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Abstract

Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate.
Unless we find transformative solutions to preserve biodiversity, future generations may not
be able to enjoy nature’s services.

We have developed a conceptual framework that establishes the links between
biodiversity dynamics and abiotic change through time and space using artificial intelligence.
Here, we apply this framework to a freshwater ecosystem with a known history of human
impact and study 100 years of community-level biodiversity, climate change and chemical
pollution trends. We apply explainable network models with multimodal learning to
community-level functional biodiversity measured with multilocus metabarcoding, to establish
correlations with biocides and climate change records. We observed that the freshwater
community assemblage and functionality changed over time without returning to its original
state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined
with extreme temperature events and precipitation, explained up to 90% of the functional
biodiversity changes. The community-level biodiversity approach used here reliably explained
freshwater ecosystem shifts. These shifts were not observed when using traditional quality
indices (e.g. Trophic Diatom Index).

Our study advocates the use of high throughput systemic approaches on long-term
trends over species-focused ecological surveys to identify the environmental factors that cause
loss of biodiversity and disrupt ecosystem functions.
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57 Introduction
58 Biodiversity is the foundation of provisioning, regulating, supporting, and cultural
59  ecosystem services !, which underpin economic prosperity, social well-being and quality of life
60 2. Global biodiversity has been lost at an alarming rate in the past century, leading to what some
61  have called the sixth mass extinction - biodiversity loss caused by human population growth
62 and activities 3. Biodiversity is threatened by agricultural land use, climate change, invasive
63  species, pollution and unsustainable production and consumption . Freshwater ecosystems
64 have suffered the greatest biodiversity loss because of these anthropogenic drivers °.
65 Experimental manipulation of biodiversity has demonstrated the causal links between
66  biodiversity loss and loss of ecosystem functions ®. However, studies on multi trophic levels
67 are scarce and largely focus on terrestrial and marine ecosystems; freshwater ecosystems,
68  especially lakes and ponds, are not well represented in multitrophic experimental
69  manipulations, 7. These holistic studies are critical to understand the context-dependency of
70  biodiversity-ecosystem functions relationships and to implement management measures to
71 conserve biodiversity. However, a better understanding of the environmental factors with the
72 largest impact on biodiversity, and their cumulative effect over time is urgently needed 8.
73 Biodiversity action plans have been devised since the 1990s. However, most
74  strategies have failed to stop or even reduce biodiversity decline °. This is because:
75 i) Biodiversity loss occurs at different spatial and temporal scales, and dynamic changes in
76  community composition are the result of long-term ecological processes %1%, State-of-the-art
77 environmental and biological monitoring typically captures single snapshots in time of long-
78  term ecological dynamics, failing to identify biodiversity shifts that may arise from cumulative
79  impacts over time %1%, Recent initiatives like BioTIME started collating databases with species
80  presence and abundance recorded from time series across different ecosystems 7. However,
81  freshwater ecosystems are poorly represented in these studies which at most encompass the
82 last 10-25 years 2. Although the large geographic breath of these studies is good to understand
83  overall trends of biodiversity change, they are inadequate to identify drivers of biodiversity
84  dynamics &2, Moreover, the taxonomic species assignment in these databases is oftentimes
85 derived from traditional observational methods (e.g. microscopy), which cannot resolve cryptic
86  diversity 2. High cryptic diversity is common in freshwater invertebrates and primary
87  producers, potentially impacting the assessment of biodiversity in these ecosystems more
88  severely than in terrestrial or marine ecosystems 3. More recently, sedaDNA (environmental
89 DNA extracted from sediment) has emerged as a promising tool to study decade-long
90 biological dynamics 4. However, these studies focus on specific taxonomic groups e.g.
91  microbes '°; ciliates '°, failing to capture the community-level changes in any given ecosystem.
92 i) Biodiversity is threatened by multiple factors. Only by quantifying trajectories of abiotic,
93  biotic, and functional systemic change over time, can we begin to identify the causes of
94  biodiversity and ecosystem function loss 7. Studies are emerging that investigate the impact of
95  chemicals 8 or climate change ° on biodiversity. Yet, understanding the combined effect of
96 these abiotic factors on biodiversity is still challenging.
97 iii) The lack of paired biological and abiotic long-term monitoring data is a limiting factor in
98 establishing meaningful and achievable conservation goals. Even well-monitored species have
99 time series spanning a few decades at best 817. Moreover, conservation efforts have historically
100 focused on ecological surveys of few indicator species, the identification of which require
101 specialist skills (e.g., light microscopy and taxonomy) and are low throughput 2°. High
102 throughput system-level approaches providing biological, abiotic and functional changes over
103  multiple decades are needed to understand links between biodiversity loss, drivers of changes
104  and potential consequences on ecosystem functionality 1°.
105  Recently, we have developed a conceptual framework that helps establish the links between
106  biodiversity dynamics and abiotic environmental changes using artificial intelligence,


https://doi.org/10.1101/2023.02.26.530075
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530075; this version posted June 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

107  examines emergent impacts on ecosystem functions, and forecasts the likely future of

108  ecosystem services and their socioeconomic impact under different pollution and climate

109  scenarios 0. Here, we illustrate the first component of this framework in a freshwater

110  ecosystem (Lake Ring, Denmark) with a well-documented human-impact over 100 years
111 by quantifying the interrelations between community-level functional biodiversity, biocides
112 and climate (Fig. 1). Historical records, supported by empirical evidence show that Lake Ring
113 experienced semi-pristine conditions until the early 1940s 22, In the late 1950s, sewage inflow
114  caused severe eutrophication. When the sewage inflow was diverted at the end of the 1970s,
115  agricultural land use intensified, leading to substantial biocides leaching 2L. The lake partially
116  recovered from eutrophication and land use in modern times (>1999) but, as with every lake
117  ecosystem in Europe, it experienced an increase in average temperature 2324, We apply

118  multilocus metabarcoding and mass spectrometry analysis to a dated sedimentary archive of
119  Lake Ring. These data, complemented by biocides sale records and climate records, were

120  studied with explainable network models with multimodal learning to identify drivers of

121 functional biodiversity changes across major ecosystem shifts 2° (Fig. 1). The combination of
122 explainable networks and multimodal learning allow the simultaneous interrogation of data
123 matrices describing different types of data. A symmetric matrix-on-matrix regression is

124  typically used to identify the components that covary within a matrix (e.g., environmental
125  variables), and among matrices (e.g., environmental variables and eDNA taxonomic units).
126 Given the well-documented human-impact over time, Lake Ring represents an excellent

127  natural system to demonstrate the power of systemic approaches in biological and functional
128  monitoring.
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129  Figure 1. Conceptual framework. A sedimentary archive spanning 100 years was sampled
130  from Lake Ring, Denmark and dated using radioisotopes. Both biotic and abiotic changes were
131 empirically quantified through time: 1) community-level biodiversity was reconstructed by
132 applying multilocus metabarcoding to environmental DNA isolated from sediment layers
133 (biological fingerprinting); 2) chemical signatures were quantified from the same sediment
134  layers using mass spectrometry analysis (chemical fingerprinting); 3) climate data were
135  collected from publicly available databases. Explainable network models with multimodal
136  learning were applied to identify significant correlations between system-level biodiversity,
137  chemical fingerprinting, and climate variables. Taxonomic units (families) impacted by
138  environmental factors were identified and environmental factors ranked based on their effects
139  on community biodiversity. This approach enables the prioritisation of conservation and
140  mitigation interventions.
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144  Results

145  Freshwater community dynamics across 100 years

146 A sedimentary archive was collected from Lake Ring in November 2016 with a gravity corer;
147  the core was sliced in 34 layers of 0.5 cm, which corresponded to a temporal resolution of about
148  3years per layer across 100 years. This estimate was based on a radiometric chronology of the
149  core completed in 2018 (see Methods). Lake Ring has a well-known and documented history
150  of human impact over the past century. The lake transitioned over time from a semi-pristine
151  environment to eutrophication, and later to high pesticide pollution due to intensification of
152  agricultural land-use in the area surrounding the lake. In modern times (>1999), the lake
153  partially recovered (see methods for more details)?'. Hereafter, we refer to the lake transitions
154  across these statuses as lake phases.

