

1 RNA polymerase III is involved in regulating *Plasmodium falciparum* 2 virulence

3
4 **Gretchen Diffendall,^{1,2} Aurélie Claës,¹ Anna Barcons-Simon,^{1,2,3} Prince Nyarko,⁴ Florent Dingli,⁵**
5 **Miguel Santos,⁶ Damarys Loew,⁵ Antoine Claessens,^{4,7} and Artur Scherf^{1,*}**

6 *Institut Pasteur, ¹Université Paris Cité, INSERM U1201, CNRS EMR9195, Paris, France.*

7 *²Sorbonne Université Ecole doctorale Complexité du Vivant ED515, Paris, France.*

8 *³Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-*
9 *Universität München, Munich 82152, Germany*

10 *⁴ Laboratory of Pathogen–Host Interaction (LPHI), CNRS, University of Montpellier, France*

11 *⁵Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry*
12 *Proteomics, Paris, France*

13 *⁶ Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de*
14 *Lisboa, Lisboa, Portugal*

15 *⁷ LPHI, MIVEGEC, CNRS, INSERM, University of Montpellier, France*

16 **Corresponding author: artur.scherf@pasteur.fr*

17

18

19

20 **Abstract:**

21 While often undetected and untreated, persistent seasonal asymptomatic malaria infections
22 remain a global public health problem. Despite the presence of parasites in the peripheral
23 blood, no symptoms develop. Disease severity is correlated with the levels of infected red
24 blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have
25 been linked to seasonal asymptomatic malaria infections, however how this is occurring is
26 still unknown. Here we present evidence that RNA polymerase III (RNA Pol III) transcription
27 in *Plasmodium falciparum* is downregulated in field isolates obtained from asymptomatic
28 individuals during the dry season. Through experiments with in vitro cultured parasites, we
29 have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation
30 and expression of a major virulence factor in response to external stimuli. Our findings
31 establish a connection between *P. falciparum* cytoadhesion and a non-coding RNA family
32 transcribed by Pol III. Additionally, we have identified *P. falciparum* Maf1 as a pivotal
33 regulator of Pol III transcription, both for maintaining cellular homeostasis and responding
34 adaptively to external signals. These results introduce a novel perspective that contributes to
35 our understanding of *P. falciparum* virulence. Furthermore, they establish a connection
36 between this regulatory process and the occurrence of seasonal asymptomatic malaria
37 infections.

38

39 **Introduction:**

40 The parasite *Plasmodium falciparum* is responsible for the deadliest form of human malaria
41 that annually affects over 200 million people, with 619,000 fatal cases, majorly African
42 children under the age of 5. The disease is transmitted to its human host during a blood meal
43 by the parasites' vector, *Anopheles* mosquitoes. Disease symptoms are seen while the parasite
44 multiplies asexually within the host RBCs. During this time, variant surface antigens (VSAs)
45 are exported and displayed on the surface of the iRBCs (Wahlgren *et al*, 2017). During the
46 ~48-hour asexual intraerythrocytic developmental cycle (IDC), the parasite develops through
47 different morphological stages: ring (circulating), trophozoite, and schizont (sequestered in
48 capillaries). Expression of one type of VSA that is linked to immune evasion and
49 pathogenesis, termed *P. falciparum* erythrocyte membrane protein 1 (PfEMP1) (Leech *et al*,
50 1984), can bind to a wide range of receptors on endothelial cells such as CD36. PfEMP1
51 binding mediates adhesion to the vascular endothelium within the host, thereby preventing
52 mature iRBCs from traveling to, and being cleared by, the spleen (Smith *et al*, 2013).
53 *Plasmodium* parasites replicate via schizogony inside the host RBCs generating the infectious
54 form, termed merozoites. Upon bursting of the iRBC, merozoites invade new RBCs, thus
55 enabling the cycle to restart. The number of merozoites per schizont has been shown to reduce
56 in unfavorable conditions as a way to diminish the total parasite load and therefore overall
57 disease severity (Mancio-Silva *et al*, 2017b).

58

59 *P. falciparum* chronic infection relies largely on mutually exclusive expression of PfEMP1
60 surface adhesins, that are encoded by the *var* virulence gene family (Scherf *et al*, 1998; Smith
61 *et al*, 1995; Guizetti & Scherf, 2013). The expression of *var* genes, while under tight
62 epigenetic regulation by the parasite, is additionally controlled by a family of ncRNA, termed
63 RUF6. *P. falciparum* 3D7 encodes 15 RUF6 genes dispersed over several chromosomes
64 located adjacent to central *var* genes (Gardner *et al*, 2002). RUF6 ncRNA have been observed
65 to associate with the active *var* gene in *trans* and transcriptional repression disrupts the
66 monoallelic expression of *var* genes by down-regulating the entire *var* gene family (Barcons-
67 Simon *et al*, 2020; Guizetti *et al*, 2016). Genetically modified parasites that express the entire
68 RUF6 gene family show a general upregulation of *var* genes (Zhang *et al*, 2014; Fan *et al*,
69 2020).

70

71 *P. falciparum* virulence is linked to cytoadhesion and sequestration as a result of reduced
72 clearance of iRBCs in the spleen and increased microcapillary obstruction and local
73 inflammation (Miller *et al*, 2002). Substantial sequestration of iRBCs in critical target organs
74 has been associated with severe malaria (Miller *et al*, 2013; Guillochon *et al*, 2022). In long-
75 term asymptomatic infections, found during prolonged low transmission dry seasons in
76 malaria-endemic regions, decreased cytoadhesion and longer circulation time of iRBCs in the
77 blood has been observed (Andrade *et al*, 2020). It is not fully understood how asymptomatic
78 infections develop and are maintained nor is a molecular understanding of host and parasite
79 factors, that underlies disease severity during the dry and wet seasons (reviewed in (Zhang &
80 Deitsch, 2022)). Disease severity appears to be influenced by a variety of factors derived from
81 the human host, parasite, and environment. *Plasmodium* parasites are auxotrophic for various
82 nutrients including glucose, certain types of amino acids, and lipids, which must be obtained
83 from the host. Physiological conditions in the host, like diabetes, pregnancy, diet, and
84 immunity can change the metabolic environment the parasites are exposed to. Numerous
85 studies conclude that host immunity is a contributing factor to the maintenance of
86 asymptomatic infections (Kimenyi *et al*, 2019). While it is proposed that *P. falciparum*
87 virulence regulation contributes to decreased endothelial binding, the mechanism and factors
88 involved remains to be determined.

89 Almost all eukaryotes use conserved nutrient sensing pathways, including mTOR, GCN2,
90 GCN5, Rgt2/Snf3, and Snf1/AMPK signaling cascades (reviewed in (Kumar *et al*, 2021)).
91 Most notably, the target of rapamycin complex (TORC) pathway involves the signaling of
92 external factors to control many cellular processes (Wullschleger *et al*, 2006). Specifically,
93 TORC participates in the regulation of RNA Pol III activity via the phosphorylation of its
94 inhibitor, Maf1. When nutrients are available and mTOR kinase is active, Maf1 is
95 hyperphosphorylated resulting in an inactive cytoplasmic state. Stress-induced Maf1
96 dephosphorylation results in nuclear localization and inhibition of RNA Pol III (Pluta *et al*,
97 2001; Rollins *et al*, 2007; Vannini *et al*, 2010). This pathway responds to a range of positive
98 and negative external stimuli, most notably the presence of amino acids, that drive or inhibit
99 cellular growth. The majority of the TORC pathway components are lost in the apicomplexan
100 lineage (McLean & Jacobs-Lorena, 2017; Serfontein *et al*, 2010; van Dam *et al*, 2011). While
101 *P. falciparum* encodes none of the core TORC1 components, it does contain a homologue to
102 Maf1 (McLean & Jacobs-Lorena, 2017). The biology of *P. falciparum* Pf-Maf1 is still poorly
103 characterized.

104 Here, we present data showing inhibition of RNA Pol III transcription in field isolates from
105 asymptomatic individuals during the dry season. We present evidence for *P. falciparum* Maf1
106 as a negative regulator of RNA Pol III-transcribed genes including tRNA and RUF6 ncRNA,
107 and demonstrate that this mechanism is responsive to external stimuli using *in vitro* culture.
108 Inhibition of *P. falciparum* cytoadherence, via the regulation of RNA Pol III activity,
109 represents a new paradigm contributing to *P. falciparum* virulence and links this process to
110 seasonal asymptomatic malaria infections.

111 **Results:**

112 **RUF6 ncRNA is downregulated in asymptomatic individuals during the dry season**

113 We and others have previously established the role of the 15-member RUF6 ncRNA gene
114 family in *P. falciparum* *var* gene expression (Barcons-Simon *et al*, 2020; Diffendall *et al*,
115 2022; Fan *et al*, 2020; Guizetti *et al*, 2016). RUF6 ncRNA protein complex associates with
116 the active *var* gene expression site (Diffendall *et al*, 2022; Guizetti *et al*, 2016), and
117 knockdown of the ncRNA RUF6 gene family dramatically reduced *var* gene transcription
118 (Barcons-Simon *et al*, 2020). Bioinformatic analysis identified highly conserved RNA Pol III
119 binding elements (conserved A- and B-box sequence) within RUF6 genes (Guizetti *et al*,
120 2016) (Figure S1A), hinting at a role for RNA Pol III in virulence gene regulation. Thus, we
121 determined the effects of RNA Pol III inhibition on gene transcription in synchronized wild
122 type parasites. We observed downregulation of tRNA and RUF6 transcription after 21 hours
123 of treatment with a commercially available RNA Pol III inhibitor (Figure S1B). As expected,
124 no changes were observed in the transcription of an RNA Pol II-regulated gene, *uce*
125 (ubiquitin-conjugating enzyme, PF3D7_0812600) (Figure S1B). As predicted from the RUF6
126 sequence, our data provide direct experimental evidence for RNA Pol III-dependent
127 transcription of RUF6 genes.

128

129 We next wanted to determine if RNA Pol III-transcribed genes, specifically RUF6 ncRNA,
130 varied between parasites causing different clinical states of malaria infection, since previous
131 studies did not include RNA Pol III-transcribed genes for their data analysis (Andrade *et al*,
132 2020). We first re-analyzed raw RNA-seq data, from a previous study that compared parasites
133 infecting individuals during the dry versus wet season in a malaria endemic region of Mali
134 (Andrade *et al*, 2020), to include these genes. We were able to retrieve transcriptional data for
135 two RNA Pol III-transcribed tRNAs (tRNA Leucine Pf3D7_API05400 and tRNA Asparagine
136 Pf3D7_API05500, Figure S2A), both of which show significantly lower levels in parasites

137 infecting asymptomatic individuals during the dry season (n = 12) when compared to
138 parasites infecting symptomatic individuals during the wet season (n = 12).

139

140 We further investigated whether RNA Pol III modulates gene transcription in field isolates of
141 *P. falciparum* from different individuals infected during the wet and dry season in malaria
142 endemic regions (The Gambia). In this pilot study, we analyzed *P. falciparum* steady state
143 levels of RNA in venous blood samples taken from individuals with asymptomatic
144 parasitemia during the dry season (n = 17), as well as mildly symptomatic malaria infections
145 during the wet season (n = 14) in The Gambia (Collins *et al*, 2022; Fogang *et al*, 2023). RT-
146 qPCR of total RNA showed that levels of tRNAs (Asparagine and Valine) were significantly
147 lower ($p < 0.05$) in parasites from asymptomatic infections during the dry season compared to
148 parasites causing symptomatic infections during the wet season (Figure 1A, B). Likewise,
149 RUF6 ncRNA was significantly downregulated ($p < 0.005$) in parasites from asymptomatic
150 infections during the dry season when compared to symptomatic infections during the wet
151 season (Figure 1C). Expression was normalized to a housekeeping gene encoding fructose
152 bisphosphate aldolase (Pf3D7_1444800).

153

154 The same previous study, mentioned above, also showed that *var* gene transcription varied in
155 parasites infecting individuals during the dry versus wet seasons (Andrade *et al*, 2020). We
156 observed a significantly lower level of *var* gene transcription ($p < 0.005$) in parasites taken
157 from asymptomatic individuals during the dry season compared to those taken from
158 symptomatic individuals during the wet season (Figure 1D). The observed lower transcript
159 levels of *var* genes may be a direct result of reduced RUF6 ncRNA levels. Taken together,
160 our results reveal that levels of RNA Pol III-transcribed genes, particularly the regulatory
161 RUF6 ncRNA, varies significantly between two different clinical states and seasons.

162

163 **164 The environmental factor, magnesium, plays a regulatory role in genes transcribed by
RNA Polymerase III**

165 In studies of malaria infections, variations in metabolite levels were observed between
166 symptomatic and asymptomatic cases across wet and dry seasons. However, the data did not
167 pinpoint any particular factor that could be reliably linked to a specific condition of the
168 disease (Andrade *et al*, 2020). Other clinical studies investigated the correlation between
169 macro- and micro-mineral concentrations and disease severity. In one study, it was discovered

170 that levels of serum MgCl₂ were lower in cases of more severe malaria infections (Innocent *et*
171 *al*, 2013). We chose to analyze plasma samples from individuals participating in the same
172 study as referenced in Figure 1, focusing on magnesium concentrations. Our findings show a
173 significant increase in MgCl₂ levels in asymptomatic individuals during the dry season
174 compared to symptomatic individuals in the wet season, as depicted in Figure 2A.

175 Our subsequent aim was to delve into the potential molecular mechanisms connecting
176 external factors, like magnesium, with the changes in RUF6 ncRNA levels as shown in Figure
177 2B. For this, we employed in vitro cultured *P. falciparum* asexual blood stage parasites. We
178 supplemented culture medium with MgCl₂, noted for its varying levels in individuals with
179 malaria (see Figure 2A). In addition, we mimicked nutrient deprivation with isoleucine-
180 deprived culture medium (as was described in (Babbitt *et al*, 2012; McLean & Jacobs-Lorena,
181 2017)), fever conditions with incubation at 40°C, and food starvation with low glucose levels
182 (Jensen *et al*, 1983; Fang *et al*, 2004). We evaluated the steady state levels of RNA Pol I-
183 (rRNA A1), RNA Pol II- (UCE and the active *var*), and RNA Pol III- (tRNA Valine and
184 RUF6 ncRNA) transcribed genes in clonal parasites at late ring stage. We observed that high
185 temperature and low glucose conditions affected gene transcription of RNA Pol I, II and Pol
186 III (Figure S2B). Deprivation of isoleucine and MgCl₂ supplementation seemingly affected
187 only RNA Pol III-transcribed genes with the exception of the RNA Pol II-transcribed active
188 *var* gene, Pf3D7_1240900, likely as a result of decreased RUF6 ncRNA as was reported
189 earlier (Barcons-Simon *et al*, 2020).

