

1 **Title page**

2 C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting
3 excessive PINK1/Parkin-mediated mitophagy

4 **Running title:** CNP improves oocytes quality

5 Hui Zhang^{1, 2a}, Chan Li^{1, 2a}, Qingyang Liu^{1, 2}, Jingmei Li^{1, 2}, Hao Wu^{1, 2}, Rui Xu^{1, 2}, Yidan Sun^{1,}
6 ², Ming Cheng^{1, 2}, Xiaoe Zhao^{1, 2}, Menghao Pan^{1, 2}, Qiang Wei^{1, 2b}, Baohua Ma^{1, 2b}

7 1 College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi,
8 People's Republic of China,

9 2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling,
10 Shaanxi, People's Republic of China

11 ^aThese authors contributed equally.

12 ^bCorresponding author: Baohua Ma and Qiang Wei

13 **Address:** College of Veterinary Medicine, Northwest A&F University, Yangling,
14 Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology,
15 Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China. 712100

16 **Email:** mabh@nwsuaf.edu.cn (Baohua Ma); weiq@nwsuaf.edu.cn (Qiang Wei).

17

18

19

20

21

22

23 **Abstract**

24 The overall oocyte quality declines with ageing, and this effect is strongly
25 associated with a higher reactive oxygen species (ROS) level and the resultant
26 oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized
27 physiological meiotic inhibitor that has been successfully used to improve immature
28 oocyte quality during in vitro maturation (IVM). However, the underlying roles of
29 CNP in maternally aged oocytes have not been reported. Here, we found that the age-
30 related reduction in the serum CNP concentration was highly correlated with
31 decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth
32 and ovulation in aged mice and enhanced meiotic competency and fertilization ability.
33 Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved
34 by CNP treatment, as assessed by spindle/chromosome morphology and redistribution
35 of organelles (mitochondria, the endoplasmic reticulum [ER], cortical granules [CGs],
36 and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis
37 caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed
38 that the beneficial effect of CNP on aged oocytes was mediated by restoration of
39 mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP
40 reversed the defective phenotypes in aged oocytes by alleviating oxidative damage
41 and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP
42 functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and
43 inhibit Parkin recruitment. In summary, our results demonstrated that CNP
44 supplementation constitutes an alternative therapeutic approach for advanced maternal

45 age-related oocyte deterioration and may improve the overall success rates of
46 clinically assisted reproduction in older women.

47 **Keywords:** C-type natriuretic peptide; oocyte meiosis; embryo; antioxidant;
48 mitophagy

49 INTRODUCTION

50 During growth, oocytes gradually acquire the capacity to resume meiosis,
51 complete maturation, undergo successful fertilization and achieve subsequent embryo
52 developmental competence (Gandolfi & Gandolfi, 2001). However, ovarian
53 involution precedes that of any other organ in female mammals, and in humans, the
54 oocyte fertilization rate decreases rapidly after 35 years of age. Indeed, infertility
55 associated with a decline in oocyte quality with increasing maternal age is a
56 significant challenge.

57 Recently, with the development of cultural and social trends, many women have
58 delayed childbearing, and ovarian senescence has become a public health problem
59 (Bartimaeus, Obi, Igwe, & Nwachukwu, 2020; Broekmans, Soules, & Fauser, 2009).

60 Ovarian ageing is accompanied by abnormalities in organelle distribution,
61 morphology and functions, leading to inadequate oocyte growth, maturation,
62 fertilization and subsequent embryo development (Reader, Stanton, & Juengel, 2017).

63 Consequently, assisted reproductive technologies such as in vitro maturation (IVM)
64 and in vitro fertilization (IVF) have become promising options for infertility treatment
65 (Chang, Song, Lee, Lee, & Yoon, 2014). However, further studies are needed to
66 improve the subsequent developmental competence of maternally aged oocytes.

67 Oocyte maturation has two steps: nuclear maturation, which mainly involves
68 germinal vesicle breakdown (GVBD) and chromosomal segregation, and cytoplasmic
69 maturation, which involves redistribution of organelles (mitochondria, cortical
70 granules [CGs], and the endoplasmic reticulum [ER]), changes in the intracellular
71 ATP and antioxidant contents, and the accumulation of fertilization-related transcripts
72 and proteins (McClatchie et al., 2017; Watson, 2007). The quality and developmental
73 potential of aged oocytes are lower than those of oocytes derived from young females,
74 primarily because aged oocytes exhibit negative consequences of cytoplasmic
75 maturation, such as abnormal mitochondria and an aberrant CG distribution (Miao,
76 Cui, Gao, Rui, & Xiong, 2020), deteriorated organelle and antioxidant system
77 function and increased reactive oxygen species (ROS) levels (T. Zhang et al., 2019).
78 Excessive ROS generation leads to destructive effects on cellular components
79 (Zarkovic, 2020). Notably, recent studies have indicated that increased oxidative
80 damage is closely correlated with the occurrence of mitochondrial damage and
81 mitophagy (Jiang et al., 2021), which is accompanied by blockade of oocyte meiosis
82 (Jin et al., 2022; Q. Shen, Liu, Li, & Zhang, 2021).

83 The endogenous C-type natriuretic peptide (CNP) produced by follicular mural
84 granulosa cells as a ligand of natriuretic peptide receptor 2 (NPR2), which is
85 expressed primarily in cumulus cells, plays a crucial role in maintaining meiotic arrest
86 (Meijia Zhang, Su, Sugiura, Xia, & Eppig, 2010). Recent studies have suggested that
87 CNP, an inhibitor of oocyte maturation, provides adequate time for cytoplasmic
88 maturation, offering a new strategy to optimize the synchronization of nuclear and

89 cytoplasmic maturation and improve the quality of immature oocytes in vitro (Wei et
90 al., 2017). Moreover, CNP has been reported to enhance the antioxidant defence
91 ability and developmental competence of oocytes in vitro (Zhenwei & Xianhua, 2019).
92 Therefore, CNP may constitute a new alternative means to enhance antioxidant
93 system function and protect against oxidative damage by eliminating excess ROS in
94 aged oocytes. Although CNP has been suggested to contribute to improving the
95 maturation and subsequent development of immature mouse oocytes in vitro, the
96 effect of CNP on maternally aged oocytes remains to be determined.

97 In this study, we investigated the redistribution and function of organelles
98 (mitochondria, CGs, and the ER), the ATP content and the intracellular GSH level in
99 CNP-treated maternally aged oocytes. The results showed that CNP improves the
100 cytoplasmic maturation and developmental competence of maternally aged oocytes by
101 optimizing organelle distribution and function and inhibiting PINK1/Parkin-mediated
102 mitophagy. The findings of this study will contribute to understanding the mechanism
103 of CNP in increasing the fertilization capacity and developmental ability of aged
104 oocytes.

105 **RESULTS**

106 **CNP supplementation improves the quality of aged oocytes**

107 To explore the effect of CNP on oocyte quality in aged mice, we first
108 investigated whether intraperitoneal injection of CNP can affect oocyte quality. Young
109 and aged mice were hormonally superovulated after 14 days of consecutive PBS or

110 CNP daily injection (Figure 1A, B). As shown in Fig. 1 C-E, body weights were
111 higher but ovary weight and the ratios of ovary to body weight were lower in the aged
112 mice as compared with their young counterparts. However, ovary weight and the
113 ratios of ovary to body weight of the CNP-treated mice were significantly recovered
114 (Fig. 1 D and E). Serum CNP concentrations were measured in young, aged, and aged
115 + CNP injected mice. The endogenous CNP content in serum from aged mice was
116 markedly lower than that in serum from young mice (Figure 1 F). In contrast,
117 administration of CNP to aged mice significantly elevated the CNP content in serum
118 (Figure 1 F). To further determine whether the elevated CNP content in serum can
119 improve oocyte quality, we evaluated the number, first polar body (PB1) extrusion
120 rate and fragmentation rate. As the mice aged, the number of ovulations and the PB1
121 extrusion rate decreased significantly, but the incidence of fragmented oocytes
122 increased dramatically (Figure 1 G-J). Conversely, CNP supplementation apparently
123 ameliorated the ageing-induced defects in the number and morphology of the ovulated
124 oocytes (Figure 1 G-J). In addition, assessment of follicle development in the ovary
125 sections by HE staining showed severe deterioration of follicles at different
126 developmental stages in aged mice; however, CNP supplementation significantly
127 increased the number of secondary follicles and antral follicles (Figure 1 K and L).
128 Young, untreated aged and CNP-treated aged mice were naturally mated with 12-
129 week-old male mice, and consistent with the increased number of ovulated oocytes
130 with a normal morphology, the litter size of aged mice was also increased by CNP
131 administration (Figure 1M).

132 To investigate the effects of CNP on in vitro maturation (IVM) of aged mouse
133 cumulus-oocyte complexes (COCs), we first examined the PB1 extrusion rate of
134 COCs pretreated with 10 nM CNP to maintain meiotic arrest for 24 h (pre-IVM) and
135 then matured in vitro for 16 h (a two-step culture system; Figure S1 A). In the control
136 (conventional in vitro maturation) group, only $35.36 \pm 2.74\%$ of the oocytes exhibited
137 PB1 extrusion. After temporary meiotic arrest induced by treatment with 10 nM CNP,
138 the maturation rate increased to $71.12 \pm 3.02\%$ (n=104), significantly higher than that
139 in the control group ($P<0.01$) (Figure S1 B and C). The spindle morphology and
140 chromosome alignment in in vitro-matured oocytes were also evaluated. The
141 percentage of oocytes with abnormal spindle-chromosome complexes was
142 significantly decreased in the group with 10 nM CNP-induced temporary meiotic
143 arrest (Figure S1 D and E). Collectively, these results indicate that CNP
144 administration increased the serum CNP content, restored the number and
145 morphology of aged oocytes and improved the fertility of aged female mice.

146 **CNP supplementation restores cytoplasmic maturation events in maternally aged
147 mouse oocytes**

148 Pregnancy failure and foetal miscarriage increase with maternal age and,
149 importantly, are associated with oocyte aneuploidy and spindle/chromosomal
150 abnormalities (Ma et al., 2020). Therefore, we determined the rate of
151 spindle/chromosomal abnormalities in oocytes of young, untreated aged and CNP-
152 treated aged mice by immunofluorescence staining and found that CNP treatment
153 greatly improved the spindle/chromosomal abnormalities in aged mice (Figure 2 A, B).

154 To determine whether, in addition to affecting spindles/chromosomes, CNP
155 supplementation affects other organelles during the maturation of aged oocytes, we
156 examined the distribution of the Golgi apparatus, endoplasmic reticulum (ER) and
157 cortical granules (CGs) in oocytes from young, untreated aged and CNP-treated aged
158 mice. The Golgi-Tracker results showed that in aged mouse oocytes, the Golgi
159 apparatus was distributed in agglutinated and clustered patterns, and CNP
160 supplementation significantly reduced the rate of abnormal Golgi distribution (Figure
161 2 C, D, Figure S2A, B). Since the ER plays an essential role in Ca^{2+} signal-mediated
162 oocyte fertilization and subsequent embryonic development (Miyazaki & Ito, 2006),
163 we then examined the distribution pattern of the ER in oocytes. As shown in Figure 2
164 E, the ER was accumulated at the chromosome periphery and was evenly distributed
165 in the cytoplasm; however, the ER abnormally agglomerated in the cytoplasm and the
166 chromosome periphery in a disorganized pattern in aged oocytes (Figure 2 E, Figure
167 S3A). Statistical analysis showed that the rate of abnormal ER distribution was
168 significantly decreased in CNP-supplemented oocytes (Figure 2 F, Figure S3B). The
169 distribution of CGs is one of the most important indicators of oocyte cytoplasmic
170 maturation and is related to the blockade of polyspermy following fertilization. We
171 assessed whether CNP supplementation affects the distribution dynamics of CGs in
172 aged oocytes. Lens culinaris agglutinin (LCA)-FITC staining showed that in young
173 oocytes, CGs were distributed evenly in the oocyte subcortical region, leaving a CG-
174 free domain (CGFD) near chromosomes (Figure 2 G). However, maternally aged
175 oocytes showed an abnormal CG distribution, including increased migration of CGs

176 towards the oocyte chromosomes or oocyte subcortical region, without leaving a
177 CGFD (Figure 2 G, H; Figure S4 A). Consistent with this finding, statistical analysis
178 of the fluorescence intensity of CG signals in aged oocytes showed a significant
179 reduction compared with that in young oocytes, and CNP supplementation improved
180 the mis-localization and decrease in the number of oocyte CGs (Figure 2 H, I, Figure
181 S4 B, C). Taken together, these data imply that CNP is a potent agent for improving
182 cytoplasmic maturation events in maternally aged mouse oocytes.

