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 40 

Summary 41 

Fine-scale knowledge of the changes in composition and function of the human gut 42 

microbiome compared that of our closest relatives is critical for understanding the 43 

evolutionary processes underlying its developmental trajectory. To infer taxonomic and 44 

functional changes in the gut microbiome across hominids at different timescales, we 45 

performed high-resolution metagenomic-based analyses of the fecal microbiome from over 46 

two hundred samples including diverse human populations, as well as wild-living 47 

chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-48 

human apes and patterns of host-specific gut microbiota, suggesting the widespread 49 

acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast, 50 

we reveal multiple lines of evidence for a pervasive loss of diversity in humans populations in 51 

correlation with a high Human Development Index, including evolutionarily conserved clades. 52 

Similarly, patterns of co-phylogeny are found to be disrupted in humans. Together with 53 

identifying individual microbial taxa and functional adaptations that correlate to host 54 

phylogeny, these findings offer new and exciting insights into specific candidates playing a 55 

role in the diverging trajectories of the gut microbiome of hominids, demonstrating that 56 

repeated horizontal gene transfer and gene loss, as well as the adaptation to transient 57 

microaerobic conditions appear to have played a role in the evolution of the human gut 58 

microbiome. 59 

 60 

Introduction  61 

Human gut microbiome research has demonstrated that numerous factors, including diet, 62 

environment, and lifestyle influence the structure of the human gut microbiota, which in turn 63 

have profound impacts on human health and disease (Johnson et al., 2019; Lloyd-Price et al., 64 

2019; Vangay et al., 2018). To date, the majority of these studies were conducted on sample 65 

collections from high-income countries, however growing efforts to include humans from 66 

diverse global populations are underway, thereby providing an additional angle to investigate 67 

and evaluate shared and specific microbiome properties across human populations (McCall 68 

et al., 2020; Schaan et al., 2021; E. D. Sonnenburg and Sonnenburg, 2019; Vangay et al., 2018). 69 

These efforts provided an opportunity to discover signatures of host geography and lifestyle 70 

that go beyond conventional differences in diversity parameters in the gut community. For 71 
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instance, they revealed elevated rates of horizontal gene transfer (HGT) that correlate with 72 

the Human Development Index (HDI, a statistical composite index of indicators encompassing 73 

life expectancy, education, and income; (UNDP (United Nations Development Programme), 74 

2022)) of a population, suggesting that gut microbiota constantly acquire new functions in 75 

conjunction with host lifestyle changes (Groussin et al., 2021). However, the mechanisms that 76 

link changes in gut microbial structure with host behavior and ecology remain largely 77 

unexplored.  78 

 79 

Additional critical insight into understanding patterns of diversity and composition among 80 

human gut communities can be obtained from comparative surveys of the hominid gut 81 

microbiota. Humans, chimpanzees, bonobos, and gorillas show increasingly divergent gut 82 

microbiota, with more distantly related species exhibiting more divergent community 83 

composition (phylosymbiosis; (Brooks et al., 2016)). At the same time, the phylogeny of some 84 

of their individual microbial lineages parallels their own phylogeny (codivergence; (Groussin 85 

et al., 2020; Suzuki et al., 2022)). Both patterns of phylosymbiosis and codivergence are 86 

suggestive of long-term effects of hominid evolution on their communities of symbionts 87 

(Groussin et al., 2017; Moeller et al., 2016; Ochman et al., 2010). Notably, results from 88 

comparative marker-gene analyses suggest co-diversifying members of the hominid gut 89 

microbial communities (both prokaryotic and phage) are lost and replaced with human 90 

lineages when animals leave their natural environments and are moved into captivity 91 

(Gogarten et al., 2021; Nishida and Ochman, 2021). However, poor taxonomic resolution and 92 

a lack of functional characterization precludes a deeper understanding of processes driving 93 

these changes.   94 

 95 

Functional analyses from shotgun metagenomic data revealed a conserved phylogenetic 96 

signal across wild non-human primates (NHP), despite dietary changes over an individual’s 97 

lifespan and between species, suggesting that the evolution of gut microbiota within wild NHP 98 

is partially constrained by host genetics and physiology (Amato et al., 2019). A comparative 99 

meta-analysis of microbial functions in NHP and diverse human populations observed a 100 

comparable loss of biodiversity in captive NHP and human populations from regions with 101 

higher HDI (Manara et al., 2019), supporting previous findings (Moeller et al., 2014). However, 102 

overall, the functional characterization of NHP microbiota in previous studies has been limited 103 
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to only selected microbial taxa without addressing broader scale functional changes and 104 

specific alterations especially in African great apes and humans. As such, robust comparative 105 

functional analyses are still needed for a comprehensive understanding of how gut microbiota 106 

have evolved with hominids and shaped the current structure and functional capabilities (and 107 

deficits) of the human gut microbiome. 108 

 109 

To better elucidate host-microbiome interactions in the hominid gut in an evolutionary 110 

context, we present a large-scale comparative study of wild non-human apes (NHA) and 111 

humans from geographically distinct populations spanning two continents. Functional 112 

shotgun metagenomic sequencing was performed on feces samples of wild-living great apes 113 

from six African countries, including two gorilla species, three chimpanzee subspecies, and 114 

bonobos, and combined with published data from gorillas and chimpanzees from the Republic 115 

of Congo (Campbell et al., 2020). Additionally, we sequenced human fecal samples from two 116 

African populations (Mossoun et al., 2017) from rural villages of the Taï region in Côte d’Ivoire 117 

(HDI2021 = 0.550; (UNDP (United Nations Development Programme), 2022)) and the Bandundu 118 

region near Salonga National Park, Democratic Republic of the Congo (HDI2021 = 0.479), along 119 

with samples from Germany (HDI2021 = 0.942), and included a published dataset from 120 

Denmark (HDI2021 = 0.948; (Hansen et al., 2018)) to incorporate varying degrees of HDI. Using 121 

this extensive data resource, we created a comprehensive catalog of high-quality prokaryotic 122 

genomes assembled from metagenomic data, which we annotated on a taxonomic and 123 

functional level. We subsequently explored patterns of diversity and host-specificity for both 124 

taxonomic groups and functions, which reveals intriguing patterns associated with human gut 125 

microbial communities, convergent functional adaptations across lineages, and the potential 126 

mechanisms driving these patterns. 127 

 128 

An expanded catalog of microbial genomes from the hominid gut 129 

Using 224 shotgun metagenomic datasets (Suppl. Table S1) from fecal samples of humans 130 

(Côte d’Ivoire (CIV), n=12, Dem. Rep. of the Congo (DRC), n=12, Denmark (DK), n=24, and 131 

Germany (GER), n=24) and non-human apes, including two gorilla subspecies (Gorilla gorilla 132 

gorilla, Gabon (GAB), n=8; Gorilla beringei beringei, Uganda (UGA), n=11, and Republic of 133 

Congo (CG), n=28), three chimpanzee subspecies (Pan troglodytes verus, CIV, n=55; P.t. 134 

troglodytes, GAB, n=11, and CG, n=18; P.t. schweinfurthii, UGA, n=12), and bonobos (Pan 135 
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paniscus, DRC, n=12), we reconstructed a total of 7,700 metagenome-assembled genomes 136 

(MAGs) ensuring maximum completeness and low contamination using multiple binning 137 

algorithms and dedicated curation and scoring tools ((Rühlemann et al., 2022); see Methods). 138 

The most MAGs (quality score > 50%) were reconstructed for the most sampled subgroup of 139 

great ape, P.t. verus (n=2,182), while the average number of reconstructed MAGs per sample 140 

was the highest for P.t. schweinfurthii (mean=74.5).  Library size / number of sequencing reads 141 

was highly correlated with total assembly size (rSpearman = 0.644), which in turn was directly 142 

correlated with the number of bins recovered for a sample (rSpearman = 0.966).  143 

 144 

To ensure a comprehensive reference for the analysis, the collection of MAGs was combined 145 

with two large collection of microbial reference species reconstructed from human fecal 146 

metagenomes (UHGGv2, n = 4,744 isolates and MAGs; (Almeida et al., 2021)), and non-human 147 

primate fecal metagenomes (n = 1,295 MAGs; (Manara et al., 2019)), resulting in a total of n 148 

= 13,739 genome sequences; MAGs were subsequently clustered into 5,777 species-level 149 

genome bins (SGBs; 95% ANI) using stringent criteria (Suppl. Figure S1a and S1b, 150 

Supplementary Table S2). Of these, 1,074 SGBs were not previously covered by either of the 151 

two large reference sets, mostly originating from NHA samples (n=956, 89.0%; Suppl. Figure 152 

S1c). The highest-quality genome sequence in each SGB was chosen as its representative. 153 

Overall quality of SGB representative genomes was high (median quality score = 94.1%; Suppl. 154 

Figure S1d). SGB representatives were used as comprehensive reference for the estimation 155 

of per-sample abundances (Methods, Suppl. Figure S1e, Suppl. Table S3). In total 3,287 SGBs, 156 

encompassing 21 bacterial and two archaeal phyla (Suppl. Figure S1b), were found present in 157 

the dataset. This newly curated catalog of SGBs from gorillas, bonobos, and chimpanzees 158 

increases the number of microbial species genomes previously reconstructed from feces by 159 

more than ten-fold, and increases mapping success of fecal metagenomes from NHAs to 160 

reference genomes by two- to three-fold (Suppl. Figure S1e;  (Manara et al., 2019). As 161 

expected, only minor proportions of SGBs from human samples were not previously covered 162 

by the included large reference collections, with 5.8%, 2.7 %, 1.8 and 1.7% of novel SGBs 163 

found in samples from CIV, DRC, DK, and GER, respectively (Suppl. Figure S1e). For both NHAs 164 

and humans, the highest percentages of novel diversity were observed within the phyla 165 

Bacteroidota and Spirochaetota, and, to a lesser degree, within Firmicutes and Firmicutes A 166 

for NHAs only (Suppl. Figure S1f). Generally, recovered clusters were highly host specific. 167 
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While the 7,700 MAGs spanned 1,787 of the final SGBs, only for 48 of these SGBs MAGs were 168 

reconstructed from samples of more than a single host genus.  169 

 170 

Within sample diversity varied considerably between host (sub-)species and with sequencing 171 

depth (Suppl. Figure S1g). The used SGB collection covers large proportions of the diversity 172 

found within the human gut (Suppl. Fig. S1e) and Faith’s phylogenetic diversity (PD) 173 

incorporates SGB relatedness in the diversity calculation, which enables a better estimate of 174 

total diversity of a community then simpler richness estimates from taxonomic group 175 

abundances. Phylogenetic diversity (PD) at an even mapping depth of 1 million reads per 176 

sample showed significantly lower diversity in humans compared to all African great ape hosts 177 

