

1 Oscillatory waveform shape and temporal spike correlations differ across
2 bat frontal and auditory cortex

3

4 **Abbreviated title:** Oscillatory waveform shape in the bat cortex

5 **Authors:** Francisco García-Rosales¹, Natalie Schaworonkow¹, Julio C. Hechavarria².

6 **Affiliations:** ¹ Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main,
7 Germany; ² Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438 Frankfurt/M., Germany.

8 ** Corresponding author.*

9

10 **Mailing address:** Francisco García-Rosales, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck
11 Society, Deutscher Platz 46, 60528 Frankfurt am Main, Germany; Tel. (+49) 69 / 96769 123. Email: francisco.garcia-rosales@esi-frankfurt.de

13

14

15 **Number of pages:** 35

16 **Number of figures:** 9

17 **Number of words (Abstract):** 211

18 **Number of words (Introduction):** 650

19 **Number of words (Discussion):** 1425

20 **Conflict of interests:** The authors declare no conflicting financial or non-financial interests.

21 **Acknowledgments:** This work was supported by the DFG (Grant No. HE 7478/1-1, to J.C.H.), the Joachim-Herz Foundation
22 (fellowship granted to F.G.R.), and a Marie Skłodowska-Curie Actions Postdoctoral Fellowship (grant No. 101062497, to N.S.).

23

24

25 **Abstract**

26 Neural oscillations are associated with diverse computations in the mammalian brain. The waveform
27 shape of oscillatory activity measured in cortex relates to local physiology, and can be informative about
28 aberrant or dynamically changing states. However, how waveform shape differs across distant yet
29 functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on
30 simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male
31 *Carollia perspicillata* bats to examine, on a cycle-by-cycle basis, waveform shape differences across
32 cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for
33 temporally correlated rhythmic activity in comparable frequency ranges (i.e. in the delta and gamma
34 bands) during spontaneous activity. In addition, we report consistent differences between areas in the
35 variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike
36 and spike-LFP correlations in regions with more asymmetric shape, a phenomenon that was observed in
37 the data: spike-spike and spike-LFP correlations were higher in frontal cortex. The model suggests a
38 relationship between waveform shape differences and differences in spike correlations across cortical
39 areas. Altogether, these results indicate that oscillatory activity in frontal and auditory cortex possess
40 distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.

41

42 **Significance statement**

43 The brain activity of many animals displays intricate oscillations, which are usually characterized in terms
44 of their frequency and amplitude. Here, we study oscillations from the bat frontal and auditory cortices on
45 a cycle-by-cycle basis, additionally focusing on their characteristic waveform shape. The study reveals
46 clear differences across regions in waveform shape and oscillatory regularity, even when the frequency of
47 the oscillations is similar. A conceptual model predicts that more asymmetric waveforms result from
48 stronger correlations between neural spikes and electrical field activity. Such predictions were supported
49 by the data. The findings shed light onto the unique properties of different cortical areas, providing key
50 insights into the distinctive physiology and functional diversity within the fronto-auditory circuit.

51 **Introduction**

52 Rhythmic neural activity at various timescales underpins several functions in the mammalian brain. In the
53 frontal cortex, oscillations of local-field potentials (LFPs) in low and high frequencies are implicated in
54 cognitive and executive control (Helfrich and Knight, 2019; Insel et al., 2012; Rajan et al., 2019; Tavares
55 and Tort, 2022; Veniero et al., 2021; Zhang et al., 2016), while rhythmic activity in sensory cortices is
56 linked with the effective encoding of incoming stimuli (Gourevitch et al., 2020; Gross et al., 2007; Kienitz
57 et al., 2021; Lakatos et al., 2007; Tan et al., 2019; Teng et al., 2017; Uran et al., 2022). These oscillations
58 reflect the underlying dynamics of their generating motifs, which determine several of their properties,
59 including waveform shape (Cole and Voytek, 2017). Indeed, waveform shape and related features
60 change in the developing brain (Schaworonkow and Voytek, 2021) and possess atypical characteristics in
61 disease (Cole and Voytek, 2019; Cole et al., 2017; Jackson et al., 2019). Waveform patterns of oscillatory
62 activity can provide important insights into the physiology and function of the neocortex, yet how they
63 differ across cortical regions remains largely unstudied.

64 In this work, we examine oscillatory waveform shape in the frontal and auditory cortices of a mammalian
65 vocal specialist, the bat *Carollia perspicillata*. The bat auditory cortex (AC) is a well-studied structure that
66 presents both spontaneous and stimulus-driven rhythmic patterns of neuronal activity (Garcia-Rosales et
67 al., 2019; Hechavarria et al., 2016; Medvedev and Kanwal, 2004). As in other mammals (Lakatos et al.,
68 2005; Luo and Poeppel, 2007; Neymotin et al., 2022; Teng et al., 2017), LFPs in the bat AC track the
69 temporal dynamics of acoustic sequences with periodic and quasi-periodic temporal structures (Garcia-
70 Rosales et al., 2018). LFPs in *C. perspicillata*'s AC exhibit clear coupling with neuronal spiking, potentially
71 coordinating single-cell responses to acoustic stimuli and contributing actively to the encoding of multi-
72 syllabic communication sounds (Garcia-Rosales et al., 2018).

73 In the frontal cortex, we focused on the frontal auditory field (FAF), a structure specialized in auditory-
74 related behaviour (Eiermann and Esser, 2000; Kanwal et al., 2000; Kobler et al., 1987). This region is
75 anatomically connected with the AC, but receives also relatively fast inputs from an alternative pathway
76 bypassing midbrain and cortex (Kobler et al., 1987). Pre- and post-vocal dynamics in the FAF, as well as
77 its functional connectivity patterns with the AC and the striatum, implicate this region in the control of
78 vocalization behaviour (Garcia-Rosales et al., 2022b; Weineck et al., 2020). Furthermore, the FAF is
79 anatomically connected with the superior colliculus, suggesting that it may be involved in coordinating fast
80 movements based on the bat's auditory environment (Casseday et al., 1989; Kobler et al., 1987). The
81 nature of FAF-AC interconnectivity suggests that the FAF plays a crucial role in the integration of auditory
82 feedback for the coordination of rapid auditory-based behaviour (Garcia-Rosales et al., 2022b). These
83 data indicate that, while the AC operates as a classical sensory cortex, the FAF acts as part of a control
84 and integration hub.

85 While low- and high-frequency oscillatory activities in the bat FAF-AC network are functionally related, it is
86 unknown how they differ in terms of waveform shape. Characterizing waveform shape differences across
87 cortical regions could be an informative step towards understanding how neuronal oscillations in these
88 areas differ, and thus constrain hypotheses about the mechanisms underlying neural activity across
89 structures. By means of simultaneous electrophysiological recordings and cycle-by-cycle analyses of
90 neural oscillations, we show that the waveform shape and variability of frontal- and auditory-cortical
91 oscillations differ markedly in delta and gamma frequencies. We demonstrate a relationship between
92 waveform shape and spike correlations by modelling and computing spike-field measures. We argue that
93 these differences reflect physiological disparities in the FAF-AC circuit, and establish a potential link
94 between spike timing and waveform shape. Our results support the notion of heterogeneity of cortical
95 rhythms in the mammalian brain, and stress the importance of waveform shape for understanding cortical
96 physiology and function.

97 **Materials and Methods**

98 Animal preparation and surgical procedures

99 The study was conducted on two awake *Carollia perspicillata* bats (2 males), which were obtained from a
100 colony at the Goethe University, Frankfurt. All experimental procedures were in compliance with
101 European regulation and were approved by the relevant local authorities (Regierungspräsidium
102 Darmstadt, experimental permit #FU-1126). Animals used in experiments were kept isolated from the
103 main colony, with a reversed light-dark cycle (i.e. lights off from 12:00 to 00:00; this applies to all bats in
104 the colony as well).

105 The data presented in this work were collected as part of a previous study (Garcia-Rosales et al., 2022b),
106 where a detailed description of the surgical procedures can be found. In brief, bats were anesthetized
107 with a mixture of ketamine (10 mg*kg⁻¹, Ketavet, Pfizer) and xylazine (38 mg*kg⁻¹, Rompun, Bayer), and
108 underwent surgery in order to expose the skull in the areas of the frontal and auditory cortices. A metal
109 rod (ca. 1 cm length, 0.1 cm diameter) was glued onto the bone for head fixation during
110 electrophysiological recordings. A local anaesthetic (ropivacaine hydrochloride, 2 mg/ml, Fresenius Kabi,
111 Germany) was applied subcutaneously around the scalp area prior any handling of the wounds. The
112 precise locations of the FAF and AC were determined by means of well-described landmarks, including
113 the sulcus anterior and prominent blood vessel patterns (Eiermann and Esser, 2000; Esser and
114 Eiermann, 1999; Garcia-Rosales et al., 2020). Access to the frontal and auditory regions of the left
115 hemisphere was gained by cutting small holes (ca. 1 mm²) with a scalpel blade on the first day of
116 recordings. Electrophysiological recordings in the AC were made mostly in the high frequency fields
117 (Esser and Eiermann, 1999).

118 After the surgery animals were given sufficient time to recover (no less than 2 days) before the beginning
119 of experimental sessions. A session did not last more than 4 hours per day. Water was offered to the bats
120 every 1 – 1.5 hours. Experiments were halted if an animal showed any signs of discomfort (e.g. as
121 excessive movement). No animal was used on two consecutive days for recordings.

122 Electrophysiological recordings

123 Electrophysiological measurements were made acutely from fully awake animals in a sound-proofed and
124 electrically isolated chamber. Inside the chamber, bats were placed on a custom-made holder kept at a
125 constant temperature of 30 °C using a heating blanket (Harvard, Homeothermic blanket control unit).
126 Data were acquired simultaneously from the FAF and AC of the left hemisphere using two 16-channel
127 laminar probes (Model A1x16, NeuroNexus, MI; 50 µm channel spacing, impedance: 0.5–3 MΩ per
128 electrode). For each paired FAF-AC recording, probes were carefully inserted into the tissue using piezo
129 manipulators (one per probe; PM-101, Science products GmbH, Hofheim, Germany), perpendicular to the
130 cortical surface, until the top channel was barely visible above the surface. The typical width of *C.
perspicillata*'s cortex, and the total span of the electrodes in the probes (750 µm) allowed us to record
131 from all six cortical layers at once (see Garcia-Rosales et al. (2022b); Garcia-Rosales et al. (2019)). From
132 one paired recording to the next in the same experimental session, probes were retracted from the
133 cortical tissue and moved to a new location within the craniotomy in FAF or AC, as distant as possible
134 from previous recording sites within that craniotomy. New recording locations were chosen at the
135 beginning of each experimental session.

137 Probes in FAF and AC were connected to micro-preamplifiers (MPA 16, Multichannel Systems MCS
138 GmbH, Reutlingen, Germany), while acquisition was done with a single 32-channel system with
139 integrated digitization (sampling frequency, 20 kHz; precision, 16 bits) and amplification steps (Multi
140 Channel Systems MCS GmbH, model ME32 System, Germany). Silver wires were used as references
141 electrodes for each recording shank (i.e. in FAF and AC) placed at different areas of the brain (for FAF:
142 non-auditory lateral ipsilateral region; for AC: non-auditory occipital ipsilateral region). The silver wires
143 were carefully positioned between the skull and the dura matter. The reference and the ground of each
144 probe were short-circuited, and the ground was ultimately common in the acquisition system (the ME32).
145 Recordings were monitored online and stored in a computer using the MC_Rack_Software (Multi Channel
146 Systems MCS GmbH, Reutlingen, Germany; version 4.6.2). Due to technical reasons, the signal from one
147 FAF channel (depth: 500 µm) was linearly interpolated from its immediate neighbours.

148 Pre-processing of spiking and LFP signals

149 All data analyses were made using custom-written Python scripts. Raw data from the recording system
150 were converted to H5 format using Multichannel System's *McsPyDataTools* package
151 (<https://github.com/multichannelsystems/McsPyDataTools>, version 0.4.3), and were then parsed and

152 handled with *Syncopy* (<https://github.com/esi-neuroscience/syncopy>, version 2022.8). Local-field
153 potentials were obtained by filtering the raw data with a low pass Butterworth filter (4th order) with a cut-off
154 frequency of 300 Hz. For computational convenience, LFP signals were then downsampled to 5 kHz. On
155 occasions a sharp spectral peak at 100 Hz was present in the recordings, corresponding to a harmonic of
156 the line noise. We were discouraged to use LFPs close (or above) to 100 Hz in the analyses for the
157 following reasons: (i) frequencies close to 100 Hz would be affected by the line noise harmonic; and (ii)
158 high frequency LFPs (> 100 Hz) can be directly influenced by spiking activity in the form of, for example,
159 spike-bleed through (Ray, 2015). Spike bleed-through constitutes a potential confound that we sought to
160 avoid.

161 For the detection of multi-unit activity, the raw data was bandpass filtered between 300 and 3000 Hz with
162 a 4th order Butterworth filter. Spikes were detected based on threshold crossing: we defined a spike as a
163 peak with an amplitude of at least 3.5 standard deviations relative all samples in the signal. Only peaks
164 separated by at least 2 ms were considered.

165 Spectral analyses

166 Power spectral densities (PSDs) were computed using Welch's method (segment length 20480 samples,
167 i.e. 4096 ms) implemented in *scipy* (version 1.9.1). PSDs were calculated independently for each LFP
168 trace (all channels in the $N = 29$ recordings in both FAF and AC). LFP traces were typically *circa*, but not
169 shorter than, 1200 s long (median: 1239.5 s; 25th percentile: 1252.8 s; 75th percentile: 1423.9 s). The
170 power of each recording was parametrized using a spectral parametrization model (Donoghue et al.,
171 2020), with which a 1/f fit of the PSD was computed. All fits had an $R^2 > 0.93$ (mean: 0.9965, s.e.m.:
172 0.001).

173 We reasoned that significant deviations of the power spectrum from the 1/f fit potentially represented
174 oscillatory activity at a given frequency range. Thus, we normalized each power spectrum by its 1/f
175 component to highlight spectral peaks in FAF and AC. Normalized values would hover around 0 in the
176 case of no spectral peaks, and would be consistently greater than 0 for frequencies in which LFPs
177 presented clear deviations from the underlying 1/f trend. For each channel, we considered a significant
178 deviation from the 1/f if the normalized power at a certain frequency was significantly larger than 0 (FDR-
179 corrected, two-sided one-sample t-tests, $p_{\text{corr}} < 0.05$). This analysis was done for each individual animal
180 (Bat-01, $N = 15$; Bat-02, $N = 14$), for frequencies ranging from 1 to 120 Hz. From the results in the two
181 bats, we established the following frequency bands of interest: delta (1–4 Hz) and gamma (65–85 Hz).

