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Abstract 11 

We are often faced with decisions we have never encountered before, requiring us to infer 12 
possible outcomes before making a choice. Computational theories suggest that one way to make 13 
these types of decisions is by accessing and linking related experiences stored in memory. Past 14 
work has shown that such memory-based preference construction can occur at a number of 15 
different timepoints relative to the moment a decision is made. Some studies have found that 16 
memories are integrated at the time a decision is faced (reactively) while others found that 17 
memory integration happens earlier, when memories were initially encoded (proactively). Here 18 
we offer a resolution to this inconsistency, demonstrating that these two strategies tradeoff 19 
rationally as a function of the associative structure of memory. We use fMRI to decode patterns 20 
of brain responses unique to categories of images in memory and find that proactive memory 21 
access is more common and allows more efficient inference. However, we also find that 22 
participants use reactive access when choice options are linked to a larger number of memory 23 
associations. Together, these results indicate that the brain judiciously conducts proactive 24 
inference by accessing memories ahead of time when conditions make this strategy more 25 
favorable. 26 

Introduction 27 

Some decisions are made repeatedly, offering the opportunity to learn directly about an option’s 28 
value through past experiences with its outcome. However, decisions often consist of a choice 29 
between options whose outcomes have not been directly experienced before. Computational 30 
theories of planning suggest that one way to approach such decisions is by knitting together 31 
separate relevant memories through mental simulation1–3. The ability to flexibly combine 32 
information in this way is central to intelligence: it frees us from having to decide based on direct 33 
trial-and-error experience alone and enables us to make inferences and to plan novel courses of 34 
action using cognitive maps or internal models4–8. 35 

The process of drawing inferences requires accessing relevant memories and recombining or 36 
integrating across them to build new relationships. Studying memory access is therefore one way 37 
to shed light on the covert mechanisms that give rise to inferential choice. Yet previous work 38 
attempting to probe this connection has left open a critical gap in our understanding of how and 39 
when memory integration supports inference. In particular, some studies have claimed that 40 
memories are accessed at the time a choice is faced2,9,10, while other studies have found that 41 
memory access occurs much earlier, when relevant memories are first encoded11,12. These two 42 
approaches differ not just in the timepoint of memory access, but also reflect distinct mechanisms. 43 
Integrating memories during a decision requires “on the fly” processing, which is likely to take 44 
time, whereas integrating memories earlier suggests that the new model for inference already 45 
exists when a choice is later made, yielding more efficient decisions11,13,14. It has been suggested, 46 
but not yet empirically tested, that there may be some normative explanation for the variation 47 
between these two approaches15. In the present study, we aimed to address this gap by studying 48 
both possibilities in a single experimental design. We sought to first confirm the normative 49 
advantages that early memory access confers and then to investigate how changing the structure 50 
of memory access can rationally shift this process to happen later, at decision time. 51 

The role of memory integration in inference is often studied with multi-phase tasks that first seed 52 
relevant associative memories and then test whether people integrate them when probed to make 53 
decisions. A classic task in this vein, which we build upon here, is sensory preconditioning16. In 54 
sensory preconditioning, participants are first trained to associate two stimuli that occur in 55 
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succession (A→B). Then, in a separate phase, the B stimulus is associated with reward. The 56 
critical question is whether people infer that the A stimulus is also associated with reward. This is 57 
tested in the final decision phase, when participants are asked to choose between A and another 58 
control stimulus (which is equally familiar but lacks the indirect reward association). Humans and 59 
non-human animals alike tend to prefer A despite never directly experiencing its association with 60 
reward11,12,14,16. Studies of sensory preconditioning and similar tasks have revealed two potential 61 
mechanisms, each predicting memory integration either before or during choice, that may lead to 62 
this same behavioral effect. 63 

A typical explanation for inference in tasks like sensory preconditioning, assumed in theories of 64 
decision making that date back to Tolman8, envisions that choosing A reflects prospective mental 65 
simulation at decision time: in this case, retrieving the B-reward association when evaluating 66 
whether to choose A. This, in turn, is thought to be a minimal case of a more general capacity for 67 
forward planning. This forward planning has been embodied by theories of model-based 68 
reinforcement learning in which actions are evaluated over multiple steps using a learned internal 69 
model, either in the form of one-step associations between states encountered serially or as a 70 
successor representation that generalizes this to associations over multiple timesteps17–19. By 71 
examining neural signatures of memory retrieval, it has been possible to investigate how memory 72 
access actually relates to successful model-based inference. Yet, studies have yielded mixed 73 
support for this account. Some evidence suggests that both humans and non-human animals 74 
engage in prospective retrieval at decision time, and that this pattern is associated with inferential 75 
performance4,9,10,20–22. However, there is also evidence that associative recall may occur long 76 
before a decision is ever faced11,12,23–26. 77 

These latter findings imply a second explanation for inference in these tasks: that the value of 78 
options may be pre-computed when relevant information like reward is first encoded, thereby 79 
preempting the need for evaluating potential outcomes later at choice time. In some studies of 80 
sensory preconditioning, for instance, it has been found that when B is presented during reward 81 
learning, A is concurrently retrieved and directly associated with reward11,12. Such a strategy is 82 
feasible because, at this time, participants have already been provided with all of the components 83 
necessary to form a complete model of the task. Perhaps analogously, in rodent spatial navigation 84 
tasks, hippocampal place cells often briefly represent trajectories in front of the animal20–22, a 85 
potential substrate for prospective evaluation. However, otherwise similar “replay” events can 86 
instead reflect backward or altogether nonlocal trajectories at the time of reward27–30, potentially 87 
supporting a spatial analogue of the alternative inference strategy. 88 

An emerging idea is that these different inference mechanisms may be special cases of a more 89 
general set of computations that share the common goal of integrating memories to infer action 90 
values, but that access memories at different times: either proactively before they are needed or 91 
reactively, once required for choice15,31. This in turn raises questions about how these strategies 92 
are balanced or adaptively deployed, and whether such control might explain variable results 93 
across studies. Indeed, the possibility of proactive computation implies that the brain must 94 
somehow be judicious about which memories it accesses, and when, since there are so many 95 
possible later actions that might be contemplated. 96 

This idea, while compelling, is still largely untested, and raises a number of questions about how 97 
and when different strategies are deployed, which we aimed to address in this study. First, is it 98 
indeed the case that a proactive memory access strategy can support inferential choice equivalent 99 
to a reactive one? Second, what are the tradeoffs of the two approaches: if access occurs 100 
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proactively, does it reduce the need for computation at decision time? Finally, do people rely 101 
differentially on this strategy at times when it would be sensible to do so? 102 

We aimed to answer these questions by attempting to alter participants’ reliance on proactive 103 
inference. We had three primary hypotheses. First, we expected to confirm earlier (but 104 
inconsistently reported) results that sensory preconditioning can be solved with proactive memory 105 
access at the time of reward learning. Second, because proactive inference offers the advantage 106 
of a pre-computed value association, we hypothesized that this approach may allow for more 107 
efficient future decisions–i.e. decisions that are faster and more accurate. Third, we hypothesized 108 
that reliance on this strategy would adapt under different circumstances, which we operationalized 109 
by manipulating how difficult it is to access and integrate relevant memories. Drawing upon a rich 110 
tradition of research on associative memory32, we reasoned that having multiple relevant 111 
associations with an experience should, at any timepoint, induce competition between them, 112 
making their retrieval for use in inference less likely. 113 