(PWilcoxon = 1.2 x 10-13 ; Figure 1a). Comparing individual human populations to African great 178 

ape hosts revealed that humans from GER and DRC showed lower means than all NHA group 179 

(all PWilcoxon < 0.05), while humans from CIV and DK exhibited high variance and were found to 180 

have significant lower diversity than all NHA hosts (PWilcoxon < 0.05), except for G. g. gorilla and 181 

P.t. troglodytes (PWilcoxon > 0.05). These two great ape taxa were found to have the lowest 182 

library sizes, low numbers of recovered genomes and lowest mapping efficiency. Taken 183 

together, this suggests that phylogenetic diversity in these hosts may be biased by lower 184 

representation in the reference database and that the reduced diversity could be an artefact 185 

of this. Consequently, samples with less than 1 million mapped reads were removed from 186 

further analyses. This resulted in the removal of samples from the analysis for the groups G.b. 187 

beringei (n=1), G.g. gorilla (nGAB=5, nCG=1), P.t. troglodytes (nGAB=4), P.t. schweinfurthii (n=1) 188 

and humans from CIV (n=1). Of note, the lowest and highest mean values for within-sample 189 

phylogenetic diversity were found for the human subgroups from Germany and Denmark, 190 

respectively, the latter exhibiting the only significant differences between human subsets 191 

(PWilcoxon < 0.05 vs. DRC and GER), contradicting previous reports of lower alpha diversity 192 

generally found in high HDI countries (McCall et al., 2020; Vangay et al., 2018). Additionally, 193 

the considerable differences in PD observed between CIV and DRC highlight the diversity 194 

found between human populations and the need to better characterize human gut 195 

microbiome diversity. Therefore, while total diversity of some host groups was likely not 196 

exhaustively sampled, especially considering lower abundant microbial clades, the presented 197 

reference collection of high-quality metagenome reconstructed genomes likely represents 198 

the current best resource for an in-depth taxonomic and functional assessment of hominid 199 
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fecal microbiomes and highlights that some human populations, including those sampled in 200 

this analysis, have lost considerable microbial diversity in their guts. 201 

 202 
Phylosymbiosis in hominids is strongly supported by community structure 203 
 204 
Phylosymbiosis, a pattern in which microbial community divergence parallels that of the 205 

hosts, can be a sign of community-level co-evolution of host and microbiota, indicative of 206 

host-microbe relationships maintained over evolutionary timescales (Brooks et al., 2016). To 207 

investigate such patterns, we used six different measures of beta diversity. Four were based 208 

on phylogenetic or taxonomic distance metrics (weighted and unweighted UniFrac, as well as 209 

genus level Aitchison and Jaccard distance), and two additional metrics considered the 210 

functional capacities of the community (KEGG ortholog (KO) abundance and 211 

presence/absence patterns; Suppl. Figure 2). Strong signals for phylosymbiosis were found 212 

for Jaccard, and unweighted UniFrac distances (P < 0.001; QBonferroni < 0.01), as well as a less 213 

pronounced signal for Aitchison distance and the abundance of functional groups (P < 0.01, 214 

QBonferroni = 0.0534 and QBonferroni = 0.0585, respectively; Figure 1b and c, Suppl. Figure 2, Suppl. 215 

Table S4), but not for the distances based on presence and absence of KOs (P = 0.055, 216 

QBonferroni =0.33) and the weighted UniFrac distance (P = 1). These results suggest 217 

phylosymbiotic divergence in the general microbial structure of hominid microbiota (Jaccard 218 

and unweighted UniFrac are based on presence/absence of microbial clades) which in part is 219 

paralleled by shifted abundances of distinct taxonomic and functional groups, generally in line 220 

with previous observations in other host systems (Brooks et al., 2016). This reduced signal 221 

found for taxon-level diversity might be the result of fluctuating clade abundances and 222 

functions in response to changing environmental factors, including diet, indicating a high 223 

functional plasticity of the hominid gut microbiome in response to immediate influences, 224 

while structural changes through acquisition and loss of microbial clades might rather result 225 

from longer-term adaptations. 226 

 227 

SGBs shared between host groups were analyzed in a permutation-based framework 228 

accounting for differences in sequencing depth and group sizes (see Methods for details). We 229 

found that especially human-associated SGBs were strongly depleted across multiple NHA 230 

groups (Figure 1d), while such signal found in the opposite direction were less pronounced, 231 

indicating the widespread acquisition of novel microbial clades in the human intestinal 232 
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microbiome. A similar pattern was found for G. b. beringei and multiple Pan subspecies, 233 

however not for G.g. gorilla. G.g. gorilla and P.t. troglodytes are sympatric species and were 234 

sampled in the same environment in the Republic of Congo and Gabon. The absence of excess 235 

strong host-specific signals between these particular taxa might point towards an effects of a 236 

shared environment influencing microbiome structure. Human subgroups from Europe and 237 

Africa showed strong pairwise SGB-sharing between CIV and DRC, and DK and GER, 238 

respectively, however not across geographic regions, suggesting strong connection of the 239 

microbiome with environment and lifestyle differences. All human subgroups exhibit strong 240 

depletion of SGB-sharing with all other host genera, which resulted in a clear separation of 241 

the human microbiota from that of other hominids. 242 

 243 
Fecal microbiome of European populations marked by loss of evolutionarily conserved core 244 

microbiota  245 

 246 

Abundance difference in microbial clades between humans and NHAs and between human 247 

communities with differing environments, such as living in rural or urban regions, in regions 248 

of the world with lower or higher HDI, can give insights into microbiome-mediated 249 

adaptations to environmental changes in the distant and more recent past. We analyzed and 250 

compared the abundance profiles of gut microbes between NHAs and humans, including 251 

individuals living in rural, lower HDI areas of Africa (CIV and DRC) as well as individuals residing 252 

in urban, higher HDI regions within Europe (GER and DK). For all following taxonomic and 253 

functional comparisons, we restricted the analysis to human and Pan (chimpanzees and 254 

bonobos) samples to obtain focused insights into the microbiota divergence since their hosts 255 

diverged about 7-8 million years ago (Langergraber et al., 2012).  256 

 257 

A total of 310 microbial genera were included in the analysis, of which 173 were found to be 258 

differentially abundant (QBonferroni<0.05, Figure 1d, Suppl. Table S5) in at least one of these 259 

comparisons between human subgroups, or between humans and NHAs, and subsequently 260 

sorted into one of four groups. We identified 57 taxa with increased abundances among 261 

humans from high HDI regions in Europe, such as Akkermansia, Bacteroides, and Alistipes 262 

(Figure 2a and b). We additionally found 39 taxa that are enriched in the two African 263 

populations such as Cryptobacteroides, Prevotella, and Succinivibrio (Figure 2a and b). Overall, 264 
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the marker taxa of European microbiomes that we detected are in agreement with previous 265 

findings (Jha et al., 2018; Pasolli et al., 2019). Our approach allowed us to identify bacterial 266 

taxa that exhibit differential abundance profiles between humans and NHAs that are 267 

independent from the human populations (Figure 2b). We found 74 taxa, such as SIG603 that 268 

have increased abundance in NHAs and 50 taxa with increased abundance in humans, of 269 

which 15 do not show an association to either of the human subgroups, such as Coprococcus 270 

and Agathobacter. Interestingly, taxa depleted in the microbiome of European individuals 271 

compared to humans from Africa are more likely to be also abundant (>0.1%) in the 272 

microbiomes of NHAs (P < 0.001; Figure 1c), suggesting a loss of evolutionary conserved 273 

clades in these populations. 274 

 275 

Widespread changes in fecal microbiome function between hosts and across human 276 

communities 277 

Taxon-specific changes reflect broad-scale differences between host-groups. A focused 278 

analysis of microbial functions can give insights into the specific driving forces of such 279 

community-level changes. We performed analysis of abundance differences of 6,340 KEGG 280 

orthologs (KOs, (Kanehisa and Goto, 2000)) in NHA (genus Pan) vs. human fecal microbiota 281 

and humans in European and African societies and found significant abundance differences 282 

in 1,092 (17.2 %) and 881 (13.9 %) KOs, respectively (QBonferroni<0.05; Figure 2a, Suppl. Table 283 

S6).  284 

 285 

Analysis of higher-level KEGG annotations, including e.g. complete pathways overrepresented 286 

among differentially abundant KOs, revealed seven annotations with enrichment of KOs 287 

higher abundant in NHAs compared to humans and nine annotations conversely enriched in 288 

humans. Sulfur metabolism (map00920) was generally overrepresented in differentially 289 

abundant KOs with individual effect directions associating with both groups  (QBonferroni < 0.05; 290 

Figure 1j, Suppl. Table S7). NHA associated categories md:M00356, md:M00563 291 

(methanogenesis) and path:map00680 (methane metabolism) clearly indicate a higher 292 

abundance of methanogenic archaea. Additionally, we find multiple categories involving 293 

ribosomes, including distinct ribosome annotations of archaea, which we could confirm using 294 

the pangenome distribution of these KOs (e.g. 92.9% of SGBs with K02866 [large subunit 295 

ribosomal protein L10e] belonging to the domain Archaea). In humans, we find enrichments 296 
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in categories covering antimicrobial resistance (path:map01501, br:ko01504), bacterial 297 

mobility (path:map02030, path:map02040, br:ko02035), biofilm formation (path:map02026) 298 

and prokaryotic defense systems (br:ko02048), suggesting a generally higher abundance of 299 

virulence genes in human microbiomes, independent of geography. Pangenome distribution 300 

of the significantly different KOs additionally confirm, these are not driven by specific 301 

microbial clades since they are present across the entire phylogeny. 302 

 303 

Enrichments of higher-level KEGG annotations between humans from Africa and Europe were 304 

exclusively found for the European subgroup (n=16). These involved vitamin B12 / cobalamin 305 

biosynthesis (md:M00122, M00924, M00925, and path:map00860) and antimicrobial 306 

resistance genes (br:ko01504, path:map01502). Increased antimicrobial functions may be 307 

explained by a higher use of antibiotics in human healthcare and extensive animal husbandry, 308 

as well as by environmental pollution (Groussin et al., 2021). The increased abundance of 309 

vitamin B12-producing microorganisms in the feces of Europeans may be driven by higher 310 

dietary intake of meat and dairy products from ruminants, as these food groups contain 311 

microorganisms with this metabolic capacity (Watanabe and Bito, 2018). Additionally, we find 312 

multiple categories suggesting a community-level shift towards oxidative carbohydrate 313 

metabolism, e.g. glycolysis / gluconeogenesis (path:map00010), pyruvate metabolism 314 