182 Cycle-by-cycle analyses

183 For detecting oscillatory bursts in the frequencies of interest we used the *bycycle* package ((Cole and
184 Voytek, 2019), version 1.0.0). The *bycycle* algorithm makes it possible to detect individual cycles in
185 frequency range of interest (here, the frequency bands outlined above), and then to determine whether

186 detected cycles belong to so-called “oscillatory bursts”. An oscillatory burst consists of a sequence of
187 cycles (at least 3 in this study) with stable temporal properties that are mainly summarized as follows:
188 amplitude consistency, period consistency, and monotonicity (rise and decay flanks of cycles in a burst
189 should be mostly monotonic). Furthermore, one parameter controls for signal-to-noise ratio (SNR): the
190 amplitude fraction threshold (see **Fig. 2A**). This parameter rejects cycles whose amplitudes are below a
191 certain percentile relative to the amplitude of all cycles in a given trace. As in (Schaworonkow and Voytek,
192 2021), we chose the following thresholds for cycle detection: Amplitude fraction threshold, 0.5; Amplitude
193 consistency threshold, 0.5; Period consistency threshold, 0.5; Monotonicity threshold, 0.5.

194 Each cycle was characterized according to the following features, which determine waveform shape:
195 cycle period (i.e. the duration of each cycle), cycle rise-decay asymmetry (the asymmetry between rise
196 and decay times in the cycle), and cycle peak-trough asymmetry (the asymmetry in duty cycle; see also
197 (Cole and Voytek, 2019; Schaworonkow and Voytek, 2021)). Bursts were characterized according to their
198 duration (the sum of the individual duration of each cycle in the burst). Only cycles that were part of
199 oscillatory bursts were used for further analyses.

200 To compare cycle features across different recording sites (e.g. between channels in FAF and AC), we
201 defined the value of a given feature for a certain recording as the median value of that feature across all
202 detected cycles in the recording. This was made per LFP trace, therefore yielding one value per recording
203 site (N = 29 paired FAF-AC sites, across 16 channels; data from the two bats were pooled as spectral
204 and bursting patterns were highly consistent across animals). Given that data from FAF and AC were
205 acquired simultaneously for each paired recording, the above allowed us to compare across sites using
206 paired statistics (FDR-corrected Wilcoxon signed-rank tests, significant for $p_{corr} < 0.05$). Only values
207 derived from simultaneously recorded LFP traces were compared to one another.

208 A median asymmetry value of 0.5 for a given LFP trace indicates that cycles tend towards a sinusoidal
209 shape. The farther the value is from 0.5 (above or below) the more asymmetric a waveform is. However,
210 whether such values lie above or below the 0.5 threshold strongly depends on signal polarity. Note, for
211 example, that a certain signal and its copy, the latter with inverse polarity, will have values of asymmetry
212 equally distanced from 0.5, but in opposite directions (as peaks become troughs with a polarity inversion).
213 Thus, not controlling for signal polarity can be a strong confound when comparing waveform shape
214 asymmetries, especially if these are calculated from electrodes located in different brain regions which
215 already have dissimilar cytoarchitectures, such as the frontal and auditory cortices. Since we are unable
216 to control for signal polarity in the current dataset, we avoid this potential confound by normalizing median
217 asymmetry values to 0.5. That is, the asymmetry value for a given LFP trace used for comparisons is
218 given by the absolute value of the difference between its raw asymmetry and 0.5. This approach
219 measures how far from sinusoidal the waveform shape of an LFP trace is, independently of signal polarity

220 (Schaworonkow and Voytek, 2021), and is therefore better suited for inter-areal comparisons of waveform
221 shape asymmetry.

222 The aforementioned cycle features characterize waveform shape, but they do not quantify to what degree
223 individual burst cycles in a given LFP trace are similar to one another. This is measured by the dispersion
224 of the distribution of the cycle features, which was quantified here as the coefficient of variation (CV). The
225 CV is computed over each LFP trace, therefore quantifying cycle-by-cycle the variability over time; it is
226 expressed as follows:

227
$$CV = \frac{\sigma_W}{\mu_W} \quad , \quad [1]$$

228 where σ_W is the standard deviation of the cycle feature distribution (W), and μ_W its mean.

229 Every recording in frontal or auditory cortex had a specific CV for a given cycle parameter, channel and
230 frequency band. As described with median feature values, this enabled us to conduct paired statistics
231 when comparing CV values between FAF and AC (FDR-corrected Wilcoxon signed-rank tests, significant
232 for $p_{\text{corr}} < 0.05$). The CV was calculated from raw feature values (not normalized to 0.5) across all cycles
233 in a given signal, given that this metric is not affected by signal polarity as it is self-contained for each LFP
234 trace. This allows to explore cycle-by-cycle variability over time without affecting the individual asymmetry
235 values of the cycles involved.

236 Sensitivity analyses

237 To evaluate the dependence of significant differences across cortical structures on the burst detection
238 parameters of the *bycycle* algorithm, bursts were detected as above but detection parameters were
239 varied in pairs as follows: (i) amplitude fraction threshold vs. amplitude consistency threshold; (ii)
240 amplitude fraction threshold vs. period consistency threshold; and (iii) amplitude fraction threshold vs.
241 monotonicity threshold. The same parameter values were used to detect bursts in FAF and AC. However,
242 we also evaluated to what degree our results were sensitive to different burst detection parameters
243 across regions, varying the amplitude fraction threshold independently in each area (**Fig. 7**). Parameters
244 were varied in the range from 0.1 to 0.9, with a step of 0.1. All waveform features were computed as
245 described above, and the variability of waveform features was measured as the CV. As in the original
246 analyses, all channels were statistically compared against each other. We then determined the median of
247 the effect size of comparisons across areas (i.e. the median effect size of the upper-right quadrant of the
248 comparison matrices in **Figs. 5, 6**; effect sizes of non-significant comparisons were set to 0), and plotted
249 this median against parameter combinations (**Figs. 7**) to determine how changing detection parameters
250 affected the reported inter-areal differences.

251 Burst co-occurrence analysis

252 The relationship between the onset of a burst in a specific channel and the cumulative burst co-
253 occurrence with all other channels was calculated as follows. First, given a certain channel (e.g. channel
254 A, for convenience) we determined the onset of all bursts detected across all recordings (the data from
255 the two bats were pooled given that spectral and bursting patterns were highly consistent across
256 animals). In a time window centred on each burst (spanning from -1000 to 1000 ms for delta frequencies,
257 and from -250 to 250 ms for the gamma frequencies) we counted and accumulated, for every channel,
258 the time points at which bursts occurred. Bursts were counted even if their onset or offset were outside
259 the aforementioned window, as long as at least a segment of the burst occurred within that window. For
260 every given channel (channel A in this example) this procedure yielded a matrix (dimensions: [channels x
261 samples]) whose values indicate the accumulated, co-occurring bursting activity in each other electrode,
262 relative to the times in which a burst onset occurred in the channel of interest (i.e. A in this case). We
263 referred to this matrix as a channel's burst co-occurrence matrix. Burst co-occurrence matrices were
264 computed for 8 channels, 4 in the FAF and 4 in the AC (at depths of 50, 250, 450, and 700 μm). This
265 reduced computational costs and facilitated visualization, while at the same time allowing to explore burst
266 co-occurrences at various depths in each region including superficial, middle and deep layers of cortex.

267 In order to evaluate whether the onset of a burst in a given electrode was related to the occurrence of
268 bursts in other electrodes, the burst co-occurrence matrix for the channel of interest (e.g. channel A) was
269 normalized following a bootstrapping procedure. We calculated 500 bootstrap burst co-occurrence
270 matrices, but instead of utilizing burst onsets as a reference, pseudo-random time points were used.
271 Because the accumulated number of co-occurring bursts across channels depends on the number of
272 burst onsets used from the reference channel (A), we ensured that the number of randomized time points
273 was equal to the number of burst onsets individually for each recording. The 500 pseudo-random burst
274 co-occurrence matrices were used as a baseline distribution, and the values of the burst co-occurrence
275 matrix for the channel of interest A were then Z-normalized relative to the bootstrap matrices. Absolute Z-
276 score values ≥ 6 were considered significant. Note that the Bonferroni correction of an alpha of 0.05 over
277 32 channels, 2 frequency bands, 8 channels of interest and 1000 time points yields a significance
278 threshold of 9.7×10^{-8} , equivalent to a Z-score of 5.2. In our analysis, negative Z-scores indicate a
279 suppression of burst activity relative to baseline, while positive values indicate an enhancement. These
280 procedures are illustrated in **Fig. 4A**.

281 A conceptual model of spike correlations and LFP waveform shape

282 Synthetic spike trains were modelled as inhomogeneous Poisson processes with firing rates controlled by
283 a pulse train with a frequency of 3 Hz. The duty cycle of the pulse train defines a temporal window in
284 which spiking occurs. Narrow spiking windows (i.e. lower duty cycles) constrain the firing of a neural
285 population in time, resulting in increased temporal correlations across neurons. By contrast, wider spiking

286 windows (i.e. higher duty cycles) result in decreased temporal spiking correlations across neurons. By
287 systematically adjusting the duty cycles we were therefore able to explore how temporal correlations in a
288 neuronal population (N = 30 neurons in our model) might affect LFP waveform shape.

289 From the spiking activity we derived synthetic LFP signals as follows. The spike train of each simulated
290 neuron was convoluted with a synaptic kernel whose rise and decay times were set to 1 and 20 ms,
291 respectively (function *sim_synaptic_kernel* of the python package NeuroDSP, version 2.2.1; (Cole et al.,
292 2019)). The sum of all convolutions was taken as the LFP signal. The procedure is illustrated in **Fig. 8A**.
293 We generated 300 s of spikes and LFPs for several values of duty cycles (5% to 60%, step: 5%). Cycle
294 features were extracted from the synthetic LFPs by applying of the *bycycle* algorithm described above.

295 Spike-spike correlations

296 All detected spiking events (see above) were included to calculate spike train correlations across
297 channels. Spike trains were binned using 5 ms bins, and the Pearson's correlation coefficient across pairs
298 of binned spike trains was computed using the *Elephant* toolbox (v. 0.12.0;
299 <https://github.com/NeuralEnsemble/elephant>). Correlation coefficients from channels located in the FAF
300 were averaged, and the same was done for channels located in the AC. This yielded one correlation
301 value per recording in FAF and AC, which allowed to capitalize on simultaneous recordings in both
302 regions by means of paired statistical comparisons (Wilcoxon signed-rank test, alpha = 0.05).

303 Pairwise phase consistency

304 The pairwise phase consistency (PPC) was computed as described in previous literature (Vinck et al.,
305 2010). Only spikes that occurred within oscillatory bursts in FAF or AC were considered. If more than
306 10000 spikes were detected in a given trace, 10000 spikes were randomly selected to calculate PPC
307 given that analyses were computationally expensive for large spike counts. In order to minimize the risk of
308 asymmetric signals yielding unclear measurements of phase, spike phases were not obtained by means
309 of a Hilbert transform or a Fourier analysis. Instead, the timing of a spike was expressed as the time in
310 which the event occurred relative the onset and offset of a cycle as detected in the time series by the
311 *bycycle* algorithm. Thus, each spike timing was between 0 and 1 (0 being the beginning of a burst cycle,
312 1 being the end), and was converted to a phase by multiplication with 2π . These phases were then used
313 for PPC calculation, which can be expressed as follows (Vinck et al., 2010):

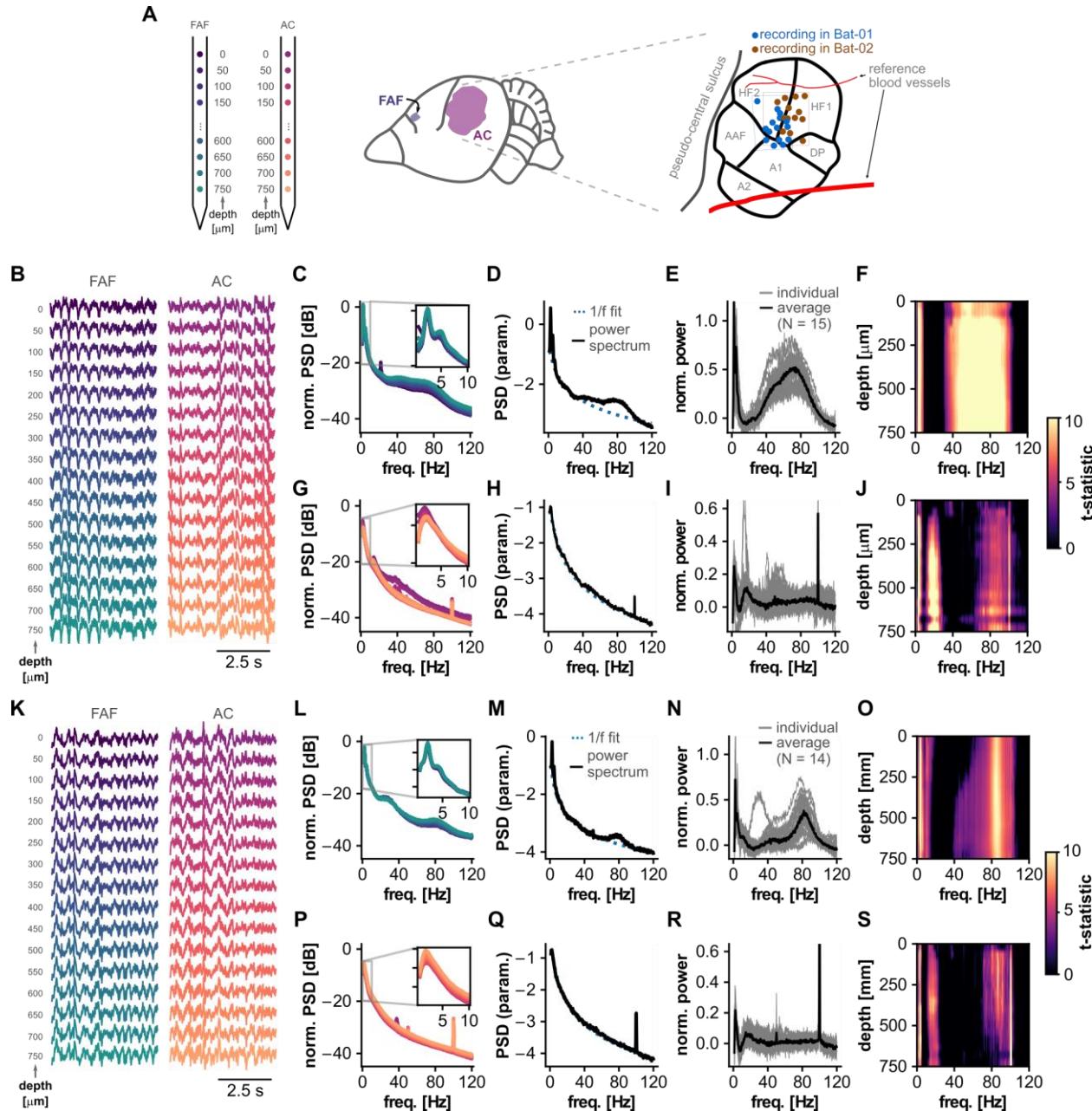
314
$$PPC = \frac{2}{N(N-1)} \sum_{j=1}^{N-1} \sum_{k=(j+1)}^N f(\phi_j, \phi_k), \quad [2]$$

315 where N is the number of spikes, and ϕ_j, ϕ_k represent the phases of spikes j and k, respectively. The
316 function $f(\phi_j, \phi_k)$ calculates the dot product between two unit vectors. It can be expressed as follows:

317
$$f(\phi_j, \phi_k) = \cos(\phi_j) \cos(\phi_k) + \sin(\phi_j) \sin(\phi_k) \quad [3]$$

318 PPC values were averaged in FAF and AC, and paired statistical comparisons were made to evaluate
319 whether significant differences in spike phase consistency existed between regions (Wilcoxon signed-
320 rank test, alpha = 0.05).