190 To explore the underlying molecular pathway that leads to the downregulation of RNA Pol III
191 activity in malaria parasites, we continued using MgCl₂ supplementation. We selected a
192 concentration of 3mM total MgCl₂, based on reports indicating it does not inhibit the growth
193 of *P. falciparum* asexual blood stage and is within a physiological range (Jahnen-Dechent &
194 Ketteler, 2012; Hess *et al*, 1995). Additionally, we verified lower magnesium concentrations
195 and show as low as 1mM total MgCl₂, observed in healthy individuals, impacts both Pol III-
196 transcribed RUF6 and tRNA, while not affecting Pol II-transcribed UCE (Figure S3B). RNA-
197 seq was done on control and MgCl₂ supplemented cultured parasites during two time points
198 of the asexual blood stage parasites (ring and trophozoite) to further confirm that RNA Pol III
199 is the main target (Figure 2C, D). RNA-seq data was compared to the microarray time course
200 data in (Bozdech *et al*, 2003) as in (Lemieux *et al*, 2009), which provided a statistical

201 estimation of cell cycle progression at 12 and 24 hpi in both control and MgCl₂ supplemented
202 parasites (Figure S3B).

203 These data indicate that any differences in transcription were due to MgCl₂ supplementation
204 and not differences in cell cycle progression. During ring stage (Figure 2C), 77% of the
205 down-regulated genes contain typical RNA Pol III promoter sequences, A- and B-box
206 consensus (from Figure S1A). A total of 27 ncRNA genes were downregulated (logFC < 1.95,
207 FDR < 0.05) including all 15 RUF6 ncRNA, 6 tRNAs, 1 spliceosomal RNA, and 4 snoRNA.
208 Additionally, 12 protein coding genes were up-regulated with no conserved pathway nor
209 molecular or biological process. During trophozoite stage (Figure 2D), 74% of the down-
210 regulated genes have typical RNA Pol III promoter sequences. This demonstrates that MgCl₂
211 supplementation predominantly inhibits RNA Pol III-transcribed genes, including the entire
212 RUF6 gene family.

213

214 **Nuclear PfMaf1 protein is essential to regulate RNA Pol III**

215 In almost all eukaryotes, the target of rapamycin complex (TORC) pathway has been shown
216 to participate in the regulation of RNA Pol III activity via the phosphorylation of its only
217 known inhibitor, Maf1 (Figure 3A, reviewed in (Wullschleger *et al*, 2006)). Upon
218 phosphatase activation, modulated in response to external stimuli such as low nutrient
219 availability, Maf1 shuttles to the nucleus to repress RNA Pol III activity (Michels *et al*, 2010).
220 Because Maf1 is conserved in the apicomplexan lineage, a predicted essential blood stage
221 protein in *P. falciparum*, we set out to explore if *P. falciparum* Maf1 (PfMaf1) functions
222 similarly to model eukaryotes. We generated a PfMaf1 parasite line tagged with a 3HA tag
223 and a ligand-controlled destabilization domain (ddFKBP), PfMaf1-FKBP (Figure 3B top).
224 PfMaf1-FKBP transfected parasite clonal populations were validated for proper integration
225 and confirmation that the system was working, shown by western blot for addition and
226 removal of the ligand, Shield-1, over the course of 3 cycles (Figure 3B bottom). We observed
227 that upon removal of Shield-1, PfMaf1 levels were shown to decrease by approximately 57%
228 in total extracts after one cycle and almost complete degradation was achieved after 2 cycles.

229

230 Maf1 in Plasmodium species seemingly affects asexual blood stage proliferation making
231 classical gene KO experiments unattainable (McLean & Jacobs-Lorena, 2017; Zhang *et al*,
232 2018), pointing to a regulatory role of the putative RNA Pol III inhibitor under normal *in*
233 *vitro* culture growth conditions. Once PfMaf1 is depleted (Figure 3B bottom, 3 cycles -

234 Shield), transcription of tRNA Valine and RUF6 ncRNA increased dramatically by 3-fold
235 (Figure 3C), possibly perturbing cellular homeostasis. RNA Pol II-transcribed genes were
236 unaffected. Parasite growth was assessed over the course of 5 days for two PfMaf1-FKBP
237 clones cultured in the presence or absence of PfMaf1 (+/- Shield-1, removed one cycle before
238 day 0, Figure 3D). A significant difference in growth was achieved, most evidently in
239 parasites cultured without Shield for 3 cycles, consistent with transposon mutagenesis scoring
240 PfMaf1 essential (Zhang *et al*, 2018). Dead parasites were not detected by Giemsa staining
241 even up to 8 cycles without Shield-1. We confirmed that differences in merozoite numbers
242 per schizont contributed to the change in growth rate between the control and KD PfMaf1
243 parasites after the 3rd cycle KD (Figure 3E).

244

245 Additionally, we demonstrated that nuclear PfMaf1 interacts with the RNA Pol III protein
246 complex by performing co-immunoprecipitation followed by quantitative mass spectrometry
247 (Co-IP MS) of cytoplasmic and nuclear fractions of PfMaf1-HA-ddFKBP. Each fraction was
248 split to include a control with no antibody added. Analysis of the quantitative mass
249 spectrometry data revealed unique interactome of cytoplasmic PfMaf1 and nuclear PfMaf1 in
250 their respective samples compared to their controls (Figure S3A, B). Gene Ontology (GO)
251 analysis showed that PfMaf1-associated proteins uniquely found in the nuclear fraction, and
252 neither of the two controls nor cytoplasmic fraction, are significantly represented by the
253 biological function category of “RNA Polymerase III transcription” ($p = 0.00175$) with two
254 subunits of RNA Pol III (Pf3D7_1206600 and Pf3D7_1329000). (GO) analysis of significant
255 and unique proteins found only in the cytoplasmic fractions, and not nuclear, are significantly
256 represented by the molecular function category of “protein kinase activator” ($p = 0.0143$,
257 Pf3D7_1103100). Additionally, two protein phosphatases (Pf3D7_1127000 and
258 Pf3D7_1464600) were significantly enriched in the cytoplasmic fraction (Figure S4C). Figure
259 3F illustrates the cytoplasmic and nuclear enzymes associated with PfMaf1, which could play
260 a role in sensing environmental shifts that lead to the inhibition of Pol III.

261

262 **Magnesium modulates cytoadhesion through PfMaf1-regulated RNA Pol III
263 transcription**

264 We further investigated if nuclear PfMaf1 activity could be regulated, in response to external
265 factors, to lead to changes in RNA Pol III activity using *P. falciparum* wildtype parasites
266 cultured *in vitro*. The *P. falciparum* cellular localization of PfMaf1 was investigated in
267 response to external stimuli (+MgCl₂). Parasites were tightly synchronized, split into control,

268 addition of MgCl₂ and harvested during late ring stage. In contrast to several eukaryotic
269 model systems, under normal culture conditions we observed PfMaf1 in cytoplasmic and
270 nuclear fractions using immunoprecipitation followed by western blot analysis (Figure 4A,
271 S4A). Nuclear PfMaf1 levels increased upon addition of MgCl₂ compared to control nuclear
272 PfMaf1 (Figure 4A). Immunofluorescence (IF) assays showed that PfMaf1 forms foci-like
273 aggregates in the cytoplasm and near the nuclear periphery in both culture conditions (Figure
274 S4B).

275

276 Next, we used the PfMaf1-FKBP transfected parasite lines, to show that the downregulation
277 of RNA Pol III-transcribed genes, triggered by external stimuli, is dependent on PfMaf1. We
278 used the PfMaf1 KD parasites (2nd cycle, see Figure 3B) in control conditions and MgCl₂
279 supplementation to the growth medium in ring stage parasites for RT-qPCR (Figure 4B). We
280 confirmed the previously observed down-regulation of RNA Pol III-transcribed tRNA Valine
281 and RUF6 upon MgCl₂ supplementation in two independent PfMaf1-FKBP parasite clones.
282 Notably, when PfMaf1 degradation was induced, the addition of MgCl₂ did not affect Pol III
283 transcription. These results demonstrate that PfMaf1 mediates the observed decrease in RNA
284 Pol III-transcribed genes with MgCl₂ supplementation.

285

286 Previous attempts to develop a knockout (KO) line did not yield success, as highlighted by
287 McLean & Jacobs-Lorena in 2017. However, our strain with an inducible system for
288 degrading PfMaf1 protein has unveiled a twofold function of PfMaf1: i) to help maintain Pol
289 III transcription at levels essential for optimal parasite proliferation, and ii) to serve as a key
290 element in an environmental sensing pathway that directly controls Pol III activity.

291

292 Finally, we set out to link *P. falciparum* virulence gene expression with decreased RUF6
293 transcription, by investigating the effect of MgCl₂ supplementation on cytoadherence of 3D7
294 iRBCs. We found that in static binding assays to the endothelial receptor CD36, bound to
295 plastic dishes, adhesion of iRBCs was reduced by 50% with MgCl₂ supplementation (Figure
296 4C). This was also confirmed at the protein level using antibodies directed against the
297 conserved intracellular ATS domain of PfEMP1 (Figure 4D). Our findings, which
298 demonstrate the inducible inhibition of cytoadhesive capacity, are particularly significant for
299 asymptomatic *P. falciparum* infections, as illustrated in Figure 4E.

300

301 **Discussion**

302 Our study reveals a regulatory mechanism in *P. falciparum* involving RNA Polymerase III,
303 which plays a pivotal role in the parasite's virulence. This discovery illuminates a previously
304 unidentified adaptive molecular process in the parasite's cytoadhesion and proliferation. We
305 propose a connection with asymptomatic infections prevalent during the dry season in African
306 regions, a period characterized by reduced mosquito transmission. In our analysis, we
307 compared RNA from parasites in symptomatic individuals during the wet season to those in
308 asymptomatic individuals in the dry season. In this comparison, we noted a reduction in the
309 levels of tRNAs and RUF6 ncRNA, with the latter being recognized for its involvement in
310 regulating *var* gene expression, as illustrated in Figures 1A-C. To date, RNA Polymerase III
311 (Pol III) has not been acknowledged as a factor influencing the virulence of *P. falciparum* in
312 mild or asymptomatic malaria infections. Additionally, our research revealed a link between
313 elevated serum MgCl₂ levels and asymptomatic malaria infections, as shown in Figure 2A.
314 The normal concentration range for MgCl₂ in human serum is between [0.7–1.0mM], while
315 mild hypermagnesemia is characterized by levels ranging from [2.2-3.5mM]. In our pilot
316 study, the average concentration was observed to be around [0.7mM] during the wet season
317 and increased to [1.1mM] in the dry season.

318

319 To investigate the potential mechanistic link between the changes in MgCl₂ levels and Pol III
320 activity, we established an in vitro culture assay for *P. falciparum* that enabled us to delve
321 into the molecular mechanism underpinning the environment-dependent inhibition of Pol III.
322 We experimented with various concentrations of MgCl₂ to assess its effect on Pol III activity.
323 The standard culture medium we used contains [0.5mM] of MgCl₂. Our observations
324 indicated a progressive inhibition of Pol III activity in the range of [1-3mM]. To further
325 explore the molecular mechanisms involved, we opted to use a concentration of 3 mmol/L in
326 our continued studies. Quantitative RT-PCR analysis showed inhibition of Pol III
327 transcription of tRNA and the RUF6 ncRNA gene family. Subsequent RNA seq data
328 validated that transcriptional inhibition, induced by MgCl₂ supplementation, is primarily
329 limited to canonical RNA Pol III-transcribed genes, which include A and B box containing
330 sequences, and notably the RUF6 gene, crucial for the activation of *var* genes. Our findings
331 established that the inhibition of *var* gene expression, mediated by Pol III, led to a decrease in
332 the cytoadherence of infected red blood cells (iRBCs) when supplemented with MgCl₂, as
333 shown in Figure 4C. We noted a reduction of over 50% in binding to the endothelial receptor
334 CD36 in a static binding assay. It is expected that the inhibition of iRBC cytoadherence

335 would be even more pronounced under the physiological shear stress typically found in
336 human capillaries (Crabb *et al*, 1997).

337

338 Having established the role of Pol III in the expression of virulence genes, we subsequently
339 showed a link between environmental factors and Maf1, which is the only known eukaryotic
340 repressor of Pol III. We created an inducible system designed to specifically reduce PfMaf1
341 protein levels, enabling us to explore its influence on Pol III activity. Proteomic analysis
342 through mass spectrometry of PfMaf1's interactome showed its association with various
343 nuclear RNA Pol III subunits, reinforcing its function as a repressor of Pol III in *P.*
344 *falciparum*. PfMaf1 showed nuclear presence under standard growth conditions. Nuclear
345 shuttling usually increases under specific conditions (stress, nutrient starvation) by changing
346 the phosphorylation state of the Maf1 protein in eukaryotic organisms (Michels *et al*, 2010).
347 Our study supports a model in which a critical baseline amount of PfMaf1 in the nucleus is
348 essential to modulate the expression of tRNAs by RNA Pol III during the multinucleated
349 blood stage of the parasite. This regulation is essential for the parasite to balance its energy
350 resources efficiently while producing large numbers of new infective forms, known as
351 merozoites. Under optimal growth conditions, a single parasite undergoes several rounds of
352 genome replication, forming approximately 30 nuclei within a shared cytoplasm. When
353 PfMaf1 is completely removed, the transcription levels of tRNA Valine and RUF6 ncRNA
354 increase more than threefold, while the transcription level of a Pol II-mediated housekeeping
355 gene UCE remains unchanged. This significant elevation of tRNA transcription beyond
356 physiological levels could potentially lead to an energy deficit within the cell, resulting in the
357 observed reduction in the parasite's multiplication rate, as demonstrated in Figure 3C and E.
358 In clinical isolates, parasite densities have been associated with malaria pathogenesis (Nyarko
359 & Claessens, 2021; Thomson-Luque *et al*, 2021) and low parasite densities are also a feature
360 of asymptomatic malaria (Murray *et al*, 2017).

