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Abstract

We are often faced with decisions we have never encountered before, requiring us to infer
possible outcomes before making a choice. Computational theories suggest that one way to make
these types of decisions is by accessing and linking related experiences stored in memory. Past
work has shown that such memory-based preference construction can occur at a number of
different timepoints relative to the moment a decision is made. Some studies have found that
memories are integrated at the time a decision is faced (reactively) while others found that
memory integration happens earlier, when memories were initially encoded (proactively). Here
we offer a resolution to this inconsistency, demonstrating that these two strategies tradeoff
rationally as a function of the associative structure of memory. We use fMRI to decode patterns
of brain responses unique to categories of images in memory and find that proactive memory
access is more common and allows more efficient inference. However, we also find that
participants use reactive access when choice options are linked to a larger number of memory
associations. Together, these results indicate that the brain judiciously conducts proactive
inference by accessing memories ahead of time when conditions make this strategy more
favorable.

Introduction

Some decisions are made repeatedly, offering the opportunity to learn directly about an option’s
value through past experiences with its outcome. However, decisions often consist of a choice
between options whose outcomes have not been directly experienced before. Computational
theories of planning suggest that one way to approach such decisions is by knitting together
separate relevant memories through mental simulation’. The ability to flexibly combine
information in this way is central to intelligence: it frees us from having to decide based on direct
trial-and-error experience alone and enables us to make inferences and to plan novel courses of
action using cognitive maps or internal models*2.

The process of drawing inferences requires accessing relevant memories and recombining or
integrating across them to build new relationships. Studying memory access is therefore one way
to shed light on the covert mechanisms that give rise to inferential choice. Yet previous work
attempting to probe this connection has left open a critical gap in our understanding of how and
when memory integration supports inference. In particular, some studies have claimed that
memories are accessed at the time a choice is faced*®'®, while other studies have found that
memory access occurs much earlier, when relevant memories are first encoded'"'?. These two
approaches differ not just in the timepoint of memory access, but also reflect distinct mechanisms.
Integrating memories during a decision requires “on the fly” processing, which is likely to take
time, whereas integrating memories earlier suggests that the new model for inference already
exists when a choice is later made, yielding more efficient decisions'"'*'*. It has been suggested,
but not yet empirically tested, that there may be some normative explanation for the variation
between these two approaches™. In the present study, we aimed to address this gap by studying
both possibilities in a single experimental design. We sought to first confirm the normative
advantages that early memory access confers and then to investigate how changing the structure
of memory access can rationally shift this process to happen later, at decision time.

The role of memory integration in inference is often studied with multi-phase tasks that first seed
relevant associative memories and then test whether people integrate them when probed to make
decisions. A classic task in this vein, which we build upon here, is sensory preconditioning'®. In
sensory preconditioning, participants are first trained to associate two stimuli that occur in
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56  succession (A—B). Then, in a separate phase, the B stimulus is associated with reward. The
57 critical question is whether people infer that the A stimulus is also associated with reward. This is
58 tested in the final decision phase, when participants are asked to choose between A and another
59  control stimulus (which is equally familiar but lacks the indirect reward association). Humans and
60 non-human animals alike tend to prefer A despite never directly experiencing its association with
61 reward'"'2'%1 Studies of sensory preconditioning and similar tasks have revealed two potential
62 mechanisms, each predicting memory integration either before or during choice, that may lead to
63 this same behavioral effect.

64 A typical explanation for inference in tasks like sensory preconditioning, assumed in theories of
65 decision making that date back to Tolman®, envisions that choosing A reflects prospective mental
66  simulation at decision time: in this case, retrieving the B-reward association when evaluating
67  whether to choose A. This, in turn, is thought to be a minimal case of a more general capacity for
68 forward planning. This forward planning has been embodied by theories of model-based
69 reinforcement learning in which actions are evaluated over multiple steps using a learned internal
70  model, either in the form of one-step associations between states encountered serially or as a
71  successor representation that generalizes this to associations over multiple timesteps'’~'°. By
72  examining neural signatures of memory retrieval, it has been possible to investigate how memory
73  access actually relates to successful model-based inference. Yet, studies have yielded mixed
74  support for this account. Some evidence suggests that both humans and non-human animals
75  engage in prospective retrieval at decision time, and that this pattern is associated with inferential
76  performance*®'%%-22_ However, there is also evidence that associative recall may occur long
77  before a decision is ever faced'"'22*-2¢,

78  These latter findings imply a second explanation for inference in these tasks: that the value of
79  options may be pre-computed when relevant information like reward is first encoded, thereby
80 preempting the need for evaluating potential outcomes later at choice time. In some studies of
81  sensory preconditioning, for instance, it has been found that when B is presented during reward
82 learning, A is concurrently retrieved and directly associated with reward'"'?. Such a strategy is
83 feasible because, at this time, participants have already been provided with all of the components
84  necessary to form a complete model of the task. Perhaps analogously, in rodent spatial navigation
85 tasks, hippocampal place cells often briefly represent trajectories in front of the animal®?, a
86  potential substrate for prospective evaluation. However, otherwise similar “replay” events can
87 instead reflect backward or altogether nonlocal trajectories at the time of reward?=°, potentially
88  supporting a spatial analogue of the alternative inference strategy.

89  An emerging idea is that these different inference mechanisms may be special cases of a more
90 general set of computations that share the common goal of integrating memories to infer action
91  values, but that access memories at different times: either proactively before they are needed or
92  reactively, once required for choice'®3'. This in turn raises questions about how these strategies
93 are balanced or adaptively deployed, and whether such control might explain variable results
94  across studies. Indeed, the possibility of proactive computation implies that the brain must
95 somehow be judicious about which memories it accesses, and when, since there are so many
96 possible later actions that might be contemplated.

97  This idea, while compelling, is still largely untested, and raises a number of questions about how
98 and when different strategies are deployed, which we aimed to address in this study. First, is it
99 indeed the case that a proactive memory access strategy can support inferential choice equivalent
100 to a reactive one? Second, what are the tradeoffs of the two approaches: if access occurs
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101 proactively, does it reduce the need for computation at decision time? Finally, do people rely
102  differentially on this strategy at times when it would be sensible to do so?

103  We aimed to answer these questions by attempting to alter participants’ reliance on proactive
104 inference. We had three primary hypotheses. First, we expected to confirm earlier (but
105 inconsistently reported) results that sensory preconditioning can be solved with proactive memory
106  access at the time of reward learning. Second, because proactive inference offers the advantage
107  of a pre-computed value association, we hypothesized that this approach may allow for more
108 efficient future decisions—i.e. decisions that are faster and more accurate. Third, we hypothesized
109 thatreliance on this strategy would adapt under different circumstances, which we operationalized
110 by manipulating how difficult it is to access and integrate relevant memories. Drawing upon a rich
111 tradition of research on associative memory®?, we reasoned that having multiple relevant
112  associations with an experience should, at any timepoint, induce competition between them,
113  making their retrieval for use in inference less likely.