(path:map00620), phosphotransferase system (path:map02060), and V/A-type ATPase 315 

(md:M00159).  316 

 317 

Success of taxa associated to European populations relates to oxidative carbohydrate 318 

metabolism 319 

 320 

Community-level changes in abundances of functional groups give insights into some aspects 321 

of adaptations, however, they are overproportionally driven by highly abundant taxonomic 322 

groups.  We applied pangenome analysis to specifically identify individual genes and functions 323 

enriched or depleted within specific microbial clades overrepresented the gut of human 324 

individuals residing within Europe in comparison to other human associated taxa. Analyses 325 

were restricted to four bacterial families, Bacteroidaceae, Lachnospiraceae, Oscillospiraceae, 326 

and Ruminococcaceae, for which sufficient numbers of SGBs (n>=10 in each of both groups) 327 

for pangenome analysis were recovered. SGBs in these family represent large proportions of 328 
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the overall human microbiome (mean = 53.2%), with no significant differences between the 329 

subgroups (PKruskal-Wallis = 0.2). The analysis was conducted at the family-level, as higher 330 

taxonomic ranks would increase clade-specific functional biases. To account for between-331 

family functional differences, functional differences of SGBs associated with Europeans were 332 

first analyzed within microbial families using Fisher’s exact test and subsequently subjected 333 

to unweighted meta-analysis using Z-scores to leverage shared signals.  334 

 335 

We identified 167 enriched and 30 depleted KOs in pangenomes associated with the 336 

European populations (QMeta,Bonferroni<0.05; Suppl. Tables S8 and S9). Using higher-level KEGG 337 

annotations (modules, pathways, BRITE hierarchies), we found that 11 of these annotations 338 

were overrepresented in the dataset (QBonferroni < 0.05, Figure 3c, Table 1, Suppl. Table S10). 339 

Among these were multiple groups involved in carbohydrate metabolism enriched in taxa 340 

associated with Europeans, specifically pointing at aerobic breakdown of sugar molecules for 341 

ATP generation (citrate cycle: md:M00009, path:map00020; pentose phosphate pathway: 342 

md:M00004; V/A-type ATPase, prokaryote: md:M00159), confirming patterns seen also in the 343 

community-level analysis of functional abundances. These signals strongly suggest that the 344 

selection for taxa in the gut of humans living within Europe is connected to a diet rich in 345 

carbohydrates and potentially the adaptation to transient microaerobic conditions in the gut 346 

environment, using oxidative phosphorylation as a mean to release energy from nutrients, 347 

which is more efficient than strictly anaerobic fermentation (Jurtshuk, 1996). However, 348 

reduced fermentation can impact short-chain fatty acid production, which can, in turn, 349 

potentially negatively affect the host’s intestinal epithelial cells and metabolism (Deleu et al., 350 

2021). Additionally, we found a pathway connected to the histidine degradation 351 

(md:M00045). Especially gut microbial histidine metabolism has been discussed with 352 

relevance to human health, as it was shown that an intermediary product of histidine 353 

degradation, imidazole propionate, was increased in type 2 diabetic individuals in a large 354 

study of almost 2,000 individuals, and that this increase was directly connected to the 355 

microbiota and overall unhealthy dietary habits, however independent of dietary histidine 356 

intake (Molinaro et al., 2020). The enzyme urocanate hydratase (EC:4.2.1.49; K01712) is 357 

responsible for the interconversion between urocanate and imidazole propionate in the 358 

histidine degradation pathway. We find this gene significantly enriched in three of the four 359 

bacterial families analyzed (P < 0.05, Figure 3d), with a clear trend visible also for 360 
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Oscillospiracaee (P = 0.052). This suggests a microbiome-encoded pre-disposition to 361 

metabolic disorders in European human communities.  362 

 363 

We did not find any higher-level KEGG annotations significantly enriched among the taxa not 364 

enriched in Europeans. The relative lower fitness of these taxa may not result from a single 365 

mechanism associated to European lifestyles, but rather from multiple selective forces 366 

specific to the individual clades. 367 

 368 

Convergent host-specific adaptations are found across microbial families 369 

Shared gene gains or losses across multiple microbial clades can indicate a response to specific 370 

host intestinal environments, leading to functions being acquired (and selected for) multiple 371 

times independently. We performed a pangenome analysis of genera shared between 372 

humans and NHAs (n=36) to identify such patterns of convergent adaptation. To control for 373 

higher-level clade effects, functional repertoires (KEGG Ontology terms) were compared 374 

between SGB pangenomes at the genus-level from NHAs (Suppl. Table S11) and humans; 375 

results were then combined in a meta-analysis across genera. In total, 78 KO terms were 376 

identified as carrying signatures of convergent adaptation to the respective host group, with 377 

57 of these signatures associating with humans and 21 associating with NHPs (QBonferroni<0.05; 378 

Figure 4a, Suppl. Table S12). Among the human-associated KOs, we found multiple functional 379 

groups hinting again at an adaptation to increased oxygen by utilization of oxygen as an 380 

electron acceptor within the respiratory chain, such as cytochrome bd ubiquinol oxidase 381 

subunits (cydA, cydB), as well as adaptation to increased oxidative stress through ferritin 382 

(ftnA) and thioredoxin-dependent peroxiredoxin (BCP). Among the KOs enriched in NHP 383 

pangenomes we found an outer membrane factor (TC.OMF), a major facilitator superfamily 384 

(MFS) transporter (lrmB), 1-epi-valienol-7-phosphate kinase (acbU), and two KOs annotated 385 

as polyketide synthases (rhiA, pksN). Products produced by polyketide synthases have diverse 386 

functions, including antibiotic activity, virulence and support of symbiotic relationships 387 

(Ridley et al., 2008). OMFs and MFS form transmembrane complexes for the transport of a 388 

large variety of solutes (Yen et al., 2002), including e.g. carbohydrates, metal ions, amino 389 

acids, and export of toxic compounds (Davidson and Chen, 2004; Lee et al., 2014). How these 390 

potential adaptations relate to NHA hosts is unclear, however, they might indicate adaptation 391 
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to a diverse diet (Ejby et al., 2016; Tsujikawa et al., 2021) or metabolism of plant-derived 392 

xenobiotics (Rodríguez-Daza et al., 2021). 393 

 394 

Prevotella represented the largest genus-level clade in the dataset (n=212, 3.7% of all SGBs). 395 

While we found this genus across all host species, it is largely decreased in abundance and 396 

prevalence in Europeans. We selected this genus for further analysis to elucidate potential 397 

functional mechanisms driving the observed patterns. Enrichment analysis revealed 126 KOs 398 

with distinct prevalence patterns (Q<0.05; Figure 4b). The most striking difference was found 399 

for the cytochrome bd ubiquinol oxidases subunits 1 and 2 (cydA and cydB), which were found 400 

in 101 of 114  human-associated Prevotella SGBs (incl. UHGGv2 genomes), but present in only 401 

two out of 72 SGBs from NHAs. It is important to note that these prevalence differences are 402 

not driven by single lineages within the Prevotella genus that would have distribution ranges 403 

restricted to single hosts. Instead, they are observed across multiple sibling clades spanning 404 

the entire phylogenetic tree of the taxon (Figure 4c). Cytochrome bd oxidases are involved in 405 

stress responses, most prominently in transiently microaerobic environments (Giuffrè et al., 406 

2014). Comparison of the Prevotella species tree (reconstructed using all SGB representatives 407 

recovered from the dataset (n = 184)) and the cydA gene phylogeny exhibit widespread 408 

incongruencies between their tree topologies (Figure 4c). We performed a tree reconciliation 409 

using a duplication-transfer-loss (DTL; (Kundu and Bansal, 2018)) model between the 410 

Prevotella and cydA phylogenies, which revealed frequent events of gene transfer (𝑇" = 411 

41.552) between  branches (including distant ones) of the Prevotella phylogeny and 412 

subsequent losses (𝐿" = 23.52) in the NHA-associated clades. Interestingly, the two cydA-413 

carrying SGBs found in NHAs are phylogenetically distant, however, their cydA genes are 414 

highly similar and most likely the result of a transfer from one to the other. The gene transfer 415 

events and mappings were robust across 1,000 reconciliations with different starting seeds, 416 

with 89.2% of all events and 67.6% of all mappings found with 100% consistency. These results 417 

suggest that the enrichment of cytochrome bd ubiquinol oxidases observed in humans 418 

compared to NHAs are the result of multiple reoccurring events of gene loss and horizontal 419 

gene transfer between Prevotella clades within the hominid gut. 420 

 421 

Co-phylogeny is rare in spore-forming microbes and disrupted in humans 422 

 423 
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 424 

Patterns of co-phylogeny between host and microbes can result from close interaction, or 425 

even interdependence in extreme cases, and congruent metabolic pathways from co-426 

evolutionary trajectories. Using stringent selection criteria, we subjected 209 subtrees of the 427 

SGB phylogeny for co-phylogeny analysis (see Methods). The subtrees spanned 46 families 428 

and 945 (28.8%) SGBs present in the dataset in addition to 77 SGBs from the UHGGv2 catalog. 429 

We used a Mantel-test based framework and permutation to detect co-phylogeny signals 430 

((Hommola et al., 2009), see Methods for details). When defining co-phylogeny candidates 431 

based on a mean P-value < 0.05 across all permutations, 56 of 209 subtrees (26.8%) qualified 432 

as exhibiting co-phylogenetic patterns (Suppl. Table S13). These subtrees cover 312 of the 433 

1051 SGBs (30.7%) included in the analysis and 5.84% of the total 5,345 hominid SGBs 434 

(excluding the SGBs from Manara et al.). All results and subtrees can be inspected online 435 

(https://mruehlemann.shinyapps.io/great_apes_shiny_app). By visually inspecting subtrees 436 

with co-phylogeny signals, we find many candidates microbial phylogenies that do not follow 437 

host phylogeny, e.g., in a subgroup of the genus Cryptobacteroides (Figure 5a). Such signals 438 

suggest that co-phylogeny within the Gorilla and Pan clades can result in statistically 439 

significant Mantel tests, despite topological incongruences of human-derived sequences, for 440 

which no host sister (sub-)species from the same genus is available.  441 

 442 

Human-derived genomes were found in 149 (71.3%) of the tested subtrees, of which 38 443 