183 **CNP supplementation restores mitochondrial distribution and function in aged
184 oocytes**

185 To verify the effect of CNP supplementation on the mitochondrial distribution
186 pattern and function in aged oocytes, we performed MitoTracker staining. In young
187 oocytes, mitochondria exhibited a homogeneous distribution in the cytoplasm and
188 accumulated at the periphery of chromosomes (Figure 2 J). However, in aged oocytes,
189 most mitochondria were aggregated in the cytoplasm and partially or completely
190 failed to accumulate around chromosomes (Figure 2 J, Figure S5A). Statistically,
191 more than 40% of mitochondria in aged oocytes exhibited a mislocalized distribution
192 pattern, and CNP supplementation significantly reduced the abnormal distribution rate
193 (Figure 2 K, Figure S5B). We then analysed mitochondrial function by measuring the
194 ATP content in oocytes from young, untreated aged, and CNP-treated aged mice. The
195 ATP content in oocytes from aged mice was considerably lower than that in oocytes
196 from young mice but was restored following CNP supplementation (Figure 2 L,
197 Figure S5C). We also tested the mitochondrial membrane potential, which has been

198 shown to be the driving force of mitochondrial ATP synthesis, by staining with the
199 potentiometric dye JC-1 (Figure 2 M, Figure S5D). The mitochondrial membrane
200 potential was lower in oocytes from aged mice than in oocytes from young mice but
201 was restored in oocytes from CNP-supplemented aged mice (Figure 2 M, N, and
202 Figure S5 D, E). Overall, these observations suggest that CNP supplementation
203 improved ageing-induced mitochondrial dysfunction in oocytes.

204 **CNP supplementation eliminates excessive ROS and attenuates DNA damage
205 and apoptosis in aged oocytes**

206 We proposed that mitochondrial dysfunction induces ROS imbalance and
207 oxidative stress in aged oocytes. To test this hypothesis, we carried out
208 dichlorofluorescein (DCFH) staining to measure ROS levels in each group of oocytes
209 (Figure 3 A). Quantitative analysis of the fluorescence intensity showed that ROS
210 signals were markedly enhanced in aged oocytes compared with young oocytes
211 (Figure 3 B). Conversely, CNP supplementation effectively reduced the ROS
212 accumulation observed in aged oocytes (Figure 3 A, B, Figure S6A, S6B). In addition
213 to being caused by ROS accumulation, age-associated oxidative stress damage can be
214 caused by reduced antioxidant defence system function. We therefore investigated
215 whether CNP contributes to improving the antioxidant defence ability in aged oocytes.

216 Quantification of the nicotinamide adenine dinucleotide phosphate (NADPH) levels
217 and the ratio of reduced to oxidized glutathione (GSH/GSSG ratio) in oocytes showed
218 that NADPH levels and the GSH/GSSG ratio were decreased in oocytes from aged
219 mice compared with those from young mice and that CNP treatment significantly

220 increased NADPH levels and the GSH/GSSG ratio in oocytes from aged animals
221 (Figure 3 C, D). Because a high level of ROS not only results in the accumulation of
222 DNA damage but also causes oocyte apoptosis (Miao et al., 2020), we next evaluated
223 DNA damage and apoptosis in oocytes by γ -H2A.X and Annexin-V staining,
224 respectively. As expected, higher signals indicating DNA damage and apoptosis were
225 observed in aged oocytes than in young oocytes, and these increases were alleviated
226 by supplementation with CNP (Figure 3 E-H). Taken together, these observations
227 suggested that the rates of DNA damage and apoptosis are higher in aged oocytes,
228 possibly because of maternal ageing-induced excessive accumulation of ROS. Notably,
229 our results demonstrated that CNP supplementation exerts antioxidant activity, which
230 is an effective strategy to ameliorate maternal ageing-induced DNA damage and
231 apoptosis in oocytes.

232 **CNP supplementation improves the fertilization ability and early embryo
233 development of aged oocytes**

234 Considering that oocyte fertilization and subsequent embryo developmental
235 competence are profoundly affected by mitochondrial function, we then tested
236 whether the oocyte fertilization capacity and normal development to the blastocyst
237 stage are enhanced by CNP. The in vitro fertilization (IVF) results showed that aged
238 oocytes had dramatically lower fertilization rates than young oocytes and that CNP
239 supplementation effectively increased the fertilization rate of aged oocytes (Figure 4
240 A, B). We further examined the subsequent developmental ability of the fertilized
241 oocytes. As expected, CNP supplementation effectively increased the blastocyst

242 formation rate of aged oocytes both in vivo (Figure 4 A and 4 C-F) and in vitro
243 (Figure S7). These results demonstrate that CNP increases the fertilization capacity
244 and promotes subsequent embryonic development of oocytes from aged mice.

245 **Identification of target effectors of CNP in aged oocytes by single-cell
246 transcriptome analysis**

247 To verify the cellular and molecular mechanisms of CNP supplementation in
248 improving oocyte quality in aged mice, we performed single-cell transcriptome
249 analysis of GV oocytes derived from young, untreated aged and CNP-treated aged
250 mice to identify potential target effectors. The relative expression of several randomly
251 selected genes from each group was verified using quantitative real-time PCR (Figure
252 S8A, B). As shown in the heatmap and volcano plot, the transcriptome profile of aged
253 oocytes was significantly different from that of young oocytes, with 77 differentially
254 expressed genes (DEGs) downregulated and 440 DEGs upregulated in aged oocytes
255 identified through DEGseq2 analysis (Figure 5 A-C). Furthermore, CNP
256 supplementation resulted in downregulation of 584 genes and upregulation of 527
257 genes compared with aged oocytes. In particular, Kyoto Encyclopedia of Genes and
258 Genomes (KEGG) enrichment analysis showed that genes enriched in the ubiquitin-
259 mediated proteolysis and mitophagy pathways were abnormally highly expressed in
260 aged oocytes compared with young oocytes but that these expression levels were
261 restored to the baseline levels in CNP-supplemented aged oocytes (Figure 5 D, E). In
262 addition, oxidative phosphorylation and peroxisome proliferator-activated receptor
263 (PPAR) signalling pathways were ranked at the top of the enrichment list in CNP-

264 supplemented aged oocytes compared to untreated aged oocytes, consistent with our
265 abovementioned observations that CNP supplementation improved mitochondrial
266 function in aged oocytes. Many of the enriched KEGG enrichment pathways are
267 highly related to mitophagy and mitochondrial function, which suggests that
268 mitophagy should be strongly considered as a CNP effector in aged oocytes.

269 **CNP supplementation attenuates oxidative damage by inhibiting mitophagy in**
270 **aged oocytes**

271 To verify the effect of CNP supplementation on mitophagy in aged oocytes, we
272 first analysed mitochondrial structure in the oocytes of young, untreated aged and
273 CNP-treated aged mice by transmission electron microscopy (Figure 6 A).
274 Quantitatively, mitochondrial damage, as evidenced by membrane rupture and a lack
275 of electron density was significantly increased in aged oocytes but was ameliorated in
276 CNP-supplemented aged oocytes (Figure 6 B). Because oxidative stress has been
277 implicated in triggering mitochondrial oxidative injury and mitophagy (Adhikari, Lee,
278 Yuen, & Carroll, 2022; M. Shen et al., 2016), we next determined whether
279 supplementation with CNP can eliminate excessive mitochondrial ROS (mtROS). As
280 expected, supplementation with CNP substantially reduced the mtROS signals, as
281 shown by MitoSOX staining and fluorescence intensity measurements (Figure 6 C, D).
282 We then evaluated degradation of the autophagy biomarker p62, the accumulation of
283 LC3-II, the conversion of LC3-I to LC3-II, and the expression patterns of the
284 mitophagy-related proteins PINK1 and Parkin (Figure 6 E). Western blot analysis
285 revealed that aged oocytes exhibited significant p62 degradation, LC3-II

286 accumulation and marked increases in PINK1 and Parkin expression levels, whereas
287 CNP supplementation abrogated these effects (Figure 6 E-I). Collectively, the above
288 data indicate the inhibitory effect of CNP on oocyte mitophagy through the PINK1-
289 parkin signalling pathway.

290 **CNP downregulates Parkin recruitment and mitophagy via the cAMP/PKA
291 pathway**

292 How PINK1- and Parkin-mediated mitophagy is regulated by CNP in aged
293 oocytes, however, requires further elucidation. The cAMP/PKA signalling pathway,
294 which is dependent on the phosphorylation of mitochondrial proteins, has emerged as
295 a direct means to regulate mitophagy and mitochondrial physiology (Amer & Hebert-
296 Chatelain, 2018; Lobo et al., 2020). The concentrations of cAMP in GV oocytes
297 derived from young, untreated aged and CNP-treated aged mice were determined. As
298 shown in Fig. 6 J, the cAMP concentration in aged oocytes was significantly lower
299 than that in young oocytes, but administration of CNP resulted in a substantial
300 increase in intraoocyte cAMP concentrations. This increase in cAMP significantly
301 reduced mitochondrial recruitment of Parkin and mitophagy, which were dependent
302 on PKA activity (Lobo et al., 2020). Next, we applied a PKA inhibitor, H89, to
303 determine whether PKA is directly involved in CNP-mediated oocyte mitophagy. We
304 isolated preantral follicles (80-100 μ m diameter) from the ovaries of aged mice and
305 treated them with 100 nM CNP or 100 nM CNP + 10 μ M H89 during in vitro culture.
306 Monitoring of follicle growth dynamics showed that treatment with 100 nM CNP
307 significantly increased the follicle diameter (Figure 6 K and L), whereas H89

308 treatment inhibited the effect of CNP on promoting preantral follicle growth (Figure 6
309 K and L). Western blot analysis revealed that CNP supplementation significantly
310 decreased PINK1 and Parkin expression levels, but H89 treatment abrogated these
311 expression changes (Figure 6 M-O). The cAMP-PKA pathway plays an important role
312 in inhibiting Parkin recruitment to damaged mitochondria (Akabane et al., 2016). We
313 therefore sought to determine whether PKA inhibition regulates Parkin recruitment.
314 The effects of CNP on mitochondria were examined by double staining for Parkin and
315 translocase of outer mitochondrial membrane 20 (TOMM20). CNP clearly inhibited
316 the mitochondrial localization of Parkin, but inhibition of PKA with H89 resulted in
317 Parkin translocation to mitochondria, as shown by the overlap of the two staining
318 signals (Figure 6 P and Q). Collectively, these data suggested that the suppression of
319 Parkin recruitment through the cAMP-PKA axis is an important mechanism
320 underlying the protective effect of CNP against oxidative injury in maternally aged
321 mouse oocytes.