114  To test these hypotheses, we developed a novel learning and decision making task based on
115  sensory preconditioning, and measured memory retrieval at multiple timepoints of this task while
116  scanning participants with fMRI. Participants completed this task in three phases (Figure 1). In
117  phase one, stimulus learning, participants learned associations between several antecedent-
118  consequent (A—B) pairs of images. In phase two, reward learning, participants learned that a
119  subset of consequent (B) images led to a reward, while others did not. Finally, in phase three, the
120  decision phase, participants made a series of test and transfer choices between two of these
121 images. On test choices, participants chose between consequent images that were directly
122  associated with either a reward or neutral outcome during the reward learning phase. Transfer
123  decisions consisted of choosing between antecedent (A) images that were paired with
124  consequentimages during the initial stimulus learning phase. Successful transfer of value to these
125 images involves relying on memory for the paired association and can be accomplished, in
126  principle, by either proactive or reactive memory access. This task is well suited to address our
127  questions, which focus on when associations between memories are accessed to support
128 inference. However, it is agnostic as to questions about how these associations are represented
129  as internal models in the brain ( i.e. whether they are stored as one-step relationships or as a
130  successor representation’’~"9),

131 To capture putative reactivation of associations in memory in the service of inference, we
132  exploited the fact that viewing different visual categories (e.g. faces, scenes, and objects) elicits
133 unique activity in visual cortex%-11:33.34 \We used images from these different categories for each
134  of the different stimuli, which allowed us to measure whether reactivation of associated images in
135 memory occurred during either reward learning, signifying proactive inference, or during decision
136  making, signifying reactive inference. We predicted that proactive memory access during reward
137  learning should result in more efficient later choices, and that reactive memory access during
138 choice itself should have the opposite effect.

139 To address our third hypothesis specifically, we further varied the number of competing
140 associations with a given stimulus by training participants on antecedent-consequent
141  relationships under two different conditions (Figure 1). In one condition, two antecedent stimuli
142  each predicted a single consequent stimulus; we refer to this as the Fan In condition. By contrast,
143  in the Fan Out condition, a single antecedent predicted two possible consequents. The logic of
144  this manipulation is that the Fan In condition induces greater retrieval competition between
145 memories of antecedent stimuli when the consequent stimulus is presented during the reward
146 learning phase. We therefore predicted that there should be increased reliance on reactive
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147  inference for stimuli in the Fan In condition relative to Fan Out condition. To test this prediction,
148  we measured reactivation in BOLD activity for antecedent stimuli in the Fan Out condition during
149 the reward learning phase, and for consequent stimuli in both conditions during the decision
150 phase.
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151
152 Figure 1. Task design and inference strategies. A) Task structure. Participants (n=39) underwent fMRI

153  scanning while completing a three-part experiment with two different conditions, based on sensory
154 preconditioning. The phases were similar for both conditions, which differed only in their specific associative
155 structure. In phase one, stimulus learning, participants learned associations between several pairs of
156  images (faces, scenes, or objects). Unknown to participants, there were two types of trials governing how
157 these associations appeared. Fan In trials consisted of one of two possible antecedent A images followed
158 by one consequent B image. Fan Out trials consisted of one antecedent A image followed by one of two
159 possible consequent B images. Example categories for each image are shown here, and this was
160 counterbalanced across participants. In phase two, reward learning, participants learned that a subset of
161 consequent B images led to a reward, while others did not lead to reward. Finally, in phase three, the
162 decision phase, participants chose between two images. Choices between consequent B images were
163 used as fest trials, whereas choices between antecedent A images were used as transfer trials. B) Example
164 events. An example of the sequence of task events seen by participants in each phase. C) Possible
165 inference strategies. Participants can engage in either of two inference strategies: proactive inference, at
166 the time of reward learning, or reactive inference, at the time of the decision. During decision making,
167  proactive inference does not require the integration of a memory with value, as this association has already
168  been performed during reward learning. Due to differences in the number of competing antecedent
169  memories at reward learning, we expected reactive inference to be used more for Fan In stimuli.
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171 Figure 2. Participants successfully learned and transferred across both conditions, but the
172 relationship between speed and accuracy differed across conditions. A) Test decisions (i.e. those
173 between images that were directly associated with reward or neutral outcomes during reward learning)
174  were highly accurate, reflecting successful learning for both conditions. B) Transfer decisions (i.e. those
175 between images that were indirectly associated with reward or neutral outcomes via the stimulus learning
176  phase)were also highly accurate, indicating successful inference for both conditions. Filled points represent
177  group-level means whereas white points represent means for each pair of images seen by n=39
178 participants. Error bars are 95% confidence intervals. C) The relationship between the proportion of
179 accurate transfer choices and reaction time for each image pair revealed that faster decisions were more
180 accurate and that this relationship was stronger for the Fan Out condition, in which the structure was more
181 amenable to proactive integration. Lines represent regression fits and bands represent 95% confidence
182 intervals. Individual points represent means for each image pair. All visualizations show data at the stimuli
183 level, and statistical analyses were conducted using mixed effects models that additionally assessed these
184 effects within each participant while accounting for variation across participants.

185 Results

186 Behavioral evidence for proactive inference and its modulation by retrieval
187 competition

188  We first examined whether participants learned to directly associate consequent stimuli with
189 reward, and whether they transferred value to associated antecedent images. To assess this, we
190 analyzed participants’ test and transfer choices during the decision phase. On test choices,
191 participants were highly accurate and tended to choose the rewarded consequent image over the
192 neutral consequent image (B, = 5.009, 95% CI = [4.085, 6.279]; Figure 2A). There was no
193  difference between the Fan In and Fan Out conditions (B.ongition = 0-321, 95% CI =
194  [-1.251, 2.128]), indicating that participants learned similarly in both.

195 Next, we examined participants’ transfer choices during the decision phase (Figure 2B). We
196 found that participants tended to choose the antecedent image that was paired with the rewarded
197  consequent image (B, = 2.075, 95% CI = [1.283, 2.896]), indicating that most participants used
198 memory to transfer value. There was no difference in transfer performance between Fan In and
199  Fan Out choices (B.onagition = 0-572, 95% CI = [—0.157, 1.284]), demonstrating that the manipulation
200 of associative structure between conditions had no effect on the degree to which value was
201  transferred.