361

362 Nutrient availability in the host has been demonstrated to have a profound effect on the
363 replication of parasites using *P. berghei* as a rodent malaria model (Mancio-Silva *et al*,
364 2017a). Reports from cultured blood stage *P. falciparum* parasites showed that amino acid
365 deficiency can alter parasite growth and survival to stress (McLean & Jacobs-Lorena, 2017;
366 Marreiros *et al*, 2023). Furthermore, a recent report suggested that nutrients involved in S-
367 adenosylmethionine (SAM) metabolism can also affect *var* gene switching in cultured
368 parasites (Schneider *et al*, 2023). Individuals infected with malaria, compared to healthy

369 individuals, were found to have decreased levels (up to 54%) of plasma free amino acids,
370 which could be the result of a nutrient-reduced diet (Leopold *et al*, 2019). In fact, dietary
371 intake, including energy, protein, iron, zinc, calcium and folate, was found to decrease
372 significantly in individuals during the dry season in areas of Africa (M'Kaibi *et al*, 2015).
373 Blood serum magnesium levels can fluctuate in humans and were found to decrease with
374 increasing disease severity (Innocent *et al*, 2013). In our study, plasma magnesium levels
375 were significantly increased in asymptomatic individuals during the dry season compared to
376 symptomatic individuals during the wet season (Figure 2A). Wet season samples were within
377 the range of normal serum magnesium levels, whereas dry season samples were higher. It is
378 noteworthy that intracellular magnesium was found to increase in yeast as a result of calorie
379 restriction, defined as a decrease in dietary glucose intake (Abraham *et al*, 2016), indicating
380 that our MgCl₂ supplementation could be mimicking low glucose conditions and thus, low
381 nutrient availability. Although interactions between human malaria and malnutrition have
382 been studied for many years, the evidence linking an effect between the two remains
383 inconclusive at the mechanistic level. Our study sets the stage for exploring whether there are
384 additional external stimuli, beyond magnesium chloride, that could activate the regulatory
385 pathway of RNA Polymerase III. Given the lack of a conventional TOR pathway in malaria
386 parasites (Serfontein *et al*, 2010; van Dam *et al*, 2011), the exact signaling pathway that
387 activates PfMaf1 remains unknown. Our mass spectrometry analysis of PfMaf1's cytoplasmic
388 binding partners has identified interactions with enzymes, such as phosphatases and kinases,
389 which could potentially influence Maf1 activity. This discovery opens up new avenues for
390 future research into the environmental sensing mechanisms that function upstream of PfMaf1.
391
392 A traditional view posits that the decreased cytoadherence seen in dry-season parasites may
393 be affected by host immunity, which impairs the parasites' adhesion capabilities. Although
394 experimental evidence supporting this theory is missing, our research introduces a novel
395 perspective to this critical topic by highlighting the role of metabolic changes in modulating
396 virulence gene expression.
397
398 In summary, our research demonstrates that RNA Polymerase III activity, regulated by
399 environmental factors, plays a crucial role in the proliferation of parasites and in reducing the
400 cytoadhesive capacity of *P. falciparum*. This discovery unveils a previously unknown
401 molecular process, significantly enhancing our understanding of subclinical parasite

402 persistence. The insights gained from this study could pave the way for novel strategies aimed
403 at preventing severe malaria by promoting reduced pathogen virulence.

404

405

406

407

408 **Materials and Methods:**

409 **Parasite and serum samples from malaria infected patients**

410 Venous blood draw of different infected individuals in The Gambia during the dry and wet
411 seasons was collected as previously described in (Collins *et al*, 2022; Fogang *et al*, 2023).
412 The study protocol was reviewed and approved by the Gambia Government/MRC Joint
413 Ethics Committee (SCC 1476, SCC 1318, L2015.50) and by the London School of Hygiene
414 & Tropical Medicine ethics committee (Ref 10982). The field studies were also approved by
415 local administrative representatives, the village chiefs. Written informed consent was obtained
416 from participants over 18 years old and from parents/guardians for participants under 18
417 years. Written assent was obtained from all individuals aged 12-17 years. The dry season
418 months include January, February, March, April, and May. The wet season months include
419 November and October. For additional information about each sample, see Supplementary
420 Table 2.

421

422 **Polymerase III inhibition assay**

423 Parasites were treated with 50 μ M of RNA Pol III inhibitor CAS 577784-91-9 (Calbiochem,
424 Merck) after sorbitol treatment at 3 \pm 3hpi and RNA was harvested at 24hpi in parallel with
425 untreated and control samples. The control was treated with the same volume of DMSO
426 added to the inhibitor treated flasks of stock solution.

427

428 **Clinical isolate RT-qPCR**

429 Total RNA was extracted from TRizol using an miRNeasy minikit and performing on-column
430 DNase treatment (Qiagen) and continued as previously described in ((Collins *et al*, 2022)).
431 Transcript levels were shown by using the following primers: RUF6, Valine tRNA,
432 Asparagine tRNA, and *var* DBLalpha were normalized to the reference gene, fructose-
433 bisphosphate aldolase (PF3D7_1444800, Figure 2A, Table S1). The starting quantity means

434 from three replicates were extrapolated from a standard curve of serial dilutions of 3D7
435 genomic DNA.

436

437 **Plasma magnesium concentration assay**

438 Plasma magnesium levels were determined using a commercial magnesium assay kit (Sigma-
439 Aldrich MAK026) from individuals from the same study as in (Collins *et al*, 2022; Fogang *et*
440 *al*, 2023). Complete information on tested individual samples can be found in Supplementary
441 Table 2. The protocol was followed as described in the kit and read on a Synergy 2 microplate
442 reader for spectrophotometric reading.

443

444 **Parasite culture and synchronization**

445 Asexual blood stage 3D7 *P. falciparum* parasites were cultured as previously described in
446 (Lopez-Rubio *et al*, 2009). Parasites were cultured in human RBCs (obtained from the
447 Etablissement Français du Sang with approval number HS 2019-24803) in RPMI-1640
448 culture medium (Thermo Fisher 11875) supplemented with 10% v/v Albumax I (Thermo
449 Fisher 11020), hypoxanthine (0.1 mM final concentration, C.C.Pro Z-41-M) and 10 mg
450 gentamicin (Sigma G1397) at 4% hematocrit and under 5% O₂, 3% CO₂ at 37°C. Static
451 parasite development was monitored by Giemsa staining. Parasites were synchronized by
452 sorbitol (5%, Sigma S6021) lysis at ring stage, plasmagel (Plasmion, Fresenius Kabi)
453 enrichment of late stages 24 h later, and an additional sorbitol lysis 3 h after plasmagel
454 enrichment. The 0 h time point was considered to be 1.5 h after plasmagel enrichment.
455 Parasites were harvested at 1–5% parasitemia.

456

457 **External stimuli induction**

458 Synchronized parasites were divided into control, addition of magnesium chloride (MgCl₂),
459 isoleucine-deficient, low glucose, and 40 degree Celsius and harvested at 18hpi. Parasites
460 exposed to an addition of MgCl₂ were supplemented with 0.5mM, 1.5mM, and 2.5 mM
461 MgCl₂, for a final concentration of [1mM], [1.5mM], [2mM], and [3mM] including [0.5mM]
462 found in RPMI. Isoleucine-deficient medium consisted of 10.3 g/liter RPMI 1640 isoleucine
463 (Ile) Drop-out medium (United States BioLogicals; catalog no. R9014), supplemented with
464 2.0 g/liter NaHCO₃, 6.0 g/liter HEPES, 10% v/v Albumax I (Thermo Fisher 11020),
465 hypoxanthine (0.1 mM final concentration, C.C.Pro Z-41-M) and 10 mg gentamicin (Sigma
466 G1397). Low glucose (0.25mg/mL) RPMI was made by adding glucose (Dextrose) to
467 glucose-free media: 2.979 g HEPES + 50 mL albumax + 10 mL hypoxanthine + 200 µL

468 gentamycin to final volume of 500 mL with glucose free RPMI (11879). The pH was adjusted
469 to 7.3 with NaOH and filter sterilized. 40-degree Celsius samples were incubated in an
470 adjacent incubator set to 40 degrees Celsius under 5% O₂, 3% CO₂. Parasites were then
471 harvested with 0.075% Saponin lysis at ~2-5% parasitemia for RNA, genomic DNA, and
472 protein extraction at 18hpi.

473

474 **RNA isolation and reverse transcription-quantitative PCR (RT-qPCR)**

475 RNA was isolated from synchronized parasite cultures harvested at 18hpi after saponin lysis
476 in 0.075% saponin in PBS, followed by one wash in Dulbecco's phosphate-buffered saline
477 (DPBS, Thermo Fisher 14190) and resuspension in the QIAzol reagent. Total RNA was
478 extracted using an miRNeasy minikit and performing on-column DNase treatment (Qiagen).
479 Reverse transcription from total RNA was achieved using SuperScript VILO (Thermo Fisher
480 Scientific) and random hexamer primers. cDNA levels were quantified by quantitative PCR in
481 the CFX384 real time PCR detection system (BioRad) using Power SYBR Green PCR Master
482 Mix (Applied Biosystems) and primers from a previous study (Guizetti *et al*, 2016). Starting
483 quantity means of three replicates were extrapolated from a standard curve of serial dilutions
484 of genomic DNA. Transcript levels were shown by using the following primers: RUF6,
485 Valine tRNA, Alanine tRNA, Asparagine tRNA, *var* 58 (PF3D7_1240900), and *var*
486 DBLalpha were normalized to the reference gene, fructose-bisphosphate aldolase
487 (PF3D7_1444800).

488

489 **Stranded RNA sequencing and analysis**

490 Infected RBCs containing synchronized (12 and 24hpi) parasites were lysed in 0.075%
491 saponin (Sigma S7900) in DPBS at 37°C. The parasite cell pellet was washed once with
492 DPBS and then resuspended in 700 µL QIAzol reagent (Qiagen 79306). Total RNA was
493 subjected to rRNA depletion to ensure ncRNA and mRNA capture using the RiboCop rRNA
494 Depletion Kit (Lexogen) prior to strand-specific RNA-seq library preparation using the
495 TruSeq Stranded RNA LT Kit (Illumina) with the KAPA HiFi polymerase (Kapa Biosystems)
496 for the PCR amplification. Multiplexed libraries were subjected to 150 bp paired-end
497 sequencing on a NextSeq 500 platform (Illumina). Sequenced reads (150 bp paired end) were
498 mapped to the *P. falciparum* genome (Gardner *et al*, 2002) (plasmoDB.org, version 3, release
499 57) using “bwa mem” (Li & Durbin, 2009) allowing a read to align only once to the reference
500 genome (option “-c 1”). Alignments were subsequently filtered for duplicates and a mapping

501 quality \geq 20 using samtools (Li & Durbin, 2009). Three biological replicates for -MgCl₂ and
502 +MgCl₂ samples were analyzed for both timepoints.

503

504 **Generation of PfMaf1 strains**

505 All cloning was performed using KAPA HiFi DNA Polymerase (Roche 07958846001), In-
506 Fusion HD Cloning Kit (Clontech 639649), and XL10-Gold Ultracompetent *E. coli* (Agilent
507 Technologies 200315). Transgenic pSLI parasites were generated as previously described in
508 (Birnbaum *et al*, 2017) with the following modifications: GFP was replaced with a 3HA tag
509 and a ddFKBP domain was added after the protein of interest, PfMaf1. For localization and
510 knock down studies, the last 500-1000 bp of target gene, PfMaf1 Pf3D7_0416500, was
511 cloned into pSLI-3HA-ddFKBP. Each sequence started with an in-frame stop codon but the
512 stop codon at the end of the gene was removed. 50 μ g of plasmid DNA was transfected into
513 ring stage 3D7 *P. falciparum* parasites using the protocol described elsewhere (Hasenkamp *et*
514 *al*, 2013). Transfected parasites were selected with constant drug selection pressure of 2.56
515 nM WR99210 (Jacobus Pharmaceuticals) to obtain a cell line containing the episomal
516 plasmid. A second drug selection using 400 μ g/ml of G418 was done to select for integrants.
517 Once parasites emerged, gDNA of each integration cell line was collected using a commercial
518 kit (DNeasy Blood & Tissue Kit) and checked by PCR to show that integration occurred at
519 the correct locus. Both genome and vector specific primers for the 5' and 3' region were used
520 so that the PCR product would cover the plasmid/genome junction. Vector primers used were
521 the same as described (Birnbaum *et al*, 2017). Once proper size gel bands from PCR were
522 seen, parasites were cloned by limiting dilution, and the targeted genomic locus was
523 sequenced to confirm tag and FKBP integration.

524

525 **Flow cytometry**

526 Two different pSLI-Maf1-FKBP parasite clones were tightly synchronized and diluted to
527 0.2% parasitemia (5% hematocrit) at ring stage. One cycle before, Shield-1 was removed
528 from half of the culture. The growth curve was performed in a 96-well plate (200 μ l culture
529 per well) with three technical replicates of two biological replicates per condition per clone.
530 At 0 h, 24 h, 48 h, 72 h, and 96 h, 5 μ l of the culture was stained in 95 μ l of DPBS
531 supplemented with 2 \times Sybr Green I (Ozyme; stock $\square=\square$ 10,000 \times) for 30 min at room
532 temperature, diluted 20-fold in D-PBS (final volume $\square=\square$ 200 μ l), and the Sybr Green
533 fluorescence measured in a Guava easyCye Flow Cytometer (EMD Millipore). 30000 events

534 were counted in duplicate to establish an accurate parasitemia value for each culture. Data
535 was analyzed using the InCyte software (EMD Millipore).

