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Summary

Fine-scale knowledge of the changes in composition and function of the human gut
microbiome compared that of our closest relatives is critical for understanding the
evolutionary processes underlying its developmental trajectory. To infer taxonomic and
functional changes in the gut microbiome across hominids at different timescales, we
performed high-resolution metagenomic-based analyses of the fecal microbiome from over
two hundred samples including diverse human populations, as well as wild-living
chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-
human apes and patterns of host-specific gut microbiota, suggesting the widespread
acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast,
we reveal multiple lines of evidence for a pervasive loss of diversity in humans populations in
correlation with a high Human Development Index, including evolutionarily conserved clades.
Similarly, patterns of co-phylogeny are found to be disrupted in humans. Together with
identifying individual microbial taxa and functional adaptations that correlate to host
phylogeny, these findings offer new and exciting insights into specific candidates playing a
role in the diverging trajectories of the gut microbiome of hominids, demonstrating that
repeated horizontal gene transfer and gene loss, as well as the adaptation to transient
microaerobic conditions appear to have played a role in the evolution of the human gut

microbiome.

Introduction

Human gut microbiome research has demonstrated that numerous factors, including diet,
environment, and lifestyle influence the structure of the human gut microbiota, which in turn
have profound impacts on human health and disease (Johnson et al., 2019; Lloyd-Price et al.,
2019; Vangay et al., 2018). To date, the majority of these studies were conducted on sample
collections from high-income countries, however growing efforts to include humans from
diverse global populations are underway, thereby providing an additional angle to investigate
and evaluate shared and specific microbiome properties across human populations (McCall
etal., 2020; Schaan et al., 2021; E. D. Sonnenburg and Sonnenburg, 2019; Vangay et al., 2018).
These efforts provided an opportunity to discover signatures of host geography and lifestyle

that go beyond conventional differences in diversity parameters in the gut community. For
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72  instance, they revealed elevated rates of horizontal gene transfer (HGT) that correlate with
73 the Human Development Index (HDI, a statistical composite index of indicators encompassing
74  life expectancy, education, and income; (UNDP (United Nations Development Programme),
75  2022)) of a population, suggesting that gut microbiota constantly acquire new functions in
76  conjunction with host lifestyle changes (Groussin et al., 2021). However, the mechanisms that
77  link changes in gut microbial structure with host behavior and ecology remain largely
78  unexplored.

79

80  Additional critical insight into understanding patterns of diversity and composition among
81 human gut communities can be obtained from comparative surveys of the hominid gut
82  microbiota. Humans, chimpanzees, bonobos, and gorillas show increasingly divergent gut
83  microbiota, with more distantly related species exhibiting more divergent community
84  composition (phylosymbiosis; (Brooks et al., 2016)). At the same time, the phylogeny of some
85  of their individual microbial lineages parallels their own phylogeny (codivergence; (Groussin
86 et al.,, 2020; Suzuki et al., 2022)). Both patterns of phylosymbiosis and codivergence are
87  suggestive of long-term effects of hominid evolution on their communities of symbionts
88  (Groussin et al., 2017; Moeller et al.,, 2016; Ochman et al., 2010). Notably, results from
89 comparative marker-gene analyses suggest co-diversifying members of the hominid gut
90 microbial communities (both prokaryotic and phage) are lost and replaced with human
91 lineages when animals leave their natural environments and are moved into captivity
92 (Gogarten etal., 2021; Nishida and Ochman, 2021). However, poor taxonomic resolution and
93  alack of functional characterization precludes a deeper understanding of processes driving
94  these changes.

95

96 Functional analyses from shotgun metagenomic data revealed a conserved phylogenetic
97  signal across wild non-human primates (NHP), despite dietary changes over an individual’s
98 lifespan and between species, suggesting that the evolution of gut microbiota within wild NHP
99 s partially constrained by host genetics and physiology (Amato et al., 2019). A comparative
100 meta-analysis of microbial functions in NHP and diverse human populations observed a
101  comparable loss of biodiversity in captive NHP and human populations from regions with
102  higher HDI (Manara et al., 2019), supporting previous findings (Moeller et al., 2014). However,

103  overall, the functional characterization of NHP microbiota in previous studies has been limited
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104  to only selected microbial taxa without addressing broader scale functional changes and
105  specific alterations especially in African great apes and humans. As such, robust comparative
106  functional analyses are still needed for a comprehensive understanding of how gut microbiota
107  have evolved with hominids and shaped the current structure and functional capabilities (and
108  deficits) of the human gut microbiome.

109

110 To better elucidate host-microbiome interactions in the hominid gut in an evolutionary
111  context, we present a large-scale comparative study of wild non-human apes (NHA) and
112 humans from geographically distinct populations spanning two continents. Functional
113  shotgun metagenomic sequencing was performed on feces samples of wild-living great apes
114  from six African countries, including two gorilla species, three chimpanzee subspecies, and
115  bonobos, and combined with published data from gorillas and chimpanzees from the Republic
116  of Congo (Campbell et al., 2020). Additionally, we sequenced human fecal samples from two
117  African populations (Mossoun et al., 2017) from rural villages of the Tai region in Céte d’Ivoire
118  (HDI021 =0.550; (UNDP (United Nations Development Programme), 2022)) and the Bandundu
119 region near Salonga National Park, Democratic Republic of the Congo (HDI2021 = 0.479), along
120  with samples from Germany (HDlx21 = 0.942), and included a published dataset from
121  Denmark (HDl2021 = 0.948; (Hansen et al., 2018)) to incorporate varying degrees of HDI. Using
122  this extensive data resource, we created a comprehensive catalog of high-quality prokaryotic
123  genomes assembled from metagenomic data, which we annotated on a taxonomic and
124  functional level. We subsequently explored patterns of diversity and host-specificity for both
125  taxonomic groups and functions, which reveals intriguing patterns associated with human gut
126  microbial communities, convergent functional adaptations across lineages, and the potential
127  mechanisms driving these patterns.

128

129  An expanded catalog of microbial genomes from the hominid gut

130 Using 224 shotgun metagenomic datasets (Suppl. Table S1) from fecal samples of humans
131  (Cote d’lvoire (CIV), n=12, Dem. Rep. of the Congo (DRC), n=12, Denmark (DK), n=24, and
132  Germany (GER), n=24) and non-human apes, including two gorilla subspecies (Gorilla gorilla
133  gorilla, Gabon (GAB), n=8; Gorilla beringei beringei, Uganda (UGA), n=11, and Republic of
134  Congo (CG), n=28), three chimpanzee subspecies (Pan troglodytes verus, CIV, n=55; P.t.
135 troglodytes, GAB, n=11, and CG, n=18; P.t. schweinfurthii, UGA, n=12), and bonobos (Pan
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136  paniscus, DRC, n=12), we reconstructed a total of 7,700 metagenome-assembled genomes
137  (MAGs) ensuring maximum completeness and low contamination using multiple binning
138  algorithms and dedicated curation and scoring tools ((Riihlemann et al., 2022); see Methods).
139  The most MAGs (quality score > 50%) were reconstructed for the most sampled subgroup of
140 great ape, P.t. verus (n=2,182), while the average number of reconstructed MAGs per sample
141  wasthe highest for P.t. schweinfurthii (mean=74.5). Library size / number of sequencing reads
142 was highly correlated with total assembly size (pspearman = 0.644), which in turn was directly
143 correlated with the number of bins recovered for a sample (pspearman = 0.966).

144

145 To ensure a comprehensive reference for the analysis, the collection of MAGs was combined
146  with two large collection of microbial reference species reconstructed from human fecal
147 metagenomes (UHGGV2, n = 4,744 isolates and MAGs; (Almeida et al., 2021)), and non-human
148  primate fecal metagenomes (n = 1,295 MAGs; (Manara et al., 2019)), resulting in a total of n
149 = 13,739 genome sequences; MAGs were subsequently clustered into 5,777 species-level
150 genome bins (SGBs; 95% ANI) using stringent criteria (Suppl. Figure Sla and Silb,
151  Supplementary Table S2). Of these, 1,074 SGBs were not previously covered by either of the
152  two large reference sets, mostly originating from NHA samples (n=956, 89.0%; Suppl. Figure
153  Slc). The highest-quality genome sequence in each SGB was chosen as its representative.
154  Overall quality of SGB representative genomes was high (median quality score = 94.1%; Suppl.
155  Figure S1d). SGB representatives were used as comprehensive reference for the estimation
156  of per-sample abundances (Methods, Suppl. Figure S1e, Suppl. Table S3). In total 3,287 SGBs,
157  encompassing 21 bacterial and two archaeal phyla (Suppl. Figure S1b), were found present in
158 the dataset. This newly curated catalog of SGBs from gorillas, bonobos, and chimpanzees
159 increases the number of microbial species genomes previously reconstructed from feces by
160 more than ten-fold, and increases mapping success of fecal metagenomes from NHAs to
161 reference genomes by two- to three-fold (Suppl. Figure Sle; (Manara et al., 2019). As
162  expected, only minor proportions of SGBs from human samples were not previously covered
163 by the included large reference collections, with 5.8%, 2.7 %, 1.8 and 1.7% of novel SGBs
164  found in samples from CIV, DRC, DK, and GER, respectively (Suppl. Figure Sle). For both NHAs
165 and humans, the highest percentages of novel diversity were observed within the phyla
166  Bacteroidota and Spirochaetota, and, to a lesser degree, within Firmicutes and Firmicutes A

167  for NHAs only (Suppl. Figure S1f). Generally, recovered clusters were highly host specific.
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168  While the 7,700 MAGs spanned 1,787 of the final SGBs, only for 48 of these SGBs MAGs were
169  reconstructed from samples of more than a single host genus.