322 **DISCUSSION**

323 In mammals, the endogenous peptide CNP is expressed by endothelial cells in
324 many tissues and has diverse physiological functions in mediating cardioprotective
325 effects, bone growth, oocyte meiotic progression, and follicle growth and
326 development (Bae et al., 2017; Moyes & Hobbs, 2019; Peake et al., 2014; Sato,
327 Cheng, Kawamura, Takae, & Hsueh, 2012; Xi et al., 2019). Beyond the role of CNP
328 as an oocyte meiotic arrest factor, previous studies by our group and others confirmed
329 that adding CNP to the pre-IVM system significantly improved oocyte maturation and

330 subsequent embryo developmental potential (Richani & Gilchrist, 2022; Soto-Heras,
331 Paramio, & Thompson, 2019; Wei et al., 2017). The synchronization of nuclear and
332 cytoplasmic maturation is essential for oocyte quality and supporting early embryonic
333 preimplantation development. However, the underlying molecular mechanism and
334 whether CNP has any beneficial effect on the maternal age-induced decline in oocyte
335 quality are incompletely understood. In the present study, we showed that CNP levels
336 declined with age and demonstrated that CNP supplementation increased the number
337 of antral follicles and the ovulation rate and enhanced oocyte quality and fertility.
338 Furthermore, supplementation of CNP in pre-IVM oocyte culture medium reversed
339 the adverse effects of age on immature oocytes, offering a potentially effective
340 approach for assisted reproductive technologies to acquire a greater number of high-
341 quality oocytes and improve the fertility of older women.

342 Many factors affect the adverse effects on the oocyte maturation process and
343 embryonic development associated with advanced maternal age (Mikwar, MacFarlane,
344 & Marchetti, 2020). Assisted reproductive technologies are an efficient scheme to
345 resolve infertility as maternal fertility declines with ageing. However, the low success
346 rate of IVM oocytes, which is especially pronounced in maternally aged oocytes,
347 limits fertilization outcomes. Our in vivo results showed that CNP supplementation
348 results in multiple improvements, including reductions in oxidative damage, spindle
349 defects, and abnormal organelle distributions and functions, in maternally aged
350 oocytes. Thus, we further investigated the use of CNP in the IVM system, especially
351 in improving the quality of oocytes derived from aged mice. The results indicated that

352 CNP-induced temporary meiotic arrest improved the maturation and fertilization rate
353 of maternally aged oocytes and increased their subsequent embryo developmental
354 competence. Specifically, our results confirmed an advanced role for CNP in
355 preventing the development of mitochondrial structure abnormalities and the typical
356 dysfunctional processes in aged oocytes. Furthermore, these data showed that CNP
357 apparently improved the antioxidant defence system impairment accompanying
358 oocyte ageing and alleviated oxidative stress. In addition, the findings demonstrated
359 that CNP improved cytoplasmic maturation events by maintaining normal CG, ER and
360 Golgi apparatus distribution and mitochondria function in aged oocytes.

361 The asynchronous nature of nuclear and cytoplasmic maturation is a major
362 challenge in improving the quality of IVM oocytes (Coticchio et al., 2015). Age-
363 related aberrant chromosome alignment prior to cytoplasmic maturation may result in
364 poor oocyte quality and subsequent reduced reproductive potential (Russ, Haywood,
365 Lane, Schoolcraft, & Katz-Jaffe, 2022). In the present study, after COCs were induced,
366 the temporary meiotic arrest resulting from CNP treatment significantly increased the
367 maturation rate, which may synchronize oocyte nuclear and cytoplasmic maturation.
368 Organelle distribution is a necessary feature of oocyte cytoplasmic maturation and
369 subsequent development. Dramatic ER reorganization (FitzHarris, Marangos, &
370 Carroll, 2007), CG translocation to the cell cortex (Liu, Sims, Calarco, & Talbot,
371 2003), and the Golgi apparatus distribution and function are commonly regarded as
372 indicators of cytoplasmic maturation (Mao, Lou, Lou, Wang, & Jin, 2014). Similarly,
373 our results demonstrate that CNP supplementation restored cytoplasmic maturation in

374 maternally aged oocytes by ensuring normal organelle distribution dynamics and
375 organelle function, increasing the fertilization capacity and developmental
376 competence of aged oocytes. It is reasonable to assume that CNP is a potential option
377 to prevent abnormal organelle distribution and functions in oocytes that could be
378 triggered by ubiquitous environmental endocrine disruptors, such as bisphenol A and
379 citrinin (Pan et al., 2021; Sun et al., 2020). Cortical granules (CGs) are oocyte-
380 specific vesicles located under the subcortex. Fusion of CGs with the oocyte plasma
381 membrane is the most important event needed to prevent polyspermy (Miao et al.,
382 2020). The distribution of CGs is usually regarded as one of the most important
383 indicators of oocyte cytoplasmic maturation. The contents of the CGs are normally
384 discharged by exocytosis when the egg is stimulated by the fertilizing spermatozoon;
385 this process is called the cortical reaction, and it prevents polyspermy and protects the
386 embryo from a hostile environment during early development (Schuel, 1978).

387 One of the major known causes of oocyte oxidative damage and apoptosis arises
388 from excessive ROS accumulation with ageing, especially in IVM oocytes
389 (Combelles, Gupta, & Agarwal, 2009; Soto-Heras & Paramio, 2020). Excessive ROS
390 accumulation occurs as a result of two processes, namely, constant generation in the
391 mitochondria or scavenging by antioxidant defence systems, both of which involve
392 age-related quality decreases in oocytes (Mianqun Zhang, Lu, Chen, Zhang, & Xiong,
393 2020). Thus, maintaining the balance between the production and scavenging of ROS
394 could help to alleviate age-related oxidative damage and fertility decreases. Some
395 antioxidative factor(s) within oocytes might deteriorate as the potential mother ages,

396 compromising the ability for ROS scavenging (Schwarzer et al., 2014). GSH serves as
397 one of the antioxidants in oocytes to combat ROS-mediated oxidative stress, which is
398 highly correlated with oocyte developmental competence (Furnus et al., 2008). The
399 present results suggested that CNP-induced temporary meiotic arrest increased the
400 GSH/GSSG ratio, which is involved in the enhancement of oocyte antioxidant
401 defence and may contribute to improving oocyte developmental competence.
402 Consistent with previous studies (Miao et al., 2020), our findings validated that
403 maternal ageing results in excessive accumulation of ROS and DNA damage, which
404 severely impairs follicle development, ovulation, oocyte quality and subsequent
405 embryo developmental potential.

406 Defects in chromosome separation and decondensation as well as chromosomal
407 misalignment caused by spindle detachment are the major contributing factors
408 responsible for the decline in oocyte quality with ageing (Chiang, Schultz, &
409 Lampson, 2011; Eichenlaub-Ritter, Vogt, Yin, & Gosden, 2004). Oocytes require ATP
410 for spindle formation, chromosome segregation, and polar body extrusion and
411 fertilization processes (Arhin, Lu, Xi, & Jin, 2018; Eichenlaub-Ritter, 2013).
412 Mitochondria are the most abundant organelles in oocytes and play an important role
413 in ATP production via oxidative phosphorylation to phosphorylate adenosine
414 diphosphate (Bentov, Yavorska, Esfandiari, Jurisicova, & Casper, 2011). Thus,
415 mitochondrial function is a key indicator of oocyte quality and successful fertilization
416 in assisted reproductive technologies (ARTs) (Mikwar et al., 2020). Mitochondrial
417 metabolic activity and mitochondrial DNA replication dramatically decrease in

418 oocytes with maternal age, which reduces ATP production; leads to meiotic spindle
419 damage, chromosome misalignment and aneuploidy; and largely impairs oocyte
420 maturation processes (Eichenlaub-Ritter, Wieczorek, Lüke, & Seidel, 2011; May-
421 Panloup et al., 2016). We demonstrated that CNP reverses mitochondrial dysfunction
422 induced by ageing in oocytes by analysing the mitochondrial distribution, ATP content,
423 and mitochondrial membrane potential ($\Delta\Psi_m$).

424 Notably, disruption of the mitochondrial membrane potential is a potent trigger
425 of mitophagy (Matsuda et al., 2010). Our single-cell transcriptome profiling data
426 showed that the expression of genes related to ubiquitin-mediated proteolysis and the
427 mitophagy pathway was considerably upregulated in aged oocytes but restored to
428 normal levels following CNP supplementation. We also observed by TEM that CNP
429 supplementation suppressed the accumulation of autophagic vesicles containing
430 mitochondria. Furthermore, immunoblot analysis revealed degradation of the
431 autophagy biomarker p62 and accumulation of LC3-II in aged oocytes, events that
432 were markedly suppressed in CNP-treated oocytes. In general, excessive activation of
433 mitophagy and mitochondrial damage in aged oocytes may be involved in the
434 deterioration of oocyte quality, while CNP can ameliorate this process.

435 The PINK1/Parkin pathway is one of the most studied ubiquitin-dependent
436 mitophagy processes and is crucial for the equilibrium between mitochondrial
437 biogenesis and mitochondrial removal via selective recognition and elimination of
438 dysfunctional mitochondria (Ateneo, 2019). In healthy mitochondria, the
439 serine/threonine kinase PINK1 is usually expressed at low levels, but it rapidly

440 accumulates on damaged or aged mitochondria that exhibit loss of membrane
441 potential (Narendra & Youle, 2011). The decrease in the mitochondrial membrane
442 potential abolishes translocation across the outer and inner membranes and confines
443 PINK1 in the mitochondrial matrix, stabilizing it on the mitochondrial outer
444 membrane in a complex with the translocase TOM (De Gaetano et al., 2021).
445 Stabilized PINK1 recruits the cytosolic E3-ubiquitin ligase Parkin from the cytosol to
446 damaged mitochondria, an event followed by mitophagy. The effects of CNP on
447 meiotic arrest depend on the maintenance of cAMP levels in oocytes (Meijia Zhang et
448 al., 2010). Recent findings revealed that cAMP-dependent activation of PKA reduced
449 the PINK1 protein level due to its rapid degradation via the proteasome and severely
450 inhibited Parkin recruitment to depolarized mitochondria (Lobo et al., 2020). Our data
451 confirmed that PINK1 expression was decreased in CNP-treated oocytes, thus leading
452 to a reduction in Parkin recruitment. However, these effects were disrupted by the
453 inhibition of PKA pathway activity, indicating that cAMP indeed mediates the
454 ameliorating effects of CNP on aged oocyte quality. Taken together, these findings
455 indicate that PKA-mediated inhibition of Parkin recruitment may contribute to
456 protecting mitochondria with a low membrane potential from mitophagy in aged
457 oocytes.

458 Collectively, our studies demonstrated that CNP improves the fertilization and
459 developmental competence of maternally aged mouse oocytes by preventing age-
460 related antioxidant defects and excessive mitophagy. Considering its known
461 contributions as a physiological meiotic inhibitor, CNP provides an alternative to

462 prevent maternal age-related oocyte quality defects and improve developmental
463 competence. Although ARTs have been widely used to treat infertility, their overall
464 success rates in women of advanced maternal age remain low. Our data may provide a
465 new theoretical basis for the use of CNP in improving subfertility in older women or
466 the application of clinically assisted reproduction. Out of caution, however,
467 randomized controlled clinical trials should be conducted to further study the efficacy
468 of CNP in women who wish to become pregnant.

469 **MATERIALS AND METHODS**

470 **Animals and ethics statement**

471 The young (6~8-week-old) and aged (58~60-week-old) C57BL-6J female mice
472 were obtained from the Experimental Animal Center of the Xi'an Jiaotong University
473 and housed in a temperature (20~25°C) and light-controlled environment (12 h light–
474 12 h dark cycle) and provided with food and water ad libitum.

475 **In vivo treatment with CNP**

476 Aged mice (58-week-old) were intraperitoneally injected daily with CNP (120
477 µg/kg body weight; Cat#B5441, ApexBio) for 14 days. CNP was dissolved in PBS
478 and diluted to appropriate concentration by physiological saline solution before
479 injection. The mice were followed by a single injection of 5 IU pregnant mare serum
480 gonadotropin (PMSG; Ningbo Second Hormone Factory, Ningbo, China) for 46 h to
481 stimulate penultimate follicle maturation before collection of ovaries for histological
482 analyses and weighting. Some mice were further injected with 5 IU human chorionic

483 gonadotropin (hCG; Ningbo Second Hormone Factory, Ningbo, China), and the
484 ovulated oocytes in oviducts were monitored 16 h later to evaluate ovulation
485 efficiency.