536

537 **Western blot analysis**

538 Shield-1 was removed for 3 consecutive cycles to monitor the degradation of PfMaf1. Total
539 protein extracts were prepared from trophozoite stages for control and -Shield-1 for 3 cycles.
540 Additionally, membrane extracts were prepared for control and MgCl₂ supplementation from
541 parasites isolated from plasmion enrichment. iRBCs were washed once with DPBS at 37°C
542 and lysed with 0.075% saponin (Sigma S7900) in DPBS at 37°C. Parasites were washed once
543 with DPBS, resuspended in 1 ml cytoplasmic lysis buffer (25 mM Tris–HCl pH 7.5, 10 mM
544 NaCl, 1.5 mM MgCl₂, 1% IGEPAL CA-630, and 1× protease inhibitor cocktail [“PI”, Roche
545 11836170001]) at 4°C, and incubated on ice for 30 min. Cells were further homogenized with
546 a chilled glass douncer, and the cytoplasmic lysate was cleared with centrifugation (13,500 g,
547 10 min, 4°C). The pellet (containing the nuclei) was resuspended in 100 µl nuclear extraction
548 buffer (25 mM Tris–HCl pH 7.5, 600 mM NaCl, 1.5 mM MgCl₂, 1% IGEPAL CA-630, PI) at
549 4°C and sonicated for 10 cycles with 30 s (on/off) intervals (5 min total sonication time) in a
550 Diagenode Pico Bioruptor at 4°C. The nuclear lysate was cleared with centrifugation (13,500
551 g, 10 min, 4°C). Membrane extracts were prepared by resuspending parasite pellets in NETT
552 buffer (50mM Tris pH8, 150mM NaCl, 5mM EDTA, 1% IGEPAL CA-630, PI) and
553 incubated at 4°C for 10 min. Supernatant was removed after centrifugation (13,500 g,
554 10 min, 4°C) and the pellet was resuspended in Tris-saline buffer (50mM Tris pH8, 150mM
555 NaCl, 2% SDS, PI) and sonicated for 6 cycles with 30 s (on/off) intervals (3 min total
556 sonication time) in a Diagenode Pico Bioruptor at 4°C. The membrane lysates were cleared
557 with centrifugation (13,500 g, 10 min, 4°C). All protein samples were supplemented with
558 NuPage Sample Buffer (Thermo Fisher NP0008) and NuPage Reducing Agent (Thermo
559 Fisher NP0004) and denatured for 5 min at 95°C. Proteins were separated on a 4-15% TGX
560 (Tris-Glycine eXtended) (Bio-Rad) and transferred to a PVDF membrane. The membrane was
561 blocked for 1 h with 5% milk in PBST (PBS, 0.1% Tween 20) at 25°C. HA-tagged proteins,
562 and histone H3 were detected with anti-HA (Abcam 9110, 1:1,000 in 5% milk-PBST) and
563 anti-H3 (Abcam ab1791, 1:1,000 in 5% milk-PBST) primary antibodies, respectively,
564 followed by donkey anti-rabbit secondary antibody conjugated to horseradish peroxidase
565 (“HRP”, Sigma GENA934, 1:5,000 in 5% milk-PBST). Anti-ATS and anti-NapL were
566 detected as previously described (Nacer *et al*, 2015; Dawn *et al*, 2014). Aldolase was detected
567 with anti-alcoholde-HRP (Abcam ab38905, 1:5,000 in 5% milk-PBST). HRP signal was

568 developed with SuperSignal West Pico chemiluminescent substrate (Thermo Fisher 34080)
569 and imaged with a ChemiDoc XRS+ (Bio-Rad).

570

571 **Merozoite number per schizont analysis:**

572 Mature schizonts were assessed by microscopic analysis of Giemsa-stained smears and
573 manually quantified using ImageJ software, as reported previously (Marreiros *et al*, 2023).
574 100 segmented schizonts with clearly individualized merozoites containing a single hemozoin
575 crystal were quantified per condition.

576

577 **Co-Immunoprecipitation followed by Mass spectrometry (Co-IP-MS)**

578 PfMaf1-HA-ddFKBP tagged parasites ($n = 5$ biological replicates) were synchronized. At
579 24hpi, each culture (1.5×10^9 parasites) was centrifuged and RBCs were lysed with six
580 volumes of 0.15% saponin in DPBS for 5 min at 4°C. Parasites were centrifuged at 4,000 g
581 for 5 min at 4°C, and the pellet was washed twice with DPBS at 4°C. Parasites were then
582 cross-linked with 1% formaldehyde for 15 min at room temperature and quenched with 125
583 mM glycine for 5 min on ice. Cross-linked parasites were washed twice with DPBS and then
584 resuspended in 900uL of cytoplasmic lysis buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA,
585 0.65% IGEPAL CA-630, 10mM NaCl) supplemented with protease inhibitors (Thermo Fisher
586 78440) at 4°C and incubated with rotation for 30 min at 4°C. Extracts were centrifuged for 10
587 min at 2000g at 4°C and the cleared cytoplasmic supernatant was removed and kept on ice.
588 The nuclear pellet was resuspended in 900 μ L nuclear lysis buffer (10 mM Tris-HCl pH 7.5,
589 500 mM NaCl, 1 mM EDTA, 1% sodium deoxycholate, 0.1% SDS, 1% IGEPAL CA-630, PI)
590 at 4°C and transferred to 1.5 ml sonication tubes (300 μ L per tube, DiagenodeC30010016).
591 Samples were sonicated for 5 min (30 s on/off) in a Diagenode Pico Bioruptor at 4°C. Lysates
592 were then centrifuged for 10 min at 13,500g at 4°C and supernatant was transferred to a fresh
593 tube. Cytoplasmic fractions were mixed with 2:3 ratio of cytoplasmic dilution buffer (10 mM
594 Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA) and nuclear supernatants were mixed with
595 1:3 ratio of nuclear dilution buffer (10 mM Tris-HCl pH 7.5, 0.5 mM EDTA). Cytoplasmic
596 and nuclear fraction supernatants were incubated with 1ug of α -HA antibody (Abcam 9110)
597 and 25uL Protein G Magnetic Dynabeads (Invitrogen), pre-incubated for a minimum of 2
598 hours and washed twice with dilution buffer, overnight with rotation at 4°C. The next day, the
599 beads were collected on a magnet and the supernatant was removed. While on the magnetic
600 stand, beads were washed twice with 500 μ L wash buffer (10 mM Tris-HCl pH 7.5, 150 mM
601 NaCl, 0.5 mM EDTA, 0.05% NP40), once with 25 μ mM NH₄HCO₃ (Sigma 09830) buffer,

602 and then transferred to new tube. Finally, the beads were resuspended in 100 μ l of 25 mM
603 NH_4HCO_3 (Sigma 09830) and digested by adding 0.2 μ g of trypsin-LysC (Promega) for
604 1 h at 37 °C. Samples were then loaded into custom-made C18 StageTips packed by
605 stacking one AttractSPE® disk (#SPE-Disks-Bio-C18-100.47.20 Affinisep) in a 200 μ L
606 micropipette tip for desalting. Peptides were eluted using a ratio of 40:60
607 CH3CN:H2O+0.1% formic acid and vacuum concentrated to dryness with a SpeedVac
608 apparatus. Peptides were reconstituted in 10 of injection buffer in 0.3% trifluoroacetic acid
609 (TFA) before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.
610 Online LC was performed with an RSLCnano system (Ultimate 3000, Thermo Scientific)
611 coupled to an Orbitrap Eclipse mass spectrometer (Thermo Scientific). Peptides were trapped
612 on a 2 cm nanoviper Precolumn (i.d. 75 μ m, C18 Acclaim PepMap™ 100, Thermo Scientific)
613 at a flow rate of 3.0 μ L/min in buffer A (2/98 MeCN/H2O in 0.1% formic acid) for 4 min to
614 desalt and concentrate the samples. Separation was performed on a 50 cm nanoviper column
615 (i.d. 75 μ m, C18, Acclaim PepMap™ RSLC, 2 μ m, 100 Å, Thermo Scientific) regulated to a
616 temperature of 50°C with a linear gradient from 2% to 25% buffer B (100% MeCN in 0.1%
617 formic acid) at a flow rate of 300 nL/min over 91 min. MS1 data were collected in the
618 Orbitrap (120,000 resolution; maximum injection time 60 ms; AGC 4 x 10⁵). Charges states
619 between 2 and 7 were required for MS2 analysis, and a 60 s dynamic exclusion window was
620 used. MS2 scan were performed in the ion trap in rapid mode with HCD fragmentation
621 (isolation window 1.2 Da; NCE 30%; maximum injection time 60 ms; AGC 104)
622 For identification, the data were searched against the *Homo Sapiens* (UP000005640_9606)
623 and the *Plasmodium falciparum* 3D7 (UP000001450_36329) UniProt databases using Sequest
624 HT through proteome discoverer (version 2.4). Enzyme specificity was set to trypsin and a
625 maximum of two miss cleavages sites were allowed. Oxidized methionine, Met-loss, Met-
626 loss-Acetyl and N-terminal acetylation were set as variable modifications.
627 Carbamidomethylation of cysteins were set as fixed modification. Maximum allowed mass
628 deviation was set to 10 ppm for monoisotopic precursor ions and 0.6 Da for MS/MS peaks.
629 The resulting files were further processed using myProMS v3.9.3 (<https://github.com/bioinfo-pf-curie/myproms>) (Poulet *et al*, 2007) FDR calculation used Percolator (The *et al*, 2016) and
630 was set to 1% at the peptide level for the whole study. The label free quantification was
631 performed by peptide Extracted Ion Chromatograms (XICs), reextracted across all conditions
632 and computed with MassChroQ version 2.2.21 (Valot *et al*, 2011) For protein quantification,
633 XICs from proteotypic peptides shared between compared conditions (TopN matching) and
634 missed cleavages were allowed. Median and scale normalization was applied on the total
635 missed cleavages were allowed. Median and scale normalization was applied on the total

636 signal to correct the XICs for each biological replicate (n = 5 in each condition). To estimate
637 the significance of the change in protein abundance, a linear model (adjusted on peptides and
638 biological replicates) was performed, and p-values were adjusted using the Benjamini–
639 Hochberg FDR procedure. Proteins with at least 2 distinct peptides in 3 replicates of a same
640 state, a 2-fold enrichment and an adjusted p-value ≤ 0.05 were considered significantly
641 enriched in sample comparisons. Proteins unique to a condition were also considered if they
642 matched the peptides criteria.

643

644 **Immunofluorescence assay**

645 pSLI-Maf1-FKBP control, +MgCl₂ parasites were used with rat anti-HA (Roche 3F10)
646 antibodies. 10 μ l of iRBCs were washed with PBS and fixed with for 30 min in 0.0075%
647 Glutaraldehyde/4% PFA/DPBS. After DPBS washing, parasites were permeabilized with
648 0.1% TritonX100/PBS for 10-15 min before quenching free aldehyde groups with NH₄Cl
649 solution for 10 min. Next, parasites were blocked with 3% BSA–DPBS for 30 min. Primary
650 antibody incubation (1:500 dilution) lasted for 1 h before three washes with PBS, and
651 secondary antibody incubation for 30-60 min, Alexa Fluor 488-conjugated anti-mouse IgG
652 (Invitrogen) diluted 1:2,000 in 4% BSA–DPBS. After three final washes in DPBS, cells were
653 mounted in Vectashield containing DAPI for nuclear staining. Images were captured using a
654 Delta Vision Elite microscope (GE Healthcare). Image overlays were generated using Fiji
655 (Schindelin *et al*, 2012).

656

657 **Co-Immunoprecipitation followed by western blot (Co-IP-WB)**

658 PfMaf1-HA-ddFKBP tagged parasites were synchronized and split into control and MgCl₂
659 supplementation. At 18hpi, each culture (1.5×10^9 parasites) was centrifuged and RBCs were
660 lysed with six volumes of 0.15% saponin in DPBS for 5 min at 4°C. Parasites were
661 centrifuged at 4,000 g for 5 min at 4°C, and the pellet was washed twice with DPBS at 4°C.
662 The parasite pellets were then resuspended in 900uL of cytoplasmic lysis buffer (10 mM
663 Tris–HCl pH 7.5, 1 mM EDTA, 0.65% IGEPAL CA-630, 10mM NaCl) supplemented with
664 protease inhibitors (Thermo Fisher 78440) at 4°C and incubated with rotation for 30 min at
665 4°C. Extracts were centrifuged for 10 min at 2000g at 4°C and the cleared cytoplasmic
666 supernatant was removed and kept on ice. The nuclear pellet was resuspended in 200 μ L
667 nuclear lysis buffer (10 mM Tris–HCl pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% sodium
668 deoxycholate, 0.1% SDS, 1% IGEPAL CA-630, PI) at 4°C and transferred to 1.5 ml
669 sonication tubes (300 μ L per tube, DiagenodeC30010016). Samples were sonicated for 5 min

670 (30 s on/off) in a Diagenode Pico Bioruptor at 4°C. Lysates were then centrifuged for 10 min
671 at 13,500g at 4°C and supernatant was transferred to a fresh tube. Cytoplasmic fractions were
672 mixed with 2:3 ratio of cytoplasmic dilution buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl,
673 0.5 mM EDTA) and nuclear supernatants were mixed with 1:3 ratio of nuclear dilution
674 buffer (10 mM Tris-HCl pH 7.5, 0.5 mM EDTA). Cytoplasmic and nuclear fraction
675 supernatants were incubated with 1ug of α -HA antibody (Abcam 9110) and 25uL Protein G
676 Magnetic Dynabeads (Invitrogen), pre-incubated for a minimum of 2 hours and washed twice
677 with dilution buffer, overnight with rotation at 4°C. The next day, the beads were collected on
678 a magnet and the supernatant was removed. While on the magnetic stand, beads were washed
679 twice with 500 μ L wash buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA,
680 0.05% NP40), once with 25 μ M NH₄HCO₃ (Sigma 09830) buffer, and then transferred to
681 new tube. Finally, the beads were resuspended in 20 μ l 2x SDS sample buffer and reducing
682 agent before 5 min at 95°C.
683 The beads were separated with magnet and the supernatant was transferred to a new tube.
684 Western blot protocol was followed as mentioned earlier.
685

686 **Static cytoadhesion binding assay**

687 Mature stage iRBCs for 3D7 control and supplementation of MgCl₂ ([3mM] total
688 concentration) for 1 cycle were used for cytoadhesion binding assays. Receptors diluted in
689 PBS (10 μ g/mL target CD36 or negative control 1% BSA) were incubated overnight at 4°C in
690 labeled petri dishes. After the dishes were blocked for 30 minutes at 37°C with 1% BSA/PBS,
691 parasitemia was measured with a Guava easyCyte Flow Cytometer (EMD Millipore) after
692 trophozoites and schizonts iRBCs were isolated by plasmagel (Plasmion, Fresenius Kabi)
693 enrichment. Adjusted amounts of iRBCs were resuspended in binding medium (RPMI 1640
694 powder (Gibco 51800: W/L-Glutamine W/O NaHCO₃) with HEPES pH 7) for a
695 concentration of 2.2×10^8 iRBCs/mL. iRBCs/binding medium was added to each petri dish
696 and incubated for 2 hours at 37°C. After, unbound cells were removed and the dishes were
697 washed 5 times with binding medium by carefully tilting from side to side. Adherent iRBCs
698 were counted using 40x lens with a Nikon ECLIPSE TE200 in 10 randomly selected fields
699 (each with 0.2 μ m²) before 2 our fixation with 2% glutaraldehyde (G5882; Sigma)/PBS. After
700 fixation, giemsa staining was done to confirm percentage of bound iRBCs. A total of 3
701 biological replicates were performed and the results were expressed as the number of bound
702 iRBCs per 0.2 mm² of target receptor monolayer.
703

704 **Statistical analysis**

705 All statistical analyses were performed using GraphPad Prism version 9.1.0 (216) for Mac. To
706 test for a normal distribution of the data, the Shapiro-Wilk normality test was used. To test for
707 significance between two groups, a two-sided independent-samples t test was used. Gene
708 ontology enrichments were calculated using the build-in tool at <https://plasmoDB.org>.