(25.5%) were co-phylogeny candidates. Similarly, 18 of 60 (30%) tested subtrees without 444 

human-derived representatives exhibited co-phylogeny signals, e.g., W0P29-013 spp. (Figure 445 

5a). Overall, 21.8% (n = 82 out of 377) of human-derived SGBs in the analysis were found in 446 

co-phylogenetic subtrees, which is significantly less compared to 35.7% (n = 231 out of 647) 447 

of NHA-derived SGBs (PFisher = 2 ´ 10-6). Co-phylogeny signals, defined based on the ratio of 448 

SGBs in trees exhibiting co-phylogeny patterns and the total SGBs in the family included in 449 

the analysis, differed strongly. Six families showed excessive signals of co-phylogeny and nine 450 

families a significant depletion (QFisher, FDR < 0.05; Figure 5b, Suppl. Table S14). The highest co-451 

phylogeny ratio was found for the family Dialisteraceae (Cophyl-Ratio = 100%, Q = 4.61 x 10-452 
7), which in the analysis were entirely represented by 14 SGBs in the genus Dialister. Dialister 453 

are a common, but rather neglected members of the gut microbiota which have been found 454 

increased (Vals-Delgado et al., 2021; Zheng et al., 2018) and decreased (Joossens et al., 2011) 455 
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with various human diseases, hence their relation to human health remains unclear. 456 

However, on species, Dialister invisus, was found to be moderately transmissible between 457 

human mother-infant pairs and within households in a large meta-analysis (Valles-Colomer et 458 

al., 2023). The strongest depletions were found for e.g. the families Lachnospiraceae and 459 

Treponemataceae, the former confirming previous results for this clade (Moeller et al., 2016). 460 

The latter, Treponemataceae, especially the genus Treponema D, were found depleted in 461 

humans living in Europe and occur in anaerobic sediments (Thingholm et al., 2021), serving 462 

as (intermediary) reservoirs for transmission to humans and NHPs, which can disrupt co-463 

phylogenetic signals by constant re-introduction to the community. 464 

 465 

When comparing host groups, the proportion of SGBs with co-phylogeny signal is significantly 466 

reduced in all human subgroups compared to the NHA hosts (all QWilcoxon < 0.05; Figure 5c). 467 

Further, humans from Germany and Denmark exhibited even lower proportions of co-468 

phylogeny SGBs compared to the two African human populations (Q Wilcoxon < 0.05), but not to 469 

each other (PWilcoxon = 0.68). The human subgroups from Africa did not differ in their co-470 

phylogeny proportions (PWilcoxon = 0.096). These results suggest a loss of wild great ape 471 

associated clades in the intestinal microbiota of humans independent of their geographic 472 

origin and the introduction of novel microbial partners with changing environment and 473 

lifestyle, confirming again findings from previous analyses. 474 

 475 

Signals of cophylogeny suggest a strong association and possible adaptation with the host and 476 

the reduction of genome size and gene content are expected patterns connected to this 477 

process (Toft and Andersson, 2010) which has previously been shown also for microbes with 478 

codivergence patterns in human population (Suzuki et al., 2022). To explore whether these 479 

processes could be detected in our dataset, we analyzed genome size and gene count, as well 480 

as 43 microbial traits inferred from genome-level annotations for signals in association with 481 

co-phylogeny using logistic regression, while controlling for phylogenetic relatedness (see 482 

Methods; Suppl. Table S15). Out of 45 analyzed traits, 13 were found significantly depleted in 483 

clades exhibiting co-phylogeny signals (QBonferroni < 0.05; Figure 5d; Suppl. Table S16), including 484 

genome size, gene count, capabilities to use multiple simple sugars, and bile susceptibility. 485 

Phylum-level analyses confirm this overall trend especially for Actinobacteriota, Firmicutes A, 486 

Firmicutes C and Verrucomicrobiota (PWilcoxon < 0.05), while Proteobacteria exhibited an 487 
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inverse signal (Figure 5d). This inverse signature might be explained by host specific 488 

acquisition of genes found e.g. for E. coli across different and diverse hosts (Tiwari et al., 489 

2023), however these findings needs to be further investigated. A higher susceptibility to bile 490 

in clades without co-phylogeny signal clearly suggests that bile tolerance is an adaptation to 491 

the Intestinal environment of hominid hosts. The depletion of the utilization of simple dietary 492 

sugars (traits: D-Xylose [Figure 5f], D-Mannose, Maltose, Glucose fermenter, Sucrose, 493 

Trehalose, L-Arabinose; all Q < 0.05) in co-phylogeny clades might suggest an adaptation to 494 

host-derived complex carbohydrates or other energy sources in the host-context.  495 

 496 

Only one trait – the Arginie dihydolase pathway, also called Arginine deiminase pathway (ADI) 497 

– was found enriched with co-phylogeny signal. Argninie metabolism has been widely 498 

discussed in the context of host-microbe interaction (Nüse et al., 2023), and ADI specifically 499 

was shown to protect bacteria from acid stress in host-association (Casiano-Colón and 500 

Marquis, 1988), but was also shown to modulate host immunity (Ghazisaeedi et al., 2022)  501 

and as specifically acquired by Saccharibacteria in the process of colonization of mammals 502 

(Tian et al., 2022), confirming its potential association with co-phylogeny in hominids. 503 

Previous analyses suggested that spore-forming clades are less likely to be exhibiting co-504 

phylogenic patterns, due to their ability to survive outside of the gut, facilitating dispersal 505 

between hosts (Groussin et al., 2020; Hildebrand et al., 2021; Moeller et al., 2016; Nayfach et 506 

al., 2016). We did not find any negative correlation between spore-formation ability  and co-507 

phylogeny patterns (Q = 1, Suppl. Table S16), however the annotation of this trait was 508 

restricted to only two phyla (Firmicutes and Firmicutes A) and was also rare within these 509 

clades, being found in only 54 SGBs across the dataset. As such, whether these results 510 

contradict previous findings cannot be concluded in this analysis and warrants future focused 511 

analyses.  512 

  513 

We found 67 out of 157 SGBs in Bacteroidaceae within subtrees with cophylogeny signals (Co-514 

pylogeny-Ratio = 43.5%), consistent with previous findings based on gyrB amplicon data 515 

(Moeller et al., 2016). However, no evidence for strict co-phylogeny was found in 516 

Bifidobacteriaceae (nSGB=10 in the analysis, none with co-pyhlogeny signals), which is 517 

inconsistent with findings from the same report (Moeller et al., 2016). Comparing the 518 

phylogeny of metagenome-derived gyrB sequences and the GTDB marker-gene phylogeny for 519 
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Bifidobacterium spp. revealed clear incongruences between both approaches (Figure 5g), 520 

which may explain the differences in the presented analysis and previous findings. 521 

 522 

Discussion  523 

Here, we present the largest curated dataset of fecal metagenomes derived from wild African 524 

great apes and human populations. For this, we surveyed and reconstructed high-quality 525 

microbial genomes from the feces wild non-human apes, including gorillas (Gorilla gorilla 526 

gorilla; Gorilla beringei beringei), chimpanzees (Pan troglodytes verus; P.t. troglodytes; P.t. 527 

schweinfurthii), and bonobos (Pan paniscus) as well as human populations from Africa and 528 

Europe. We identified signals of phylosymbiosis across the included hominids, indicating a 529 

conserved evolutionary relationship of microbial communities with their host species. 530 

Moreover, by employing a comparative approach, we found extensive changes of microbial 531 

taxonomic and functional abundances across the intestinal microbiota of NHAs and humans. 532 

Previous studies have pointed to “Western” lifestyles as an important factor influencing the 533 

intestinal microbiota in humans. Within our human sample population, we were able to 534 

confirm differential signals of prokaryotes associated with the European human populations. 535 

Importantly, using a comparative dataset of great ape taxa showed that microbial clades lost 536 

in Europeans in comparison to African human populations are also found in wild great ape 537 

populations. Thus, we suggest that the loss of these taxa might be regarded as the departure 538 

from a natural divergence trajectory since their last shared ancestor, cumulating in a mass 539 

extinction event of evolutionary conserved members of hominid-associated gut microbiota. 540 

While it is tempting to link these changes to industrialization (as previous studies have done), 541 

there are many differences between these human populations (e.g., genomic diversity, diet, 542 

exercise, sunlight exposure, exposure to antibiotics, population bottlenecks) and it was 543 

certainly not possible with the sampling regime here, to determine the particular factors 544 

responsible for the variation observed between the human populations sampled here. Due 545 

to logistic constraints, preservation methods for fecal samples from the included hosts and 546 

host subgroups differ. While these are expected to influence microbiome composition, 547 

previous studies show that individual signature are retained independent of storage methods 548 

(Blekhman et al., 2016). Despite this caveat, that fact that considerable variation exists 549 

between human populations is notable and highlights the need for much higher resolution 550 

sampling of human associated microbial diversity. Similarly, our analysis suggests that there 551 
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is even more undescribed microbial diversity to be discovered across populations of wild non-552 

human apes. 553 

  554 

In a pangenome analysis to identify individual genes or functions enriched or depleted in 555 

genomes of taxa associated with different human populations, we identified numerous 556 

functional traits involved in aerobic respiration associated with the European populations in 557 

the analysis. We hypothesize that taxa found to be enriched in the fecal samples of humans 558 

from Germany and Denmark might have a selective advantage via their clade-independent 559 

ability to survive or even utilize aerobic conditions in the intestinal tract. More specifically, 560 

we propose that these taxa have undergone convergent adaptation to tolerate high oxygen 561 

concentrations. Such aerotolerance could increase microbial fitness, whereby bacteria can 562 

withstand high oxygen concentrations to metabolize mucus layers for energy (Zheng et al., 563 

2015). However, the depletion of this mucus by bacteria diminishes an important physical and 564 

immunological barrier that protects the human host against microbial assaults and allows for 565 

direct interaction between host epithelial cells and microbiota, potentially triggering (auto-566 

)immune processes (Costa et al., 2016; Matute et al., 2023). Notably, we showed that the 567 

introduction of novel microbes associated with industrialization related to vast differences in 568 

the community composition of fecal microbiota in the European populations. Thus, it is 569 

possible that susceptibility to intestinal inflammation might be potentiated by specific taxa 570 

found in this population. Accordingly, we found increased abundances of well-characterized 571 

mucin-degrading taxa, including Akkermansia and Bacteroides, in the European cohorts. 572 