170

171  Within sample diversity varied considerably between host (sub-)species and with sequencing
172 depth (Suppl. Figure S1g). The used SGB collection covers large proportions of the diversity
173  found within the human gut (Suppl. Fig. Sle) and Faith’s phylogenetic diversity (PD)
174  incorporates SGB relatedness in the diversity calculation, which enables a better estimate of
175  total diversity of a community then simpler richness estimates from taxonomic group
176  abundances. Phylogenetic diversity (PD) at an even mapping depth of 1 million reads per
177  sample showed significantly lower diversity in humans compared to all African great ape hosts
178  (Pwilcoxon = 1.2 x 10713 ; Figure 1a). Comparing individual human populations to African great
179  ape hosts revealed that humans from GER and DRC showed lower means than all NHA group
180  (all Pwilcoxon < 0.05), while humans from CIV and DK exhibited high variance and were found to
181  have significant lower diversity than all NHA hosts (Pwicoxon < 0.05), except for G. g. gorilla and
182  P.t. troglodytes (Pwilcoxon > 0.05). These two great ape taxa were found to have the lowest
183  library sizes, low numbers of recovered genomes and lowest mapping efficiency. Taken
184  together, this suggests that phylogenetic diversity in these hosts may be biased by lower
185 representation in the reference database and that the reduced diversity could be an artefact
186  of this. Consequently, samples with less than 1 million mapped reads were removed from
187  further analyses. This resulted in the removal of samples from the analysis for the groups G.b.
188  beringei (n=1), G.g. gorilla (ncas=5, ncc=1), P.t. troglodytes (ncas=4), P.t. schweinfurthii (n=1)
189  and humans from CIV (n=1). Of note, the lowest and highest mean values for within-sample
190 phylogenetic diversity were found for the human subgroups from Germany and Denmark,
191 respectively, the latter exhibiting the only significant differences between human subsets
192 (Pwilcoxon < 0.05 vs. DRC and GER), contradicting previous reports of lower alpha diversity
193  generally found in high HDI countries (McCall et al., 2020; Vangay et al., 2018). Additionally,
194  the considerable differences in PD observed between CIV and DRC highlight the diversity
195 found between human populations and the need to better characterize human gut
196 microbiome diversity. Therefore, while total diversity of some host groups was likely not
197  exhaustively sampled, especially considering lower abundant microbial clades, the presented
198 reference collection of high-quality metagenome reconstructed genomes likely represents

199  the current best resource for an in-depth taxonomic and functional assessment of hominid
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200 fecal microbiomes and highlights that some human populations, including those sampled in
201  this analysis, have lost considerable microbial diversity in their guts.

202

203  Phylosymbiosis in hominids is strongly supported by community structure

204

205  Phylosymbiosis, a pattern in which microbial community divergence parallels that of the

206  hosts, can be a sign of community-level co-evolution of host and microbiota, indicative of
207  host-microbe relationships maintained over evolutionary timescales (Brooks et al., 2016). To
208 investigate such patterns, we used six different measures of beta diversity. Four were based
209  on phylogenetic or taxonomic distance metrics (weighted and unweighted UniFrac, as well as
210 genus level Aitchison and Jaccard distance), and two additional metrics considered the
211  functional capacities of the community (KEGG ortholog (KO) abundance and
212  presence/absence patterns; Suppl. Figure 2). Strong signals for phylosymbiosis were found
213 for Jaccard, and unweighted UniFrac distances (P < 0.001; Qgonferroni < 0.01), as well as a less
214  pronounced signal for Aitchison distance and the abundance of functional groups (P < 0.01,
215  Qgonferroni = 0.0534 and Qgonferroni = 0.0585, respectively; Figure 1b and c, Suppl. Figure 2, Suppl.
216  Table S4), but not for the distances based on presence and absence of KOs (P = 0.055,

217  Qgonferroni =0.33) and the weighted UniFrac distance (P

1). These results suggest
218  phylosymbiotic divergence in the general microbial structure of hominid microbiota (Jaccard
219  and unweighted UniFrac are based on presence/absence of microbial clades) which in part is
220  paralleled by shifted abundances of distinct taxonomic and functional groups, generally in line
221  with previous observations in other host systems (Brooks et al., 2016). This reduced signal
222 found for taxon-level diversity might be the result of fluctuating clade abundances and
223 functions in response to changing environmental factors, including diet, indicating a high
224  functional plasticity of the hominid gut microbiome in response to immediate influences,
225  while structural changes through acquisition and loss of microbial clades might rather result
226  from longer-term adaptations.

227

228 SGBs shared between host groups were analyzed in a permutation-based framework
229  accounting for differences in sequencing depth and group sizes (see Methods for details). We
230 found that especially human-associated SGBs were strongly depleted across multiple NHA
231  groups (Figure 1d), while such signal found in the opposite direction were less pronounced,

232 indicating the widespread acquisition of novel microbial clades in the human intestinal
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233 microbiome. A similar pattern was found for G. b. beringei and multiple Pan subspecies,
234  however not for G.g. gorilla. G.g. gorilla and P.t. troglodytes are sympatric species and were
235 sampledin the same environment in the Republic of Congo and Gabon. The absence of excess
236  strong host-specific signals between these particular taxa might point towards an effects of a
237  shared environment influencing microbiome structure. Human subgroups from Europe and
238  Africa showed strong pairwise SGB-sharing between CIV and DRC, and DK and GER,
239  respectively, however not across geographic regions, suggesting strong connection of the
240  microbiome with environment and lifestyle differences. All human subgroups exhibit strong
241  depletion of SGB-sharing with all other host genera, which resulted in a clear separation of
242 the human microbiota from that of other hominids.

243
244  Fecal microbiome of European populations marked by loss of evolutionarily conserved core

245  microbiota

246

247  Abundance difference in microbial clades between humans and NHAs and between human
248  communities with differing environments, such as living in rural or urban regions, in regions
249  of the world with lower or higher HDI, can give insights into microbiome-mediated
250 adaptations to environmental changes in the distant and more recent past. We analyzed and
251  compared the abundance profiles of gut microbes between NHAs and humans, including
252  individuals living in rural, lower HDI areas of Africa (CIV and DRC) as well as individuals residing
253  in urban, higher HDI regions within Europe (GER and DK). For all following taxonomic and
254  functional comparisons, we restricted the analysis to human and Pan (chimpanzees and
255  bonobos) samples to obtain focused insights into the microbiota divergence since their hosts
256  diverged about 7-8 million years ago (Langergraber et al., 2012).

257

258  Atotal of 310 microbial genera were included in the analysis, of which 173 were found to be
259  differentially abundant (Qgonferroni<0.05, Figure 1d, Suppl. Table S5) in at least one of these
260 comparisons between human subgroups, or between humans and NHAs, and subsequently
261  sorted into one of four groups. We identified 57 taxa with increased abundances among
262  humans from high HDI regions in Europe, such as Akkermansia, Bacteroides, and Alistipes
263  (Figure 2a and b). We additionally found 39 taxa that are enriched in the two African

264  populations such as Cryptobacteroides, Prevotella, and Succinivibrio (Figure 2a and b). Overall,
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265  the marker taxa of European microbiomes that we detected are in agreement with previous
266  findings (Jha et al., 2018; Pasolli et al., 2019). Our approach allowed us to identify bacterial
267 taxa that exhibit differential abundance profiles between humans and NHAs that are
268 independent from the human populations (Figure 2b). We found 74 taxa, such as S/IG603 that
269 have increased abundance in NHAs and 50 taxa with increased abundance in humans, of
270  which 15 do not show an association to either of the human subgroups, such as Coprococcus
271  and Agathobacter. Interestingly, taxa depleted in the microbiome of European individuals
272  compared to humans from Africa are more likely to be also abundant (>0.1%) in the
273  microbiomes of NHAs (P < 0.001; Figure 1c), suggesting a loss of evolutionary conserved
274  clades in these populations.

275

276  Widespread changes in fecal microbiome function between hosts and across human
277  communities

278  Taxon-specific changes reflect broad-scale differences between host-groups. A focused
279  analysis of microbial functions can give insights into the specific driving forces of such
280 community-level changes. We performed analysis of abundance differences of 6,340 KEGG
281  orthologs (KOs, (Kanehisa and Goto, 2000)) in NHA (genus Pan) vs. human fecal microbiota
282  and humans in European and African societies and found significant abundance differences
283 in 1,092 (17.2 %) and 881 (13.9 %) KOs, respectively (Qgonferroni<0.05; Figure 2a, Suppl. Table
284  S6).

285

286  Analysis of higher-level KEGG annotations, including e.g. complete pathways overrepresented
287 among differentially abundant KOs, revealed seven annotations with enrichment of KOs
288  higher abundant in NHAs compared to humans and nine annotations conversely enriched in
289  humans. Sulfur metabolism (map00920) was generally overrepresented in differentially
290 abundant KOs with individual effect directions associating with both groups (Qsgonferroni < 0.05;
291  Figure 1j, Suppl. Table S7). NHA associated categories md:M00356, md:M00563
292  (methanogenesis) and path:map00680 (methane metabolism) clearly indicate a higher
293  abundance of methanogenic archaea. Additionally, we find multiple categories involving
294  ribosomes, including distinct ribosome annotations of archaea, which we could confirm using
295 the pangenome distribution of these KOs (e.g. 92.9% of SGBs with K02866 [large subunit

296  ribosomal protein L10e] belonging to the domain Archaea). In humans, we find enrichments
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297 in categories covering antimicrobial resistance (path:map01501, br:ko01504), bacterial
298  mobility (path:map02030, path:map02040, br:ko02035), biofilm formation (path:map02026)
299  and prokaryotic defense systems (br:ko02048), suggesting a generally higher abundance of
300 virulence genes in human microbiomes, independent of geography. Pangenome distribution
301 of the significantly different KOs additionally confirm, these are not driven by specific
302  microbial clades since they are present across the entire phylogeny.

303

304 Enrichments of higher-level KEGG annotations between humans from Africa and Europe were
305 exclusively found for the European subgroup (n=16). These involved vitamin B, / cobalamin
306 biosynthesis (md:M00122, MO00924, MO00925, and path:map00860) and antimicrobial
307 resistance genes (br:ko01504, path:map01502). Increased antimicrobial functions may be
308 explained by a higher use of antibiotics in human healthcare and extensive animal husbandry,
309 as well as by environmental pollution (Groussin et al., 2021). The increased abundance of
310 vitamin Bi2-producing microorganisms in the feces of Europeans may be driven by higher
311  dietary intake of meat and dairy products from ruminants, as these food groups contain
312  microorganisms with this metabolic capacity (Watanabe and Bito, 2018). Additionally, we find
313  multiple categories suggesting a community-level shift towards oxidative carbohydrate
314 metabolism, e.g. glycolysis / gluconeogenesis (path:map00010), pyruvate metabolism
315 (path:map00620), phosphotransferase system (path:map02060), and V/A-type ATPase
316 (md:M00159).