155 We quantified community-level biodiversity over a century (1916 - 2016) by applying
156  high throughput multilocus metabarcoding (18S, 16SV1, 16SV4, COI and rbcL barcodes) to
157  bulk environmental DNA (eDNA) extracted from layers of a dated sedimentary archive from
158  Lake Ring. After denoising, the number of unique ASVs and total number of reads across all
159  samples (including median number of reads per sample) found per barcode were as follows:
160  18S - 2,023 ASVs, 569,761 total reads (median 12,893 reads); 16SV1 - 4,022 ASVs, 842,619
161  total reads (median 20,798 reads); 16SV4 - 5,270 ASVs, 552,064 total reads (median 13,816
162  reads); COIl - 822 ASVs, 362,616 total reads (median 9,595 reads); rbcL - 417 ASVs, 366,489
163  total reads (median 9,443 reads). Alpha diversity did not significantly vary across the lake
164  phases for both prokaryotes and eukaryotes (Supplementary Fig. 1) and was proportionally
165  higher in the prokaryotic (16S barcodes) than in the eukaryotic community (18S barcode).
166  Conversely, the invertebrate community (COI barcode), and the diatom community (rbcL
167  barcode), showed significant changes over time across the lake phases, reflecting taxon-
168  specific patterns over time (Supplementary Fig. 1). Even though the alpha diversity varied over
169  time, it was not consistently lower in historical than modern communities across the barcodes,
170  allowing us to exclude bias in the preservation state of environmental DNA.

171 The community composition (beta diversity) changed significantly in the transition between
172 lake phases (Table 1; Fig. 2A; Supplementary Fig. 2). The overall eukaryotic community
173 composition changed over time across all lake phases (Table 1; Fig. 2A; 18S). However, the
174  composition of the primary producers (e.g. rbcL) changed significantly only in the transition
175  between the pesticide and the eutrophic phases, whereas the invertebrate’s community (e.g.
176  COIl) changed significantly only between the pesticide and the recovery phases (Table 1; Fig.
177 2A; rbcL, COI). The significant changes in community composition identified by the
178 PERMANOVA analysis were driven by two families of primary producers [Chlorophyceae
179  (green algae), Mediophyceae (diatoms)] and seven families of invertebrates, [Monhysterida
180  (nematode worms), Oligohymenophorea (ciliates), Calanoida (zooplankton), Ploimida
181  (rotifers), Chaetonotida (gastrotrichs), Thoracosphaeraceae (dinoflagellates) and Calanoida
182  (copepods)] (Fig. 2B; 18S). In the transition from the semi-pristine to the eutrophic phase, the
183  relative abundance of rotifers and green algae declined in favour of calanoids and diatoms (Fig.
184  2B; 18S). The proportion of diatoms, worms and nematodes increased in the transition from
185  the eutrophic to the pesticide phase, while the proportion of calanoids and gastrotricha declined
186  (Fig. 2B; 18S). The taxonomic composition of the recovery phase showed a relative increase
187 in ciliates and gastrotricha as compared to the pesticide environment (Fig. 2B; 18S).
188  Vampirellidae (Vampire amoebae feeding on algae) were relatively more abundant in the
189  eutrophic than in the other phases, in which primary producers were also more abundant (Fig.
190 2B, 18S). The composition of the recovery and semi-pristine phases differed significantly,
191  suggesting an incomplete recovery of the lake over time to this date (Table 1; Fig. 2A;18S).
192 The prokaryotic community significantly changed at each major transition between lake
193  phases, consistently across the two barcodes (Table 1; 16SV1 and 16SV4). We observed two
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194  patterns in the prokaryotic community composition over time: some taxonomic groups changed
195  with the redox status of the sediment [e.g. acidophilus archaea (Thermoplasmata) and
196  methanogenic archaea (Methanomassiliicoccaceae), which declined from the semi-pristine to
197  the recovery phase (Fig. 2B, 16SV4)]; others changed over time consistently with the nutrient
198 levels of the ecosystem. For example Nitrospiraceae (nitrite oxidizers) were more abundant in
199  high nutrient environments (eutrophic and pesticides) than in lower nutrient environments
200  (semi-pristine and recovery) (Fig. 2B; 16SV1)].

201 Changes in the invertebrate community were driven by Brachionideae (rotifers) that
202  were most abundant in the semi-pristine phase and declined over time; Chironomidae (lake
203 flies) that were proportionally more abundant in the eutrophic and recovery phases and showed
204  the lowest abundance in the pesticides phase; Chaoboridae (phantom midge larvae) that were
205  only present in the semi-pristine and recovery phases; and Daphniidae (waterfleas) that were
206  most abundant in the pesticide phase, but present throughout the 100 years of sampling (Fig.
207 2B, COI). The diatom composition was stable over time, with only the semi-pristine phase
208  having a more distinctive diatom assemblage profile dominated by Bacillariophyta (Fig. 2B;
209  rbcL). Diatoms are commonly used by regulators to derive the status of freshwater within the
210  Water Framework Directive both for lakes and rivers 26. We used our rbcL data to derive a
211 Lake Trophic Diatom Index (LTDI2) for Lake Ring following 27. This result confirmed our
212 beta diversity analysis of non-significant changes over time of the diatom community
213 (Supplementary Fig. 3).
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Table 1. PERMANOVA on beta diversity. Permutational Multivariate Analysis of Variance
using weighted Unifrac distances ASV matrices testing for pairwise differences between lake
phases across the five barcodes used in the study (16SV1, 16SV4, 18S, COI, rbcL) with 999
permutations. Significant terms (p-values <0.05 after applying Benjamini & Hochberg
correction for multiple testing) are in bold. The lake phases are as follows: SP - semi-pristine;
E - Eutrophic; P - pesticides; R - recovery.

Phase 16SV1 16Sv4 18S COl rbcL

1 2 R2 padj R2 padj R2 padj R2 padj R2 p adj

SP E 0.4349 0.0067 0.5533 0.0017 0.2968 0.0033 0.0432 0.705 0.2879 0.0914
SP P 0.6290 0.0025 0.8515 0.0017 0.4459 0.0033 0.3868 0.0033 0.3920 0.0125
SP R 0.6956 0.0025 0.9026 0.0017 0.3841 0.0033 0.3178 0.0033 0.5084 0.0033
E P 0.3959 0.006 0.7399 0.0017 0.1249 0.15 0.3198 0.005 0.1555 0.1511
E R 0.5656 0.0025 0.8520 0.0017 0.1816 0.0075 0.2806 0.0033 0.6019 0.0033

P R 0.3026 0.0025 0.3724 0.0017 0.1029 0.15 0.1924 0.012 0.3605 0.0033



https://doi.org/10.1101/2023.02.26.530075
http://creativecommons.org/licenses/by/4.0/

223
224
225
226
227
228
229

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530075; this version posted June 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure 2. Biodiversity compositional changes. (A) Weighted unifrac beta diversity heatmaps
between each pair of sediment layers spanning a century (1916-2016) for the five barcodes
used in this study (18S, rbcL, COI, 16SV1 and 16SV4). The PERMANOVA statistics in Table
1 support these plots. The scale used may be different among the heatmaps. (B) Taxonomic bar
plots including the top 10 most abundant families identified across five barcodes (18S, rbcL,
COl, 16SV1 and 16SV4). shown per lake phase: SP - semi-pristine; E - eutrophic; P -
pesticides; R - recovery.
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232 Functional changes linked to community compositional shifts

