climate variable were interpreted to have an joint effect on a given family 732 

if the linear combination of the biocide type and the climate variable had a larger Pearson 733 
correlation coefficient than each of the correlations between the family and the biocide type 734 
and the family and the climate variable individually, in the same time interval with padj < 0.05 735 
(with 10,000 permutations in the SWC analysis). 736 

Within each biocide type that significantly correlated with a family, we established their 737 
ranking based on the correlation coefficient (Supplementary Fig. 5; Step 6). Significant Pearson 738 
correlations that identified the joint effect of climate variables and individual biocides on a 739 

given family were identified with the same criteria outlined above (Pearson correlation > 0.5; 740 
padj < 0.05; SWC with 10,000 permutations). Chemicals with more than 50% null values or 741 

Pearson correlation coefficients < 0.5 were discarded.  742 
 743 

Data availability  744 

The metabarcoding sequences generated for this project are available at Biosample ID 745 

SAMN22315717- SAMN22315798.  746 
 747 
Code availability 748 
 749 

Code used to process and analyse the data in this study are available at 750 

https://github.com/Environmental-Omics-Group/Biodiversity_Monitoring 751 
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Supplementary information   988 

Supplementary Figures and Tables 989 

Supplementary Figure 1. Alpha diversity. Alpha diversity, measured as Shannon entropy, 990 

is shown for the five barcodes used in this study (16SV1, 16SV4, 18S, COI and rbcl) between 991 
1916-2016. The four lake phases are colour-coded as follows: Black - Semi-pristine; blue - 992 

Eutrophic; green - Pesticides; red - Recovery. Kruskal-Wallis test across all phases: 18S: h 993 
4.199, Pval = 0.241; rbcL: h 21.677, Pval<0.000; COI: h 16.958, Pval = 0.001; 16SV1: h 994 
7.001, Pval = 0.072; 16SV4: h 2.220, Pval = 0.528. 995 
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Supplementary Figure 2. Principal Coordinate Analysis. PCoA visualization of weighted 998 
unifrac distance between samples. Positive controls for PCR consist of duplicates of up to three 999 
samples from the sedimentary archive for each of the five barcodes used in the study (16SV1, 1000 

16SV4, 18S, rbcL and COI). Replicated samples are circled. The four lake phases are colour-1001 
coded as follows: Black - Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery. 1002 
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Supplementary Figure 3. Trophic Diatom Index. LTDI2 calculated using the diatom 1005 
species identified in our study between 1915 and 2015 with the rbcL barcode and the 1006 
“DARLEQ3” (Diatoms for Assessing River and Lake Ecological Quality) tool.  Mean value 1007 

of 67.59, standard deviation 6.3. The four lake phases are colour-coded as follows: Black - 1008 
Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery. 1009 
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Supplementary Figure 4. Biocides records. A) Records of physico-chemical parameters 1013 
measured in Lake Ring. Dotted lines indicate missing data points. Summer and annual mean 1014 
temperature were recorded at a weather station 80km from Lake Ring. B) Record of biocides 1015 

sales in Denmark (Million Tons/Year) between 1950 and 2016, downloaded from the Danish 1016 
national archives; C) empirical record of DDT measured from the sediment layers of Lake 1017 
Ring using mass spectrometry analysis (ng/g; blue) and plotted against the sales record in 1018 
Denmark (Million Tons/year; orange). DDT was banned in Denmark in 1986. 1019 
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Figure 5. AI pipeline. The analytical pipeline consists of six main steps: Step 1 is the 1021 
preparation of input data matrices (ASVs, biocides and climate variables) to be used in the 1022 
sCCA analysis. The type of environmental data may vary with the study; Step 2 is the 1023 

matrix-on-matrix regression between the ASVs and another environmental data matrix, 1024 
biocides or climate in this study. Following the sCCA analysis, the ASVs are assigned to 1025 
family level (or other relevant taxonomic order); Step 3 consists of a Sliding Window 1026 
(Pearson) Correlation (SWC) analysis, used to identify significant temporal correlations 1027 
between families and environmental variables from the sCCA analysis; Step 4 identifies the 1028 

families that co-vary with either biocides or climate variables independently; Step 5 is used 1029 

to perform an intersection analysis among multiple matrices (families, biodices and climate 1030 
variables); Step 6 applies a Sliding Window (Pearson) Correlation (SWC) analysis to identify 1031 
families, whose relative abundance changes both with biocides and climate variables over 1032 
time. The pipeline enables the ranking of environmental variables or their combination 1033 

thereof that is inversely correlated to the relative abundance of families over time.  1034 