321 **Statistical analyses**


322 All statistical analyses were performed using *scipy* (version 1.9.1), or custom written Python scripts. For
323 determining significant deviations from a 1/f fitted trend in the LFP spectra one-sample t-tests were
324 performed. Statistical comparisons of median and CV values across regions (and within regions) were
325 performed using paired statistics (Wilcoxon signed-rank tests, alpha = 0.05), as recordings in FAF and AC
326 were performed simultaneously (N = 29). Comparisons of spike-spike and spike-LFP correlation (PPC
327 values) were also made using paired statistics. Comparisons of burst lengths were made by means of
328 non-paired statistics (Wilcoxon rank-sum tests, alpha = 0.05). All tests were corrected for multiple
329 comparisons using the false discovery rate when appropriate (Benjamini and Hochberg procedure
330 (Benjamini and Hochberg, 1995)); it is noted in the main text whenever this correction was applied.

331 **Results**

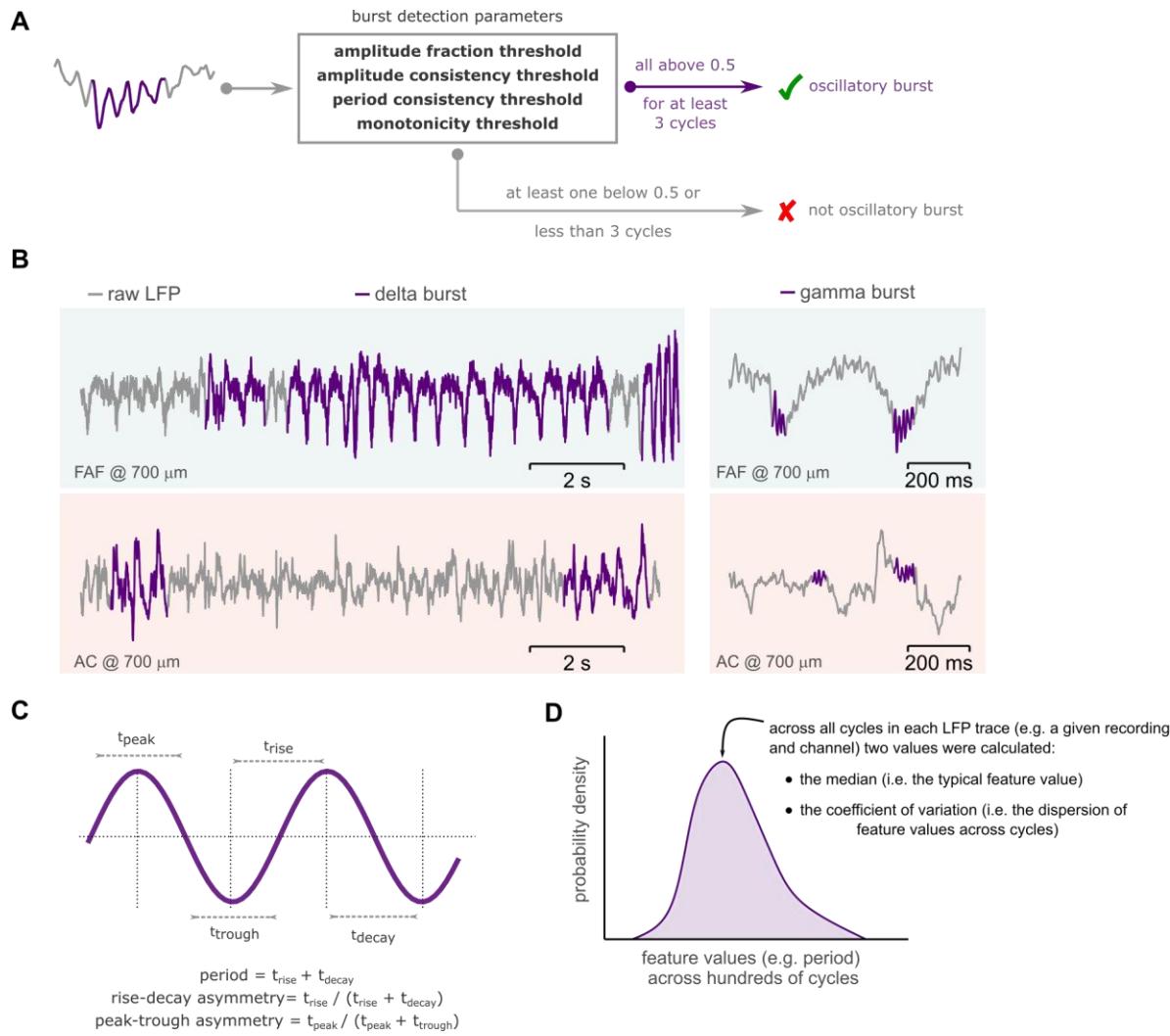
332 **Spectral properties of frontal and auditory cortical LFPs**

333 A total of 29 paired recordings (i.e. simultaneous electrophysiological acquisition from each region) in
334 FAF and AC were performed in two bats: Bat-01 and Bat-02 (N = 15 and N = 14 paired FAF-AC
335 recordings, respectively). A schematic representation of the laminar probes, channel depths, and
336 recording locations in the AC are given in **Fig. 1A**. Since a clear map of the FAF does not exist, it was not
337 possible to map electrode locations in the frontal structure in a similar manner. Example frontal and
338 auditory cortical LFP traces from both animals are given in **Fig. 1B, K**, across all recording depths.
339 Typically, LFPs exhibited clear rhythmicity in low and high frequencies in both cortical regions. Evidence
340 for rhythmic activity was clear in grand-average spectra obtained from all ~20-min long LFP traces (**Fig.**
341 **1C, G, L, M**). Observable “bumps” in these spectra are interpretable as deviations from a 1/f power-law (a
342 property of aperiodic mesoscopic signals such as LFPs (Baranauskas et al., 2012)) and therefore suggest
343 the presence of oscillatory activity. We performed spectral parametrization by fitting 1/f curves to the
344 power spectral density of every LFP signal recorded (Donoghue et al., 2020) in order to confirm that such
345 spectral bumps were in fact significant deviations from an aperiodic spectrum. Representative
346 parametrized spectra are depicted in **Fig. 1D, H, M, Q**, corresponding to the full ~20-min LFP traces from
347 which data in **Fig. 1B, K** were selected. The 1/f fit is shown in dashed blue lines. Deviations in the spectra
348 from the power-law trend were clear in both animals, particularly in the FAF. We tested whether such
349 deviations were consistently present in all recordings by normalizing the power spectrum of each LFP
350 trace (N = 15 in Bat-01, N = 14 in Bat-02, per channel) to their fitted 1/f function (**Fig. 1E, I, N, R**). Power
351 spectral values would hover around 0 in the absence of consistent deviations, but would be significantly

352 above zero otherwise. Normalized spectral values were significantly above 0 in FAF and AC for both
 353 animals (FDR-corrected one-sample t-tests; $p_{\text{corr}} < 1.73 \times 10^{-4}$, $t > 2.25$) at relatively low (~1–5 Hz in FAF
 354 and AC), intermediate (~12–27 Hz in AC), and relatively high (ranging from ~32–105 Hz, but peaking at
 355 70–85 Hz in FAF and AC) frequencies (Fig. 1F, J, O, S).

356

Figure 1. Spectral properties of local-field potentials in FAF and AC. (A) Left: Schematic representation of the probes used for recordings in FAF and AC. Depth and channel colours correspond to those in panels B and K. Middle: Location of the FAF and AC in *C. perspicillata*'s cortex. Right: Schematic representation of recording locations in AC, colour-coded by animal (blue: Bat-01, $N = 15$; brown: Bat-02, $N = 14$). The precise location of one recording in Bat-02 could not be recovered. (B) Cortical LFPs (5 s excerpts) recorded simultaneously from the FAF (left) and AC (right; note that channel depths are colour-coded) of Bat-01. (C) Average power spectra in FAF across all recordings ($N = 15$) in Bat-01 using full LFP traces (lengths of ~20 minutes), for all channels. The spectrum of each channel is colour-coded according to the depth scheme of panels A, B. (D) Parametrization of an exemplary power spectrum obtained from ~20 minutes LFP recordings in the FAF (depth, 700 μm). LFP traces originate from the same recording shown in B. The 1/f fit is depicted as a blue dashed line; power spectrum shown in solid black. (E) Normalized power spectra (to 1/f activity) across all recordings in Bat-01, shown for channels located at 700 μm in FAF. Solid black line indicates average (N


366 = 15). (F) We tested whether the normalized power spectrum was significantly larger than 0 (FDR-corrected t-test, $p_{corr} < 0.05$) across depths and
367 frequencies. The t-statistics are summarized here; values were set to 0 if the normalized power spectrum was not significantly (i.e. $p_{corr} \geq 0.05$).
368 (G-J) Similar to panels C-F, but data shown corresponds to channels located in the AC. (K-S) Same as B-J but with data recorded from Bat-02.

369 In bats such as *C. perspicillata* (the animal studied here), LFP activity in low and high frequencies is
370 related to vocal production (e.g. at frequencies delta: 1–4 Hz, beta: 12–30 Hz, and gamma: 60–120 Hz;
371 see Garcia-Rosales et al. (2022b); Weineck et al. (2020)). Considering the above and the patterns of
372 deviations from a pure 1/f signal shown in **Fig. 1**, in subsequent analyses we focused on frequency bands
373 delta (1–4 Hz) and gamma (65–85 Hz). Beta-band frequencies were not included because no clear peaks
374 in this range were detected in FAF signals (**Fig. 1F, J, O, S**).

375 Cycle-by-cycle analysis of oscillatory activity in frontal and auditory cortices

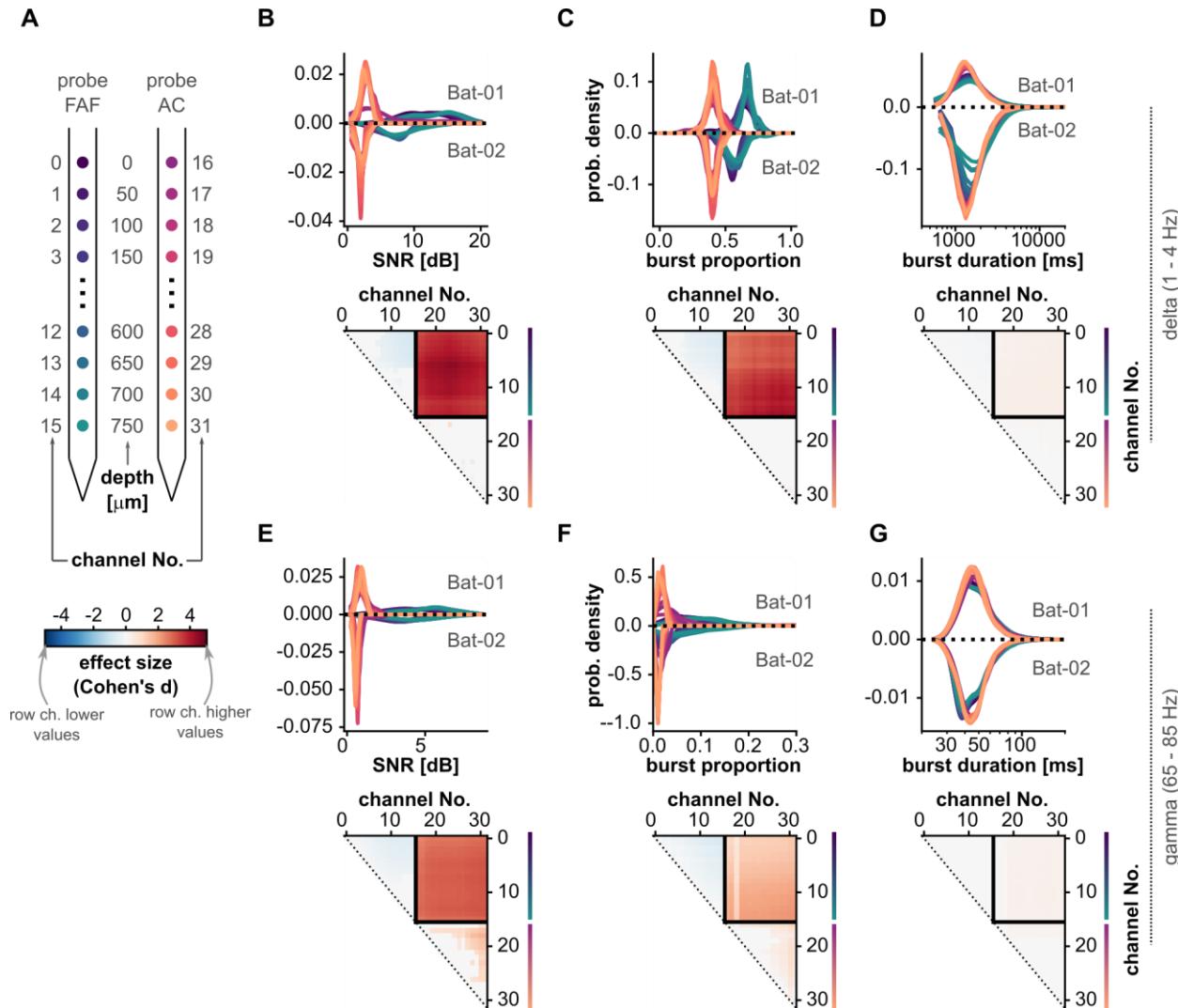
376 To study the characteristics of delta- and gamma-band rhythmic activity in frontal and auditory areas, we
377 performed a cycle-by-cycle analysis of the recorded LFP. Cycles were considered only if they were part of
378 consistent oscillatory activity (i.e. they were associated with a putative oscillatory bursts). Bursts of
379 oscillatory activity were detected using the *bycycle* algorithm (Cole and Voytek, 2019), which capitalizes
380 on a time-domain approach for quantifying waveform shape (**Fig. 2A**). A burst is detected based on four
381 parameters, which control for signal-to-noise ratio (SNR) and waveform consistency (see Methods). In
382 this context, an oscillatory burst occurs if the threshold values of these parameters are exceeded for at
383 least 3 consecutive cycles.