These findings are congruent with previous reports suggesting that there is increased mucus 573 

degradation by intestinal microbiota in human populations with direct access to industrial 574 

food systems, which may relate to higher incidences of inflammatory bowels diseases 575 

observed in developed economies (E. D. Sonnenburg and Sonnenburg, 2019).  576 

 577 

Comparatively, only a few pathways showed conserved enrichment in the opposite direction, 578 

suggesting clade specific mechanisms for their loss in some human societies. In particular, we 579 

found the taxon Prevotella is depleted in German and Danish samples but conserved across 580 

hominids, despite representing a diversity of host clades and diets. Prevotella is a major 581 

determining taxon of one of the human enterotypes, a concept used to define fecal microbial 582 

communities (Arumugam et al., 2011). It remains controversial as to whether the human gut 583 
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microbiome is best classified using such discrete categories, or rather along a dynamic, 584 

continuous gradient (Cheng 2019, Knight 2014). Nevertheless, previous reports have shown 585 

that individuals who access industrialized food systems (i.e., consume so-called 586 

“Westernized” diets) generally display a Bacteroides-dominant enterotype. Bacteroides-587 

enterotypes have been previously associated with a multitude of intestinal (Vieira-Silva et al., 588 

2019) and extra-intestinal inflammatory diseases (Valles-Colomer et al., 2019). Conversely, 589 

individuals who rely on rural and traditional subsistence strategies (i.e., consume plant-rich 590 

diets) tend to exhibit a Prevotella-dominant enterotype (Vangay et al., 2018). This enterotype 591 

is also displayed in about 20% of individuals living within Western societies (Costea et al., 592 

2018). Interestingly, there are conflicting reports concerning Prevotella and host health. 593 

While it has been shown that Prevotella may improve glucose metabolism (Kovatcheva-594 

Datchary et al., 2015), other reports have linked high abundances of Prevotella spp. with 595 

autoimmune diseases and intestinal inflammation (Iljazovic et al., 2021). While results from 596 

model systems have suggested Prevotella likely plays a role in autoimmunity, these studies 597 

largely relied on mono-colonization of germ-free animals and thus may be biased due to a 598 

lack of microbial interaction partners and an aberrant host physiology (Iljazovic et al., 2021). 599 

Within human studies, no convincing link between increased Prevotella spp. and 600 

inflammatory bowel disease has yet been shown (Iljazovic et al., 2021).  601 

 602 

Here, we used an evolutionarily-informed framework to extend the enterotype concept to 603 

elucidate the functional dynamics involved in the assembly of the human gut microbiome 604 

over evolutionary timescales. Such insights may better inform how changes in the gut 605 

microbiome might affect human health. We find the taxon Prevotella to be conserved across 606 

the sampled hominids. Moreover, the sheer diversity of Prevotella displayed across all 607 

hominid clades clearly suggests an evolutionary conservation and long-standing interaction 608 

of this microbial clade with the host, as further revealed by host-specific microbial functions 609 

identified in the metagenomic pangenome analysis. In other words, we find the Prevotella 610 

clade to be an integral member of the intestinal microbial community of all hominids. 611 

Therefore, we propose that the Prevotella-enterotype represents an evolutionary ancestral 612 

community state for the human gut microbiome. Rather than a discrete enterotype, a 613 

reduced abundance and diversity of Prevotella may better regarded a key biomarker for 614 

disease risk (Gorvitovskaia et al., 2016) or for microbiota insufficiency syndrome (J. L. 615 
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Sonnenburg and Sonnenburg, 2019), which seems to be partly driven by changes associated 616 

with Western lifestyles. Additional research and large-scale strain collections for Prevotella 617 

are needed for an in-depth analysis and evaluation of this diverse taxonomic group with 618 

regard to host health and its role in inflammation. Such research must consider Prevotella 619 

spp. as members of a complex consortium of interacting microorganisms and as, we argue, a 620 

potential target for pre- and probiotic intervention in chronic inflammatory disorders.  621 

 622 

Lastly, we leveraged our catalog of high-quality metagenome-assembled genomes from 623 

hominid fecal samples together with existing data to investigate co-phylogenetic patterns 624 

across the sampled hosts. Overall, co-phylogeny showed highly clade-specific enrichments 625 

and depletions. In addition, human-derived MAGs were found significantly less often among 626 

co-phylogenetic groups than MAGs from NHAs. Since we included human-derived data from 627 

global reference datasets (Almeida et al., 2021), this effect is unlikely to be an artifact of non-628 

exhaustive coverage of human microbiome members. We found several microbial traits 629 

depleted among bacteria with cophylogenetic patterns. Among these were, as expected, 630 

reduced genome sizes and gene counts, as well as susceptibility to bile and utilization of 631 

multiple simple carbohydrates. We hypothesize that these depletions mirror the 632 

specialization of microbes to colonize the hominid gut and utilize host-derived complex 633 

carbohydrates. 634 

 635 

Our study has limitations. The co-phylogeny analysis relies heavily on genome-sequences 636 

recovered from shotgun metagenomic sequencing (MAGs), which are potentially 637 

contaminated and incomplete, which could bias tree structure and thus, co-phylogeny 638 

estimates, and also the can potentially under- (or over-)estimate the functional capacities of 639 

recovered microbial genomes. To address the potential shortcomings of MAGs, we 640 

implemented stringent data processing pipelines and quality control to achieve the high-641 

quality MAGs and a host-specific pan-genome based functional annotation framework 642 

incorporating information from multiple MAGs per species representative to reduce potential 643 

genome gaps (see Methods). Additionally, the commonly used estimates of divergence times 644 

of the hominid hosts included in the analysis set the timeframe of the split from a shared 645 

ancestor to 8-19 million years ago (Langergraber et al., 2012; Scally et al., 2012). Bacterial 646 

speciation events happen in the timeframe of 10-100 million years, or longer (Marin et al., 647 
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2017; McDonald and Currie, 2017; Ochman et al., 1999), and thus, co-phylogeny in hominids 648 

is expected to be observed within microbial species or possibly genera. In the presented 649 

dataset, species-level sharing of MAGs between host genera was low (1.68%; n = 30 out of 650 

1,787 reconstructed SGBs, not including Manara et al. and UHGGv2). SGBs were defined on 651 

95% average nucleotide identity, a measure generally regarded as appropriate (Jain et al., 652 

2018), but it is nevertheless prone to clade specific biases, potentially further influenced by 653 

altered speciation dynamics in association with (evolutionary) changes in host lifestyle 654 

(Lawrence and Retchless, 2009), i.e. previously demonstrated increases in horizontal gene 655 

transfer (HGT) within individual microbiomes (Groussin et al., 2021). Accounting for these 656 

potential biases, we relaxed the threshold to a shared genus-level annotations for subgroups 657 

to be included in the co-phylogeny testing, while keeping the number of tested sub-658 

phylogenies to a minimum through the definition of stringent inclusion criteria (see Methods). 659 

Despite these considerations, the observation of signals of co-phylogeny across hominids is 660 

supported by a robust statistical framework. 661 

 662 

Additional limitations stem from the focus on humans and African great apes. While the 663 

comparisons between these host-clades provide a framework for the in-depth investigation 664 

of (evolutionary) rather recent adaptations and between-host divergences, they potentially 665 

neglect that could be revealed by broader-scale investigations, such as the previously 666 

described convergence of the human gut microbiota towards that of cercopithecines (Amato 667 

et al., 2019). However,  our analyses show the impact of the unique trajectories taken by the 668 

intestinal microbiomes of Pan and Homo since their last common ancestor. 669 

 670 

Our work here lays the foundation for the analysis of disease-associated changes in the 671 

human intestinal microbiome in an evolutionarily informed framework, thereby allowing 672 

researchers to evaluate microbiome-associated inflammatory disorders from a point of view 673 

that considers both proximal and evolutionary influences. Future investigations should 674 

consider in-depth analysis of horizontal gene transfer events within or even between primate 675 

hosts to shed further light on also cross-species dynamics and transition of microbes. Such 676 

analyses however require either microbial isolate genomes or at least long-read sequencing 677 

data to increase confidence in detection events. Additionally, time series data for host groups 678 

sharing the same habitat, e.g. G. g. gorilla and P. t. troglodytes, could give additional insights 679 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.03.01.530589doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530589
http://creativecommons.org/licenses/by-nc/4.0/


 

 

into cross-species sharing dynamics which cannot be appropriately elucidated based on 680 

single-timepoint data. 681 

 682 

In summary, we present an in-depth taxonomic and functional description and analysis of 683 

hominid-associated fecal communities spanning about ten million of years of evolution and 684 

host-microbiome interactions in the gut of humans and African great apes. Western lifestyle 685 

and maybe more precisely industrialization associated changes in human gut microbiota have 686 

been previously suggested as a driver of microbiome insufficiency syndrome, whereby an 687 

incompatibility between quickly adapting microbiota and slowly evolving host genes leads to 688 

chronic inflammatory diseases such as metabolic syndrome, type 2 diabetes, and 689 

inflammatory bowel disease (E. D. Sonnenburg and Sonnenburg, 2019; Wallenborn and 690 

Vonaesch, 2022). Thus, a comparative analysis of human and NHA intestinal microbiota that 691 

considers evolutionary forces as presented herein provides a powerful platform to advance 692 

our understanding of human-associated microbiota and guide the development of 693 

personalized, targeted interventions to prevent and treat chronic inflammatory disorders.  694 

  695 
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Methods 696 

Ethics & Inclusion statement 697 

Ethical approval for work on human samples was obtained from the Local Ethics Committee 698 

Germany, Kiel (reference number A156/03), the Ivorian ethics commission (Comité national 699 

d'éthique et de la recherche [CNER], permit number 101 10/MSHP/CNER/P) and the 700 

Congolese ethics commission (Comité d'Éthique, Ministère de l'Enseignement Supérieur et 701 

Universiaire, permit number ESO/CE/018/11). All procedures performed in studies involving 702 

human participants were in accordance with the ethical standards of the institutional and/or 703 

national research committee and with the 1975 Helsinki declaration and its later amendments 704 

or comparable ethical standards. Sampling of wild-living great apes and human populations 705 

in Africa were granted by: Bwindi Impenetrable Forest National Park, Uganda (Gorilla beringei 706 

beringi, Pan troglodytes schweinfurthii): the Uganda National Council for Science and 707 

Technology and the Uganda Wildlife Authority; Kokolopori Bonobo Reserve and Bandundu 708 

region, Democratic Republic of the Congo (Pan paniscus, Human): the Ministere de Recherche 709 

Scientifique et Technologie, Democratic Republic of the Congo; Loango National Park, Gabon 710 