202 Having established that participants infer the value of associated antecedent images in both
203 conditions, we next sought to gain initial insights into when memories are accessed to support
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204 this value transfer. We aimed to differentiate between two possible strategies for inference, each
205 occurring at different timepoints in our task: either proactively at reward learning or reactively at
206 decision time. One hypothetical hallmark of proactive inference is that it should promote accuracy
207  without the need for further memory retrieval of consequents at choice time, resulting in faster
208 transfer decisions. Thus, if its deployment varies across stimuli, it predicts an unusual inverted
209 speed-accuracy relationship whereby faster decisions tend also to be more accurate. In contrast,
210  successful reactive inference by definition requires retrieving associations between memories at
211 choice time, resulting in slower transfer decisions and (to the extent its deployment governs
212 successful performance) a more typical relationship between slower decisions and higher
213  accuracy.

214  Overall, we found that choices reflecting memory-based transfer were faster (B, =
215 —0.611, 95% CI = [—0.945, —0.287]; Figure 2C), suggesting that participants may have inferred
216  proactively. In addition, this relationship was stronger in the Fan Out than the Fan In condition
217 (Beonaition+t = —0.465, 95% CI = [—0.937,—-0.017]), consistent with our expectation that the Fan In
218  condition is less amenable to proactive inference. Together, these behavioral findings suggest
219 that while proactive inference may be common in performance overall, reactive inference may
220  have been more commonly observed in the Fan In than the Fan Out condition.
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222 Figure 3. Multivariate pattern analysis methodology and decoding accuracy. A) MVPA analyses
223 consisted of four primary steps. Step 1: Least Squares Separate3® was used to isolate a beta map for each
224 trial and participant across all phases of the experiment. These betas were then used as input for the MVPA
225 pipeline. Step 2: A searchlight analysis consisting of a one versus all three-way logistic regression was then
226 used to identify voxels that could discriminate between all three categories during the stimulus learning
227 phase. Step 3: Voxels identified during the previous step were then used to mask the whole brain during
228  testing of the classifier on the reward learning and decision phases. Step 4: Evidence of reactivation on
229  each trial was then assessed by ranking the individual category probabilities accordingly. B) Group-level
230  whole-brain maps (FDR corrected; q<0.05) of voxels that discriminate between all three categories above
231 chance. C) Classification accuracy for the decoding model trained on the stimulus learning phase and
232 tested on the reward learning and decision phases. Accuracy is shown here as the weighted F-score. Points
233 represent accuracy for each participant (n=39) and the thick line represents group-level average accuracy.
234  Dotted lines represent the 95" percentile of a permutation distribution over test category labels.
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235 Neural evidence for proactive and reactive inference and their modulation by
236 retrieval competition

237  While examining participants’ choices allowed us to assess the different behavioral signatures of
238  proactive and reactive inference, choice behavior alone cannot capture when exactly memories
239  were accessed throughout the task. To gain further insight into when memories were recalled to
240 support inference, we used fMRI to obtain a neural signature of memory reactivation at different
241  timepoints in our task (Figure 3A). As in past work'"'2 here we primarily interpret memory
242  reactivation as a marker of inference, but note that another plausible role for memory reactivation
243 may be to strengthen associations between individual memories’2. To measure memory
244  reactivation, we first used runs of fMRI data collected from the stimulus learning phase to train a
245  classifier to distinguish between each image category: faces, scenes or objects. We then tested
246 this classifier on activity from the reward learning and decision making phases, and assessed its
247  ability to identify the category of the image that was presented to participants. As expected, voxels
248 that differentiated accurately between categories were located primarily across the bilateral
249  occipito-temporal cortex (Figure 3B). When tested on the reward learning and decision making
250 phases, the classifier accurately differentiated each category from the others (Faces: g, =
251  0.161, 95% CI = [0.134, 0.189]; Scenes: B, = 0.151, 95% CI = [0.123, 0.180]; Objects: g, =
252 0.066, 95% CI = [0.041, 0.093]; Figure 3C).

253  With a classifier in hand that could distinguish between each category based on BOLD activity
254  patterns seen during the reward learning and decision phases, we were poised to assess the
255  degree to which memories were reactivated for inference, and when. Specifically, to measure
256  memory reactivation, we examined the individual category probabilities from the classifier on
257  every trial, and identified those in which the probability of the associated image category (as
258 opposed to the presented category) was particularly high (see Methods). This analysis allowed
259  us to label every trial as one in which reactivation of the relevant associated category in memory
260 was either likely or unlikely.

261 To determine whether memories were accessed in accordance with the patterns of inference we
262  observed behaviorally, we focused on three main goals for the analyses. First, because
263  participants’ choice behavior at transfer suggested a tradeoff between speed and accuracy most
264  consistent with proactive inference, we sought to examine whether greater memory reactivation
265 during the reward learning phase indeed results in more efficient (faster and more accurate)
266  choices. Second, because we found that this effect was weaker during Fan In compared to Fan
267  Out transfer choices (when there was relatively more retrieval competition between memories
268  during reward learning and less during decision making), we sought to determine whether this
269 behavioral shift was supported by different memory access patterns across conditions. Third, we
270  predicted that it would be most strategic for participants to proactively infer prior to choice time for
271 Fan Out trials, but to reactively infer at choice time for Fan In trials and therefore tested this by
272  characterizing individual differences in memory access between participants.
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274 Figure 4. Proactive inference improves decision making ability. Greater memory reactivation at reward
275 time relative to decision time - a marker of proactive inference - is associated with more effective transfer
276  decisions. A) Correct transfer decisions were more likely for pairs with greater memory reactivation during
277 reward learning relative to decision making. B) Response times were marginally faster for pairs with greater
278 memory reactivation during reward learning relative to decision making. Points represent average
279 performance for each image pair seen by participants. Lines represent regression fits and bands represent
280  95% confidence intervals. Visualizations show data at the stimuli level, and statistical analyses were
281 conducted using mixed effects models that additionally assessed these effects within each participant while
282  accounting for variation across participants.

283  To first examine whether memory access during reward learning leads to more efficient choices,
284  we quantified the difference in memory reactivation during image viewing at reward learning and
285  decision time. This yielded an index of proactive inference for each pair of images. We focused
286  onthe Fan Out condition because the design allowed us to measure reactivation for this condition
287  atboth of these time points (for the Fan In condition, the design only allows measuring reactivation
288  atdecision time; see Methods). When there was more evidence of proactive inference —i.e. when
289  memory reactivation was greater at the time of reward learning relative to that of decision making
290 - transfer choices were both more accurate (Bareqctivation = 0-302, 95% CI = [0.0384,0.593]) and
291 marginally faster (Bareactivation = —37-902, 90% CI = [-75.273, —2.508],95% CI = [—82.823,3.180];
292  Figure 4). This result suggests that using memory to transfer value via proactive inference offers
293 the advantage of more efficient choices in the future.