317

318 Success of taxa associated to European populations relates to oxidative carbohydrate
319 metabolism

320

321  Community-level changes in abundances of functional groups give insights into some aspects
322  of adaptations, however, they are overproportionally driven by highly abundant taxonomic
323  groups. We applied pangenome analysis to specifically identify individual genes and functions
324  enriched or depleted within specific microbial clades overrepresented the gut of human
325 individuals residing within Europe in comparison to other human associated taxa. Analyses
326  were restricted to four bacterial families, Bacteroidaceae, Lachnospiraceae, Oscillospiraceae,
327 and Ruminococcaceae, for which sufficient numbers of SGBs (n>=10 in each of both groups)

328 for pangenome analysis were recovered. SGBs in these family represent large proportions of
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329 the overall human microbiome (mean = 53.2%), with no significant differences between the
330  subgroups (Pkruskal-waliis = 0.2). The analysis was conducted at the family-level, as higher
331 taxonomic ranks would increase clade-specific functional biases. To account for between-
332 family functional differences, functional differences of SGBs associated with Europeans were
333  first analyzed within microbial families using Fisher’s exact test and subsequently subjected
334  to unweighted meta-analysis using Z-scores to leverage shared signals.

335

336 We identified 167 enriched and 30 depleted KOs in pangenomes associated with the
337 European populations (Queta,Bonferroni<0.05; Suppl. Tables S8 and S9). Using higher-level KEGG
338 annotations (modules, pathways, BRITE hierarchies), we found that 11 of these annotations
339  were overrepresented in the dataset (Qgonferroni < 0.05, Figure 3c, Table 1, Suppl. Table S10).
340 Among these were multiple groups involved in carbohydrate metabolism enriched in taxa
341  associated with Europeans, specifically pointing at aerobic breakdown of sugar molecules for
342  ATP generation (citrate cycle: md:MO00009, path:map00020; pentose phosphate pathway:
343 md:M00004; V/A-type ATPase, prokaryote: md:M00159), confirming patterns seen also in the
344  community-level analysis of functional abundances. These signals strongly suggest that the
345  selection for taxa in the gut of humans living within Europe is connected to a diet rich in
346  carbohydrates and potentially the adaptation to transient microaerobic conditions in the gut
347  environment, using oxidative phosphorylation as a mean to release energy from nutrients,
348  which is more efficient than strictly anaerobic fermentation (Jurtshuk, 1996). However,
349 reduced fermentation can impact short-chain fatty acid production, which can, in turn,
350 potentially negatively affect the host’s intestinal epithelial cells and metabolism (Deleu et al.,
351 2021). Additionally, we found a pathway connected to the histidine degradation
352  (md:MO00045). Especially gut microbial histidine metabolism has been discussed with
353 relevance to human health, as it was shown that an intermediary product of histidine
354  degradation, imidazole propionate, was increased in type 2 diabetic individuals in a large
355  study of almost 2,000 individuals, and that this increase was directly connected to the
356  microbiota and overall unhealthy dietary habits, however independent of dietary histidine
357 intake (Molinaro et al., 2020). The enzyme urocanate hydratase (EC:4.2.1.49; K01712) is
358 responsible for the interconversion between urocanate and imidazole propionate in the
359 histidine degradation pathway. We find this gene significantly enriched in three of the four

360 bacterial families analyzed (P < 0.05, Figure 3d), with a clear trend visible also for
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361 Oscillospiracaee (P = 0.052). This suggests a microbiome-encoded pre-disposition to
362 metabolic disorders in European human communities.

363

364 We did not find any higher-level KEGG annotations significantly enriched among the taxa not
365 enriched in Europeans. The relative lower fitness of these taxa may not result from a single
366 mechanism associated to European lifestyles, but rather from multiple selective forces
367 specific to the individual clades.

368

369 Convergent host-specific adaptations are found across microbial families

370 Shared gene gains or losses across multiple microbial clades can indicate a response to specific
371  host intestinal environments, leading to functions being acquired (and selected for) multiple
372 times independently. We performed a pangenome analysis of genera shared between
373  humans and NHAs (n=36) to identify such patterns of convergent adaptation. To control for
374  higher-level clade effects, functional repertoires (KEGG Ontology terms) were compared
375 between SGB pangenomes at the genus-level from NHAs (Suppl. Table S11) and humans;
376 results were then combined in a meta-analysis across genera. In total, 78 KO terms were
377 identified as carrying signatures of convergent adaptation to the respective host group, with
378 57 of these signatures associating with humans and 21 associating with NHPs (Qgonferroni<0.05;
379  Figure 4a, Suppl. Table S12). Among the human-associated KOs, we found multiple functional
380 groups hinting again at an adaptation to increased oxygen by utilization of oxygen as an
381 electron acceptor within the respiratory chain, such as cytochrome bd ubiquinol oxidase
382  subunits (cydA, cydB), as well as adaptation to increased oxidative stress through ferritin
383  (ftnA) and thioredoxin-dependent peroxiredoxin (BCP). Among the KOs enriched in NHP
384 pangenomes we found an outer membrane factor (TC.OMF), a major facilitator superfamily
385  (MFS) transporter (IrmB), 1-epi-valienol-7-phosphate kinase (acbU), and two KOs annotated
386 as polyketide synthases (rhiA, pksN). Products produced by polyketide synthases have diverse
387 functions, including antibiotic activity, virulence and support of symbiotic relationships
388 (Ridley et al., 2008). OMFs and MFS form transmembrane complexes for the transport of a
389 large variety of solutes (Yen et al., 2002), including e.g. carbohydrates, metal ions, amino
390 acids, and export of toxic compounds (Davidson and Chen, 2004; Lee et al., 2014). How these

391 potential adaptations relate to NHA hosts is unclear, however, they might indicate adaptation
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392 to a diverse diet (Ejby et al., 2016; Tsujikawa et al., 2021) or metabolism of plant-derived
393  xenobiotics (Rodriguez-Daza et al., 2021).

394

395  Prevotella represented the largest genus-level clade in the dataset (n=212, 3.7% of all SGBs).
396  While we found this genus across all host species, it is largely decreased in abundance and
397 prevalence in Europeans. We selected this genus for further analysis to elucidate potential
398 functional mechanisms driving the observed patterns. Enrichment analysis revealed 126 KOs
399  with distinct prevalence patterns (Q<0.05; Figure 4b). The most striking difference was found
400 forthe cytochrome bd ubiquinol oxidases subunits 1 and 2 (cydA and cydB), which were found
401 in 101 of 114 human-associated Prevotella SGBs (incl. UHGGv2 genomes), but present in only
402  two out of 72 SGBs from NHAs. It is important to note that these prevalence differences are
403  not driven by single lineages within the Prevotella genus that would have distribution ranges
404  restricted to single hosts. Instead, they are observed across multiple sibling clades spanning
405 the entire phylogenetic tree of the taxon (Figure 4c). Cytochrome bd oxidases are involved in
406  stress responses, most prominently in transiently microaerobic environments (Giuffre et al.,
407  2014). Comparison of the Prevotella species tree (reconstructed using all SGB representatives
408 recovered from the dataset (n = 184)) and the cydA gene phylogeny exhibit widespread
409 incongruencies between their tree topologies (Figure 4c). We performed a tree reconciliation
410 using a duplication-transfer-loss (DTL; (Kundu and Bansal, 2018)) model between the
411  Prevotella and cydA phylogenies, which revealed frequent events of gene transfer (T =
412  41.552) between branches (including distant ones) of the Prevotella phylogeny and
413  subsequent losses (L = 23.52) in the NHA-associated clades. Interestingly, the two cydA-
414  carrying SGBs found in NHAs are phylogenetically distant, however, their cydA genes are
415  highly similar and most likely the result of a transfer from one to the other. The gene transfer
416  events and mappings were robust across 1,000 reconciliations with different starting seeds,
417  with 89.2% of all events and 67.6% of all mappings found with 100% consistency. These results
418  suggest that the enrichment of cytochrome bd ubiquinol oxidases observed in humans
419 compared to NHAs are the result of multiple reoccurring events of gene loss and horizontal
420 gene transfer between Prevotella clades within the hominid gut.

421

422  Co-phylogeny is rare in spore-forming microbes and disrupted in humans

423
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424

425  Patterns of co-phylogeny between host and microbes can result from close interaction, or
426  even interdependence in extreme cases, and congruent metabolic pathways from co-
427  evolutionary trajectories. Using stringent selection criteria, we subjected 209 subtrees of the
428  SGB phylogeny for co-phylogeny analysis (see Methods). The subtrees spanned 46 families
429 and 945 (28.8%) SGBs present in the dataset in addition to 77 SGBs from the UHGGvV2 catalog.
430 We used a Mantel-test based framework and permutation to detect co-phylogeny signals
431 ((Hommola et al., 2009), see Methods for details). When defining co-phylogeny candidates
432  based on a mean P-value < 0.05 across all permutations, 56 of 209 subtrees (26.8%) qualified
433  as exhibiting co-phylogenetic patterns (Suppl. Table S13). These subtrees cover 312 of the
434 1051 SGBs (30.7%) included in the analysis and 5.84% of the total 5,345 hominid SGBs
435  (excluding the SGBs from Manara et al.). All results and subtrees can be inspected online

436  (https://mruehlemann.shinyapps.io/great apes shiny app). By visually inspecting subtrees

437  with co-phylogeny signals, we find many candidates microbial phylogenies that do not follow
438 host phylogeny, e.g., in a subgroup of the genus Cryptobacteroides (Figure 5a). Such signals
439  suggest that co-phylogeny within the Gorilla and Pan clades can result in statistically
440  significant Mantel tests, despite topological incongruences of human-derived sequences, for
441  which no host sister (sub-)species from the same genus is available.