233 Changes in freshwater community composition corresponded to significant shifts in the
234  predicted functioning of the prokaryotic community (Fig 3). We predicted different functions
235  Dbetween each pair of lake phases by identifying molecular functions enriched as quantified by
236 functional orthologs (KO terms). A functional ortholog was defined from functions
237  experimentally assigned to the prokaryotes identified with the 16S rRNA in each lake phase.
238  We predicted a total of 6,257 Kegg Orthologs (KO) terms from the 16SV1 and 6,828 from the
239  16Sv4 barcode across the lake phases. Of the total number of KO terms, 1,418 were
240  significantly differentially abundant across the lake phases in the 16SV1 and 1,064 terms in the
241  16SV4 dataset, respectively. The functional KEGG pathways enriched within these KO terms
242  and significantly differentially enriched between lake phases (Fisher's exact test, p-adj < 0.05)
243  were 19 (17 for the 16SV4 and 2 for the 16SV1) (Fig. 3). Seven differentially enriched
244 pathways were found between the semi-pristine and recovery phases and seven were found
245  Dbetween the eutrophic and recovery phases (Fig. 3; 16SV4). These pathways were linked to
246  catabolic functions (purine and pyrimidine metabolism), RNA transport and biogenesis,
247  fundamental for gene expression and protein folding. Six functional pathways were
248  differentially enriched between the semi-pristine and the eutrophic phases that were linked to
249  metabolism (including methane metabolism), degradation and biosynthesis (Fig. 3; 16SV4).
250  Three functional pathways that underpin carbohydrates metabolism, lysine biosynthesis and
251  degradation were differentially enriched between the pesticide and recovery phases. The latter
252  two functions are critical for mitochondrial function. A single pathway was differentially
253  enriched between the semi-pristine and the pesticide phases, linked to lipid metabolism
254  (glycosphingolipid biosynthesis; Fig. 3; 16SV4). Two differentially enriched pathways were
255 identified between the eutrophic and the recovery phases and underpin infection response and
256  photosynthesis (Fig. 3; 16SV1).

257
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Figure 3. Functional analysis. Functional pathways that are significantly differentially
enriched between lake phases are shown for the 16SV1 and the 16SV4 barcodes. The lake

phases are as in Figure 2: SP - semi-pristine; E - eutrophic; P - pesticides; R - recovery. Odds
ratios indicate the representation of each pathway in the pairwise comparisons.
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271 Drivers of biodiversity change

272 To discover drivers of biodiversity change we applied sparse canonical correlation
273 analysis (SCCA) to community biodiversity data and other parameters measured from Lake
274  Ring, namely climate records collected from a weather station proximal to the lake, and sales
275  records of biocides in Denmark between 1955 and 2015 from the Danish national archives. The
276  biocide sales records proved to be a good representation of persistent chemicals in the lake
277  sediment, as the quantification of the persistent halogenated pesticide DDT in the sliced
278  sedimentary archive showed by producing a very similar profile as the sales records over time
279  (see methods section).

280 We discovered that insecticides and fungicides best explained changes in overall
281  biodiversity, possessing the highest CCA loadings across the barcodes, followed by pesticides
282  and herbicides (Supplementary Table 1A). Among the climate variables, yearly minimum
283  temperature explained the largest biodiversity changes, whereas other climate variables had a
284  variable impact across the barcodes and hence taxonomic groups (Supplementary Table 1B).
285 Having ranked biocides and climate variables that best explained changes in overall
286  Dbiodiversity, we identified correlations between taxonomic groups (assigned at family level
287  where possible) and individual abiotic variables. Correlations were identified between a total
288  of 36 eukaryotic families and abiotic variables; of these correlations, 28 were with biocides and
289 25 with climate variables (some correlations involved the same taxonomic group correalting
290  with multiple environmental factors). Of the 28 families negatively correlated with biocides,
291 the largest proportion co-varied significantly with insecticides (21 families - 75%) and
292  fungicides (14 families - 50%), followed by herbicides (7 families - 25%) and pesticides (2
293 families - 7.1%) (Supplementary Table 2). Of the 25 families correlated with climate variables,
294  the largest proportion co-varied with summer precipitation (12 families - 37%); of these, 8
295  families were positively correlated and 4 were negatively correlated with summer precipitation.
296  An equal number of families (8 families - 32%) co-varied with mean minimum temperature (6
297  positive and 2 negative correlations), highest recorded temperature (7 positive and 1 negative
298  correlations), and summer atmospheric pressure (6 positive and 2 negative correlations)
299  (Supplementary Table 2).

300 The number of unique prokaryote families significantly negatively correlated with
301  biocides was 99, 19 of which were identified by both 16S barcodes. Following from the SCCA
302  analysis, significant negative correlations were observed between 60 (60.6%) families and
303 insecticides, followed by 59 families and fungicides (59.6%), 40 families and herbicides
304  (40.4%), and 25 families and pesticides (25.3%) (Supplementary Table 2; overall). A total of
305 105 non-redundant correlations were identified between prokaryotic families and climate
306  variables, 6 of which were found in both 16S barcodes. Of the total families correlating with
307 climate variables, 69 (65.7%) significantly correlated with mean minimum temperature. Of
308 these, 38 were positive and 31 were negative correlations. Thirty-five families (33.3%)
309  significantly correlated with summer precipitation; of these, 11 were positively and 23 were
310 negatively correlated. Twenty-nine families (27.6%) significantly correlated with the lowest
311 recorded temperature; of these 20 were positive and 9 were negative correlations. Twenty-six
312 families (24.8%) significantly correlated with mean summer temperature; of these 13 were
313  positively and 13 negatively correlated. Twenty-three families (21.9%) significantly correlated
314  with maximum daily precipitation; of these, 3 were positively and 20 were negatively
315  correlated. Eleven families (10.4%) significantly correlated with highest recorded temperature;
316  of these 3 were positively and 8 were negatively correlated (Supplementary Table 2).

317 We applied sCCA to identify families that correlated both with climate variables and
318  biocides (Fig. 4). As biocides were introduced only in 1960, only the most recent three lake
319  phases were included in this analysis. The eukaryotic biodiversity compositional change was
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320 predominantly explained by biocides (Fig. 4; 18S; Biocides: 44%), followed by climate
321  variables (Fig. 4; 18S; climate variables: 22%). Up to 22% of the diatoms compositional change
322  was explained by biocides (44%) and climate variables (36%). However, the abiotic variables
323 only separated the recovery from the other two lake phases (Fig. 4), supporting significant
324  biodiversity compositional shifts observed in the beta diversity analysis (Fig. 2A; Table 1).
325  Similarly, the invertebrate community compositional changes were explained prevalently by
326  biocides (47%), followed by climate variables (30%), which only separated the recovery phase
327  from the other two lake phases. Climate and biocides almost equally explained up to 36% of
328  the prokaryote biodiversity compositional change across the lake phases (16SV1 - biocides:
329  44%, climate variables 47%; 16SV4 - biocides 45%, climate variable 38%). Following from
330 this analysis, joint effects of biocides and climate variables were observed for 23 prokaryote
331 (16S) and two eukaryote (18S) families (Fig. 5A), whereas no joint effects were identified on
332 the diatom (rbcL) and the invertebrate (COI) communities (Fig 5A; Supplementary Table 3).
333  The most frequent joint effects on prokaryotes involved insecticides and mean minimum
334  temperature (Fig. 5A; Supplementary Table 3). Joint effects between herbicides and maximum
335  daily precipitation or between herbicides and lowest recorded temperature were rare (Fig. 5A;
336  Supplementary Table 3). The joint effects on the eukaryotic community were observed between
337 insecticides and summer precipitation (Fig. 5A; Supplementary Table 3).