384 Representative burst events in delta- and gamma-bands are shown for FAF and AC in **Fig. 2B**. The
385 waveform shape of oscillatory activity was quantified by measuring three main features on a cycle-by-
386 cycle basis: cycle period, cycle rise-decay asymmetry, and cycle peak-trough asymmetry (**Fig. 2C**; Cole
387 and Voytek (2019)). For each LFP trace, the median feature value across all detected cycles was
388 considered the waveform shape feature for that trace (**Fig. 2D**). The median summarizes a distribution of
389 feature values, yielding one value per LFP trace (that is, 29 values for each FAF and AC channel). The
390 median feature value of asymmetry metrics was normalized to 0.5 to account for possible confounds
391 related to signal polarity differences in FAF and AC (see Methods; (Schaworonkow and Voytek, 2021)).
392 To determine how and to what extent oscillatory waveform shape differed between recording locations,
393 we performed systematic channel-by-channel pairwise comparisons. Only values obtained from
394 simultaneously recorded LFP traces were compared to one another by using paired statistical testing.
395 Median values for each ~20-minute LFP were quantified from hundreds of cycles. That is, for Bat-01, no
396 less than 665 and 370 delta-band cycles were used from FAF and AC, respectively, while no less than
397 829 and 146 gamma-band cycles were used from the same regions. For Bat-02, at least 561 and 468
398 delta-band cycles were used from FAF and AC, while at least 717 and 241 gamma-band cycles were
399 used from the same areas.

400
401
402
403
404
405
406
407
408

Figure 2. Burst cycle features and the coefficient of variation. (A) Schematic representation of the oscillatory burst detection algorithm. If at least 3 consecutive cycles fulfilled the detection parameters (enclosed in the box), these cycles together were considered as an oscillatory burst (marked in purple); otherwise, no burst was detected. No-burst cycles were not used in further analyses. (B) Representative delta- and gamma-frequency bursting activity (bursts marked in purple) in the FAF and AC, at a cortical depth of 700 μ m. (C) Illustration of cycle waveform features: period, rise-decay asymmetry, and peak-trough asymmetry. An artificial sinusoidal waveform was utilized for illustrative purposes. (D) The median value for a given feature (e.g. period) across all cycles was used as the value of that feature for a given LFP trace. The coefficient of variation across all feature values was used as a measure of dispersion. Shown in the figure (in purple) is a schematic distribution of feature values for a given LFP recording.

409 Bursting dynamics in frontal and auditory cortices


410 The data shown in **Fig. 1** suggest that the signal-to-noise ratio (SNR) of oscillatory activity in delta- and
411 gamma bands is higher in FAF than in AC. We quantified SNR independently for each bat in frontal and
412 auditory regions on a channel-by-channel basis ($N = 15$ observations for each channel in FAF or AC for
413 Bat-01, and $N = 14$ for Bat-02). Distribution of SNR values are shown in **Fig. 3B** (top) for delta
414 frequencies and in **Fig. 3E** (top) for gamma frequencies. Distributions from Bat-01 are shown with positive
415 probability densities, whereas data from Bat-02 are given with negative probability densities merely for
416 illustrative purposes. Note that the colour of each distribution corresponds to a specific channel in the

417 shank, located at a certain cortical depth (see **Fig. 3A**). Given that the patterns across animals were
418 highly consistent, we compared SNR values across recording sites by pooling data from the two bats.
419 Channel-by-channel statistical comparisons revealed significant differences in SNR across recording sites
420 (FDR-corrected Wilcoxon signed-rank tests, $N = 29$, significance when $p_{corr} < 0.05$). Comparisons are
421 summarized in the matrices of **Fig. 3B-G** (bottom). A comparison matrix represents the effect sizes (d) of
422 pairwise comparisons of SNR values across channels ($|d| < 0.5$ small, $0.5 \leq |d| \leq 0.8$ medium, $|d| > 0.8$
423 large effect sizes; Cohen (2013)). A cell (r, c) in a matrix shows the effect size of comparing SNRs from a
424 channel indexed by row r , and a channel indexed by column c (i.e. channel r vs. channel c). The
425 relationship between a channel index and its relative depth in frontal or auditory cortex is schematized in
426 **Fig. 3A** (notice the vertical lines next to channel numbers in **Fig. 3B-G** indicating cortical depths by
427 following the colour schemes of **Fig. 1** and **Fig. 3A**). The upper right quadrant of each matrix represents
428 comparisons of channels in FAF vs. those in AC. Only effect size values of significant comparisons ($p_{corr} <$
429 0.05) were shown; they were set to 0 otherwise. The matrices in **Fig. 3B** and **Fig. 3E** show strong
430 differences in SNR between frontal and auditory cortices in the delta and gamma bands.

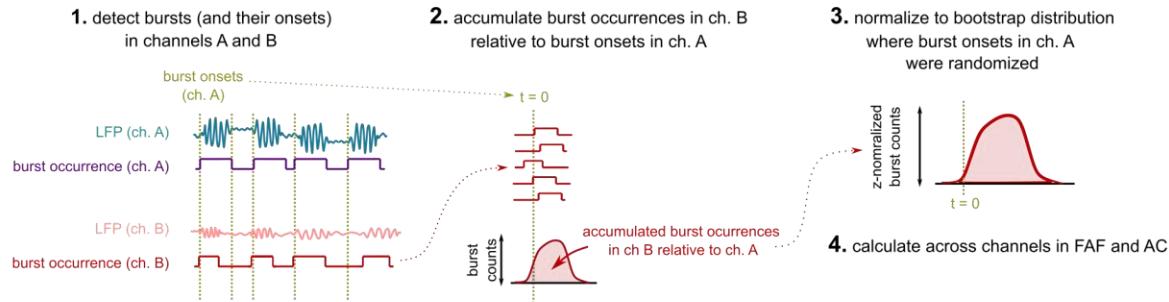
431 Typically, SNR values are interpreted solely on the basis of signal amplitude. However, high SNRs
432 derived from the spectral properties of a signal could also indicate, beyond amplitude, a relatively high
433 proportion of oscillatory events. We calculated bursting proportion as the ratio of the total time of bursting
434 in an LFP trace relative to the total duration of that trace. Distribution of bursting proportions are given for
435 both animals in **Fig. 3C** (top) for delta frequencies and in **Fig. 3F** (top) for gamma frequencies. From
436 these data it appeared clear that, in both animals, the proportion of bursting events in FAF was higher
437 than that in AC. Given this consistency, we pooled data across bats and compared on channel-by-
438 channel basis bursting proportions across sites (FDR-corrected Wilcoxon signed-rank tests, $N = 29$,
439 significance when $p_{corr} < 0.05$). These comparisons, summarized in the matrices of **Fig. 3C** (bottom) and
440 **Fig. 3F** (bottom), corroborate that the proportion of delta- and gamma-band oscillatory events was
441 significantly higher in FAF than in AC, with large effect sizes.

442 Higher proportion of bursting events could be influenced by two factors: more bursts occur in FAF than in
443 AC, or bursts in FAF are longer than those in the auditory cortex (or both). To elucidate this, we examined
444 the distributions of burst durations in delta- and gamma-band LFP traces from all channels. Distribution of
445 burst durations are given independently for each animal in **Fig. 3D** (top) for delta and **Fig. 3G** (top) for
446 gamma frequencies. To statistically compare burst durations, data across bats were pooled given the
447 highly similar patterns observed from the two animals. For comparisons, all bursts from any given channel
448 are considered, so the number of bursts per channel was not always the same (at least 2283 and 1977
449 bursts were used for delta frequencies from Bat-01 and Bat-02, respectively; in gamma, no less than
450 2984 and 1991 for each bat). Because of the uneven burst counts, channel-by-channel comparisons were
451 not paired (FDR-corrected Wilcoxon ranksum tests, $N \geq 1991$, significance when $p_{corr} < 0.05$). As readily
452 visible from the distributions of burst duration, and as shown in the comparison matrices from **Fig. 3D**

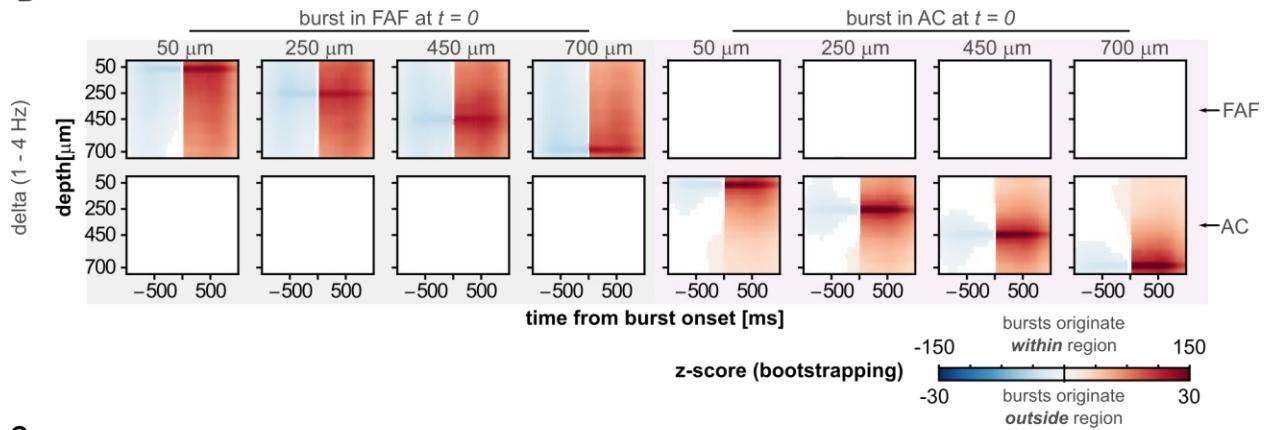
453 (bottom) and **Fig. 3G** (top), differences in burst durations between FAF and AC were statistically
 454 negligible, indicating that bursts in the FAF were more numerous, but not necessarily longer, than in the
 455 AC. This corresponds well with our initial observation of a very large burst density in frontal regions.

456

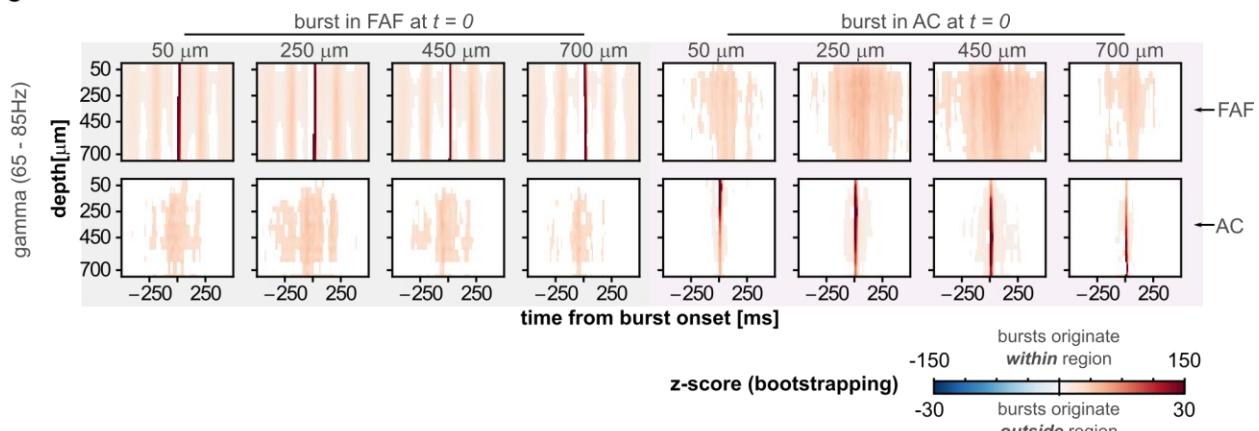
457 **Figure 3. Bursting dynamics and signal-to-noise ratio in frontal and auditory cortices.** (A) Schematic illustrating the relationship of region and
 458 cortical depth with the channel number markers of panels B-G. Notice that depths are colour-coded as in **Fig.1**. (B) *Top*: Distribution of signal-
 459 to-noise ratio (SNR) shown for each channel (notice colour schemes in panel A for the region and depth of each channel), across all recordings
 460 ($N = 29$ in FAF and AC). Values for Bat-01 are shown with densities > 0 ; values for Bat-02 are shown with densities < 0 only for illustrative
 461 purposes. *Bottom*: Effect sizes of channel-by-channel, pairwise statistical comparisons of SNR values (FDR-corrected Wilcoxon signed-rank
 462 tests). Effect sizes for comparisons that did not yield significance (i.e. $p_{\text{corr}} \geq 0.05$) were set to 0. A cell (r, c) in the effect size matrix indicates
 463 the effect size of the comparison between burst proportion values in channel r and channel c (as per panel A). The quadrant spanning rows [0–
 464 15] and columns [16–31] illustrates effect sizes of comparisons between channels in FAF and AC. In this quadrant, red colours indicate higher
 465 proportion values in FAF. (C) Same as in B, but data shown corresponds to burst proportions across recordings. (D) Same as in C, but data
 466 shown correspond to burst durations (note the logarithmic scale of the x-axis).


467 The data shown in **Figs. 1** and **3** demonstrate that spectral and bursting dynamics were highly consistent
468 between Bat-01 and Bat02. Because of this consistency between animals (**Figs. 1** and **3**), data from the
469 two bats were pooled in subsequent analyses.

470 Bursting events in FAF and AC are temporally correlated


471 Transfer entropy analyses based on the phase of ongoing LFP activity, and direct electrical
472 microstimulation of the frontal cortex to alter AC responsiveness, show that neural activity in FAF can
473 significantly modulate its auditory cortical counterpart (Garcia-Rosales et al., 2022b). Given the functional
474 and anatomical connections in the FAF-AC network, we sought to determine whether oscillatory bursts in
475 one region are related to bursts occurring in the other. We reasoned that co-occurring bursts across brain
476 structures could be a fingerprint of functional connectivity complementary to phase correlations (e.g.
477 coherence), statistical dependencies (e.g. transfer entropy), or invasive approaches (e.g. electrical
478 microstimulation). We calculated the burst co-occurrence index (**Fig. 4**), a metric that quantifies for any
479 given channel the relationship between the onset of its own bursts with the occurrence of bursts in other
480 channels (**Fig. 4A** illustrates how the index was computed). The burst co-occurrence index is shown in
481 **Fig. 4B, C**, calculated for eight channels in total, four in each region, at representative depths of 50, 250,
482 450, 700 μm . Since the index is a cumulative count Z-normalized according to bootstrap distributions (see
483 Methods), we could use it to evaluate the significance of burst co-occurrence across channels. Thus, red
484 colours in **Fig. 4** indicate significant, temporally correlated increases in bursting activity in other channels
485 (Z-values ≥ 6), while blue colours indicate significant, temporally correlated suppression of bursting
486 activity in other channels (Z-values ≤ -6). White colours indicate no significant deviations from baseline
487 values.