442

443  Human-derived genomes were found in 149 (71.3%) of the tested subtrees, of which 38
444  (25.5%) were co-phylogeny candidates. Similarly, 18 of 60 (30%) tested subtrees without
445  human-derived representatives exhibited co-phylogeny signals, e.g., WOP29-013 spp. (Figure
446  5a). Overall, 21.8% (n = 82 out of 377) of human-derived SGBs in the analysis were found in
447  co-phylogenetic subtrees, which is significantly less compared to 35.7% (n = 231 out of 647)
448  of NHA-derived SGBs (Prisher = 2 x 10°®). Co-phylogeny signals, defined based on the ratio of
449  SGBs in trees exhibiting co-phylogeny patterns and the total SGBs in the family included in
450 the analysis, differed strongly. Six families showed excessive signals of co-phylogeny and nine
451  families a significant depletion (Qrisher, ror < 0.05; Figure 5b, Suppl. Table S14). The highest co-
452  phylogeny ratio was found for the family Dialisteraceae (Cophyl-Ratio = 100%, Q = 4.61 x 10
453 7), which in the analysis were entirely represented by 14 SGBs in the genus Dialister. Dialister
454  are a common, but rather neglected members of the gut microbiota which have been found

455 increased (Vals-Delgado et al., 2021; Zheng et al., 2018) and decreased (Joossens et al., 2011)
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456  with various human diseases, hence their relation to human health remains unclear.
457 However, on species, Dialister invisus, was found to be moderately transmissible between
458  human mother-infant pairs and within households in a large meta-analysis (Valles-Colomer et
459  al.,, 2023). The strongest depletions were found for e.g. the families Lachnospiraceae and
460 Treponemataceae, the former confirming previous results for this clade (Moeller et al., 2016).
461 The latter, Treponemataceae, especially the genus Treponema D, were found depleted in
462  humans living in Europe and occur in anaerobic sediments (Thingholm et al., 2021), serving
463 as (intermediary) reservoirs for transmission to humans and NHPs, which can disrupt co-
464  phylogenetic signals by constant re-introduction to the community.

465

466  When comparing host groups, the proportion of SGBs with co-phylogeny signal is significantly
467  reduced in all human subgroups compared to the NHA hosts (all Qwilcoxon < 0.05; Figure 5c).
468  Further, humans from Germany and Denmark exhibited even lower proportions of co-
469  phylogeny SGBs compared to the two African human populations (Qwilcoxon < 0.05), but not to
470  each other (Pwilcoxon = 0.68). The human subgroups from Africa did not differ in their co-
471  phylogeny proportions (Pwilcoxon = 0.096). These results suggest a loss of wild great ape
472  associated clades in the intestinal microbiota of humans independent of their geographic
473  origin and the introduction of novel microbial partners with changing environment and
474  lifestyle, confirming again findings from previous analyses.

475

476  Signals of cophylogeny suggest a strong association and possible adaptation with the host and
477  the reduction of genome size and gene content are expected patterns connected to this
478  process (Toft and Andersson, 2010) which has previously been shown also for microbes with
479  codivergence patterns in human population (Suzuki et al., 2022). To explore whether these
480 processes could be detected in our dataset, we analyzed genome size and gene count, as well
481  as 43 microbial traits inferred from genome-level annotations for signals in association with
482  co-phylogeny using logistic regression, while controlling for phylogenetic relatedness (see
483  Methods; Suppl. Table S15). Out of 45 analyzed traits, 13 were found significantly depleted in
484  clades exhibiting co-phylogeny signals (Qgonferroni < 0.05; Figure 5d; Suppl. Table $16), including
485 genome size, gene count, capabilities to use multiple simple sugars, and bile susceptibility.
486  Phylum-level analyses confirm this overall trend especially for Actinobacteriota, Firmicutes A,

487  Firmicutes C and Verrucomicrobiota (Pwiicoxon < 0.05), while Proteobacteria exhibited an
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488 inverse signal (Figure 5d). This inverse signature might be explained by host specific
489 acquisition of genes found e.g. for E. coli across different and diverse hosts (Tiwari et al.,
490  2023), however these findings needs to be further investigated. A higher susceptibility to bile
491 in clades without co-phylogeny signal clearly suggests that bile tolerance is an adaptation to
492  the Intestinal environment of hominid hosts. The depletion of the utilization of simple dietary
493  sugars (traits: D-Xylose [Figure 5f], D-Mannose, Maltose, Glucose fermenter, Sucrose,
494  Trehalose, L-Arabinose; all Q < 0.05) in co-phylogeny clades might suggest an adaptation to
495  host-derived complex carbohydrates or other energy sources in the host-context.

496

497  Only one trait —the Arginie dihydolase pathway, also called Arginine deiminase pathway (ADI)
498 - was found enriched with co-phylogeny signal. Argninie metabolism has been widely
499  discussed in the context of host-microbe interaction (Nise et al., 2023), and ADI specifically
500 was shown to protect bacteria from acid stress in host-association (Casiano-Colén and
501 Marquis, 1988), but was also shown to modulate host immunity (Ghazisaeedi et al., 2022)
502 and as specifically acquired by Saccharibacteria in the process of colonization of mammals
503 (Tian et al.,, 2022), confirming its potential association with co-phylogeny in hominids.
504  Previous analyses suggested that spore-forming clades are less likely to be exhibiting co-
505 phylogenic patterns, due to their ability to survive outside of the gut, facilitating dispersal
506 between hosts (Groussin et al., 2020; Hildebrand et al., 2021; Moeller et al., 2016; Nayfach et
507 al., 2016). We did not find any negative correlation between spore-formation ability and co-
508 phylogeny patterns (Q = 1, Suppl. Table S16), however the annotation of this trait was
509 restricted to only two phyla (Firmicutes and Firmicutes A) and was also rare within these
510 clades, being found in only 54 SGBs across the dataset. As such, whether these results
511 contradict previous findings cannot be concluded in this analysis and warrants future focused
512  analyses.

513

514 We found 67 out of 157 SGBs in Bacteroidaceae within subtrees with cophylogeny signals (Co-
515 pylogeny-Ratio = 43.5%), consistent with previous findings based on gyrB amplicon data
516 (Moeller et al., 2016). However, no evidence for strict co-phylogeny was found in
517  Bifidobacteriaceae (nsgg=10 in the analysis, none with co-pyhlogeny signals), which is
518 inconsistent with findings from the same report (Moeller et al., 2016). Comparing the

519 phylogeny of metagenome-derived gyrB sequences and the GTDB marker-gene phylogeny for
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520  Bifidobacterium spp. revealed clear incongruences between both approaches (Figure 5g),
521  which may explain the differences in the presented analysis and previous findings.

522

523  Discussion

524  Here, we present the largest curated dataset of fecal metagenomes derived from wild African
525 great apes and human populations. For this, we surveyed and reconstructed high-quality
526  microbial genomes from the feces wild non-human apes, including gorillas (Gorilla gorilla
527  gorilla; Gorilla beringei beringei), chimpanzees (Pan troglodytes verus; P.t. troglodytes; P.t.
528  schweinfurthii), and bonobos (Pan paniscus) as well as human populations from Africa and
529  Europe. We identified signals of phylosymbiosis across the included hominids, indicating a
530 conserved evolutionary relationship of microbial communities with their host species.
531 Moreover, by employing a comparative approach, we found extensive changes of microbial
532  taxonomic and functional abundances across the intestinal microbiota of NHAs and humans.
533  Previous studies have pointed to “Western” lifestyles as an important factor influencing the
534  intestinal microbiota in humans. Within our human sample population, we were able to
535  confirm differential signals of prokaryotes associated with the European human populations.
536 Importantly, using a comparative dataset of great ape taxa showed that microbial clades lost
537  in Europeans in comparison to African human populations are also found in wild great ape
538 populations. Thus, we suggest that the loss of these taxa might be regarded as the departure
539 from a natural divergence trajectory since their last shared ancestor, cumulating in a mass
540 extinction event of evolutionary conserved members of hominid-associated gut microbiota.
541  While it is tempting to link these changes to industrialization (as previous studies have done),
542  there are many differences between these human populations (e.g., genomic diversity, diet,
543  exercise, sunlight exposure, exposure to antibiotics, population bottlenecks) and it was
544  certainly not possible with the sampling regime here, to determine the particular factors
545  responsible for the variation observed between the human populations sampled here. Due
546  to logistic constraints, preservation methods for fecal samples from the included hosts and
547  host subgroups differ. While these are expected to influence microbiome composition,
548  previous studies show that individual signature are retained independent of storage methods
549  (Blekhman et al., 2016). Despite this caveat, that fact that considerable variation exists
550 between human populations is notable and highlights the need for much higher resolution

551 sampling of human associated microbial diversity. Similarly, our analysis suggests that there


https://doi.org/10.1101/2023.03.01.530589
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.01.530589; this version posted September 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

552  iseven more undescribed microbial diversity to be discovered across populations of wild non-
553  human apes.

554

555 In a pangenome analysis to identify individual genes or functions enriched or depleted in
556 genomes of taxa associated with different human populations, we identified numerous
557  functional traits involved in aerobic respiration associated with the European populations in
558 the analysis. We hypothesize that taxa found to be enriched in the fecal samples of humans
559  from Germany and Denmark might have a selective advantage via their clade-independent
560 ability to survive or even utilize aerobic conditions in the intestinal tract. More specifically,
561 we propose that these taxa have undergone convergent adaptation to tolerate high oxygen
562  concentrations. Such aerotolerance could increase microbial fitness, whereby bacteria can
563  withstand high oxygen concentrations to metabolize mucus layers for energy (Zheng et al.,
564  2015). However, the depletion of this mucus by bacteria diminishes an important physical and
565 immunological barrier that protects the human host against microbial assaults and allows for
566 direct interaction between host epithelial cells and microbiota, potentially triggering (auto-
567 )immune processes (Costa et al., 2016; Matute et al., 2023). Notably, we showed that the
568 introduction of novel microbes associated with industrialization related to vast differences in
569 the community composition of fecal microbiota in the European populations. Thus, it is
570 possible that susceptibility to intestinal inflammation might be potentiated by specific taxa
571  found in this population. Accordingly, we found increased abundances of well-characterized
572  mucin-degrading taxa, including Akkermansia and Bacteroides, in the European cohorts.
573  These findings are congruent with previous reports suggesting that there is increased mucus
574  degradation by intestinal microbiota in human populations with direct access to industrial
575 food systems, which may relate to higher incidences of inflammatory bowels diseases
576  observed in developed economies (E. D. Sonnenburg and Sonnenburg, 2019).