To test these hypotheses, we developed a novel learning and decision making task based on 114 
sensory preconditioning, and measured memory retrieval at multiple timepoints of this task while 115 
scanning participants with fMRI. Participants completed this task in three phases (Figure 1). In 116 
phase one, stimulus learning, participants learned associations between several antecedent-117 
consequent (A→B) pairs of images. In phase two, reward learning, participants learned that a 118 
subset of consequent (B) images led to a reward, while others did not. Finally, in phase three, the 119 
decision phase, participants made a series of test and transfer choices between two of these 120 
images. On test choices, participants chose between consequent images that were directly 121 
associated with either a reward or neutral outcome during the reward learning phase. Transfer 122 
decisions consisted of choosing between antecedent (A) images that were paired with 123 
consequent images during the initial stimulus learning phase. Successful transfer of value to these 124 
images involves relying on memory for the paired association and can be accomplished, in 125 
principle, by either proactive or reactive memory access. This task is well suited to address our 126 
questions, which focus on when associations between memories are accessed to support 127 
inference. However, it is agnostic as to questions about how these associations are represented 128 
as internal models in the brain ( i.e. whether they are stored as one-step relationships or as a 129 
successor representation17–19). 130 

To capture putative reactivation of associations in memory in the service of inference, we 131 
exploited the fact that viewing different visual categories (e.g. faces, scenes, and objects) elicits 132 
unique activity in visual cortex10,11,33,34. We used images from these different categories for each 133 
of the different stimuli, which allowed us to measure whether reactivation of associated images in 134 
memory occurred during either reward learning, signifying proactive inference, or during decision 135 
making, signifying reactive inference. We predicted that proactive memory access during reward 136 
learning should result in more efficient later choices, and that reactive memory access during 137 
choice itself should have the opposite effect. 138 

To address our third hypothesis specifically, we further varied the number of competing 139 
associations with a given stimulus by training participants on antecedent-consequent 140 
relationships under two different conditions (Figure 1). In one condition, two antecedent stimuli 141 
each predicted a single consequent stimulus; we refer to this as the Fan In condition. By contrast, 142 
in the Fan Out condition, a single antecedent predicted two possible consequents. The logic of 143 
this manipulation is that the Fan In condition induces greater retrieval competition between 144 
memories of antecedent stimuli when the consequent stimulus is presented during the reward 145 
learning phase. We therefore predicted that there should be increased reliance on reactive 146 
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inference for stimuli in the Fan In condition relative to Fan Out condition. To test this prediction, 147 
we measured reactivation in BOLD activity for antecedent stimuli in the Fan Out condition during 148 
the reward learning phase, and for consequent stimuli in both conditions during the decision 149 
phase. 150 

151 
Figure 1. Task design and inference strategies. A) Task structure. Participants (n=39) underwent fMRI 152 
scanning while completing a three-part experiment with two different conditions, based on sensory 153 
preconditioning. The phases were similar for both conditions, which differed only in their specific associative 154 
structure. In phase one, stimulus learning, participants learned associations between several pairs of 155 
images (faces, scenes, or objects). Unknown to participants, there were two types of trials governing how 156 
these associations appeared. Fan In trials consisted of one of two possible antecedent A images followed 157 
by one consequent B image. Fan Out trials consisted of one antecedent A image followed by one of two 158 
possible consequent B images. Example categories for each image are shown here, and this was 159 
counterbalanced across participants. In phase two, reward learning, participants learned that a subset of 160 
consequent B images led to a reward, while others did not lead to reward. Finally, in phase three, the 161 
decision phase, participants chose between two images. Choices between consequent B images were 162 
used as test trials, whereas choices between antecedent A images were used as transfer trials. B) Example 163 
events. An example of the sequence of task events seen by participants in each phase. C) Possible 164 
inference strategies. Participants can engage in either of two inference strategies: proactive inference, at 165 
the time of reward learning, or reactive inference, at the time of the decision. During decision making, 166 
proactive inference does not require the integration of a memory with value, as this association has already 167 
been performed during reward learning. Due to differences in the number of competing antecedent 168 
memories at reward learning, we expected reactive inference to be used more for Fan In stimuli. 169 
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170 
Figure 2. Participants successfully learned and transferred across both conditions, but the 171 
relationship between speed and accuracy differed across conditions.  A) Test decisions (i.e. those 172 
between images that were directly associated with reward or neutral outcomes during reward learning) 173 
were highly accurate, reflecting successful learning for both conditions. B) Transfer decisions (i.e. those 174 
between images that were indirectly associated with reward or neutral outcomes via the stimulus learning 175 
phase) were also highly accurate, indicating successful inference for both conditions. Filled points represent 176 
group-level means whereas white points represent means for each pair of images seen by n=39 177 
participants. Error bars are 95% confidence intervals. C) The relationship between the proportion of 178 
accurate transfer choices and reaction time for each image pair revealed that faster decisions were more 179 
accurate and that this relationship was stronger for the Fan Out condition, in which the structure was more 180 
amenable to proactive integration. Lines represent regression fits and bands represent 95% confidence 181 
intervals. Individual points represent means for each image pair. All visualizations show data at the stimuli 182 
level, and statistical analyses were conducted using mixed effects models that additionally assessed these 183 
effects within each participant while accounting for variation across participants. 184 

Results 185 

Behavioral evidence for proactive inference and its modulation by retrieval 186 
competition 187 

We first examined whether participants learned to directly associate consequent stimuli with 188 
reward, and whether they transferred value to associated antecedent images. To assess this, we 189 
analyzed participants’ test and transfer choices during the decision phase. On test choices, 190 
participants were highly accurate and tended to choose the rewarded consequent image over the 191 
neutral consequent image (𝛽' = 	5.009, 	95%	𝐶𝐼 = [4.085, 	6.279]; Figure 2A). There was no 192 
difference between the Fan In and Fan Out conditions (𝛽()*+,-,)* = 	0.321, 	95%	𝐶𝐼 =193 
[−1.251, 	2.128]), indicating that participants learned similarly in both. 194 

Next, we examined participants’ transfer choices during the decision phase (Figure 2B). We 195 
found that participants tended to choose the antecedent image that was paired with the rewarded 196 
consequent image (𝛽' = 	2.075, 	95%	𝐶𝐼 = [1.283, 	2.896]), indicating that most participants used 197 
memory to transfer value. There was no difference in transfer performance between Fan In and 198 
Fan Out choices (𝛽()*+,-,)* = 	0.572, 	95%	𝐶𝐼 = [−0.157, 	1.284]), demonstrating that the manipulation 199 
of associative structure between conditions had no effect on the degree to which value was 200 
transferred. 201 