488 At delta frequencies (**Fig. 4B**), a burst onset in either FAF or AC was typically preceded by a suppression
489 of bursting activity in channels of the same structure, and succeeded by a within-structure increase in
490 burst co-occurrence across channels, peaking as trivially expected in the channel from which burst onsets
491 were chosen. A similar pattern was observable for bursts detected in the gamma frequency range (**Fig.**
492 **4C**). However, we observed no clear pre-onset suppression in the gamma band, potentially due to much
493 shorter durations of gamma bursts compared to delta ones. In gamma frequencies, an interesting pattern
494 was evident: when burst onsets were taken from FAF channels (top left quadrant of **Fig. 4C**), a periodicity
495 of burst co-occurrence emerged in the frontal area, with a temporal scale of ~ 250 ms. This phenomenon
496 constitutes evidence for strong coupling between gamma-band activity and low-frequency (delta)
497 rhythms. These data resonate with that of a second study (and a different dataset) demonstrating clear
498 coupling between the amplitude of gamma-band and the phase of delta-band LFPs in the FAF of *C.*
499 *perspicillata* (Garcia-Rosales et al., 2022a).

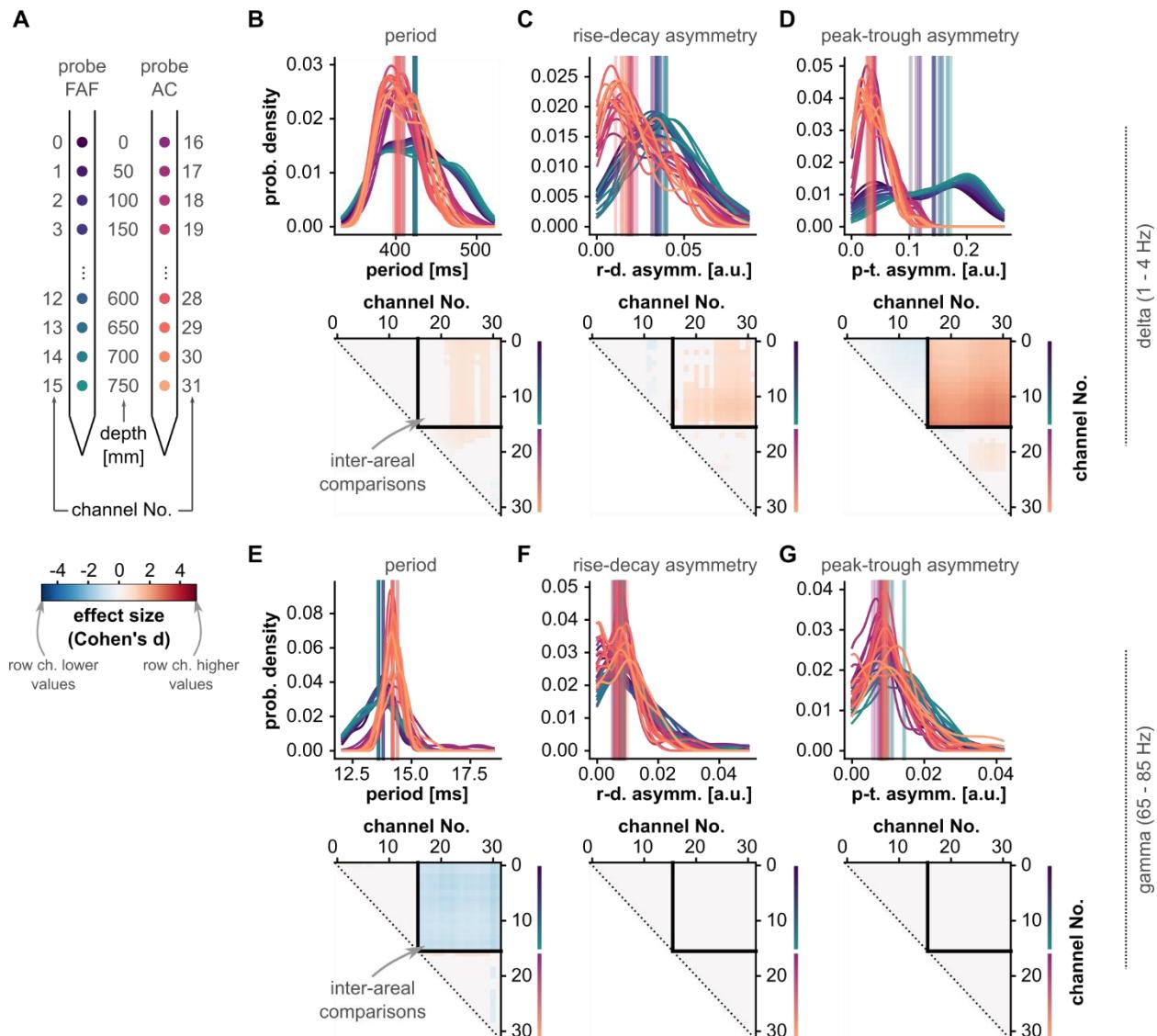

A

B

C

500

501 **Figure 4. Burst co-occurrence in the FAF-AC circuit.** (A) Schematic representation of the analysis for quantifying temporal co-occurrence of
502 bursting events. Note that channels A and B could be drawn from the same or different cortical regions. (B) *Left* (shaded green): indicates delta-
503 band burst co-occurrence across all channels, calculated relative to the onset of a burst at four representative depths (50, 250, 450, 700 μm) in
504 the FAF. Matrices in the top row show burst co-occurrence in FAF channels; matrices in the bottom show co-occurrence of bursts in AC
505 channels, aligned to burst onsets in FAF (at $t = 0$). Burst co-occurrence values were z-normalized relative to a bootstrapped baseline (blue
506 colours: suppression of bursting activity; red colours: increased bursting activity). Only z-normalized values considered significant ($|z| > 6$, see
507 Methods) are shown. *Right* (shaded pink): similar information, but in this case bursts originate in the AC at the same four representative depths
508 (50, 250, 450, 700 μm). Here, $t = 0$ is aligned to auditory cortical burst onsets. (C) Same as in B, but depicting data related to the gamma
509 frequency band. Note that burst co-occurrence matrices corresponding to bursts originating within a specific area (i.e. FAF or AC) are shown with
510 a different colour scale than those corresponding to bursts originating outside a given area.


511 Remarkably, when a burst onset occurred in frontal or auditory cortex, significant and consistent changes
512 in burst co-occurrence in the other region happened for gamma-band LFPs (Fig. 4C). That is, bursts

513 onsets in FAF were consistently and significantly correlated with gamma-band bursting in the AC, and
514 vice-versa. Furthermore, **Fig. 4C** suggests a degree of spatial specificity to this relationship, wherein
515 bursts originating in FAF appear more strongly related to those in middle layers of the AC (depths of 250-
516 450 μm), while bursts originating in middle layers of the AC yield larger co-activation patterns in the FAF.
517 Significant inter-areal burst co-occurrence was not equally clear in delta frequencies (**Fig. 4B**), although
518 clear FAF-AC interactions occur in the delta band when considering transfer entropy analysis or even
519 electrical stimulation experiments (Garcia-Rosales et al., 2022b). The apparent lack of burst interactions
520 in the delta band shown in **Fig. 4B**, however, does not necessarily mean the absence of burst co-
521 occurrence in these frequencies. Rather, this effect is a consequence of the stringency of the
522 bootstrapping procedure (see Methods) interacting with the ubiquity of bursting activity in the FAF (**Fig.**
523 **3**). That is, bootstrap distributions were contaminated with real bursting activity when accumulating burst
524 counts from the frontal cortex. Taken together, these results (particularly the ones related to gamma-band
525 LFPs) suggest an intrinsic relationship between elevated bursting activity in frontal and auditory cortices,
526 supporting the notion of strong functional connectivity in the FAF-AC network.

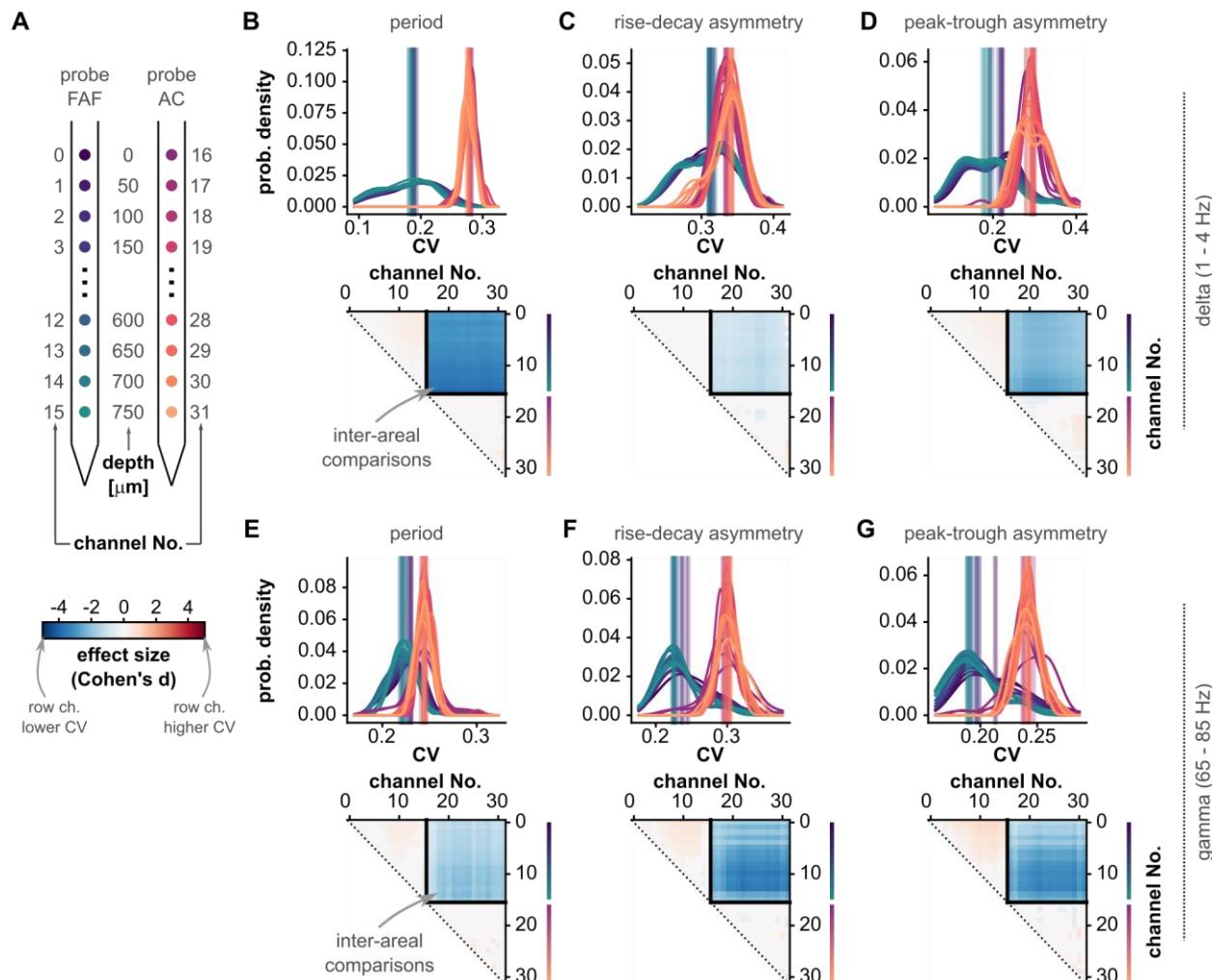
527 Oscillatory waveform shape differences between frontal auditory cortices

528 We have shown the presence of oscillatory activity in delta and gamma frequencies in the frontal and
529 auditory cortices of *C. perspicillata*. Oscillatory bursts across structures occur more often in the FAF, but
530 are not necessarily longer than those in the AC. Remarkably, bursts in FAF and AC are temporally
531 correlated, supporting the notion of concerted activity in the delta and gamma ranges in the FAF-AC
532 circuit. Such correlated bursting activity occurs in very similar frequencies, yet they occur in functionally
533 and anatomically distinct areas of the brain. Do these oscillations differ across structures?

534 A visual inspection of ongoing LFP activity revealed that the oscillatory waveform in the FAF was highly
535 asymmetric (i.e. less sinusoidal, with more pronounced troughs), something that was not so obvious in
536 the AC (see, for example, the representative bursts in **Fig. 2B**). The waveform shape of an oscillation was
537 characterized by three main features (see above): period, rise-decay asymmetry, and peak-trough
538 asymmetry. The distribution of feature values across recordings is given in **Fig. 5B-D** (top) for delta
539 frequencies, and in **3E-G** (top) for gamma frequencies for all channels (see **Fig. 5A**; conventions are the
540 same used for presenting data in **Fig. 3**). Note that the median feature value across all cycles is
541 considered the feature value for a given LFP trace (**Fig. 2D**), thus yielding 29 feature values for each
542 electrode either in FAF or AC (i.e. one value per recording). This allowed us to compare between
543 recording sites using paired statistics, capitalizing on the fact that data in FAF and AC were
544 simultaneously acquired.

545

546 **Figure 5. Waveform shape differences between frontal and auditory cortical LFPs.** (A) Schematic illustrating the relationship of region and cortical
547 depth with the channel number markers of panels B-G. Notice that depths are colour-coded as in Fig. 1. (B) Top: Distribution of oscillatory cycle
548 periods across all recordings (N = 29; for each recording, the median period across all cycles is considered), for all channels (in FAF and AC; see
549 panel A for region and depth according to colour), in the delta band. Vertical lines indicate the median of each distribution. Bottom: Effect sizes of
550 pairwise statistical comparisons of population-level period values across all channels (FDR-corrected Wilcoxon signed-rank tests). Effect sizes for
551 comparisons that did not yield significance (i.e. $p_{\text{corr}} \geq 0.05$) were set to 0. A cell (r, c) in the effect size matrix indicates the effect size of the
552 comparison between values in channel r and channel c (as per panel A). The quadrant spanning rows [0-15] and columns [16-31] illustrates
553 effect sizes of comparisons between channels in FAF and AC. In this quadrant, blue colours indicate lower periods in FAF. (C) Same as in B, but
554 corresponding to values of cycle feature "rise-decay asymmetry". (D) Same as in C, but related to values of cycle feature "peak-trough
555 asymmetry". (E-G) Same as B-D, but shown for values obtained using gamma-band oscillatory cycles.