709

710 **Estimation of cell cycle progression**

711 RNA-seq-based cell cycle progression for control and MgCl₂ supplementation was estimated
712 in R by comparing the normalized expression values (i.e., RPKM, reads per kilobase per exon
713 per one million mapped reads) of each sample to the microarray data from Bozdech et al
714 (2003) (Data ref: Bozdech et al, 2003) using the statistical model as in Lemieux et al (2009).

715

716 **Data availability**

717 The data generation in this study is available in the following database:
718 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
719 Consortium via the PRIDE (Perez-Riverol *et al*, 2022) partner repository with the dataset
720 identifier "PXD040576" (Username: reviewer_pxd040576@ebi.ac.uk & Password:
721 wlw5Mlc6).

722

723 **Acknowledgments**

724 We thank L. Mancio Silva, E. Real and J. Bryant for critical reading this manuscript. This
725 work was supported by the Laboratoire d'Excellence (LabEx) ParaFrap [ANR-11-LABX-
726 0024], ERC AdG PlasmoSilencing (670301), ANR-JC (18-CE15-0009-01). We thank
727 Camille Cohen and Marta Miera Maluenda for technical assistance with this project. With
728 financial support from "la Région Île-de-France" (N°EX061034) and ITMO Cancer of
729 Aviesan and INCa on funds administered by Inserm (N°21CQ016-00) for MS analysis.

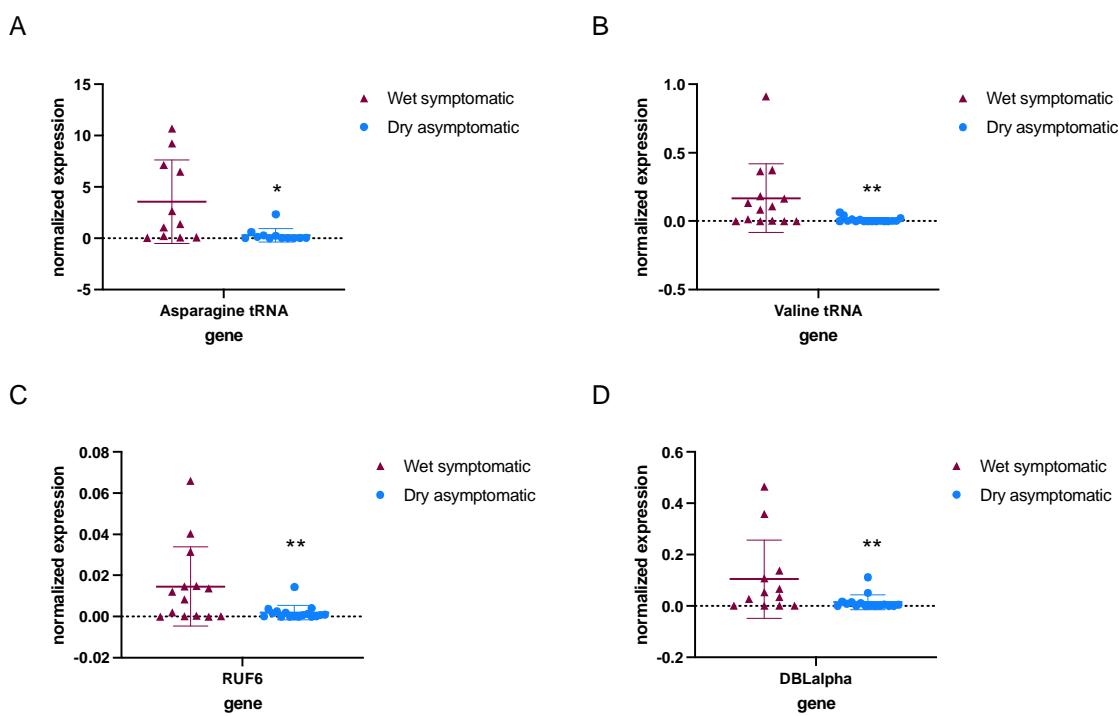
730

731 **Author contributions**

732 Conceptualization A.S, GD; Methodology: GD, ACläes, AB, PBN; Investigation GD,
733 ACläes, AB; Analysis: GD, AB, FD, DL; Writing: GD and A.S; Funding acquisition: A.S,
734 AC

735

736 **Conflict of interest**


737 The funders had no role in the study design, data collection, and interpretation or decision to
738 submit the work for publication. The authors declare that they have no conflict of interest.

739

740

741

742

743

744

745

746

747

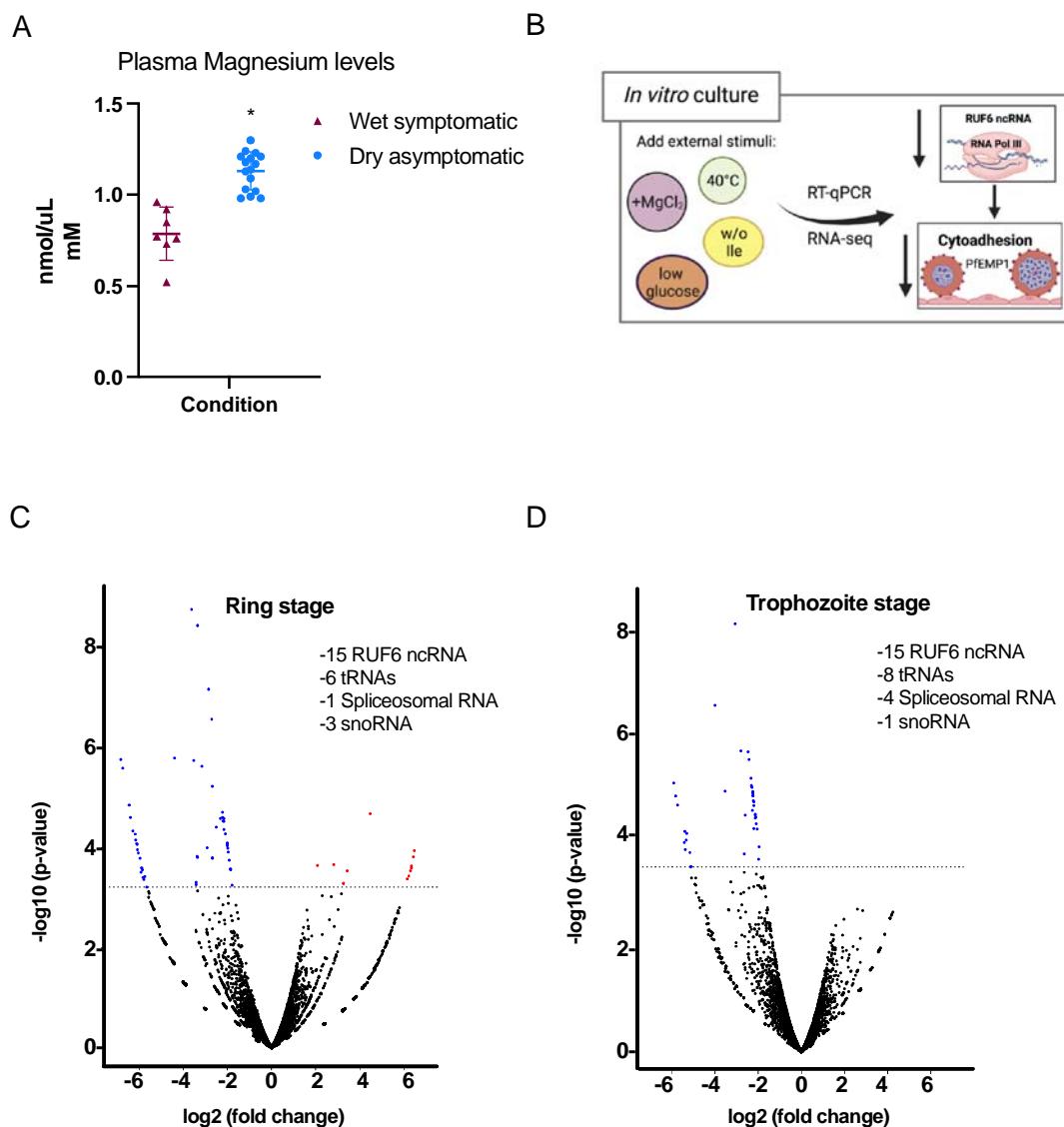
748

749

750

751

752


753

754

755

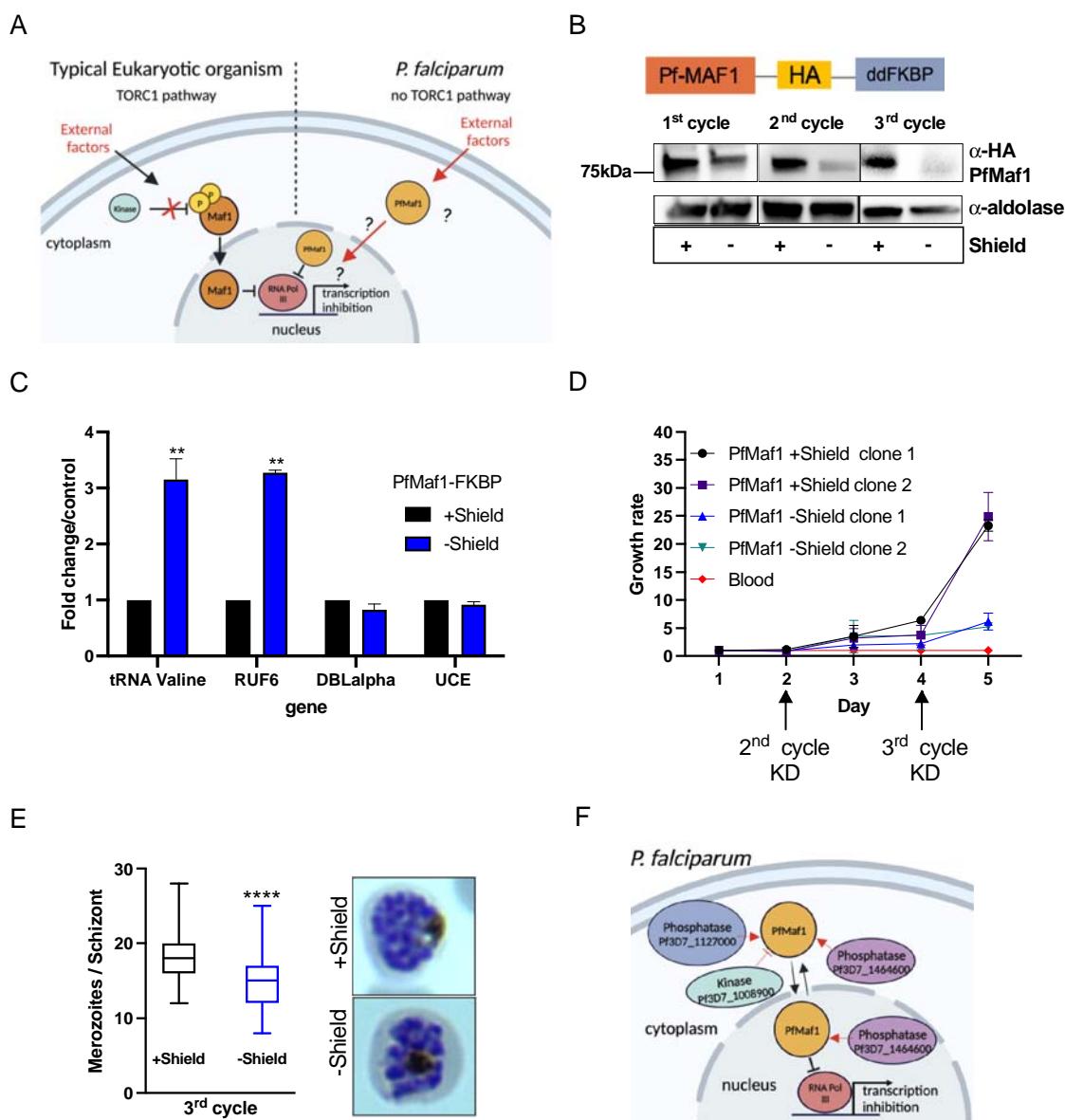

756

Figure 1. RNA Pol III-transcribed genes are downregulated in asymptomatic individuals during the dry season. Steady state RNA levels as quantified by RT-qPCR using primers to tRNA Asparagine (Pf3D7_0714700) (A) and tRNA Valine (Pf3D7_0312600) (B) as well as RNA Pol III-transcribed RUF6 ncRNA (C). DBLalpha primers were used to detect RNA Pol II-transcribed *var* genes (D). Normalized expression is shown using fructose-bisphosphate aldolase (FBA Pf3D7_1444800) as the reference gene in symptomatic individuals during the wet season ($n = 14^+$) and asymptomatic individuals during the dry season ($n = 17^+$). ⁺ with the exception of Asparagine tRNA wet symptomatic ($n=11$) and dry asymptomatic ($n=12$), and DBLalpha wet symptomatic ($n = 12$) and dry asymptomatic ($n = 16$). Box plots indicate the mean with standard deviation. Wilcoxon matched-pairs signed rank test was done to determine significance (* indicates $P < 0.05$ and ** indicates $P < 0.005$).