577

578  Comparatively, only a few pathways showed conserved enrichment in the opposite direction,
579  suggesting clade specific mechanisms for their loss in some human societies. In particular, we
580 found the taxon Prevotella is depleted in German and Danish samples but conserved across
581 hominids, despite representing a diversity of host clades and diets. Prevotella is a major
582  determining taxon of one of the human enterotypes, a concept used to define fecal microbial

583  communities (Arumugam et al., 2011). It remains controversial as to whether the human gut
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584  microbiome is best classified using such discrete categories, or rather along a dynamic,
585  continuous gradient (Cheng 2019, Knight 2014). Nevertheless, previous reports have shown
586 that individuals who access industrialized food systems (i.e., consume so-called
587  “Westernized” diets) generally display a Bacteroides-dominant enterotype. Bacteroides-
588 enterotypes have been previously associated with a multitude of intestinal (Vieira-Silva et al.,
589  2019) and extra-intestinal inflammatory diseases (Valles-Colomer et al., 2019). Conversely,
590 individuals who rely on rural and traditional subsistence strategies (i.e., consume plant-rich
591 diets) tend to exhibit a Prevotella-dominant enterotype (Vangay et al., 2018). This enterotype
592 is also displayed in about 20% of individuals living within Western societies (Costea et al.,
593  2018). Interestingly, there are conflicting reports concerning Prevotella and host health.
594  While it has been shown that Prevotella may improve glucose metabolism (Kovatcheva-
595  Datchary et al., 2015), other reports have linked high abundances of Prevotella spp. with
596 autoimmune diseases and intestinal inflammation (lljazovic et al., 2021). While results from
597 model systems have suggested Prevotella likely plays a role in autoimmunity, these studies
598 largely relied on mono-colonization of germ-free animals and thus may be biased due to a
599 lack of microbial interaction partners and an aberrant host physiology (lljazovic et al., 2021).
600  Within human studies, no convincing link between increased Prevotella spp. and
601 inflammatory bowel disease has yet been shown (lljazovic et al., 2021).

602

603  Here, we used an evolutionarily-informed framework to extend the enterotype concept to
604  elucidate the functional dynamics involved in the assembly of the human gut microbiome
605 over evolutionary timescales. Such insights may better inform how changes in the gut
606 microbiome might affect human health. We find the taxon Prevotella to be conserved across
607 the sampled hominids. Moreover, the sheer diversity of Prevotella displayed across all
608 hominid clades clearly suggests an evolutionary conservation and long-standing interaction
609  of this microbial clade with the host, as further revealed by host-specific microbial functions
610 identified in the metagenomic pangenome analysis. In other words, we find the Prevotella
611 clade to be an integral member of the intestinal microbial community of all hominids.
612 Therefore, we propose that the Prevotella-enterotype represents an evolutionary ancestral
613 community state for the human gut microbiome. Rather than a discrete enterotype, a
614 reduced abundance and diversity of Prevotella may better regarded a key biomarker for

615 disease risk (Gorvitovskaia et al., 2016) or for microbiota insufficiency syndrome (J. L.
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616  Sonnenburg and Sonnenburg, 2019), which seems to be partly driven by changes associated
617  with Western lifestyles. Additional research and large-scale strain collections for Prevotella
618 are needed for an in-depth analysis and evaluation of this diverse taxonomic group with
619 regard to host health and its role in inflammation. Such research must consider Prevotella
620  spp. as members of a complex consortium of interacting microorganisms and as, we argue, a
621  potential target for pre- and probiotic intervention in chronic inflammatory disorders.

622

623  Lastly, we leveraged our catalog of high-quality metagenome-assembled genomes from
624  hominid fecal samples together with existing data to investigate co-phylogenetic patterns
625  across the sampled hosts. Overall, co-phylogeny showed highly clade-specific enrichments
626 and depletions. In addition, human-derived MAGs were found significantly less often among
627  co-phylogenetic groups than MAGs from NHAs. Since we included human-derived data from
628 global reference datasets (Almeida et al., 2021), this effect is unlikely to be an artifact of non-
629  exhaustive coverage of human microbiome members. We found several microbial traits
630 depleted among bacteria with cophylogenetic patterns. Among these were, as expected,
631 reduced genome sizes and gene counts, as well as susceptibility to bile and utilization of
632  multiple simple carbohydrates. We hypothesize that these depletions mirror the
633  specialization of microbes to colonize the hominid gut and utilize host-derived complex
634  carbohydrates.

635

636  Our study has limitations. The co-phylogeny analysis relies heavily on genome-sequences
637 recovered from shotgun metagenomic sequencing (MAGs), which are potentially
638 contaminated and incomplete, which could bias tree structure and thus, co-phylogeny
639 estimates, and also the can potentially under- (or over-)estimate the functional capacities of
640 recovered microbial genomes. To address the potential shortcomings of MAGs, we
641 implemented stringent data processing pipelines and quality control to achieve the high-
642 quality MAGs and a host-specific pan-genome based functional annotation framework
643  incorporating information from multiple MAGs per species representative to reduce potential
644  genome gaps (see Methods). Additionally, the commonly used estimates of divergence times
645  of the hominid hosts included in the analysis set the timeframe of the split from a shared
646  ancestor to 8-19 million years ago (Langergraber et al., 2012; Scally et al., 2012). Bacterial

647  speciation events happen in the timeframe of 10-100 million years, or longer (Marin et al.,
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648 2017; McDonald and Currie, 2017; Ochman et al., 1999), and thus, co-phylogeny in hominids
649 is expected to be observed within microbial species or possibly genera. In the presented
650 dataset, species-level sharing of MAGs between host genera was low (1.68%; n = 30 out of
651 1,787 reconstructed SGBs, not including Manara et al. and UHGGv2). SGBs were defined on
652 95% average nucleotide identity, a measure generally regarded as appropriate (Jain et al.,
653  2018), but it is nevertheless prone to clade specific biases, potentially further influenced by
654  altered speciation dynamics in association with (evolutionary) changes in host lifestyle
655 (Lawrence and Retchless, 2009), i.e. previously demonstrated increases in horizontal gene
656  transfer (HGT) within individual microbiomes (Groussin et al., 2021). Accounting for these
657  potential biases, we relaxed the threshold to a shared genus-level annotations for subgroups
658 to be included in the co-phylogeny testing, while keeping the number of tested sub-
659  phylogenies to a minimum through the definition of stringent inclusion criteria (see Methods).
660 Despite these considerations, the observation of signals of co-phylogeny across hominids is
661  supported by a robust statistical framework.

662

663  Additional limitations stem from the focus on humans and African great apes. While the
664  comparisons between these host-clades provide a framework for the in-depth investigation
665  of (evolutionary) rather recent adaptations and between-host divergences, they potentially
666 neglect that could be revealed by broader-scale investigations, such as the previously
667  described convergence of the human gut microbiota towards that of cercopithecines (Amato
668 etal., 2019). However, our analyses show the impact of the unique trajectories taken by the
669 intestinal microbiomes of Pan and Homo since their last common ancestor.

670

671  Our work here lays the foundation for the analysis of disease-associated changes in the
672  human intestinal microbiome in an evolutionarily informed framework, thereby allowing
673  researchers to evaluate microbiome-associated inflammatory disorders from a point of view
674  that considers both proximal and evolutionary influences. Future investigations should
675  consider in-depth analysis of horizontal gene transfer events within or even between primate
676  hosts to shed further light on also cross-species dynamics and transition of microbes. Such
677  analyses however require either microbial isolate genomes or at least long-read sequencing
678  datatoincrease confidence in detection events. Additionally, time series data for host groups

679  sharing the same habitat, e.g. G. g. gorilla and P. t. troglodytes, could give additional insights
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680 into cross-species sharing dynamics which cannot be appropriately elucidated based on
681  single-timepoint data.

682

683 In summary, we present an in-depth taxonomic and functional description and analysis of
684  hominid-associated fecal communities spanning about ten million of years of evolution and
685  host-microbiome interactions in the gut of humans and African great apes. Western lifestyle
686 and maybe more precisely industrialization associated changes in human gut microbiota have
687  been previously suggested as a driver of microbiome insufficiency syndrome, whereby an
688 incompatibility between quickly adapting microbiota and slowly evolving host genes leads to
689  chronic inflammatory diseases such as metabolic syndrome, type 2 diabetes, and
690 inflammatory bowel disease (E. D. Sonnenburg and Sonnenburg, 2019; Wallenborn and
691  Vonaesch, 2022). Thus, a comparative analysis of human and NHA intestinal microbiota that
692  considers evolutionary forces as presented herein provides a powerful platform to advance
693  our understanding of human-associated microbiota and guide the development of
694  personalized, targeted interventions to prevent and treat chronic inflammatory disorders.