294  We next examined whether the Fan In and Fan Out conditions affected memory access patterns,
295 focusing on the time of choice because this was the timepoint at which we were best able to
296  assess reactivation in both conditions (see Methods). In line with participants’ behavior, we found
297 that during the decision phase, memories of rewarded consequent images were reactivated more
298 frequently for Fan In than Fan Out transfer decisions (B.onaition = 0-119, 95% CI = [0.051, 0.184];
299  Figure 5A). This result indicates that our manipulation induced increased retrieval competition
300 during Fan Out relative to Fan In transfer decisions. It further provides initial evidence that reactive
301 inference may be more likely to occur when proactive inference is disadvantaged, although
302 reduced Fan Out reactivation could also be consistent with accounts of reactive inference in which
303  memories are retrieved in parallel (a point to which we return in the Discussion).
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Figure 5. Reactive inference is more likely in the Fan In than Fan Out condition. A) Reactivation during
the decision phase was greater for Fan In than Fan Out trials. Filled points represent group-level means,
error bars are 95% confidence intervals, and thin lines represent individual participant slopes (n=39). B)
Greater memory reactivation at decision time, a marker of reactive inference, is associated with less
effective transfer decisions for Fan Out but not Fan In image pairs. Points represent average performance
for each image pair seen by participants. Lines represent regression fits and bands represent 95%
confidence intervals. C) Participants who showed greater reactivation for Fan In relative to Fan Out trials
during decision making also preferentially reactivated more for Fan Out trials during reward learning. Points
represent individual participant means, the line represents a linear regression fit, and the band represents
a 95% confidence interval.

To further investigate the possibility that reactive inference is more likely when proactive inference
is relatively less advantageous, we examined the relationship between decision-time memory
reactivation and behavioral performance. The behavioral findings showed that transfer choices
were both slower and less successful in the Fan Out relative to the Fan In condition (Figure 2C).
This effect may reflect the fact that, due to competition, proactive inference is easier and reactive
inference is correspondingly harder, making it less likely to be successful in the Fan Out condition.
We therefore predicted that the neural measure of memory reactivation at decision time should
likewise be associated with less successful value transfer in the Fan Out condition. Indeed, we
found that Fan Out transfer decisions were less accurate when antecedent memories were
reactivated at decision time (B,.qctivation = —0.300, 95% CI = [—0.625, —0.001]; Figure 5B). Further,
no such effect was found in the Fan In condition (B,cqctivation = —0.086, 95% CI = [—0.255, 0.075];
Supplementary Figure 1). This result lends additional support to the interpretation that the
manipulation of associative structure increased participants’ relative use of reactive inference in
the Fan In condition.

Finally, we assessed the idea that it would be strategic to proactively infer prior to choice time for
Fan Out trials, and to reactively infer at choice time for Fan In trials. We examined whether
individuals who tend to reactivate memories more for Fan In relative to Fan Out trials at decision
time also reactivated memories more for Fan Out trials during the reward learning phase. That is,
we asked whether participants’ ability to appropriately deploy one of these strategies also
predicted appropriate deployment of the other. We found that this was indeed the case—
participants who reactivated memories more for Fan In transfer decisions relative to Fan Out
transfer decisions also reactivated memories for Fan Out stimuli at reward learning (Bareactivation =
0.027, 95% CI = [0.003, 0.050]; Figure 5C). This result suggests that those participants who were
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338  most sensitive to the presence of retrieval competition at either timepoint strategically modulated
339  when they accessed their memories to perform inference.

340 Discussion

341 Research on sequential decision making has found that the process of linking memories to
342  support inference is well described by theories of reinforcement learning that leverage an internal
343  model to guide choice*%910.18.19  Numerous studies have shown that memory-based inference
344  can occur at a number of different timepoints relative to the moment a decision is made'®-
345  12.2122.2526.3637 However, the conditions that lead some memories to be accessed later than
346  others have remained unclear. Here we developed a task to directly test multiple hypotheses
347  about the purpose and adaptability of memory access in inference. Using fMRI to decode patterns
348 of BOLD response unique to the categories of images in memory, we found that participants
349  primarily accessed memories proactively, but this pattern was also sensitive to the situation: when
350 a choice option had multiple past associations, participants were more likely to defer inferring
351  relationships between stimuli and outcomes until decisions were made. This finding suggests that
352  the presence of competition between associations in memory makes their retrieval for use in
353 inference less likely, and runs counter to alternate possibilities in which the opposite may have
354  been true (e.g., if memory reactivation is primarily driven by the imperative to associate reward
355  with related stimuli, one may expect relatively more reactivation for the Fan In condition during
356  reward learning and for the Fan Out condition during choice). We also found neural and behavioral
357  evidence that reinstating memories prior to decision making facilitates faster and more accurate
358 inference, suggesting that it is adaptive to plan in advance when possible. Together, these results
359 indicate that the brain judiciously conducts proactive inference, accessing memories proactively
360 in conditions when this is most favorable.

361 These findings add empirical support to predictions from a recent rational account of when each
362 of these forms of inference is most useful for decision making'®. Specifically, Mattar and Daw
363  (2018) theorized that memories that are particularly likely to increase future expected reward will
364  be prioritized for reinstatement during inference and planning. Formally, they proposed that the
365  expected utility of accessing a past experience can be decomposed into the product of two terms:
366 need and gain. Need quantifies how likely an experience is to be encountered again, and gain
367 captures how much reward is expected from improved decisions if that experience is reinstated.
368 A critical feature of this model is that when the need term dominates, memories tend to be
369 accessed reactively at choice time, but if instead the gain term dominates, memories tend to be
370  accessed proactively following the receipt of reward. The present findings generally support this
371  theory. In particular, gain increases for an antecedent when choices fan out, favoring proactive
372  memory access, while need increases for consequents, promoting reactive choice-time memory
373  access, as they fan in. Thus, antecedents that are associated with many consequents (i.e. that
374  fan out) are more likely to be reinstated upon learning that a consequent is rewarded, because
375  there is much to gain from updating future decisions made upon future encounters with the
376  antecedent. Likewise, antecedents which deterministically lead to a single consequent (i.e. that
377  fan in) imply greater need for that consequent, and are more likely to be reinstated at decision
378 time. Importantly, while our findings are consistent with this theory, they were also designed to be
379  predicted by more intuitive, qualitative reasoning about the degree of competition among different
380 memories, and so go beyond any single theory of prioritization for memory access.

381 In addition to findings from sensory preconditioning demonstrating that humans use memories for
382 inference'"'2, a number of other studies have shown that memory-based inference may also take
383 place offline, during periods of rest or sleep before choice. This approach is advantageous
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384  because it offloads computation to otherwise unoccupied time. In humans, fMRI research has
385 revealed that memories are reactivated during periods of rest following reward?>?* and that this
386 reinstatement can enhance subsequent memory performance® . Importantly, such offline replay
387  of past memories during rest has been shown to facilitate later integrative decisions?>28. Parallel
388 work in rodents has demonstrated that hippocampal replay of previously experienced spatial
389 trajectories is observed during rest and sleep*®2, and that rewarded locations are replayed more
390 frequently?®. These results indicate another way in which inferences may be drawn offline, well
391 before constituent memories are needed for choice. An important direction for future work will be
392  to see if rational considerations, such as sensitivity to competition between memories, also affect
393 the likelihood, or targets of, offline inference.