757
758

759 **Figure 2. External factors modulate RNA Pol III-transcribed genes.** (A) Plasma magnesium levels are
760 significantly increased in asymptomatic individuals during the dry season compared to symptomatic individuals
761 during the wet season. Concentration is shown in nmol/ μ L (mM) (B) Schematic showing underlying molecular
762 mechanism summary using *in vitro* cultured *P. falciparum*. (C, D) Volcano plot showing log₂ (fold change, FC)
763 against -log₁₀ (p-value) of transcripts identified by RNA-seq analysis of 3D7 control and addition of MgCl₂
764 harvested during ring (C) and trophozoite stages (D). Expressed transcripts from three replicates between control
765 and addition of MgCl₂ that are significantly up-regulated are highlighted in red while significantly down-
766 regulated RNA Pol III genes are highlighted in blue (FDR corrected p-value of <0.05) and a FC $\geq \pm 1.95$ with
767 examples listed as text. Black dots indicate non-significant transcripts with a FC $\leq \pm 2.0$.
768

769
770

771 **Figure 3. Nuclear PfMaf1 is essential to regulate RNA Pol III.** (A) Illustration of the TORC1-dependent
772 cellular localization of Maf1 protein in unfavorable conditions in typical eukaryotic organisms compared *P.*
773 *falciparum* that has no TORC1 pathway. (B, top) Illustration of recombinant PfMaf1 with a 3HA tag followed
774 by a ddFKBP domain to allow for knockdown studies. (B, bottom) Western blot analysis for PfMaf1 in total
775 extracts in pSLI-Maf1-FKBP transfected parasites at 24hpi after 1, 2, and 3 cycles without addition of Shield-1
776 (-) and control, with addition of Shield-1 (+). Aldolase levels are also shown. Representative of 3 replicates. (C)
777 Transcript levels as quantified by RT-qPCR using the same primers in (Figure 2B) in parasites harvested at
778 18hpi in control group and without Shield for 2 cycles. Error bars are displayed from 3 biological replicates.
779 Statistical significance was determined by two-tailed Student's t-test (** p<0.005). (D) Growth curve over 5
780 days of clonal pSLI-Maf1-FKBP parasites for 2 conditions: in the presence or absence of Shield-1. Uninfected
781 red blood cells ("blood" in red) serve as reference of background. Error bars indicate standard deviation of three
782 technical replicates in different blood from two different clones (n = 6). (E) Data is represented as box-whisker
783 plot of mean merozoite number per schizont \pm SD (Mann-Whitney), with the median represented at the
784 center line. Boxplots show the data of 100 segmented schizonts counted per condition (n = 100). Statistical
785 significance was determined by two-tailed Student's t-test (**** p<0.0001). Representative giemsa images are

786 shown to the right for + and – Shield. (F) Visual representation of Co-IP MS analysis of cytoplasmic and nuclear
787 PfMaf1. Labeled proteins represent important significant and unique proteins in cytoplasmic and nuclear
788 fractions not found in either of the controls.

789

790

791

792

793

794

795

796

797

798

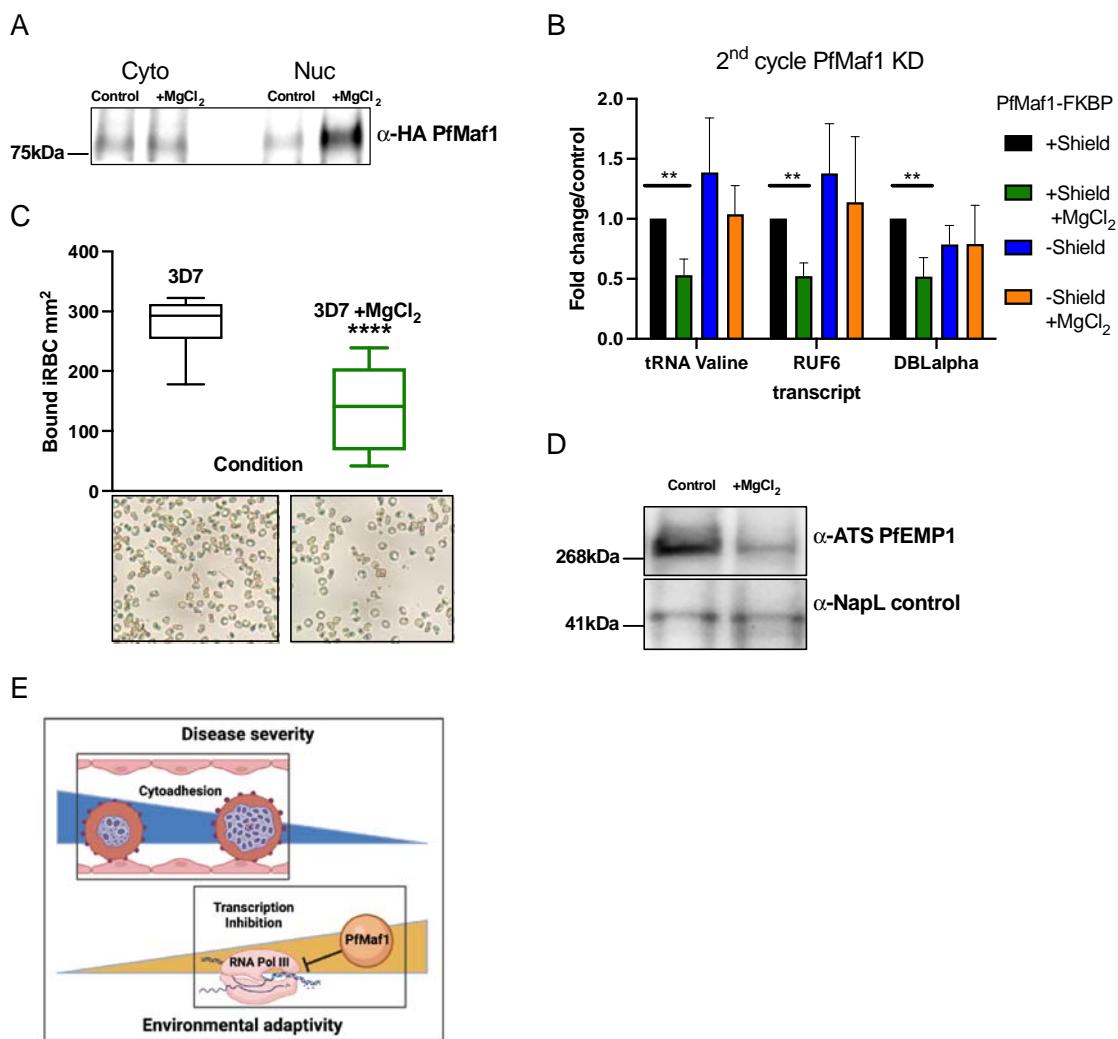
799

800

801

802

803


804

805

806

807

808

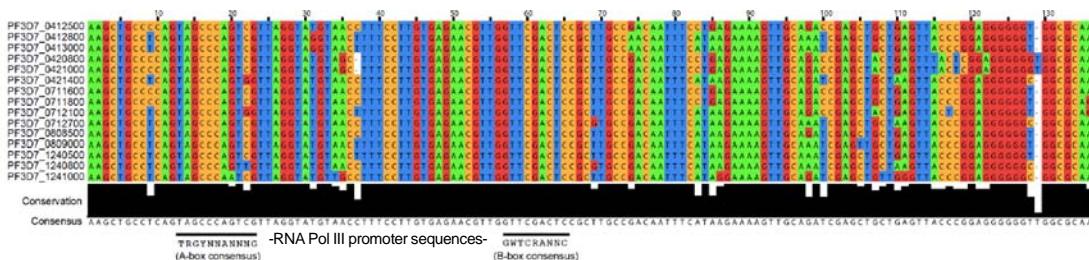
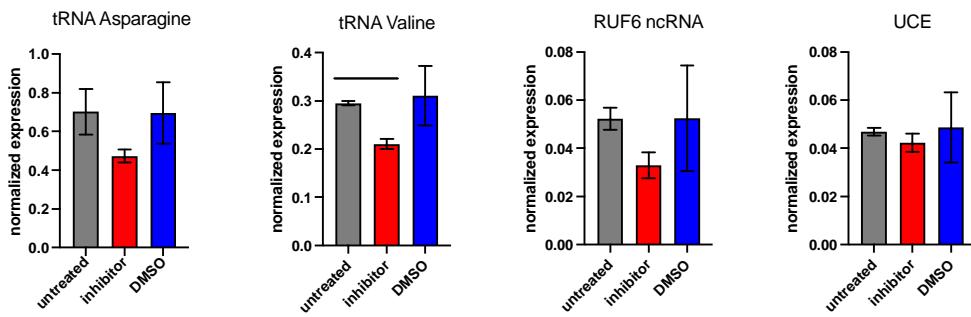

809
810

Figure 4. External factors modulate virulence through PfMaf1-regulated RNA Pol III inhibition


(A) Immunoprecipitation western blot analysis for cytoplasmic and nuclear extracts for PfMaf1 expression in PfMaf1-FKBP transfected parasites with addition of MgCl₂ ([3mM] total) and control parasites harvested at 18hpi. Controls are shown in Figure S4B. (B) Transcript levels as quantified by RT-qPCR using primers to tRNA Valine (Pf3D7_0312600), RUF6 ncRNA, *var* DBLalpha, and normalized to FBA (Pf3D7_1444800) for 4 conditions: control (black), addition of MgCl₂ (green), KD of PfMaf1 (blue), and KD of PfMaf1 and addition of MgCl₂ (orange). Error bars are displayed from 3 biological replicates. Statistical significance was determined by two-tailed Student's t-test (** p < 0.005). (C) Cytoadhesion binding assay data is represented as box-whisker plot of mean number of bound iRBC \pm SD (Mann-Whitney) mm², with the median represented at the center line. Boxplots show the data of 3 biological replicates (n = 3). Statistical significance was determined by two-tailed Student's t-test (**** p < 0.0001). Representative images are shown below for 3D7 and 3D7 +MgCl₂. (D) Western blot analysis for extracts for ATS-PfEMP1 expression in 3D7 control parasites and with addition of MgCl₂ ([3mM] total) harvested after plasmid. NapL control levels are also shown. Representative of 3 replicates. (E) Schematic showing summary of study linking decreased cytoadherence, associated with disease severity, with increased RNA Pol III-inhibition, triggered in response to external factors.

826
827
828
829

A

B

830

831 **Figure S1.** (A) Multiple sequence alignment of highly conserved genes encoding GC-rich ncRNA elements. 15
 832 members of RUF6 gene family aligned by Clustal Omega (<http://www.ebi.ac.uk>) and presented in Jalview
 833 (<http://www.jalview.org>). Degree of conservation per base and consensus sequence are displayed below. Black
 834 lines show position of potential A- and B-box consensus motifs (as assessed in (Guizetti *et al*, 2016)). (B) RT-
 835 qPCR shows transcript levels for tRNA Asparagine, tRNA Valine, RUF6 ncRNA and a housekeeping gene
 836 encoding ubiquitin-conjugating enzyme in synchronized wildtype parasites at 24 hpi that were untreated or
 837 treated with RNA Pol III inhibitor or DMSO. Transcript levels are normalized to fructose-bisphosphate aldolase
 838 (PF3D7_1444800) transcript levels. Mean \pm SEM of two independent experiments are shown. Statistical
 839 significance was determined by two-tailed Student's t-test (* p < 0.05).

840

841

842

843

844

845

846

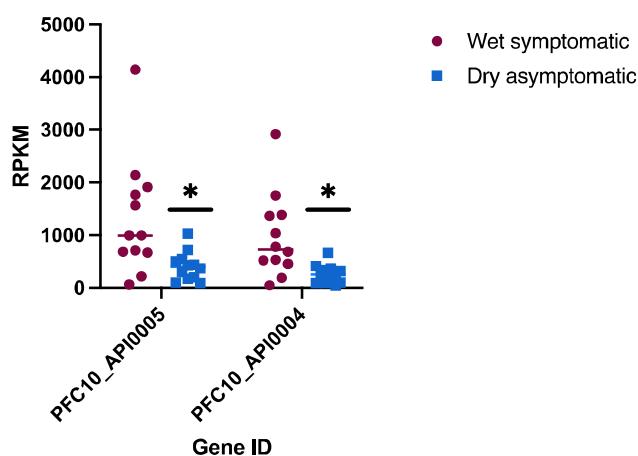
847

848

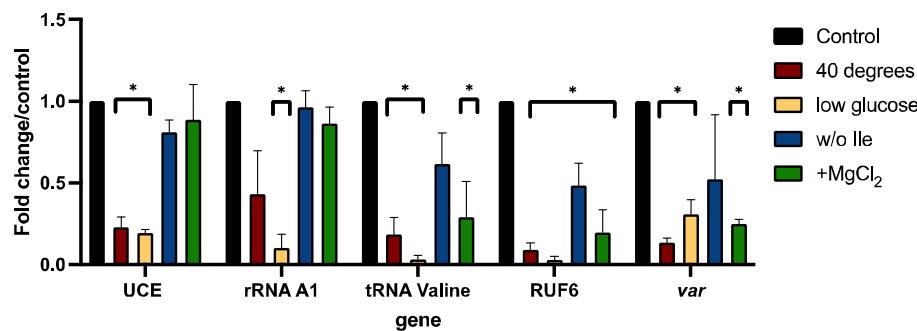
849

850

851


852

853


854

855

A

B

856

857 **Figure S2.** (A) tRNA Leucine (Pf3D7_API05400) and tRNA Asparagine (Pf3D7_API05500) transcripts
858 identified by RNA-Seq analysis from ((Andrade *et al*, 2020)) for wet symptomatic (n = 12) and dry
859 asymptomatic (n = 12) individuals. Statistical significance was determined by two-tailed Student's t-test (*
860 p<0.05). (B) Transcript levels as quantified by RT-qPCR on 3D7 parasites harvested during late ring stage for
861 control parasites, parasites in the absence of isoleucine (w/o Ile), at 40 degrees Celsius, at low-glucose levels
862 (0.5mg/mL), and presence of additional MgCl₂ ([3mM] total). Primers were used for Pol II-transcribed ubiquitin-
863 conjugating enzyme (UCE Pf3D7_0812600), Pol I-transcribed rRNA A1, Pol III-transcribed RUF6 ncRNA, Pol
864 III-transcribed tRNA Valine (Pf3D7_0312600), and Pol II-transcribed active *var* gene (Pf3D7_1240900).
865 Results are normalized to an RNA Pol II-transcribed reference gene FBA (Pf3D7_1444800) and presented as
866 fold change/control. Error bars are displayed from 3 biological replicates. Statistical significance was determined
867 by two-tailed Student's t-test (* p<0.05).

