

1 Mapping Human Tissues with Highly 2 Multiplexed RNA *in situ* Hybridization

3 Kian Kalhor^{1,11}, Chien-Ju Chen^{1,2,11}, Ho Suk Lee^{1,3}, Matthew Cai¹, Mahsa Nafisi¹, Richard Que¹,
4 Carter Palmer^{4,5}, Yixu Yuan¹, Yida Zhang⁶, Jinghui Song¹, Amanda Knoten⁷, Blue B. Lake¹,
5 Joseph P. Gaut⁸, Dirk Keene⁹, Ed Lein¹⁰, Peter V. Kharchenko⁶, Jerold Chun⁴, Sanjay Jain^{7,8},
6 Jian-Bing Fan¹⁰, Kun Zhang^{1*}

7 ¹Department of Bioengineering, University of California San Diego, La Jolla, CA, USA

8 ²Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla,
9 CA, USA

10 ³Department of Electrical Engineering, University of California San Diego, La Jolla, CA, USA

11 ⁴Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA

12 ⁵Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA

13 ⁶Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

14 ⁷Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA

15 ⁸Department of Pathology and Immunology, Washington University School of Medicine, St.

16 ⁹University of Washington School of Medicine, Seattle, WA, USA

17 ¹⁰Allen Institute for Brain Science, Seattle, WA, USA

18 Louis, MO, USA

19 ¹⁰Illumina, San Diego, CA, USA

20 ¹¹These authors contributed equally

21 * Correspondence should be addressed to Kun Zhang (kzhang@bioeng.ucsd.edu)

22 Abstract

23 In *situ* transcriptomic techniques promise a holistic view of tissue organization and cell-cell
24 interactions. Recently there has been a surge of multiplexed RNA *in situ* techniques but their
25 application to human tissues and clinical biopsies has been limited due to their large size,
26 general lower tissue quality and high background autofluorescence. Here we report DART-
27 FISH, a versatile padlock probe-based technology capable of profiling hundreds to thousands of
28 genes in centimeter-sized human tissue sections at cellular resolution. We introduced an omni-
29 cell type cytoplasmic stain, dubbed RiboSoma that substantially improves the segmentation of
30 cell bodies. We developed a computational decoding-by-deconvolution workflow to extract gene
31 spots even in the presence of optical crowding. Our enzyme-free isothermal decoding
32 procedure allowed us to image 121 genes in a large section from the human neocortex in less
33 than 10 hours, where we successfully recapitulated the cytoarchitecture of 20 neuronal and non-
34 neuronal subclasses. Additionally, we demonstrated the detection of transcripts as short as 461
35 nucleotides, including neuropeptides and discovered new cortical layer markers. We further
36 performed *in situ* mapping of 300 genes on a diseased human kidney, profiled >20 healthy and

37 pathological cell states, and identified diseased niches enriched in transcriptionally altered
38 epithelial cells and myofibroblasts.

39

40 Introduction.

41 Analyzing single-cell expression of genes in their spatial context plays a critical role in
42 deciphering the complex cellular organization in multicellular organisms^{1,2}. Gene expression in
43 its spatial context is especially important in fields such as embryo development³, neuroscience⁴,
44 and in histopathology⁵. The emergence of single-molecule fluorescence in situ hybridization
45 (smFISH, Supplementary Table 1 for all acronyms in the manuscript) methods allowed us to
46 simultaneously measure several RNA species in single cells^{6,7} by imaging fluorophore-tagged
47 DNA oligos, or probes, that tile the RNA molecules. Because of its high sensitivity, smFISH has
48 become the gold standard assay to measure RNA expression in situ and has been used to
49 show the importance of RNA localization in cell migration, neuron connectivity, and local protein
50 synthesis^{8,9}. However, since smFISH is limited by spectral overlap of the fluorophores, it has
51 limited multiplexing capacity¹⁰, and does not scale well for tasks such as resolving cellular
52 heterogeneity in complex tissues, which require profiling hundreds of RNA species.

53 Recently, in situ hybridization techniques with combinatorial encoding have emerged in which
54 the identity of hundreds or thousands of RNA species can be decoded with tens of FISH
55 cycles^{11,12}. Although these methods have increased the multiplexity by 2-3 orders of magnitude
56 compared to smFISH, they typically require longer target RNA transcripts (>1.5kb), restricting
57 the analysis of important molecules such as neuropeptides and interferons^{11,13}. Furthermore,
58 because of the low signal-to-noise ratio (SNR) from detected transcripts, these methods need
59 high magnification objectives with high numerical aperture (NA), making it difficult and time-
60 consuming to image large regions of interest (ROIs). The low SNR also makes it challenging to
61 apply these methods to human tissues which may have a high autofluorescence background
62 caused by lipofuscin granules^{14,15}, proteins such as collagen and elastin¹⁶, or mitochondria^{17,18}.

63 With the advent of sequencing-based spatial transcriptomics methods¹⁹⁻²⁴, transcriptome-wide
64 profiling of RNA molecules in tissue sections was made possible by transferring the RNA
65 molecules to a slide coated with spatially-barcoded oligos. In this way, the spatial information of
66 each RNA molecule can be registered through next-generation sequencing. Nevertheless, when
67 compared to in situ methods, sequencing-based spatial transcriptomic tools in general have
68 lower capture efficiency, complex slide preparation procedures, higher sequencing costs, and
69 limited spatial resolution due to feature size and lateral diffusion²⁵.

70 Here, we developed Decoding Amplified taRgeted Transcripts with Fluorescence *in situ*
71 Hybridization (DART-FISH) to overcome these limitations. The key technical features include a
72 robust barcoding scheme, a set of molecular protocols for padlock probe production in large
73 pools, *in situ* padlock capture and amplification, a cytoplasmic stain called RiboSoma,
74 isothermal and enzyme-free decoding, and a computational method for decoding features at the
75 pixel level from dense fluorescent images based on sparse deconvolution. We benchmarked

76 DART-FISH by measuring 121 genes in a large section (~30 mm²) of the human primary motor
77 cortex (M1C). We validated its sensitivity and specificity by comparing it to RNAscope, a
78 commercially available smFISH method ([Methods](#)). Moreover, we successfully recapitulated the
79 spatial organization of major neuronal and non-neuronal cell types, detected short neuropeptide
80 genes (e.g., *SST* and *NPY*), and validated a new deep layer neuron marker (*TMSB10*). Finally,
81 we applied DART-FISH to measure 300 genes in a diseased human kidney section and
82 characterized the spatial distribution of normal and disease-altered cell types and pathological
83 niches. Overall, the DART-FISH workflow provides solutions to several foundational problems in
84 the field while remaining easy to implement and requires no specialized or custom-made
85 equipment.

86 Results

87 DART-FISH framework

88 DART-FISH involves *in situ* feature generation by padlock probe capture of targeted transcripts
89 and rolling circle amplification (RCA), followed by a highly robust decoding process of sequential
90 isothermal hybridization. (Fig. 1a, [Methods](#)). Specifically, RNA molecules in fresh-frozen tissue
91 sections are fixed with paraformaldehyde (PFA), permeabilized, and then reverse-transcribed
92 with a mixture of random and poly-deoxythymidine (dT) primers. To assess the RNA content in
93 human tissues as well as the retention of the cDNA molecules *in situ*, we added a 5' handle to
94 the reverse-transcription primers to enable the collective visualization of all cDNA molecules
95 with fluorescent oligos (Fig. 1b). We call this labeling method RiboSoma because the resulting
96 signal labels the cell bodies. During protocol optimization, we noticed that crosslinking the cDNA
97 molecules immediately after reverse-transcription to a polyacrylamide (PA) gel enhances the
98 RiboSoma signal (Supplementary Fig. 1a) suggesting better retention of cDNA *in situ*
99 throughout the DART-FISH protocol. This cDNA embedding strategy also led to 1.5-fold median
100 increase of the feature count per gene (Supplementary Fig. 1b-c), compared to when the
101 polyacrylamide gel is cast after RCA. Thus, RiboSoma serves as a marker for cDNA content of
102 the tissue and provides a quality control for *in situ* reactions.

103 Following gel embedding and RNA digestion, cDNA molecules are hybridized with a library of
104 padlock probes and circularized at high temperature to ensure specificity^{26,27}. On their
105 backbone, padlock probes carry a universal sequence used for amplification and gene-specific
106 barcodes. The circularized padlock probes are then rolling-circle-amplified, generating RCA
107 colonies *in situ* (rolonies) with hundreds of copies of barcode sequences concatenated in the
108 form of a DNA nanoball. The rolonies are then covalently attached to the polyacrylamide gel to
109 secure their positions during decoding. The result of the experiment is then assessed in the
110 “anchor round” imaging, where fluorescent probes are hybridized to the universal sequences
111 and the 5' handles on cDNA molecules to visualize the spatial distribution of all rolonies and
112 cells (i.e., RiboSoma, Fig. 1b).

113 To achieve high multiplexity within only a few rounds of imaging, gene-specific barcodes are
114 generated using combinatorial DNA labeling. Specifically, gene-specific barcodes are created
115 by the concatenation of 20 nucleotide-long decoder sequences and are placed on the backbone
116 of padlock probes. The decoder sequences are derived from Illumina BeadArray technology and
117 have limited cross-hybridization²⁸ (Supplementary Table 2). As shown in Fig. 1c, each barcode
118 is “on” in exactly k rounds of imaging and “off” in other rounds. When “on”, the barcode signals
119 in one of the three fluorescent channels; it emits no fluorescence when “off”. In each round,
120 three unique fluorescent decoding probes are hybridized and imaged. Rolonies will be “on” only
121 if a decoding probe that corresponds to one of their decoder sequences is present. After
122 imaging, the decoding probes are stripped and washed away to prepare for the next round²⁹
123 (Fig. 1e). With n rounds of imaging, a total of $\binom{n}{k}3^k$ barcodes can be generated, allowing us to
124 measure hundreds of RNA species with a handful of rounds of decoding ($n = 6$ and $k = 3$ in
125 Fig. 1 with 540 valid barcodes). This can be extended to 7 rounds of decoding for up to 945
126 genes ($k = 3$), 8 rounds of decoding for 5670 genes ($k = 4$), and so on. This barcoding scheme
127 has a proven robustness evident by its wide adoption by Illumina’s gene expression, SNP
128 genotyping and DNA methylation arrays^{28,30,31}. Note that the decoding process is fast and robust
129 since it depends solely on hybridization of short oligonucleotides at room temperature,
130 eliminating the need for sophisticated temperature control setups and avoiding the
131 complications of performing enzymatic reactions on a microscope. Hence, DART-FISH uses a
132 scalable barcoding scheme that generates enough diversity to decode hundreds of genes within
133 several rounds of fast and robust imaging.

134 It has been shown that increasing the number of padlock probes per gene leads to a higher
135 detection sensitivity *in situ*³². For such applications, it is common to pool individually-synthesized
136 padlock probes³²⁻³⁴. This strategy, while manageable for small-scale studies, would be
137 prohibitively expensive when probing hundreds of genes is desired. To overcome this limitation,
138 we adapted an enzymatic protocol to produce thousands of padlock probes in-house starting
139 from an oligo pool synthesized on microarrays³⁵ (Supplementary Fig. 2c). We were able to
140 target 121 genes each with up to 50 padlock probes for less than 25% the cost of the direct
141 synthesis option. Note in our strategy the cost per probe decreases further by including more
142 probes in the pool whereas for direct synthesis the cost per probe remains constant.
143 Consequently, individually synthesizing 20,000 probes to target 400 genes is almost 10 times as
144 expensive as array synthesis. To fully utilize this feature, multiple probe sets that, for instance,
145 target different organs can be pooled together and amplified separately for a fraction of the
146 upfront cost of the direct synthesis approach. This strategy opens up the possibility of using
147 different probe sets in any regular research lab.

148 Targeting more genes with high sensitivity can result in optical overcrowding which may hinder
149 colony decoding. Physical expansion of the tissues^{34,36,37} has been used as an effective strategy
150 to distance colonies and reduce overcrowding but it leads to larger imaging areas, longer
151 imaging time and thus lower throughput³⁴. A computational solution to the overcrowding
152 problem can vastly increase the throughput. We reasoned that given the size of the colonies
153 ($<1\mu\text{m}$)³⁸ and our pixel size ($\sim 0.3\mu\text{m}$ with 20x objective), each pixel will at most overlap a few
154 colonies. On the other hand, given that a small fraction of all possible barcodes are used, it may
155 be possible to deconvolve mixtures of barcodes from fluorescent intensity values at the pixel

156 level. To this end we developed the *SparseDeconvolution* (SpD) decoding algorithm: we
157 formalized this deconvolution as a regularized linear regression problem, where barcodes can
158 combine linearly to form the observed pixel intensities and optimized the combinations under a
159 condition that promotes sparsity ([Methods](#), Fig. 1d). We solve this problem for every pixel and
160 obtain initial weight maps for every single barcode (Fig. 1f). This is followed by filtering and
161 aggregating the neighboring pixels to form spots (Supplementary Fig. 1d,e). To control the
162 quality of the deconvolution procedure, we add empty barcodes that are not used in the probe
163 set to the codebook. While the fraction of empty barcodes is 5-8% of used barcodes, the
164 fraction of spots decoded as empty is below 0.25% (Supplementary Fig. 1f-h). With this
165 computational framework, we could mitigate optical overcrowding and increase our throughput
166 by imaging with a 20x objective lens.

167 Benchmarking and validation of DART-FISH

168 To assess the performance of DART-FISH for profiling more than one hundred RNA species in
169 large human tissue sections with fast image acquisition, we applied it to a 10 μ m-thick, 6.9-by-
170 4.3-mm² fresh-frozen post-mortem human M1C brain section³⁹. The anatomy, function, and
171 gene expression of M1C have been widely investigated at the single-cell level⁴⁰⁻⁴³, giving us a
172 well-defined standard to compare across different studies. Note that archived human brain
173 samples represent one of the most challenging sample types for spatial RNA mapping, due to
174 the presence of high autofluorescence³⁹ and in general, lower RNA quality^{44,45}.

175 We designed 5,097 padlock probes to target a selected panel of 121 genes containing known
176 marker genes to resolve the spatial organization of excitatory and inhibitory neurons, as well as
177 non-neuronal cells (Supplementary Table 3). The corresponding codebook followed a 3-on-3-off
178 barcoding scheme. Imaging 6 rounds of decoding, the anchor round and the nuclear stain of this
179 ~30 mm² section of human M1C took about 10 hours. After image preprocessing and spot
180 decoding by SpD, we obtained 2,008,260 transcripts (0.2% empty calls with 8 empty barcodes).
181 The expression level of these 121 genes was highly consistent between two replicates
182 (correlation coefficient $r^2=0.988$, Fig. 2b), demonstrating a high reproducibility of DART-FISH.

183 We segmented the cells using RiboSoma, which revealed cell body morphology better than
184 nuclear staining (Supplementary Fig. 3a, b), and assigned the transcripts to the closest cell if
185 the distance to the cell boundary was less than 3 μ m ([Methods](#), Supplementary Fig. 3c). Other
186 transcripts were discarded from downstream analyses. Among the target genes, we noticed a
187 higher fraction of *MBP* transcripts were found to be outside the cell bodies (93% outside,
188 Supplementary Fig. 3d) while co-localizing with RiboSoma in the extrasomatic space of the
189 cortex (Supplementary Fig. 3e). This observation reflects the local translation of *MBP*
190 transcripts at the axon-glia contact sites⁴⁶. Overall, we detected 26,646 cells with 802,361
191 transcripts that were assigned to a segmented cell with an average of 30 transcripts and 11
192 unique genes per cell (Fig. 2c).

193 To assess spatial specificity of transcript localization, we first inspected the marker genes
194 *SLC17A7* and *SATB2* in excitatory neurons and *GAD1* and *GAD2* in inhibitory neurons. As
195 expected, the *SLC17A7* and *SATB2* transcripts were mainly aggregated in the soma of

196 excitatory neurons with mutual exclusivity to *GAD1* and *GAD2* transcripts in inhibitory neurons
197 (Fig. 2d-e). We then compared the expression of 10 marker genes with the results of RNAscope
198 generated on a parallel M1C tissue section ([Methods](#)). As shown in Fig. 2f and Supplementary
199 Fig. 3f, the spatial distribution of these marker genes in the same region demonstrates high
200 concordance between RNAscope and DART-FISH. Specifically, the pan-excitatory neuron
201 marker, *SLC17A7*, showed pronounced enrichment in the L2-L6 cortical areas. *CUX2*, *RORB*,
202 and *FEZF2* were enriched in supragranular, granular, and infragranular layers of the neocortex,
203 respectively, which is consistent with previous studies⁴⁷⁻⁵¹. The observed localization of *CBLN2*
204 in neocortical layers 2/3 and 5/6 neocortex also agrees with a previous report⁵². Collectively,
205 these results indicate that DART-FISH can specifically map the spatial localization of these
206 marker genes in human M1C.

207 To estimate the sensitivity of DART-FISH, we selected a similar region of interest (ROI) with
208 equal area between RNAscope and DART-FISH samples and compared the number of
209 transcripts of each gene. We found that the estimated sensitivity ranged from 3.9% to 67.7%,
210 depending on the transcript (Fig. 2g). We correlated our data to the publicly available MERFISH
211⁵³ and EEL FISH^{53,54} datasets from the human brain (Pearson's $r=0.755$ and 0.750 ,
212 respectively, Fig. 2h and i), which we consider a high concordance given the differential probing
213 efficiencies between different technologies, and the fact that samples from different regions
214 were used for each technology. In summary, DART-FISH is a reproducible spatial
215 transcriptomic method with the sensitivity and specificity to detect hundreds of RNA species in
216 their spatial context, with potential for providing biologically meaningful insights to the human
217 brain despite the high natural background autofluorescence.

218 Organization of cell types in the human primary motor cortex

219 To assess whether DART-FISH is able to resolve the organization of various cell types of
220 human M1C, we set out to perform cell annotation by performing clustering on DART-FISH cells
221 and matching them to the highest correlated subclass from a recent single-nucleus RNA
222 sequencing (snRNA-seq) reference of M1C^{40,42,55} ([Methods](#), Fig. 3a and b, Supplementary Fig.
223 4a-b). We resolved 20 subclasses from the major excitatory, inhibitory, and non-neuronal cell
224 classes which constituted 24.3%, 10.6%, and 65.1%, respectively, in the M1C (Fig. 3c-g). For
225 excitatory neuronal subclasses, we successfully detected their laminar distribution, with L2/3 IT
226 neurons localized at the superficial layer of the cortex and L6b/CT neurons deep in the cortex
227 and close to the white matter (Fig. 3b-d), in line with the evolutionarily conserved organization of
228 excitatory neurons in the mammalian M1C⁴⁰. Of note, L6 IT Car3 cells seem to be positioned
229 more superficially than the L6 IT population, consistent with recent observations in human visual
230 cortex and middle temporal gyrus^{55,56} (Fig. 3d). In contrast, inhibitory neuronal subtypes
231 generally showed wider spatial gradients along the cortical axis; for instance the VIP population
232 was enriched in layer 2-4 as suggested by previous studies in the mouse^{43,57} (Fig. 3b and e).
233 Moreover, we observed some cells belonging to the excitatory neurons and inhibitory neurons
234 localized in the white matter region, which likely are the adult remnants of early generated
235 subplate neurons discovered in previous studies^{58,59}. For non-neuronal cells, we observed

236 oligodendrocytes appearing at layer 4 and peaking in the white matter⁶⁰ in spite of the uniform
237 distribution of the oligodendrocyte progenitors across the tissue section (OPC, Fig. 3f)⁶¹.

238 We further assessed whether we could detect short genes (<1.5kb) with DART-FISH. smFISH-
239 based methods rely on tiling sufficiently long RNA molecules with probes to generate detectable
240 fluorescent signals. In contrast, DART-FISH requires only one padlock probe to bind
241 successfully to the target to detect it. To boost our chances for detecting shorter genes, we
242 allowed overlapping targets in our design strategy to obtain more probes for short RNA species
243⁶² (Supplementary Fig. 2b, *NPY* as an example). We compiled a list of 33 differentially
244 expressed genes shorter than 1.5kb comprising well-studied genes as well as less well-known
245 computationally-derived genes in the brain (Supplementary Table 3). For example, by targeting
246 *SST* (607 nt) and *NPY* (893 nt), we could uncover a rare subclass of inhibitory neurons, *Sst*
247 *Chodl* (0.1% abundance, Fig. 3g), specified by the expression of these short neuropeptides (Fig.
248 3b and h). *Sst Chodl* cells were found to be enriched in deeper layers, consistent with previous
249 reports⁶³. In addition to these short neuropeptides, DART-FISH also detected other short RNA
250 species including *PCP4* (534nt) and *TMSB10* (461nt) with pronounced localization (Fig. 3h).
251 *PCP4* is reported to be a layer 5-6 marker in the mouse cerebral cortex⁶⁴ while *TMSB10* seems
252 to be a novel deep layer marker gene. To quantify how well the targeted genes performed, we
253 correlated their average expression at subclass level between DART-FISH and snRNA-seq
254 ([Methods](#), Supplementary Fig. 4c). We found 25 of 33 (75%) of the genes shorter than 1.5kb
255 and 81 of 88 (92%) of the longer genes had larger correlations than 0.5 (Supplementary Table
256 3). This is similar to a MERFISH data set targeting another region of the human cortex with 250
257 genes (88% with >0.5 Pearson's correlation, Supplementary Fig. 4c). Taken together, we
258 showed that DART-FISH can accurately map the distribution of all the main neuronal and non-
259 neuronal subclasses in the human brain and can uncover rare cell populations by detecting
260 short genes.