(Gorilla gorilla gorilla, Pan troglodytes troglodytes): the Agence Nationale des Parcs 711 

Nationaux, the Centre National de la Recherche Scientifique et Technique of Gabon; Taï 712 

National Park and region, Côte d’Ivoire (Pan troglodytes verus, Human): the Ministère de 713 

l’Enseignement Supérieur et de la Recherche Scientifique, the Ministère des Eaux et Fôrets in 714 

Côte d’Ivoire, and the Office Ivoirien des Parcs et Réserves. Researchers from CIV and DRC 715 

contributing to the conducted research and fulfilling the authorship criteria were included as 716 

co-authors. Research at sites in Africa was conducted in collaboration with local partners as 717 

stated in the acknowledgements section, granted by local authorities and in agreement with 718 

local policies. Feces from wild-living, habituated animals were collected after defecation 719 

without interfering with the animals. Research at great ape sites was increasingly performed 720 

following the IUCN guidelines to minimize disease risk for great apes. We did not stratify or 721 

correct for sex or gender effects in the analysis. Our analyses focus on the comparison of gut 722 

metagenomes from either distinct hominid species or between human subgroups from 723 

populations with differences in human development index. We expect that the effects of sex 724 

and/or gender are negligible in this context and these factors have not been explored in the 725 

current analysis. 726 

 727 
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Fecal Sampling, DNA extraction and data generation 728 

Sampling of wild-living great apes and human populations in Africa were conducted at: Bwindi 729 

Impenetrable Forest National Park, Uganda (Gorilla beringei beringi, Pan troglodytes 730 

schweinfurthii); Kokolopori Bonobo Reserve and villages adjacent to Salonga-Sud National 731 

Park, Democratic Republic of the Congo (Pan paniscus, Human); Loango National Park, Gabon 732 

(Gorilla gorilla gorilla, Pan troglodytes troglodytes); Taï National Park and adjacent villages, 733 

Côte d’Ivoire (Pan troglodytes verus, Human). Sampling procedures for collecting feces from 734 

humans (n=48) and wild non-human primates (n=109) have been previously described 735 

(Gogarten et al., 2021). Briefly, fecal samples were collected immediately after defecation, 736 

and, depending on the local infrastructure, either stored in RNAlater and frozen at -20°C or 737 

stored in a cryotube, cooled in a thermos until return to the field laboratory, and subsequently 738 

snap frozen in liquid nitrogen. Appropriate government permits and permission to conduct 739 

research on wild primates were granted by the relevant authorities (see Acknowledgments 740 

for site-specific details). Human fecal samples from the Democratic Republic of Congo (n = 12) 741 

were stored in RNAlater and frozen at -20°C. Human fecal samples from Côte d’Ivoire (n=12) 742 

were stored in a cryotube, cooled in a thermos until return to the field laboratory and 743 

subsequently snap frozen in liquid nitrogen. Human fecal samples from Germany were 744 

collected at home by the participant in standard fecal collection tubes, mailed to the study 745 

center, and stored at -80°C. DNA extraction from fecal samples was performed from 200mg 746 

of stool transferred to 0.70mm Garnet Bead tubes (Qiagen) with 1.1 mL ASL buffer, followed 747 

by bead beating in a SpeedMill PLUS (Analytik Jena AG) for 45 s at 50 Hz. Samples were heated 748 

to 95°C for 5 min and centrifuged, retaining 200 µl of the supernatant for DNA extraction with 749 

the QIAamp DNA Stool Mini Kit (Qiagen) automated on a QIAcube system (Qiagen) according 750 

to the manufacturer’s protocol. DNA quality was assessed by Qubit and Genomic DNA 751 

ScreenTape (Agilent). Illumina Nextera DNA Library Preparation Kit was used to construct 752 

shotgun metagenomic libraries, and subsequently sequenced with either 2 × 125 bp reads on 753 

a HiSeq 2500 platform or with 2 × 150 bp reads on a NovaSeq 4000 machine (Illumina). 754 

 755 

 756 

Data processing, assembly and metagenomic binning 757 

Raw sequencing FastQ files were quality controlled and preprocessed using the BBMap 758 

software suite (“BBMap,” n.d.). Host reads were removed using bbmap.sh. A masked human 759 
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reference database (“Introducing RemoveHuman,” 2014) and a lenient mapping threshold of 760 

95% identity was used to account for a broader host range to also capture host contamination 761 

from the Pan and Gorilla host. Metagenomic contigs were assembled with metaSPAdes and 762 

contigs >= 2000 bp were retained (Bankevich et al., 2012). Reads were mapped to the contigs 763 

of the respective samples using Minimap2 (Li, 2018), converted to BAM files with Samtools 764 

(Li et al., 2009) and used to estimate per-contig mapping depth with the 765 

jgi_summarize_bam_contig__depths binary from the MetaBAT2 binning tool (Kang et al., 766 

2019). Contig binning for individual samples was performed with MetaBAT2 (Kang et al., 767 

2019), MaxBin2 (Wu et al., 2016) and CONCOCT (Alneberg et al., 2014). In addition, the VAMB 768 

binning tool (Nissen et al., 2021) was used on a cross-mapping catalog of the merged contigs 769 

from all samples within each host group. Individual binning results were refined using 770 

MAGScoT (Rühlemann et al., 2022) to acquire high quality metagenome-assembled genomes 771 

(MAGs) for each sample. Clustering of MAGs to species-level genome bins (SGBs) was 772 

performed with dRep (Olm et al., 2017) in a multi-step approach to control for inflated SGBs 773 

due to low MAG quality. First, MAGs were dereplicated to 97% similarity within each host 774 

group, choosing the MAG with the highest score (calculated by MAGScoT based on 775 

completeness and contamination) as cluster representative. High and good quality 776 

representatives (score > =0.7) from all host groups together with representative sequences 777 

from the UHGG v2 were then clustered into 95% SGBs using dRep, again selecting the highest 778 

quality MAG as representatives. Medium quality (scores between 0.5 and 0.7) 97% 779 

representatives from previous clustering step were then compared to SGB representatives 780 

using fastANI (Jain et al., 2018), assigning MAGs with high similarity (>=95%) to the respective 781 

SGB. Medium quality 97% representatives without hits to the high quality SGB library were 782 

then clustered into 95% SGBs and added to the catalog in the case of at least two genomes in 783 

the cluster, discarding singleton clusters. The final catalog of SGB representatives was used 784 

to quantify contig abundances in all samples using Salmon in metagenome mode (Patro et al., 785 

2017). Taxonomic annotations were performed using the GTDBtk (v2.1) and GTDB release 786 

207v2 (Chaumeil et al., 2022; Parks et al., 2022). For SGBs without genus- and/or species-level 787 

assignments, the SGB ID was used as taxonomic label. GTDBtk marker gene alignments were 788 

used to generate a phylogenetic tree of all SGB representatives using the respective “infer” 789 

function of the GTDBtk. All data processing scripts are available online: 790 

https://github.com/mruehlemann/greatapes_mgx_scripts 791 
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 792 

Pangenome catalog creation, annotation and analysis 793 

All MAGs underwent calling of coding sequences using prodigal (v2.6.3) (Hyatt et al., 2010). 794 

Protein sequences were clustered based on 95% similarity using MMseqs (Hauser et al., 2016; 795 

Steinegger and Söding, 2017) and annotated using the emapper.py script of the eggNOG-796 

mapper v2 (Cantalapiedra et al., 2021) annotation tool with the eggNOG 5.0 reference 797 

database (Huerta-Cepas et al., 2019). MAG level functional profiles based on KEGG Ortholog 798 

annotations were collapsed into SGB-level pangenomes for each host genus (Homo, Gorilla, 799 

and Pan). In the case that no MAGs of an SGB were recovered from a given host genus, 800 

functional profiles were inferred from MAGs across the other host groups, accounting for 801 

host-specificities in the inferred accessory genomes/functions by considering a function to be 802 

present if it was present in all host-specific pangenomes of the respective SGB with MAGs 803 

recovered from the metagenomic data.  804 

 805 

Calculation of microbial clade and functional abundances 806 

All downstream data processing and statistical calculations were performed in R v4.2 (R Core 807 

Team, 2022) and using the tidyverse library (Wickham et al., 2019). Per-sample contig 808 

abundances for the SGB representatives from Salmon were used to estimate SGB 809 

abundances. Salmon output includes total mapped reads per contig and mapping reads 810 

adjusted for library size and total sequencing depth as transcripts per million (TPM), a 811 

measure from the transcriptomics field which can be directly transferred to metagenomic 812 

libraries. Individual contig coverages were calculated from the number of mapped reads and 813 

the effective lengths of the Salmon mapping output, considering contigs with > 10% coverage 814 

as present. An SGB was considered present when at least 20% of its total length was in contigs 815 

marked as “present” and if at least 1,000 total reads and 250 TPM mapped to it. Final SGB 816 

abundances were calculated as TPM, calculated from the reads mapping to the SGBs present 817 

in the respective sample, thus representing a normalized abundance across all samples. 818 

Combining SGB abundances with taxonomic assignments, domain- to species-level 819 

abundances were calculated as cumulative TPM abundances within the respective taxonomic 820 

bins. Rarefactions were calculated based on 5-fold repeated subsampling of contig level 821 

mapped reads at 100k, 250k, 500k, 1M, 2.5M, 5M, and 10M reads, followed by TPM 822 

calculations as described above. By rarefying reads and not TPM we realistically simulate 823 
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sampling effects introduced by low coverage and low abundances of SGBs affecting especially 824 

samples with small library sizes. Community level functional profiles were calculated be 825 

multiplying TPM abundances of SGBs with the respective host-genus specific functional 826 

profiles (presence of KEGG orthologs [KOs]) of the SGBs and summarizing the per-SGB values 827 

into a sample-level abundance of functional annotations. Ultimately, functional abundances 828 

of individual KOs represent the cumulative TPM abundance of SGBs carrying the respective 829 

KO.  830 

 831 

Alpha and beta diversity 832 

Faith’s phylogenetic diversity (PD) (Faith, 1992) was used as measure of alpha diversity, 833 

calculated from the phylogenetic tree based on GTDBtk marker genes using the pd() function 834 

of the picante package for R (Kembel et al., 2010). Genus-level increase of PD from novel SGBs 835 

was calculated from the differences of PDs with and without novel SGB annotated as the 836 

respective genus. Sample level PDs were calculated from the SGB presence/absence patterns. 837 

Beta diversity was assessed as unweighted and weighted UniFrac distances (Lozupone et al., 838 

2011) using the UniFrac() function of the phyloseq package for R (McMurdie and Holmes, 839 