868

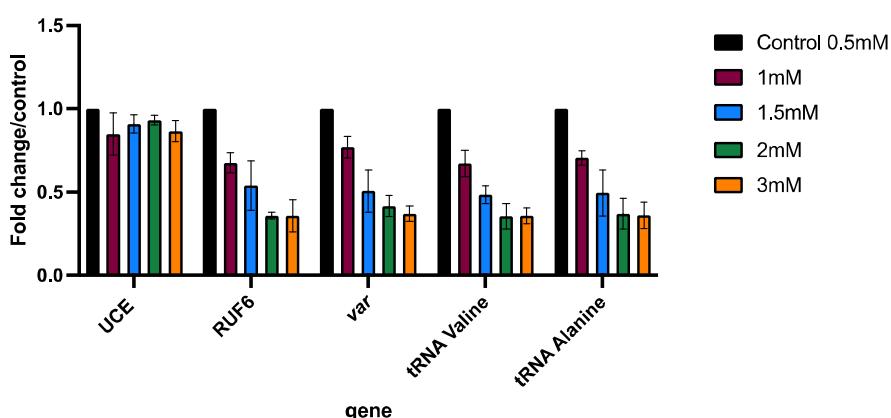
869

870

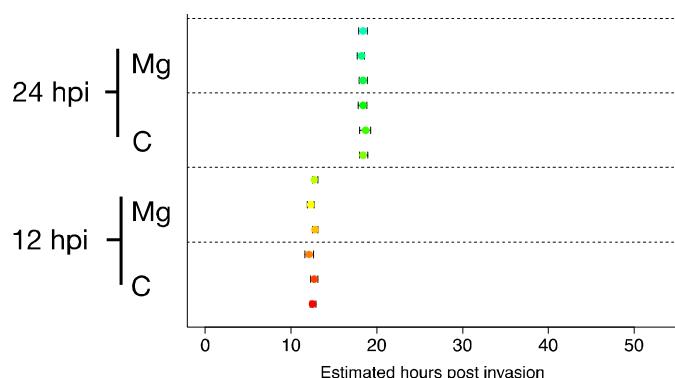
871

872

873


874

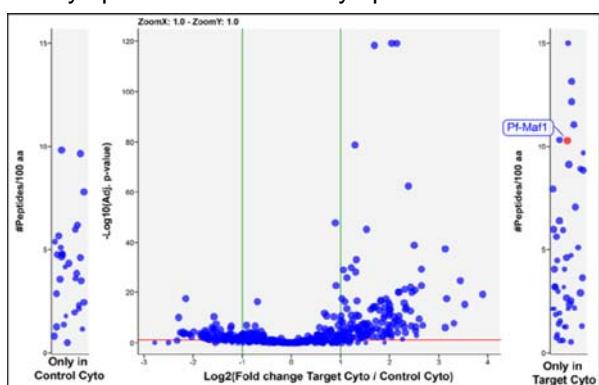
875


876

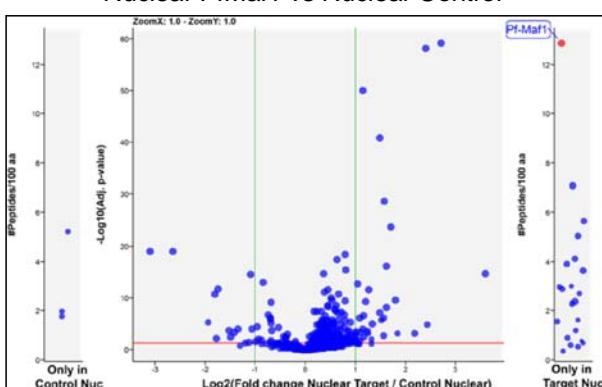
877

A

B

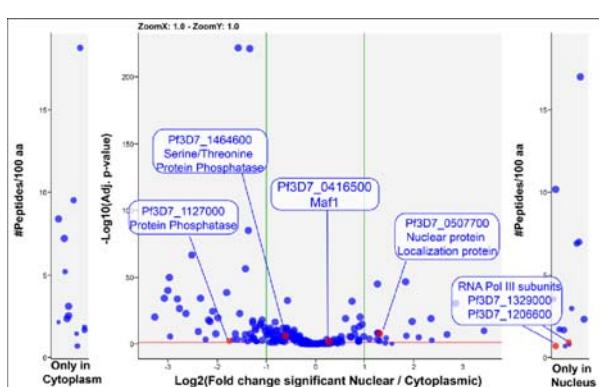


878
879


880 **Figure S3.** (A) Transcript levels as quantified by RT-qPCR on 3D7 parasites harvested during late ring stage for
881 control parasites and parasites in the presence of additional MgCl₂ levels ([1mM], [1.5mM], [2mM], and [3mM]
882 total). Primers were used for Pol II-transcribed ubiquitin-conjugating enzyme (UCE Pf3D7_0812600), Pol III-
883 transcribed RUF6 ncRNA, Pol III-transcribed tRNA Valine (Pf3D7_0312600) and Alanine (PF3D7_0411500),
884 and Pol II-transcribed var DBLalpha. Results are normalized to an RNA Pol II-transcribed reference gene FBA
885 (Pf3D7_1444800) and presented as fold change/control. Error bars are displayed from 3 biological replicates.
886 (B) Cell cycle progression estimation of a wildtype 3D7 clone in the absence ('C') or presence ('Mg') of MgCl₂
887 supplementation. RNA-seq data from synchronized parasites harvested at 12 and 24 hpi were compared to
888 microarray data (from (Bozdech *et al*, 2003) as in (Lemieux *et al*, 2009). Replicates are represented with circles.

889
890
891
892
893
894
895
896
897

A Cytoplasmic PfMaf1 vs Cytoplasmic Control


B Nuclear PfMaf1 vs Nuclear Control

C

Gene ID	Ab Cytoplasm/Control Cytoplasm					Total peptides in set	MW (kDa)	Description	
	Ratio	Log2(Ratio)	Adj. p-value	Dist. pept. used	Pept. used				
PF3D7_1464600	2.263481181	1.178543312	1.577E-06	6	31	4, 5, 5, 4, 3/0, 4, 3, 2, 1	70	Serine/threonine protein phosphatase UIS2, putative	
PF3D7_1127000	2.838513427	1.505135566	0.00160101	2	16	1, 2, 2, 2, 2/1, 0, 2, 2, 2	17	34.5	Protein phosphatase, putative
Gene ID	Ab Nuclear/Control Nuclear					Total peptides in set	MW (kDa)	Description	
	Ratio	Log2(Ratio)	Adj. p-value	Dist. pept. used	Pept. used				
PF3D7_0507700	4.544185096	2.184021601	0.00072787	3	18	3, 2, 3, 2, 2/2, 0, 2, 0, 2	32	62.6	Nuclear protein localization protein 4, putative
PF3D7_1208600	1000	1000		6	13	2, 3, 3, 3, 2/0, 0, 0, 0, 0	13	167.3	DNA-directed RNA polymerase subunit beta
PF3D7_1329000	1000	1000		5	13	2, 3, 1, 3, 2/1, 1, 0, 0, 0	13	274.8	DNA-directed RNA polymerase subunit

D

898
899

900 **Figure S4. PfMaf1 cytoplasmic and nuclear interactome.** Co-IP MS volcano plot of enrichment for all 5
901 replicates for cytoplasmic (A) and nuclear (B) PfMaf1 vs control proteins are indicated and labeled. Each dot

902 represents a protein, and its size corresponds to the sum of peptides from both conditions used to quantify the
903 ratio of enrichment. x -axis = $\log_2(\text{fold-change})$, y -axis = $-\log_{10}(\text{p-value})$, horizontal red line indicates adjusted p-
904 value = 0.05, and vertical green lines indicate absolute fold-change = 2.0. Side panels indicate proteins uniquely
905 identified in either sample (y -axis = number of peptides per 100 amino acids) with a minimum of 2 distinct
906 peptides in 3 replicates of a same state. (C) Table showing values for significantly and uniquely enriched
907 proteins from both extracts as labeled in (Figure 3F). (D) Volcano plot showing the distribution of significant
908 and unique proteins in cytoplasmic and nuclear fractions not found in either of the controls. Each dot represents
909 a protein, and its size corresponds to the sum of peptides from both conditions used to quantify the ratio of
910 enrichment. x -axis = $\log_2(\text{fold-change})$, y -axis = $-\log_{10}(\text{p-value})$, horizontal red line indicates adjusted p-
911 value = 0.05, and vertical green lines indicate absolute fold-change = 2.0. Side panels indicate proteins uniquely
912 identified in either sample (y -axis = number of peptides per 100 amino acids) with a minimum of 2 distinct
913 peptides in 3 replicates of a same state.

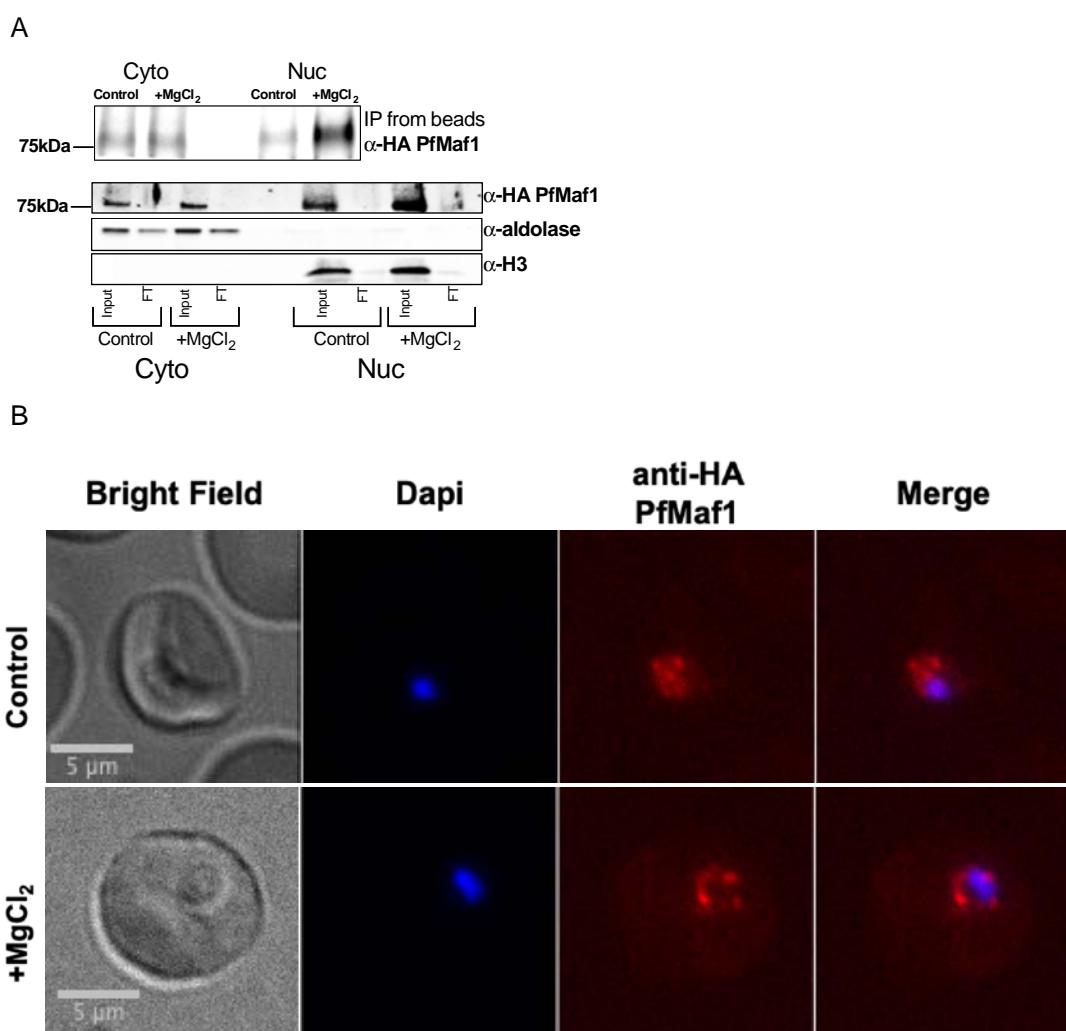
914

915

916

917

918


919

920

921

922

923

924
925

926 **Figure S5.** (A) Immunoprecipitation western blot analysis for cytoplasmic and nuclear extracts for PfMaf1
927 expression in PfMaf1-FKBP transfected parasites with addition of MgCl₂ ([3mM] total) and control parasites
928 harvested at 18hpi from Figure 4A. Anti-HA PfMaf1, aldolase and histone H3 are shown from input and flow-
929 through (FT). (B) Representative immunofluorescence images show brightfield, Dapi, anti-HA PfMaf1, and
930 Dapi-HA merge for PfMaf1 in control and addition of MgCl₂ ([3mM] total) in parasites harvested and fixed at
931 late ring stage.

932
933

934 **Supplementary Table 1. qPCR analysis primer pairs**
935

Primer pair	Forward	Reverse
Pool RUF6 A RUF6 B	5'-AAGCTGCCTCAGTAGCCA-3'	5'-AAAAATTGCGCCACCCCC-3'
	5'-AAGCTGCCAGTAGCCA-3'	5'-AAAAATTGCGCCGCC-3'
rRNA A1 (from (Mancio-Silva <i>et al.</i> , 2010))	5'-TGTCTCTTTCTAAGTT-3'	5'-TCACCTCATTGAAGCAA-3'
tRNA Alanine (PF3D7_0411500)	5'-GGGCAGGTGGTGTAGTGG-3'	5'-TGCTGGACAGACGGGAATT-3'
tRNA Asparagine (PF3D7_0714700)	5'-GCAAGTATTCCGCCTGTCA-3'	5'-GAATTGAACCCGGGTCTTCC-3'
tRNA Valine (Pf3D7_0312600)	5'-GCGGGCATGGTCTAGTGG-3'	5'-ACTACGGGCACCGAGGATC-3'
FBA fructose- bisphosphate aldolase (PF3D7_1444800)	5'-TGTACCACCAGCCTTACAG-3'	5'-TTCCTGCCATGTGTTCAAT-3'
UCE ubiquitin- conjugating enzyme (PF3D7_70812600)	5'-TAACAGCCCAGCGAATCAAG-3'	5'-CGGCATCTCTTCAGCTTCTG-3'
<i>var</i> gene (PF3D7_1240900)	5'-CAAAATGGTAGTGATGGTGGTCG-3'	5'-CCCCCTGCTTATTATCTTCGTC-3'
Pool <i>var</i> DBLalpha	5'-GCACGAACCTTGCA-3'	5'-GCCCCATTGTCGAACC-3'
	5'-GCACGCAGTTTGCA-3'	5'-GCCCCATTCCCTCGAACC-3'