261 Mapping cellular neighborhoods in histopathologically abnormal 262 human kidney

263 To demonstrate the applicability of DART-FISH to a clinically relevant tissue context, we next
264 applied it to the human kidney. The kidney is composed of repetitive functional tissue units,
265 called nephrons, with various closely organized cell types including endothelial, stromal,
266 immune and epithelial cells that regulate the filtration of the blood as well as other homeostatic
267 functions such as maintaining electrolyte and fluid balance⁶⁵ (Fig. 4a, Supplementary Fig. 5a).
268 The homeostatic interactions between these cell types are perturbed in kidney disease and can
269 lead to fibrosis and decline in kidney function⁶⁶. We recently reported an atlas of cell types in
270 healthy and diseased patients, and identified multiple mal-adaptive cell states that are
271 associated with kidney disease^{67,68}. In the same study, we used sequencing-based spatial
272 transcriptomics methods with 10um and 55um resolution to map cellular neighborhoods in
273 healthy and diseased samples, respectively, which lacked the resolution needed to delineate
274 the exact cellular composition, the boundaries and the positioning of cells within the
275 neighborhoods. We reasoned that the high spatial resolution provided by DART-FISH is

276 complementary to the sequencing-based methods and can help define cellular niches more
277 accurately.

278 Guided by the published single-nucleus reference atlas, we designed a panel of 300 genes with
279 6299 padlock probes following the 3-on-4-off barcoding scheme, focusing on the major healthy
280 cell types of the kidney, immune cells and cell states implicated in kidney disease
281 (Supplementary Table 4). We then performed DART-FISH on tissue sections from the kidney
282 cortex of a patient with various clinical features including glomerulosclerosis, interstitial fibrosis,
283 tubular atrophy, and chronic inflammation identified by a pathologist. Our gene panel correctly
284 mapped spatial organization of cells in different regions of the nephron including glomeruli and
285 cortical tubules (Fig. 4b). For instance, the transcripts *NPHS2* and *EMCN* which mark podocytes
286 and glomerular capillary endothelial cells, respectively, are mainly found in the glomerular tuft of
287 the round appearing renal corpuscles. We then compared our data with a Slide-seq dataset
288 from a healthy individual. At the bulk level, the DART-FISH data is correlated with slide-seq
289 (Pearson's r=0.609) with cells in DART-FISH demonstrating more copies of the targeted genes
290 than Slide-seq beads⁶⁷ (median fold-change per gene=2.2 for the top 150 genes in slide-seq,
291 Supplementary Fig. 5b). The comparison also showed upregulation of markers of inflammation
292 in the DART-FISH dataset, consistent with the underlying pathology in our sample
293 (Supplementary Fig. 5b). Hence, the spatial distribution of known kidney marker genes and their
294 overall counts are consistent with kidney biology and prior data.

295 To find the molecular identity of the cells in the human kidney, cell segmentation was performed
296 using both RiboSoma and nuclear stains. We found RiboSoma to be superior to the nuclear
297 stain in revealing tubular morphology and distinguishing the interstitial cells (Supplementary Fig.
298 5c). Subsequently, with 30,000 segmented cells with an average of 30 detected transcripts and
299 20 unique genes per cell (Supplementary Fig. 4d-e, empty rate <0.25% with 15 empty
300 barcodes), the kidney DART-FISH data was annotated to cortical and altered cell types as
301 identified in the single-cell kidney atlas⁶⁷ (Fig. 4c, Supplementary Fig. 5f, Supplementary Fig. 6,
302 Methods). These annotated cell types were of the expected relative proportions and showed
303 strong and specific differential expression of corresponding marker genes (Fig. 4d,
304 Supplementary Fig. 5f, Supplementary Fig. 7). Thus, DART-FISH could confidently resolve >20
305 cell types and states in the human kidney.

306 Next, we investigated the neighborhoods formed by the healthy cell types. The complex
307 archetypical structure of the renal corpuscle was successfully recapitulated, with podocytes
308 (POD), glomerular capillary endothelial cells (EC-GC) and glomerular mesangial cells (MC)
309 confined within the glomerular tuft, surrounded by parietal epithelial cells (PEC) or the outer
310 layer of the Bowman's capsule and juxtaposed with the renin-secreting cells (REN) in the wall of
311 the arterioles (Fig. 4e, Supplementary Fig. 5a, Supplementary Fig. 6). We also detected
312 medullary rays with the characteristic bundling of the tubules of cortical thick ascending limb (C-
313 TAL), the S3 segment of proximal tubules (PT-S3) and collecting ducts (Fig. 4f). Further,
314 collecting ducts comprising intermixed principal cells (PC) and alpha- and beta-intercalated cells
315 (C-IC-A and IC-B) could be clearly resolved. These results show that our cell type annotations
316 closely match the known structures within the human kidney.

317 To compare the tissue morphology obtained from DART-FISH with a clinically relevant
318 histological stain, we performed Hematoxylin and Eosin (H&E) staining on a parallel section
319 from the same tissue block. In an area with putative inflammation on the H&E slide, we
320 observed an abundance of immune cells of both lymphoid and myeloid origin on the DART-
321 FISH section (Fig. 4g). These immune cells surround a sclerotic glomerulus, which in contrast to
322 a more normal glomerulus, is depleted from cells and is instead fibrotic (shown by an arrow in
323 Fig. 4g). In DART-FISH, this phenomenon can be clearly detected by contrasting the low cell
324 numbers revealed by RiboSoma and the physically occupied space through the accompanying
325 transmitted light image (Supplementary Fig. 5h). Thus, by paired H&E staining we showed that
326 DART-FISH can capture different pathological phenomena with a molecular resolution beyond
327 that of the traditional histology.

328 In addition to healthy cell types, DART-FISH was also able to reveal distinct pathological cell
329 states. This includes a population of myofibroblasts (MYOF) expressing matrisome genes
330 including *COL1A1*, *TNC*, *DCN* and *POSTN*, suggestive of their ECM-producing role in kidney
331 fibrosis (Supplementary Fig. 7b)^{67,69}. Furthermore, we detected altered PT (aPT) and TAL
332 (aTAL1) populations, both of which expressed *PROM1*, in line with recent findings^{67,70}. To
333 determine whether these pathological cell states form distinctive niches, computational methods
334 were applied to find pairs of cell types that showed enrichment in their spatial colocalization⁷¹.
335 Interestingly, in neighborhoods around MYOFs, there was an increased presence of aTAL1
336 cells compared to C-TAL and aPT (Fig. 4h, Supplementary Fig. 5i). This observation indicates a
337 possible interplay between the maladaptive repair of TALs and fibrosis. We speculate that there
338 are a variety of cellular neighborhoods associated with adaptive repair and fibrosis that could be
339 defined through further studies. All in all, these results demonstrate how DART-FISH as a
340 single-cell resolution spatial transcriptomic technique can be used to interrogate neighborhoods
341 of novel cell types and states defined by single-cell RNA sequencing studies in diseased human
342 tissues.

343 Discussion

344 In this manuscript we introduced DART-FISH, a high throughput RNA *in situ* hybridization
345 technique, and demonstrated its application to human tissues, even with high native
346 autofluorescence background. In the human brain, we recovered the spatial distribution of 20
347 cell types from the 3 main cell classes. This included the laminar organization of the excitatory
348 neurons in the cortex and the broader layer-specificity of inhibitory neurons, and the ubiquity of
349 the non-neuronal cells across the brain cortex. We also profiled a sample from a
350 histopathologically abnormal human kidney and demonstrated identification of rare cells such as
351 *REN*-producing cells, the intricate functional niches, and quantified the interactions between
352 pathological cell states.

353 DART-FISH is a low-cost technology capable of fast decoding on relatively large tissue
354 sections. Using our protocol for padlock probe production from oligo pools, the cost of synthesis
355 per gene scales sublinearly with the number of genes. Hence, oligo pricing will not hinder
356 scaling to tens of thousands of transcripts. Moreover, DART-FISH does not need any

357 specialized equipment for neither colony generation nor decoding. The decoding process is
358 relatively fast because it depends on the diffusion and hybridization of very short oligos and a
359 strong signal can be obtained by 5-10 minutes of incubation with the fluorescent decoding
360 probes at room temperature. Likewise, stripping and washing away the unbound decoding
361 probes is straightforward and fast at room temperature. This process can be performed on a
362 stationary glass-bottom petri dish or a coverslip mounted on a microscope and does not require
363 reaction chambers or flowcells with sophisticated temperature control. The large size and the
364 bright signal of the colonies permits the use of 20x objective lenses for decoding which makes it
365 possible to image centimeter-sized samples in a manageable time with an ordinary confocal
366 microscope.

367 What distinguishes DART-FISH from other techniques of a similar class is how the cDNA
368 molecules are treated^{32,33}. We demonstrated here that embedding the cDNA molecules in a
369 polyacrylamide gel significantly enhances the retention of the cDNA throughout the colony
370 generation procedure and increases the sensitivity, a point not taken into account in previously
371 published methods. Additionally, we introduced RiboSoma, a cDNA labeling technique, as a cell
372 morphology marker which reveals more information about cell bodies than nuclear stains. We
373 anticipate that this tool can be highly useful for cell body segmentation, particularly in thicker
374 samples.

375 RCA-based *in situ* detection systems are prone to optical and physical overcrowding as more
376 and more genes are detected with higher efficiency. To mitigate this issue, we developed a
377 computational method (SpD) that used the redundancy in the barcode space to deconvolve
378 mixed barcodes from single pixels. This strategy improved our decoding efficiency compared to
379 naive decoding methods⁷². The utility of this method increases with higher redundancy in the
380 barcode space and careful assignment of barcodes to genes such that genes that tend to co-
381 express in the same cell types have unique barcode combinations. In addition, more
382 sophisticated deconvolution methods that share information between neighboring pixels may
383 improve decoding efficiency⁷³⁻⁷⁵. As the field is moving towards detecting more genes in
384 parallel, pixel-based deconvolution methods like SpD could become increasingly relevant.

385 Due to its streamlined nature and simplicity, the basic DART-FISH chassis described here can
386 be effectively extended in multiple ways. The workflow can be combined with antibody staining,
387 for instance, to target extracellular factors such as matrix proteins and cell-cell communication
388 molecules to enhance the definition of cell-cell interactions in pathological niches⁷⁶. The
389 thickness of tissue sections could be increased for higher resolution mapping of neighborhoods
390 and cell connectivities; while increasing section thickness to 20-30um should be readily
391 achievable, other strategies in sample mounting and handling may be necessary to increase the
392 diffusion into even thicker sections (>100um)⁷⁷. Padlock probes could also be designed to
393 anneal directly to mRNA followed by circularization using an RNA-mediated DNA ligase, which
394 would skip the cDNA synthesis and can improve the detection sensitivity.

395 Methods

396 Reagents and enzymes

397 All reagents were listed as in Supplementary Table 2.

398

399 Human tissue section

400 Human brain

401 One donor brain with post-mortem interval \leq 12 hours and RIN score \geq 7 was selected for
402 DART-FISH assay. Regions were identified and isolated utilizing architectural landmarks, aided
403 by the Allen Brain Human Brain Atlas⁷⁸. Multiple parallel 10- μ m-thick cryosections were taken
404 from the tissue block and mounted onto vectabond-coated 24 x 60 mm No.1.5 coverslips (Azer
405 Scientific, 1152460). Brain cryosections were stored at -80°C until use.

406 Human kidney

407 Kidney tissue was obtained from the Kidney Translational Research Center (KTRC)
408 biorepository under a protocol approved by the Washington University Institutional Review
409 Board (IRB 201102312). Informed consent was obtained for the use of data and samples. The
410 kidney tissue was dissected from the whole kidney and freshly frozen in Optimal Cutting
411 Temperature embedding media in cryomolds on a liquid nitrogen chilled meal block and stored
412 at -80 C till ready for experimental use⁶⁸. 10- μ m-thick sections were cut from the frozen blocks
413 for DART-FISH and flanking sections were used for histopathological assessment by a renal
414 pathologist.

415 Gene selection

416 A list of genes was selected based on differential expression analysis of snRNA-seq data from
417 human primary motor cortex data^{40,42} and a few curated marker genes were added manually to
418 target 121 genes in the human M1C. Human kidney gene selection was performed by gpsFISH
419^{79,80} to distinguish subclass level 2 annotation in our kidney reference atlas⁶⁷. snRNA-seq data
420 from the kidney reference atlas with cell type annotation at subclass level 2 was used as input of
421 gpsFISH. Curated marker genes from prior knowledge were also included as input. The size of
422 the gene panel was set to 300. We ran the optimization for 100 iterations to ensure
423 convergence although the optimization converged around iteration 50.

424 Probe design and production

425 DART-FISH probe design

426 For short genes (length < 1.5kb), we defined the constitutive exon as the union of all isoforms in
427 GencodeV41. For other genes, the constitutive exon was defined as regions in RefSeq where at
428 least (33% for brain, 50% for kidney) of isoforms share. We used a modified version of
429 ppDesigner³⁵ (<https://github.com/Kiaan/sppDesigner>) to find padlock target sequences along
430 the constitutive exons. ppDesigner was run on two settings: 1) no overlap between probes
431 allowed, 2) overlap of up to 20nt allowed. Individual arms were constrained between 17nt and
432 22nt long with the total target sequences no longer than 40nt. The resulting target sequences
433 were aligned to GRCh38/hg38 with BWA-MEM⁸¹ and sequences with MAPQ<40 or secondary
434 alignment were removed. We further removed probes that have GATC (DpnII recognition site).
435 For the brain, a maximum of 50 probes per gene were selected prioritizing the non-overlapping
436 set. For the kidney, a maximum of 40 probes per gene were selected with no overlap. Finally,
437 the target sequences were concatenated with amplification primer sequences, universal
438 sequence, and gene-specific decoder sequences to produce final padlock probe sequences
439 (Supplementary Fig. 2c) and were ordered as an oligo pool from Twist Bioscience (South San
440 Francisco, CA). Amplification primer pairs pAP1V41U and AP2V4 were used for the kidney
441 probe set, and while the brain probe set was amplified with AP1V7U and AP2V7 primer pair
442 (Supplementary Table 2).

443 To select a set of barcodes, we computationally created all possible barcodes in the compact
444 format: an n digit barcode with “1”, “2” and “3” representing each of the three fluorescent
445 channels and “0” indicating off cycles. For example, the barcode for *RORB* in Fig. 1c is
446 “132000” in the 4-digit format. This amounted to 480 and 840 multi-color barcodes for brain and
447 kidney, respectively. We then used a brute force algorithm to find the largest subset of
448 barcodes, Q , in which every pair had a Hamming distance > 2 . Followed by this, we created a
449 graph, G , in which every possible barcode is a node, and pairs of nodes are connected with
450 edges if their Hamming distance is 1. We then found a maximal independent set (MIS, networkx
451 v2.6.2) that included the nodes in Q . This method ensures that every pair of barcodes in the MIS
452 have Hamming distance > 1 . Because the algorithm for finding MIS is random, we ran it 20,000
453 times and selected the largest MIS across the runs. For the brain, the MIS consisted of 159
454 barcodes, 121 of which were randomly assigned to the genes. For the kidney, the MIS had 269
455 barcodes. We randomly added 31 additional barcodes and counted the number of edges of the
456 induced subgraph of G with the selected nodes. We repeated this selection 20,000 times and
457 proceeded with the run with the lowest edge count. 300 genes were randomly assigned to these
458 barcodes.

459 Large-scale padlock probe production

460 A step-by-step protocol can be found on protocols.io
461 (<https://www.protocols.io/private/A6D4913C39A311EE8E6E0A58A9FEAC02>) and is illustrated
462 in Supplementary Fig. 2. Briefly, oligo pools were PCR amplified on a 96-well plate (10pM per

463 reaction) using KAPA SYBR fast and 0.4 μ M of each amplification primer (pAP1V41U and
464 AP2V4 for kidney, AP1V7U and AP2V7 for brain, Supplementary Table 2, Supplementary Fig.
465 2) until plateau. The PCR products were pooled and concentrated with ethanol precipitation and
466 further purified using QIAquick PCR purification kit (Qiagen 28106).

467 For the brain probe set, the purified amplicons were divided into parallel reactions (about 5 μ g
468 each) and were digested with Lambda Exonuclease (0.5U/ μ l) in 1x buffer (NEB M0262L) at
469 37 °C for 2 hours and purified using Zymo ssDNA/RNA clean & concentrator kit following
470 manufacturer's instructions (Zymo D7011). Next, the single-stranded probes were further
471 digested with 5 units of USER enzyme (NEB M5505L) in 1x DpnII buffer at 37 °C for 3 hours.
472 Subsequently, for each reaction we added DpnII guide oligo (Supplementary Table 2) to final
473 concentration of 5 μ M in 1x DpnII buffer, heated the mix to 94 °C for 2 minutes, cooled to 37 °C
474 and added 50 units of DpnII in 1x DpnII buffer and incubated for 5 hours. Finally, probes were
475 size-selected using a TBE-Urea gel.

476 For the kidney probe set, DpnII digestion was performed after PCR. In detail, the purified
477 amplicons were divided into parallel reactions (about 5 μ g each) and were digested with DpnII
478 (1U/ μ l) in 1x NEBuffer DpnII (NEB R0543L) at 37 °C for 3 hours and purified with QIAquick PCR
479 purification kit. The purified products were digested with Lambda Exonuclease (0.5U/ μ l) in 1x
480 buffer (NEB M0262L) for 2 hours and purified with Zymo ssDNA/RNA clean & concentrator kit.
481 Finally, the library was digested with USER (0.0625U/ μ l, M5505L) in 1x NEBuffer DpnII in
482 parallel reactions (about 2.5 μ g each) for 6 hours at 37 °C followed by 3 hours at room
483 temperature and purified with Zymo ssDNA/RNA clean & concentrator kit.

484 DART-FISH

485 The general workflow, including reverse transcription, cDNA crosslinking, padlock probe
486 capture, RCA, colony crosslinking and image acquisition, is illustrated in **Fig. 1**. A step-by-step
487 protocol can be found at protocols.io (
488 <https://www.protocols.io/private/7E7773B239A311EE8E6E0A58A9FEAC02>).

489 Reverse transcription and cDNA crosslinking

490 Tissue sections were fixed in 4% PFA in 1x PBS at 4 °C for 1 hour, followed by two 3-minute
491 washes with PBST (1x PBS and 0.1% Tween-20). Then, a series of 50%, 70%, 100%, and
492 100% ethanol were used to dehydrate the tissue section at room temperature for 5 minutes
493 each. Next, tissues were air dried for 5 minutes and in the meantime silicone isolators (Grace
494 Bio-Labs, 664304) were attached around the tissue sections. Then, the tissue sections were
495 permeabilized with 0.25% Triton X-100 in PBSR (1x PBS, 0.05U/ μ l Superase In, 0.2U/ μ l
496 Enzymatics RNase Inhibitor) at room temperature for 10 minutes, followed by two chilled
497 PBSTR (1x PBS, 0.1% Tween-20, 0.05U/ μ l Superase In, 0.2U/ μ l Enzymatics RNase Inhibitor)
498 washes and a water wash. Next, the sections were digested with 0.01% pepsin in 0.1 N HCl
499 (pre-warmed 37 °C for 5 minutes) at 37 °C for 90 seconds and washed with chilled PBSTR
500 twice. Afterwards, acrydite-modified dT and N9 primers (Acr_dc7-AF488_dT20 and Acr_dc10-
501 Cy5_N9, Supplementary Table 2) were mixed to a final concentration of 2.5 μ M with the

502 reverse-transcription mix (10U/ μ L SuperScript IV (SSIV) reverse transcriptase, 1x SSIV buffer,
503 250 μ M dNTP, 40 μ M aminoallyl-dUTP, 5 mM DTT, 0.05U/ μ l Superase In and 1U/ μ L
504 Enzymatics RNase inhibitor), incubated at 4 °C for 10 minutes and then transferred to a
505 humidified 37°C oven for overnight incubation. After reverse transcription, tissue sections were
506 washed with chilled PBSTR twice and incubated in 0.2 mg/mL Acryloyl-X, SE in 1x PBS at room
507 temperature for 30 minutes. Then, the tissue sections were washed once with PBSTR, followed
508 by incubation with 4% acrylamide solution (4% acrylamide/bis 37:1, 0.05U/ μ L Superase-In, and
509 0.2U/ μ L RNase inhibitor) at room temperature for 30 minutes. Subsequently, the acrylamide
510 solution was aspirated and gel polymerization solution (0.16% Ammonium persulfate and 0.2%
511 TEMED in the 4% acrylamide solution) was added. Immediately, the tissues were covered with
512 Gel Slick (Lonza #50640)-treated circular coverslips of 18 mm diameter (Ted Pella, 260369),
513 transferred to an argon-filled chamber at room temperature and incubated for 30 minutes. After
514 gel formation, the tissue sections were washed with 1x PBS twice and the coverslip was gently
515 removed with a needle. At this point, the cDNA is crosslinked to the polyacrylamide gel.