556 Channel-by-channel comparisons revealed significant differences across cortical regions (FDR-corrected
557 Wilcoxon signed-rank tests, significance when $p_{\text{corr}} < 0.05$). These analyses are summarized in the
558 comparison matrices of Fig. 5B-G (bottom; conventions are the same as those of Fig. 3). Delta-band
559 oscillations in frontal and auditory cortices differed in period typically with small-to-medium effect sizes ($|d|$
560 ≤ 0.8 ; Fig. 5B, bottom), but were strongly different in terms of their temporal asymmetries (Fig. 5C-D,

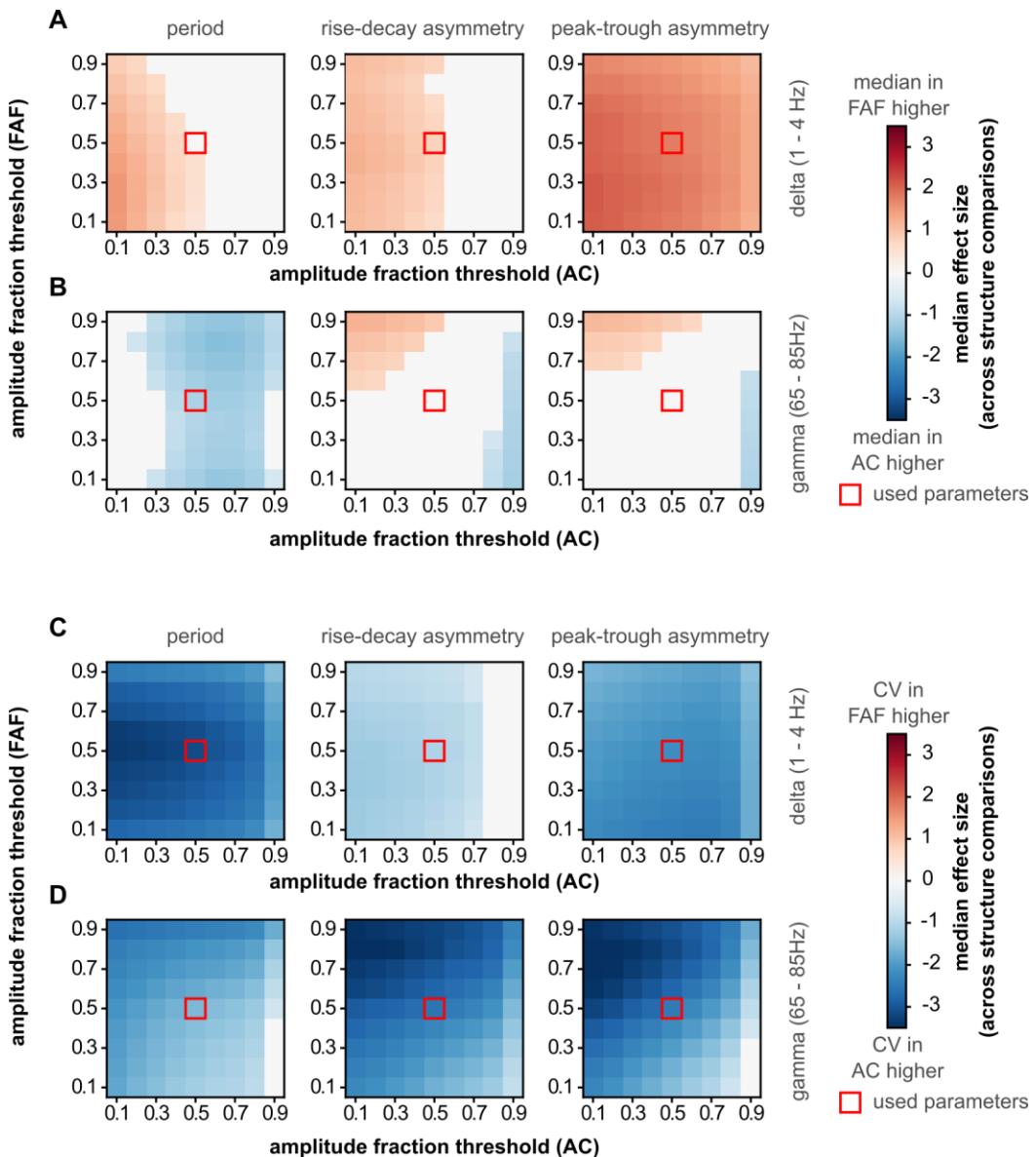
561 bottom; $|d| > 0.8$ particularly for peak-trough asymmetries). The data in **Fig. 5** corroborates that the
562 differences visible in **Fig. 2B** were consistent across recordings. Regarding gamma-band LFPs, the
563 period of gamma-band cycles in FAF and AC differed more markedly than that of delta-band cycles (**Fig.**
564 **3E**, bottom; $|d| > 0.8$), although gamma-band oscillations differed only negligibly in their asymmetry
565 across structures.

566 Waveform shape variability is higher in auditory than in frontal cortex

567 By examining recordings independently we observed that beyond direct differences in waveform shape
568 features (or lack thereof), feature values across cycles were typically less variable in the FAF than in the
569 AC. That is, the distribution of feature values (e.g. period) were typically narrower for LFPs recorded in
570 the frontal cortex. To evaluate the extent of this effect, we quantified for each LFP trace the variability of
571 waveform shape features as the coefficient of variation (CV; **Fig. 2D**), and compared it across recording
572 sites. The CV is a measure of dispersion, in the sense that it measures the “broadness” of a distribution.
573 Thus, larger CVs indicate that cycle features vary over a wider range of possible values, suggesting a
574 higher variability in the oscillatory processes. As with the median, the CV summarizes a distribution,
575 yielding one value per LFP trace (see above and **Fig. 2D**). The same cycles used to calculate median
576 feature values were used to calculate CV values.

577 The distributions of CV values across cycle features for each channel are given in **Fig. 6B-D** (top) for
578 delta frequencies, and **Fig. 6E-G** (top) for gamma frequencies. CV values appeared consistently lower for
579 channels in FAF than for those in AC. This trend was confirmed by statistical, channel-by-channel
580 pairwise comparisons (FDR-correct Wilcoxon signed-rank tests, $N = 29$, significance when $p_{\text{corr}} < 0.05$),
581 summarized in comparison matrices similar to those of **Fig. 3**. Statistical comparisons between channels
582 located in different regions (the upper right quadrants of the comparison matrices) yielded the highest
583 effect sizes (typically $|d| > 0.8$, large). CV values were consistently and significantly lower in FAF channels
584 than in AC channels, in delta- and gamma frequency bands, for all cycle features. Some significant
585 within-area differences also occurred (e.g. deeper channels in FAF had higher CV values than more
586 superficial ones), yet effect sizes were typically medium ($0.5 < |d| < 0.8$) or small ($|d| < 0.5$). Overall, these
587 results indicate that, beyond first-order differences in waveform shape, oscillatory activity in the frontal
588 cortex exhibits a higher degree of cycle-by-cycle regularity (i.e. lower variability over cycles) than that of
589 the AC. Note that such differences in regularity between regions are unlikely to arise from differences in
590 the bursting proportions across FAF and AC (**Fig. 3**). Although more bursts result in more cycles
591 contributing to a distribution, cycle-by-cycle regularity is quantified here using hundreds (sometimes
592 thousands) of cycles obtained from relatively long LFP traces (ca. 20 minutes). These are well-sampled
593 distributions whose CV should not be strongly affected by increasing the number of waveform shape
594 features in them.

595


596 **Figure 6. The variability of waveform shape features differs between frontal and auditory regions.** (A) Schematic illustrating the relationship of
 597 region and cortical depth with the channel number markers of panels B-G. Notice that depths are colour-coded as in Fig.1. (b) Top: Distribution
 598 of CV values for oscillatory cycle periods across all recordings (N = 29), for all channels (in FAF and AC; see panel A for region and depth
 599 according to colour), in the delta band. Vertical lines indicate the median of each distribution. Bottom: Effect sizes of pairwise statistical
 600 comparisons of population CV values across all channels (FDR-corrected Wilcoxon signed-rank tests). Effect sizes for comparisons that did not
 601 yield significance (i.e. $p_{corr} >= 0.05$) were set to 0. A cell (r, c) in the effect size matrix indicates the effect size of the comparison between CV
 602 values in channel r and channel c (as per panel A). The quadrant spanning rows [0–15] and columns [16–31] illustrates effect sizes of
 603 comparisons between channels in FAF and AC. In this quadrant, blue colours indicate lower CV values in FAF. (C) Same as in B, but
 604 corresponding to CV values of cycle feature “rise-decay asymmetry”. (D) Same as in C, but related to CV values of cycle feature “peak-trough
 605 asymmetry”. (E-G) Same as B-D, but shown for CV values obtained using gamma-band oscillatory cycles. (Effect sizes can be interpreted as
 606 follows: $|d| < 0.5$ small, $0.5 <= |d| <= 0.8$ medium, $|d| > 0.8$ large).

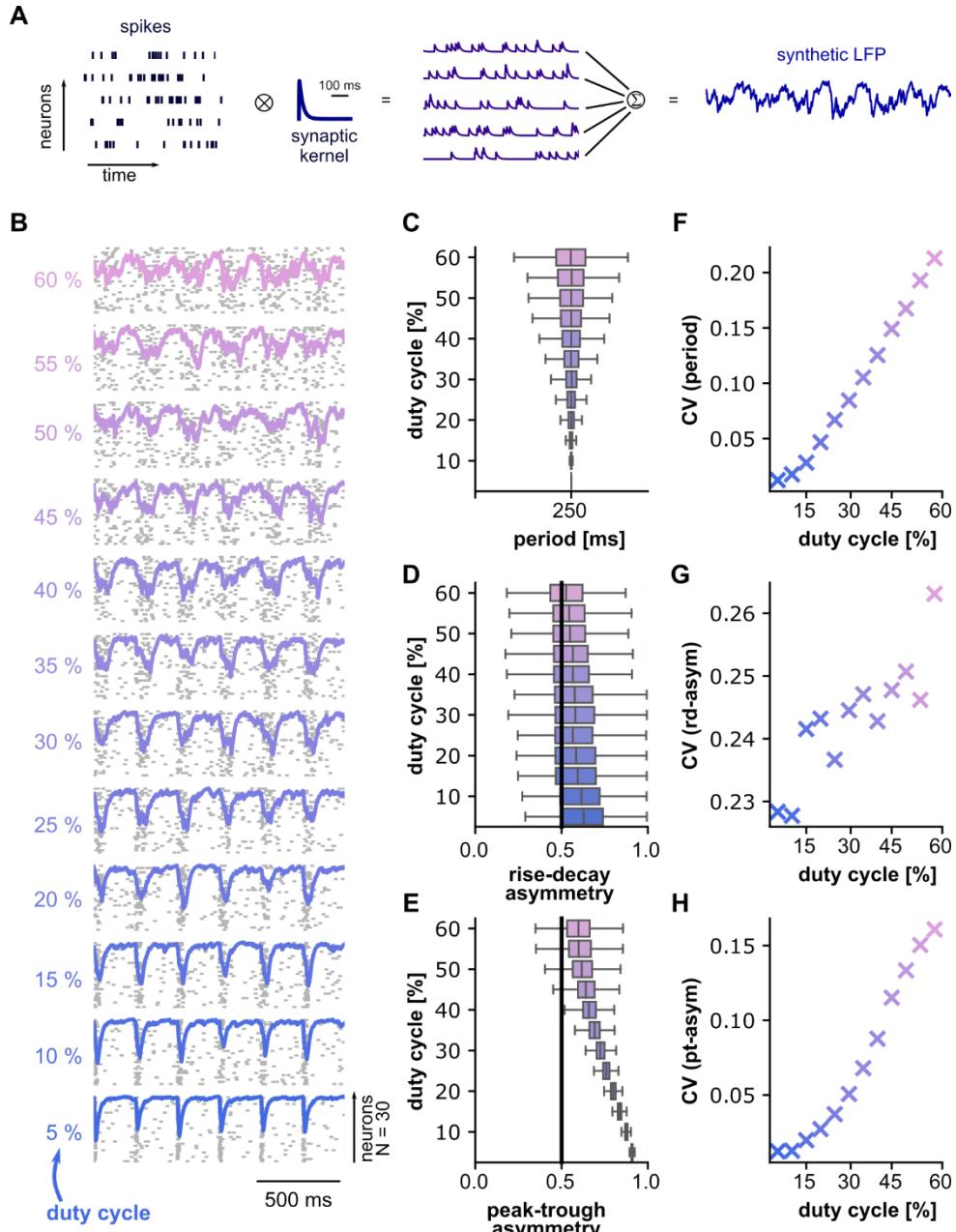
607

608 Differences across regions are robust against burst detection parameters

609 The data indicate that oscillations in the FAF are more regular than those in the AC. However, the
 610 measurements of waveform shape used here can be affected by the SNR of the oscillatory activity used
 611 to quantify them. In particular, higher SNR of oscillatory activity in FAF (Fig. 3B) could result in narrower
 612 distributions of cycle features, because low SNR increases the variability of waveform shape features

613 (see Schaworonkow and Nikulin (2019)). The SNR for burst detection is controlled by the parameter
 614 amplitude fraction threshold, which discards cycles below a certain amplitude percentile calculated from
 615 all cycles in an LFP trace (Cole and Voytek, 2019; Schaworonkow and Voytek, 2021). Therefore, to test
 616 whether the results shown above can be simply accounted for by different SNR levels in FAF and AC, we
 617 evaluated the sensitivity of the inter-areal differences to different values of amplitude fraction threshold in
 618 each region (**Fig. 7**).

619
 620 **Figure 7. Differences in waveform shape features and their variability are robust against burst detection amplitude threshold.** The burst
 621 detection parameter “amplitude fraction threshold” was varied independently in FAF and AC to determine whether SNR critically contributes to
 622 differences in oscillatory regularity between frontal and auditory areas. The difference across regions was measured as the median effect size
 623 obtained from comparing all pairs of channels in FAF and AC (e.g. median of the upper right quadrant in the comparison matrices in **Fig. 5**,
 624 labelled “inter-areal comparisons”). In the absence of significant differences (FDR-corrected Wilcoxon signed rank tests, $p_{corr} < 0.05$), effect size
 625 values were set to 0 ($p_{corr} \geq 0.05$). (A) Median effect sizes across all values of amplitude fraction threshold tested in FAF and AC, for delta
 626 frequencies, comparing the median of cycle periods (left), cycle rise-decay asymmetries (middle) and cycle peak-trough asymmetries (right). (B)


627 Same as in **A**, but data corresponds to cycles from gamma-band oscillatory bursts. (**C, D**) Same as in **a, b**, but the CV was calculated across cycle
628 periods. Red squares indicate the amplitude fraction threshold values used to detect bursts used in the main results.

629 The median effect size of inter-areal comparisons was used as a summary metric of differences in
630 median feature values (**Fig. 7A, B**) and CV values (**Fig. 7C, D**) across cortical regions. This metric
631 corresponds to the median value of the upper-right quadrant of the comparison matrices in **Figs. 5 and 6**.
632 We systematically varied the amplitude fraction threshold parameter (range: 0.1 – 0.9, step of 0.1) used
633 to detect oscillatory bursts independently in the FAF or the AC, and for each iteration we calculated the
634 median effect size of inter-areal comparisons. As depicted in **Fig. 7A**, period values for delta-band cycles
635 were different between FAF and AC with typically medium or even low effect sizes ($|d| < 0.5$ for low, 0.5
636 $\leq |d| < 0.8$ for medium), while asymmetries differed with typically strong effect sizes ($|d| > 0.8$)
637 particularly when considering the peak-trough asymmetry as in **Fig. 5**. In general, observations across a
638 broad range of threshold values conformed well to the data depicted in **Fig. 5** in delta- and gamma-bands
639 (**Fig. 7B** for gamma). Those data were obtained with a threshold value of 0.5 (red squares in **Fig. 7**).
640 Similarly, CVs were consistently lower in FAF than in AC across a wide range of amplitude fraction
641 threshold values in both delta- and gamma frequencies (**Fig. 7C**, delta; **Fig. 7D**, gamma), for all three
642 cycle features considered. These data were highly consistent with those shown in **Fig. 6**. These results
643 indicate that the differences in waveform shape features and their CV values between frontal and auditory
644 cortices are not trivially accounted for by differences in SNR across regions.