Having established that participants infer the value of associated antecedent images in both 202 
conditions, we next sought to gain initial insights into when memories are accessed to support 203 
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this value transfer. We aimed to differentiate between two possible strategies for inference, each 204 
occurring at different timepoints in our task: either proactively at reward learning or reactively at 205 
decision time. One hypothetical hallmark of proactive inference is that it should promote accuracy 206 
without the need for further memory retrieval of consequents at choice time, resulting in faster 207 
transfer decisions. Thus, if its deployment varies across stimuli, it predicts an unusual inverted 208 
speed-accuracy relationship whereby faster decisions tend also to be more accurate. In contrast, 209 
successful reactive inference by definition requires retrieving associations between memories at 210 
choice time, resulting in slower transfer decisions and (to the extent its deployment governs 211 
successful performance) a more typical relationship between slower decisions and higher 212 
accuracy. 213 

Overall, we found that choices reflecting memory-based transfer were faster (𝛽.- =214 
	−0.611, 	95%	𝐶𝐼 = [−0.945,	−0.287]; Figure 2C), suggesting that participants may have inferred 215 
proactively. In addition, this relationship was stronger in the Fan Out than the Fan In condition 216 
(𝛽()*+,-,)*:.- =	−0.465, 	95%	𝐶𝐼 = [−0.937,−0.017]), consistent with our expectation that the Fan In 217 
condition is less amenable to proactive inference. Together, these behavioral findings suggest 218 
that while proactive inference may be common in performance overall, reactive inference may 219 
have been more commonly observed in the Fan In than the Fan Out condition. 220 
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 221 

Figure 3. Multivariate pattern analysis methodology and decoding accuracy. A) MVPA analyses 222 
consisted of four primary steps. Step 1: Least Squares Separate35 was used to isolate a beta map for each 223 
trial and participant across all phases of the experiment. These betas were then used as input for the MVPA 224 
pipeline. Step 2: A searchlight analysis consisting of a one versus all three-way logistic regression was then 225 
used to identify voxels that could discriminate between all three categories during the stimulus learning 226 
phase. Step 3: Voxels identified during the previous step were then used to mask the whole brain during 227 
testing of the classifier on the reward learning and decision phases. Step 4: Evidence of reactivation on 228 
each trial was then assessed by ranking the individual category probabilities accordingly. B) Group-level 229 
whole-brain maps (FDR corrected; q<0.05) of voxels that discriminate between all three categories above 230 
chance. C) Classification accuracy for the decoding model trained on the stimulus learning phase and 231 
tested on the reward learning and decision phases. Accuracy is shown here as the weighted F-score. Points 232 
represent accuracy for each participant (n=39) and the thick line represents group-level average accuracy. 233 
Dotted lines represent the 95th percentile of a permutation distribution over test category labels. 234 
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Neural evidence for proactive and reactive inference and their modulation by 235 
retrieval competition 236 

While examining participants’ choices allowed us to assess the different behavioral signatures of 237 
proactive and reactive inference, choice behavior alone cannot capture when exactly memories 238 
were accessed throughout the task. To gain further insight into when memories were recalled to 239 
support inference, we used fMRI to obtain a neural signature of memory reactivation at different 240 
timepoints in our task (Figure 3A). As in past work11,12, here we primarily interpret memory 241 
reactivation as a marker of inference, but note that another plausible role for memory reactivation 242 
may be to strengthen associations between individual memories1,2. To measure memory 243 
reactivation, we first used runs of fMRI data collected from the stimulus learning phase to train a 244 
classifier to distinguish between each image category: faces, scenes or objects. We then tested 245 
this classifier on activity from the reward learning and decision making phases, and assessed its 246 
ability to identify the category of the image that was presented to participants. As expected, voxels 247 
that differentiated accurately between categories were located primarily across the bilateral 248 
occipito-temporal cortex (Figure 3B). When tested on the reward learning and decision making 249 
phases, the classifier accurately differentiated each category from the others (Faces: 𝛽' =250 
0.161, 	95%	𝐶𝐼 = [0.134, 	0.189]; Scenes: 𝛽' = 0.151, 	95%	𝐶𝐼 = [0.123, 	0.180];	 Objects: 𝛽' =251 
0.066, 	95%	𝐶𝐼 = [0.041, 	0.093]; Figure 3C). 252 

With a classifier in hand that could distinguish between each category based on BOLD activity 253 
patterns seen during the reward learning and decision phases, we were poised to assess the 254 
degree to which memories were reactivated for inference, and when. Specifically, to measure 255 
memory reactivation, we examined the individual category probabilities from the classifier on 256 
every trial, and identified those in which the probability of the associated image category (as 257 
opposed to the presented category) was particularly high (see Methods). This analysis allowed 258 
us to label every trial as one in which reactivation of the relevant associated category in memory 259 
was either likely or unlikely. 260 

To determine whether memories were accessed in accordance with the patterns of inference we 261 
observed behaviorally, we focused on three main goals for the analyses. First, because 262 
participants’ choice behavior at transfer suggested a tradeoff between speed and accuracy most 263 
consistent with proactive inference, we sought to examine whether greater memory reactivation 264 
during the reward learning phase indeed results in more efficient (faster and more accurate) 265 
choices. Second, because we found that this effect was weaker during Fan In compared to Fan 266 
Out transfer choices (when there was relatively more retrieval competition between memories 267 
during reward learning and less during decision making), we sought to determine whether this 268 
behavioral shift was supported by different memory access patterns across conditions. Third, we 269 
predicted that it would be most strategic for participants to proactively infer prior to choice time for 270 
Fan Out trials, but to reactively infer at choice time for Fan In trials and therefore tested this by 271 
characterizing individual differences in memory access between participants. 272 
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 273 

Figure 4. Proactive inference improves decision making ability. Greater memory reactivation at reward 274 
time relative to decision time - a marker of proactive inference - is associated with more effective transfer 275 
decisions. A) Correct transfer decisions were more likely for pairs with greater memory reactivation during 276 
reward learning relative to decision making. B) Response times were marginally faster for pairs with greater 277 
memory reactivation during reward learning relative to decision making. Points represent average 278 
performance for each image pair seen by participants. Lines represent regression fits and bands represent 279 
95% confidence intervals. Visualizations show data at the stimuli level, and statistical analyses were 280 
conducted using mixed effects models that additionally assessed these effects within each participant while 281 
accounting for variation across participants. 282 

To first examine whether memory access during reward learning leads to more efficient choices, 283 
we quantified the difference in memory reactivation during image viewing at reward learning and 284 
decision time. This yielded an index of proactive inference for each pair of images. We focused 285 
on the Fan Out condition because the design allowed us to measure reactivation for this condition 286 
at both of these time points (for the Fan In condition, the design only allows measuring reactivation 287 
at decision time; see Methods). When there was more evidence of proactive inference – i.e. when 288 
memory reactivation was greater at the time of reward learning relative to that of decision making 289 
- transfer choices were both more accurate (𝛽∆.12(-,32-,)* = 	0.302, 	95%	𝐶𝐼 = [0.0384, 0.593]) and 290 
marginally faster (𝛽∆.12(-,32-,)* =	−37.902, 	90%	𝐶𝐼 = [−75.273,	−2.508], 95%	𝐶𝐼 = [−82.823, 3.180]; 291 
Figure 4). This result suggests that using memory to transfer value via proactive inference offers 292 
the advantage of more efficient choices in the future. 293 