394 A separate important open question regards the details of how associations between memories
395 are represented in the brain. In other words, what is the nature of the internal model?
396  Computational work on reinforcement learning has identified multiple candidate algorithms that
397 may give rise to the effects reported here. Broadly, these theories posit that agents come to
398  represent associations between states in an internal model, and then, using this model, simulate
399  experiences to discover the consequences of new actions. The process of simulating potential
400 actions can occur in either a forward or backwards manner, and can be based upon internal
401 models with different representational forms. For example, in RL algorithms that employ a full
402  world model, forward simulation is accomplished by adding up expected immediate rewards over
403  some explicit future trajectory (rolled out over a series of one-step associations), while backwards
404  simulation can occur by propagating value information from a destination state to a series of
405 predecessors***. Other algorithms, such as successor'” and predecessor representations, learn
406 temporally abstract state relationships that are aggregated over multiple timesteps, and can be
407  similarly used to compute which states typically follow or precede the present, respectively. Our
408 findings are consistent with either of these frameworks.

409  Moreover, our experimental design is not well positioned to differentiate between them. Using
410  tasks in which future outcomes are separated from the present by multiple steps in space or time,
411 much work has found that people may encode both one-step transitions between states and
412  aggregate summaries of these relationships over multiple timesteps in the form of a successor
413  representation'®'%374° While in such multi-step tasks these approaches often lead to substantially
414  different internal models (and specifically, more efficient noniterative inference for successor
415  representations), on tasks that involve only a one-step relationship between an antecedent and a
416  consequent (such as the task we used here), their internal models are roughly equivalent. For
417  this reason, the results of the current study have no bearing on this distinction. With that said, it
418 is possible that these approaches may differ in their computational costs even in one-step tasks:
419  implementations of the successor representation often assume that all successors are visited in
420 parallel (as by a dot product) whereas those using a full transition model often employ serial
421 rollouts or tree search. Regardless of the form of model participants relied upon to complete the
422  task and the particular steps involved in using it for evaluation, our results are consistent with the
423 idea that proactive inference yields benefits by eliminating the need to retrieve associations
424  between memories at choice time.

425 Relatedly, in our study we are unable to isolate how people may retrieve memories from their
426 internal models. While it is the case that algorithms employing a successor representation
427  typically retrieve states in parallel and those incorporating a full transition model typically do so
428  serially, several formulations exist in which the opposite is true®*=3. Both of these forms of retrieval
429 may have been used to support transfer choices in our task, and we are unable to clearly
430 differentiate between them in the present work. Although our results are broadly consistent with
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431  serial retrieval, reduced reactivation of the rewarded consequent image relative to the other
432  associated consequent image during Fan Out transfer choices (Figure 5A) is also consistent with
433 inference algorithms that retrieve in parallel. This is because parallel retrieval would predict equal
434  reactivation of both consequent stimuli. We note, however, that our other findings are unlikely to
435 be explained by such an account. Determining both the form of representation people use for
436  proactive and reactive inference and how memories are accessed to support inference more
437 broadly remain questions for future research. This is particularly important because the
438 advantages offered by computing value proactively may be offset by using a successor
439  representation for reactive inference in environments with a particularly large temporal horizon or
440  where the reward values of states may change.

441 In connection with these points, recent behavioral work in humans has also shown that efficient
442  one-step predictive representations are used for both forwards prediction at decision time and
443  also backwards prediction in a manner similar to the proactive inference strategy we measured
444  here®. In particular, this study demonstrated that such a strategy is relied upon more often in
445  environments where the number of states that follow a starting state outnumber those that
446  precede a rewarded state. Using a similar manipulation coupled with direct assays of strategy
447 use, our results provide convergent evidence for this idea. Our study further enhances
448 understanding of proactive and reactive approaches to inference by grounding each of these
449  strategies in the mechanisms of memory.

450 A separate avenue for future study that we did not touch upon here involves the role of dopamine
451 in supporting the integration of memories with reward to guide behavior. Although the
452  dopaminergic system has traditionally been thought to support habitual learning from direct
453  experience, recent results suggest that dopamine may also support integrative evaluations of
454  actions through the flexible combination of past experience®®%¢. Our task may provide an
455  opportunity to further elucidate the role of dopamine in this process. Despite being solved in
456  different ways, both of the conditions in our task are dependent upon the flexible expression of
457  knowledge about stimulus associations. Therefore, if dopamine is necessary for the acquisition
458  of model-based associations, as has been recently suggested®®, we expect it to be involved in
459  both conditions equally. This prediction could, for example, be tested by examining how
460 integrative choice behavior in the present task is affected by dopamine depletion in Parkinson’s
461  disease.

462  Other open questions remain about the precise role of memory reactivation in designs such as
463  ours. Following prior research''?, we used stimuli from specific visual categories to measure
464  category-specific BOLD activity as a proxy for memory reactivation. Here, as in this past work, we
465 interpreted memory reactivation in our design as a sign of memory-based inference, or retrieval
466 to transfer reward information across associated states. But another role of reactivation may be
467 to strengthen previously learned associations between individual memories (e.g., to build or
468 update a successor representation as in the Dyna-SR algorithm rather than transferring reward
469  associations as heretofore assumed®***'). It is possible that this mechanism may contribute to the
470 effects reported here; for example, reactivating memories prior to choice (during our reward
471  phase) may prevent forgetting (e.g., by strengthening or updating the associative model), leading
472  to improved inferences in the future (e.g., by manifesting here as changes in reaction times or
473  neural measures of retrieval during the transfer phase). Our study cannot fully rule out this
474  possibility, particularly in how it may contribute to the improved benefits of proactive inference at
475  decision time that we measured for Fan Out stimuli (Figure 4). However, past work on the sensory
476  preconditioning task suggests that reactivation during the reward learning phase likely measures
477  proactive inference, at least in part. Specifically, Kurth-Nelson et al., 2015 found that successful
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478  transfer decisions were associated with greater memory reactivation at outcome time (i.e., during
479 the presentation of reward information). This finding appears to be best explained by proactive
480 inference about reward, which predicts that credit should be assigned to the antecedent at this
481 moment. Outside of this evidence, it is also important to note that the alternative still corresponds
482  with our general framework: associations between memories can be strengthened ahead of time,
483  providing future benefits, or during choices themselves, leading to similar tradeoffs in speed and
484  accuracy. In fact, there are several theoretical accounts in which replay has this effect®®?’.
485 Disentangling these possibilities remains a critical goal for future work. One approach for future
486  studies may be, for example, to include more explicit measures of memory for each stimulus
487  association.