338 The biocide types showing joint effects with environmental variables were ranked
339  Dbased on their correlation coefficient over time (Supplementary Table 3). The top ranked
340 insecticides most frequently showing these joint effects with climate variables and an adverse
341  effect on both prokaryotes and eukaryotes were: oxydemeton-methyl (organothiophosphate
342  insecticide, primarily used to control aphids, mites, and thrips), mevinphos (organophosphate
343  insecticide used to control insects in a wide range of crops) and dicofol (organochlorine
344  miticide pesticide chemically related to DDT). Additionally, parathion (organophosphate
345 insecticide and acaricide), carbaryl (1-naphthyl methylcarbamate used chiefly as an
346 insecticide), dieldrin (organochlorine insecticide, developed in alternative to DDT) and
347  thiometon (organic thiophosphate insecticide) showed adverse effects with only the
348  prokaryotic community. Examples of joint effects on specific families are shown in Figure 5B
349 and 5C. The temporal dynamics of Isochrysidales, a coccolith-producing microalgae, was
350 affected by the joint effect of summer precipitation and insecticides (Fig. 5B), whereas the
351  temporal dynamics of the PeM15 group of Actinobacteria was affected by the joint effect of
352 insecticides and mean minimum temperature (Fig. 5C).
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353

354  Figure 4. sSCCA 3D plots. Sparse canonical correlation analysis 3D plots for the five

355  barcodes used (18S, rbcL, COIl, 16SV1 and 16SV4), showing the proportion of biodiversity
356  variance explained by the biocides and climate variables. As biocides were introduced around
357  the 1960s, this analysis spans the most recent three lake phases (Eutrophic, Pesticide and

358  Recovery). Interactive version available: https://environmental-omics-
359

group.github.io/Biodiversity Monitoring/
360
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Figure 5. Joint effects of environmental variables on biodiversity. A) heatmap showing the
frequency of joint effects of biocides and climate variables in eukaryotes (data from the 18S
barcode) and prokaryotes (combined data from 16Sv1 and 16Sv4 barcodes). The biocides are
ranked based on their correlation coefficient with taxonomic units and climate variables.
Ranking of biocide types is provided in Table S3; B) temporal correlation between the family
Isochrysidales, summer precipitation and insecticides. The joint effect of summer precipitation
and insecticides is also shown; C) temporal correlation between Pleosporales, insecticides and
mean minimum temperature. The joint effect of insecticides and mean minimum temperature
is also shown. The families’ relative abundance over time in plots B and C are standardized

values.
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381 Discussion

382
383  Continuous long-term biomonitoring from a pristine baseline
384 State-of-the-art paleoecological monitoring typically uses direct observations (light

385  microscopy) of species remains to assess the ecological status of freshwater ecosystems. These
386 approaches are low throughput and require specialist skills 28, Direct observations are
387 inherently biased towards species that leave fossil remains; species identification is strongly
388  reliant on well-preserved remains in environmental matrices; and cryptic species diversity
389  cannot be resolved 3. Recently, automated acquisition of microfossil data using artificial
390 intelligence has been proposed as an alternative to human inspection for reconstructing long-
391  term biological changes %°. However, this approach relies on the completeness of reference
392  databases and of the fossil remains, suffering from the same limitations of direct observations
393  minus the low throughput aspects. Efforts to catalogue temporal changes in biodiversity have
394 recently started to understand changes in species richness and assemblages in different
395  geographic regions of the globe 2. These efforts are important to understand the extent of
396  overall biodiversity loss. However, there are only a handful of existing datasets that span more
397 than 50 years and many of the multidecal biodiversity time series are limited to terrestrial and
398  marine ecosystem, with freshwater ecosystems being marginally represented 2. Moreover,
399  long-term freshwater studies tend to focus on indicator species or specific taxonomic groups
400 (e.g.invertebrates), rather than capturing community-level patterns 7. Developments in the field
401  of sedaDNA have addressed the limitations of direct observations, utilising the properties of
402 eDNA *° However, sedaDNA studies have predominantly focused on microorganisms as
403  proxies for ecosystems’ health (e.g. cyanobacteria 3; ciliates °; parasitic taxa 3!), with other
404  taxonomic groups less well represented. Our study addresses some of the challenges of direct
405  observations as it is not reliant on fossil remains. However, the completeness of the community
406  taxonomic assignment depends on the completeness of reference databases. We acknowledge
407 that our taxonomic classification may be incomplete. Whereas the application of high
408  throughput sequencing technologies requires training, these technologies are well established
409  with publicly available standard operating procedures. As compared to direct observations,
410  high throughput sequencing provides replicable results regardless of the operator. Moreover,
411  the application of metabarcoding to sedaDNA or more generally eDNA can be outsourced to
412  established environmental services, removing the need for training if it is a limiting factor.

413 Studies of temporal dynamics typically start from an already shifted baseline and rely
414  on discrete observations 6. Our study alleviates these limitations by providing a continuous
415  community-level analysis of biological changes over recent evolutionary times and starting
416  from a relatively undisturbed environment. However, eDNA-based studies suffer from
417  limitations linked to the level of preservation of nucleotides in environmental matrices.
418  Although it has been shown that DNA can be recovered from lacustrine and marine sediments
419 as far back as the Holocene 3, biases might still exist due to the degradation of eDNA,
420  especially over geological times 3 and in warmer climates 3. In addition, physio-chemical
421  changes in sediment and soil may affect the assemblage and composition of prokaryotic
422  communities that can survive in extreme conditions, including anoxic environments. However,
423 it has been shown that slightly alkaline water (pH 7-9) facilitates DNA preservation %,
424  Whereas we cannot exclude that the eDNA in our study suffers from some of the mentioned
425  Dbiases, we expect DNA degradation not to have affected our study significantly. This is because
426 we observed non-significant difference in species richness over time in both the prokaryotic
427  (16S barcode) and eukaryotic (18S barcode) communities. DNA degradation would have
428  instead resulted in lower alpha diversity with increasing age of the sediment. Preservation of
429 DNA in our study is also favoured by the time frame studied (100 years as opposed to
430  millennia), the stable pH since the 1960s (data prior to 1960s were not recorded), and the
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431 latitude of Lake Ring associated with average yearly temperatures below 15°C. All these
432  factors are known to reduce microbial activity, allowing a better preservation of DNA in
433 sediment %,

434 Whereas the overall species richness did not change significantly over time, species
435  assemblages significantly changed over time. Small changes in alpha diversity coupled with
436  significant changes in beta diversity over time have been reported for existing time series
437  biodiversity data in marine and terrestrial environments, even if the length of the time series
438 rarely exceeded four decades 2.

439

440

441  Insecticides and extreme temperatures drive changes in functional biodiversity

442 Threats to biodiversity pose a significant challenge because they change over time and

443 may result in additive adverse effects 4. Long-term continuous observations are preferable to
444  short-term observations because they can reveal correlations and possible causation between
445  biological changes and abiotic drivers of change 2°. Using eDNA-based data on multitrophic
446  biodiversity over the past 100 years, we identified the taxonomic groups within the prokaryotic
447  and eukaryotic communities that significantly contributed to community assemblages shifts.
448  Whereas the prokaryotic community was overall changing at each major transition between
449 lake phases, changes in the eukaryotic community were driven by different taxonomic groups
450 in the transition between lake phases. The diatom community, typically used by regulators as
451  an indicator of freshwater ecological status, did not change significantly over time, as the beta
452  diversity and the LTDI2 index revealed. These results strongly suggest that a system-level
453 approach, like the one proposed here, may be more appropriate than species or taxon-specific
454  approaches. Our approach showed that diatom communities are not a reliable representation of
455  the ecological status of freshwater ecosystems and are not good indicators of environmental
456  change. Our approach provides a major advantage over traditional direct observations by
457  identifying both taxonomic and functional changes of freshwater biodiversity in a high
458  throughput fashion. The analysis of temporal trends of biodiversity from a pristine baseline
459  through impacted environment provides a new reference point for regulators to define
460  biodiversity in semi-pristine conditions.