We next examined whether the Fan In and Fan Out conditions affected memory access patterns, 294 
focusing on the time of choice because this was the timepoint at which we were best able to 295 
assess reactivation in both conditions (see Methods). In line with participants’ behavior, we found 296 
that during the decision phase, memories of rewarded consequent images were reactivated more 297 
frequently for Fan In than Fan Out transfer decisions (𝛽()*+,-,)* = 	0.119, 	95%	𝐶𝐼 = [0.051, 	0.184]; 298 
Figure 5A). This result indicates that our manipulation induced increased retrieval competition 299 
during Fan Out relative to Fan In transfer decisions. It further provides initial evidence that reactive 300 
inference may be more likely to occur when proactive inference is disadvantaged, although 301 
reduced Fan Out reactivation could also be consistent with accounts of reactive inference in which 302 
memories are retrieved in parallel (a point to which we return in the Discussion). 303 

A B
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304 
Figure 5. Reactive inference is more likely in the Fan In than Fan Out condition. A) Reactivation during 305 
the decision phase was greater for Fan In than Fan Out trials. Filled points represent group-level means, 306 
error bars are 95% confidence intervals, and thin lines represent individual participant slopes (n=39). B) 307 
Greater memory reactivation at decision time, a marker of reactive inference, is associated with less 308 
effective transfer decisions for Fan Out but not Fan In image pairs. Points represent average performance 309 
for each image pair seen by participants. Lines represent regression fits and bands represent 95% 310 
confidence intervals. C) Participants who showed greater reactivation for Fan In relative to Fan Out trials 311 
during decision making also preferentially reactivated more for Fan Out trials during reward learning. Points 312 
represent individual participant means, the line represents a linear regression fit, and the band represents 313 
a 95% confidence interval. 314 

To further investigate the possibility that reactive inference is more likely when proactive inference 315 
is relatively less advantageous, we examined the relationship between decision-time memory 316 
reactivation and behavioral performance. The behavioral findings showed that transfer choices 317 
were both slower and less successful in the Fan Out relative to the Fan In condition (Figure 2C). 318 
This effect may reflect the fact that, due to competition, proactive inference is easier and reactive 319 
inference is correspondingly harder, making it less likely to be successful in the Fan Out condition. 320 
We therefore predicted that the neural measure of memory reactivation at decision time should 321 
likewise be associated with less successful value transfer in the Fan Out condition. Indeed, we 322 
found that Fan Out transfer decisions were less accurate when antecedent memories were 323 
reactivated at decision time (𝛽.12(-,32-,)* =	−0.300, 	95%	𝐶𝐼 = [−0.625,	−0.001]; Figure 5B). Further, 324 
no such effect was found in the Fan In condition (𝛽.12(-,32-,)* =	−0.086, 	95%	𝐶𝐼 = [−0.255, 	0.075]; 325 
Supplementary Figure 1). This result lends additional support to the interpretation that the 326 
manipulation of associative structure increased participants’ relative use of reactive inference in 327 
the Fan In condition. 328 

Finally, we assessed the idea that it would be strategic to proactively infer prior to choice time for 329 
Fan Out trials, and to reactively infer at choice time for Fan In trials. We examined whether 330 
individuals who tend to reactivate memories more for Fan In relative to Fan Out trials at decision 331 
time also reactivated memories more for Fan Out trials during the reward learning phase. That is, 332 
we asked whether participants’ ability to appropriately deploy one of these strategies also 333 
predicted appropriate deployment of the other. We found that this was indeed the case—334 
participants who reactivated memories more for Fan In transfer decisions relative to Fan Out 335 
transfer decisions also reactivated memories for Fan Out stimuli at reward learning (𝛽∆.12(-,32-,)* =336 
	0.027, 	95%	𝐶𝐼 = [0.003, 	0.050]; Figure 5C). This result suggests that those participants who were 337 

A B C

Fan In
Fan Out
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most sensitive to the presence of retrieval competition at either timepoint strategically modulated 338 
when they accessed their memories to perform inference. 339 

Discussion 340 

Research on sequential decision making has found that the process of linking memories to 341 
support inference is well described by theories of reinforcement learning that leverage an internal 342 
model to guide choice4–6,9,10,18,19. Numerous studies have shown that memory-based inference 343 
can occur at a number of different timepoints relative to the moment a decision is made10–344 
12,21,22,25,26,36,37. However, the conditions that lead some memories to be accessed later than 345 
others have remained unclear. Here we developed a task to directly test multiple hypotheses 346 
about the purpose and adaptability of memory access in inference. Using fMRI to decode patterns 347 
of BOLD response unique to the categories of images in memory, we found that participants 348 
primarily accessed memories proactively, but this pattern was also sensitive to the situation: when 349 
a choice option had multiple past associations, participants were more likely to defer inferring 350 
relationships between stimuli and outcomes until decisions were made. This finding suggests that 351 
the presence of competition between associations in memory makes their retrieval for use in 352 
inference less likely, and runs counter to alternate possibilities in which the opposite may have 353 
been true (e.g., if memory reactivation is primarily driven by the imperative to associate reward 354 
with related stimuli, one may expect relatively more reactivation for the Fan In condition during 355 
reward learning and for the Fan Out condition during choice). We also found neural and behavioral 356 
evidence that reinstating memories prior to decision making facilitates faster and more accurate 357 
inference, suggesting that it is adaptive to plan in advance when possible. Together, these results 358 
indicate that the brain judiciously conducts proactive inference, accessing memories proactively 359 
in conditions when this is most favorable.  360 

These findings add empirical support to predictions from a recent rational account of when each 361 
of these forms of inference is most useful for decision making15. Specifically, Mattar and Daw 362 
(2018) theorized that memories that are particularly likely to increase future expected reward will 363 
be prioritized for reinstatement during inference and planning. Formally, they proposed that the 364 
expected utility of accessing a past experience can be decomposed into the product of two terms: 365 
need and gain. Need quantifies how likely an experience is to be encountered again, and gain 366 
captures how much reward is expected from improved decisions if that experience is reinstated. 367 
A critical feature of this model is that when the need term dominates, memories tend to be 368 
accessed reactively at choice time, but if instead the gain term dominates, memories tend to be 369 
accessed proactively following the receipt of reward. The present findings generally support this 370 
theory. In particular, gain increases for an antecedent when choices fan out, favoring proactive 371 
memory access, while need increases for consequents, promoting reactive choice-time memory 372 
access, as they fan in. Thus, antecedents that are associated with many consequents (i.e. that 373 
fan out) are more likely to be reinstated upon learning that a consequent is rewarded, because 374 
there is much to gain from updating future decisions made upon future encounters with the 375 
antecedent. Likewise, antecedents which deterministically lead to a single consequent (i.e. that 376 
fan in) imply greater need for that consequent, and are more likely to be reinstated at decision 377 
time. Importantly, while our findings are consistent with this theory, they were also designed to be 378 
predicted by more intuitive, qualitative reasoning about the degree of competition among different 379 
memories, and so go beyond any single theory of prioritization for memory access. 380 