516 Padlock probe capture

517 After cDNA crosslinking in gel, remaining RNA was digested with RNase mix (0.25U/ μ L RNase
518 H, 2.5% Invitrogen RNase cocktail mix, 1x RNase H buffer) at 37 °C for 1 hour followed by two
519 PBST washes, 3 minutes each. Then, the padlock probe library was mixed with Ampligase
520 buffer. Then, the mix was heated to 85°C for 3 minutes and cooled on ice. Then, the mix was
521 supplemented with 33.3U/ μ L Ampligase enzyme such that the final concentration of padlock
522 probe library was 180 nM and 100 nM for the kidney and brain probe set, respectively, in 1x
523 Ampligase buffer. Subsequently, the samples were incubated at 37 °C for 30 minutes, and then
524 moved to a 55 °C humidified oven for overnight incubation.

525

526 RCA and rolonoy crosslinking

527 After padlock probe capture, the tissue sections were washed with 1x PBS three times, 3
528 minutes each and hybridized with RCA primer solution (0.5 μ M rca_primer, 2x SSC, and 30%
529 formamide) at 37 °C for 1 hour. Then, the tissue sections were washed with 2x SSC twice and
530 incubated with Phi29 polymerase solution (0.2 U/ μ L Phi29 polymerase, 1x Phi29 polymerase
531 buffer, 0.02 mM aminoallyl-dUTP, 1 mg/mL BSA, and 0.25 mM dNTP) at 30 °C in a humidified
532 chamber for 7 hours. Afterwards, the tissue sections were washed with 1x PBS twice, 3 minutes
533 each and the rolonies were crosslinked with 5 mM BS(PEG)9 in 1x PBS at room temperature for
534 1 hour. The crosslinking reaction was terminated with 1M Tris, pH 8.0 solution at room
535 temperature for 30 minutes. Finally, samples were washed with 1x PBS twice and stored in a
536 4°C fridge until image acquisition.

537

538 Image acquisition

539 Human Brain

540 Human brain tissue sample was stained with 1x TrueBlack in 70% ethanol at room temperature
541 for 2 minutes to lessen the lipofuscin autofluorescence and washed with 1x PBS three times for
542 3 minutes each before imaging. For the anchor round imaging, a mixture of anchor round
543 probes, including DARTFISH_anchor_Cy3, dcProbe10_ATTO647N, and dcProbe7_AF488
544 probes, were diluted to 500nM in 2x SSC and 30% formamide. Then, the samples were stained
545 with anchor round probes at room temperature for 5 minutes and washed with 1 mL washing
546 buffer (2x SSC, 10% formamide and 0.1% Tween-20) twice for 2 minutes each prior to imaging.
547 The samples were immersed in 1 mL imaging buffer (2x SSC and 10% formamide) during
548 imaging. For decoding imaging, each imaging cycle started with incubating samples with
549 stripping buffer (2x SSC, 80% formamide, and 0.1% Tween-20) at room temperature for 5
550 minutes, washed with washing buffer twice for 2 minutes each, stained with a mixture of
551 AlexaFluor488, Cy3, and ATTO647 fluorophore-labeled decoding probes (dcProbe0-AF488,
552 dcProbe0-Cy3, and dcProbe0-ATTO647N as an example for round 1) in 2x SSC and 30%
553 formamide for 10 minutes, and washed with washing buffer three times for 2 minutes each.
554 Then, the samples were immersed in 1 mL of imaging buffer while imaging. After the last cycle
555 of decoding imaging, DRAQ5 staining (5 μ M, room temperature, 10 minutes) was performed for
556 nuclei segmentation. Z-stack images were acquired by Leica TCS SP8 confocal microscope
557 with 20x oil-immersed objective (NA 0.75) and pixel size of 284 nm x 284 nm and 1024 x 1024
558 pixels per image.

559 Human Kidney

560 The same fluorescent probes were used as in the human brain imaging in this order: anchor
561 round, decoding rounds 1 to 7, DRAQ5 nuclear staining. All hybridizations were performed with
562 500nM of each of the fluorescent oligos in 2x SSC and 30% formamide for 15 minutes.
563 Following hybridization, the unbound probes were washed with 4-5 washes with PBST each 2-3
564 minutes. Imaging was performed in PBST on Leica SP8 with a 20x objective, pinhole size of 2
565 airy units, 1.55x zoom (366 nm x 366 nm pixel size with 1024 x 1024 pixels per image), 3 line
566 averaging, with 24 z-stacks. After each imaging round, stripping was performed with 80%
567 formamide in 2x SSC and 0.1% Tween-20, 3 times each 3-5 minutes, followed by 2 quick
568 washes with PBST to prepare for the next hybridization.

569 RNAscope

570 Sample preparation

571 RNAscope HiPlex 50x probe stocks of human *SLC17A7*, *RELN*, *CUX2*, *RORB*, *CBLN2*, *FEZF2*,
572 *GAD2*, *PVALB*, *LAMP5*, *PLP1*, *AQP4*, and *APBB1IP* with HiPlex12 Reagent Kit v2 (488, 550,
573 650) Assay (ACD, 324419) were purchased from Advanced Cell Diagnostics (ACD). The 50x
574 probe stocks and RNAscope HiPlex diluent were warmed at 40 °C for 10 minutes. The pre-

575 warmed 50x probe stocks were pooled and diluted to 1x with pre-warmed RNAscope HiPlex
576 diluent before use. RNAscope experiments were carried out according to the manufacturer's
577 protocol (document number UM324419) with slight modifications for post-mortem human brain
578 tissue. Briefly, the human brain tissue sections were fixed with 4% PFA in 1x PBS at 4°C for 1
579 hour and dehydrated with a series of 50%, 70%, 100%, and 100% ethanol at room temperature
580 for 5 minutes each. Then, silicone isolators of 20 mm in diameter (Grace Bio-Labs, 664304)
581 were applied around the tissue sections and the tissue sections were slightly digested with 5
582 drops of Protease IV at room temperature for 30 minutes and washed with 1x PBS for 2 minutes
583 twice. Subsequently, enough volume of 1x pooled probes was added to cover the tissue
584 sections entirely and the probe hybridization was performed in the 40 °C HybEZ Hybridization
585 System for 2 hours. Then, the tissue sections were washed with 1 mL 1x wash buffer at room
586 temperature for 2 minutes twice. Later, the tissue sections were hybridized with RNAscope
587 HiPlex Amp1, incubated in the 40 °C HybEZ Hybridization System for 30 minutes, and washed
588 with 1x wash buffer at room temperature for 2 minutes twice. Afterwards, we followed the same
589 process to hybridize the tissue sections with RNAscope HiPlex Amp2 and RNAscope HiPlex
590 Amp3. Finally, we incubated the tissue section with freshly prepared 5% HiPlex FFPE reagent
591 at room temperature for 30 minutes and washed the tissue sections with 1 mL 1x wash buffer at
592 room temperature for 2 minutes twice prior to image acquisition.

593 Image acquisition

594 The tissue sections with silicone isolators were mounted above the objective of the confocal
595 microscope and 4 cycles of imaging were performed to image 12 RNA species. In the first
596 imaging cycle, RNAscope HiPlex Fluoro T1-T3 probes were prewarmed at 40 °C, added to
597 cover the tissue sections entirely, and hybridized with the tissue sections for 5 minutes thrice.
598 After probe hybridization, the tissue sections were washed with 1 mL 1x wash buffer at room
599 temperature for 2 minutes twice and immersed in 1 mL 4x SSC buffer. Z-stack images were
600 acquired by Leica TCS SP8 confocal microscope with 63x oil-immersed objective (NA 1.4) and
601 pixel size of 113 nm x 113 nm. Then, the fluorophores were cleaved with freshly prepared 10%
602 cleaving solution (100 µL cleaving solution diluted with 900 µL 4x SSC buffer) at room
603 temperature for 15 minutes and the tissue sections were washed with 0.5% PBST (1x PBS with
604 0.5% Tween-20) at room temperature for 2 minutes twice. Repeat the fluorophore cleaving
605 process once to ensure the fluorophores were removed entirely. Later, we repeated the same
606 process to hybridize RNAscope HiPlex Fluoro T4-T6, RNAscope HiPlex Fluoro T7-T9, and
607 RNAscope HiPlex Fluoro T10-T12 and image the corresponding RNA targets subsequently.
608 Additional "Empty" cycle was taken to image the autofluorescence of the human brain tissue.
609 After the last imaging cycle, we added 80% formamide in 2x SSC buffer to remove RNAscope
610 probes completely and stained the nuclei with 5 µM DRAQ5 at room temperature for 10
611 minutes.

612 RNAscope data processing

613 We directly leveraged the computational pipeline in DART-FISH data processing to decode
614 spots in RNAscope images. We registered the z-stack images, max-intensity projected the

615 images, and subtracted the autofluorescence imaged in the "Empty" cycle. Then, the RNAscope
616 spots were decoded by [SpD](#).

617 DART-FISH data processing (DF3D)

618 The DART-FISH datasets were processed by our home-built pipeline. The codes of the pipeline
619 could be found in this Github page (<https://github.com/Kiiaan/DF3D>). Raw z-stack images with 4
620 channels (3 fluorescent channels and brightfield) from the microscope were registered to a
621 reference round by affine transformation implemented in SimpleElastix⁸² using the brightfield
622 channel as the anchor. Then, each field of view (FOV) underwent decoding to obtain a list of
623 candidate spots. Spots from all FOVs were pooled and filtered (See [Sparse deconvolution](#)
624 ([SpD](#) decoder for more details). To obtain the global position of the rolonies, the FOVs were
625 stitched by applying FIJI's⁸³ Grid/Collection Stitching plugin⁸⁴ (in headless mode) to the
626 registered and maximum-projected brightfield images. Note that the theoretical positions of the
627 FOVs, defined by the microscope, were used as initial positions for stitching.

628 Cell boundaries were segmented with Cellpose (v2.1.1)^{85,86}. Note that Cellpose's "cyto" was
629 fine tuned on each tissue by manually segmenting a handful of composite images DRAQ5
630 (nuclei channel) and N9 cDNA stain or RiboSoma (cyto channel) using the package's graphical
631 user interface.

632 Sparse deconvolution (SpD) decoder

633 In DART-FISH, each gene is represented by a barcode that can be read out in n rounds of 3-
634 channel imaging. Each barcode is designed to emit fluorescence (be "on") in exactly k rounds,
635 each time in a single fluorescent channel and stay "off" in other rounds. We concatenate the
636 rounds and channels and represent the barcodes as $3n$ -dimensional vectors. In other words,
637 barcode i is represented by vector x_i in which 1's are placed where "on" signal is expected, and
638 0's everywhere else. The codebook matrix X ($3n \times N$) is then defined as $X = [x_1, x_2, \dots, x_N]$,
639 where N is the total number of barcodes. In the same way, for every pixel we concatenate the
640 fluorescent intensity values (scaled between 0 and 1) to create a $3n$ -dimensional vector y .
641 The fluorescence signal at each pixel can be sourced from more than one rolonies if the distance
642 between neighboring rolonies is smaller than the optical resolution of the imaging system, or if
643 3-dimensional stacks are analyzed as maximum-projected 2D images. Nevertheless, because
644 of physical constraints, only a handful of rolonies are expected to be the source of signal to
645 each pixel. In this regard, because of the redundancy in the barcode space, combinations of
646 barcodes in one pixel can be decomposed into their original composing barcodes. We
647 formulated this problem as a regularized linear regression problem where a weighted sum of a
648 few barcodes creates the observed signal intensity, where the vector $w = [w_1, w_2, \dots, w_N]^T$
649 shows the contribution of each barcode (Fig. 1d) with most w_s ($1 \leq s \leq N$) elements equal to 0.
650 We initially used lasso to solve this problem ($\alpha' = 0$ in Fig. 1d) to promote the sparsity of w , but
651 later decided to use elastic net with a non-zero value for α' that is much smaller than α ($\alpha' =$
652 $\alpha/100$) to increase stability. We call the solution to this problem \hat{w}_{lasso} . Note that, we constrain
653 the problem to positive weight values ($\hat{w}_{lasso_s} \geq 0$ for every s). The regression problems are

654 solved for all the foreground pixels ($\|\mathbf{y}\|_2 > 0.25$) individually. For every barcode i , we can
655 construct an image with the estimated weight values as pixels: 0 for background and rejected
656 pixels, and non-zero values from $\hat{\mathbf{w}}$. We call these images weight maps. Fig. 1f shows weight
657 maps constructed with $\hat{\mathbf{w}}_{lasso}$ which have not been filtered.
658 With our current barcode space, we can only confidently decompose bi-combinations, so for
659 every instance of the elastic net problem, we applied an elbow filter and accepted the solution
660 only when the top one or two weights were significantly larger than other weights.
661 In more details, for every pixel, the weights in $\hat{\mathbf{w}}_{lasso}$ are sorted in decreasing order. If the
662 second largest weight is smaller than half of the top weight, then the top weight passes the
663 elbow filter. Otherwise, if the third largest weight is smaller than 30% of the largest weight, the
664 top two weights pass the elbow filter. All the values that do not pass the filter are set to zero. For
665 accepted solutions, we performed an ordinary least square (OLS) regression using the top one
666 or two weights to obtain unbiased weights ($\hat{\mathbf{w}}_{OLS}$). Supplementary Fig. 1d shows weight maps
667 constructed with $\hat{\mathbf{w}}_{OLS}$ (OLS maps) after applying a Gaussian smoothing.

668 Estimating channel-specific coefficients

669 So far, we have assumed that pixel intensities from different rounds and fluorescent channels all
670 have the same scale and distribution. However, there is usually a variation among rounds and
671 fluorescent channels, with some channel-rounds being brighter than others. To account for this
672 effect, we model the channel-specific variations as a multiplicative factor that connects the
673 weights at each pixel to intensities: $\mathbf{y} = \mathbf{c} \odot \mathbf{X}\mathbf{w}$ where $\mathbf{c} = [c_1, c_2, \dots, c_{3n}]^T$ is the channel
674 coefficient vector and \odot denotes element-wise multiplication. Suppose for a set of pixels
675 $\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(P)}$ the true barcode weights $\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(P)}$ are given. For pixel i and
676 channel j , we could write: $y_j^{(i)} = c_j \sum_{b=1}^N X_{jb} w_b^{(i)} = c_j \sum_{b=1}^N (x_j)_b w_b^{(i)}$ where $(x_j)_b$ shows the
677 b 's element of the j 's barcode. In this case, each c_j can be estimated by solving an OLS
678 problem between $y_j^{(.)}$ and $\sum_{b=1}^N (x_j)_b w_b^{(.)}$. Conversely, if the channel coefficients are given, we
679 can set up the decoding problem with normalized intensities: $\bar{\mathbf{y}} = \mathbf{y}/\mathbf{c} = \mathbf{X}\mathbf{w}$ with $/$ being
680 element-wise division. We estimate the channel coefficients in an iterative manner following the
681 algorithm below:

- 682 1) Initialize $\mathbf{c} = 1$ (no channel variation)
- 683 2) Take a random sample of foreground pixels
- 684 3) Normalize the pixel intensities in the sample with \mathbf{c}
- 685 4) Run SpD on the normalized pixels
- 686 5) Keep pixels with one dominant unsaturated weight (weight in range 0.1 and 0.5) and
687 obtain unbiased weights through OLS
- 688 6) Update the values of \mathbf{c} by solving $3n$ OLS problems
- 689 7) Repeat steps 3-6 n_{iter} times

690 We do this procedure for 2 iterations and apply the obtained values when decoding all fields of
691 view.

692 Setting the elastic net regularization parameter

693 Because of physical constraints, the solution to the deconvolution problem must be sparse, i.e.,
694 only a few non-zero weights should explain the observed intensities. The sparsity of the solution
695 is directly controlled by the L1 regularization term, α (Fig. 1d). For a given pixel Y , higher values
696 of α shrink the estimated weights ($\|\hat{w}_{lasso}\|_1 \rightarrow 0$). Conversely, lower values of α allow more
697 weights to be non-zero and $\|\hat{w}_{lasso}\|_1$ to grow larger. In fact, one can show if the L2
698 regularization term, $\alpha' = 0$, the largest weight to be undetected for a pixel made purely from one
699 barcode is $w_{max} = \frac{3n}{k}\alpha$ ⁸⁷. For instance, given $\alpha = 0.05$ and codebook parameters $n = 6, k = 3$,
700 then $w_{max} = 0.3$. This means that a pixel composed of one barcode needs to have an
701 underlying intensity > 0.3 to get a non-zero \hat{w}_{lasso} . In other words, setting α too strictly will result
702 in dimmer pixels to have $\hat{w}_{lasso} = 0$, while setting α too loosely will result in spurious non-zero
703 values in \hat{w}_{lasso} for brighter more complex pixels, potentially not passing the elbow filter and
704 thus $\hat{w}_{OLS} = 0$. To accommodate a wide range of colony intensities, we choose α adaptively
705 based on the pixel norm $\|y\|_2$. First, we form a training data from a random subset of foreground
706 pixels indexed by i . For a given pixel norm u , we find the alpha that maximizes a weighted sum
707 of $\|\hat{w}_{OLS}^{(i)}\|_1$ giving more weights to training pixels with closer norms to u (equation \star):

$$\alpha(u) = \arg \max_{\alpha} \sum_i g\left(\frac{u - \|y^{(i)}\|_2}{\sigma}\right) \|\hat{w}_{OLS}^{(i)}(\alpha)\|_1$$

708 Where $g(\cdot)$ is the Gaussian function. In practice, for the training pixels we solve the sparse
709 decoding problem for every value of α on a grid from 0.01 to 0.1 with a step size of 0.005,
710 α_{train} , to obtain estimated weights $\hat{w}_{OLS}^{(i)}(\alpha)$. Then we create a grid of norms u_{train} , spanning 0
711 and 2.8 with 50 steps. For every value of u in u_{train} , we solve equation \star on the α_{train} grid. In
712 other words, we create a lookup table connecting values of u_{train} to the best α in α_{train} . For new
713 pixels, α is determined by the closest norm in the lookup table.
714

715

716 Spot calling

717 To call spots, Gaussian smoothing is applied to individual OLS maps, followed by
718 *peak_local_max* filter (scikit-image 0.19.3⁸⁸) which returns a binary image with 1's at the local
719 maxima of the smoothed OLS maps. These peaks are then used as markers for watershed
720 segmentation. From each segmented region, these features are kept and used downstream:
721 area, centroid, maximum and average intensity. This formed a list of candidate spots from each
722 FOV.

723 Spot filtering

724 To control the specificity of the decoding procedure, we augmented the codebook with a
725 number of barcodes (5-10% of the used barcodes) not used in the probe set (empty barcodes).
726 After spot calling, we record the properties (e.g., area, maximum and average intensity) of spots
727 with an empty barcode. Indeed, we see that empty spots tend to be smaller with lower
728 average/maximum weight (Supplementary Fig. 1f and g). On a small fraction of spots from all
729 fields of view, we train a random forest classifier (scikit-learn v1.1.3) with area, maximum and
730 average weights as features to predict empty/non-empty labels (Supplementary Fig. 1h). We

731 applied the classifier to all spots and obtained emptiness probabilities and set a threshold on
732 these probabilities (0.3-0.35).

733 Spot assignment to cells

734 The cell boundaries were computed by applying *find_boundaries* (scikit-image 0.19.3⁸⁸) to the
735 segmentation mask. The distances of all spots were calculated to the closest cell boundary. The
736 distance was set to 0 if a spot was inside a boundary. A spot was assigned to its closest cell if
737 the distance was less than or equal to 11 μ m in the kidney, 3 μ m for non-MBP and 0 μ m for MBP
738 spots in the brain.

739 Cell annotation

740 We used anndata⁸⁹⁻⁹¹ (v0.8.0) and scanpy⁸⁹(v1.9.1) to handle and analyze the data. The data
741 normalization was performed using analytic Pearson residuals⁹² (clipped at 40) with a lower
742 bound placed on gene-level standard deviations⁹³. Clustering was done with the Leiden
743 algorithm⁹⁴ implemented in scanpy.

744 Annotating the Brain data set

745 Cells with counts less than 5 and more than 300 were removed (2980 out of 26348). The top
746 100 highly variable genes (*scanpy.experimental.pp.highly_variable_gene(.,*
747 *flavor='pearson_residuals')*) were used for normalization, embedding and annotations. PCA was
748 performed on pearson residuals, and the neighborhood graph was created with this command
749 *scanpy.pp.neighbors(., n_neighbors=20, n_pcs=15, metric='cosine')*. Single-nucleus RNA-seq
750 reference from Jorstad et al.⁵⁵ was subsetted to M1C cells and normalized in the same way as
751 DART-FISH. Pax6 and Scng subclasses were removed since we did not design our probe set to
752 target those. Average normalized counts (centroids) were computed for every other subclass in
753 the “*within_area_subclass*” slot and all clusters of DART-FISH. To annotate the DART-FISH
754 clusters at the class level (excitatory, inhibitory, non-neuronal), we first correlated each cluster
755 to all single-nucleus subclasses, and assigned that cluster to the class of the most highly
756 correlated subclass. Annotation of each class was done separately.