461 Even if Lake Ring partially recovered from eutrophication and biocide pollution in
462  modern times, both the contemporary eukaryotic and prokaryotic communities are significantly
463  different from the semi-pristine historical community, as the PERMANOVA on beta diversity
464  demonstrates. Our findings align with other studies using sedaDNA on decennial timeframes
465  focusing on prokaryotes (e.g. cyanobacteria ¢), whereas studies on eukaryotic compositional
466  changes are just emerging to enable quantitative comparative assessments 3’. Studies on
467  prokaryotic and eukaryotic assemblages based on short experimental manipulations suggest
468  that natural communities can return to their original state before a perturbation occurs 2,
469  However, longer-term experimental manipulations show a different perspective with
470 irreversible changes in biodiversity composition and function 3°. These long(er)-term
471  experimental manipulations and our study suggest that empirical observation of multi trophic
472 changes over time in natural systems are critical to understand the context-dependency of
473  biodiversity-environmental impact relationships and assess the resilience of natural
474  ecosystems.

475 Changes in community assemblages are important because they can be associated
476  with changes in functional biodiversity. Although biodiversity variables include taxonomic,
477  phylogenetic, and functional attributes, most studies have focused on generic taxonomic
478  diversity measures - usually measured as species richness or abundance, ignoring functional
479  biodiversity “°. Biomass and changes in biomass only capture productivity, while disregarding
480  other metrics, such as decomposition or resource turnover 4. A complete assessment of
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481  biodiversity should include functionality 8. In particular, enzyme activities are relevant because
482  they exhibit the functions encoded in genes and reflect the role of microbiota in the transfer of
483  matter and energy from low to high trophic levels in ecosystems. Changes in biological
484  assemblages over time and across lake phases in our study resulted in significant changes in
485  functional biodiversity, observable through changes in metabolic, biosynthesis and degradation
486  functions of the prokaryotic community demonstrated by differentially abundant KEGG
487  pathways between lake phases. Catabolic functions, metabolism (including methane
488  metabolism), degradation and biosynthesis were differentially enriched between the recovery
489  and other lake phases. These are key functions for the survival of organisms. For example,
490 change is metabolic potency and the ability to break down complex molecules into smaller
491  ones (catabolism and degradation) may affect survival and fitness of living organisms by
492 influencing the uptake of nutrients.

493 Predicting the functional profiles of prokaryotic communities based on their taxonomic
494  composition has its limitations. Predictions of functions linked to human gut microbes tend to
495  be more accurate than predictions on other communities because reference databases are
496  developed on currently available genomes, which are biased towards microorganisms
497  associated with human health and biotechnology #2. Because of the bias in reference databases,
498  functional predictions may be more accurate for basic metabolic and housekeeping functions
499  (essential cellular functions that are evolutionary conserved), which are more commonly
500 annotated “%. Therefore, it is possible that we underestimated the predicted changes in
501  functional biodiversity driven by environmental change in our study. Yet, we were able to
502 detect important functional changes (e.g., metabolism and biosynthesis essential for survival)
503 in correspondence with major ecosystem shifts (e.g., from semi-pristine to recovery phase).
504 In recent years, an increasing number of studies have documented impacts on
505  biodiversity driven by climate change *°, whereas chemicals are thought to pose a negligible
506 threat to biodiversity because living organisms can adapt and evolve '8 Adaptation to
507 environmental change can happen, but it comes at a cost that can reduce resilience of natural
508 populations to multiple stressors or novel stress 4. Our study showed that chemicals and
509 climate variables each explain up to 47% of biodiversity compositional changes and that the
510 joint effect of insecticides/fungicides and yearly extreme temperature/summer precipitation
511  best explained changes in overall biodiversity. The joint effects of insecticides and extreme
512  temperature events affected prokaryotes by altering their functionality and changing their
513  metabolic, biosynthesis and degradation functions. The joint effect of insecticides and summer
514  precipitation best explained changes in primary producers and grazers. This result aligns with
515  previous studies showing that the effect of chemicals on freshwater can be exacerbated by
516  temperature/precipitation, because of changes in the bioavailability, adsorption, elimination
517 and relative toxicity of chemicals by water organisms 4. Higher temperatures increase
518 diffusion of chemical molecules, resulting in faster uptake by living organisms and hence
519  toxicity . In some cases, higher temperatures result in effects on the organism’s metabolic
520 ability to reduce a chemical’s toxicity. Our study hints at examples of both mechanisms,
521  distinguishing between families that are negatively and positively correlated with climate
522  variables.

523 The resolution and reliability of our data-driven systemic approach goes beyond current
524  state-of-the-art, enabling us to identify the specific abiotic factors, down to the commercial
525  name of biocides, that in isolation or combined with climate variables affected specific families
526  of prokaryotes and eukaryotes. Our algorithm provides a high degree of confidence that
527  surpasses state-of-the-art analysis, which predominantly identify patterns of co-occurrence of
528 taxa within communities (e.g., Correlation-Centric Network approach*’). A step in the right
529  direction to capture complex interactions between biotic and abiotic variables is the network
530 analysis of co-occurrence patterns among physico-chemical and biological variables using
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531 random forest machine learning algorithms (e.g. “8). This approach is hypothesis-free and
532 allows the identification of synchronicity between various environmental variables and
533 sedaDNA sequence variation. However, even when applied to temporal trends, it does not
534  quantify joint effects of environmental factors on biodiversity. So far, random forest machine
535 learning algorithms have only been applied to prokaryotic communities, disregarding other
536  taxonomic groups and providing a partial understanding of community-level patterns and
537  responses 8,

538 A potential limitation of our approach is that correlations identified in field surveys do
539 not demonstrate causation. However, they generate testable hypotheses that can be proven
540  experimentally in controlled mesocosm experiments as explained in 1°, providing a potentially
541  transformative approach.

542
543  Implications for conservation and management of biodiversity
544 Some of the greatest challenges in biodiversity conservation faced by water resource

545  managers is the limited information available on a time scale sufficient to assess long-term
546  changes of aquatic ecosystems. Large scale models that link environmental drivers to biological
547 indicators are lacking 4°, even if some countries have tried to introduce semi-quantitative
548 indices to assess the ecological status of freshwater 0. Regulators must rely on approaches
549  ingrained into environmental law, even though they have been proven inadequate (e.g. TDI),
550 as the continuous decline in biodiversity demonstrates '°. Even when direct links between
551  biological indicators and abiotic drivers can be established, these rely on indicator species (e.g.
552 a fish, an alga and an invertebrate) used as proxies for ecosystem health 1. Our data-driven
553  approach provides a novel way to address regulatory needs. However, the use of data-driven,
554  systemic approaches requires critical changes in current environmental practice and a shift to
555  whole-system evidence-based approaches. The transition to the novel methodologies proposed
556  here will require changes in regulatory frameworks, following a test and acceptance phase, as
557  well as a buy-in from regulators. Our study is a proof of concept that the drivers of biodiversity
558 loss can be identified with higher accuracy than currently possible, generating hypotheses that
559  can be tested experimentally. Our data-driven approach enabled us to identify insecticides and
560 temperature as strong drivers of biodiversity loss, both in prokaryotes and eukaryotes. The
561  confirmation of these findings across multiple freshwater ecosystems has the potential to
562 inform conservation and mitigation interventions, leading to an improved preservation of
563  functional biodiversity.