In addition to findings from sensory preconditioning demonstrating that humans use memories for 381 
inference11,12, a number of other studies have shown that memory-based inference may also take 382 
place offline, during periods of rest or sleep before choice. This approach is advantageous 383 
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because it offloads computation to otherwise unoccupied time. In humans, fMRI research has 384 
revealed that memories are reactivated during periods of rest following reward23,24 and that this 385 
reinstatement can enhance subsequent memory performance38,39. Importantly, such offline replay 386 
of past memories during rest has been shown to facilitate later integrative decisions25,26. Parallel 387 
work in rodents has demonstrated that hippocampal replay of previously experienced spatial 388 
trajectories is observed during rest and sleep40–42, and that rewarded locations are replayed more 389 
frequently28. These results indicate another way in which inferences may be drawn offline, well 390 
before constituent memories are needed for choice. An important direction for future work will be 391 
to see if rational considerations, such as sensitivity to competition between memories, also affect 392 
the likelihood, or targets of, offline inference. 393 

A separate important open question regards the details of how associations between memories 394 
are represented in the brain. In other words, what is the nature of the internal model? 395 
Computational work on reinforcement learning has identified multiple candidate algorithms that 396 
may give rise to the effects reported here. Broadly, these theories posit that agents come to 397 
represent associations between states in an internal model, and then, using this model, simulate 398 
experiences to discover the consequences of new actions. The process of simulating potential 399 
actions can occur in either a forward or backwards manner, and can be based upon internal 400 
models with different representational forms. For example, in RL algorithms that employ a full 401 
world model, forward simulation is accomplished by adding up expected immediate rewards over 402 
some explicit future trajectory (rolled out over a series of one-step associations), while backwards 403 
simulation can occur by propagating value information from a destination state to a series of 404 
predecessors43,44. Other algorithms, such as successor17 and predecessor  representations, learn 405 
temporally abstract state relationships that are aggregated over multiple timesteps, and can be 406 
similarly used to compute which states typically follow or precede the present, respectively. Our 407 
findings are consistent with either of these frameworks. 408 

Moreover, our experimental design is not well positioned to differentiate between them. Using 409 
tasks in which future outcomes are separated from the present by multiple steps in space or time, 410 
much work has found that people may encode both one-step transitions between states and 411 
aggregate summaries of these relationships over multiple timesteps in the form of a successor 412 
representation18,19,37,49. While in such multi-step tasks these approaches often lead to substantially 413 
different internal models (and specifically, more efficient noniterative inference for successor 414 
representations), on tasks that involve only a one-step relationship between an antecedent and a 415 
consequent (such as the task we used here), their internal models are roughly equivalent. For 416 
this reason, the results of the current study have no bearing on this distinction. With that said, it 417 
is possible that these approaches may differ in their computational costs even in one-step tasks: 418 
implementations of the successor representation often assume that all successors are visited in 419 
parallel (as by a dot product) whereas those using a full transition model often employ serial 420 
rollouts or tree search. Regardless of the form of model participants relied upon to complete the 421 
task and the particular steps involved in using it for evaluation, our results are consistent with the 422 
idea that proactive inference yields benefits by eliminating the need to retrieve associations 423 
between memories at choice time. 424 

Relatedly, in our study we are unable to isolate how people may retrieve memories from their 425 
internal models. While it is the case that algorithms employing a successor representation 426 
typically retrieve states in parallel and those incorporating a full transition model typically do so 427 
serially, several formulations exist in which the opposite is true50–53. Both of these forms of retrieval 428 
may have been used to support transfer choices in our task, and we are unable to clearly 429 
differentiate between them in the present work. Although our results are broadly consistent with 430 
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serial retrieval, reduced reactivation of the rewarded consequent image relative to the other 431 
associated consequent image during Fan Out transfer choices (Figure 5A) is also consistent with 432 
inference algorithms that retrieve in parallel. This is because parallel retrieval would predict equal 433 
reactivation of both consequent stimuli. We note, however, that our other findings are unlikely to 434 
be explained by such an account. Determining both the form of representation people use for 435 
proactive and reactive inference and how memories are accessed to support inference more 436 
broadly remain questions for future research. This is particularly important because the 437 
advantages offered by computing value proactively may be offset by using a successor 438 
representation for reactive inference in environments with a particularly large temporal horizon or 439 
where the reward values of states may change. 440 

In connection with these points, recent behavioral work in humans has also shown that efficient 441 
one-step predictive representations are used for both forwards prediction at decision time and 442 
also backwards prediction in a manner similar to the proactive inference strategy we measured 443 
here54. In particular, this study demonstrated that such a strategy is relied upon more often in 444 
environments where the number of states that follow a starting state outnumber those that 445 
precede a rewarded state. Using a similar manipulation coupled with direct assays of strategy 446 
use, our results provide convergent evidence for this idea. Our study further enhances 447 
understanding of proactive and reactive approaches to inference by grounding each of these 448 
strategies in the mechanisms of memory.  449 

A separate avenue for future study that we did not touch upon here involves the role of dopamine 450 
in supporting the integration of memories with reward to guide behavior. Although the 451 
dopaminergic system has traditionally been thought to support habitual learning from direct 452 
experience, recent results suggest that dopamine may also support integrative evaluations of 453 
actions through the flexible combination of past experience55,56. Our task may provide an 454 
opportunity to further elucidate the role of dopamine in this process. Despite being solved in 455 
different ways, both of the conditions in our task are dependent upon the flexible expression of 456 
knowledge about stimulus associations. Therefore, if dopamine is necessary for the acquisition 457 
of model-based associations, as has been recently suggested56, we expect it to be involved in 458 
both conditions equally. This prediction could, for example, be tested by examining how 459 
integrative choice behavior in the present task is affected by dopamine depletion in Parkinson’s 460 
disease. 461 

Other open questions remain about the precise role of memory reactivation in designs such as 462 
ours. Following prior research11,12, we used stimuli from specific visual categories to measure 463 
category-specific BOLD activity as a proxy for memory reactivation. Here, as in this past work, we 464 
interpreted memory reactivation in our design as a sign of memory-based inference, or retrieval 465 
to transfer reward information across associated states. But another role of reactivation may be 466 
to strengthen previously learned associations between individual memories (e.g., to build or 467 
update a successor representation as in the Dyna-SR algorithm rather than transferring reward 468 
associations as heretofore assumed36,37). It is possible that this mechanism may contribute to the 469 
effects reported here; for example, reactivating memories prior to choice (during our reward 470 
phase) may prevent forgetting (e.g., by strengthening or updating the associative model), leading 471 
to improved inferences in the future (e.g., by manifesting here as changes in reaction times or 472 
neural measures of retrieval during the transfer phase). Our study cannot fully rule out this 473 
possibility, particularly in how it may contribute to the improved benefits of proactive inference at 474 
decision time that we measured for Fan Out stimuli (Figure 4). However, past work on the sensory 475 
preconditioning task suggests that reactivation during the reward learning phase likely measures 476 
proactive inference, at least in part. Specifically, Kurth-Nelson et al., 2015 found that successful 477 
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transfer decisions were associated with greater memory reactivation at outcome time (i.e., during 478 
the presentation of reward information). This finding appears to be best explained by proactive 479 
inference about reward, which predicts that credit should be assigned to the antecedent at this 480 
moment. Outside of this evidence, it is also important to note that the alternative still corresponds 481 
with our general framework: associations between memories can be strengthened ahead of time, 482 
providing future benefits, or during choices themselves, leading to similar tradeoffs in speed and 483 
accuracy. In fact, there are several theoretical accounts in which replay has this effect36,37. 484 
Disentangling these possibilities remains a critical goal for future work. One approach for future 485 
studies may be, for example, to include more explicit measures of memory for each stimulus 486 
association. 487 