488  Separately, one shortcoming of our study was that, due to our design, we were unable to isolate
489  memory reactivation when consequent images from the Fan In condition were presented during
490 reward learning. In practice, this limited our contrasts between conditions to decision time and our
491  contrasts between timepoints to the Fan Out condition. This was because our metric of memory
492  reactivation was conservative in the sense of being selective to the specific relevant candidate for
493 classification. In particular, in addition to the category actually present on the screen being most
494  strongly decoded, we required that the relevant associate be more strongly activated than the
495 irrelevant foil to declare reactivation successful. However, at reward time in the Fan In condition,
496 both categories are relevant associates, so this comparison was not possible. One possibility to
497  skirt this issue in future work may be to present images of a fourth entirely unrelated category.
498  We did not pursue this direction in the present study to minimize the complexity of the design.
499  Future complementary work may explore these issues in more depth in order to allow for cleaner
500 measurement of reactivation when antecedent images fan in during reward learning.

501 In conclusion, we have demonstrated that the statistical structure of training experience impacts
502  whether inference from memory occurs before or during decision making. This finding suggests
503 that standard prospective inference is not unique, but is instead one of a general set of
504  computations that access memory at different times. Together, these findings further help to
505 explain why different studies have observed memory integration to support choice at different
506 times, and suggest that different inference strategies may be recruited depending on their efficacy
507 for the task at hand.

508 Methods

509 Participants

510 A total of 40 participants (19 M, 21 F) between the ages of 18 - 35 were recruited from the
511  Columbia University community. Participants were right-handed, had normal or corrected-to-
512  normal vision, took no psychiatric medication, and had no diagnosis of psychological disorders.
513  One participant was removed from the analyses due to both failing to understand the instructions
514  of the task and missing responses on over half of the decision trials. The remaining 39 participants
515 had a mean age of 21.9 with a range of 19-35 and were included in the reported sample. No
516  statistical method was used to predetermine sample size. Informed consent was obtained at the
517  beginning of the session and all experimental procedures were approved by the Columbia
518  University Institutional Review Board.

519 Experimental Task

520 Participants completed a three-part associative learning task while undergoing an fMRI scan. In
521 the first phase of the experiment, stimulus learning, participants were tasked with learning pairs
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522  of images presented one at a time. Each trial consisted of a single image (A; 1.5s), followed by a
523 interstimulus interval in which a fixation cross was displayed (exponentially jittered with mean=3s,
524  min=0.5s, max=12s), followed by another image (B; 1.5s), and finally an intertrial interval in which
525  another fixation cross was displayed (exponentially jittered with mean=3s, min=0.5s, max=12s).
526 In order to ensure that participants were paying attention, they were asked to press a button box
527  with their index finger for the first image and with the middle finger for the second image in a pair.
528 Participants were shown 16 different pairs of images 5 times each for a total of 80 trials. Trials
529  were spread across two runs of 40 trials each. Images came from one of three categories, either
530 aface, a scene, or an object. In the second phase of the experiment, reward learning, participants
531  were tasked with learning that a subset of B images from the stimulus learning phase led
532  deterministically to reward, while another subset of images led deterministically to a neutral
533  outcome. Each trial consisted of a single image (1.5s), followed by an interstimulus interval in
534  which a fixation cross was displayed (2s), followed by the outcome (either a dollar bill or a gray
535 rectangle; 1.5s), and then finally an intertrial interval (exponentially jittered with mean=2.5s,
536 min=0.5s, max=10s). Participants were told to withhold a response for the image and to respond
537  with their index finger when a dollar was shown and with their middle finger when a gray rectangle
538  was shown. Participants saw each of 8 images 10 times for a total of 80 trials. Trials were spread
539  across two runs of 40 trials each. During the third and final phase of the experiment, the decision
540 phase, participants were tasked with deciding between two images of the same category (either
541 A v. A or B v. B) presented on the screen simultaneously. Each trial consisted of a choice
542  (max=2s), a confirmation in which a green rectangle appeared around their choice (2s-reaction
543  time), and then an intertrial interval (exponentially jittered with mean=2.5s, min=0.5s, max=10s).
544  Participants pressed with their index finger to choose the image on the left hand side of the screen
545  and with their middle finder to choose the image on the right hand side of the screen. Participants
546  made 78 choices across a single run of this phase. Interstimulus intervals and trial ordering was
547  optimized to minimize the correlation between events throughout each phase of the task.

548  The pairs of stimuli presented throughout the experiment fell into one of two conditions that were
549  unknown to participants: Fan Out and Fan In trials. Fan Out trials consisted of one A image that
550 could be followed by either of two B images, while Fan In trials consisted of either of two A images
551  followed by one B image. During stimulus learning, eight pairs of images fanned in, while another
552  eight fanned out. Of the eight pairs from each condition, there were two pairs of images for each
553  of four possible combinations (e.g. Fan In: A1-B1; A2-B1; A4-B4; A5-B4; Fan Out: A3-B2; A3-B3;
554  A6-B5; A6-B6). During reward learning, four B images from each condition were shown (e.g. Fan
555 In: B2 x2; B5 x2; Fan Out: B1 x2; B4 x2) such that two from each condition were paired with
556 reward (e.g. Fan In: B1; Fan Out: B2) and two were paired with a neutral outcome (e.g. Fan In:
557  B4; Fan Out: B5). B3 and B6 stimuli were not shown during this phase and were not associated
558  with any outcome. Finally, during the decision phase, participants made choices between B
559 images that had been directly associated with a reward or neutral outcome (test choices) and
560 between A images that had been indirectly associated with these outcomes (transfer choices).
561 Test (e.g. Fan In: B1 v B4; Fan Out: B2 v B5) and transfer (e.g. Fan In: A1 v A4; A2 v A5; Fan
562  Out: A3 v A6) choices were made between images from the same condition, and never between
563 images from different conditions.

564  Participants were told prior to starting the task that they would need to use the associations they
565 learned throughout the first two phases of the experiment in order to make choices in the final
566 phase. They were given a cover story to aid their learning throughout the task. Specifically,
567  participants were told that they were a photographer visiting a new city and would be taking
568 different buses to different locations. At each location, they would be shown a picture they had
569 taken there, and the purpose of the first phase was to learn which photos were taken along each
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570 bus route. Then, during the reward learning phase, participants were told that they had returned
571  from their trip and had sent their photos to clients for potential purchase. They were then shown
572  which photos had been purchased and which had not, and their goal was to learn this information.
573  Lastly, during the decision phase, participants were told that they were planning a new trip to the
574  city and were tasked with deciding between bus routes (represented by photos taken on each
575  route) that would take them to locations where they had taken photos their clients purchased.
576  Participants were instructed to use what they had learned (i.e. which photos were taken along the
577  same route and which were or were not purchased) to inform their choices.