757

758 For excitatory neurons, all DART-FISH cells that had a class label of “excitatory” and had at
759 least 20 transcripts were kept (5957 cells). We realized that the Leiden clustering was unstable
760 and by mere shuffling of the order of cells, we would obtain very different clusters. We reasoned
761 that by removing some cells that tend to move between clusters, we could get more stable
762 clusters and have more confidence in their annotation. To find cells that don’t stably cluster, we
763 ran clustering 20 times, every time shuffling the order of the cells. For every cell, we calculated
764 the number of times it was co-clustered with every other cell and took the average of the non-
765 zero values as the co-clustering index (CCI). A perfect CCI of 20 means that the cell is clustered
766 with the same partners in every clustering instance, while lower values show deviations from
767 this limit. We removed the cells with a CCI smaller than 6 and repeated this filtering procedure
768 for three more iterations. The final results show a more stable clustering of the remaining 5101
769 cells. We then constructed a new neighborhood graph using newly computed principal

770 components (n_neighbors=10, n_pcs=15), followed by Leiden clustering. The cluster centroids
771 were calculated and correlated to the reference subclass centroids. We assigned clusters to
772 their maximally correlated reference subclass if we could also see differential expression of their
773 marker genes (scipy's *rank_genes_groups*), otherwise we labeled them as NA. Of note, the
774 DART-FISH population labeled as L6b/CT was highly correlated with reference subclasses L6b
775 and L6 CT (Supplementary Fig. 4b) and showed expression of marker genes from both
776 subclasses.

777
778 For inhibitory neurons and non-neuronal cells, the clustering was more stable to begin with, and
779 we started by constructing the neighborhood matrix (For inhibitory neurons: n_neighbors=20,
780 n_pcs=10. For non-neuronal cells: n_neighbors=25, n_pcs=15) and clustering. Then clusters
781 were assigned to the reference subclass with maximum Pearson's correlation if the marker
782 genes matched, or otherwise were labeled as NA.

783

784 Drawing cortical layer boundaries

785 Cortical layer boundaries were automatically drawn via Support Vector Machine (SVM) decision
786 boundaries. The Scikit-learn python package (v1.1.3) was used to train a SVM on the following
787 excitatory neuron subtype labels: "L2/3 IT", "L4 IT", "L5 IT", "L6 IT", "L6b/CT". First, cells with
788 fewer than 10 total gene counts were filtered out. The x and y coordinates of the cells are
789 standardized via the *StandardScaler()* function, and the data is fed into a SVM with a radial
790 basis function (RBF) kernel with balanced class weights and one vs. one decision function. The
791 RBF SVM model is then applied to a meshgrid with a fine step size with the same geometric
792 size as the original tissue image. The trained SVM classified the cell type label of each point on
793 the meshgrid to define borders between the cortical layers specified by the excitatory neuron
794 subclasses. We drew contours based on the borders between the various subclasses, and
795 manually superimposed them onto Fig. 3c.

796 Gene concordance analysis

797 The RNA portion of the SNARE-seq2 (snare) dataset from Bakken et al⁴⁰ was used in this
798 section. First, the snare data was subsetted to the DART-FISH genes. Then, DART-FISH and
799 snare data were both normalized (*scipy.pp.normalize_total(., target_sum=1000)*) followed by
800 log-normalization (*scipy.pp.log1p(.)*). The average normalized gene expression was
801 calculated for all subclasses. For each gene, the concordance was defined as the Pearson's
802 correlation between the average expressions across the subclasses between the DART-FISH
803 and snare data (top panel of Supplementary Fig. 4c). The same analysis was performed for a
804 MERFISH data set from Fang et al⁵³ (sample H18.06.006.MTG.250.expand.rep1) with the
805 following details: the subclass labels from metadata column "cluster_L2" were renamed to be
806 consistent with DART-FISH annotations. In particular, subclasses L6b and L6 CT were merged,
807 and subclass L5 ET was removed. Note that subclasses Sst Chodl, Chandelier and Lamp5
808 Lhx6 were not annotated in the MERFISH dataset and were removed from the DART-FISH
809 analysis for consistency. The rest of the analysis was carried out with 242 shared genes
810 between the dataset (bottom panel of Supplementary Fig. 4c).

811 Annotating the kidney data set

812 Cells with less than 5 and more than 100 transcripts were filtered (2024 out of 65565). The top
813 250 highly variable genes were kept for downstream analyses
814 (`scanpy.experimental.pp.highly_variable_gene(., flavor='pearson_residuals')`). PCA was
815 performed on pearson residuals, and the neighborhood graph was constructed using the
816 command `scanpy.pp.neighbors(., n_neighbors=20, n_pcs=20, metric='cosine')` followed by
817 Leiden clustering (l1 clustering). From the kidney reference atlas ⁶⁷, we removed degenerative,
818 cycling, transitioning and medullary cell types. The counts were transformed to pearson
819 residuals and the remaining subclass level 1 and level 2 centroids were calculated. We then
820 calculated the Pearson correlations between subclass level 1 centroids and cluster centroids
821 and assigned each l1 cluster to the subclass level 1 with maximum correlation. We then
822 subclustered each of the l1 clusters and assigned those to subclass level 2 identities with
823 maximum correlation, only if the relevant marker genes were expressed. Through this
824 procedure we could not resolve PT-S1 and PT-S2 subtypes separately; thus, we labeled the
825 clusters that were highly correlated with these populations as PT-S1/S2. Similarly, for immune
826 cells, this procedure could confidently resolve MAC-M2 cells and the general myeloid
827 (IMM_Myl) and lymphoid (IMM_Lym) populations. To annotate the immune cells at higher level
828 of granularity, we updated their subclass level 2 labels with the following strategy: Each DART-
829 FISH cell with subclass level 1 label “IMM” was separately correlated with the following immune
830 subtypes in the reference atlas: B, PL, T, MAC-M2, MDC, cDC. The immune subtypes with
831 highest and 2nd highest correlation were kept. If the highest correlation was larger than 0.4 and
832 the ratio of the highest to the 2nd highest correlation was larger than 1.25, the label was
833 updated to that of the highest correlated subtype, otherwise it remained unchanged.
834

835 Cell-cell interaction analysis

836 We used `squidpy.gr.co_occurrence` function (v1.2.4.dev27+gb644428) with `n_splits=1` and an
837 interval between 7 μ m and 110 μ m ⁷¹
838
839

840 Data availability

841 All registered images and all outputs of the processing pipeline, including count matrices and
842 segmentation masks are available on Zenodo (<https://doi.org/10.5281/ZENODO.8253771>)⁹⁵

843 Code availability

844 The python code for the DART-FISH processing pipeline and SpD are available on this Github
845 repository: <https://github.com/Kiaaan/DF3D>

846 Acknowledgements

847 The authors would like to thank Prashant Mali, Reza Kalhor, Xuwen Li, Van Ninh, Xiaohua
848 Huang and Bing Ren for useful discussions and comments on this work. The authors would like
849 to acknowledge Kimberly Conklin, Huy Lam and other members of the Zhang lab for their
850 support. This work was supported by NIH grants U01MH098977 (to KZ, JC, JF), U01MH114828
851 (to KZ, JC, PVK) , UG3/UH3DK114933 (to KZ, SJ), U54HL145608(to KZ, SJ, PVK),
852 R01AG065541(to JC).
853

854 Author information

855 Author contributions

856 KZ and JBF conceived the in situ decoding concept. CJC performed human brain experiments.
857 KK performed human kidney experiments, created the data processing pipeline and analyzed
858 the data. KK, CJC and MN optimized the protocol on human tissues. HSL, MC and RQ
859 performed early developments. DK and EL contributed human brain sections. CP and JC
860 prepared human brain sections and helped with interpretation of the brain data. YY performed
861 computational layer boundary detection in the human brain. JS provided key suggestions on
862 protocol optimization and cell type annotation of the human brain. YZ and PVK performed gene
863 selection for human kidney with input from BBL and SJ. AK, JPG and SJ contributed human
864 kidney sections, performed histology and review. SJ and BBL helped with interpretation of the
865 kidney data. KK, CJC and KZ wrote the manuscript with suggestions from all authors. KZ
866 supervised the project.

867 Competing interests.

868 KZ and JBF are listed as inventors in a patent related to the method described in this
869 manuscript.

870 **Figure legends.**

871 **Figure 1.**

872 **DART-FISH workflow** **(a)** Schematics of DART-FISH. RNA molecules in a fresh-frozen and
873 formaldehyde-fixed tissue section are reverse-transcribed with primers carrying a 5' handle with
874 an acrydite modification. A polyacrylamide (PA) gel is cast on the tissue, incorporating the cDNA
875 molecules in the matrix. After RNA removal, padlock probes are hybridized to cDNA and
876 circularized, followed by rolling circle amplification (RCA) to create rolonies. Rolonies are further
877 crosslinked to the gel. **(b)** Imaging DART-FISH samples. Samples go through anchor round
878 imaging followed by decoding rounds. In anchor round imaging, fluorescent probes
879 complementary to the universal sequence and the 5' cDNA handle, present on all cDNA
880 molecules, are hybridized at room temperature to visualize the distribution of rolonies and the
881 shape of the somas (RiboSoma), respectively. After imaging, the fluorescent probes are
882 stripped and washed away at room temperature. In the subsequent decoding rounds, round-
883 specific decoding probes are hybridized, imaged and stripped. This procedure is repeated n
884 times ($n = 6$ in this example). **(c)** An example codebook for DART-FISH. Each gene is barcoded
885 such that the corresponding rolonies show fluorescent signal in k ($k = 3$ in this example) rounds
886 of decoding and remain off in other rounds. 5-10% of the codebook consists of empty barcodes
887 that don't have representative padlock probes and are only used for quality control in the
888 decoding pipeline. **(d)** *SparseDeconvolution* (SpD) decoding algorithm. The intensity of pixels
889 across n rounds of 3-channel imaging is modeled as a weighted combination of the barcodes in
890 the codebook. The decoding is formulated as a regularized linear regression such that most
891 barcodes do not contribute to the observed intensity. **(e)** Example of decoding by FISH on the
892 PA gel. The lower panel shows the maximum intensity projection of the fluorescent images
893 across 6 decoding rounds and 3 channels (scale bar 5 μm). The upper panel is a cartoon
894 drawing depicting the decoding of a *RORB* spot corresponding to the white square. **(f)** Lasso
895 maps. Lasso maps are the solution to the optimization in (d) and represent the gene weights for
896 each of *NRGN*, *SLC17A7*, *UCHL1*, *RORB*, *TMSB10*, and Empty barcodes in (e) (scale bar 5
897 μm).

898

899 **Figure 2.**

900 **Benchmarking DART-FISH on the human M1C.** **(a)** Parallel sections were taken from a
901 dissected post-mortem human M1C tissue block. Spatial distribution of 121 genes was
902 measured by DART-FISH with 6 rounds of decoding. **(b)** Scatter plot showing reproducibility
903 between parallel tissue sections processed independently. Each dot represents the total count
904 of each gene detected in each replicate. **(c)** The histogram for the number of high quality
905 decoded rolonies per cell. **(d)** Spatial distribution of excitatory neuron markers (*SLC17A7* and
906 *SATB*) and inhibitory neuron markers (*GAD1* and *GAD2*) in the whole tissue. The dashed
907 rectangular box delineates the ROI in (f). Scale bar 500 μm . **(e)** Zoomed-in views to show the

908 segregation of excitatory and inhibitory markers at single-cell level in 4 ROIs indicated by the
909 black squares in (c). **(f)** Validation of DART-FISH by RNAscope. Spatial distribution of
910 *SLC17A7*, *CUX2*, *CBLN2*, *RORB* and *FEZF2* across the cortical layers measured by RNAscope
911 (left) and DART-FISH (right). Scale bar 100 μ m. **(g)** Quantitative comparison of counts for
912 *SLC17A7*, *PVALB*, *CBLN2*, *RORB*, *CUX2*, *AQP4*, *APBB1IP*, *FEZF2*, *GAD2*, and *LAMP5* in
913 DART-FISH and RNAscope in equivalent ROIs. Percentages represent total spots detected in
914 DART-FISH divided by total spots detected in RNAscope multiplied by 100. **(h)** Comparing
915 DART-FISH and MERFISH⁵³ (H18.06.006.MTG.4000.expand.rep2). Each dot represents the
916 mean count per cell for the 56 shared genes. **(i)** Comparing DART-FISH and EEL FISH⁵⁴ (data
917 from human visual cortex). Each dot represents the total count of the 60 shared genes.

918 **Figure 3.**

919 **DART-FISH mapping of cell types in the human M1C.** **(a)** UMAP plot of all annotated
920 excitatory neurons (L2/3 IT, L4 IT, L5 IT, L5/6 NP, L6 IT, L6 IT Car3, and L6b/CT), inhibitory
921 neurons (Pvalb, Vip, Lamp5, Lamp5 Lhx6, Sst, Sst Chodl, and Chandelier), and non-neuronal
922 (Astro, Endo, VLMC, Oligo, OPC, and Micro/PVM) subclasses. Astro: astrocytes, Endo:
923 endothelial cells, VLMC: vascular and leptomeningeal cells, Oligo: oligodendrocytes, OPC:
924 oligodendrocyte precursor cells, Micro/PVM: microglia/perivascular macrophages, IT:
925 intratelencephalic, CT: corticothalamic, NP: near-projecting. **(b)** Dot plot of marker gene
926 expression across annotated subclasses. **(c)** Spatial distribution of all annotated cell types in the
927 entire M1C tissue section from upper cortical layer at the top to the white matter (WM) at the
928 bottom. The dashed rectangular box delineates the ROI in d-f. **(d)**, **(e)**, **(f)** show the density plot
929 (left) and spatial distribution (right) of excitatory neurons, inhibitory neurons, and non-neuronal
930 subclasses, respectively. **(g)** Pie chart depicting the relative number of annotated subclasses
931 (right). **(h)** Spatial distribution of targeted short RNA species *PCP4*, *TMSB10*, *SST*, and *NPY* in
932 the M1C tissue section. *PCP4* and *TMSB10* are layer 5 and layer 5-6 markers, respectively. Sst
933 Chodl cells (0.1% abundance) are *SST*⁺ *NPY*⁺. Inset 1 shows an example of a Sst Chodl cell,
934 while inset 2 is a *SST*⁺ *NPY*⁺ cell from the much frequent Sst subclass (abundance 3.5%).

935 **Figure 4.**

936 **DART-FISH mapping of a diseased human kidney.**

937 **(a)** Applying DART-FISH to a 4.9x3.8mm² section from the cortex of the human kidney. The
938 nephron schematics shows the expected epithelial subclasses in the section⁹⁶. **(b)** The spatial
939 expression of key marker genes for the cortical segments: *EMCN*: glomerular capillary
940 endothelial cells (EC-GC), *NPHS2*: podocytes (POD), *LRP2*: proximal tubules (PT), *SLC12A1*:
941 cortical thick ascending limbs (C-TAL), *SLC12A3*: distal convoluted tubules (DCT), *AQP2*:
942 cortical principal cells of the collecting duct (C-PC). **(c)** UMAP of all annotated subclasses. PEC:
943 parietal epithelial cells, aPT: altered proximal tubules, DTL: descending thin limbs, aTAL: altered
944 thick ascending limbs, DCT: distal convoluted tubules, CNT: connecting tubules, C-IC-A: cortical
945 intercalated cell type A, IC-B: intercalated cell type B, EC-PTC: peritubular capillary endothelial
946 cell, MC: mesangial cell, REN: renin-positive juxtaglomerular granular cell, VSMC: vascular

947 smooth muscle cell, VSMC/P: vascular smooth muscle cell/pericyte, FIB: fibroblast, MYOF:
948 Myofibroblast, MAC-M2: M2 macrophage, IMM-Lym: lymphoid cell, IMM-MyI: myeloid cell. **(d)**
949 Dotplot of marker gene expression for the annotated subclasses. **(e)** An example of a
950 glomerulus with part of the juxtaglomerular apparatus. (top) cells colored by the annotated
951 subclass, (bottom) marker genes corresponding to the subclasses. Each dot represents one
952 colony. Dashed line delineates the boundary of the renal corpuscle. **(f)** Example of a medullary
953 ray with a bundle of TALs, PT-S3, and collecting ducts. Note that for clarity, some cell types,
954 i.e., aPT, FIB, aTAL1 and MYOF are plotted (top) but their corresponding marker genes are
955 omitted (bottom). **(g)** Example of a pathological niche with inflammation, a sclerosed glomerulus
956 and altered proximal tubule cells adjacent to a more normal glomerulus (top). The same area on
957 an H&E-stained parallel section from the same tissue block confirms the decellularization and
958 inflammation observed in DART-FISH. The black arrow points to the sclerotic glomerulus.
959 **(h)** Example of a pathological niche composed of aTAL1 cells and myofibroblasts. Red arrows
960 point toward densities of MYOF and aTAL1 cells.
961

962 Supplementary Figure 1.

963 **(a)** Fluorescent signal from RiboSoma (randomly primed cDNA) is stronger when the cDNA is
964 embedded in a polyacrylamide gel immediately after reverse transcription (top) compared to gel
965 embedding after rolling circle amplification (bottom). The nuclear DRAQ5 stain does not show a
966 difference between the two conditions (left). RT: reverse-transcription, RCA: rolling circle
967 amplification. **(b)** Scatter plot comparing the average gene count per nucleus in the two
968 conditions in (a). Each dot represents a gene. Nuclear segmentation was chosen for counting
969 cells to provide a fair comparison between the two conditions. **(c)** Histogram of the gene
970 expression fold change in (b). 50% of genes show at least a 50% increase in their counts.
971 **(d)** Smoothed OLS map from Fig. 1f. Lasso weight maps (Fig. 1f) undergo pixel-wise elbow
972 filtering to select the top 1 or 2 barcodes per pixel. Unbiased weights are then obtained by fitting
973 an ordinary linear regression (OLS) using the selected barcodes (OLS maps). OLS maps are
974 then smoothed with a Gaussian low pass filter. **(e)** Spot detection on weight maps. For each
975 gene, the local peaks are detected on the respective smoothed OLS map. These peaks then
976 serve as markers for watershed segmentation. The centroids of the segmented areas are used
977 as spot coordinates. White and red circles are drawn around high quality and rejected spots,
978 respectively. **(f-g)** Scatter plots of two main features extracted from segmented spots with a
979 valid barcode representing a gene (f) or empty (unused) barcodes (g). Empty barcodes tend to
980 be smaller in area and have lower weights than valid barcodes. **(h)** Emptiness probabilities
981 inferred from a random forest that was trained to distinguish empty from non-empty spots based
982 on the extracted features (weight_max, weight_mean, area). A cutoff is later set on the empty
983 probabilities to keep high quality spots.

984 Supplementary Figure 2.

985 **Probe production strategy.** **(a)** A genome browser view showing the target locations for
986 individual padlock probes. Up to 50 padlock probes are designed to tile to constitutive exons. **(b)**
987 To obtain more probes targeting short genes, we allow overlapping target sequences for
988 padlock probes (*NPY* as an example with 893 nucleotides) **(c)** Enzymatic production of padlock
989 probes from an oligo pool. A probe set is PCR amplified with a pair of probe-set specific
990 amplification primers from the oligo pool. The forward primer carries a 5' phosphorothioate
991 modification to prevent digestion and a 3' deoxyuridine modification, while the reverse primer
992 carries a 5' phosphorylation modification to promote digestion by lambda exonuclease. The 5'
993 and 3' ends of the amplicons are cleaved by USER and DpnII, respectively, to obtain single-
994 stranded padlock probes with a 5' phosphate.

995 Supplementary Figure 3.

996 **(a)** Segmentation of cells using only DRAQ5 (nuclear) or **(b)** both DRAQ5 and RiboSoma
997 (randomly primed cDNA) stains. RiboSoma resolves cell bodies more confidently. **(c)** Assigning
998 decoded rolonies to the closest segmented cell. Transcripts that are too far from cell boundaries
999 are discarded. **(d)** Histogram showing the fraction of spots inside the segmented cells for each
1000 gene. *MBP* encoding myelin base protein has the lowest fraction of spots inside the cells.
1001 **(e)** An example of *MBP* being expressed outside the soma. Every red dot is a decoded *MBP*
1002 transcript on the background of RiboSoma (contrast is increased for clarity). *MBP* spots seem to
1003 co-localize with the RiboSoma signal over long threads that resemble axons. **(f)** RNAscope
1004 validation of DART-FISH in the human M1C with genes *GAD2*, *PVALB*, *LAMP5*, *AQP4*,
1005 *APBB1IP* on parallel sections.