564

565 Materials and Methods

566  Environmental and paleoecological profile of Lake Ring

567 Lake Ring is a shallow mixed lake in Jutland, Denmark (55°57°51.83*” N, 9°35°46.87"°
568  E) with a well-known history of human impact 2%. A sedimentary archive was collected from
569  Lake Ring in November 2016 with an HTH-type gravity corer; the core was sliced in 34 layers
570 of 0.5 cm and stored in dark and cold (-20 °C) conditions. A radiometric chronology of this
571 sediment was completed in 2018 by Goldsmith Ecology Ltd following standard protocols °?,
572  and provided an accurate dating of the sediment to the year 1916. According to this chronology
573  the core covered 100 years at a resolution of ca. 3 years intervals. To reduce potential
574  contamination when handling older sediment layers each layer of sediment was handled in a
575 PCR-free and DNA-free environment. Dating of sediment was conducted by direct gamma
576 assay, using ORTEC HPGe GWL series well-type coaxial low background intrinsic
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577 germanium detector. Sediment samples with known radionuclide profiles were used for
578  calibration following 2.

579  We used, historical records, direct chemical analysis of sediment, and physico-chemical
580  records to reconstruct the paleoecological environment of Lake Ring. According to historical
581  records, the lake was semi-pristine until the 1940s. In the late 1950s, sewage inflow from a
582  nearby town increased nutrient levels resulting in eutrophication. The sewage inflow was
583 diverted at the end of the 1970s, but this period coincided with agricultural land-use
584 intensification (>1980), causing biocides leaching into the lake. The lake partially recovered in
585 modern times (>1999), experiencing a partial return to its original trophic state and reduced
586  impact from biocides %L

587 Physico-chemical variables were measured in the lake between 1970 and 2016, even
588  though data are sparse and discontinuous, limiting their use in a machine learning or statistical
589  framework (Supplementary Fig. 4A). To complement the historical records, we obtained
590 climate data from the Danish Meteorological Institute (Supplementary Table 4). The climate
591  data were collected from a weather station 80 km from Lake Ring. Air and water surface
592  temperature typically have a positive correlation for shallow streams and lakes 5354, Hence, we
593  used the data from the weather station as an estimate of the lake water temperature. We also
594  observed a tight correlation between the recorded water temperature in Lake Ring and the
595  summer air temperature recorded by the weather station (Supplementary Fig. 4A). In addition,
596  we procured sales records of biocides in Denmark between 1955 and 2015 from the Danish
597 national archives (Supplementary Fig. 4B; Supplementary Table 4). To assess whether the
598  biocide sales records were a good representation of persistent chemicals in the lake sediment,
599  we quantified the persistent halogenated pesticide DDT in the sliced sedimentary archive of
600 Lake Ring, applying gas chromatography with mass spectrometry analysis (Supplementary
601  Fig. 4C). Sediment samples were lyophilized and freeze dried in a lyophilizator using a Christ
602  Beta 1-8 LSCplus freeze-dryer, (Martin Christ GmbH, Osterode am Harz, Germany), to avoid
603  analyte loss during water removal. Following lyophilization, the sediment samples were sieved
604  through 0.4 mm meshes and homogenised. Approximately 1g of dry sediment was weighed
605 into pre-cleaned glass tubes and spiked with 100 ng of deuterated [2H8- 4,4°- DDT], used as
606  an internal (surrogate) standard, followed by 1 g of copper powder (Merck, Dorset, UK)] for
607  sulphur removal. The sediment samples were extracted using 5ml of hexane: acetone (3:1 v/v),
608  vortexed for 5 min, followed by ultrasonication for 15 min and centrifugation for 3 min at
609 5000 rpm. The supernatant was transferred to a clean, dry tube and the process was repeated
610  twice for each sample. The combined extract was then evaporated to dryness under a gentle
611  stream of N2 and reconstituted in 2 mL of hexane. Sulphuric acid (3 ml) was used to wash the
612  reconstituted crude extract. The organic phase was allowed to separate on top of the acid layer
613  then transferred to another clean dry test tube. The remaining acid layer was washed twice,
614  each with 2 ml of Hexane. The combined clean extract and washes was evaporated under a
615  gentle stream of Nitrogen, reconstituted into 150 ul of iso-octane containing 100 pg/ul of PCB
616 131 used as syringe (recovery) standard. Quantification of target DDTs was conducted on a
617 TRACE 1310™ GC coupled to an ISQ™ single quadrupole mass spectrometer (Thermo Fisher
618  Scientific, Austin, TX, USA) operated in electron ionization (EI) mode according to a previously
619  reported method °.

620

621  Biodiversity fingerprinting across 100 years

622  eDNA extraction and metabarcoding sequencing. We applied multilocus metabarcoding or
623  marker gene sequencing to environmental DNA (eDNA) extracted from the 34 layers of
624  sediment from the biological archive of Lake Ring using a laminar flow hood in a PCR-free
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625 environment to obtain a fine-grained temporal quantification of taxonomic diversity and
626  relative abundance of taxonomic groups. eDNA was extracted from the dated sediment layers
627 - sedaDNA - using the DNeasy PowerSoil kit (Qiagen), following the manufacturer's
628 instructions. Negative aerial and PCR controls were used; in addition, positive controls for PCR
629  consisting of duplicates of three random samples from the sedimentary archive, were used. The
630  duplicated samples were very similar, providing confidence in the approach used
631  (Supplementary Fig. 2). Triplicates of each sedaDNA sample were amplified with a suite of
632  five nuclear and mitochondrial PCR primers (barcodes) to capture presence and relative
633  abundance of eukaryotes (18S) °¢, macroinvertebrates (COI) %7, primary producers (focus on
634  diatoms; rbcL) %8, and prokaryotes (16SV1 and 16SV4) *° using Q5 HS High-Fidelity Master
635  Mix (New England Biolabs) and following the manufacturer's instructions. A negative control
636 in triplicate per plate was used. Paired end 250 bp amplicon libraries were obtained using a 2
637 step PCR protocol with 96x96 dual tag barcoding to facilitate multiplexing and to reduce
638  crosstalk between samples in downstream analyses % by EnviSion, BioSequencing and
639  BioComputing at the University of Birmingham (https://www.envision-service.com/). PCR1
640 and PCR2 primers, as well as annealing temperatures per primer pair in PCR1 are in
641  Supplementary Table 5. Excess primer dimers and dinucleotides from PCR1 were removed
642 using Thermostable alkaline phosphatase (Promega) and Exonuclease | (New England
643  Biolabs). PCR2 amplicons were purified using High Prep PCR magnetic beads (Auto Q
644  Biosciences) and quantitated using a 200 pro plate reader (TECAN) using qubit dSDNA HS
645  solution (Invitrogen). A standard curve was created by running standards of known
646  concentration on each plate against which sample concentration was determined. PCR2
647  amplicons were mixed in equimolar quantities (at a final concentration of 12 pmol) using a
648  biomek FXp liquid handling robot (Beckman Coulter). The final molarity of the pools was
649  confirmed using a HS D1000 tapestation screentape (Agilent) prior to 250 bp paired-end
650  sequencing on an lllumina MiSeq platform.