695
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696  Methods

697  Ethics & Inclusion statement

698  Ethical approval for work on human samples was obtained from the Local Ethics Committee
699  Germany, Kiel (reference number A156/03), the Ivorian ethics commission (Comité national
700 d'éthique et de la recherche [CNER], permit number 101 10/MSHP/CNER/P) and the
701  Congolese ethics commission (Comité d'Ethique, Ministére de I'Enseignement Supérieur et
702 Universiaire, permit number ESO/CE/018/11). All procedures performed in studies involving
703  human participants were in accordance with the ethical standards of the institutional and/or
704  national research committee and with the 1975 Helsinki declaration and its later amendments
705  or comparable ethical standards. Sampling of wild-living great apes and human populations
706  in Africa were granted by: Bwindi Impenetrable Forest National Park, Uganda (Gorilla beringei
707  beringi, Pan troglodytes schweinfurthii): the Uganda National Council for Science and
708 Technology and the Uganda Wildlife Authority; Kokolopori Bonobo Reserve and Bandundu
709  region, Democratic Republic of the Congo (Pan paniscus, Human): the Ministere de Recherche
710 Scientifique et Technologie, Democratic Republic of the Congo; Loango National Park, Gabon
711 (Gorilla gorilla gorilla, Pan troglodytes troglodytes): the Agence Nationale des Parcs
712 Nationaux, the Centre National de la Recherche Scientifique et Technique of Gabon; Tai
713  National Park and region, Cote d’lvoire (Pan troglodytes verus, Human): the Ministére de
714  I'Enseignement Supérieur et de la Recherche Scientifique, the Ministere des Eaux et Forets in
715  Cobte d’lvoire, and the Office Ivoirien des Parcs et Réserves. Researchers from CIV and DRC
716  contributing to the conducted research and fulfilling the authorship criteria were included as
717  co-authors. Research at sites in Africa was conducted in collaboration with local partners as
718  stated in the acknowledgements section, granted by local authorities and in agreement with
719  local policies. Feces from wild-living, habituated animals were collected after defecation
720  without interfering with the animals. Research at great ape sites was increasingly performed
721  following the IUCN guidelines to minimize disease risk for great apes. We did not stratify or
722  correct for sex or gender effects in the analysis. Our analyses focus on the comparison of gut
723  metagenomes from either distinct hominid species or between human subgroups from
724  populations with differences in human development index. We expect that the effects of sex
725 and/or gender are negligible in this context and these factors have not been explored in the
726  current analysis.

727
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728  Fecal Sampling, DNA extraction and data generation

729  Sampling of wild-living great apes and human populations in Africa were conducted at: Bwindi
730 Impenetrable Forest National Park, Uganda (Gorilla beringei beringi, Pan troglodytes
731  schweinfurthii); Kokolopori Bonobo Reserve and villages adjacent to Salonga-Sud National
732 Park, Democratic Republic of the Congo (Pan paniscus, Human); Loango National Park, Gabon
733 (Gorilla gorilla gorilla, Pan troglodytes troglodytes); Tai National Park and adjacent villages,
734  Cote d’lvoire (Pan troglodytes verus, Human). Sampling procedures for collecting feces from
735  humans (n=48) and wild non-human primates (n=109) have been previously described
736  (Gogarten et al., 2021). Briefly, fecal samples were collected immediately after defecation,
737  and, depending on the local infrastructure, either stored in RNAlater and frozen at -20°C or
738 storedinacryotube, cooled in a thermos until return to the field laboratory, and subsequently
739  snap frozen in liquid nitrogen. Appropriate government permits and permission to conduct
740  research on wild primates were granted by the relevant authorities (see Acknowledgments
741  for site-specific details). Human fecal samples from the Democratic Republic of Congo (n=12)
742  were stored in RNAlater and frozen at -20°C. Human fecal samples from Cote d’Ivoire (n=12)
743  were stored in a cryotube, cooled in a thermos until return to the field laboratory and
744  subsequently snap frozen in liquid nitrogen. Human fecal samples from Germany were
745  collected at home by the participant in standard fecal collection tubes, mailed to the study
746  center, and stored at -80°C. DNA extraction from fecal samples was performed from 200mg
747  of stool transferred to 0.70mm Garnet Bead tubes (Qiagen) with 1.1 mL ASL buffer, followed
748 by bead beating in a SpeedMill PLUS (Analytik Jena AG) for 45 s at 50 Hz. Samples were heated
749  to95°Cfor 5 min and centrifuged, retaining 200 pl of the supernatant for DNA extraction with
750 the QlAamp DNA Stool Mini Kit (Qiagen) automated on a QlAcube system (Qiagen) according
751 to the manufacturer’s protocol. DNA quality was assessed by Qubit and Genomic DNA
752  ScreenTape (Agilent). Illumina Nextera DNA Library Preparation Kit was used to construct
753  shotgun metagenomic libraries, and subsequently sequenced with either 2 x 125 bp reads on
754  a HiSeq 2500 platform or with 2 x 150 bp reads on a NovaSeq 4000 machine (lllumina).

755

756

757  Data processing, assembly and metagenomic binning

758 Raw sequencing FastQ files were quality controlled and preprocessed using the BBMap

759  software suite (“BBMap,” n.d.). Host reads were removed using bbmap.sh. A masked human
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760 reference database (“Introducing RemoveHuman,” 2014) and a lenient mapping threshold of
761  95% identity was used to account for a broader host range to also capture host contamination
762  from the Pan and Gorilla host. Metagenomic contigs were assembled with metaSPAdes and
763  contigs >= 2000 bp were retained (Bankevich et al., 2012). Reads were mapped to the contigs
764  of the respective samples using Minimap2 (Li, 2018), converted to BAM files with Samtools
765 (Li et al., 2009) and used to estimate per-contig mapping depth with the
766  jgi_summarize_bam_contig__depths binary from the MetaBAT2 binning tool (Kang et al.,
767  2019). Contig binning for individual samples was performed with MetaBAT2 (Kang et al.,
768  2019), MaxBin2 (Wu et al., 2016) and CONCOCT (Alneberg et al., 2014). In addition, the VAMB
769  binning tool (Nissen et al., 2021) was used on a cross-mapping catalog of the merged contigs
770  from all samples within each host group. Individual binning results were refined using
771  MAGScoT (Riuhlemann et al., 2022) to acquire high quality metagenome-assembled genomes
772  (MAGs) for each sample. Clustering of MAGs to species-level genome bins (SGBs) was
773  performed with dRep (OIlm et al., 2017) in a multi-step approach to control for inflated SGBs
774  due to low MAG quality. First, MAGs were dereplicated to 97% similarity within each host
775  group, choosing the MAG with the highest score (calculated by MAGScoT based on
776  completeness and contamination) as cluster representative. High and good quality
777  representatives (score > =0.7) from all host groups together with representative sequences
778  from the UHGG v2 were then clustered into 95% SGBs using dRep, again selecting the highest
779 quality MAG as representatives. Medium quality (scores between 0.5 and 0.7) 97%
780  representatives from previous clustering step were then compared to SGB representatives
781  using fastANI (Jain et al., 2018), assigning MAGs with high similarity (>=95%) to the respective
782  SGB. Medium quality 97% representatives without hits to the high quality SGB library were
783  then clustered into 95% SGBs and added to the catalog in the case of at least two genomes in
784  the cluster, discarding singleton clusters. The final catalog of SGB representatives was used
785  to quantify contig abundances in all samples using Salmon in metagenome mode (Patro et al.,
786  2017). Taxonomic annotations were performed using the GTDBtk (v2.1) and GTDB release
787  207v2 (Chaumeil et al., 2022; Parks et al., 2022). For SGBs without genus- and/or species-level
788  assignments, the SGB ID was used as taxonomic label. GTDBtk marker gene alighments were
789  used to generate a phylogenetic tree of all SGB representatives using the respective “infer”
790 function of the GTDBtk. All data processing scripts are available online:

791  https://github.com/mruehlemann/greatapes mgx_scripts
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792

793  Pangenome catalog creation, annotation and analysis

794  All MAGs underwent calling of coding sequences using prodigal (v2.6.3) (Hyatt et al., 2010).
795  Protein sequences were clustered based on 95% similarity using MMseqs (Hauser et al., 2016;
796  Steinegger and Soding, 2017) and annotated using the emapper.py script of the eggNOG-
797 mapper v2 (Cantalapiedra et al., 2021) annotation tool with the eggNOG 5.0 reference
798  database (Huerta-Cepas et al., 2019). MAG level functional profiles based on KEGG Ortholog
799  annotations were collapsed into SGB-level pangenomes for each host genus (Homo, Gorilla,
800 and Pan). In the case that no MAGs of an SGB were recovered from a given host genus,
801 functional profiles were inferred from MAGs across the other host groups, accounting for
802  host-specificities in the inferred accessory genomes/functions by considering a function to be
803  present if it was present in all host-specific pangenomes of the respective SGB with MAGs
804  recovered from the metagenomic data.

805

806  Calculation of microbial clade and functional abundances

807  All downstream data processing and statistical calculations were performed in R v4.2 (R Core
808 Team, 2022) and using the tidyverse library (Wickham et al., 2019). Per-sample contig
809 abundances for the SGB representatives from Salmon were used to estimate SGB
810 abundances. Salmon output includes total mapped reads per contig and mapping reads
811 adjusted for library size and total sequencing depth as transcripts per million (TPM), a
812 measure from the transcriptomics field which can be directly transferred to metagenomic
813 libraries. Individual contig coverages were calculated from the number of mapped reads and
814  the effective lengths of the Salmon mapping output, considering contigs with > 10% coverage
815 aspresent. An SGB was considered present when at least 20% of its total length was in contigs
816 marked as “present” and if at least 1,000 total reads and 250 TPM mapped to it. Final SGB
817 abundances were calculated as TPM, calculated from the reads mapping to the SGBs present
818 in the respective sample, thus representing a normalized abundance across all samples.
819 Combining SGB abundances with taxonomic assignments, domain- to species-level
820 abundances were calculated as cumulative TPM abundances within the respective taxonomic
821  bins. Rarefactions were calculated based on 5-fold repeated subsampling of contig level
822 mapped reads at 100k, 250k, 500k, 1M, 2.5M, 5M, and 10M reads, followed by TPM

823  calculations as described above. By rarefying reads and not TPM we realistically simulate
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824  sampling effects introduced by low coverage and low abundances of SGBs affecting especially
825 samples with small library sizes. Community level functional profiles were calculated be
826  multiplying TPM abundances of SGBs with the respective host-genus specific functional
827  profiles (presence of KEGG orthologs [KOs]) of the SGBs and summarizing the per-SGB values
828 into a sample-level abundance of functional annotations. Ultimately, functional abundances
829  of individual KOs represent the cumulative TPM abundance of SGBs carrying the respective
830 KO.