1006 Supplementary Figure 4.

1007 **(a)** UMAP embedding of the DART-FISH M1C data colored by transcripts counts for 16 cell type
1008 markers. **(b)** Pearson's correlation of DART-FISH subclasses with the snRNA-seq reference
1009 subclasses used for annotation⁵⁵ **(c)** Histogram of concordances values for genes in DART-
1010 FISH (top) and MERFISH (bottom, sample H18.06.006.MTG.250.expand.rep1⁵³). Concordance
1011 is defined as the Pearson's correlation of expression levels across subclasses between
1012 SNARE-seq2⁴⁰ and the spatial assay. The histogram for DART-FISH is color coded to show the
1013 performance of short genes (exon length <1.5kb)

1014 Supplementary Figure 5.

1015 **(a)** Diagram of the cell types composing the renal corpuscle and juxtaglomerular apparatus⁹⁶.
1016 **(b)** Scatter plot comparing average gene counts per bead in Slide-seq (Puck_200903_06 from a
1017 healthy patient⁶⁷) with average counts per cell in DART-FISH ($r=0.609$). Green dots represent
1018 canonical cell type markers while red dots are immune markers, suggesting high inflammation in
1019 the DART-FISH samples. The orange line indicates equal average counts across the two

1020 technologies. The top 150 highly expressed genes in slide-seq had on median 2.2x lower
1021 average transcripts per bead than average transcripts per cell in DART-FISH.
1022 **(c)** RiboSoma (randomly primed cDNA, middle) resolves tubular morphology better than the
1023 nuclear stain (left) and enhances cell segmentation (right).
1024 **(c)** Histogram of the number of colonies per cell in >65,000 cells. There are on average ~30
1025 decoded transcripts per cell.
1026 **(e)** Histogram of the number of detected genes per cell in the kidney, averaging at 20 unique
1027 genes per cell.
1028 **(f)** Pearson's correlation of average DART-FISH subclasses with the average snRNA-seq
1029 reference subclasses used for annotation⁶⁷
1030 **(g)** Bar plot showing the number of cells from each annotated subclass in the human kidney.
1031 High numbers of immune cells and fibroblasts are suggestive of inflammation and fibrosis.
1032 **(h)** Transmitted light (top) and RiboSoma overlaid with nuclear stain (bottom) of the ROI shown
1033 in Fig. 4g. The cells in the sclerosed glomerulus (dashed line) are mostly replaced by scar
1034 tissue as shown by the occupied space in the transmitted light view.
1035 **(i)** Plot showing the co-occurrence enrichment of some cell types with MYOF⁷¹ at a range of
1036 distances, suggesting an interaction between MYOF with aTAL1 cells whereas there is no
1037 apparent co-occurrence enrichment between MYOF and aPT, or healthy PT-S3 and C-TAL.
1038

1039 **Supplementary Figure 6.**

1040 A whole tissue rendering of all segmented cells colored by all annotated subclasses. Red boxes
1041 correspond to ROIs in Fig. 4e-h

1042 **Supplementary Figure 7.**

1043 UMAP embedding of the DART-FISH data on human kidney colored by different marker genes
1044 in Fig. 4e.

1045

1046 **Supplementary tables.**

1047 **Supplementary table 1.**

1048 The glossary for the abbreviated cell types and the technical terms.

1049 **Supplementary table 2.**

1050 Decoding probes, probe production and DART-FISH primers, reagents

1051 **Supplementary table 3.**

1052 Brain padlock probe sequences, gene lengths and concordances

1053 **Supplementary table 4.**

1054 Kidney padlock probe sequences

1055

1056 **References**

1. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. *Nat. Rev. Genet.* **16**, 57–66 (2015).
2. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. *Nature* **596**, 211–220 (2021).
3. Luengo-Oroz, M. A., Ledesma-Carbayo, M. J., Peyriéras, N. & Santos, A. Image analysis for understanding embryo development: a bridge from microscopy to biological insights. *Curr. Opin. Genet. Dev.* **21**, 630–637 (2011).
4. Close, J. L., Long, B. R. & Zeng, H. Spatially resolved transcriptomics in neuroscience. *Nat. Methods* **18**, 23–25 (2021).
5. Damjanov, I. & McCue, P. A. *Histopathology: A color atlas and textbook*. (Lippincott Williams & Wilkins, 1996).
6. Femino, A. M. *Visualization of Single RNA Transcripts in Situ*. (University of Massachusetts Graduate School of Biomedical Sciences, 2001).
7. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. *Nat. Methods* **5**, 877–879 (2008).
8. Rodriguez, A. J., Czaplinski, K., Condeelis, J. S. & Singer, R. H. Mechanisms and cellular roles of local protein synthesis in mammalian cells. *Curr. Opin. Cell Biol.* **20**, 144–149 (2008).

1076 9. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time:
1077 visualizing and understanding mRNA localization. *Nat. Rev. Mol. Cell Biol.* **16**, 95–109
1078 (2015).

1079 10. Codeluppi, S. *et al.* Spatial organization of the somatosensory cortex revealed by osmFISH.
1080 *Nat. Methods* **15**, 932–935 (2018).

1081 11. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially
1082 resolved, highly multiplexed RNA profiling in single cells. *Science* **348**, aaa6090 (2015).

1083 12. Eng, C.-H. L. *et al.* Transcriptome-scale super-resolved imaging in tissues by RNA
1084 seqFISH+. *Nature* **568**, 235–239 (2019).

1085 13. Moffitt, J. R. *et al.* Molecular, spatial, and functional single-cell profiling of the hypothalamic
1086 preoptic region. *Science* **362**, (2018).

1087 14. Benavides, S. H., Monserrat, A. J., Fariña, S. & Porta, E. A. Sequential histochemical
1088 studies of neuronal lipofuscin in human cerebral cortex from the first to the ninth decade of
1089 life. *Arch. Gerontol. Geriatr.* **34**, 219–231 (2002).

1090 15. Di Guardo, G. Lipofuscin, lipofuscin-like pigments and autofluorescence. *Eur. J. Histochem.*
1091 **59**, 2485 (2015).

1092 16. Banerjee, B., Miedema, B. E. & Chandrasekhar, H. R. Role of basement membrane
1093 collagen and elastin in the autofluorescence spectra of the colon. *J. Investigig. Med.* **47**, 326–
1094 332 (1999).

1095 17. Autofluorescence microscopy: A non-destructive tool to monitor mitochondrial toxicity.
1096 *Toxicol. Lett.* **206**, 281–288 (2011).

1097 18. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. *Nat. Rev.*
1098 *Nephrol.* **13**, 629–646 (2017).

1099 19. Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections by spatial
1100 transcriptomics. *Science* **353**, 78–82 (2016).

1101 20. Rodrigues, S. G. *et al.* Slide-seq: A scalable technology for measuring genome-wide

1102 expression at high spatial resolution. *Science* **363**, 1463–1467 (2019).

1103 21. Vickovic, S. *et al.* High-definition spatial transcriptomics for *in situ* tissue profiling. *Nat. Methods* **16**, 987–990 (2019).

1104 22. Liu, Y. *et al.* High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. *Cell* **183**, 1665–1681.e18 (2020).

1105 23. Chen, A. *et al.* Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. *Cell* **185**, 1777–1792.e21 (2022).

1106 24. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. *Cell* **185**, 4621–4633.e17 (2022).

1107 25. Moses, L. & Pachter, L. Museum of spatial transcriptomics. *Nat. Methods* **19**, 534–546 (2022).

1108 26. Lizardi, P. M. *et al.* Mutation detection and single-molecule counting using isothermal rolling-circle amplification. *Nat. Genet.* **19**, 225–232 (1998).

1109 27. Hardenbol, P. *et al.* Multiplexed genotyping with sequence-tagged molecular inversion probes. *Nat. Biotechnol.* **21**, 673–678 (2003).

1110 28. Gunderson, K. L. *et al.* Decoding randomly ordered DNA arrays. *Genome Res.* **14**, 870–877 (2004).

1111 29. Fan, J.-B. & Zhang, K. Methods and compositions for single cell genomics. *US Patent* (2021).

1112 30. Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. & Chee, M. S. A genome-wide scalable SNP genotyping assay using microarray technology. *Nat. Genet.* **37**, 549–554 (2005).

1113 31. [3] Illumina Universal Bead Arrays. in *Methods in Enzymology* vol. 410 57–73 (Academic Press, 2006).

1114 32. Sun, Y.-C. *et al.* Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. *Nat. Neurosci.* **24**, 873–885 (2021).

1128 33. Gyllborg, D. *et al.* Hybridization-based *in situ* sequencing (HybISS) for spatially resolved
1129 transcriptomics in human and mouse brain tissue. *Nucleic Acids Res.* **48**, e112 (2020).

1130 34. Alon, S. *et al.* Expansion sequencing: Spatially precise *in situ* transcriptomics in intact
1131 biological systems. *Science* **371**, (2021).

1132 35. Diep, D. *et al.* Library-free methylation sequencing with bisulfite padlock probes. *Nat.*
1133 *Methods* **9**, 270–272 (2012).

1134 36. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. *Science*
1135 **347**, 543–548 (2015).

1136 37. Chen, F. *et al.* Nanoscale imaging of RNA with expansion microscopy. *Nat. Methods* **13**,
1137 679–684 (2016).

1138 38. Lee, J. H. *et al.* Highly multiplexed subcellular RNA sequencing *in situ*. *Science* **343**, 1360–
1139 1363 (2014).

1140 39. Gray, D. A. & Woulfe, J. Lipofuscin and aging: a matter of toxic waste. *Sci. Aging*
1141 *Knowledge Environ.* **2005**, re1 (2005).

1142 40. Bakken, T. E. *et al.* Comparative cellular analysis of motor cortex in human, marmoset and
1143 mouse. *Nature* **598**, 111–119 (2021).

1144 41. Yao, Z. *et al.* A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.
1145 *Nature* **598**, 103–110 (2021).

1146 42. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the
1147 mammalian primary motor cortex. *Nature* **598**, 86–102 (2021).

1148 43. Zhang, M. *et al.* Spatially resolved cell atlas of the mouse primary motor cortex by
1149 MERFISH. *Nature* **598**, 137–143 (2021).

1150 44. Website. <http://doi.org/10.1089/bio.2017.0099>.

1151 45. White, K. *et al.* Effect of Postmortem Interval and Years in Storage on RNA Quality of
1152 Tissue at a Repository of the NIH NeuroBioBank. *Biopreserv. Biobank.* **16**, 148–157 (2018).

1153 46. Müller, C., Bauer, N. M., Schäfer, I. & White, R. Making myelin basic protein -from mRNA

1154 transport to localized translation. *Front. Cell. Neurosci.* **7**, 169 (2013).

1155 47. Costa, M. R. & Müller, U. Specification of excitatory neurons in the developing cerebral
1156 cortex: progenitor diversity and environmental influences. *Front. Cell. Neurosci.* **8**, 449
1157 (2014).

1158 48. Nieto, M. *et al.* Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers
1159 II-IV of the cerebral cortex. *J. Comp. Neurol.* **479**, 168–180 (2004).

1160 49. Schaeren-Wiemers, N., André, E., Kapfhammer, J. P. & Becker-André, M. The ExDression
1161 pattern of the orphan nuclear receptor ROR β in the developing and adult rat nervous
1162 system suggests a role in the processing of sensory information and in circadian rhythm.
1163 *Eur. J. Neurosci.* **9**, 2687–2701 (1997).

1164 50. Arlotta, P. *et al.* Neuronal subtype-specific genes that control corticospinal motor neuron
1165 development in vivo. *Neuron* **45**, 207–221 (2005).

1166 51. Zeng, H. *et al.* Large-scale cellular-resolution gene profiling in human neocortex reveals
1167 species-specific molecular signatures. *Cell* **149**, 483–496 (2012).

1168 52. Reiner, A., Yang, M., Cagle, M. C. & Honig, M. G. Localization of cerebellin-2 in late
1169 embryonic chicken brain: implications for a role in synapse formation and for brain
1170 evolution. *J. Comp. Neurol.* **519**, 2225–2251 (2011).

1171 53. Fang, R. *et al.* Conservation and divergence of cortical cell organization in human and
1172 mouse revealed by MERFISH. *Science* **377**, 56–62 (2022).

1173 54. Borm, L. E. *et al.* Scalable in situ single-cell profiling by electrophoretic capture of mRNA
1174 using EEL FISH. *Nat. Biotechnol.* **41**, 222–231 (2022).

1175 55. Jorstad, N. L. *et al.* Transcriptomic cytoarchitecture reveals principles of human neocortex
1176 organization. *bioRxiv* 2022.11.06.515349 (2022) doi:10.1101/2022.11.06.515349.

1177 56. Jorstad, N. L. *et al.* Comparative transcriptomics reveals human-specific cortical features.
1178 *bioRxiv* 2022.09.19.508480 (2022) doi:10.1101/2022.09.19.508480.

1179 57. Kim, Y. *et al.* Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture

1180 and Subcortical Sexual Dimorphism. *Cell* **171**, 456–469.e22 (2017).

1181 58. Chun, J. J. & Shatz, C. J. Interstitial cells of the adult neocortical white matter are the
1182 remnant of the early generated subplate neuron population. *J. Comp. Neurol.* **282**, 555–569
1183 (1989).

1184 59. Chun, J. J. & Shatz, C. J. The earliest-generated neurons of the cat cerebral cortex:
1185 characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. *J.*
1186 *Neurosci.* **9**, 1648–1667 (1989).

1187 60. Tan, S.-S. *et al.* Oligodendrocyte positioning in cerebral cortex is independent of projection
1188 neuron layering. *Glia* **57**, 1024–1030 (2009).

1189 61. Ohtomo, R., Iwata, A. & Arai, K. Molecular Mechanisms of Oligodendrocyte Regeneration
1190 in White Matter-Related Diseases. *Int. J. Mol. Sci.* **19**, (2018).

1191 62. Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs
1192 with MERFISH and expansion microscopy. *Sci. Rep.* **8**, 1–13 (2018).

1193 63. Tasic, B. *et al.* Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
1194 *Nat. Neurosci.* **19**, 335–346 (2016).

1195 64. Bulfone, A. *et al.* Pcp4l1, a novel gene encoding a Pcp4-like polypeptide, is expressed in
1196 specific domains of the developing brain. *Gene Expr. Patterns* **4**, 297–301 (2004).

1197 65. Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. *Nat.*
1198 *Rev. Nephrol.* **18**, 347–360 (2022).

1199 66. Stewart, B. J., Ferdinand, J. R. & Clatworthy, M. R. Using single-cell technologies to map
1200 the human immune system — implications for nephrology. *Nat. Rev. Nephrol.* **16**, 112–128
1201 (2019).

1202 67. Lake, B. B. *et al.* An atlas of healthy and injured cell states and niches in the human kidney.
1203 *Nature* **619**, 585–594 (2023).

1204 68. Lake, B. B. *et al.* A single-nucleus RNA-sequencing pipeline to decipher the molecular
1205 anatomy and pathophysiology of human kidneys. *Nat. Commun.* **10**, 1–15 (2019).

1206 69. Kuppe, C. *et al.* Decoding myofibroblast origins in human kidney fibrosis. *Nature* **589**, 281–
1207 286 (2020).

1208 70. Muto, Y. *et al.* Single cell transcriptional and chromatin accessibility profiling redefine
1209 cellular heterogeneity in the adult human kidney. *Nat. Commun.* **12**, 1–17 (2021).

1210 71. Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat. Methods* **19**,
1211 171–178 (2022).

1212 72. Axelrod, S. *et al.* starfish: scalable pipelines for image-based transcriptomics. *J. Open*
1213 *Source Softw.* **6**, 2440 (2021).

1214 73. Andersson, A., Diego, F., Hamprecht, F. A. & Wählby, C. ISTDECO: In Situ
1215 Transcriptomics Decoding by Deconvolution. *bioRxiv* 2021.03.01.433040 (2021)
1216 doi:10.1101/2021.03.01.433040.

1217 74. Chen, S. *et al.* BARcode DEmixing through Non-negative Spatial Regression (BarDensr).
1218 *PLoS Comput. Biol.* **17**, e1008256 (2021).

1219 75. Bryan, J. P., Cleary, B., Farhi, S. L. & Eldar, Y. C. Sparse recovery of imaging
1220 transcriptomics data. in *2021 IEEE 18th International Symposium on Biomedical Imaging*
1221 (*ISBI*) (IEEE, 2021). doi:10.1109/isbi48211.2021.9433927.

1222 76. Extracellular matrix-cell interactions: Focus on therapeutic applications. *Cell. Signal.* **66**,
1223 109487 (2020).

1224 77. Wang, Y. *et al.* EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular
1225 organization. *Cell* **184**, 6361–6377.e24 (2021).

1226 78. Ding, S.-L. *et al.* Comprehensive cellular-resolution atlas of the adult human brain. *J.*
1227 *Comp. Neurol.* **524**, 3127–3481 (2016).

1228 79. GitHub - kharchenkolab/gpsFISH: Optimization of gene panels for targeted spatial
1229 transcriptomics. *GitHub* <https://github.com/kharchenkolab/gpsFISH>.

1230 80. Zhang, Y. *et al.* Gene panel selection for targeted spatial transcriptomics. *bioRxiv*
1231 2023.02.03.527053 (2023) doi:10.1101/2023.02.03.527053.

1232 81. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
1233 *arXiv [q-bio.GN]* (2013).

1234 82. Lowekamp, B. *et al.* *SimpleElastix: SimpleElastix v0.9.0.* (2015).
1235 doi:10.5281/zenodo.19049.

1236 83. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

1238 84. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic
1239 image acquisitions. *Bioinformatics* **25**, 1463–1465 (2009).

1240 85. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for
1241 cellular segmentation. *Nat. Methods* **18**, 100–106 (2021).

1242 86. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. *Nat. Methods* **19**,
1243 1634–1641 (2022).

1244 87. Efron, B. & Hastie, T. *Computer Age Statistical Inference, Student Edition: Algorithms,*
1245 *Evidence, and Data Science.* (Cambridge University Press, 2021).

1246 88. van der Walt, S. *et al.* scikit-image: image processing in Python. *PeerJ* **2**, e453 (2014).

1247 89. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
1248 data analysis. *Genome Biol.* **19**, 15 (2018).

1249 90. Virshup, I. *et al.* The scverse project provides a computational ecosystem for single-cell
1250 omics data analysis. *Nat. Biotechnol.* **41**, 604–606 (2023).

1251 91. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander Wolf, F. anndata: Annotated
1252 data. *bioRxiv* 2021.12.16.473007 (2021) doi:10.1101/2021.12.16.473007.

1253 92. Lause, J., Berens, P. & Kobak, D. Analytic Pearson residuals for normalization of single-cell
1254 RNA-seq UMI data. *Genome Biol.* **22**, 1–20 (2021).

1255 93. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for
1256 scRNA-seq. *Genome Biol.* **23**, 1–20 (2022).

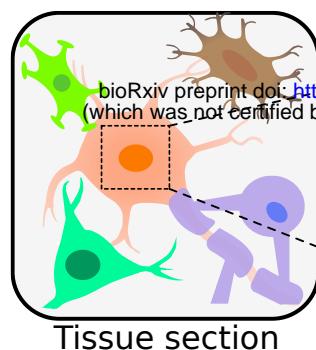
1257 94. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-

1258 connected communities. *Sci. Rep.* **9**, 1–12 (2019).