651

652  Bioinformatics. The reads were demultiplexed using the forward PCR1 primer sequence using
653  cutadapt 3.7.4 with an error rate of 0.07, equating to one allowed mismatch. The quality of
654  sequences was assessed with FASTQC 6% and multigc 2. Sequences were then imported into
655 QIIME2 v 2021.2 %3, trimmed, filtered, merged and denoised using the QIIME2 DADA?2
656 module % using default parameters and trimming low quality sections and reverse primer
657  [forward read 0-10 trimmed front, 214-225 truncation; reverse read 17-26 trimmed front, 223-
658 247 truncation]. After denoising, the following samples had zero reads remaining: 16SV1,
659  16SV4, rbcL and COI negative PCR controls; COI aerial negatives A and B; 16SV1 samplelD
660 8. The taxonomic assignment was completed with the naive-bayes taxonomic classifiers trained
661  using different reference databases, depending on the barcode: the SILVA v138 database was
662  used for the assignment of the 16SV1, 16SV4 and 18S reads %°; the diat.barcode v9.2 was used
663  for the assignment of rbcL reads ®; and the Barcode of Life Database was used for the COI
664  reads 7. The taxonomy was assigned using giime feature-classifier classify-sklearn and used
665 at family level where possible %. When classification was not possible at family level, the
666  lowest classification possible was used. The taxonomic barplots were plotted per barcode using
667  ggplot2 v3.3.5% in R v4.0.2 " and including the top ten most abundant families. All other taxa
668  were collapsed in the plots under ‘other taxa’.

669  All samples were rarefied (16SV1 at 10,250 reads; 16SV4 at 10,400 reads; 18S at 9,070 reads;
670  COl at 3,580 reads; rbcL at 4,650 reads) to achieve normalisation for calculating Alpha and
671  Beta diversity metrics with QIIME2 3, The following samples did not meet the rarefaction
672  cutoff: 16SV1: aerial negatives A, B, C; 16SV4: aerial negatives A, B, C and samplelD 62
673  sample;18S: aerial negatives A,B,C, negative PCR control, samplelD 18, positive control
674  replicate 62; rbcL: aerial negative A, B, and samplelDs 50, 54, 60; COI samplelDs 40, 64.
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675  Alpha diversity differences among lake phases, using shannon entropy, were tested with
676  Kruskal-Wallis test and beta diversity differences among lake phases, calculated as weighted
677 unifrac distances, were established with a PERMANOVA test 'X. Alpha diversity was plotted
678  using ggplot2 v3.3.5 with R v4.0.2. Heatmaps of weighted unifrac Beta diversity between each
679  pair of sediment layers were plotted with the pheatmap v1.0.12 in R v4.0.2 72,

680  The function of the microbial communities across the four lake phases were predicted with
681  PICRUST2 73 plugin in QIIME2 3, using the rarefied reads. Differentially abundant KEGG
682  Orthology (KO) terms between pairs of lake phases were identified using the ANCOM plugin
683 " in QIIME2 ® and were mapped onto KEGG pathways with enriched pathways identified
684  using a Fisher Exact test.

685

686  Drivers of biodiversity change

687  To identify correlations between biological assemblages (families identified through the
688  sedaDNA sequencing) and drivers of change, we focused on biocides and climate variables,
689  using sparse Canonical Correlation Analysis (SCCA; it can be thought of as consensus PCA on
690  multiple data matrices) followed by Sliding Window (Pearson) Correlation (SWC) analysis
691  (Supplementary Fig. 5). Physico-chemical variables were not used in this analysis because of
692  their sparsity (data rarely met the Sliding Window correlation criteria of 5 continuous values)
693 and low variation over time (Supplementary Figure 6). SCCA is a tool for integrating and
694  discovering complex, group-wise patterns among high-dimensional datasets . While most
695  forms of machine learning require large sample sizes, SCCA uses fewer observations to identify
696  the most correlated components among data matrices and captures the multivariate variability
697  of the most important features 7°.

698  Matrices consisting of rarefied ASV reads per barcode, climate data and biocide types were
699  used as input in the analytical pipeline summarised in Supplementary Fig 4. After the SCCA
700  analysis the ASVs were assigned to family level where possible or at the next lowest classifier.
701 The first step of the pipeline is preparing input matrices for ASVs, climate variables and
702  biocides (Supplementary Fig. 5; Step 1). The following step is a matrix-on-matrix regression,
703 applied to correlate families called from the ASVs with either biocide type or climate variables
704  (Supplementary Fig. 5; Step 2). The top five components of the correlations, based on loading
705  values, that explained the largest covariance between matrices were extracted from the sCCA,
706  and the abiotic factors (climate variable and biocide type, separately) ranked according to their
707  contribution to the overall covariance. A Sliding Window (Pearson) Correlation (SWC)
708  analysis followed this step and was applied to each pair of vectors represented by the top ranked
709  abiotic factor and the families. This approach was used to identify abiotic factors (either climate
710  variables or biocide types) that significantly correlated with families over time, using the
711  criterion that their Pearson correlation coefficient should be larger than 0.5 (i.e., large effect
712 size ') with an FDR adjusted p-value (padj) < 0.05 following 10,000 permutations
713 (Supplementary Fig. 5; Step 3). The minimum sliding window size was set to 5 time points,
714  corresponding to 15% of the total time window for which families, biocides and climate data
715  were available (the 34 sediment layers from the sedimentary archive span 100 years). Time
716  intervals with more than 50% zero values in either the biotic or the abiotic data were discarded
717  from downstream analyses to reduce false positives. A recall rate was used to quantify the
718  number of ASVs within a family that were individually significantly correlated with the abiotic
719  variables over all ASVs in a given family 8. The families that co-varied with either biocide
720 types or climate variables over time were retained if they showed a Pearson correlation
721 coefficient > 0.5, a padj < 0.05 and a recall rate > 0.5 (90% quantile of the recall rates of all
722 families) (Supplementary Fig. 5; Step 4). This conservative approach enabled us to reduce
723 noise from spurious correlations and improve accuracy.
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724  The combined effect of environmental factors may have an augmented impact on biodiversity.
725  To identify the combined effect of climate variables and biocides on the lake community
726  biodiversity, we applied again SCCA analysis (Supplementary Fig. 5; Step 5). For this analysis,
727  we selected the climate variables and biocide types contributing the largest covariances in the
728  correlation analysis in Step 4. Their combined effect on a family was considered to be
729  significant if the biocide type and the climate variable were each significantly correlated with
730 the family over the same time window, and their average Pearson correlation was > 0.5 with
731 padj < 0.05 (SWC analysis with 10,000 permutations) (Supplementary Fig. 5; Step 6). The
732 biocide type and the climate variable were interpreted to have an joint effect on a given family
733 if the linear combination of the biocide type and the climate variable had a larger Pearson
734  correlation coefficient than each of the correlations between the family and the biocide type
735  and the family and the climate variable individually, in the same time interval with padj < 0.05
736 (with 10,000 permutations in the SWC analysis).

737  Within each biocide type that significantly correlated with a family, we established their
738  ranking based on the correlation coefficient (Supplementary Fig. 5; Step 6). Significant Pearson
739  correlations that identified the joint effect of climate variables and individual biocides on a
740  given family were identified with the same criteria outlined above (Pearson correlation > 0.5;
741  padj < 0.05; SWC with 10,000 permutations). Chemicals with more than 50% null values or
742 Pearson correlation coefficients < 0.5 were discarded.

743

744  Data availability

745  The metabarcoding sequences generated for this project are available at Biosample ID
746 SAMNZ22315717- SAMN22315798.