578 MRI Acquisition

579  MRI data were collected on a 3 T Siemens Magnetom Prisma scanner with a 64-channel head
580 coil. Functional images were acquired using a multiband echo-planer imaging (EPI) sequence
581 (repetition time = 1.5s, echo time = 30ms, flip angle = 65°, acceleration factor = 3, voxel size = 2
582 mmiso, acquisition matrix 96 x 96). Sixty nine oblique axial slices (14° transverse to coronal) were
583 acquired in an interleaved order and spaced 2mm to achieve full brain coverage. Whole-brain
584  high resolution (1 mm iso) T1-weighted structural images were acquired with a magnetization-
585  prepared rapid acquisition gradient-echo (MPRAGE) sequence. Field maps consisting of 69
586  oblique axial slices (2 mm isotropic) were collected to aid registration.

587 Imaging Data Preprocessing

588  Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.6,
589  which is based on Nipype 1.7.0.%7

590 Anatomical Data Preprocessing

591  Each participant’s T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
592  with N4BiasFieldCorrection®®, distributed with ANTs 2.3.3%° and used as a reference image
593 throughout the workflow. The reference image was then skull-stripped with
594  a Nipype implementation of the antsBrainExtraction.sh workflow (from  ANTs), using
595 OASIS30ANTSs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
596  matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast®® (FSL
597  5.0.9). Volume-based spatial normalization to the ICBM 152 Nonlinear Asymmetrical template
598  version 2009c¢ (MNI152NLin2009cAsym) standard space was performed through nonlinear
599 registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both the T1w
600 reference and the T1w template images.

601 Functional Data Preprocessing

602  For each of the 5 BOLD runs per participant (two stimulus learning runs, two reward learning runs,
603  and one choice run), the following preprocessing was performed. First, a reference volume and
604 its skull-stripped version were generated using a custom methodology of fMRIPrep. A BO-
605  nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI)
606 references with opposing phase-encoding directions, with 3dQwarp®' (AFNI 20160207). Based
607 on the estimated susceptibility distortion, a corrected EPI reference was calculated for a more
608 accurate co-registration with the anatomical reference. The BOLD reference was then co-
609 registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based
610 registration®®. Co-registration was configured with six degrees of freedom. Head-motion
611 parameters with respect to the BOLD reference (transformation matrices, and six corresponding
612 rotation and translation parameters) were estimated before any spatiotemporal filtering

17 of 25


https://doi.org/10.1101/2023.12.10.570977
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.10.570977; this version posted December 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

613  using mcflirt®® (FSL 5.0.9). BOLD runs were slice-time corrected to 0.708s (0.5 of slice acquisition
614  range 0s-1.42s) using 3dTshift from AFNI 20160207°". The BOLD time-series (including slice-
615 timing correction when applied) were resampled onto their original, native space by applying a
616  single, composite transform to correct for head-motion and susceptibility distortions. The BOLD
617  time-series were resampled into standard space, generating a preprocessed BOLD run in
618  MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were
619  generated using a custom methodology of fMRIPrep. Several confounding time-series were
620 calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three
621 region-wise global signals. FD was computed using two formulations following Power (absolute
622 sum of relative motions)® and Jenkinson (relative root mean square displacement between
623 affines)®®. FD and DVARS are calculated for each functional run, both using their implementations
624  in Nipype. The three global signals are extracted within the CSF, the WM, and the whole-brain
625 masks. The head-motion estimates calculated in the correction step were also placed within the
626  corresponding confounds file. The confound time series derived from head motion estimates and
627  global signals were expanded with the inclusion of temporal derivatives and quadratic terms for
628 each®. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were
629  annotated as motion outliers. All resamplings can be performed with a single interpolation step by
630 composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility
631  distortion correction when available, and co-registrations to anatomical and output spaces).
632 Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTSs),
633  configured with Lanczos interpolation to minimize the smoothing effects of other kernels®.
634  Preprocessed data were lastly smoothed using a Gaussian kernel with a FWHM of 6.0mm,
635 masked, and mean-scaled over time.

636  Functional Imaging Data Analysis
637  Beta Series Modeling

638 Least squares separate (LSS) models were generated for each event (presentation of a category
639 image) in each task following the method described in Turner et al., 2012% using Nistats 0.0.1b2.
640  For each trial, preprocessed data were subjected to a general linear model in which the trial was
641  modeled in its own regressor, while all other trials from that condition were modeled in a second
642  regressor, and other conditions were modeled in their own regressors. Each condition regressor
643 was convolved with the glover hemodynamic response function for the model. In addition to
644  condition regressors, 36 nuisance regressors were included in each model consisting of two
645 physiological time series (the mean WM and CSF signals), the global signal, six head-motion
646  parameters, their derivatives, quadratic terms, and squares of derivatives. Spike regression was
647  additionally performed by including a regressor for each motion outlier identified in each run, as
648 in Satterthwaite et al., 2013%. A high-pass filter of 0.0078125 Hz, implemented using a cosine
649  drift model, was also included in each model and AR(1) prewhitening was applied to each model
650 to account for temporal autocorrelation. After fitting each model, the parameter estimate (i.e.,
651 beta) map associated with the target trial's regressor was retained and used for further analysis.
652  Modeling was performed using NiBetaSeries 0.6.0%” which is based on Nipype 1.4.2.5” Beta maps
653 for image presentation events, separated by category, for the stimulus learning and reward
654 learning phases and for decisions between images, again separated by category, were used in
655 subsequent analyses.

656  Multivariate Pattern Decoding Analysis

657 Beta maps from each trial were next used for multivariate pattern analysis. First, a searchlight
658 classification analysis was conducted for each participant. In brief, a three-way one versus all
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659 logistic regression classifier was trained to distinguish categories using leave-one-run-out cross
660 validation from runs of the stimulus learning task. We used winner-take-all labeling to determine
661 the classified label from each ftrial: the category resulting in the highest probability from the one
662  versus all classification procedure on a given trial was selected as the predicted label for that trial.
663 Input data were selected using a spherical searchlight (radius = 2 voxels) moved around the whole
664  brain. Although the experimental design leads the class labels for each category to be imbalanced
665  during the stimulus learning phase (i.e. one label always has twice as many occurrences as the
666  other two), we dealt with this label imbalance in two ways. First, the class weights applied to each
667  category by the classifier were determined using the ‘balanced’ keyword in sklearn®® such that the
668  weights were the number of samples divided by the number of labels (3) multiplied by the total
669  number of occurrences of each label. Second, our metric of performance was the weighted-F1
670  score, which is the harmonic mean of precision and recall. Each of these methods are commonly
671 used in the machine learning literature to deal with class imbalance in training data. For each
672  searchlight sphere, we additionally computed chance performance via a permutation test: labels
673  were shuffled 1000 times and the weighted F1-score resulting from each of these permutations
674 was computed. Chance classification performance was then calculated as the 95" percentile of
675 the F1-score permutation distribution. For each voxel, we then subtracted chance level
676 performance from the classification accuracy to produce a map of corrected classification
677  performance for each participant. Finally, an FDR-corrected (q<0.05) group-level map over all
678 individual participant difference maps was created.