486 **Measurement of CNP levels**

487 CNP was measured in plasma by a two-site polyclonal direct ELISA kit
488 (Biomedica Medizinprodukte, Vienna, Austria) according to the manufacturer's
489 instructions. Collect blood samples in standardized serum separator tubes (SST),
490 allow samples to clot for 30 minutes at room temperature and perform serum
491 separation by centrifugation. Assay the acquired serum samples immediately. Read
492 the optical density (OD) of all wells on a plate reader using 450 nm wavelength.
493 Construct a standard curve from the absorbance read-outs of the standards. Obtain
494 sample concentrations from the standard curve.

495 **Histological analysis of ovaries**

496 Ovaries from each group of mice were fixed in 4% paraformaldehyde (pH 7.5)
497 overnight at 4°C, dehydrated using graded ethanol, followed by xylenes and embedded
498 in paraffin. Paraffin-embedded ovaries were serial sectioned at a thickness of 5 µm for
499 hematoxylin and eosin (H&E) staining. Ovaries from three mice of each group were
500 used for the analysis.

501 **Collection and culture of cumulus-oocyte complexes (COCs)**

502 Female mice were stimulated by an intraperitoneal injection of 5 IU PMSG, and

503 mice were sacrificed by cervical dislocation 24 h later. The ovaries were collected,
504 and the well-developed Graafian follicles were punctured with 30-gauge needles to
505 collect COCs. Only COCs with morphological integrity and a distinct germinal
506 vesicle (GV) were cultured in basic culture medium consisted of Minimum Essential
507 Medium (MEM)-α (Life Technologies, New York, USA) supplemented with 3mg/mL
508 bovine serum albumin and 0.23 mM pyruvate at 37°C under an atmosphere of 5%
509 CO₂ in air with maximum humidity.

510 **CNP treatment and in vitro maturation**

511 For in vitro induce temporary meiotic arrest, COCs were cultured in basic culture
512 medium containing 10 nM of CNP. The dose of CNP for meiotic arrest in mouse
513 oocytes in vitro was selected based on the published literatures (Meijia Zhang et al.,
514 2011) and our preliminary reports (Wei et al., 2017). After meiotic arrest culture for
515 24 h, COCs were transferred to CNP-free IVM medium (containing 10 ng/mL
516 epidermal growth factor (EGF)) to induce maturation. After incubation for 16 h,
517 COCs were denuded of cumulus cells by treatment with 0.03% hyaluronidase to
518 obtain MII oocytes for future experiments.

519 **In vitro fertilization and embryo culture**

520 Caudae epididymides from 12-week-old male C57BL-6J mice were lanced in a
521 dish of in human tubal fluid (HTF) medium to release sperm, followed by being
522 capacitated for 1 h (37°C under an atmosphere of 5% CO₂ in air with maximum
523 humidity). Matured oocytes were incubated with capacitated sperm at a

524 concentration of 4×10^5 /mL in 100 μ L HTF for 6 h at 37°C, 5% CO₂. The presence of
525 two pronuclei was scored as successful fertilization. The embryos were cultured in
526 KSOM under mineral oil at 37 °C in 5% CO₂ and saturated humidity.

527 **Preantral follicle isolation and culture**

528 Ovaries were removed after the animals had been killed by cervical dislocation
529 and preantral follicles were mechanically isolated using 26-gauge needles. Then, the
530 preantral follicles (80–100 μ m diameter) that enclosed by an intact basal membrane
531 were collected, distributed randomly and cultured individually in 96-well tissue
532 culture plates for up to 6 days at 37°C in a humidified atmosphere of 5% CO₂ in air.
533 The basic culture medium consisted of MEM- α supplemented with 1mg/mL BSA, 1%
534 ITS (5 μ g/ mL insulin, 5 μ g/mL transferrin, 5ng/mL selenium; Sigma), 100 μ g/mL
535 sodium pyruvate and 1% penicillin/streptomycin sulfate (Sigma) in the absence
536 (control) or presence of 100nM CNP or 10 μ M H89. The dose of CNP was selected
537 based on the published literatures (Xi et al., 2019). Half the medium was replaced
538 with fresh medium and follicles were photographed every other day, and follicle
539 diameter was measured using ImageJ at each time point.

540 **Immunofluorescent Staining**

541 Oocytes were fixed in 4% paraformaldehyde in PBS for 30 min at room
542 temperature, and permeabilized with 0.5% Triton X-100 for 20 min, then blocked
543 with 1% BSA in PBS for 1 h at room temperature. The oocytes were incubated with
544 primary antibodies (Alexa Fluor® 488 Conjugate anti- α -tubulin monoclonal

545 antibody, 1:200, Cell Signaling, Cat#35652; rabbit anti-Tom20 antibody, 1:100, Cell
546 Signaling, Cat#sc-42406; mouse anti-Parkin antibody, 1:100, Santa Cruz, Cat#sc-
547 32282) at 4°C overnight, and then the oocytes were extensively washed with wash
548 buffer (0.1% Tween 20 in PBS), probed with Alexa Fluor 488 goat anti-rabbit IgG
549 (1:200, Thermo Fisher Scientific, A21206) or Alexa Fluor 594 donkey anti-mouse
550 IgG (1:200, Abcam, ab150108) in a dark room for 1 h at room temperature. Then
551 oocytes were counterstained with DAPI (10 µg/mL) at room temperature for 10 min.
552 Finally, samples were mounted on glass slides and observed viewed under the
553 confocal microscope (Nikon A1R-si).

554 **Mito-Tracker, ER-Tracker, and Golgi-Tracker Red Staining**

555 Oocytes were incubated with Mito-tracker Red (1:2000, Beyotime
556 Biotechnology, Shanghai, China), ER-Tracker Red (1:3000, Beyotime Biotechnology),
557 Golgi-Tracker Red (1:50, Beyotime Biotechnology) in M2 medium for 30 min at
558 37 °C in a 5% CO₂ and saturated humidity. Then, the oocytes were counterstained
559 with DAPI (10 µg/mL) for 5min at 37 °C in a 5% CO₂ and saturated humidity, and
560 finally, the samples were washed 3 times with M2 medium and examined with a
561 confocal laser-scanning microscope (Nikon A1R-si).

562 **Mitochondrial membrane potential ($\Delta\Psi_m$) measurement**

563 Oocyte mitochondrial membrane potential was evaluated using Mito-Probe JC-1
564 Assay Kit (Beyotime Institute of Biotechnology, Shanghai, China). Briefly, oocytes
565 were incubated with 2 µM JC-1 in M2 medium for 30 min at 37 °C in a 5% CO₂ and

566 saturated humidity, and finally, the samples were washed 3 times with M2 medium
567 and examined with a confocal laser-scanning microscope (Nikon A1R-si). JC-1 dye
568 exhibits a fluorescence emission of green (529 nm) and red (590 nm). Thus, the
569 red/green fluorescence intensity ratio was measured to indicate mitochondrial
570 depolarization. Oocytes mitochondrial membrane potential ($\Delta\Psi_m$) measurements
571 were performed as our previous report (H. Zhang et al., 2020).

572 **Monitoring of ROS levels in oocytes**

573 The amount of ROS in oocytes was processed with 10 μ M oxidation sensitive
574 fluorescent probe dichlorofluorescein (DCFH) (Beyotime Institute of Biotechnology,
575 Shanghai, China) for 30 min at 37°C in M2 medium. Then oocytes were washed three
576 times with M2 medium and placed on glass slides for image capture under a confocal
577 microscope (Nikon A1R-si).

578 Determination of mitochondrial ROS (mitoSOX) generation by MitoSOX
579 staining, GV oocytes were incubated in M2 media containing 5 μ M MitoSOX Red
580 (ThermoFisher, M36008, Waltham, USA,) in humidified atmosphere for 10 min at
581 37°C. After washing three times in M2 media, oocytes were imaged under a confocal
582 microscope (Nikon A1R-si).

583 **Measurement of the GSH/GSSG ratio**

584 The GSH/GSSG ratio was measured with a GSSG/GSH Assay Kit (Beyotime
585 Institute of Biotechnology) according to the manufacturer's instructions. Briefly,
586 oocytes were lysed in 40 μ L deproteinized buffer on ice for 10 min. The lysate was

587 centrifuged at 12000×g for 5 min at 4 °C. For GSSG measurement, the samples were
588 incubated with GSH scavenge buffer for 60 min at 25 °C to decompose GSH. Then,
589 the samples were transferred to the 96-well plates and the absorbance was measured
590 with a multimode plate reader (BioTek Epoch) at 412 nm.

591 **Measurement of the oocyte NADPH content**

592 The oocyte NADPH contents were measured using a NADPH assay kit
593 (Beyotime Institute of Biotechnology) according to the manufacturer's instructions.
594 Briefly, 50 ~ 60 oocytes per group were lysed in 100 µL NADPH extraction buffer on
595 ice for 20 min. After the samples were centrifuged at 12000×g for 5 min at 4 °C, the
596 supernatants were transferred to the 96-well plates (50µl per well), and the absorbance
597 was measured using a multimode plate reader (BioTek Epoch) at 450 nm. The amount
598 of NADPH was determined using a calibration curve.

599 **Western blot analysis**

600 Approximately 200 oocytes were lysed in RIPA buffer (solarbio, Beijing, China)
601 that supplemented with 1mM protease inhibitors phenylmethylsulfonyl fluoride
602 (PMSF, solarbio, Beijing, China), on ice for 30 min. Samples were boiled at 100 °C in
603 a metal bath for 10 min in protein loading buffer (CoWin Biosciences, Beijing, China)
604 and equal amount proteins were separated by 10% SDS-PAGE gel, and transferred to
605 polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, USA). After transfer,
606 the membranes were blocked in TBST that contained 3 % BSA for 1 h at room
607 temperature, followed by incubation with primary antibodies at 4 °C overnight (the

608 primary antibodies were rabbit anti-GAPDH antibody, 1:2000, Cell Signaling,
609 Cat#5174; rabbit anti-p62 antibody, 1:1000, Cell Signaling, Cat#23214; rabbit anti-
610 Tom20 antibody, 1:1000, Cell Signaling, Cat#sc-42406; rabbit anti-LC3A/B antibody,
611 1:1000, Abcam, Cat#ab128025; rabbit anti-PINK1 antibody, 1:1000, Cell Signaling,
612 Cat#6946; mouse anti-Parkin antibody, 1:1000, Santa Cruz, Cat#sc-32282). The
613 secondary antibodies were incubated for 1 h at room temperature, and then the
614 membrane signals were visualized by a chemiluminescent HRP substrate reagent
615 (Bio-rad Laboratories, Hercules, CA, USA) and images were captured with
616 Tanon5200 Imaging System (Biotanon, Shanghai, China). The band intensity was
617 assessed with Image J software and normalized to that of GAPDH.

618 **Transmission electron microscope (TEM)**

619 Oocytes were prefixed with 3% glutaraldehyde, refixed with 1% osmium
620 tetroxide, dehydrated in acetone, and embedded in Ep812 (Can EM Ltd.). Semithin
621 sections were stained with toluidine blue for optical positioning, and ultrathin sections
622 were made with a diamond knife and observed by a JEM-1400FLASH transmission
623 electron microscope (JEOL) after staining with uranyl acetate and lead citrate.

624 **Evaluation of total ATP content**

625 The ATP content of oocytes was detected with an ATP Bioluminescence Assay
626 Kit (Beyotime Institute of Biotechnology). The oocytes were lysed with 50 μ l of ATP
627 lysis buffer on ice, centrifuged at 12000 \times g at 4°C for 5 minutes, and the supernatants
628 were transferred to a 96-well black culture plate. Then, the samples and standards

629 were read with a Multimode Microplate Reader (Tecan Life Sciences). Finally, the
630 ATP level was calculated according to the standard curve.