747

748  Code availability

749

750  Code used to process and analyse the data in this study are available at

751  https://github.com/Environmental-Omics-Group/Biodiversity_Monitoring
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989  Supplementary Figures and Tables

990  Supplementary Figure 1. Alpha diversity. Alpha diversity, measured as Shannon entropy,
991 is shown for the five barcodes used in this study (16SV1, 16SV4, 18S, COI and rbcl) between
992  1916-2016. The four lake phases are colour-coded as follows: Black - Semi-pristine; blue -
993  Eutrophic; green - Pesticides; red - Recovery. Kruskal-Wallis test across all phases: 18S: h

994  4.199, Pval = 0.241; rbcL: h 21.677, Pval<0.000; COI: h 16.958, Pval = 0.001; 16S5V1: h
995  7.001, Pval = 0.072; 165V4: h 2.220, Pval = 0.528.
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Supplementary Figure 2. Principal Coordinate Analysis. PCoA visualization of weighted
unifrac distance between samples. Positive controls for PCR consist of duplicates of up to three
samples from the sedimentary archive for each of the five barcodes used in the study (16SV1,
16SV4, 18S, rbcL and COIl). Replicated samples are circled. The four lake phases are colour-
coded as follows: Black - Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery.
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1005  Supplementary Figure 3. Trophic Diatom Index. LTDI2 calculated using the diatom
1006  species identified in our study between 1915 and 2015 with the rbcL barcode and the

1007  “DARLEQ3” (Diatoms for Assessing River and Lake Ecological Quality) tool. Mean value
1008  of 67.59, standard deviation 6.3. The four lake phases are colour-coded as follows: Black -
1009  Semi-pristine; blue - Eutrophic; green - Pesticides; red - Recovery.
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1013 Supplementary Figure 4. Biocides records. A) Records of physico-chemical parameters
1014  measured in Lake Ring. Dotted lines indicate missing data points. Summer and annual mean
1015  temperature were recorded at a weather station 80km from Lake Ring. B) Record of biocides
1016  sales in Denmark (Million Tons/Year) between 1950 and 2016, downloaded from the Danish
1017  national archives; C) empirical record of DDT measured from the sediment layers of Lake
1018  Ring using mass spectrometry analysis (ng/g; blue) and plotted against the sales record in
1019  Denmark (Million Tons/year; orange). DDT was banned in Denmark in 1986.
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1021  Figure 5. Al pipeline. The analytical pipeline consists of six main steps: Step 1 is the

1022 preparation of input data matrices (ASVs, biocides and climate variables) to be used in the
1023  sCCA analysis. The type of environmental data may vary with the study; Step 2 is the

1024  matrix-on-matrix regression between the ASVs and another environmental data matrix,
1025  biocides or climate in this study. Following the SCCA analysis, the ASVs are assigned to
1026  family level (or other relevant taxonomic order); Step 3 consists of a Sliding Window

1027  (Pearson) Correlation (SWC) analysis, used to identify significant temporal correlations
1028  between families and environmental variables from the SCCA analysis; Step 4 identifies the
1029  families that co-vary with either biocides or climate variables independently; Step 5 is used
1030  to perform an intersection analysis among multiple matrices (families, biodices and climate
1031  variables); Step 6 applies a Sliding Window (Pearson) Correlation (SWC) analysis to identify
1032  families, whose relative abundance changes both with biocides and climate variables over
1033  time. The pipeline enables the ranking of environmental variables or their combination

1034  thereof that is inversely correlated to the relative abundance of families over time.

1035
Step 1: input matrices ASVs
Step 2: matrix-on-matrix regression sCCA analysis sCCA analysis
Step 3: time window correlations Slldmg-wmdow. Shdmg-wmdow'

correlation analysis correlation analysis
Step 4: co-varying families with Families and chemical Families and climate
abiotic factors classes co-variation variables co-variation
Step S: multiple matrices intersection = (.)f co-varying © llmate.v.arlables plus
chemical classes with Families

Step 6: combined effects of Sliding-window correlation analysis of joint effect of
environmental factors on families multiple stressors

1036

1037


https://doi.org/10.1101/2023.02.26.530075
http://creativecommons.org/licenses/by/4.0/

1038
1039
1040
1041
1042
1043

1044

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.26.530075; this version posted June 21, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Supplementary Table 1 — sCCA analysis. CCA loadings calculated with sparse canonical
correlation analysis for biocides (A) and climate variables (B). The categories of biocides are
insecticides, fungicides, pesticides and herbicides. The environmental variables are mean

minimum temperature, maximum daily precipitation, highest recorded temperature, mean
summer temperature, summer precipitation, annual total precipitation, summer atmospheric
pressure and lowest recorded temperature.
18S 16V1 16V4 rbcl COl
A)Biocides
1 insecticide insecticide insecticide insecticide  [fungicide
2 fungicide fungicide fungicide fungicide insecticide
3 pesticide pesticide pesticide pesticide pesticide
4 herbicide herbicide herbicide herbicide herbicide
B) Climate
variables
mean mean
mean minimum  |mean minimum|mean minimum |minimum minimum
1 temperature temperature  |temperature temperature |temperature
summer mean
atmospheric summer total |maximum daily |[summer total [annual total
2 pressure precipitation  |precipitation precipitation |precipitation
maximum highest
summer mean  |highest summer mean  |daily recorded
3 temperature recorded temp |temperature precipitation [temp
summer
mean
highest recorded |[summer mean |highest recorded |[summer mean [atmospheric
4 temp temperature  |temperature temperature |pressure
summer total summer total annual total
5 precipitation lowest precipitation precipitation summer
recorded mean
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Supplementary Table 2. Correlations between biodiversity and environmental variables.
Summary of correlations between taxonomic units identified through the five barcodes (18S,
16SV1, 16SV4, rbcl and COI) and environmental variables, including biocides and climate
factors. The taxonomic name and the number of significant correlations between a taxonomic
unit and environmental variables, is followed by a correlation value, associated p-adjusted
value and recall rate for each variable. The taxonomic units are reported at the lowest
taxonomic assignment possible (f — family; o — order; c- class; p — phylum; null - unassigned).
Results are collated per barcode, each in a separate tab. The last tab lists only taxonomic units
that significantly correlated with the environmental variables based on the combined criteria of
Pearson correlation value greater than 0.5, adjusted P-value smaller than 0.05 and recall rate
greater than 0.5 along with the direction of the correlation.

See Eastwood_etal Supplementary Table 2
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Supplementary Table 3. Joint effects between biocides and climate variable. The biocides
showing significant joint effect with climate variables are ranked based on their correlation
coefficient. The barcode and identified families that are affected by the joint effect of a climate
variable and biocides type are shown. The order in which the biocide types are ranked is the
same used to plot Figure 5.

See Eastwood_etal Supplementary Table 3
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1068  Supplementary Table 4. Lake Ring metadata. Dating record for Lake Ring, climate data
1069  collected from a weather station adjacent to the lake, and sales records for biocides are shown.
1070  The year of sampling (year), the sample ID, the depth of the sediment layer measured in
1071  centimetres (Depth), climate variables (annual mean temperature °C, summer mean
1072  temperature °C, mean minimum temperature °C, mean maximum temperature °C, highest
1073 recorded temperature °C, lowest recorded temperature °C, mean atmospheric pressure hPa,
1074  summer mean atmospheric presure hPa, annual total precipitation mm, summer precipitation
1075  mm, maximum daily precipitation mm, No. of days with snow cover, annual mean cloud cover,
1076  and summer mean cloud cover) and record of biocides sales between the 1950s and 2016 in
1077  tonnes/year and separated per class (insecticides, herbicides, fungicides and pesticides).

1078
1079  See Eastwood_etal Supplementary Table 4
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1081  Supplementary Table 5. PCR primers. Tabl) PCR1 primers with bibliographic references,
1082  expected fragment size (bp), annealing temperature (°C) and primer sequences (in black) with
1083  overhang to prime the sequencing flow cell; Tab2) PCR2 primers consisting of Nextera
1084  adapters, universal tail and overhang sequence.

1085  See Eastwood_etal Supplementary Table 5
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