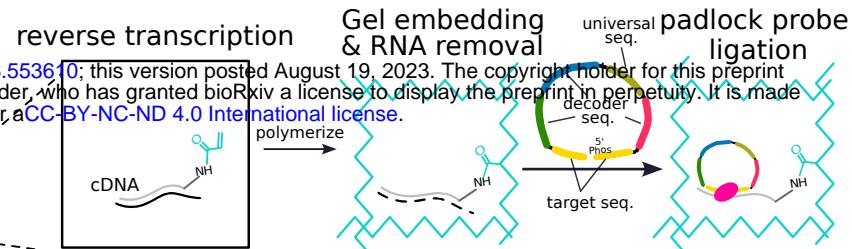
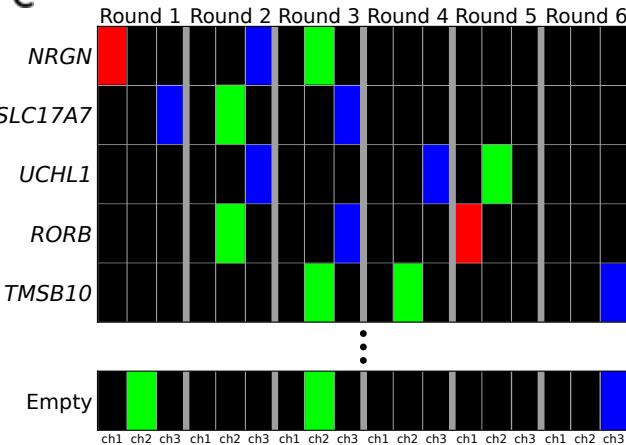
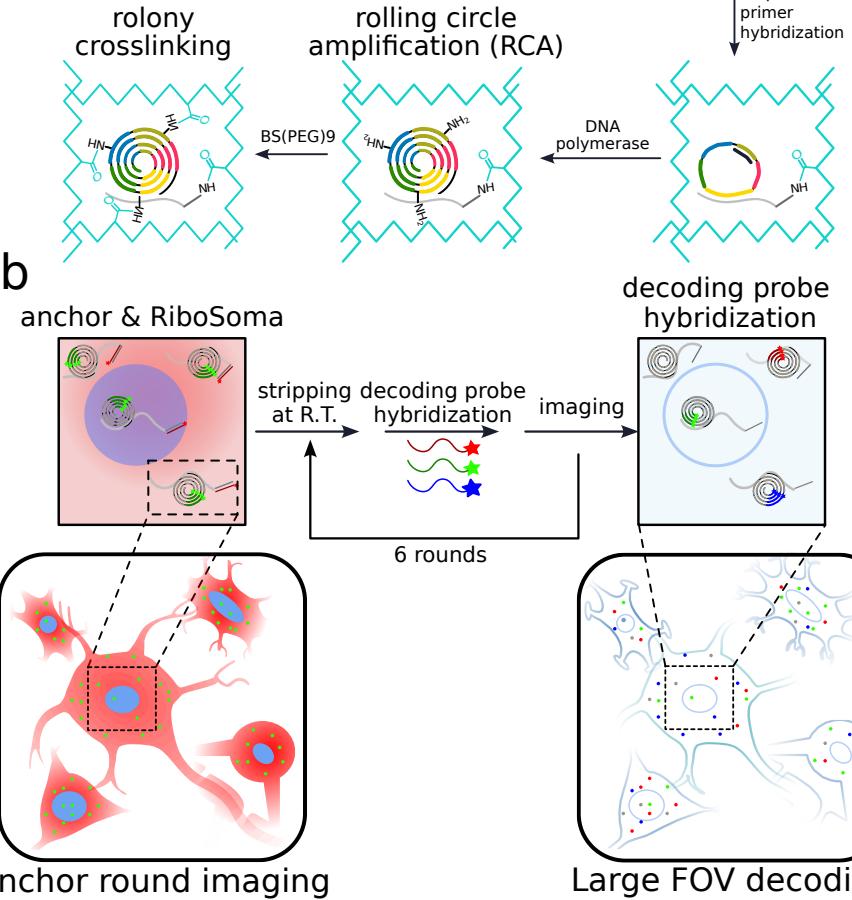
1259 95. Kalhor, K., Chen, C.-J. & Zhang, K. DART-FISH. Preprint at
1260 <https://doi.org/10.5281/ZENODO.8253771> (2023).

1261 96. KPMP Schematics of the Nephron and Renal Corpuscle. <https://doi.org/10.48698/DEM4-0Q93>.

1263

a

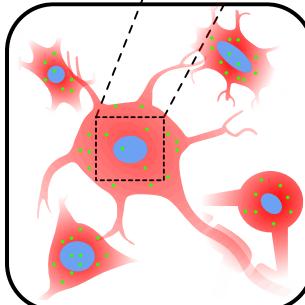
Tissue section

**c****b****d**

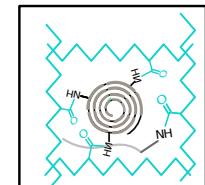
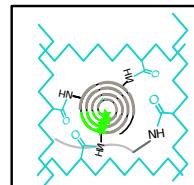
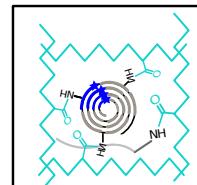
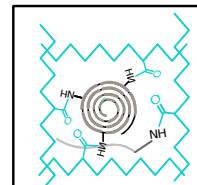
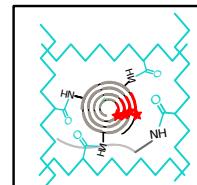
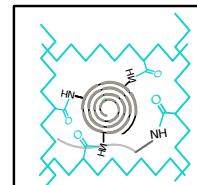
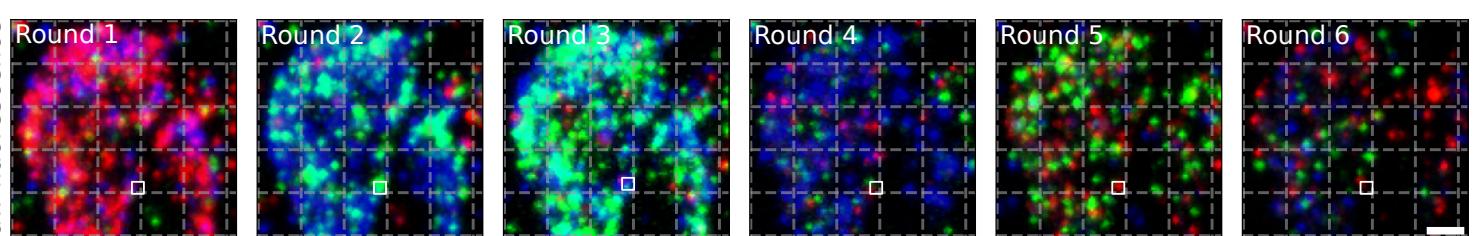
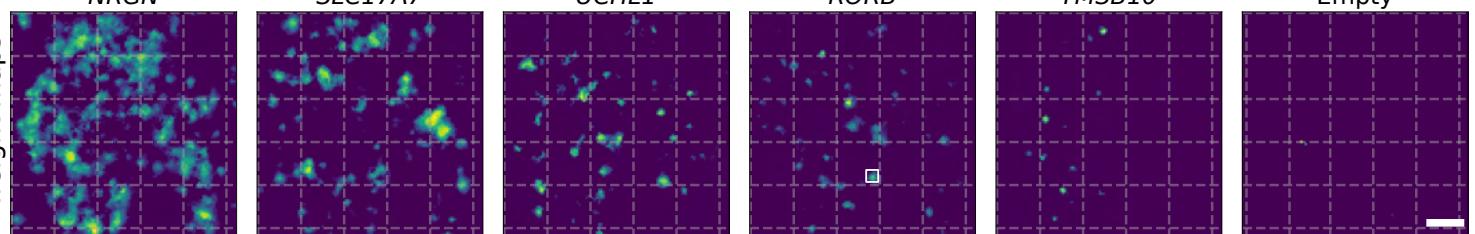
$$\text{barcodes} \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ x_1 & x_2 & \cdots & x_N & \cdot & \cdot \end{bmatrix} \text{weights} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix}_{pix_i} = \text{intensities} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n*3} \end{bmatrix}_{pix_i}$$

$$\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} \left(\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \alpha \|\mathbf{w}\|_1 + \alpha' \|\mathbf{w}\|_2^2 \right)$$