2013) and SGB abundances and the phylogenetic tree based on GTDBtk marker genes as 840 

input. Aitchison distance (Aitchison, 1982) was calculated from the CLR-transformed genus-841 

level TPM abundances obtained from the clr() function from the compositions package for R 842 

(van den Boogaart and Tolosana-Delgado, 2008) and adding a pseudocount of 1 to all 843 

abundances, setting all CLR-transformed abundances below zero to zero. Jaccard distances 844 

(Jaccard, 1912) were also calculated on genus-level presence/absence patterns using the 845 

vegdist() function from the vegan package for R (Oksanen et al., 2022). Genus-level 846 

abundances were chosen for Aitchison and Jaccard distance, as SGBs are highly host-specific, 847 

thus would lead to high beta-diversities simply due to host exclusive SGBs, grouping at genus-848 

level prevents from this and UniFrac distances use phylogenetic relations between SGBs. 849 

Beta-diversity on functional abundances were calculated from the Euclidian distances of the 850 

log-transformed KO abundances adding a pseudocount of 1 to avoid undefined values. 851 

Presence-absence values of KOs were treated in the same way as described above and using 852 

Jaccard distance to infer pairwise distances. 853 

 854 

Cross-host sharing analysis 855 
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Permutation-based analysis of excessive and reduced sharing of SGBs between host groups 856 

were based on the mean SGB abundances of the five rarefaction of 1M mapped reads to 857 

account for differences in library depth impacting SGB richness and per-group sample sizes. 858 

For each host group, 100-fold sampling of five samples from this group were drawn and the 859 

SGBs found in the host were analyzed for their presence in five random samples of each of 860 

the other host groups, calculating the relative amount of shared SGBs as Relshared = nSGB,shared 861 

/ nSGB,host . The mean of all 100 samplings was used as relative sharing coefficient for all host 862 

pairs in both directions. Excess and reduced sharing was analyzed by 1000-fold drawing of 863 

five random samples accounting for differences of host groups and the repetition of above 864 

calculations for relative sharing with all host groups. P-values were calculated from the 865 

proportions of random samplings exceeding/falling below the true sharing coefficients. 866 

 867 

Phylosymbiosis analysis 868 

Phylosymbiosis was assessed using five measures for community level diversity, unweighted 869 

and weighted UniFrac, genus-level Aitchison, and Jaccard distances, as well as KEGG ortholog 870 

(KO) abundance based Aitchison distance, and following the approach described in Brooks et 871 

al. (2016). Briefly, host group differences were used to infer microbiome dendrograms by 872 

UPGMA clustering. Branch support was calculated from 1000-fold jackknife sampling. 873 

Robinson-Foulds distances between microbiome trees and host phylogeny were calculated 874 

using the RF.dist() function from the phangorn package for R (Schliep, 2011). Significance of 875 

phylosymbiosis was assessed using the host phylogeny and 100,000 random trees as 876 

comparison for the microbiome trees. Tanglegrams were created with the ggtree and cowplot 877 

packages for R (Yu et al., 2017).  878 

 879 

Assessment of between-group abundance differences 880 

Taxonomic abundance differences between Humans and NHAs, as well as between humans 881 

living outside and within industrialized systems were based on CLR-transformed abundances 882 

to account for the compositionality of microbiome data (Gloor et al., 2017). Included in the 883 

calculations were all genera with a prevalence > 20% and relative abundance (before CLR-884 

transformation) of > 0.1% in at least of the host groups and all KO abundances with a 885 

prevalence > 20% and CLR-transformed abundance of > 1 in at least one of the host groups. 886 
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KO abundances were filtered accordingly and subsequently (log+1)-transformed to achieve a 887 

less skewed distribution. Log-transformation was chosen, as CLR-transformation assumes 888 

compositionality of the data, which is – unlike for taxonomic abundances - not fulfilled for 889 

functional abundances. Abundance differences were assessed in a linear regression in R (R 890 

Core Team, 2022) using abundances as dependent variable and human/NHA and 891 

European/African dichotomies as explanatory variables in a single model for each taxon (or 892 

function), assessing associations with all groups at once, the model was defined as 893 

lm(abundance ~ Human + European). P-values were calculated from the t-values of the 894 

resulting models using the summary.lm() function. Log-fold differences were calculated using 895 

group mean abundances and a pseudocount of 0.01. P-values were adjusted for multiple 896 

testing using Bonferroni correction. Features with significant (Q < 0.05) positive association 897 

with NHAs were grouped as “NHA associated”. Features associating with geographic 898 

differences (Europe/Africa) were grouped into the respective group they were positively 899 

associated with. Remaining genera with significant differences between humans and NHAs, 900 

but not with a particular subgroup were grouped as “human associated”. Genera without 901 

abundance differences in any of these comparisons were grouped as “unchanged” or “other”.  902 

 903 

Functional pangenome differences between groups 904 

Pangenome catalogs of human-associated SGBs were compared within microbial families 905 

between SGBs in taxonomic groups found enriched in European communities compared to 906 

other human-associated taxa, independent of a strong association with geography. KEGG 907 

Ontology (KO) term annotations were used as functional groups and their prevalence 908 

differences between groups were assessed using Fisher’s exact test. Per-family effect sizes (Z-909 

Scores) of KOs were calculated from PFisher-values and the direction of the effects which were 910 

assessed using the log2 of the ratio of prevalences in the two groups and a pseudo count of 911 

0.01. The sum of the Z-Scores were added and divided by the square-root of the total number 912 

of families the respective KOs were found in to obtain a ZMeta for each KO term, used to 913 

calculated PMeta. PMeta-values were adjusted for multiple testing using Holm-correction. KO 914 

terms with Q < 0.05 and present in at least two of the microbial families in the analysis were 915 

considered as functions with differential prevalence. A similar approach was employed to 916 

assess functional differences between NHP- and Human-associated SGBs, however in this 917 

case, SGB pangenome differences were compared on genus level and the meta-analysis was 918 
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performed combining signals from all genera, and specifically across the genera within 919 

particular phyla. 920 

 921 

Tree reconciliation analysis 922 

Proteins from the representative SGBs of the genus Prevotella annotated with the annotation 923 

“cydA” (cytochrome bd oxidase subunit 1) as “Preferred name” in the emapper/eggNOG 924 

annotation were extracted from the unclustered protein sequence catalog. The same 925 

procedure was followed for Paraprevotella clara, which was included as an outgroup. 926 

Incomplete cydA sequences were removed using a length threshold of 200. Protein sequences 927 

were aligned using Clustal Omega (Sievers et al., 2011). The alignment was used to 928 

reconstruct the phylogenetic tree using IQTREE2 (Minh et al., 2020) and a automatic model 929 

selection, which resulted in an LG+F+R8 model to be chosen as best-fit model according to 930 

the Bayesian information criterion (BIC).  Branch support values were calculated using UFBoot 931 

(Minh et al., 2013) and performing SH-aLRT test (Guindon et al., 2010). Alignments of GTDBtk 932 

marker protein sequences for Prevotella SGBs and Paraprevotella clara were used to 933 

reconstruct a genome-level species phylogeny in the same respective way as described above 934 

for the cydA sequences (BIC best-fit: LG+I+I+R5). Very low confident branches (< 60% 935 

bootstrap support) in the cydA phylogeny were resolved together with the species tree using 936 

the OptResolutions supplementary program of the RANGER-DTL 2.0 software (Bansal et al., 937 

2018) resulting in 495 equally probable trees with optimized duplication-transfer-loss costs 938 

using default values (duplication: 2, loss: 1, transfer: 3). A randomly chosen output tree was 939 

using in the reconciliation analysis with the species tree in RANGER-DTL 2.0 using default 940 

values and 1,000 random starting seeds in parallel (Tange, 2011) to assess robustness. 941 

Resulting sampling outcomes were summarized using the AggregateRanger tool of the 942 

RANGER-DTL 2.0 software package. 943 

 944 

Co-phylogeny analysis 945 

Host phylogenetic trees were obtained from the 10kTrees website ((Arnold et al., 2010); 946 

https://10ktrees.nunn-lab.org/). To assure high quality microbial phylogenies for the co-947 

phylogeny analysis, family-level maximum-likelihood trees were reconstructed from the 948 

GTDBtk marker gene alignments with the IQTREE2 software (Minh et al., 2020) and a WAG 949 

model including a random SGB outside the respective families as outgroups. Family level trees 950 
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were rooted and for each SGB traced from tip to root to identify for each SGB the smallest 951 

subtree which covered 4, 5, 6, and 7 host groups. Combining information from all SGBs, the 952 

overall set of smallest trees to be included in the co-phylogeny analysis were identified, 953 

discarding subtrees for which the inclusion criterion was fulfilled already for a smaller tree 954 

starting from a different tip. In addition, subtrees spanning more than a single genus were 955 

excluded from the analysis, as divergence times of microbial genera predate divergence of 956 

the included hosts (Ochman et al., 1999). For all subgroups included in the analysis, 957 

maximum-likelihood distances and trees using a WAG model in IQTREE2 were inferred from 958 

the marker gene alignment of all MAGs assigned to the SGBs in the respective subgroups. Co-959 

phylogeny of the subgroup was assessed by randomly selecting one MAG per host, calculating 960 

congruence with the host tree by Robinson-Foulds metric and by Mantel-test (Hommola et 961 

al., 2009). Tiplabels were permutated 999-fold and P-values calculated. This process starting 962 

from the random selection of one MAG per host was repeated 999 times to obtain final P-963 

values. Family-level co-phylogeny ratios were calculated based on the ratio of SGBs within 964 

subtrees with co-phylogeny signal and total SGBs in the respective family that were included 965 

in the analysis. Enrichment of co-phylogeny for each microbial family was calculated by using 966 

Fisher’s exact test on the SGBs in the analysis dividing them into four groups based on family 967 

membership and being in a subtree with co-phylogeny signal. All P-values were adjusted using 968 

FDR correction.  969 

 970 

Correlation of microbial phenotypes with cophylogeny signals 971 

SGB representative genome sequences were analyzed using the Traitar tool (Weimann et al., 972 

2016) to infer up to 67 microbial traits. A total of 43 inferred traits present in more than 50 973 

and less than 1017-50 = 967 of the 1,017 SGBs included in the cophylogeny analysis were 974 

analyzed for their association with cophylogeny signals. Using the R package lme4qtl 975 