936
937
938

- 939
940 References:
941
942 Abraham KJ, Chan JN, Salvi JS, Ho B, Hall A, Vidya E, Guo R, Killackey SA, Liu N, Lee
943 JE, *et al* (2016) Intersection of calorie restriction and magnesium in the suppression of
944 genome-destabilizing RNA-DNA hybrids. *Nucleic Acids Res Oct* 14;44(18):8870-
945 8884
- 946 Andrade CM, Fleckenstein H & Thomson-Luque R (2020) Increased circulation time of
947 *Plasmodium falciparum* underlies persistent asymptomatic infection in the dry season.
948 *Nat Med* 26: 1929–1940
- 949 Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, Llinás M &
950 Goldberg DE (2012) *Plasmodium falciparum* responds to amino acid starvation by
951 entering into a hibernatory state. *Proc Natl Acad Sci USA* 109
- 952 Barcons-Simon A, Cordon-Obras C, Guizetti J, Bryant JM & Scherf A (2020) CRISPR
953 Interference of a Clonally Variant GC-Rich Noncoding RNA Family Leads to General
954 Repression of var Genes in *Plasmodium falciparum*. *mBio* 11
- 955 Birnbaum J, Flemming S & Reichard N (2017) A genetic system to study *Plasmodium*
956 *falciparum* protein function. *Nat Methods* 14: 450–456
- 957 Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J & DeRisi JL (2003) The Transcriptome
958 of the Intraerythrocytic Developmental Cycle of *Plasmodium falciparum*. *PLoS Biol* 1:
959 e5
- 960 Collins KA, Ceesay S, Drammeh S, Jaiteh FK, Guery MA, Lanke K, Grignard L, Stone W,
961 Conway DJ, D'Alessandro U, *et al* (2022) A Cohort Study on the Duration of
962 *Plasmodium falciparum* Infections During the Dry Season in The Gambia. *The*
963 *Journal of Infectious Diseases* 226: 128–137
- 964 Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME,
965 Brown GV, Coppel RL & Cowman AF (1997) Targeted Gene Disruption Shows That
966 Knobs Enable Malaria-Infected Red Cells to Cytoadhere under Physiological Shear
967 Stress. *Cell* 89: 287–296
- 968 van Dam TJP, Zwartkruis FJT, Bos JL & Snel B (2011) Evolution of the TOR Pathway. *J*
969 *Mol Evol* 73: 209–220
- 970 Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N, Ramdani G, Langsley G & Chitnis
971 CE (2014) The Central Role of cAMP in Regulating *Plasmodium falciparum*
972 Merozoite Invasion of Human Erythrocytes. *PLoS Pathog* 10: e1004520
- 973 Diffendall GM, Barcons-Simon A, Baumgarten S, Dingli F, Loew D & Scherf A (2022)
974 Discovery of RUF6 ncRNA–interacting proteins involved in *P. falciparum* immune
975 evasion. *Life Sci Alliance* 6: e202201577
- 976 Fan Y, Shen S, Wei G, Tang J, Zhao Y, Wang F, He X, Guo G, Shang X, Yu X, *et al* (2020)
977 Rrp6 Regulates Heterochromatic Gene Silencing via ncRNA RUF6 Decay in Malaria
978 Parasites. *mBio* 11: e01110-20

- 979 Fang J, Sullivan M & McCutchan TF (2004) The Effects of Glucose Concentration on the
980 Reciprocal Regulation of rRNA Promoters in *Plasmodium falciparum*. *Journal of*
981 *Biological Chemistry* 279: 720–725
- 982 Fogang B, Lellouche L, Ceesay S, Drammeh S, Jaiteh FK, Guery M-A, Landier J, Haanappel
983 C, Froberg J, Conway D, *et al* (2023) Asymptomatic *Plasmodium falciparum* Carriage
984 at the End of the Dry Season is Associated with Subsequent Infection and Clinical
985 Malaria in Eastern Gambia Epidemiology
- 986 Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson
987 KE, Bowman S, *et al* (2002) Genome sequence of the human malaria parasite
988 *Plasmodium falciparum*. *Nature* 419: 498–511
- 989 Guillochon E, Fraering J, Joste V, Kamaliddin C, Vianou B, Houzé L, Baudrin LG, Faucher
990 JF, Aubouy A, Houzé S, *et al* (2022) Transcriptome Analysis of *Plasmodium*
991 *falciparum* Isolates From Benin Reveals Specific Gene Expression Associated With
992 Cerebral Malaria. *The Journal of Infectious Diseases* 225: 2187–2196
- 993 Guizetti J, Barcons-Simon A & Scherf A (2016) Trans-acting GC-rich non-coding RNA at
994 var expression site modulates gene counting in malaria parasite. *Nucleic Acids Res* 44:
995 9710–9718
- 996 Guizetti J & Scherf A (2013) Silence, activate, poise and switch! Mechanisms of antigenic
997 variation in *Plasmodium falciparum*. *Cell Microbiology* 15: 718–726
- 998 Hasenkamp S, Merrick CJ & Horrocks P (2013) A quantitative analysis of *Plasmodium*
999 *falciparum* transfection using DNA-loaded erythrocytes. *Mol Biochem Parasitol* 187:
1000 117–120
- 1001 Hess FI, Kilian A, Söllner W, Nothdurft HD, Pröll S & Löscher T (1995) *Plasmodium*
1002 *falciparum* and *Plasmodium berghei*: Effect of Magnesium on the Development of
1003 Parasitemia. *Experimental Parasitology* 80: 196–193
- 1004 Innocent O, Ejovi O & Charles E (2013) Levels of iron and magnesium in serum of
1005 *Plasmodium falciparum* malarial infected children in Abraka, Delta State, Nigeria. *J*
1006 *Invest Biochem* 2: 62
- 1007 Jähnen-Dechent W & Ketteler M (2012) Magnesium basics. *Clinical Kidney Journal* 5: i3–
1008 i14
- 1009 Jensen MD, Conley M & Helstowski LD (1983) Culture of *Plasmodium falciparum*: The Role
1010 of pH, Glucose, and Lactate. *The Journal of Parasitology* 69: 1060
- 1011 Kimenyi KM, Wamae K & Ochola-Oyier LI (2019) Understanding *P. falciparum*
1012 Asymptomatic Infections: A Proposition for a Transcriptomic Approach. *Front*
1013 *Immunol* 10: 2398
- 1014 Kumar M, Skillman K & Duraisingh MT (2021) Linking nutrient sensing and gene
1015 expression in *Plasmodium falciparum* blood-stage parasites. *Mol Microbiol* 115: 891–
1016 900

- 1017 Leech JH, Barnwell JW, Miller LH & Howard RJ (1984) Identification of a strain-specific
1018 malarial antigen exposed on the surface of plasmodium falciparum-infected
1019 erythrocytes. *J Exp Med* 159: 1567–1575
- 1020 Lemieux JE, Gomez-Escobar N, Feller A, Carret C, Amambua-Ngwa A, Pinches R, Day F,
1021 Kyes SA, Conway DJ, Holmes CC, *et al* (2009) Statistical estimation of cell-cycle
1022 progression and lineage commitment in *Plasmodium falciparum* reveals a
1023 homogeneous pattern of transcription in ex vivo culture. *Proc Natl Acad Sci USA* 106:
1024 7559–7564
- 1025 Leopold SJ, Apinan S, Ghose A, Kingston HW, Plewes KA, Hossain A, Dutta AK, Paul S,
1026 Barua A, Sattar A, *et al* (2019) Amino acid derangements in adults with severe
1027 falciparum malaria. *Sci Rep* 9: 6602
- 1028 Li H & Durbin R (2009) Fast and accurate short read alignment with BurrowsWheeler
1029 transform. *Bioinformatics* 25: 1754–1760
- 1030 Lopez-Rubio JJ, Mancio-Silva L & Scherf A (2009) Genome-wide analysis of
1031 heterochromatin associates clonally variant gene regulation with perinuclear
1032 repressive centers in malaria parasites. *Cell Host Microbe* 5: 179–190
- 1033 Mancio-Silva L, Slavic K, Grilo Ruivo MT, Grosso AR, Modrzynska KK, Vera IM, Sales-
1034 Dias J, Gomes AR, MacPherson CR, Crozet P, *et al* (2017a) Nutrient sensing
1035 modulates malaria parasite virulence. *Nature* 547: 213–216
- 1036 Mancio-Silva L, Slavic K, Grilo Ruivo MT, Grosso AR, Modrzynska KK, Vera IM, Sales-
1037 Dias J, Gomes AR, MacPherson CR, Crozet P, *et al* (2017b) Nutrient sensing
1038 modulates malaria parasite virulence. *Nature* 547: 213–216
- 1039 Mancio-Silva L, Zhang Q, Scheidig-Benatar C & Scherf A (2010) Clustering of dispersed
1040 ribosomal DNA and its role in gene regulation and chromosome-end associations in
1041 malaria parasites. *Proc Natl Acad Sci USA* 107: 15117–15122
- 1042 Marreiros IM, Marques S, Parreira A, Mastrodomenico V, Mounce BC, Harris CT, Kafsack
1043 BF, Billker O, Zuzarte-Luis V & Mota MM (2023) A non-canonical sensing pathway
1044 mediates Plasmodium adaptation to amino acid deficiency. *Commun Biol* 6: 205
- 1045 McLean KJ & Jacobs-Lorena M (2017) Plasmodium falciparum Maf1 Confers Survival upon
1046 Amino Acid Starvation. *mBio* 8: 02317–16
- 1047 Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN &
1048 Hernandez N (2010) mTORC1 Directly Phosphorylates and Regulates Human MAF1.
1049 *Mol Cell Biol* 30: 3749–3757
- 1050 Miller LH, Ackerman HC, Su X & Wellemes TE (2013) Malaria biology and disease
1051 pathogenesis: insights for new treatments. *Nat Med* 19: 156–167
- 1052 Miller LH, Baruch DI, Marsh K & Doumbo OK (2002) The pathogenic basis of malaria.
1053 *Nature* 415: 673–679

- 1054 M'Kaibi FK, Steyn NP, Ochola S & Du Plessis L (2015) Effects of agricultural biodiversity
1055 and seasonal rain on dietary adequacy and household food security in rural areas of
1056 Kenya. *BMC Public Health* 15: 422
- 1057 Murray L, Stewart LB, Tarr SJ, Ahoudi AD, Diakite M, Amambua-Ngwa A & Conway DJ
1058 (2017) Multiplication rate variation in the human malaria parasite *Plasmodium*
1059 *falciparum*. *Sci Rep* 7: 6436
- 1060 Nacer A, Claes A, Roberts A, Scheidig-Benatar C, Sakamoto H, Ghorbal M, Lopez-Rubio J
1061 & Mattei D (2015) Discovery of a novel and conserved *Plasmodium falciparum*
1062 exported protein that is important for adhesion of PfEMP1 at the surface of infected
1063 erythrocytes. *Cell Microbiol* 17: 1205–1216
- 1064 Nyarko PB & Claessens A (2021) Understanding Host–Pathogen–Vector Interactions with
1065 Chronic Asymptomatic Malaria Infections. *Trends in Parasitology* 37: 195–204
- 1066 Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S,
1067 Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, *et al* (2022) The PRIDE
1068 database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
1069 *Nucleic Acids Research* 50: D543–D552
- 1070 Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis H SR, AK S, A B, & M.
1071 (2001) Maf1p, a negative effector of RNA polymerase III in *Saccharomyces*
1072 *cerevisiae*. *Mol Cell Biol* 21: 5031–5040
- 1073 Poulet P, Carpentier S & Barillot E (2007) myProMS, a web server for management and
1074 validation of mass spectrometry-based proteomic data. *Proteomics* 7: 2553–2556
- 1075 Rollins J, Veras I, Cabarcas S, Willis I & Schramm L (2007) Human Maf1 negatively
1076 regulates RNA Polymerase III transcription via the TFIIB family members Brf1 and
1077 Brf2. *Int J Biol Sci*: 292–302
- 1078 Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J & Lanzer
1079 M (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually
1080 exclusive transcription of var genes during intra-erythrocytic development in
1081 *Plasmodium falciparum*. *EMBO J* 17: 5418–5426
- 1082 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
1083 Rueden C, Saalfeld S, Schmid B, *et al* (2012) Fiji: an open-source platform for
1084 biological-image analysis. *Nat Methods* 9: 676–682
- 1085 Schneider VM, Visone JE, Harris CT, Florini F, Hadjimichael E, Zhang X, Gross MR, Rhee
1086 KY, Ben Mamoun C, Kafsack BFC, *et al* (2023) The human malaria parasite
1087 *Plasmodium falciparum* can sense environmental changes and respond by antigenic
1088 switching. *Proc Natl Acad Sci USA* 120: e2302152120
- 1089 Serfontein J, Nisbet RER, Howe CJ & de Vries PJ (2010) Evolution of the TSC1/TSC2-TOR
1090 Signaling Pathway. *Sci Signal* 3
- 1091 Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DSP, R. N, I. C &
1092 Miller LH (1995) Switches in expression of *plasmodium falciparum* var genes

- 1093 correlate with changes in antigenic and cytoadherent phenotypes of infected
1094 erythrocytes. *Cell* 82: 101–110
- 1095 Smith JD, Rowe JA, Higgins MK & Lavstsen T (2013) Malaria's deadly grip: cytoadhesion
1096 of *Plasmodium falciparum*-infected erythrocytes: *Plasmodium falciparum*
1097 cytoadhesion and var genes. *Cell Microbiol* 15: 1976–1983
- 1098 The M, MacCoss MJ, Noble WS & Käll L (2016) Fast and Accurate Protein False Discovery
1099 Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. *J Am Soc Mass
1100 Spectrom* 27: 1719–1727
- 1101 Thomson-Luque R, Votborg-Novél L, Ndovie W, Andrade CM, Niangaly M, Attipa C, Lima
1102 NF, Coulibaly D, Doumtabe D, Guindo B, *et al* (2021) *Plasmodium falciparum*
1103 transcription in different clinical presentations of malaria associates with circulation
1104 time of infected erythrocytes. *Nat Commun* 12: 4711
- 1105 Valot B, Langella O, Nano E & Zivy M (2011) MassChroQ: a versatile tool for mass
1106 spectrometry quantification. *Proteomics* 11: 3572–3577
- 1107 Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA & Cramer P (2010)
1108 Molecular basis of RNA polymerase III transcription repression by Maf1. *Cell* 143: 70
- 1109 Wahlgren M, Goel S & Akhouri RR (2017) Variant surface antigens of *Plasmodium*
1110 *falciparum* and their roles in severe malaria. *Nat Rev Microbiol*
- 1111 Wullschleger S, Loewith R & Hall MN (2006) TOR Signaling in Growth and Metabolism.
1112 *Cell* 124: 471–484
- 1113 Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa U SR, K B, IF C, D M, M B, *et al*
1114 (2018) Uncovering the essential genes of the human malaria parasite *Plasmodium*
1115 *falciparum* by saturation mutagenesis. *Science*
- 1116 Zhang Q, Siegel TN, Martins RM, Wang F, Cao J, Gao Q, Cheng X, Jiang L, Hon CC,
1117 Scheidig-Benatar C, *et al* (2014) Exonuclease-mediated degradation of nascent RNA
1118 silences genes linked to severe malaria. *Nature* 513: 431–435
- 1119 Zhang X & Deitsch KW (2022) The mystery of persistent, asymptomatic *Plasmodium*
1120 *falciparum* infections. *Current Opinion in Microbiology* 70: 102231
- 1121
- 1122
- 1123
- 1124