 1035 
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Supplementary Table 1 – sCCA analysis. CCA loadings calculated with sparse canonical 1038 
correlation analysis for biocides (A) and climate variables (B). The categories of biocides are 1039 
insecticides, fungicides, pesticides and herbicides. The environmental variables are mean 1040 

minimum temperature, maximum daily precipitation, highest recorded temperature, mean 1041 
summer temperature, summer precipitation, annual total precipitation, summer atmospheric 1042 
pressure and lowest recorded temperature. 1043 

 1044 

 18S 16V1 16V4 rbcl COI 

A)Biocides      

1 insecticide insecticide insecticide insecticide fungicide 

2 fungicide fungicide fungicide fungicide insecticide 

3 pesticide pesticide pesticide pesticide pesticide 

4 herbicide herbicide herbicide herbicide herbicide 

B) Climate 
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1 
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mean minimum 

temperature 

mean minimum 

temperature 
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temperature 
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Supplementary Table 2. Correlations between biodiversity and environmental variables. 1046 
Summary of correlations between taxonomic units identified through the five barcodes (18S, 1047 
16SV1, 16SV4, rbcl and COI) and environmental variables, including biocides and climate 1048 

factors. The taxonomic name and the number of significant correlations between a taxonomic 1049 
unit and environmental variables, is followed by a correlation value, associated p-adjusted 1050 
value and recall rate for each variable. The taxonomic units are reported at the lowest 1051 
taxonomic assignment possible (f – family; o – order; c- class; p – phylum; null - unassigned). 1052 
Results are collated per barcode, each in a separate tab. The last tab lists only taxonomic units 1053 

that significantly correlated with the environmental variables based on the combined criteria of 1054 

Pearson correlation value greater than 0.5, adjusted P-value smaller than 0.05 and recall rate 1055 
greater than 0.5 along with the direction of the correlation.     1056 

 1057 

See Eastwood_etal_Supplementary Table 2 1058 
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Supplementary Table 3. Joint effects between biocides and climate variable. The biocides 1060 
showing significant joint effect with climate variables are ranked based on their correlation 1061 
coefficient. The barcode and identified families that are affected by the joint effect of a climate 1062 

variable and biocides type are shown. The order in which the biocide types are ranked is the 1063 
same used to plot Figure 5.   1064 

 1065 

See Eastwood_etal_Supplementary Table 3 1066 
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1 

Supplementary Table 4. Lake Ring metadata. Dating record for Lake Ring, climate data 1068 
collected from a weather station adjacent to the lake, and sales records for biocides are shown. 1069 
The year of sampling (year), the sample ID, the depth of the sediment layer measured in 1070 

centimetres (Depth), climate variables (annual mean temperature °C, summer mean 1071 

temperature °C, mean minimum temperature °C, mean maximum temperature °C, highest 1072 
recorded temperature °C, lowest recorded temperature °C, mean atmospheric pressure hPa, 1073 
summer mean atmospheric presure hPa, annual total precipitation mm, summer precipitation 1074 
mm, maximum daily precipitation mm, No. of days with snow cover, annual mean cloud cover, 1075 

and summer mean cloud cover) and record of biocides sales between the 1950s and 2016 in 1076 
tonnes/year and separated per class (insecticides, herbicides, fungicides and pesticides).  1077 

 1078 

See Eastwood_etal_Supplementary Table 4 1079 
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Supplementary Table 5. PCR primers. Tab1) PCR1 primers with bibliographic references, 1081 
expected fragment size (bp), annealing temperature (°C) and primer sequences (in black) with 1082 
overhang to prime the sequencing flow cell; Tab2) PCR2 primers consisting of Nextera 1083 

adapters, universal tail and overhang sequence.  1084 

See Eastwood_etal_Supplementary Table 5  1085 
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