(Ziyatdinov et al., 2018), for each of the traits a mixed logistic regression model was fitted 976 

across for the 1,017 SGBs, using signal of cophylogeny (binary trait) as dependent variable 977 

and the trait as bineray fixed effect explanatory variable, accounting for phylogenetic and 978 

taxonomic relatedness between SGBs by including a relatedness matrix and phylum-level 979 

categories as random effects in the model and using a binomal function with probit as link. 980 

The relationship matrix was calculated by using the cophenetic distance matrix from the SGB 981 

phylogeny, scaled to values between 0 and 1 by dividing by its largeste distance. Accordingly, 982 
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genome size in megabases and gene counts derived from the number of genes in the prodigal 983 

output were included as fixed effect continuous traits. Effect sizes and P-values of the 984 

individual models were taken from the summary() function in R. P-values were adjusted for 985 

multiple testing by Bonferroni correction. Exemplary phylum-level differences in D-xylose 986 

utilization and gene counts between SGBs with and without cophylogeny signals were 987 

calculated using non-parametric Fisher’s exact and Wilcoxon rank sum test, respectively.  988 

 989 

Data availability 990 

All metagenomic sequencing data is available via the NCBI BioProject accession IDs 991 

PRJNA692042, PRJNA539933, and PRJNA491335. The collection of 7,700 metagenome-992 

assembled genomes has been deposited in the European Nucleotide Archive, Accession: 993 

XXXXX.  994 

 995 

Code availability 996 

All code to process sequencing files to generate the presented results and manuscript figures 997 

is available via https://github.com/mruehlemann/greatapes_mgx_scripts. 998 

 999 
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 1514 

 1515 
Figure 1: Community-level specificities of human and NHA fecal microbiomes. (a) 1516 
Phylogenetic Diversity across host groups at a sampling depth of 1 Mio. mapped reads per 1517 
sample. (b) Ordination of unweighted UniFrac distances of all samples, colored by host 1518 
subgroups. (c) Tanglegram of host (left) and microbiome (right) trees, the latter based on 1519 
unweighted UniFrac distances. (d) SGB sharing coefficients between host group. Rows 1520 
represent reference host groups; columns represent the groups with which they share 1521 
overlap. Numbers in the tiles are P-values from the analysis for enrichment (#) and 1522 
depletion ($) in the reference group. Boxplots in this and other plots show the following 1523 
elements: center line: median, box limits: upper and lower quartile; whiskers: 1.5 x 1524 
interquartile ranges. 1525 
  1526 
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 1527 
Figure 2: Taxonomic differences the microbiota of humans and NHAs: (a) Effect sizes (t-1528 
values from univariate linear regression) of abundance differences of genera in fecal 1529 
samples of NHAs and humans (x-axis) and humans within African and European populations 1530 
separated as well (y-axis). Points are colored according to the association groups with 1531 
European (dark blue) and African human populations (light blue), or to indicate enrichment 1532 
in NHAs (orange) or humans (bright blue). Taxonomic groups not found to be associated 1533 
with any of the groups (all Q > 0.05) are shown in grey. Horizontal and vertical lines depict 1534 
the t-value threshold (|t-value| > 4.04) for statistical significance after Bonferroni-1535 
correction. (b) Per-sample and host group abundances of selected genera found with 1536 
unchanged abundances across all groups (top), increased abundance in NHAs or humans 1537 
(rows 2 and 3), or in humans from Africa or Europe (rows 4 and 5). Points are colored 1538 
according to host genus: Gorilla = greens, Pan = reds, oranges, and yellows, and human = 1539 
blues. (c) Cumulative abundance trajectories of taxa associated with human communities 1540 
and NHAs. Shown are the per-sample cumulative abundances within each host group, 1541 
grouped based on a taxon’s association with either NHAs, all humans, or one of the human 1542 
population subgroups.  1543 
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 1544 
Figure 3: Functional differences in the microbiota of humans and NHAs: (a) Effect sizes (t-1545 
values from univariate linear regression) of the abundance differences of KEGG orthologs in 1546 
fecal samples of NHAs and humans (x-axis) and humans within African and European 1547 
populations separated as well (y-axis). Points are colored according to the association 1548 
groups with European (dark blue) and African human populations (light blue), or according 1549 
to general enrichment in NHAs (orange) or humans (mid-blue). Taxonomic groups not found 1550 
associated with any of the groups (all Q > 0.05) are shown in grey. Horizontal and vertical 1551 
lines depict the t-value threshold (|t-value| > 4.77)  for statistical significance after 1552 
Bonferroni-correction. (b) KEGG ortholog (KO) effect sizes for differential abundance 1553 
between African and European human population associated taxa. Shown KOs are ordered 1554 
into functional higher-level KEGG categories that were found enriched (QFisher<0.05) 1555 
among KOs with significantly different abundances between groups. Horizontal bars indicate 1556 
median t-values of all KOs in a KEGG category as an estimate for the direction of the 1557 
enrichment. (c) KOs found enriched in the pangenomes of humans from Africa or Europe 1558 
across four bacterial families shared across continents. Shown are the Z-values of the fixed-1559 
effects meta-analysis of KOs for enrichment across microbial families. KOs are sorted into 1560 
functional higher-level KEGG categories that were found enriched (QFisher<0.05) among 1561 
KOs with significantly different prevalence (QMeta<0.05) between African and European 1562 
pangenomes. Horizontal bars depict median ZMeta-values of KOs within higher-level KEGG 1563 
categories. (d) Prevalence of the urocanate hydratase gene (K01712) in clades found higher 1564 
abundant in humans from Europe across four microbial families. Stars indicate per-clade 1565 
differences in gene prevalence: *p < 0.05, **p< 0.01, ***, p<0.001.  1566 
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 1567 
Figure 4: Cross-microbial clade functional associations with NHA and human hosts. (a) KO 1568 
terms consistently enriched in human- (blue diamonds) and NHA-associated (orange 1569 
diamonds) taxonomic clades. Individual genus-level PFisher-values are shown in points 1570 
colored by phylum. Shown P-values are unadjusted for taxon-level tests and Bonferroni-1571 
corrected for multiple testing for the meta-analysis  (b) Prevalence patterns of KO terms in 1572 
human- (blue) and NPH-associated (orange) Prevotella SGBs. Filled shapes represent KOs 1573 
with significant (Q<0.05) differences in the statistical test. (c) Results of the tree 1574 
reconciliation analysis for the cydA gene in Prevotella SGBs found in humans (blue) and 1575 
NHAs (Pan: orange; Gorilla: green) demonstrate a history of frequent transfer events (red 1576 
arrows)  across 1000 reconciliations with random seeds. Filled and empty shapes represent 1577 
cydA-positive and -negative SGBs, respectively. Arrows are weighted by frequency. Red 1578 
triangles mark nodes that were identified as gene transfer recipients with > 50% frequency 1579 
independent of the donor node. Black circles mark speciation events with > 50% frequency. 1580 
The ten highest abundant Prevotella species with established names are shown for 1581 
orientation. The Prevotella tree was rooted using Paraprevotella clara as the outgroup (not 1582 
shown). 1583 
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 1584 
Figure 5: Cophylogeny across humans and non-human African great apes. (a) Subtree 1585 
phylogenies of groups with significant results in the Mantel-test based analysis for co-1586 
phylogeny. Tip colors and shapes correspond to the host subgroups. Trees were rooted on a 1587 
randomly selected outgroup from a related family (not shown). (b) Enrichment and 1588 
depletion of co-phylogeny patterns across microbial families with at least 10 SGBs in the 1589 
analysis. Bars are colored by phylum, corresponding to the colors in Figure 1. Filled bars 1590 
denote significant (Q<0.05) enrichment and depletion. The dashed line represents the 1591 
average co-phylogeny ratio across all SGBs. (c) Per-sample proportion of SGBs with co-1592 
phylogeny patterns across and colored by host subgroups. (d) Enrichment (blue) and 1593 
depletion (red) of 43 in-silico inferred microbial traits, genome size and gene count in 1594 
association with cophylogeny signals. Effect sizes and P-values from mixed effects logistic 1595 
regression accounting for phylogenetic relatedness of SGBs. The horizontal line marks the 1596 
threshold of significant Bonferroni-adjusted P-values. (e) SGB-level gene counts across nine 1597 
phyla, grouped by the presence (blue) and absence (red) of a cophylogeny signal. Within-1598 
phylum differences were assessed by two-sided Wilcoxon rank-sum test. (f) Prevalence of 1599 
inferred D-Xylose utilization by SGBs across phyla, grouped by the presence (blue) and 1600 
absence (red) of a cophylogeny signal. Within-phylum differences in prevalence were 1601 
assessed using a two-sided Fisher-test. (g) Tanglegram of Bifidobacterium maximum-1602 
likelihood phylogenies based on 120 GTDB marker genes (left) and gyrB sequence (right). Tip 1603 
colors and shapes correspond to the host subgroups. Across all panels, stars indicate level of 1604 
significance: * P < 0.05, ** P < 0.01, *** P < 0.001. 1605 
  1606 
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Tables 1607 
 1608 
Table1: KEGG functional groups with significant enrichment (Q < 0.05) in the gut 1609 
microbiome of humans living in Europe. 1610 
 1611 

KEGG ID Name # of 
KOs 

Mean Z-
Score P-value Q-value 

md:M00159 V/A-type ATPase, prokaryotes 9 11.19 3.23E-16 2.64E-13 

path:map00190 Oxidative phosphorylation 223 5.83 1.39E-08 1.13E-05 

md:M00924 Cobalamin biosynthesis, anaerobic, uroporphyrinogen III => 
sirohydrochlorin => cobyrinate a,c-diamide 22 3.59 2.38E-08 1.94E-05 

path:map00860 Porphyrin metabolism 139 3.51 5.08E-08 4.15E-05 

md:M00045 Histidine degradation, histidine => N-formiminoglutamate 
=> glutamate 8 5.79 4.37E-07 3.57E-04 

path:map00010 Glycolysis / Gluconeogenesis 106 1.81 5.21E-06 4.25E-03 

md:M00846 Siroheme biosynthesis, glutamyl-tRNA => siroheme 16 4.64 5.99E-06 4.90E-03 

md:M00925 Cobalamin biosynthesis, aerobic, uroporphyrinogen III => 
precorrin 2 => cobyrinate a,c-diamide 17 4.36 1.07E-05 8.78E-03 

path:map00630 Glyoxylate and dicarboxylate metabolism 101 1.94 3.60E-05 2.94E-02 

path:map00260 Glycine, serine and threonine metabolism 109 1.74 5.87E-05 4.80E-02 

path:map01230 Biosynthesis of amino acids 238 1.41 6.05E-05 4.94E-02 
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