Separately, one shortcoming of our study was that, due to our design, we were unable to isolate 488 
memory reactivation when consequent images from the Fan In condition were presented during 489 
reward learning. In practice, this limited our contrasts between conditions to decision time and our 490 
contrasts between timepoints to the Fan Out condition. This was because our metric of memory 491 
reactivation was conservative in the sense of being selective to the specific relevant candidate for 492 
classification. In particular, in addition to the category actually present on the screen being most 493 
strongly decoded, we required that the relevant associate be more strongly activated than the 494 
irrelevant foil to declare reactivation successful. However, at reward time in the Fan In condition, 495 
both categories are relevant associates, so this comparison was not possible. One possibility to 496 
skirt this issue in future work may be to present images of a fourth entirely unrelated category. 497 
We did not pursue this direction in the present study to minimize the complexity of the design. 498 
Future complementary work may explore these issues in more depth in order to allow for cleaner 499 
measurement of reactivation when antecedent images fan in during reward learning. 500 

In conclusion, we have demonstrated that the statistical structure of training experience impacts 501 
whether inference from memory occurs before or during decision making. This finding suggests 502 
that standard prospective inference is not unique, but is instead one of a general set of 503 
computations that access memory at different times. Together, these findings further help to 504 
explain why different studies have observed memory integration to support choice at different 505 
times, and suggest that different inference strategies may be recruited depending on their efficacy 506 
for the task at hand. 507 

Methods 508 

Participants 509 

A total of 40 participants (19 M, 21 F) between the ages of 18 - 35 were recruited from the 510 
Columbia University community. Participants were right-handed, had normal or corrected-to-511 
normal vision, took no psychiatric medication, and had no diagnosis of psychological disorders. 512 
One participant was removed from the analyses due to both failing to understand the instructions 513 
of the task and missing responses on over half of the decision trials. The remaining 39 participants 514 
had a mean age of 21.9 with a range of 19-35 and were included in the reported sample. No 515 
statistical method was used to predetermine sample size. Informed consent was obtained at the 516 
beginning of the session and all experimental procedures were approved by the Columbia 517 
University Institutional Review Board. 518 

Experimental Task 519 

Participants completed a three-part associative learning task while undergoing an fMRI scan. In 520 
the first phase of the experiment, stimulus learning, participants were tasked with learning pairs 521 
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of images presented one at a time. Each trial consisted of a single image (A; 1.5s), followed by a 522 
interstimulus interval in which a fixation cross was displayed (exponentially jittered with mean=3s, 523 
min=0.5s, max=12s), followed by another image (B; 1.5s), and finally an intertrial interval in which 524 
another fixation cross was displayed (exponentially jittered with mean=3s, min=0.5s, max=12s). 525 
In order to ensure that participants were paying attention, they were asked to press a button box 526 
with their index finger for the first image and with the middle finger for the second image in a pair. 527 
Participants were shown 16 different pairs of images 5 times each for a total of 80 trials. Trials 528 
were spread across two runs of 40 trials each. Images came from one of three categories, either 529 
a face, a scene, or an object. In the second phase of the experiment, reward learning, participants 530 
were tasked with learning that a subset of B images from the stimulus learning phase led 531 
deterministically to reward, while another subset of images led deterministically to a neutral 532 
outcome. Each trial consisted of a single image (1.5s), followed by an interstimulus interval in 533 
which a fixation cross was displayed (2s), followed by the outcome (either a dollar bill or a gray 534 
rectangle; 1.5s), and then finally an intertrial interval (exponentially jittered with mean=2.5s, 535 
min=0.5s, max=10s). Participants were told to withhold a response for the image and to respond 536 
with their index finger when a dollar was shown and with their middle finger when a gray rectangle 537 
was shown. Participants saw each of 8 images 10 times for a total of 80 trials. Trials were spread 538 
across two runs of 40 trials each. During the third and final phase of the experiment, the decision 539 
phase, participants were tasked with deciding between two images of the same category (either 540 
A v. A or B v. B) presented on the screen simultaneously. Each trial consisted of a choice 541 
(max=2s), a confirmation in which a green rectangle appeared around their choice (2s-reaction 542 
time), and then an intertrial interval (exponentially jittered with mean=2.5s, min=0.5s, max=10s). 543 
Participants pressed with their index finger to choose the image on the left hand side of the screen 544 
and with their middle finder to choose the image on the right hand side of the screen. Participants 545 
made 78 choices across a single run of this phase. Interstimulus intervals and trial ordering was 546 
optimized to minimize the correlation between events throughout each phase of the task. 547 

The pairs of stimuli presented throughout the experiment fell into one of two conditions that were 548 
unknown to participants: Fan Out and Fan In trials. Fan Out trials consisted of one A image that 549 
could be followed by either of two B images, while Fan In trials consisted of either of two A images 550 
followed by one B image. During stimulus learning, eight pairs of images fanned in, while another 551 
eight fanned out. Of the eight pairs from each condition, there were two pairs of images for each 552 
of four possible combinations (e.g. Fan In: A1-B1; A2-B1; A4-B4; A5-B4; Fan Out: A3-B2; A3-B3; 553 
A6-B5; A6-B6). During reward learning, four B images from each condition were shown (e.g. Fan 554 
In: B2 x2; B5 x2; Fan Out: B1 x2; B4 x2) such that two from each condition were paired with 555 
reward (e.g. Fan In: B1; Fan Out: B2) and two were paired with a neutral outcome (e.g. Fan In: 556 
B4; Fan Out: B5). B3 and B6 stimuli were not shown during this phase and were not associated 557 
with any outcome. Finally, during the decision phase, participants made choices between B 558 
images that had been directly associated with a reward or neutral outcome (test choices) and 559 
between A images that had been indirectly associated with these outcomes (transfer choices). 560 
Test (e.g. Fan In: B1 v B4; Fan Out: B2 v B5) and transfer (e.g. Fan In: A1 v A4; A2 v A5; Fan 561 
Out: A3 v A6) choices were made between images from the same condition, and never between 562 
images from different conditions. 563 

Participants were told prior to starting the task that they would need to use the associations they 564 
learned throughout the first two phases of the experiment in order to make choices in the final 565 
phase. They were given a cover story to aid their learning throughout the task. Specifically, 566 
participants were told that they were a photographer visiting a new city and would be taking 567 
different buses to different locations. At each location, they would be shown a picture they had 568 
taken there, and the purpose of the first phase was to learn which photos were taken along each 569 
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bus route. Then, during the reward learning phase, participants were told that they had returned 570 
from their trip and had sent their photos to clients for potential purchase. They were then shown 571 
which photos had been purchased and which had not, and their goal was to learn this information. 572 
Lastly, during the decision phase, participants were told that they were planning a new trip to the 573 
city and were tasked with deciding between bus routes (represented by photos taken on each 574 
route) that would take them to locations where they had taken photos their clients purchased. 575 
Participants were instructed to use what they had learned (i.e. which photos were taken along the 576 
same route and which were or were not purchased) to inform their choices. 577 