679  Following classifier training on the stimulus learning phase, we then tested the classifier on runs
680 from both the reward learning and decision phases. Functional data from each participant on each
681  of these phases of the experiment was first masked using the group-level searchlight map
682  produced from the previously described procedure. The three-way logistic regression classifier
683  was then re-trained on both runs of the stimulus learning phase, using only these voxels, and then
684 tested separately on the reward learning and decision phases. L1-regularization was used to
685  reduce overfitting in this procedure. We again used the weighted F1-score as our accuracy metric,
686 and the 95" percentile of the permutation distribution as our measure of chance classifier
687  performance.

688  Finally, to address our primary question, we created an index of memory reactivation from the
689 classifier. Specifically, for each trial, we extracted the probability that the classifier assigned to
690 each category label. A trial was then considered a trial on which memory reactivation occurred if
691  the following criteria were met: i) the true category label was assigned the highest probability by
692 the classifier and ii) the associated category was assigned the second highest probability by the
693 classifier. If these criteria were met, the trial was assigned a one and, if not, a zero. Our logic for
694  using this criteria was conservative: we reasoned that the classifier should always assign the
695 highest probability to the category represented by the image that is presently shown on the
696  screen. Because, by definition, both off-screen categories were candidates for association when
697  presented as part of Fan In trials during the reward learning phase, we were unable to calculate
698  a reactivation score for these trials. We were further limited in our ability to compare reactivation
699  across phases because the classifier was more accurate at identifying category images presented
700  during the decision phase than during the reward learning phase. This is problematic because
701  lower classification accuracy causes lower reactivation scores because fewer trials satisfy the
702  criteria outlined above. We were, however, able to investigate individual differences in reactivation
703  for Fan Out trials between phases by accounting for this difference in classification performance
704 by z-scoring reactivation scores within each phase, as this removes group-level differences while
705 leaving individual differences intact. These standardized reactivation scores were used only for
706  analyses involving comparison between phases of the experiment.
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707  Regression Analyses

708  Unless otherwise noted, parameters for all regression models described here were estimated
709 using hierarchical Bayesian inference such that group-level priors were used to regularize
710  participant-level estimates. The joint posterior was approximated using No-U-Turn Sampling®® as
711 implemented in stan. Four chains with 2000 samples (1000 discarded as burn-in) were run for a
712 total of 4000 posterior samples per model. Chain convergence was determined by ensuring that
713  the Gelman-Rubin statistic R was close to 1. Default weakly-informative priors implemented in the
714  rstanarm’™ package were used for each regression model. For all models, fixed effects are
715  reported in the text as the mean of each parameter’s marginal posterior distribution alongside
716 95% or 90% credible intervals, which indicate where that percentage of the posterior density falls.
717  Parameter values outside of this range are unlikely given the model, data, and priors. Thus, if the
718  range of likely values does not include zero, we conclude that a meaningful effect was observed.

719  We first assessed choice performance on the decision phase of the task. For each participant. s
720  and trial t, a mixed effects logistic regression was used to predict if the correct image was chosen:

721 €Y) p(Correct,) = a(By + by + Condition,(By + by s¢)))
722 ) o(x) =

1+e™™

723  where Correct was equal to 1 if the participant chose either the image directly associated with
724  reward (in the case of test trials) or the image indirectly associated with reward (in the case of
725  ftransfer trials), and Condition was a categorical variable coded as 0.5 for Fan In trials and -0.5
726  for Fan Out trials. This model was fit separately for test and transfer choices.

727  We also assessed the relationship between response time and accuracy during transfer choices
728  using the following mixed effects logistic regression, which included an additional main effect of
729  response time as well the interaction between response time and condition:

730  (3) p(Correct,)
731 = d(Bo + bosje + Condition, * (B; + byse) + RTy * (B, + bysy) + Condition, X RT, * (5
732 + b3 5e) )

733  where RT was the response time on each transfer choice ftrial.

734  We determined the ability of the trained MVPA classifier to distinguish each category label from
735  chance using the following mixed effects linear regression:

736 4 Accuracy — Chance = By + by sy} + Phase,(8; + by sp¢1)

737  where Accuracy — Chance was the 95" percentile of the permutation distribution subtracted from
738  classification accuracy, and Phase was a categorical variable coded as 0.5 for the decision phase
739 and -0.5 for the reward learning phase. This model was fit separately for each category (face,
740  scene and object).

741 Another set of models was fit to assess the relationship between memory reactivation and transfer
742  choice behavior. Analyses were conducted on the average reactivation level of each stimulus. In
743  order to assess effects of reactivation on transfer accuracy for each stimulus, i, accuracy was first
744  transformed’” to ensure that all responses fell within the interval (0,1):

TransAcc;(N —1) + 0.5

745 5) TransAcc'; = N
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746  where TransAcc was participants’ average transfer accuracy for each consequent stimulus and
747 N was the sample size (39). We first examined the effect of (z-scored) differences in reactivation
748  between the reward learning and decision phases for each associated antecedent-consequent
749  pair of Fan Out stimuli on transfer accuracy. To do so, we fit a mixed effects beta regression:

750 (6) logit(TransAcc';) = By + bo ;) + AReactivation,(B; + by s;1))

751  where AReactivation is the difference in memory reactivation between reward learning and the
752  decision phase for each pair. Similar beta regressions were used to assess effects of memory
753  reactivation during the decision phase for Fan In and Fan Out consequent stimuli, separately. To
754  assess effects on choice transfer response time, linear mixed effects regressions with the same
755  predictors were used instead.

756  We additionally assessed how memory reactivation differed for each condition (Fan In or Fan Out)
757  during the decision phase. We performed this analysis using the following mixed effects linear
758  regression:

759 (7 Reactivation = [, + by ; + Condition(f; + b, 5)

760  where Reactivation was memory reactivation during the decision phase for each participant and
761  condition and Condition was coded identically to the models described above.

762  Lastly, we examined individual differences in strategy usage by comparing our reactivation
763  measures across phases of the task. Specifically, we fit a simple linear regression predicting each
764  participants’ average level of memory reactivation for Fan Out during reward learning from their
765  difference in memory reactivation during the decision phase.

766  Data Availability

767  The data that support the findings of this study are available in GIN with identifier: 10.12751/g-
768  node.eeSwx3

769  Code Availability

770  The code used to generate the results of this study are available as a CodeOcean capsule with
771 identifier: 10.24433/C0.2559896.v1
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