631 **RNA sequencing and analysis**

632 GV-stage oocytes were collected from three young, three aged and three CNP
633 treated aged mice. mRNA samples were collected from 5 oocytes from the same
634 mouse of each group. The mRNA was directly reverse-transcribed through oligo dT.
635 The reverse-transcribed cDNA was amplified, and the cDNA was cut by Tn5
636 transposase digestion, and linkers were added to obtain the required sequencing
637 library. The constructed library was entered into the sequencing program after passing
638 through an Agilent 2100 Bioanalyzer and RT-PCR quality control. The PE100
639 sequencing strategy was used to assess gene expression changes at the transcription
640 level. Dr. Tom (Dr. Tom is a web-based solution that offers convenient analysis,
641 visualization, and interpretation of various types of RNA data ,
642 <https://www.bgi.com/global/service/dr-tom>) was used for difference analysis, GO
643 analysis, KEGG analysis, and other analyses.

644 **Reverse transcriptase quantitative PCR (RT-qPCR) analysis**

645 Total RNA from oocytes was extracted using MiniBEST Universal RNA
646 Extraction Kit (TaKaRa, Dalian, China), and reverse transcribed to synthesize cDNA
647 using a PrimeScript RT Master Mix reverse transcription kit (TaKaRa) according to
648 the manufacturer's instructions. RT-qPCR quantitation of mRNAs was performed
649 using TB Green™ Premix Ex Taq™ II (TaKaRa) with Applied Biosystems

650 StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Massachusetts, USA)
651 using the following parameters: 95 °C for 1 min, followed by 40 cycles at 95 °C for 5
652 s and 60 °C for 34 s. The PCR primers used in this study were shown in Table S1.
653 Transcript levels were normalized to those of the housekeeping gene *Gapdh*. The CT
654 value was used to calculate the fold change using the $2^{-\Delta\Delta Ct}$ method. Each experiment
655 was repeated independently at least thrice.

656 **Statistical analysis**

657 Statistical analyses were performed using GraphPad Prism 8.00 software
658 (GraphPad, CA, United States). Differences between two groups were assessed using
659 the t-test. Data from at least three biological repeats were reported as means \pm SEM.
660 Results of statistically significant differences were denoted by asterisk. ($P < 0.05$
661 denoted by *, $P < 0.01$ denoted by **, $P < 0.001$ denoted by ***, and $P < 0.0001$
662 denoted by ****).

663 **Ethics approval**

664 The experimental protocols and mice handling procedures were reviewed and
665 approved by the Institutional Animal Care and Use Committee of the College of
666 Veterinary Medicine, Northwest A&F University (No. 2018011212).

667 **Conflicts of interest**

668 All of the contributing authors declared no conflicts of interest. All authors read
669 and approved the final manuscript.

670 **Data availability statement**

671 All data is included in the manuscript and supporting information.

672 **Acknowledgments**

673 We thank other members in the Ma laboratory for their helpful discussion on the
674 manuscript. This work was supported in part by National Natural Science Foundation
675 of China (31772818).

676 **References**

677 Adhikari, D., Lee, I.-w., Yuen, W. S., & Carroll, J. (2022). Oocyte mitochondria—key
678 regulators of oocyte function and potential therapeutic targets for improving
679 fertility. *Biology of Reproduction*, 106(2), 366-377.

680 Akabane, S., Uno, M., Tani, N., Shimazaki, S., Ebara, N., Kato, H., . . . Oka, T.
681 (2016). PKA regulates PINK1 stability and Parkin recruitment to damaged
682 mitochondria through phosphorylation of MIC60. *Molecular cell*, 62(3), 371-
683 384.

684 Amer, Y. O., & Hebert-Chatelain, E. (2018). Mitochondrial cAMP-PKA signaling:
685 What do we really know? *Biochimica et Biophysica Acta (BBA)-Bioenergetics*,
686 1859(9), 868-877.

687 Arhin, S. K., Lu, J., Xi, H., & Jin, X. (2018). Energy requirements in mammalian
688 oogenesis. *Cellular and Molecular Biology*, 64(10), 12-19.

689 Ateneo, F. S. (2019). Mitophagy and Oxidative Stress in Cancer and Aging: Focus on
690 Sirtuins and Nanomaterials. *Journal: Oxidative Medicine and Cellular
691 Longevity*, 1-19.

692 Bae, C.-R., Hino, J., Hosoda, H., Arai, Y., Son, C., Makino, H., . . . Nojiri, T. (2017).
693 Overexpression of C-type natriuretic peptide in endothelial cells protects
694 against insulin resistance and inflammation during diet-induced obesity.
695 *Scientific reports*, 7(1), 1-13.

696 Bartimaeus, E.-A. S., Obi, C. E., Igwe, F. U., & Nwachuku, E. O. (2020). Impact of
697 Age on Hormonal Profiles of Sub-Fertile Women Attending Fertility Clinic in
698 Umuahia, Abia State, South Eastern Nigeria. *Open Journal of Internal
699 Medicine*, 10(01), 51.

700 Bentov, Y., Yavorska, T., Esfandiari, N., Jurisicova, A., & Casper, R. F. (2011). The
701 contribution of mitochondrial function to reproductive aging. *Journal of
702 assisted reproduction and genetics*, 28(9), 773-783.

703 Broekmans, F., Soules, M., & Fauser, B. (2009). Ovarian aging: mechanisms and
704 clinical consequences. *Endocrine reviews*, 30(5), 465-493.

705 Chang, E. M., Song, H. S., Lee, D. R., Lee, W. S., & Yoon, T. K. (2014). In vitro
706 maturation of human oocytes: its role in infertility treatment and new
707 possibilities. *Clinical and experimental reproductive medicine*, 41(2), 41.

708 Chiang, T., Schultz, R. M., & Lampson, M. A. (2011). Age-dependent susceptibility
709 of chromosome cohesion to premature separase activation in mouse oocytes.

710 *Biology of reproduction*, 85(6), 1279-1283.

711 Combelles, C. M., Gupta, S., & Agarwal, A. (2009). Could oxidative stress influence
712 the in-vitro maturation of oocytes? *Reproductive biomedicine online*, 18(6),
713 864-880.

714 Coticchio, G., Dal Canto, M., Mignini Renzini, M., Guglielmo, M. C., Brambillasca,
715 F., Turchi, D., . . . Fadini, R. (2015). Oocyte maturation: gamete-somatic cells
716 interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic
717 reorganization. *Human Reproduction Update*, 21(4), 427-454.

718 De Gaetano, A., Gibellini, L., Zanini, G., Nasi, M., Cossarizza, A., & Pinti, M. (2021).
719 Mitophagy and oxidative stress: The role of aging. *Antioxidants*, 10(5), 794.

720 Eichenlaub-Ritter, U. (2013). Oocyte ageing and its cellular basis. *International
721 Journal of Developmental Biology*, 56(10-11-12), 841-852.

722 Eichenlaub-Ritter, U., Vogt, E., Yin, H., & Gosden, R. (2004). Spindles, mitochondria
723 and redox potential in ageing oocytes. *Reproductive biomedicine online*, 8(1),
724 45-58.

725 Eichenlaub-Ritter, U., Wieczorek, M., Lüke, S., & Seidel, T. (2011). Age related
726 changes in mitochondrial function and new approaches to study redox
727 regulation in mammalian oocytes in response to age or maturation conditions.
728 *Mitochondrion*, 11(5), 783-796.

729 FitzHarris, G., Marangos, P., & Carroll, J. (2007). Changes in endoplasmic reticulum
730 structure during mouse oocyte maturation are controlled by the cytoskeleton
731 and cytoplasmic dynein. *Developmental biology*, 305(1), 133-144.

732 Furnus, C. C., De Matos, D., Picco, S., García, P. P., Inda, A. M., Mattioli, G., &
733 Errecalde, A. L. (2008). Metabolic requirements associated with GSH
734 synthesis during in vitro maturation of cattle oocytes. *Animal reproduction
735 science*, 109(1-4), 88-99.

736 Gandolfi, T. B., & Gandolfi, F. (2001). The maternal legacy to the embryo:
737 cytoplasmic components and their effects on early development.
738 *Theriogenology*, 55(6), 1255-1276.

739 Jiang, Y., Shen, M., Chen, Y., Wei, Y., Tao, J., & Liu, H. (2021). Melatonin represses
740 mitophagy to protect mouse granulosa cells from oxidative damage.
741 *Biomolecules*, 11(7), 968.

742 Jin, X., Wang, K., Wang, L., Liu, W., Zhang, C., Qiu, Y., . . . Yang, Z. (2022). RAB7
743 activity is required for the regulation of mitophagy in oocyte meiosis and
744 oocyte quality control during ovarian aging. *Autophagy*, 18(3), 643-660.

745 Liu, M., Sims, D., Calarco, P., & Talbot, P. (2003). Biochemical heterogeneity,
746 migration, and pre-fertilization release of mouse oocyte cortical granules.
747 *Reproductive Biology and Endocrinology*, 1(1), 1-11.

748 Lobo, M. J., Reverte-Salisa, L., Chao, Y.-C., Koschinski, A., Gesellchen, F.,
749 Subramaniam, G., . . . Paolocci, E. (2020). Phosphodiesterase 2A2 regulates
750 mitochondria clearance through Parkin-dependent mitophagy.

751 *Communications biology*, 3(1), 1-16.

752 Ma, J.-Y., Li, S., Chen, L.-N., Schatten, H., Ou, X.-H., & Sun, Q.-Y. (2020). Why is
753 oocyte aneuploidy increased with maternal aging? *Journal of genetics and*
754 *genomics*, 47(11), 659-671.

755 Mao, L., Lou, H., Lou, Y., Wang, N., & Jin, F. (2014). Behaviour of cytoplasmic
756 organelles and cytoskeleton during oocyte maturation. *Reproductive*
757 *biomedicine online*, 28(3), 284-299.

758 Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., . . . Sato, F.
759 (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to
760 damaged mitochondria and activates latent Parkin for mitophagy. *Journal of*
761 *Cell Biology*, 189(2), 211-221.

762 May-Panloup, P., Boucret, L., Chao de la Barca, J.-M., Desquiret-Dumas, V., Ferré-
763 L'Hotellier, V., Morinière, C., . . . Reynier, P. (2016). Ovarian ageing: the role
764 of mitochondria in oocytes and follicles. *Human Reproduction Update*, 22(6),
765 725-743.

766 McClatchie, T., Meredith, M., Ouédraogo, M. O., Slow, S., Lever, M., Mann, M. R., .
767 . Baltz, J. M. (2017). Betaine is accumulated via transient choline
768 dehydrogenase activation during mouse oocyte meiotic maturation. *Journal of*
769 *Biological Chemistry*, 292(33), 13784-13794.

770 Miao, Y., Cui, Z., Gao, Q., Rui, R., & Xiong, B. (2020). Nicotinamide
771 mononucleotide supplementation reverses the declining quality of maternally
772 aged oocytes. *Cell reports*, 32(5), 107987.

773 Mikwar, M., MacFarlane, A. J., & Marchetti, F. (2020). Mechanisms of oocyte
774 aneuploidy associated with advanced maternal age. *Mutation*
775 *Research/Reviews in Mutation Research*, 108320.

776 Miyazaki, S., & Ito, M. (2006). Calcium signals for egg activation in mammals.
777 *Journal of pharmacological sciences*, 100(5), 545-552.

778 Moyes, A. J., & Hobbs, A. J. (2019). C-type natriuretic peptide: a multifaceted
779 paracrine regulator in the heart and vasculature. *International journal of*
780 *molecular sciences*, 20(9), 2281.

781 Narendra, D. P., & Youle, R. J. (2011). Targeting mitochondrial dysfunction: role for
782 PINK1 and Parkin in mitochondrial quality control. *Antioxidants & redox*
783 *signaling*, 14(10), 1929-1938.