MRI Acquisition 578 

MRI data were collected on a 3 T Siemens Magnetom Prisma scanner with a 64-channel head 579 
coil. Functional images were acquired using a multiband echo-planer imaging (EPI) sequence 580 
(repetition time = 1.5s, echo time = 30ms, flip angle = 65˚, acceleration factor = 3, voxel size = 2 581 
mm iso, acquisition matrix 96 x 96). Sixty nine oblique axial slices (14˚ transverse to coronal) were 582 
acquired in an interleaved order and spaced 2mm to achieve full brain coverage. Whole-brain 583 
high resolution (1 mm iso) T1-weighted structural images were acquired with a magnetization-584 
prepared rapid acquisition gradient-echo (MPRAGE) sequence. Field maps consisting of 69 585 
oblique axial slices (2 mm isotropic) were collected to aid registration. 586 

Imaging Data Preprocessing 587 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.6, 588 
which is based on Nipype 1.7.0.57 589 

Anatomical Data Preprocessing 590 

Each participant’s T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 591 
with N4BiasFieldCorrection58, distributed with ANTs 2.3.359 and used as a reference image 592 
throughout the workflow. The reference image was then skull-stripped with 593 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 594 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-595 
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast60 (FSL 596 
5.0.9). Volume-based spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 597 
version 2009c (MNI152NLin2009cAsym) standard space was performed through nonlinear 598 
registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the T1w 599 
reference and the T1w template images. 600 

Functional Data Preprocessing 601 

For each of the 5 BOLD runs per participant (two stimulus learning runs, two reward learning runs, 602 
and one choice run), the following preprocessing was performed. First, a reference volume and 603 
its skull-stripped version were generated using a custom methodology of fMRIPrep. A B0-604 
nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) 605 
references with opposing phase-encoding directions, with 3dQwarp61 (AFNI 20160207). Based 606 
on the estimated susceptibility distortion, a corrected EPI reference was calculated for a more 607 
accurate co-registration with the anatomical reference. The BOLD reference was then co-608 
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 609 
registration62. Co-registration was configured with six degrees of freedom. Head-motion 610 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding 611 
rotation and translation parameters) were estimated before any spatiotemporal filtering 612 
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using mcflirt63 (FSL 5.0.9). BOLD runs were slice-time corrected to 0.708s (0.5 of slice acquisition 613 
range 0s-1.42s) using 3dTshift from AFNI 2016020761. The BOLD time-series (including slice-614 
timing correction when applied) were resampled onto their original, native space by applying a 615 
single, composite transform to correct for head-motion and susceptibility distortions. The BOLD 616 
time-series were resampled into standard space, generating a preprocessed BOLD run in 617 
MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 618 
generated using a custom methodology of fMRIPrep. Several confounding time-series were 619 
calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 620 
region-wise global signals. FD was computed using two formulations following Power (absolute 621 
sum of relative motions)64 and Jenkinson (relative root mean square displacement between 622 
affines)63. FD and DVARS are calculated for each functional run, both using their implementations 623 
in Nipype. The three global signals are extracted within the CSF, the WM, and the whole-brain 624 
masks. The head-motion estimates calculated in the correction step were also placed within the 625 
corresponding confounds file. The confound time series derived from head motion estimates and 626 
global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 627 
each65. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were 628 
annotated as motion outliers. All resamplings can be performed with a single interpolation step by 629 
composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility 630 
distortion correction when available, and co-registrations to anatomical and output spaces). 631 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 632 
configured with Lanczos interpolation to minimize the smoothing effects of other kernels66. 633 
Preprocessed data were lastly smoothed using a Gaussian kernel with a FWHM of 6.0mm, 634 
masked, and mean-scaled over time. 635 

Functional Imaging Data Analysis 636 

Beta Series Modeling 637 

Least squares separate (LSS) models were generated for each event (presentation of a category 638 
image) in each task following the method described in Turner et al., 201235 using Nistats 0.0.1b2. 639 
For each trial, preprocessed data were subjected to a general linear model in which the trial was 640 
modeled in its own regressor, while all other trials from that condition were modeled in a second 641 
regressor, and other conditions were modeled in their own regressors. Each condition regressor 642 
was convolved with the glover hemodynamic response function for the model. In addition to 643 
condition regressors, 36 nuisance regressors were included in each model consisting of two 644 
physiological time series (the mean WM and CSF signals), the global signal, six head-motion 645 
parameters, their derivatives, quadratic terms, and squares of derivatives. Spike regression was 646 
additionally performed by including a regressor for each motion outlier identified in each run, as 647 
in Satterthwaite et al., 201365. A high-pass filter of 0.0078125 Hz, implemented using a cosine 648 
drift model, was also included in each model and AR(1) prewhitening was applied to each model 649 
to account for temporal autocorrelation. After fitting each model, the parameter estimate (i.e., 650 
beta) map associated with the target trial’s regressor was retained and used for further analysis. 651 
Modeling was performed using NiBetaSeries 0.6.067 which is based on Nipype 1.4.2.57 Beta maps 652 
for image presentation events, separated by category, for the stimulus learning and reward 653 
learning phases and for decisions between images, again separated by category, were used in 654 
subsequent analyses. 655 

Multivariate Pattern Decoding Analysis 656 

Beta maps from each trial were next used for multivariate pattern analysis. First, a searchlight 657 
classification analysis was conducted for each participant. In brief, a three-way one versus all 658 
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logistic regression classifier was trained to distinguish categories using leave-one-run-out cross 659 
validation from runs of the stimulus learning task. We used winner-take-all labeling to determine 660 
the classified label from each trial: the category resulting in the highest probability from the one 661 
versus all classification procedure on a given trial was selected as the predicted label for that trial. 662 
Input data were selected using a spherical searchlight (radius = 2 voxels) moved around the whole 663 
brain. Although the experimental design leads the class labels for each category to be imbalanced 664 
during the stimulus learning phase (i.e. one label always has twice as many occurrences as the 665 
other two), we dealt with this label imbalance in two ways. First, the class weights applied to each 666 
category by the classifier were determined using the ‘balanced’ keyword in sklearn68 such that the 667 
weights were the number of samples divided by the number of labels (3) multiplied by the total 668 
number of occurrences of each label. Second, our metric of performance was the weighted-F1 669 
score, which is the harmonic mean of precision and recall. Each of these methods are commonly 670 
used in the machine learning literature to deal with class imbalance in training data. For each 671 
searchlight sphere, we additionally computed chance performance via a permutation test: labels 672 
were shuffled 1000 times and the weighted F1-score resulting from each of these permutations 673 
was computed. Chance classification performance was then calculated as the 95th percentile of 674 
the F1-score permutation distribution. For each voxel, we then subtracted chance level 675 
performance from the classification accuracy to produce a map of corrected classification 676 
performance for each participant. Finally, an FDR-corrected (q<0.05) group-level map over all 677 
individual participant difference maps was created. 678 

Following classifier training on the stimulus learning phase, we then tested the classifier on runs 679 
from both the reward learning and decision phases. Functional data from each participant on each 680 
of these phases of the experiment was first masked using the group-level searchlight map 681 
produced from the previously described procedure. The three-way logistic regression classifier 682 
was then re-trained on both runs of the stimulus learning phase, using only these voxels, and then 683 
tested separately on the reward learning and decision phases. L1-regularization was used to 684 
reduce overfitting in this procedure. We again used the weighted F1-score as our accuracy metric, 685 
and the 95th percentile of the permutation distribution as our measure of chance classifier 686 
performance. 687 