831

832  Alpha and beta diversity

833  Faith’s phylogenetic diversity (PD) (Faith, 1992) was used as measure of alpha diversity,
834  calculated from the phylogenetic tree based on GTDBtk marker genes using the pd() function
835  ofthe picante package for R (Kembel et al., 2010). Genus-level increase of PD from novel SGBs
836  was calculated from the differences of PDs with and without novel SGB annotated as the
837  respective genus. Sample level PDs were calculated from the SGB presence/absence patterns.
838  Beta diversity was assessed as unweighted and weighted UniFrac distances (Lozupone et al.,
839  2011) using the UniFrac() function of the phyloseq package for R (McMurdie and Holmes,
840  2013) and SGB abundances and the phylogenetic tree based on GTDBtk marker genes as
841 input. Aitchison distance (Aitchison, 1982) was calculated from the CLR-transformed genus-
842  level TPM abundances obtained from the clr() function from the compositions package for R
843  (van den Boogaart and Tolosana-Delgado, 2008) and adding a pseudocount of 1 to all
844  abundances, setting all CLR-transformed abundances below zero to zero. Jaccard distances
845  (Jaccard, 1912) were also calculated on genus-level presence/absence patterns using the
846  vegdist() function from the vegan package for R (Oksanen et al., 2022). Genus-level
847  abundances were chosen for Aitchison and Jaccard distance, as SGBs are highly host-specific,
848  thus would lead to high beta-diversities simply due to host exclusive SGBs, grouping at genus-
849 level prevents from this and UniFrac distances use phylogenetic relations between SGBs.
850 Beta-diversity on functional abundances were calculated from the Euclidian distances of the
851 log-transformed KO abundances adding a pseudocount of 1 to avoid undefined values.
852  Presence-absence values of KOs were treated in the same way as described above and using
853  Jaccard distance to infer pairwise distances.

854

855  Cross-host sharing analysis
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856  Permutation-based analysis of excessive and reduced sharing of SGBs between host groups
857  were based on the mean SGB abundances of the five rarefaction of 1M mapped reads to
858 account for differences in library depth impacting SGB richness and per-group sample sizes.
859  For each host group, 100-fold sampling of five samples from this group were drawn and the
860  SGBs found in the host were analyzed for their presence in five random samples of each of
861 the other host groups, calculating the relative amount of shared SGBs as Relshared = NsGB,shared
862  / nseshost - The mean of all 100 samplings was used as relative sharing coefficient for all host
863  pairs in both directions. Excess and reduced sharing was analyzed by 1000-fold drawing of
864  five random samples accounting for differences of host groups and the repetition of above
865  calculations for relative sharing with all host groups. P-values were calculated from the
866  proportions of random samplings exceeding/falling below the true sharing coefficients.

867

868  Phylosymbiosis analysis

869  Phylosymbiosis was assessed using five measures for community level diversity, unweighted
870 and weighted UniFrac, genus-level Aitchison, and Jaccard distances, as well as KEGG ortholog
871  (KO) abundance based Aitchison distance, and following the approach described in Brooks et

872  al. (2016). Briefly, host group differences were used to infer microbiome dendrograms by
873 UPGMA clustering. Branch support was calculated from 1000-fold jackknife sampling.
874  Robinson-Foulds distances between microbiome trees and host phylogeny were calculated
875  using the RF.dist() function from the phangorn package for R (Schliep, 2011). Significance of
876  phylosymbiosis was assessed using the host phylogeny and 100,000 random trees as
877  comparison for the microbiome trees. Tanglegrams were created with the ggtree and cowplot
878  packages for R (Yu et al., 2017).

879

880  Assessment of between-group abundance differences

881  Taxonomic abundance differences between Humans and NHAs, as well as between humans
882  living outside and within industrialized systems were based on CLR-transformed abundances
883  to account for the compositionality of microbiome data (Gloor et al., 2017). Included in the
884  calculations were all genera with a prevalence > 20% and relative abundance (before CLR-

885  transformation) of > 0.1% in at least of the host groups and all KO abundances with a

886  prevalence > 20% and CLR-transformed abundance of > 1 in at least one of the host groups.
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887 KO abundances were filtered accordingly and subsequently (log+1)-transformed to achieve a
888 less skewed distribution. Log-transformation was chosen, as CLR-transformation assumes
889  compositionality of the data, which is — unlike for taxonomic abundances - not fulfilled for
890 functional abundances. Abundance differences were assessed in a linear regression in R (R
891 Core Team, 2022) using abundances as dependent variable and human/NHA and
892  European/African dichotomies as explanatory variables in a single model for each taxon (or
893  function), assessing associations with all groups at once, the model was defined as
894 Im(abundance ~ Human + European). P-values were calculated from the t-values of the
895  resulting models using the summary.Im() function. Log-fold differences were calculated using
896 group mean abundances and a pseudocount of 0.01. P-values were adjusted for multiple
897  testing using Bonferroni correction. Features with significant (Q < 0.05) positive association
898 with NHAs were grouped as “NHA associated”. Features associating with geographic
899 differences (Europe/Africa) were grouped into the respective group they were positively
900 associated with. Remaining genera with significant differences between humans and NHAs,
901 but not with a particular subgroup were grouped as “human associated”. Genera without
902 abundance differences in any of these comparisons were grouped as “unchanged” or “other”.
903

904  Functional pangenome differences between groups

905 Pangenome catalogs of human-associated SGBs were compared within microbial families
906 between SGBs in taxonomic groups found enriched in European communities compared to
907 other human-associated taxa, independent of a strong association with geography. KEGG
908 Ontology (KO) term annotations were used as functional groups and their prevalence
909 differences between groups were assessed using Fisher’s exact test. Per-family effect sizes (Z-
910 Scores) of KOs were calculated from Prisher-values and the direction of the effects which were
911  assessed using the log2 of the ratio of prevalences in the two groups and a pseudo count of
912  0.01. The sum of the Z-Scores were added and divided by the square-root of the total number
913  of families the respective KOs were found in to obtain a Zmeta for each KO term, used to
914  calculated Pmeta. Pmeta-values were adjusted for multiple testing using Holm-correction. KO
915 terms with Q < 0.05 and present in at least two of the microbial families in the analysis were
916 considered as functions with differential prevalence. A similar approach was employed to
917  assess functional differences between NHP- and Human-associated SGBs, however in this

918 case, SGB pangenome differences were compared on genus level and the meta-analysis was
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919 performed combining signals from all genera, and specifically across the genera within
920  particular phyla.

921

922  Tree reconciliation analysis

923  Proteins from the representative SGBs of the genus Prevotella annotated with the annotation
924  “cydA” (cytochrome bd oxidase subunit 1) as “Preferred name” in the emapper/eggNOG
925 annotation were extracted from the unclustered protein sequence catalog. The same
926  procedure was followed for Paraprevotella clara, which was included as an outgroup.
927  Incomplete cydA sequences were removed using a length threshold of 200. Protein sequences
928 were aligned using Clustal Omega (Sievers et al., 2011). The alignment was used to
929 reconstruct the phylogenetic tree using IQTREE2 (Minh et al., 2020) and a automatic model
930 selection, which resulted in an LG+F+R8 model to be chosen as best-fit model according to
931 the Bayesian information criterion (BIC). Branch support values were calculated using UFBoot
932 (Minhetal., 2013) and performing SH-aLRT test (Guindon et al., 2010). Alignments of GTDBtk
933  marker protein sequences for Prevotella SGBs and Paraprevotella clara were used to
934  reconstruct a genome-level species phylogeny in the same respective way as described above
935 for the cydA sequences (BIC best-fit: LG+I+I+R5). Very low confident branches (< 60%
936  bootstrap support) in the cydA phylogeny were resolved together with the species tree using
937 the OptResolutions supplementary program of the RANGER-DTL 2.0 software (Bansal et al.,
938  2018) resulting in 495 equally probable trees with optimized duplication-transfer-loss costs
939  using default values (duplication: 2, loss: 1, transfer: 3). A randomly chosen output tree was
940 using in the reconciliation analysis with the species tree in RANGER-DTL 2.0 using default
941 values and 1,000 random starting seeds in parallel (Tange, 2011) to assess robustness.
942  Resulting sampling outcomes were summarized using the AggregateRanger tool of the
943  RANGER-DTL 2.0 software package.

944

945  Co-phylogeny analysis

946  Host phylogenetic trees were obtained from the 10kTrees website ((Arnold et al., 2010);

947  https://10ktrees.nunn-lab.org/). To assure high quality microbial phylogenies for the co-

948 phylogeny analysis, family-level maximum-likelihood trees were reconstructed from the
949  GTDBtk marker gene alignments with the IQTREE2 software (Minh et al., 2020) and a WAG

950 modelincluding a random SGB outside the respective families as outgroups. Family level trees
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951  were rooted and for each SGB traced from tip to root to identify for each SGB the smallest
952  subtree which covered 4, 5, 6, and 7 host groups. Combining information from all SGBs, the
953  overall set of smallest trees to be included in the co-phylogeny analysis were identified,
954  discarding subtrees for which the inclusion criterion was fulfilled already for a smaller tree
955  starting from a different tip. In addition, subtrees spanning more than a single genus were
956 excluded from the analysis, as divergence times of microbial genera predate divergence of
957 the included hosts (Ochman et al., 1999). For all subgroups included in the analysis,
958 maximum-likelihood distances and trees using a WAG model in IQTREE2 were inferred from
959 the marker gene alignment of all MAGs assigned to the SGBs in the respective subgroups. Co-
960 phylogeny of the subgroup was assessed by randomly selecting one MAG per host, calculating
961 congruence with the host tree by Robinson-Foulds metric and by Mantel-test (Hommola et
962 al., 2009). Tiplabels were permutated 999-fold and P-values calculated. This process starting
963  from the random selection of one MAG per host was repeated 999 times to obtain final P-
964  values. Family-level co-phylogeny ratios were calculated based on the ratio of SGBs within
965  subtrees with co-phylogeny signal and total SGBs in the respective family that were included
966 in the analysis. Enrichment of co-phylogeny for each microbial family was calculated by using
967  Fisher’s exact test on the SGBs in the analysis dividing them into four groups based on family
968 membership and being in a subtree with co-phylogeny signal. All P-values were adjusted using
969  FDR correction.