784 Pan, M.-H., Wu, Y.-K., Liao, B.-Y., Zhang, H., Li, C., Wang, J.-L., . . . Ma, B. (2021).
785 Bisphenol A Exposure Disrupts Organelle Distribution and Functions During
786 Mouse Oocyte Maturation. *Frontiers in Cell and Developmental Biology*, 9,
787 656.

788 Peake, N., Hobbs, A., Pingguan-Murphy, B., Salter, D., Berenbaum, F., &
789 Chowdhury, T. (2014). Role of C-type natriuretic peptide signalling in
790 maintaining cartilage and bone function. *Osteoarthritis and cartilage*, 22(11),
791 1800-1807.

792 Reader, K. L., Stanton, J.-A. L., & Juengel, J. L. (2017). The role of oocyte organelles
793 in determining developmental competence. *Biology*, 6(3), 35.

794 Richani, D., & Gilchrist, R. B. (2022). Approaches to oocyte meiotic arrest in vitro
795 and impact on oocyte developmental competence. *Biology of Reproduction*,
796 106(2), 243-252.

797 Russ, J. E., Haywood, M. E., Lane, S. L., Schoolcraft, W. B., & Katz-Jaffe, M. G.
798 (2022). Spatially resolved transcriptomic profiling of ovarian aging in mice.
799 *Iscience*, 25(8), 104819.

800 Sato, Y., Cheng, Y., Kawamura, K., Takae, S., & Hsueh, A. J. (2012). C-type
801 natriuretic peptide stimulates ovarian follicle development. *Molecular
802 endocrinology*, 26(7), 1158-1166.

803 Schuel, H. (1978). Secretory functions of egg cortical granules in fertilization and
804 development: A critical review. *Gamete Research*, 1(3-4), 299-382.

805 Schwarzer, C., Siatkowski, M., Pfeiffer, M. J., Baeumer, N., Drexler, H., Wang, B., . .
806 . Boiani, M. (2014). Maternal age effect on mouse oocytes: new biological
807 insight from proteomic analysis. *Reproduction*, 148(1), 55-72.

808 Shen, M., Jiang, Y., Guan, Z., Cao, Y., Sun, S.-c., & Liu, H. (2016). FSH protects
809 mouse granulosa cells from oxidative damage by repressing mitophagy.
810 *Scientific reports*, 6(1), 1-13.

811 Shen, Q., Liu, Y., Li, H., & Zhang, L. (2021). Effect of mitophagy in oocytes and
812 granulosa cells on oocyte quality. *Biology of Reproduction*, 104(2), 294-304.

813 Soto-Heras, S., & Paramio, M.-T. (2020). Impact of oxidative stress on oocyte
814 competence for in vitro embryo production programs. *Research in Veterinary
815 Science*.

816 Soto-Heras, S., Paramio, M.-T., & Thompson, J. G. (2019). Effect of pre-maturation
817 with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-
818 oocyte communication and oocyte developmental competence in cattle.
819 *Animal reproduction science*, 202, 49-57.

820 Sun, M.-H., Li, X.-H., Xu, Y., Xu, Y., Pan, Z.-N., & Sun, S.-C. (2020). Citrinin
821 exposure disrupts organelle distribution and functions in mouse oocytes.
822 *Environmental research*, 185, 109476.

823 Watson, A. (2007). Oocyte cytoplasmic maturation: a key mediator of oocyte and
824 embryo developmental competence. *Journal of animal science*, 85(suppl_13),
825 E1-E3.

826 Wei, Q., Zhou, C., Yuan, M., Miao, Y., Zhao, X., & Ma, B. (2017). Effect of C-type
827 natriuretic peptide on maturation and developmental competence of immature
828 mouse oocytes in vitro. *Reproduction, Fertility and Development*, 29(2), 319-
829 324.

830 Xi, G., Wang, W., Fazlani, S. A., Yao, F., Yang, M., Hao, J., . . . Tian, J. (2019). C-type
831 natriuretic peptide enhances mouse preantral follicle growth. *Reproduction*,
832 157(5), 445-455.

833 Zarkovic, N. (2020). Roles and Functions of ROS and RNS in Cellular Physiology
834 and Pathology. In (Vol. 9, pp. 767): MDPI.

835 Zhang, H., Lu, S., Xu, R., Tang, Y., Liu, J., Li, C., . . . Wei, Q. (2020). Mechanisms of
836 estradiol-induced EGF-like factor expression and oocyte maturation via G
837 protein-coupled estrogen receptor. *Endocrinology*, 161(12), bqaa190.

838 Zhang, M., Lu, Y., Chen, Y., Zhang, Y., & Xiong, B. (2020). Insufficiency of
839 melatonin in follicular fluid is a reversible cause for advanced maternal age-
840 related aneuploidy in oocytes. *Redox biology*, 28, 101327.

841 Zhang, M., Su, Y.-Q., Sugiura, K., Wigglesworth, K., Xia, G., & Eppig, J. J. (2011).
842 Estradiol promotes and maintains cumulus cell expression of natriuretic
843 peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro.
844 *Endocrinology*, 152(11), 4377-4385.

845 Zhang, M., Su, Y.-Q., Sugiura, K., Xia, G., & Eppig, J. J. (2010). Granulosa cell
846 ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes.
847 *Science*, 330(6002), 366-369.

848 Zhang, T., Xi, Q., Wang, D., Li, J., Wang, M., Li, D., . . . Jin, L. (2019). Mitochondrial
849 dysfunction and endoplasmic reticulum stress involved in oocyte aging: an
850 analysis using single-cell RNA-sequencing of mouse oocytes. *Journal of
851 ovarian research*, 12(1), 1-9.

852 Zhenwei, J., & Xianhua, Z. (2019). Pre-IVM treatment with C-type natriuretic peptide
853 in the presence of cysteamine enhances bovine oocytes antioxidant defense
854 ability and developmental competence in vitro. *Iranian journal of veterinary
855 research*, 20(3), 173.

856

857

858 **Figure legends**

859 **Figure1. Effects of CNP supplementation on the oocyte quality and female**
860 **fertility in aged mice.** (A) A timeline diagram of CNP administration and
861 superovulation. (B) Representative images of young, aged and CNP administration
862 aged (Aged + CNP) mice as well as their ovaries. (C) Body weights of young, aged
863 and aged + CNP aged mice. (D) Ovarian weights of young, aged and aged + CNP
864 mice. (E) Ratios of ovarian weight to body weight for each group of mice. (F) Serum
865 CNP concentrations were measured in young, aged, and aged + CNP mice. (G)
866 Representative images of the oocyte polar body extrusion in young, aged, and aged +
867 CNP mice. Scale bar: 100 μ m. (H) Ovulated oocytes were counted in young, aged,
868 and aged + CNP mice. (I) Rate of polar body extrusion in young, aged, and aged +
869 CNP mice. (J) The rate of fragmented oocytes was recorded in young, aged, and aged
870 + CNP mice. (K) Representative images of ovarian sections from young, aged, and
871 aged+CNP mice. Scale bars: 100 μ m. (L) Follicles at different developmental stages
872 were counted in young, aged, and aged+CNP ovaries. (M) Average litter size of mated
873 mice was assessed by mating with two-months old male mice.

874

875 **Figure2. CNP supplementation recovers cytoplasmic maturation events of**
876 **maternally aged mouse oocytes.** (A) Representative images of the spindle
877 morphology and chromosome alignment at metaphase II in young, aged, and aged +
878 CNP mice. Scale bar, 10 μ m. (B) The rate of aberrant spindles at metaphase II was
879 recorded in young, aged, and aged + CNP mice. (C) Representative images of the
880 Golgi apparatus distribution at metaphase II in young, aged, and aged + CNP mice.
881 Scale bar, 10 μ m. (D) The rate of aberrant Golgi apparatus distribution was recorded
882 in young, aged, and aged + CNP mice. (E) Representative images of the endoplasmic
883 reticulum distribution at metaphase II in young, aged, and aged + CNP mice. Scale
884 bar, 10 μ m. (F) The rate of aberrant endoplasmic reticulum distribution was recorded
885 in young, aged, and aged + CNP mice. (G) Representative images of the cortical
886 granules (CGs) distribution in young, aged, and aged + CNP mice. Scale bar, 10 μ m.
887 (H) The rate of mislocalized CGs was recorded in the young, aged, and aged + CNP
888 mice. (I) The fluorescence intensity of CG signals was measured in the young, aged,
889 and aged + CNP mice oocyte. (J) Representative images of mitochondrial distribution
890 in the young, aged, and aged + CNP mice oocytes stained with MitoTracker Red.
891 Scale bar, 10 μ m. (K) The abnormal rate of mitochondrial distribution was recorded in

892 the young, aged, and aged + CNP mice oocytes. (L) ATP levels were measured in the
893 young, aged, and aged + CNP mice. (M) Mitochondrial membrane potential ($\Delta\Psi_m$)
894 was detected by JC-1 staining in the young, aged, and aged + CNP mice oocytes.
895 Scale bar, 10 μm . (N) The ratio of red to green fluorescence intensity was calculated
896 in the young, aged, and aged + CNP mice oocytes.

897

898 **Figure 3. Effects of CNP on the ROS content, DNA damage, and apoptosis in**
899 **aged oocytes.** (A) Representative images of ROS levels detected by DCFH staining in
900 the young, aged, and aged + CNP mice oocytes. Scale bar, 100 μm . (B) The
901 fluorescence intensity of ROS signals was measured in the young, aged, and aged +
902 CNP mice oocytes. (C) Oocyte NADPH levels in the young, aged, and aged + CNP
903 mice were measured. (D) The ratio of GSH/GSSG was measured in the young, aged,
904 and aged + CNP mice oocytes. (E) Representative images of DNA damage stained
905 with the γ -H2AX antibody in young, aged, and aged + CNP oocytes. Scale bar, 10 μm .
906 (F) γ -H2AX fluorescence intensity was counted in young, aged, and aged + CNP
907 oocytes. (G) Representative images of apoptotic status, assessed by Annexin-V
908 staining, in young, aged, and aged + CNP oocytes. Scale bar, 20 μm . (H) The
909 fluorescence intensity of Annexin-V signals was measured in young, aged, and aged +
910 CNP oocytes.

911

912 **Figure 4. Effects of CNP on the fertilization ability and embryonic development**
913 **of aged oocytes.** (A) Representative images of early embryos developed from young,
914 aged, and aged + CNP oocytes in vitro fertilization. Scale bar, 100 μm . (B) The
915 fertilization rate (2 cell embryos rate), (C) 4 cell embryos rate, (D) 8 cell embryos rate,
916 (E) morula rate and (F) blastocyst formation rates were recorded in the young, aged,
917 and aged + CNP groups. Data in (B)–(F) are presented as mean percentage (mean \pm
918 SEM) of at least three independent experiments.

919

920 **Figure 5. Effect of CNP supplementation on transcriptome profiling of aged**
921 **oocytes**

922 (A) Heatmap illustration displaying gene expression of young, aged, and aged+ CNP
923 oocytes. (B) Volcano plot showing differentially expressed genes (DEGs;
924 downregulated, blue; upregulated, red) in Young vs Aged oocytes. Some highly DEGs
925 are listed. (C) Volcano plot showing DEGs in Aged vs Aged + CNP oocytes. Some

926 highly DEGs are listed. (D) KEGG enrichment analysis of upregulated and
927 downregulated DEGs in Young vs Aged oocytes. (E) KEGG enrichment analysis of
928 upregulated and downregulated DEGs in Aged vs Aged + CNP oocytes.