Finally, to address our primary question, we created an index of memory reactivation from the 688 
classifier. Specifically, for each trial, we extracted the probability that the classifier assigned to 689 
each category label. A trial was then considered a trial on which memory reactivation occurred if 690 
the following criteria were met: i) the true category label was assigned the highest probability by 691 
the classifier and ii) the associated category was assigned the second highest probability by the 692 
classifier. If these criteria were met, the trial was assigned a one and, if not, a zero. Our logic for 693 
using this criteria was conservative: we reasoned that the classifier should always assign the 694 
highest probability to the category represented by the image that is presently shown on the 695 
screen. Because, by definition, both off-screen categories were candidates for association when 696 
presented as part of Fan In trials during the reward learning phase, we were unable to calculate 697 
a reactivation score for these trials. We were further limited in our ability to compare reactivation 698 
across phases because the classifier was more accurate at identifying category images presented 699 
during the decision phase than during the reward learning phase. This is problematic because 700 
lower classification accuracy causes lower reactivation scores because fewer trials satisfy the 701 
criteria outlined above. We were, however, able to investigate individual differences in reactivation 702 
for Fan Out trials between phases by accounting for this difference in classification performance 703 
by z-scoring reactivation scores within each phase, as this removes group-level differences while 704 
leaving individual differences intact. These standardized reactivation scores were used only for 705 
analyses involving comparison between phases of the experiment. 706 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2024. ; https://doi.org/10.1101/2023.12.10.570977doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.10.570977
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 of 25 
. 

Regression Analyses 707 

Unless otherwise noted, parameters for all regression models described here were estimated 708 
using hierarchical Bayesian inference such that group-level priors were used to regularize 709 
participant-level estimates. The joint posterior was approximated using No-U-Turn Sampling69 as 710 
implemented in stan. Four chains with 2000 samples (1000 discarded as burn-in) were run for a 711 
total of 4000 posterior samples per model. Chain convergence was determined by ensuring that 712 
the Gelman-Rubin statistic 𝑅7 was close to 1. Default weakly-informative priors implemented in the 713 
rstanarm70 package were used for each regression model. For all models, fixed effects are 714 
reported in the text as the mean of each parameter’s marginal posterior distribution alongside 715 
95% or 90% credible intervals, which indicate where that percentage of the posterior density falls. 716 
Parameter values outside of this range are unlikely given the model, data, and priors. Thus, if the 717 
range of likely values does not include zero, we conclude that a meaningful effect was observed. 718 

We first assessed choice performance on the decision phase of the task. For each participant. 𝑠 719 
and trial 𝑡, a mixed effects logistic regression was used to predict if the correct image was chosen: 720 

(1)									𝑝(𝐶𝑜𝑟𝑟𝑒𝑐𝑡-) = 	𝜎(𝛽' + 𝑏',5[-] + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛-(𝛽! + 𝑏!,5[-]))	 721 

(2)									𝜎(𝑥) =
1

1 + 𝑒89	722 

where 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 was equal to 1 if the participant chose either the image directly associated with 723 
reward (in the case of test trials) or the image indirectly associated with reward (in the case of 724 
transfer trials), and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was a categorical variable coded as 0.5 for Fan In trials and -0.5 725 
for Fan Out trials. This model was fit separately for test and transfer choices. 726 

We also assessed the relationship between response time and accuracy during transfer choices 727 
using the following mixed effects logistic regression, which included an additional main effect of 728 
response time as well the interaction between response time and condition: 729 

(3)									𝑝(𝐶𝑜𝑟𝑟𝑒𝑐𝑡-)730 
=	𝜎(𝛽' + 𝑏',5[-] + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛- ∗ (𝛽! + 𝑏!,5[-]) 	+ 𝑅𝑇- ∗ (𝛽" + 𝑏",5[-]) 		+	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛-	𝑋	𝑅𝑇- ∗ (𝛽#731 
+ 𝑏#,5[-])	)	 732 

where 𝑅𝑇 was the response time on each transfer choice trial. 733 

We determined the ability of the trained MVPA classifier to distinguish each category label from 734 
chance using the following mixed effects linear regression:  735 

(4)									𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐶ℎ𝑎𝑛𝑐𝑒 = 	𝛽' + 𝑏',5[-] + 𝑃ℎ𝑎𝑠𝑒-(𝛽! + 𝑏!,5[-])	 736 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − 	𝐶ℎ𝑎𝑛𝑐𝑒 was the 95th percentile of the permutation distribution subtracted from 737 
classification accuracy, and 𝑃ℎ𝑎𝑠𝑒 was a categorical variable coded as 0.5 for the decision phase 738 
and -0.5 for the reward learning phase. This model was fit separately for each category (face, 739 
scene and object). 740 

Another set of models was fit to assess the relationship between memory reactivation and transfer 741 
choice behavior. Analyses were conducted on the average reactivation level of each stimulus. In 742 
order to assess effects of reactivation on transfer accuracy for each stimulus, 𝑖, accuracy was first 743 
transformed71 to ensure that all responses fell within the interval (0,1): 744 

(5)									𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐′, =
𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐,(𝑁 − 1) + 0.5

𝑁  745 
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where 𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐 was participants’ average transfer accuracy for each consequent stimulus and 746 
N was the sample size (39). We first examined the effect of (z-scored) differences in reactivation 747 
between the reward learning and decision phases for each associated antecedent-consequent 748 
pair of Fan Out stimuli on transfer accuracy. To do so, we fit a mixed effects beta regression: 749 

(6)									𝑙𝑜𝑔𝑖𝑡(𝑇𝑟𝑎𝑛𝑠𝐴𝑐𝑐′,) = 	𝛽' + 𝑏',5[,] + ∆𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛-(𝛽! + 𝑏!,5[,]))	 750 

where ∆𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is the difference in memory reactivation between reward learning and the 751 
decision phase for each pair. Similar beta regressions were used to assess effects of memory 752 
reactivation during the decision phase for Fan In and Fan Out consequent stimuli, separately. To 753 
assess effects on choice transfer response time, linear mixed effects regressions with the same 754 
predictors were used instead. 755 

We additionally assessed how memory reactivation differed for each condition (Fan In or Fan Out) 756 
during the decision phase. We performed this analysis using the following mixed effects linear 757 
regression:  758 

(7)									𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 	𝛽' + 𝑏',5 + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝛽! + 𝑏!,5)	 759 

where 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 was memory reactivation during the decision phase for each participant and 760 
condition and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was coded identically to the models described above. 761 

Lastly, we examined individual differences in strategy usage by comparing our reactivation 762 
measures across phases of the task. Specifically, we fit a simple linear regression predicting each 763 
participants’ average level of memory reactivation for Fan Out during reward learning from their 764 
difference in memory reactivation during the decision phase. 765 

Data Availability 766 

The data that support the findings of this study are available in GIN with identifier: 10.12751/g-767 
node.ee5wx3 768 

Code Availability 769 

The code used to generate the results of this study are available as a CodeOcean capsule with 770 
identifier: 10.24433/CO.2559896.v1 771 
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