Anchor round imaging



Large FOV decoding

e**f****f****Figure 1**

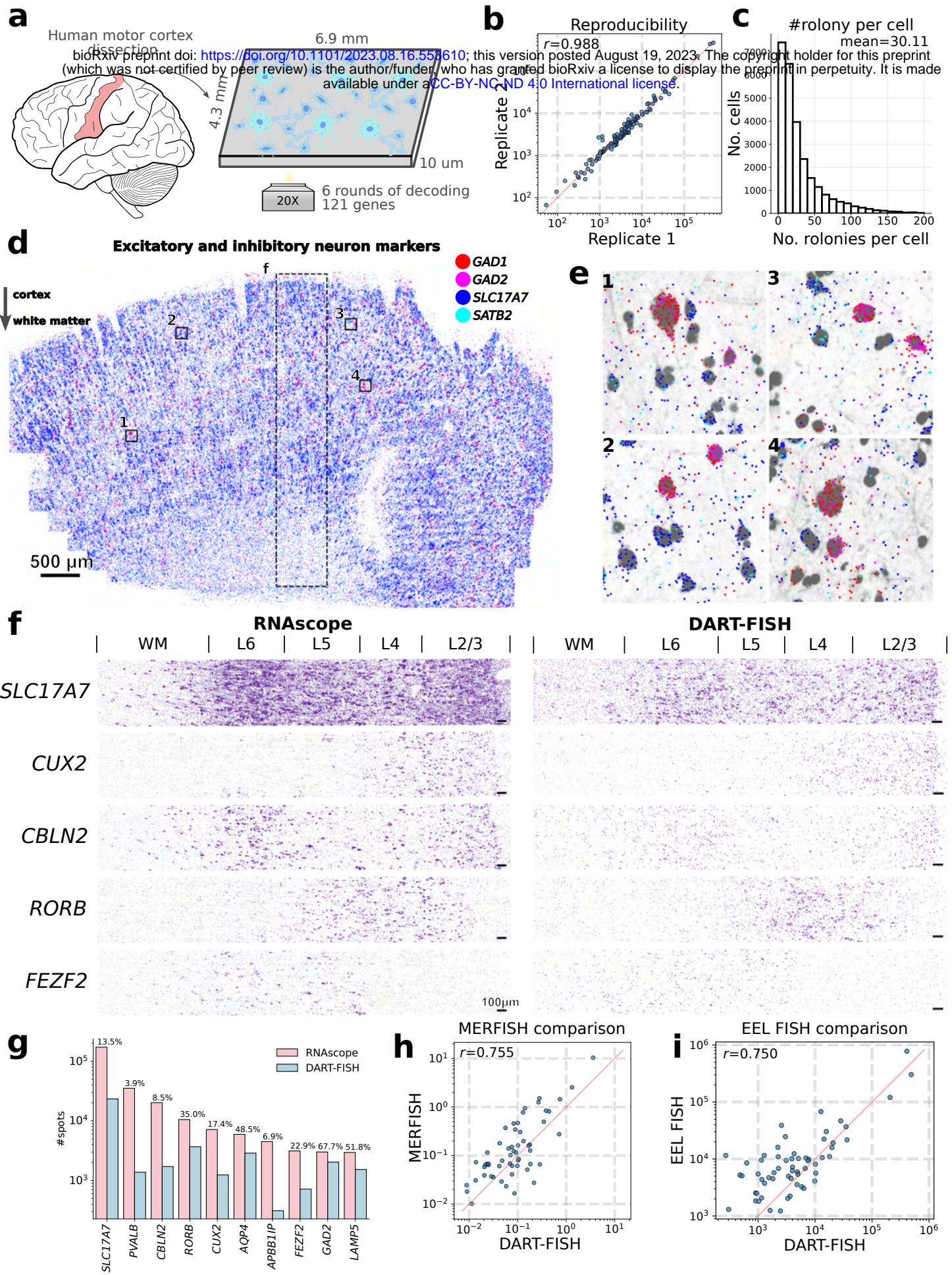


Figure 2

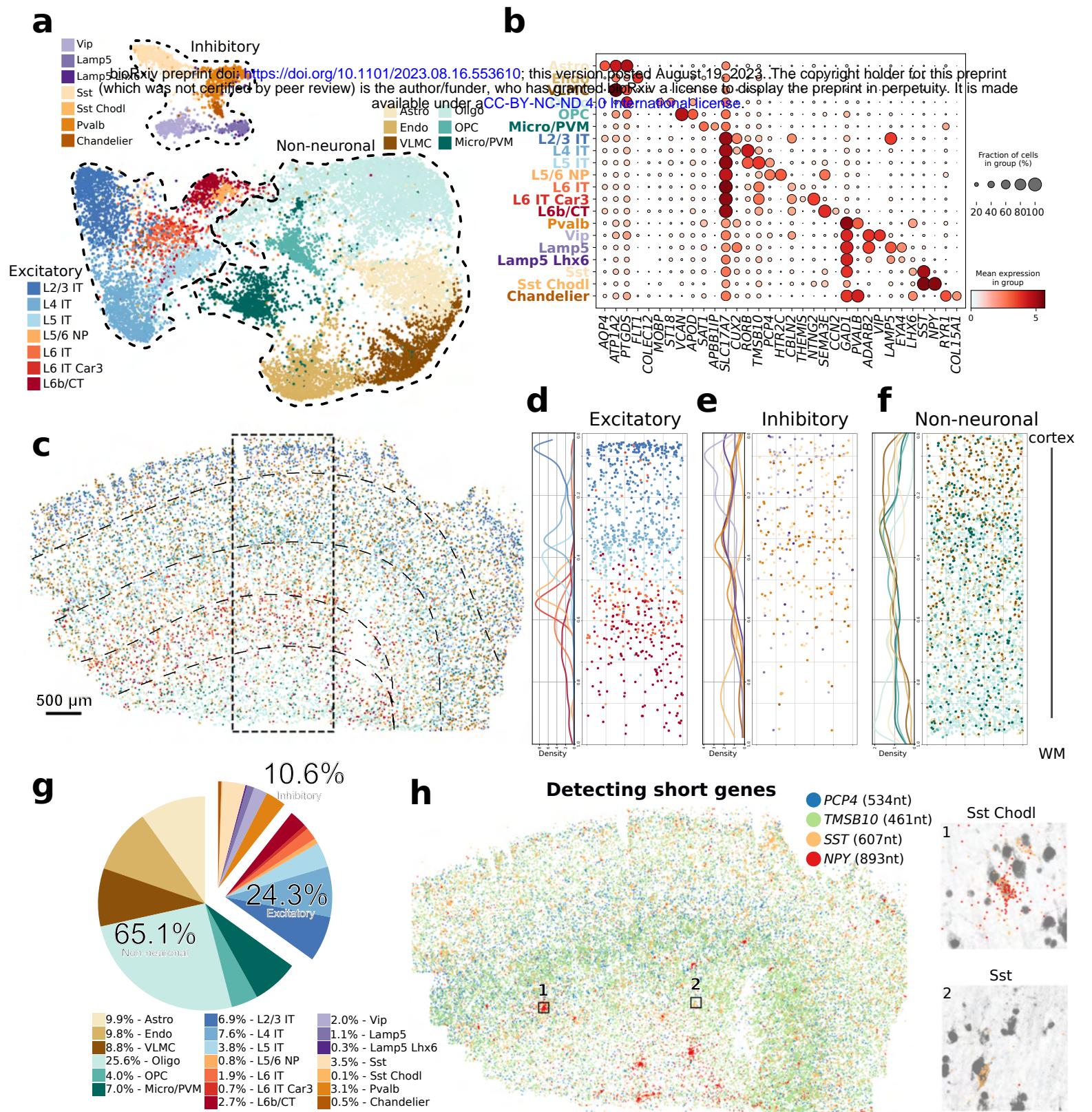


Figure 3

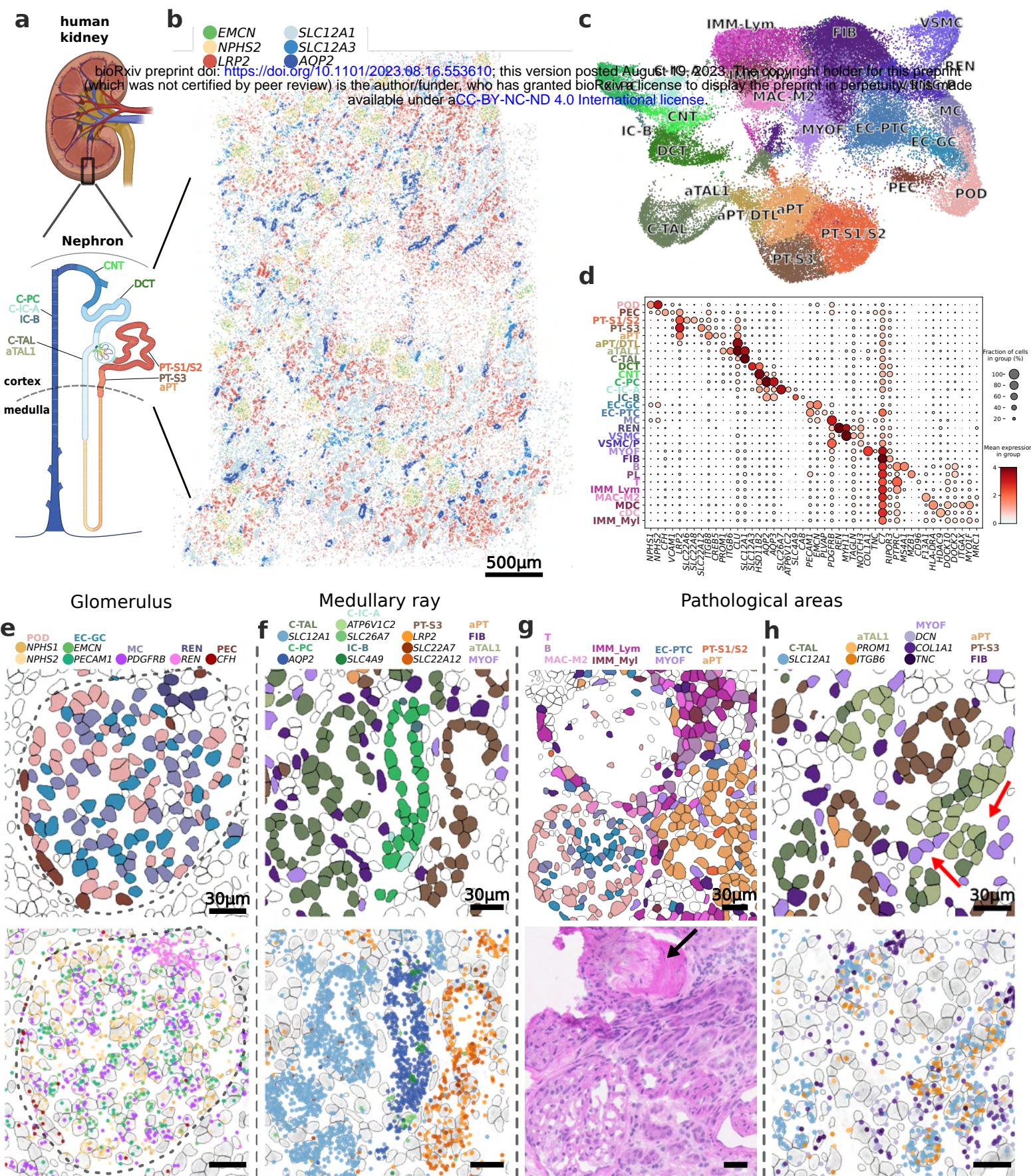
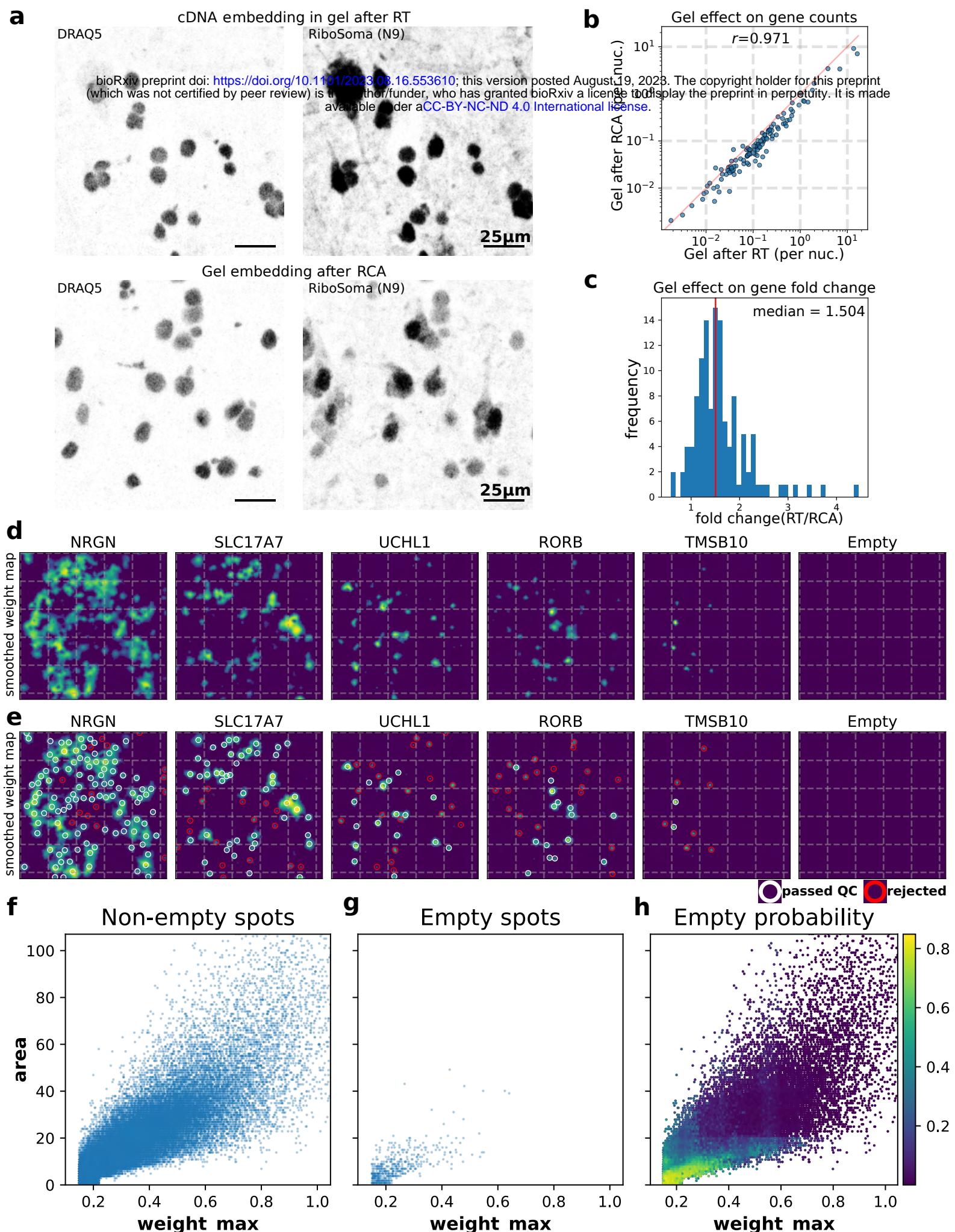
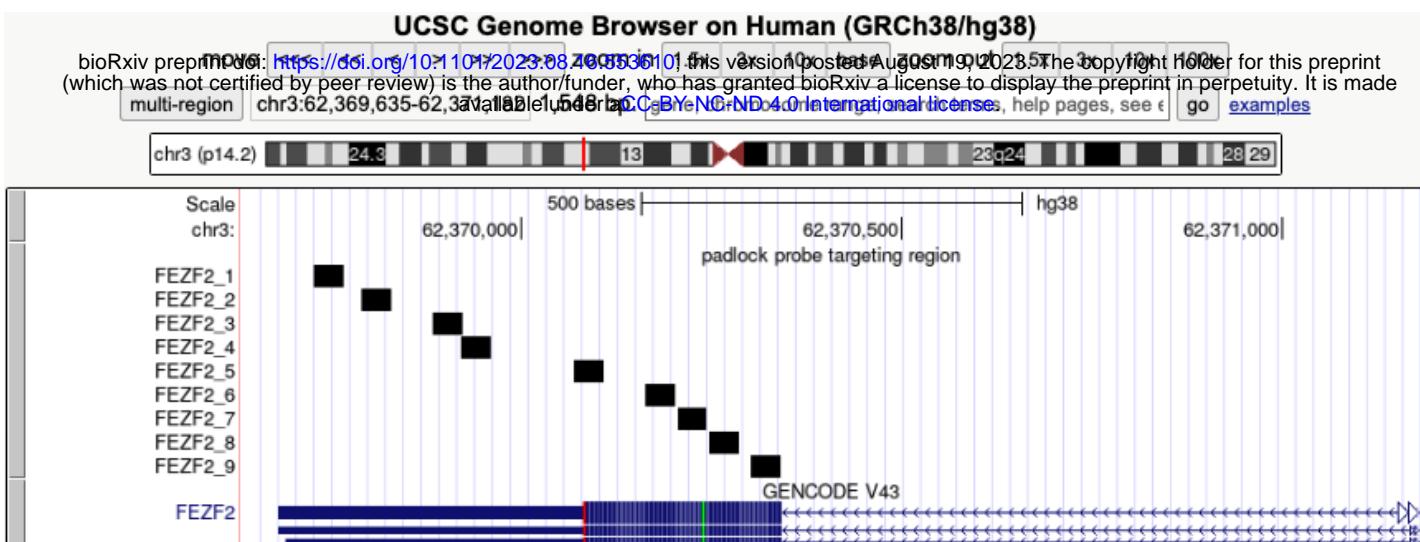
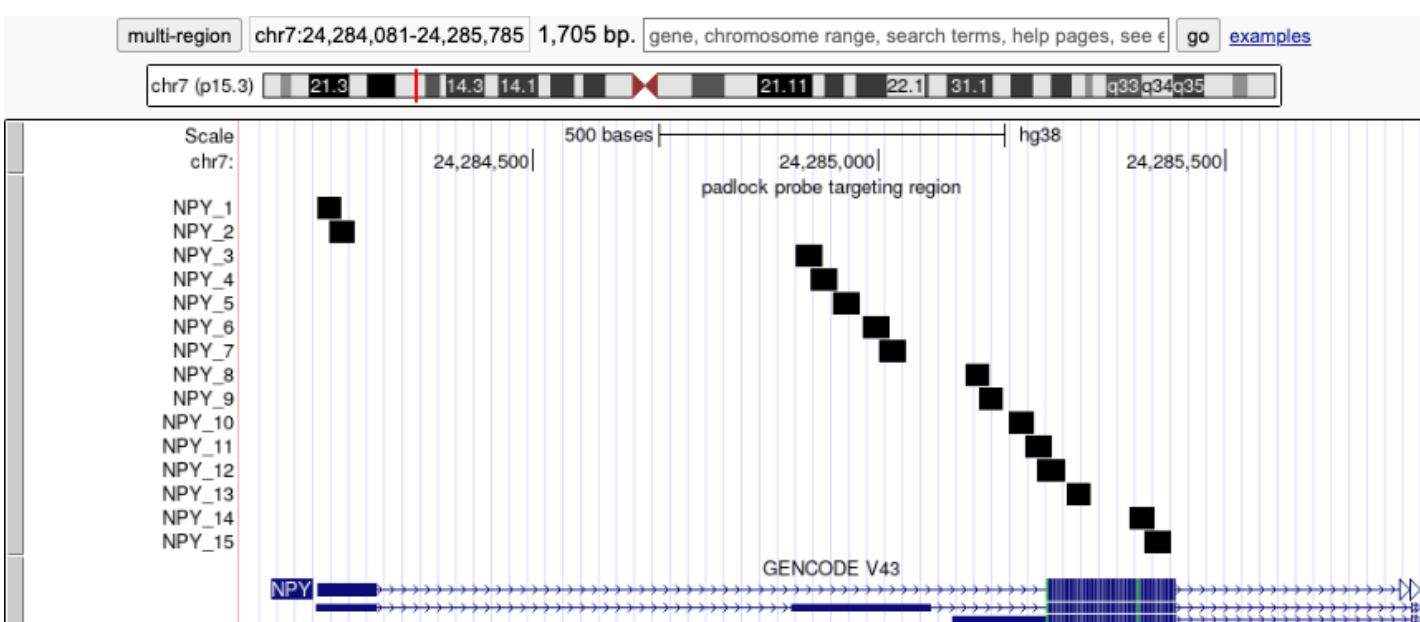
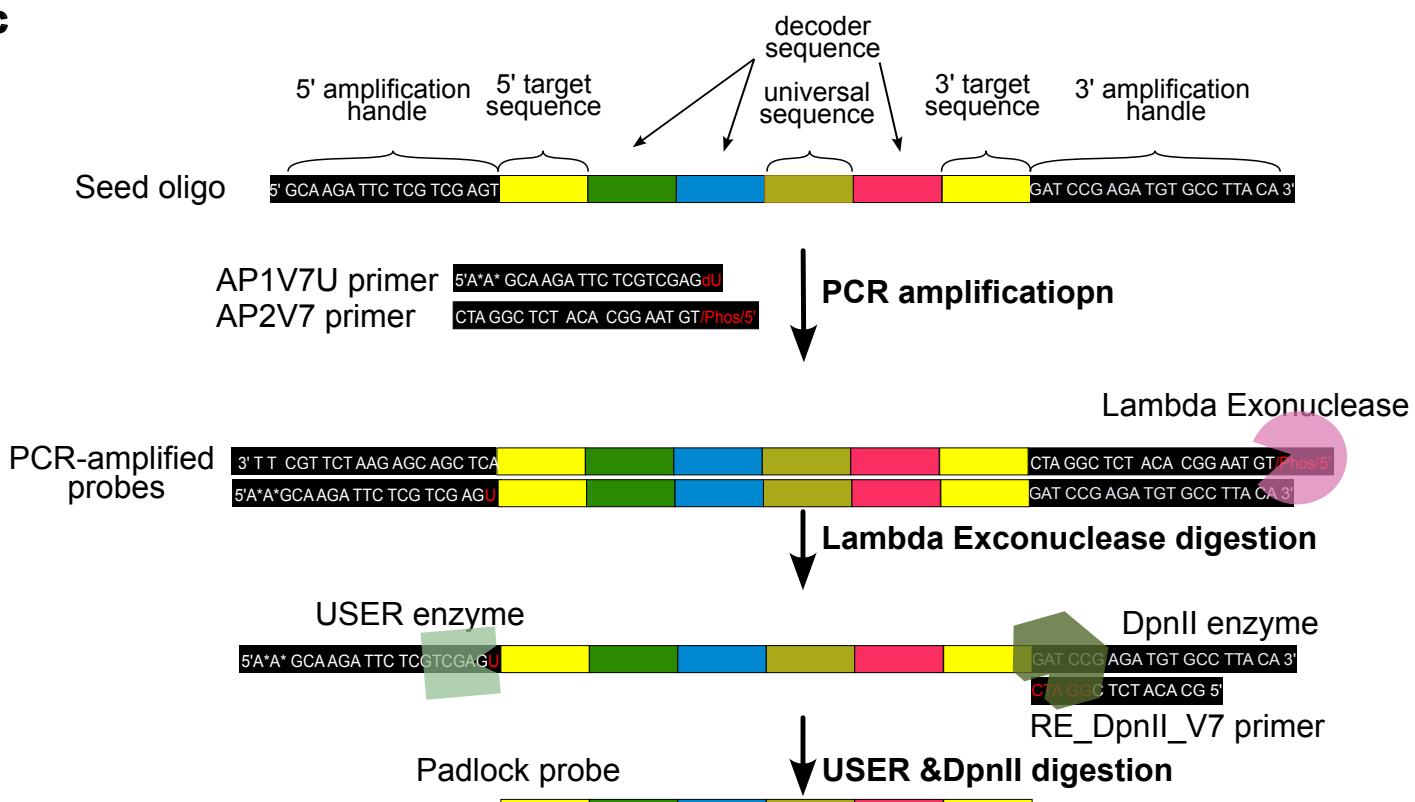
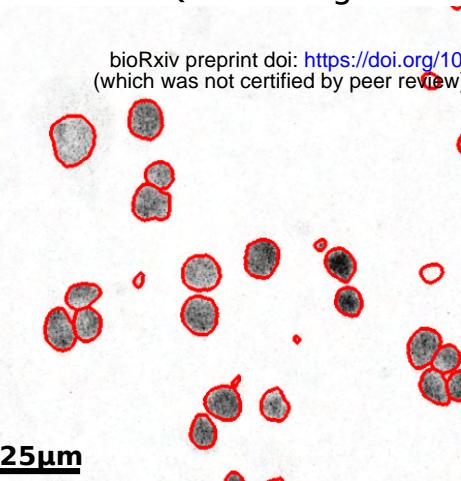
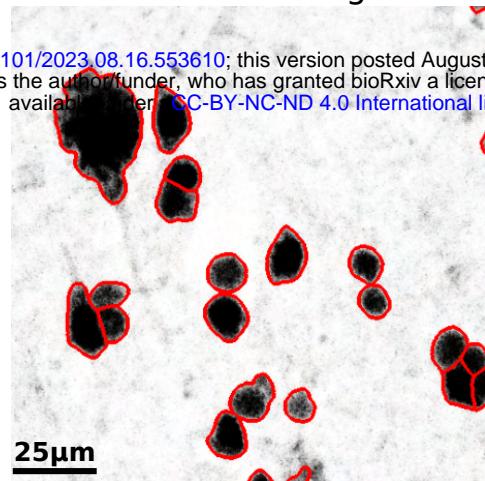
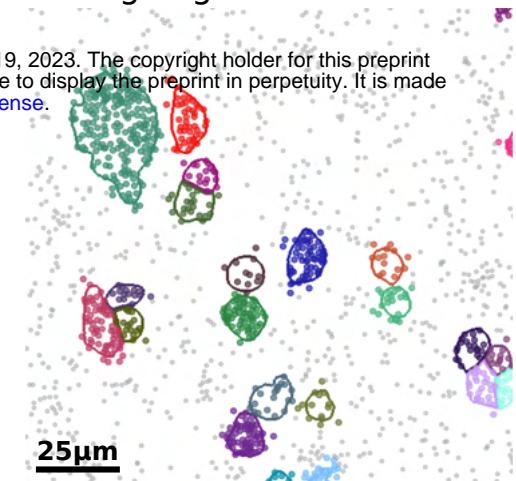
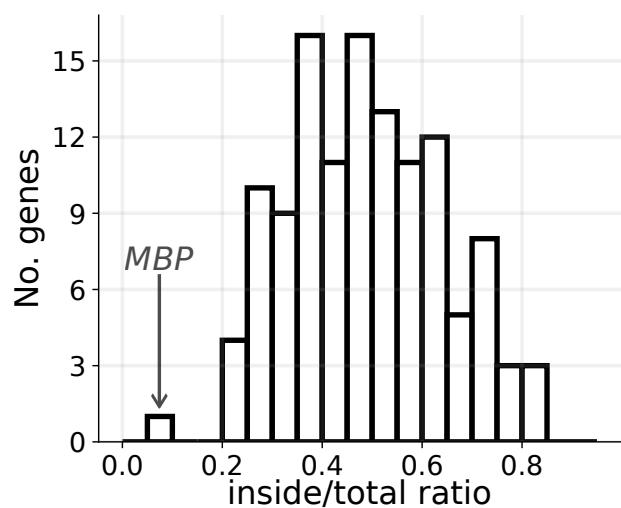
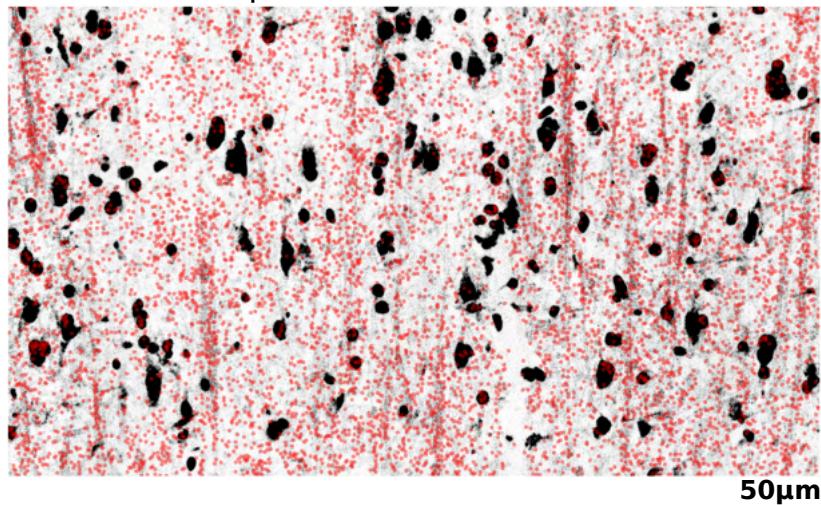
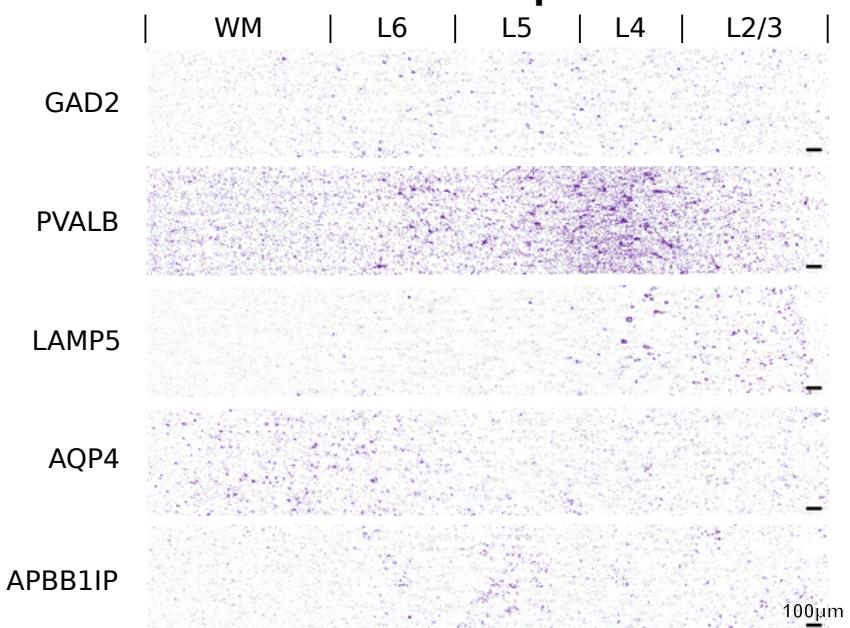
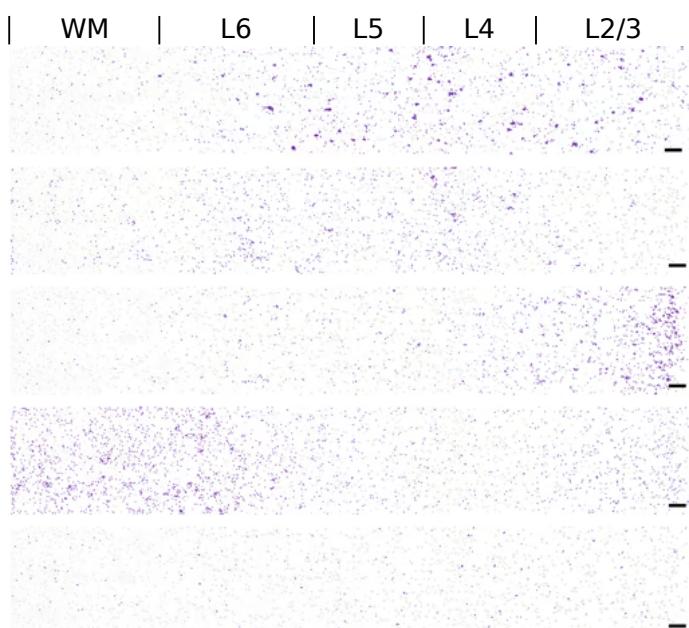


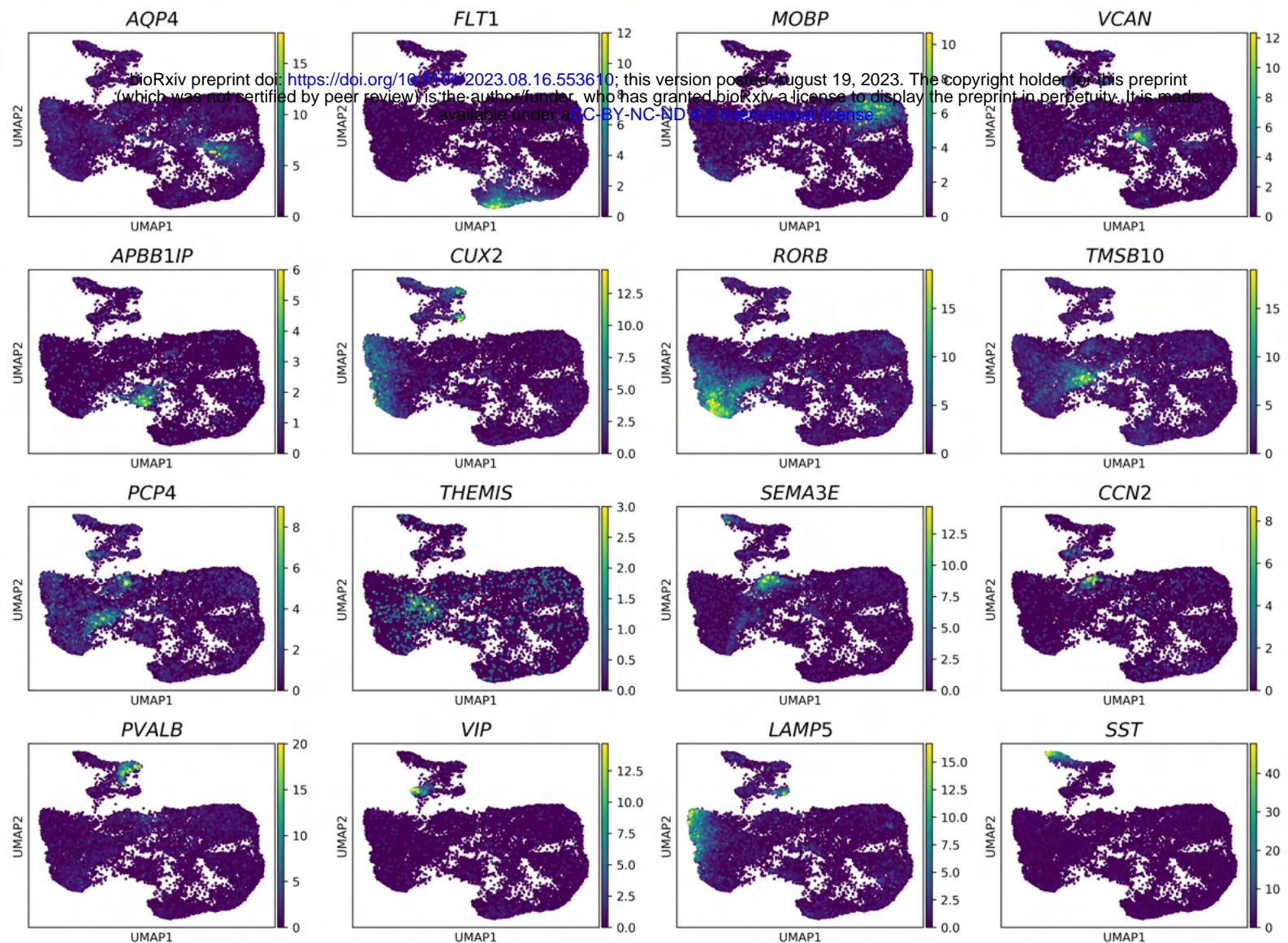
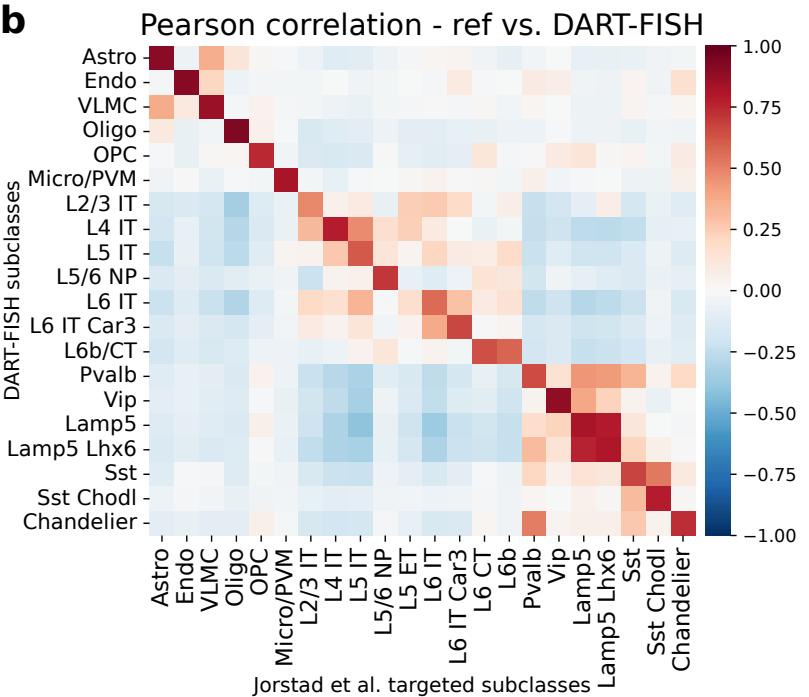
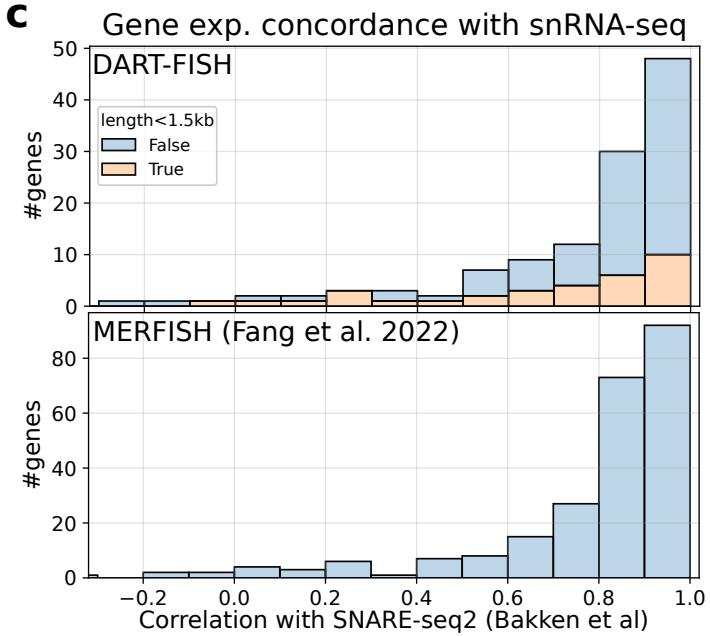
Figure 4