970

971  Correlation of microbial phenotypes with cophylogeny signals

972  SGB representative genome sequences were analyzed using the Traitar tool (Weimann et al.,
973  2016) to infer up to 67 microbial traits. A total of 43 inferred traits present in more than 50
974  and less than 1017-50 = 967 of the 1,017 SGBs included in the cophylogeny analysis were
975 analyzed for their association with cophylogeny signals. Using the R package Ime4qtl
976  (Ziyatdinov et al., 2018), for each of the traits a mixed logistic regression model was fitted
977  across for the 1,017 SGBs, using signal of cophylogeny (binary trait) as dependent variable
978 and the trait as bineray fixed effect explanatory variable, accounting for phylogenetic and
979  taxonomic relatedness between SGBs by including a relatedness matrix and phylum-level
980 categories as random effects in the model and using a binomal function with probit as link.
981 The relationship matrix was calculated by using the cophenetic distance matrix from the SGB

982  phylogeny, scaled to values between 0 and 1 by dividing by its largeste distance. Accordingly,
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983 genome size in megabases and gene counts derived from the number of genes in the prodigal
984  output were included as fixed effect continuous traits. Effect sizes and P-values of the
985 individual models were taken from the summary() function in R. P-values were adjusted for
986 multiple testing by Bonferroni correction. Exemplary phylum-level differences in D-xylose
987  utilization and gene counts between SGBs with and without cophylogeny signals were
988 calculated using non-parametric Fisher’s exact and Wilcoxon rank sum test, respectively.
989

990 Data availability

991 All metagenomic sequencing data is available via the NCBI BioProject accession IDs
992 PRINA692042, PRIJNA539933, and PRJNA491335. The collection of 7,700 metagenome-
993 assembled genomes has been deposited in the European Nucleotide Archive, Accession:
994  XXXXX.

995

996 Code availability

997  All code to process sequencing files to generate the presented results and manuscript figures

998 s available via https://github.com/mruehlemann/greatapes mgx scripts.
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Figure 1: Community-level specificities of human and NHA fecal microbiomes. (a)
Phylogenetic Diversity across host groups at a sampling depth of 1 Mio. mapped reads per
sample. (b) Ordination of unweighted UniFrac distances of all samples, colored by host
subgroups. (c) Tanglegram of host (left) and microbiome (right) trees, the latter based on
unweighted UniFrac distances. (d) SGB sharing coefficients between host group. Rows
represent reference host groups; columns represent the groups with which they share
overlap. Numbers in the tiles are P-values from the analysis for enrichment (#) and
depletion (S) in the reference group. Boxplots in this and other plots show the following
elements: center line: median, box limits: upper and lower quartile; whiskers: 1.5 x
interquartile ranges.
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Figure 2: Taxonomic differences the microbiota of humans and NHAs: (a) Effect sizes (t-
values from univariate linear regression) of abundance differences of genera in fecal
samples of NHAs and humans (x-axis) and humans within African and European populations
separated as well (y-axis). Points are colored according to the association groups with
European (dark blue) and African human populations (light blue), or to indicate enrichment
in NHAs (orange) or humans (bright blue). Taxonomic groups not found to be associated
with any of the groups (all Q > 0.05) are shown in grey. Horizontal and vertical lines depict
the t-value threshold (|t-value| > 4.04) for statistical significance after Bonferroni-
correction. (b) Per-sample and host group abundances of selected genera found with
unchanged abundances across all groups (top), increased abundance in NHAs or humans
(rows 2 and 3), or in humans from Africa or Europe (rows 4 and 5). Points are colored
according to host genus: Gorilla = greens, Pan = reds, oranges, and yellows, and human =
blues. (c) Cumulative abundance trajectories of taxa associated with human communities
and NHAs. Shown are the per-sample cumulative abundances within each host group,
grouped based on a taxon’s association with either NHAs, all humans, or one of the human
population subgroups.
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1544

1545  Figure 3: Functional differences in the microbiota of humans and NHAs: (a) Effect sizes (t-
1546  values from univariate linear regression) of the abundance differences of KEGG orthologs in
1547  fecal samples of NHAs and humans (x-axis) and humans within African and European

1548  populations separated as well (y-axis). Points are colored according to the association

1549  groups with European (dark blue) and African human populations (light blue), or according
1550 to general enrichment in NHAs (orange) or humans (mid-blue). Taxonomic groups not found
1551  associated with any of the groups (all Q > 0.05) are shown in grey. Horizontal and vertical
1552  lines depict the t-value threshold (|t-value| > 4.77) for statistical significance after

1553  Bonferroni-correction. (b) KEGG ortholog (KO) effect sizes for differential abundance

1554  between African and European human population associated taxa. Shown KOs are ordered
1555 into functional higher-level KEGG categories that were found enriched (QFisher<0.05)

1556  among KOs with significantly different abundances between groups. Horizontal bars indicate
1557  median t-values of all KOs in a KEGG category as an estimate for the direction of the

1558  enrichment. (c) KOs found enriched in the pangenomes of humans from Africa or Europe
1559  across four bacterial families shared across continents. Shown are the Z-values of the fixed-
1560 effects meta-analysis of KOs for enrichment across microbial families. KOs are sorted into
1561 functional higher-level KEGG categories that were found enriched (QFisher<0.05) among
1562 KOs with significantly different prevalence (QMeta<0.05) between African and European
1563  pangenomes. Horizontal bars depict median ZMeta-values of KOs within higher-level KEGG
1564  categories. (d) Prevalence of the urocanate hydratase gene (K01712) in clades found higher
1565 abundant in humans from Europe across four microbial families. Stars indicate per-clade
1566 differences in gene prevalence: *p < 0.05, **p< 0.01, ***, p<0.001.
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1568  Figure 4: Cross-microbial clade functional associations with NHA and human hosts. (a) KO
1569 terms consistently enriched in human- (blue diamonds) and NHA-associated (orange
1570 diamonds) taxonomic clades. Individual genus-level Peisher-values are shown in points
1571  colored by phylum. Shown P-values are unadjusted for taxon-level tests and Bonferroni-
1572  corrected for multiple testing for the meta-analysis (b) Prevalence patterns of KO terms in
1573  human- (blue) and NPH-associated (orange) Prevotella SGBs. Filled shapes represent KOs
1574  with significant (Q<0.05) differences in the statistical test. (c) Results of the tree
1575  reconciliation analysis for the cydA gene in Prevotella SGBs found in humans (blue) and
1576  NHAs (Pan: orange; Gorilla: green) demonstrate a history of frequent transfer events (red
1577  arrows) across 1000 reconciliations with random seeds. Filled and empty shapes represent
1578  cydA-positive and -negative SGBs, respectively. Arrows are weighted by frequency. Red
1579  triangles mark nodes that were identified as gene transfer recipients with > 50% frequency
1580 independent of the donor node. Black circles mark speciation events with > 50% frequency.
1581 The ten highest abundant Prevotella species with established names are shown for
1582  orientation. The Prevotella tree was rooted using Paraprevotella clara as the outgroup (not
1583  shown).
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1584

1585  Figure 5: Cophylogeny across humans and non-human African great apes. (a) Subtree

1586  phylogenies of groups with significant results in the Mantel-test based analysis for co-

1587  phylogeny. Tip colors and shapes correspond to the host subgroups. Trees were rooted on a
1588 randomly selected outgroup from a related family (not shown). (b) Enrichment and

1589  depletion of co-phylogeny patterns across microbial families with at least 10 SGBs in the
1590 analysis. Bars are colored by phylum, corresponding to the colors in Figure 1. Filled bars
1591  denote significant (Q<0.05) enrichment and depletion. The dashed line represents the

1592  average co-phylogeny ratio across all SGBs. (c) Per-sample proportion of SGBs with co-

1593  phylogeny patterns across and colored by host subgroups. (d) Enrichment (blue) and

1594  depletion (red) of 43 in-silico inferred microbial traits, genome size and gene count in

1595  association with cophylogeny signals. Effect sizes and P-values from mixed effects logistic
1596  regression accounting for phylogenetic relatedness of SGBs. The horizontal line marks the
1597  threshold of significant Bonferroni-adjusted P-values. (e) SGB-level gene counts across nine
1598 phyla, grouped by the presence (blue) and absence (red) of a cophylogeny signal. Within-
1599  phylum differences were assessed by two-sided Wilcoxon rank-sum test. (f) Prevalence of
1600 inferred D-Xylose utilization by SGBs across phyla, grouped by the presence (blue) and

1601  absence (red) of a cophylogeny signal. Within-phylum differences in prevalence were

1602  assessed using a two-sided Fisher-test. (g) Tanglegram of Bifidobacterium maximum-

1603 likelihood phylogenies based on 120 GTDB marker genes (left) and gyrB sequence (right). Tip
1604  colors and shapes correspond to the host subgroups. Across all panels, stars indicate level of
1605 significance: * P < 0.05, ** P < 0.01, *** P < 0.001.

1606
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1607 Tables

1608

1609  Tablel: KEGG functional groups with significant enrichment (Q < 0.05) in the gut
1610  microbiome of humans living in Europe.

1611
KEGG ID Name ﬁg: sl\,nczig 2= p_value Q-value
md:M00159 V/A-type ATPase, prokaryotes 9 11.19 3.23E-16 2.64E-13
path:map00190 Oxidative phosphorylation 223 5.83 1.39E-08 1.13E-05
mawoosze  Cobalamin bommihesis amaerobic woperphyrinogen 1= 5 359 23se.08 194603
path:map00860 Porphyrin metabolism 139 3.51 5.08E-08 4.15E-05
md:M00045 Zi:tgc:mzncﬂllgggadation, histidine => N-formiminoglutamate 8 5.79 4.37E-07 3.57E-04
path:map00010 Glycolysis / Gluconeogenesis 106 1.81 5.21E-06 4.25E-03
md:M00846 Siroheme biosynthesis, glutamyl-tRNA => siroheme 16 4.64 5.99E-06 4.90E-03
md:M00925 gfebc";'fﬂnzkic;s‘égtbhyerfri;tze;,‘ék_’hci'a‘r‘;i"d‘?rphy“”oge” H=> 17 4.36 1.07E-05  8.78E-03
path:map00630 Glyoxylate and dicarboxylate metabolism 101 1.94 3.60E-05 2.94E-02
path:map00260 Glycine, serine and threonine metabolism 109 1.74 5.87E-05 4.80E-02
path:map01230 Biosynthesis of amino acids 238 1.41 6.05E-05 4.94E-02
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