929

930 **Figure 6. Evaluation of CNP supplementation on mitophagy activity of aged**
931 **oocytes.** (A) Representative images of mitochondria morphology and structure in
932 young, aged, and aged + CNP oocytes by TEM. (B) Accumulation of mitochondria
933 damage in young, aged, and aged + CNP oocytes. Under TEM images, percentages of
934 damaged mitochondria per area (500 nm × 500 nm) were shown. At least 4 visions
935 were chosen and mitochondria were counted by two individuals. (C) Representative
936 images of mitochondria ROS stained with MitoSOX in young, aged, aged + CNP
937 oocytes. Scale bar, 20 μ m. (D) Fluorescence intensity of MitoSOX signals was
938 measured in young aged, aged + CNP oocytes. (E) Western blots of P62, LC3-I/II,
939 PINK1 and Parkin in young, aged, and aged + CNP oocytes. GAPDH was used as
940 internal control. (F-I) Relative gray value of proteins detected with western blots as
941 compared with controls. (J) Oocyte cAMP concentrations were measured in young,
942 aged, and aged + CNP mice. (K) Representative images at day 0, day 2, day 4 and day
943 6 of cultured preantral follicles with or without CNP or CNP+H89 treatment. Scale
944 bar=50 μ m. (L) Diameters of preantral follicles with or without CNP or CNP+H89
945 treatment from day 0 to day 6. Six independent culture experiments were performed.
946 (M) Western blots of PINK1 and Parkin in aged, aged + CNP and aged + CNP+H89
947 treated oocytes. GAPDH was used as internal control. (N-O) Relative gray value of
948 proteins detected with western blots as compared with controls. (P) Double
949 immunofluorescence staining of Parkin and TOMM20. The mitochondria outer
950 membrane protein TOMM20 was performed to reveal the translocation of PRKN
951 proteins on mitochondria. Red, PRKN; Green, TOMM20; Blue, DNA was labeled
952 with Hoechst 33342. Bar: 20 μ m. (Q) The colocalization of Parkin and TOMM20 in
953 oocytes from aged, aged + CNP and aged + CNP+H89 treated mice were compared.
954 Pearson,s R shows the results of co-location analysis.