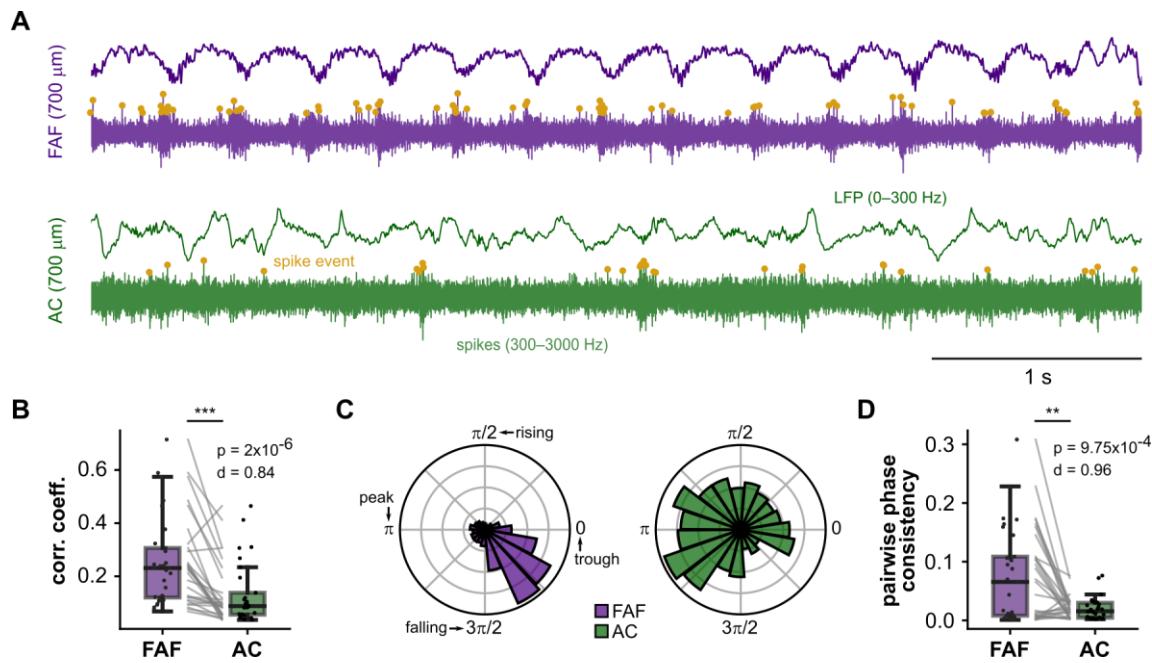
645 A conceptual model captures patterns of waveform shape differences between FAF and AC

646 We hypothesized that differences across areas, particularly when considering the CV of waveform
647 features, might reflect the activity of two distinct cortical generators exhibiting different degrees of
648 regularity. We illustrate this idea with a conceptual model in which an oscillation occurs as a consequence
649 of the temporally aligned rhythmic discharge of a population of neurons. This conceptualization makes no
650 assumption on the nature of the neuronal oscillators themselves (see Discussion); instead, it only
651 assumes that extracellular oscillatory activity occurs when a sufficiently large neuronal population fires
652 concertedly (Buzsaki et al., 2012). We reasoned that a highly synchronous population firing would lead to
653 a strong current at a specific phase of the LFP resulting in relatively asymmetric waveform shapes; by
654 contrast, a relatively asynchronous population activity would yield less asymmetric temporal features. We
655 simulated 30 neurons firing rhythmically for 300 seconds at a delta rate (3 Hz, for illustrative purposes;
656 this can be generalized to other frequencies as well), with varying degrees of synchronicity among them.
657 The synchronization of the spiking across neurons was manipulated by changing the duty cycle of a
658 square pulse train determining to the instantaneous rate of an inhomogeneous Poisson process
659 controlling a neuron's firing rate (see Methods). Lower duty cycles represent narrower spiking windows
660 and therefore higher synchronicity across neurons. From the neuronal firing in each condition, we
661 generated a synthetic LFP by convoluting each spike train with a synaptic kernel and adding them over all

662 neurons (Fig. 8A). This synthetic LFP was used to estimate cycle features computed with the *bycycle*
 663 algorithm, analogue to the analyses performed on the empirical data.

664

665 **Figure 8. A linear model captures the differences in waveform shape between FAF and AC.** (A) Schematic illustrating how synthetic LFP signals
 666 were derived from the spiking activity of a population of simulated neurons. (B) Representative spiking activity of a population of N=30 simulated
 667 neurons. The synchronicity across neurons varies with the duty cycle of a pulse train modulating firing rate (lower duty cycle, more synchronous;
 668 see Methods). A synthetic LFP was calculated for each condition (overlaid traces; see panel A). (C-E) The period (C), rise-decay asymmetry (D),
 669 and peak-trough asymmetry (E) values across all cycles detected by the *bycycle* algorithm for each duty cycle tested. The black line in panels D
 670 and E represents no asymmetry (i.e. a value of 0.5). (F-H) CV values of features period (F), rise-decay asymmetry (G), and peak-trough
 671 asymmetry (H). In panels C-H, values from each duty cycle simulation are colour coded according to panel B.


672

673 Simulated spiking activity with various degrees of synchronicity (controlled by the duty cycle parameter) is
674 shown in **Fig. 8B** together with corresponding LFPs. Figure **8C-E** shows the distribution of cycle features
675 (**Fig. 8C**, period; **Fig. 8D**, rise-decay asymmetry; **Fig. 8E**, peak-trough asymmetry) for each duty cycle
676 condition. We did not observe changes in the median period across duty cycles. However, we did
677 observe a consistent change in temporal asymmetries (**Fig. 8D, E**) indicating that a more synchronous
678 neuronal population (lower duty cycles in the figure) resulted in more asymmetric waveform shapes. Note
679 that the farther the median feature value is from 0.5 (black line in **Fig. 8D, E**) the more asymmetric LFP
680 cycles are. In addition, we observed that as the neuronal population became less synchronized (i.e.
681 higher duty cycles) feature values became more variable, as illustrated by the fact that the CV obtained
682 from the feature distributions tended to increase together with the duty cycle (**Fig. 8G-H**). These two
683 cases (higher asymmetry for more synchronized population spiking and more variability for less
684 synchronized spiking) reflect differences in delta- and gamma-band oscillations in FAF and AC (i.e. higher
685 asymmetry and less variability for oscillations in FAF), and offer a simple yet plausible account of the
686 patterns observed across regions.

687 These results suggest that differences in FAF and AC waveform shape can at least be partially accounted
688 for by different degrees of synchronicity in the underlying neuronal firing. To test this prediction, we turned
689 to the spiking activity in frontal and auditory regions (**Fig. 9A**). Since oscillations were more asymmetric
690 and less variable in FAF, we hypothesized that neuronal spiking would be more highly correlated in
691 frontal than in auditory cortex and, additionally, more strongly synchronized with LFP oscillations (a
692 secondary consequence of the model in **Fig. 8**). For each recording, we averaged correlation coefficients
693 obtained from FAF and AC channels, and tested whether their values were significantly different across
694 regions. These analyses corroborated that spike train correlations were higher in frontal regions (**Fig. 9B**,
695 bottom; Wilcoxon signed-rank test, $p = 2 \times 10^{-6}$) with a large effect size ($d = 0.84$).

696 Because delta-band oscillations exhibited the largest differences in terms of asymmetry (**Fig. 5**), we
697 studied spike-LFP relationships in this frequency range. Here, only spikes occurring within oscillatory
698 bursts, as detected by the *bycycle* algorithm, were considered (note that these are the same bursts used
699 in previous analyses). Spike times were expressed as the points of spike occurrence relative to the period
700 of the burst cycle in which they occurred (0, spike occurs at beginning of cycle; 1, spike occurs at end of
701 cycle), and spike phases were obtained by multiplying the relative spike timing by 2π . The distribution of
702 spike phases from the recordings shown in **Fig. 9A** are depicted in **Fig. 9C** ($N = 6760$ spikes in FAF, $N =$
703 661 spikes in AC), suggesting a tighter clustering of spike phases in FAF. The pairwise phase
704 consistency (PPC; Vinck et al. (2010)) was computed for all channels across recordings. The PPC
705 measures how tightly spike phases group together (phase consistency) and constitutes a bias-free
706 equivalent to the square of the phase locking value. Higher PPC values indicate higher spike-LFP
707 coherence. To test whether spikes in FAF were more strongly synchronized to delta-band LFPs than
708 those in the AC, we averaged PPC values across channels in FAF and AC (as described above) and

709 statistically compared across regions. PPC values were significantly higher in FAF than in AC (**Fig. 9D**,
710 bottom; Wilcoxon signed-rank test, $p = 9.75 \times 10^{-4}$) with a large effect size ($d = 0.96$).

711

712 **Figure 9. Spiking activity in FAF is more correlated and more strongly synchronized to delta-band oscillatory bursts.** (A) Representative LFP
713 (top) and spiking (bottom) activity from FAF (purple) and AC (green) electrodes at depths of 700 μm. (B) Spike-spike correlation coefficients for
714 each recording in FAF and AC ($N = 29$; averaged across channels); spike-spike correlation in FAF was significantly larger than in AC (Wilcoxon
715 signed-rank test, $p = 2 \times 10^{-6}$, $d = 0.84$, large effect size). (C) Distribution of spike phases relative to delta LFPs in FAF (left, $N = 6760$ spikes) and
716 AC (right, $N = 661$ spikes). Spikes were only those occurring during bursts of delta-band activity as detected by the *bycycle* algorithm. Troughs,
717 peaks, rising and falling phases, for any given cycle, are indicated in the figure. (D) Average PPC values in FAF and AC were compared across
718 all recordings ($N = 29$). There was significantly larger spike-phase consistency in FAF than in AC (Wilcoxon signed-rank test, $p = 9.75 \times 10^{-4}$, $d =$
719 0.96, large effect size).

720 Altogether, these results show that differences in waveform asymmetries between FAF and AC in delta
721 frequencies are accompanied by differences in spike correlations and spike-LFP synchronization between
722 regions. These observations are in line with predictions derived from the conceptual model illustrated in
723 **Fig. 8**, and support a relationship between waveform shape and spike synchronization. Direct correlations
724 between, for example, peak-trough asymmetry and spike-train correlations were, although significant,
725 relatively weak (FAF, $p = 0.033$, adjusted $R^2 = 0.13$; AC, $p = 0.009$, adjusted $R^2 = 0.2$), indicating that
726 oscillatory waveform shape cannot be trivially explained by local spike synchronization alone.

727 Discussion

728 In this work, oscillations in the bat frontal and auditory cortices were studied with respect to their
729 waveform shape. We show that oscillations present in simultaneously recorded LFPs in the fronto-
730 auditory circuit differ markedly in waveform shape and in the variability of waveform features across
731 individual cycles. This heterogeneity is not trivially accounted for by different levels of SNR in frontal and
732 auditory regions. A conceptual model suggests a relationship between the temporal organization of
733 neuronal spiking and waveform shape asymmetry, with higher spike temporal correlations leading to

734 more asymmetric waveforms. In line with the predictions of the model, we demonstrate that spike-spike
735 and spike-LFP correlations differ significantly in the FAF-AC network.

736 The bat frontal and auditory cortices are two brain regions with distinct cytoarchitectonic patterns, which
737 likely accounts for the differences observed in oscillatory waveform shape across areas. *C. perspicillata*'s
738 AC is a primary sensory region with a well-defined, six-layered columnar structure and clear inter-laminar
739 boundaries (see Garcia-Rosales et al. (2019) for histology), following a blueprint that is typical across
740 mammalian species (Douglas and Martin, 2004; Linden and Schreiner, 2003; Mountcastle, 1997). By
741 contrast, *C. perspicillata*'s FAF lacks clear boundaries between layers (see Garcia-Rosales et al. (2022b);
742 Weineck et al. (2020)), mirroring instead the stereotypical agranular or slightly agranular architecture of
743 the mammalian frontal cortex (Beul and Hilgetag, 2014; Camarda and Bonavita, 1985; Shepherd, 2009).
744 Differences between the bat frontal and auditory regions likely extend to other cytoarchitectonic properties
745 such as the distribution of cell-type density and overall cellular organization. Beyond anatomy, cortical
746 cytoarchitecture plays a significant role in defining activity patterns and brain function. Indeed, the
747 functional characteristics of a given region are well-related to its cytoarchitecture (Badre and D'Esposito,
748 2009; Pandya and Yeterian, 1996), which includes the nature of incoming and outgoing axonal
749 connections (Hilgetag et al., 2019; Kritzer et al., 1992; Passingham et al., 2002), cell-type specific
750 characteristics (e.g. density, morphology; Benavides-Piccione et al. (2002); Beul and Hilgetag (2014)),
751 and laminar organization (Hooks et al., 2011). Local cytoarchitecture affects neuronal firing patterns,
752 which are known to vary consistently across functionally and anatomically well-defined regions (Badre
753 and D'Esposito, 2009; Mochizuki et al., 2016; Shinomoto et al., 2009). Anatomical differences between
754 granular and agranular cortical areas also result in distinct intra- and inter-laminar connectivity patterns
755 (Beul and Hilgetag, 2014; Shepherd, 2009), which may also affect the dynamics of the generators of
756 cortical oscillatory activity. Together, local anatomy, spiking patterns, and connectivity influence
757 mesoscopic measurements of activity such as LFPs or other signals recorded non-invasively (Buzsaki et
758 al., 2012; Cole and Voytek, 2017).

759 Other than local cytoarchitecture, respiration can also affect both single-neuron and oscillatory activities
760 (Tort et al., 2018). For example, respiratory rhythms in mice entrain single neuron spiking and local
761 cortical oscillations particularly –but not only- in frontal regions, (Koszeghy et al., 2018; Tort et al., 2018)
762 with measurable functional consequences (Bagur et al., 2021; Folschweiller and Sauer, 2023). Likewise,
763 heart rate fluctuations are known to correlate with brain oscillations, particularly during sleep (Mara and
764 Julian, 2018; Mikutta et al., 2022). Respiratory or cardiac rhythms were not measured in this study, but
765 their potential effects cannot be directly ruled out given that typical values for *C. perspicillata* lie close to
766 delta frequencies: respiration rate, ~2.5–4.5 Hz; hear rate: ~8.33 Hz. For example, it is possible that
767 respiration influences the patterns of rhythmicity and asymmetry observed in frontal areas by directly
768 modulating the LFP, by synchronizing neuronal spiking (thereby altering the LFPs), or a combination of

769 both. Future studies should clarify the roles –if any- of respiration or heart rate in modifying oscillatory
770 waveform shape dynamics.