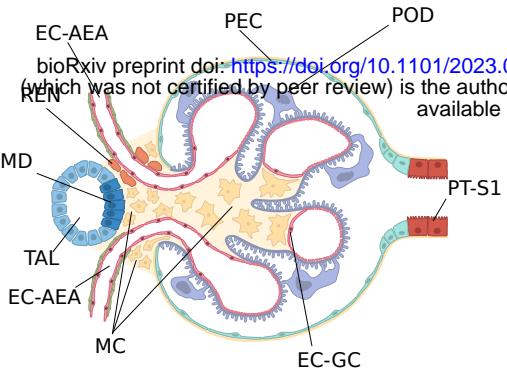
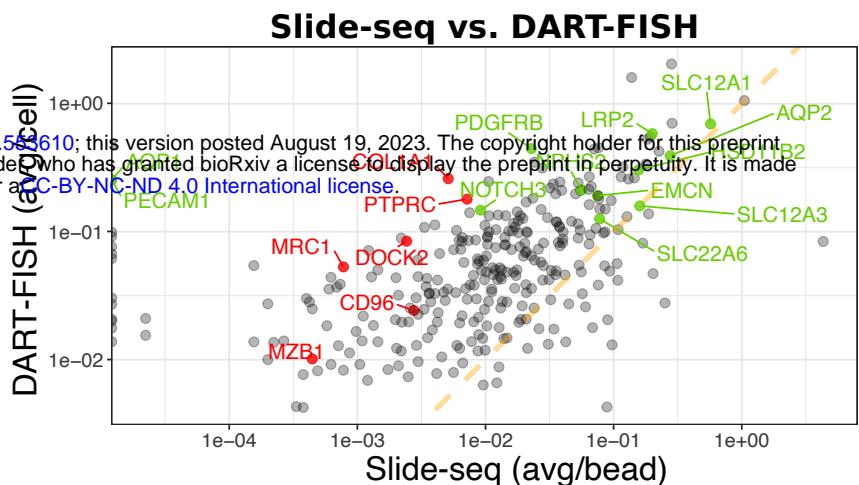
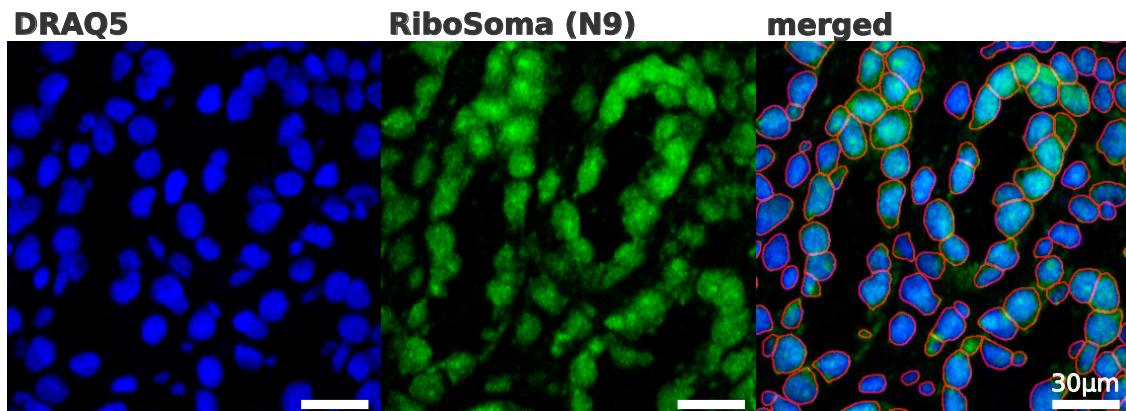
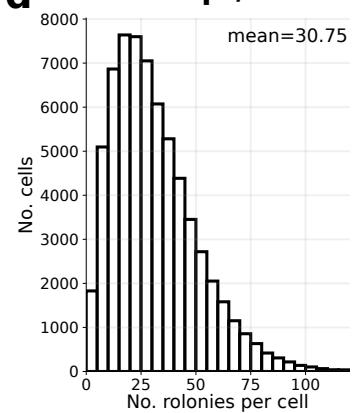


Supplementary Figure 1

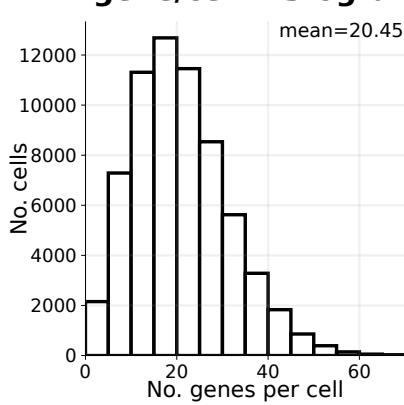
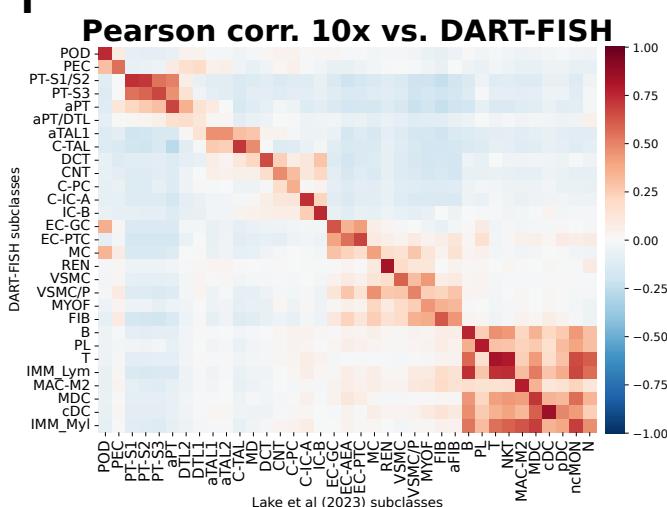
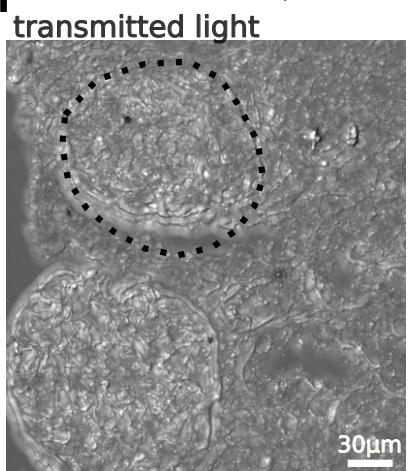
a**b****c****Supplementary Figure 2**

a DRAQ5 staining**b cDNA staining****c Assigning rolonies to cells****d Fraction of spots in the soma****e MBP spots localize out of somas****f RNAscope****DART-FISH****Supplementary Figure 3**

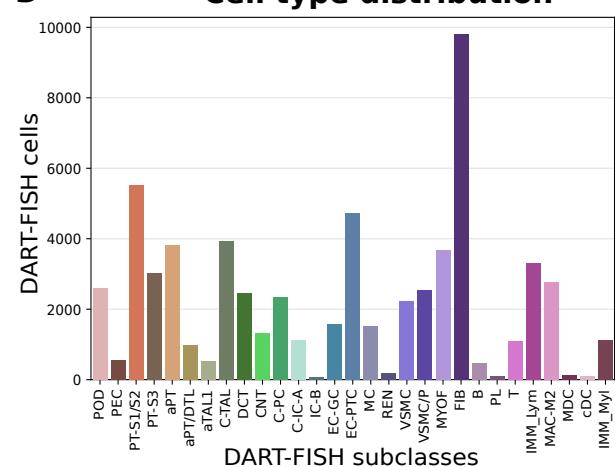
a**b****c****Supplementary Figure 4**

a**Renal corpuscle****b****c****d** #transcript/cell hist.**e**

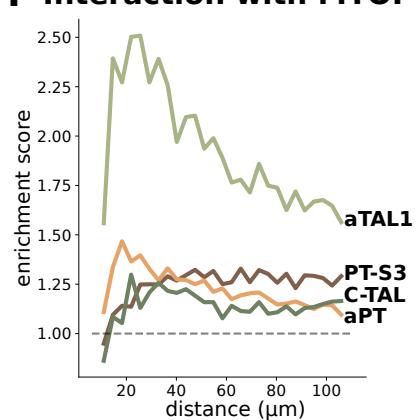
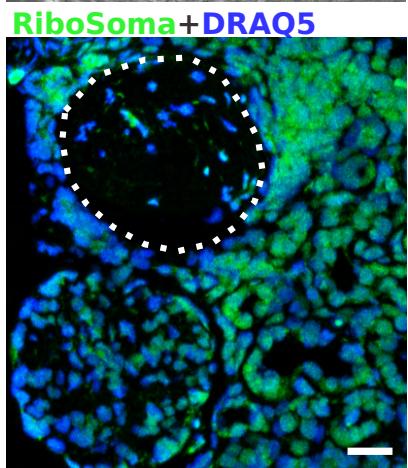
#gene/cell histogram

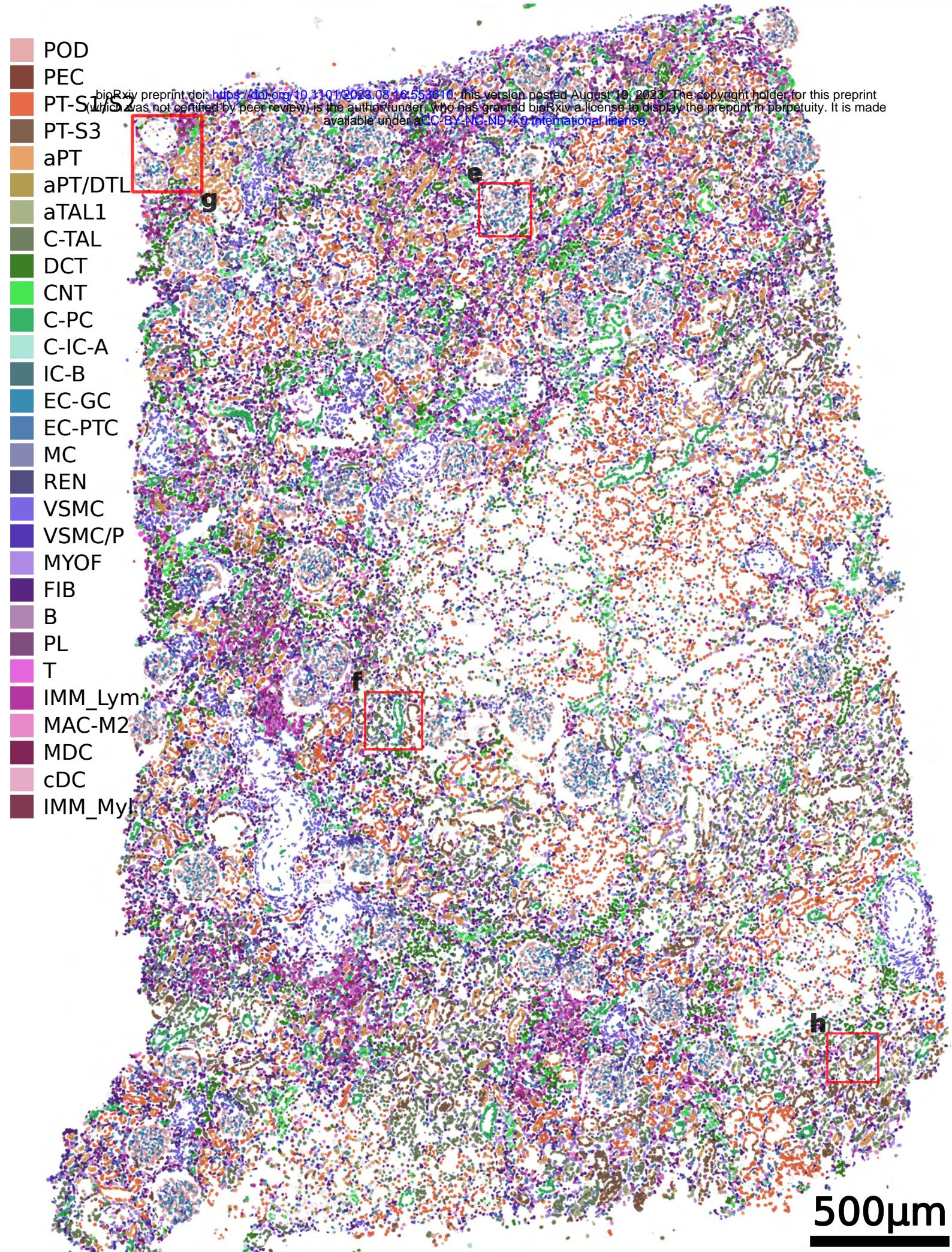
**f****h****g**

Cell type distribution

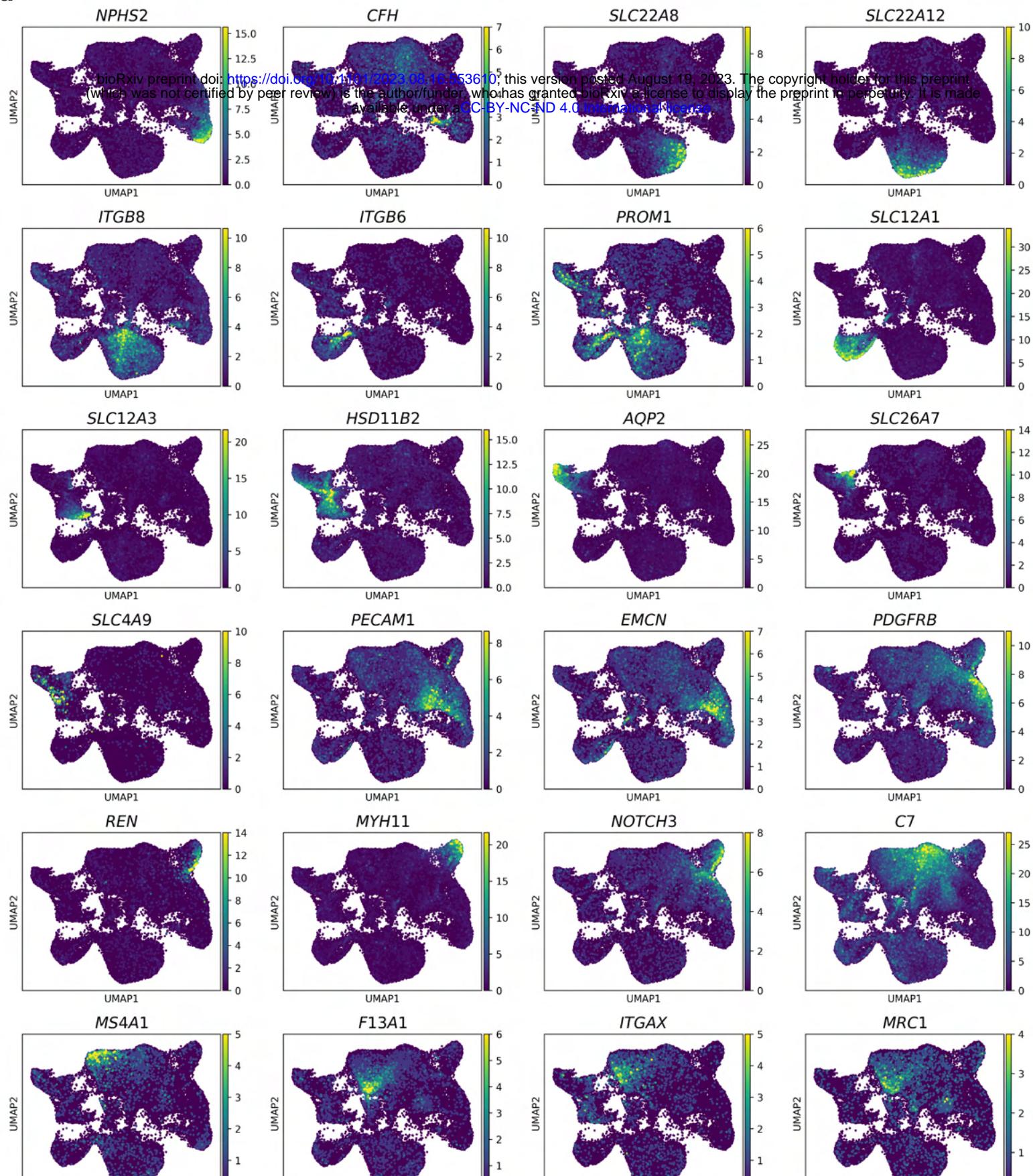
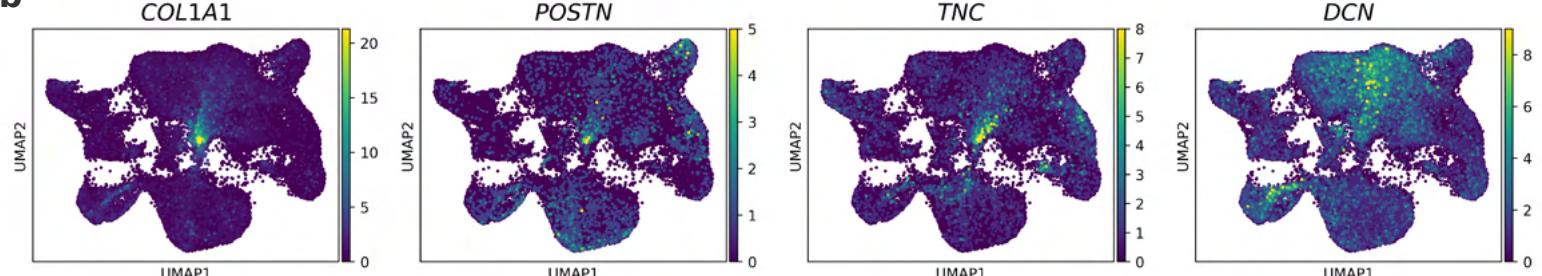


i Interaction with MYOF

**Supplementary Figure 5**



Supplementary Figure 6

a**b****Supplementary Figure 7**