955

Figure 1

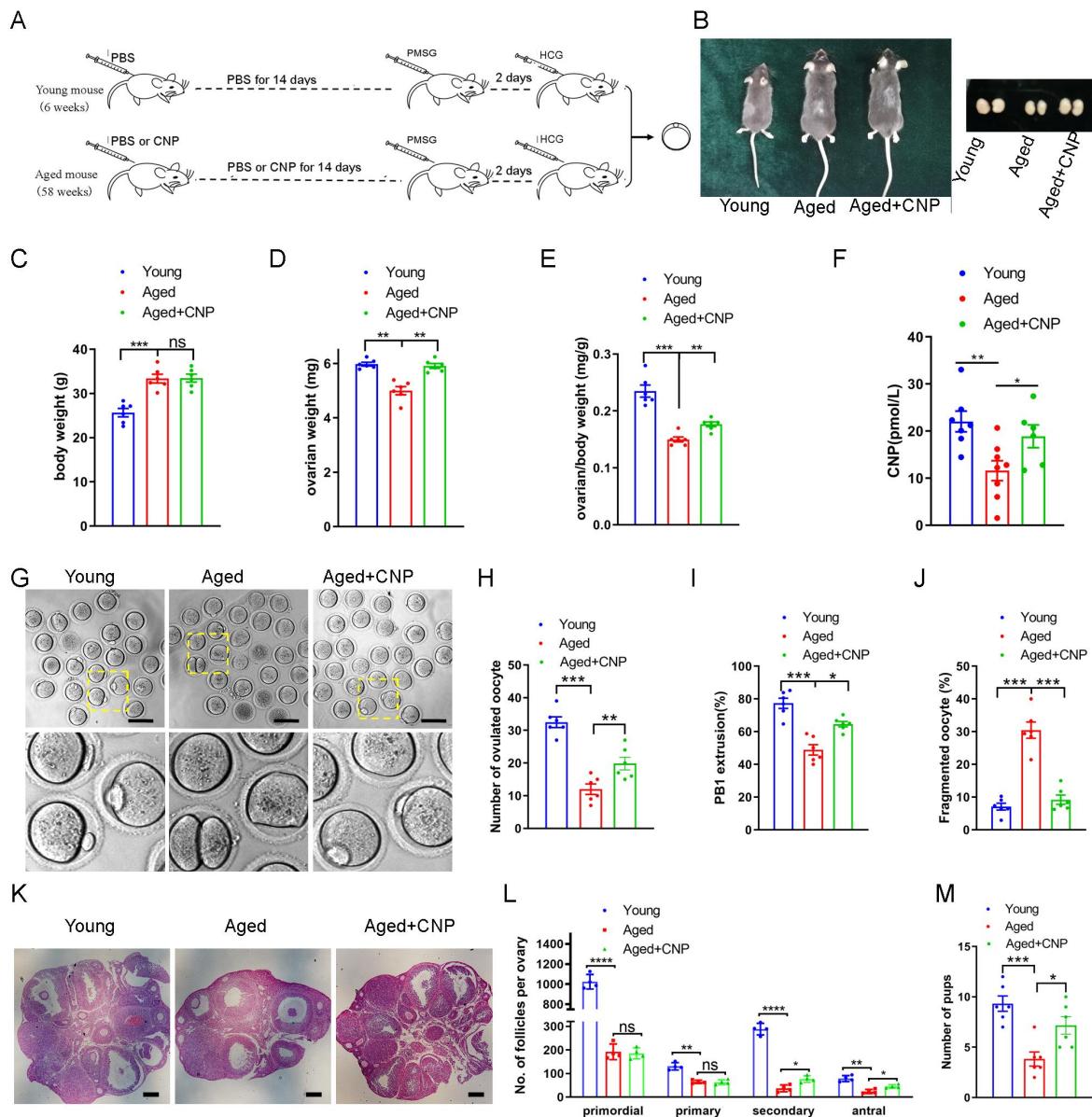


Figure 2

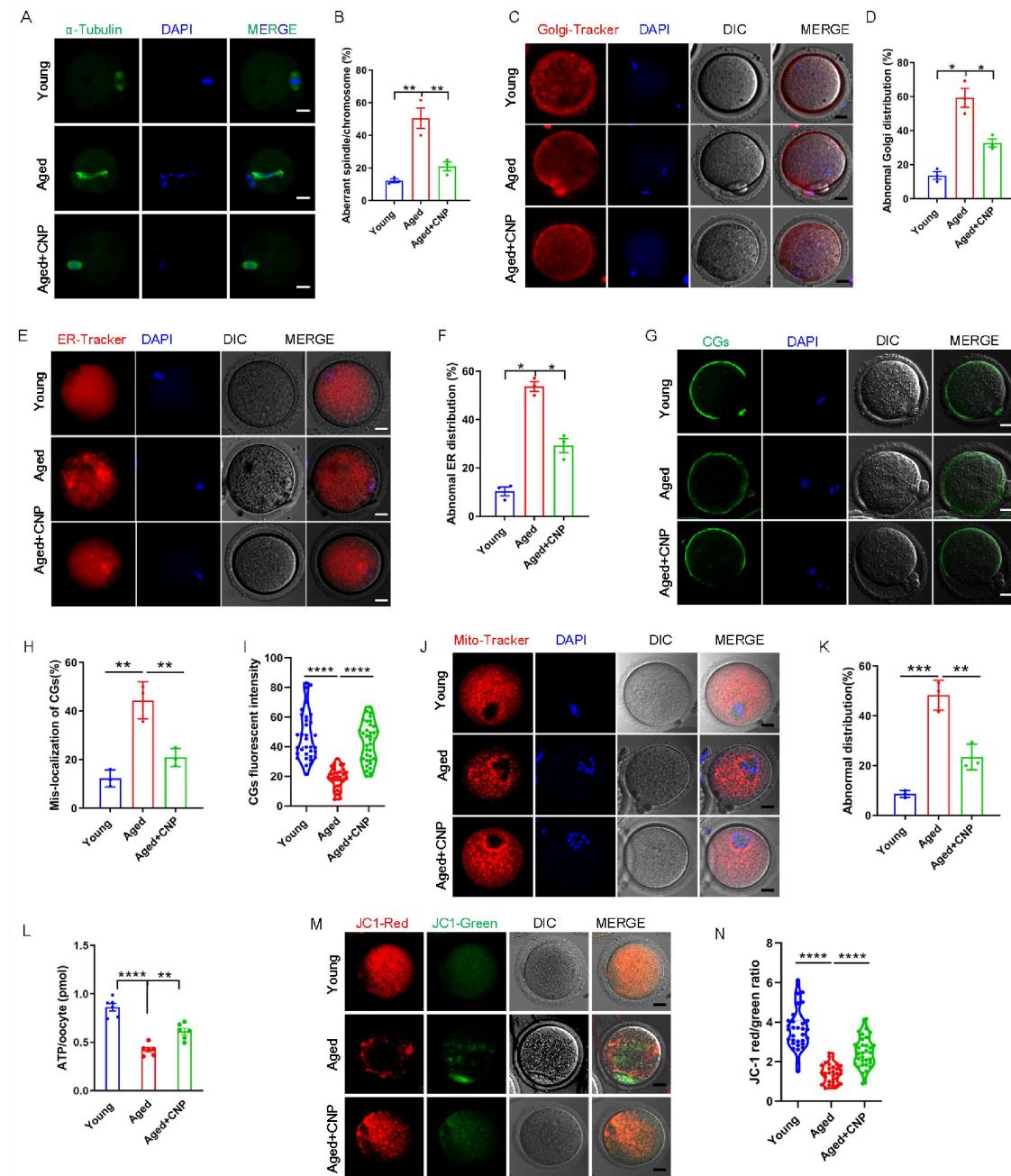


Figure 3

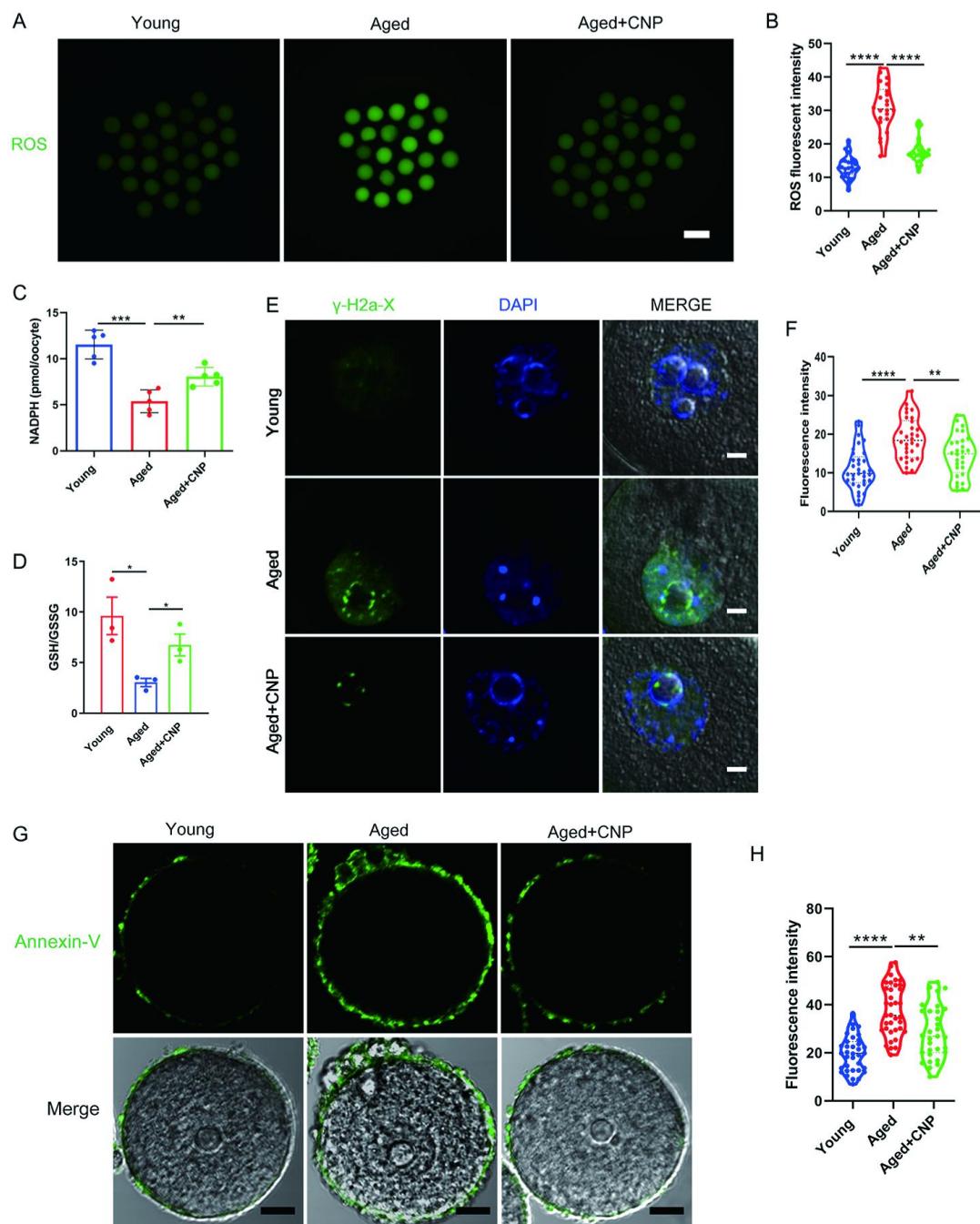


Figure 4

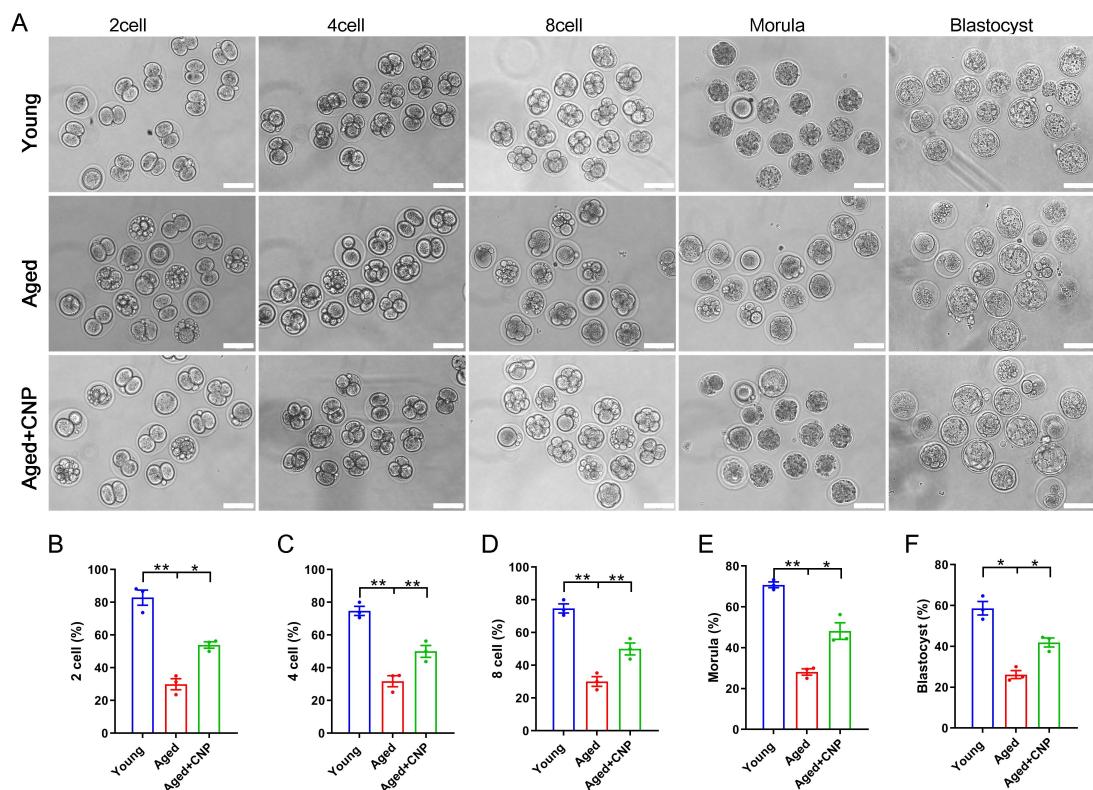


Figure 5

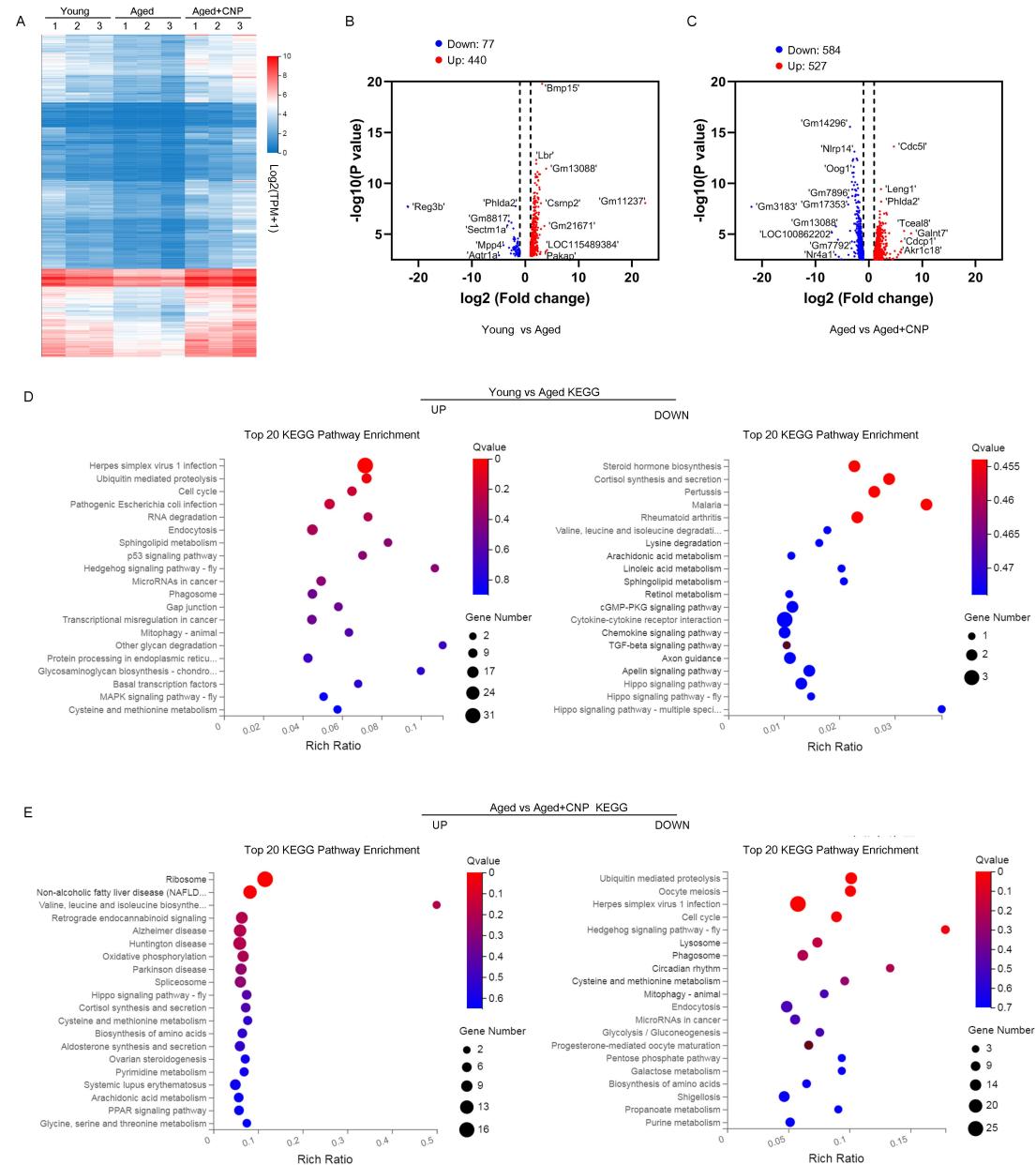
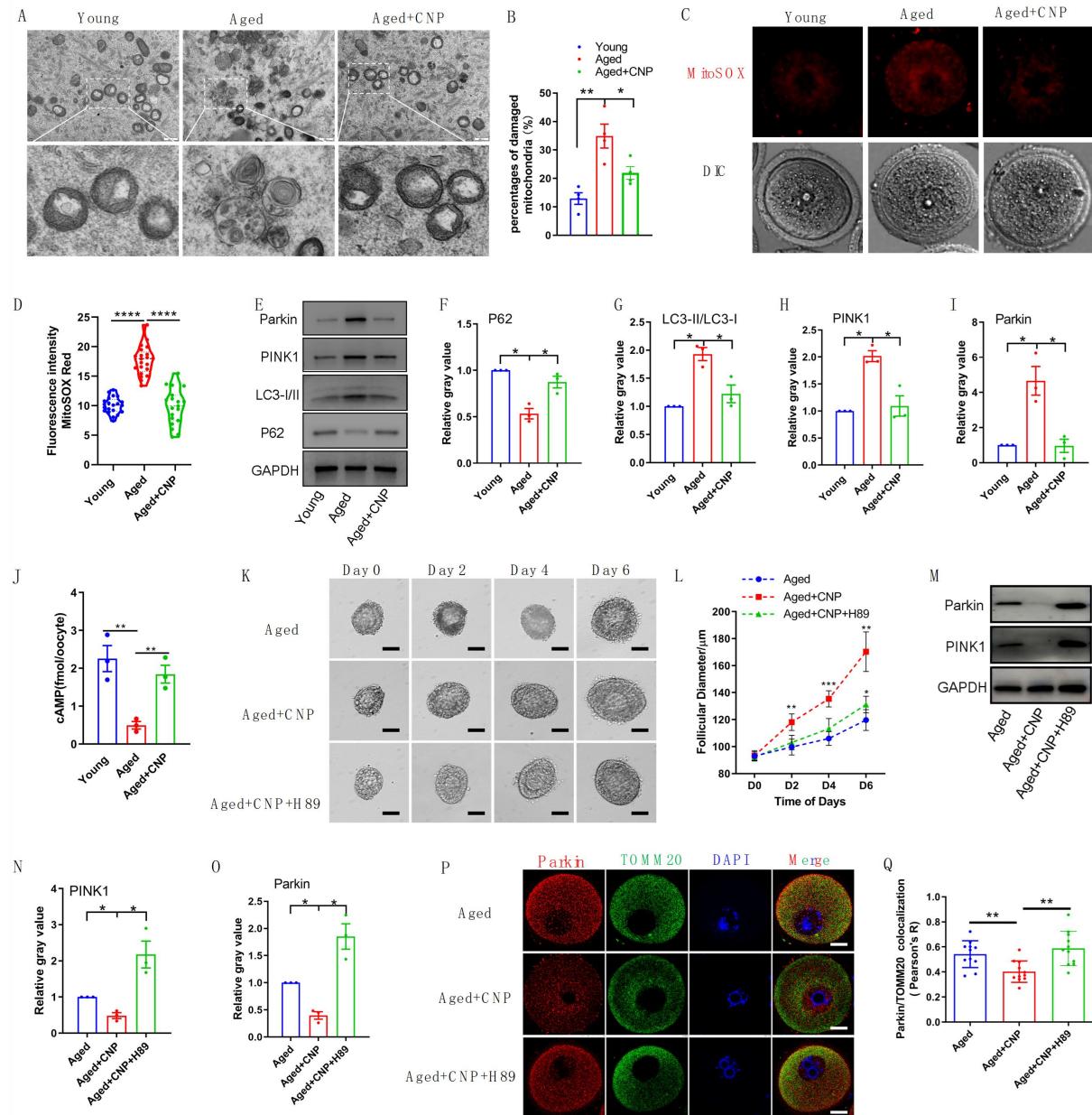



Figure 6