771 Delta-band oscillations differed markedly across regions in terms of their temporal asymmetries,
772 something that did not occur consistently for gamma-band activity (**Fig. 5**). However, for both frequency
773 ranges we observed large and consistent inter-areal differences in the variability of shape feature values
774 across individual cycles (**Fig. 6**). A conceptual model (**Fig. 8**) suggests that temporal asymmetries (i.e.
775 waveform shape features) and their variability across cycles, could depend on the degree of correlated
776 activity of the underlying neuronal population. The model in **Fig. 8** suggests that more synchronous
777 populations yield highly asymmetric waveform shape and lower cycle-by-cycle variability, while less
778 synchronous populations yield gradually a more sinusoidal shape with more variable cycle-by-cycle
779 features. That waveforms become less asymmetric can be explained by temporal averaging of the
780 contribution of each spike to the LFP, akin to the expected effects of spatial averaging in electro- or
781 magneto-encephalographic recordings (Schaworonkow and Nikulin, 2019). Note that the model does not
782 make any assumptions about important features of the underlying generators, such as location in the
783 local circuitry, connectivity patterns, or component cell-types. As discussed above, these factors can
784 influence both waveform shape and spiking dynamics. Instead, the model provides a parsimonious
785 account of the empirical data shown in **Fig. 5**, assuming only that spiking is an important contributor to
786 the LFP (Buzsaki et al., 2012). The model in **Fig. 8**, together with the waveform shape differences across
787 regions, affords one prediction, namely that spike-spike and spike-LFP correlations should be higher in
788 the area with more asymmetric signals (i.e. the FAF). Our results in **Fig. 9** corroborate such prediction,
789 illustrating that the bat frontal cortex exhibits more correlated spiking, which is also more strongly
790 synchronized the ongoing LFP phase in delta frequencies. As a concept, and supported by our data, the
791 model draws a relationship between waveform shape asymmetry and the temporal dynamics of neuronal
792 spiking in the neocortex.

793 A hypothesis stemming from the above observations is that differences in the variability of cycle features
794 (measured by the CV) between FAF and AC might be explained by different values of temporal
795 correlations in the underlying generators. In other words, it could be speculated that putative generators
796 in the FAF operate with tighter parameters (reflected in higher temporal correlations) than their AC
797 counterparts. One possible take on the functional implications of such phenomenon would be that frontal
798 circuits rely more on internal timescales, while auditory circuits exhibit an elevated flexibility and
799 perturbability. Previous studies have demonstrated that activity patterns in the rodent prefrontal cortex
800 exhibit less variability than those of sensory regions (Castano-Prat et al., 2017; Ruiz-Mejias et al., 2011),
801 potentially reflecting a cortical hierarchy of excitability and circuit properties. In such hierarchy, peripheral
802 areas exhibit more adaptability to sensory stimuli (and therefore more variability), while frontal areas
803 exhibit higher stimulus independence, yielding activity patterns better related to local network dynamics
804 (Badre and D'Esposito, 2009; Braun and Mattia, 2010; Ruiz-Mejias et al., 2011)). In the bat brain, the FAF

805 appears to be a modulation and control structure that may also be involved in the integration of diverse
806 inputs during echolocation and navigation, as reflected by its internal dynamics and by the anatomical
807 and functional connectivity patterns with other cortical and subcortical regions (Casseday et al., 1989;
808 Eiermann and Esser, 2000; Garcia-Rosales et al., 2022b; Kanwal et al., 2000; Kobler et al., 1987;
809 Weineck et al., 2020). Conversely, the bat AC (as that of other mammals) is primarily tasked with
810 representing sounds that may unfold in time over nested timescales, typically exhibiting varying degrees
811 of periodicity which require higher adaptability and flexibility (Doelling et al., 2019; Garcia-Rosales et al.,
812 2018; Henry and Obleser, 2012; Lakatos et al., 2013; Teng et al., 2017). Indeed, previous modelling work
813 suggests that neuronal response patterns in FAF and AC can be accounted for by slower synaptic
814 dynamics in the frontal region (Lopez-Jury et al., 2020), something that could be detrimental for precise
815 stimulus tracking but that could be important for sensory integration. From the above, we hypothesize that
816 a higher level of variability in the auditory cortical circuitry (**Fig. 6**) might aid with efficient sensory
817 representations in AC (see Pittman-Polletta et al. (2021)), while narrower dynamics could be important for
818 high-level computations in FAF (e.g. sensory integration), closely tied to internal timescales and more
819 robust against external perturbations.

820 In conclusion, we have shown that simultaneously recorded oscillatory activity across frontal and auditory
821 cortices differs markedly in waveform shape. Additionally, a conceptual model, paired with empirical
822 results, suggests a relationship between waveform shape and local spiking activity. This intriguing
823 relationship could serve as a tool for constraining generative models of neural oscillations, and can be
824 used to draw hypotheses after observing waveform shape differences across experimental conditions.
825 The oscillations studied here in frontal and auditory regions occur in similar frequencies and are
826 functionally related (**Fig. 4**; (Garcia-Rosales et al., 2022b)), but they nevertheless possess distinct
827 dynamics that reflect the heterogeneous anatomical and functional properties of the bat fronto-auditory
828 network.

829

830 **References**

831 Badre, D., and D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? *Nature*
832 *Reviews Neuroscience* 10, 659-669.

833 Bagur, S., Lefort, J.M., Lacroix, M.M., de Lavilleon, G., Herry, C., Chouvaeff, M., Billand, C., Geoffroy, H.,
834 and Benchenane, K. (2021). Breathing-driven prefrontal oscillations regulate maintenance of conditioned-
835 fear evoked freezing independently of initiation. *Nat Commun* 12, 2605.

836 Baranauskas, G., Maggiolini, E., Vato, A., Angotzi, G., Bonfanti, A., Zambra, G., Spinelli, A., and Fadiga,
837 L. (2012). Origins of 1/f² scaling in the power spectrum of intracortical local field potential. *J Neurophysiol*
838 107, 984-994.

839 Benavides-Piccione, R., Ballesteros-Yanez, I., DeFelipe, J., and Yuste, R. (2002). Cortical area and
840 species differences in dendritic spine morphology. *J Neurocytol* 31, 337-346.

841 Benjamini, Y., and Hochberg, Y.J.J.o.t.R.s.s.s.B. (1995). Controlling the false discovery rate: a practical
842 and powerful approach to multiple testing. *57*, 289-300.

843 Beul, S.F., and Hilgetag, C.C. (2014). Towards a "canonical" agranular cortical microcircuit. *Front*
844 *Neuroanat* *8*, 165.

845 Braun, J., and Mattia, M. (2010). Attractors and noise: twin drivers of decisions and multistability.
846 *Neuroimage* *52*, 740-751.

847 Buzsaki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and currents--EEG,
848 ECoG, LFP and spikes. *Nat Rev Neurosci* *13*, 407-420.

849 Camarda, R.M., and Bonavita, V. (1985). The frontal agranular cortex and the organization of purposeful
850 movements. *Ital J Neurol Sci* *6*, 287-315.

851 Casseday, J.H., Kobler, J.B., Isbey, S.F., and Covey, E. (1989). Central acoustic tract in an echolocating
852 bat: an extralemniscal auditory pathway to the thalamus. *J Comp Neurol* *287*, 247-259.

853 Castano-Prat, P., Perez-Zabalza, M., Perez-Mendez, L., Escorihuela, R.M., and Sanchez-Vives, M.V.
854 (2017). Slow and Fast Neocortical Oscillations in the Senescence-Accelerated Mouse Model SAMP8.
855 *Front Aging Neurosci* *9*, 141.

856 Cohen, J. (2013). Statistical power analysis for the behavioral sciences (Routledge).

857 Cole, S., Donoghue, T., Gao, R., and Voytek, B.J.J.o.O.S.S. (2019). NeuroDSP: a package for neural
858 digital signal processing. *4*, 1272.

859 Cole, S., and Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. *J Neurophysiol* *122*, 849-
860 861.

861 Cole, S.R., van der Meij, R., Peterson, E.J., de Hemptinne, C., Starr, P.A., and Voytek, B. (2017).
862 Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease. *J Neurosci* *37*,
863 4830-4840.

864 Cole, S.R., and Voytek, B. (2017). Brain Oscillations and the Importance of Waveform Shape. *Trends*
865 *Cogn Sci* *21*, 137-149.

866 Doelling, K.B., Assaneo, M.F., Bevilacqua, D., Pesaran, B., and Poeppel, D. (2019). An oscillator model
867 better predicts cortical entrainment to music. *Proc Natl Acad Sci U S A* *116*, 10113-10121.

868 Donoghue, T., Haller, M., Peterson, E.J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A.H., Wallis,
869 J.D., Knight, R.T., *et al.* (2020). Parameterizing neural power spectra into periodic and aperiodic
870 components. *Nat Neurosci* *23*, 1655-1665.

871 Douglas, R.J., and Martin, K.A. (2004). Neuronal circuits of the neocortex. *Annu Rev Neurosci* *27*, 419-
872 451.

873 Eiermann, A., and Esser, K.H. (2000). Auditory responses from the frontal cortex in the short-tailed fruit
874 bat *Carollia perspicillata*. *Neuroreport* *11*, 421-425.

875 Esser, K.H., and Eiermann, A. (1999). Tonotopic organization and parcellation of auditory cortex in the
876 FM-bat *Carollia perspicillata*. *Eur J Neurosci* *11*, 3669-3682.

877 Folschweiller, S., and Sauer, J.F. (2023). Behavioral State-Dependent Modulation of Prefrontal Cortex
878 Activity by Respiration. *J Neurosci* *43*, 4795-4807.

879 Garcia-Rosales, F., Beetz, M.J., Cabral-Calderin, Y., Kossl, M., and Hechavarria, J.C. (2018). Neuronal
880 coding of multiscale temporal features in communication sequences within the bat auditory cortex.
881 *Commun Biol* *1*, 200.

882 Garcia-Rosales, F., Lopez-Jury, L., Gonzalez-Palomares, E., Cabral-Calderin, Y., and Hechavarria, J.C.
883 (2020). Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the
884 Bat *Carollia perspicillata*. *Front Syst Neurosci* 14, 14.

885 Garcia-Rosales, F., Lopez-Jury, L., Gonzalez-Palomares, E., Cabral-Calderin, Y., Kossi, M., and
886 Hechavarria, J.C. (2022a). Phase-amplitude coupling profiles differ in frontal and auditory cortices of bats.
887 *Eur J Neurosci* 55, 3483-3501.

888 Garcia-Rosales, F., Lopez-Jury, L., Gonzalez-Palomares, E., Wetekam, J., Cabral-Calderin, Y., Kiai, A.,
889 Kossi, M., and Hechavarria, J.C. (2022b). Echolocation-related reversal of information flow in a cortical
890 vocalization network. *Nat Commun* 13, 3642.

891 Garcia-Rosales, F., Rohrig, D., Weineck, K., Rohm, M., Lin, Y.H., Cabral-Calderin, Y., Kossi, M., and
892 Hechavarria, J.C. (2019). Laminar specificity of oscillatory coherence in the auditory cortex. *Brain Struct
893 Funct* 224, 2907-2924.

894 Gourevitch, B., Martin, C., Postal, O., and Eggermont, J.J. (2020). Oscillations in the auditory system and
895 their possible role. *Neurosci Biobehav Rev* 113, 507-528.

896 Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma oscillations in human primary
897 somatosensory cortex reflect pain perception. *PLoS Biol* 5, e133.

898 Hechavarria, J.C., Beetz, M.J., Macias, S., and Kossi, M. (2016). Vocal sequences suppress spiking in
899 the bat auditory cortex while evoking concomitant steady-state local field potentials. *Sci Rep* 6, 39226.

900 Helfrich, R.F., and Knight, R.T. (2019). Cognitive neurophysiology of the prefrontal cortex. *Handb Clin
901 Neurol* 163, 35-59.

902 Henry, M.J., and Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and
903 optimizes human listening behavior. *Proc Natl Acad Sci U S A* 109, 20095-20100.

904 Hilgetag, C.C., Beul, S.F., van Albada, S.J., and Goulas, A. (2019). An architectonic type principle
905 integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain.
906 *Netw Neurosci* 3, 905-923.

907 Hooks, B.M., Hires, S.A., Zhang, Y.X., Huber, D., Petreanu, L., Svoboda, K., and Shepherd, G.M. (2011).
908 Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. *PLoS Biol* 9,
909 e1000572.

910 Insel, N., Patron, L.A., Hoang, L.T., Nematollahi, S., Schimanski, L.A., Lipa, P., and Barnes, C.A. (2012).
911 Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications
912 for age-related behavioral slowing. *J Neurosci* 32, 16331-16344.

913 Jackson, N., Cole, S.R., Voytek, B., and Swann, N.C. (2019). Characteristics of Waveform Shape in
914 Parkinson's Disease Detected with Scalp Electroencephalography. *eNeuro* 6.

915 Kanwal, J.S., Gordon, M., Peng, J.P., and Heinz-Esser, K. (2000). Auditory responses from the frontal
916 cortex in the mustached bat, *Pteronotus parnellii*. *Neuroreport* 11, 367-372.

917 Kienitz, R., Cox, M.A., Dougherty, K., Saunders, R.C., Schmid, J.T., Leopold, D.A., Maier, A., and
918 Schmid, M.C. (2021). Theta, but Not Gamma Oscillations in Area V4 Depend on Input from Primary
919 Visual Cortex. *Curr Biol* 31, 635-642 e633.

920 Kobler, J.B., Isbey, S.F., and Casseday, J.H. (1987). Auditory pathways to the frontal cortex of the
921 mustache bat, *Pteronotus parnellii*. *Science* 236, 824-826.

922 Koszeghy, A., Lasztoczi, B., Forro, T., and Klausberger, T. (2018). Spike-Timing of Orbitofrontal Neurons
923 Is Synchronized With Breathing. *Front Cell Neurosci* 12, 105.

924 Kritzer, M.F., Cowey, A., and Somogyi, P. (1992). Patterns of inter- and intralaminar GABAergic
925 connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally
926 specialized subdivisions in the rhesus monkey. *J Neurosci* 12, 4545-4564.

927 Lakatos, P., Chen, C.M., O'Connell, M.N., Mills, A., and Schroeder, C.E. (2007). Neuronal oscillations and
928 multisensory interaction in primary auditory cortex. *Neuron* 53, 279-292.

929 Lakatos, P., Musacchia, G., O'Connell, M.N., Falchier, A.Y., Javitt, D.C., and Schroeder, C.E. (2013). The
930 spectrotemporal filter mechanism of auditory selective attention. *Neuron* 77, 750-761.

931 Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G., and Schroeder, C.E. (2005). An oscillatory
932 hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. *J Neurophysiol*
933 94, 1904-1911.

934 Linden, J.F., and Schreiner, C.E. (2003). Columnar transformations in auditory cortex? A comparison to
935 visual and somatosensory cortices. *Cereb Cortex* 13, 83-89.

936 Lopez-Jury, L., Mannel, A., Garcia-Rosales, F., and Hechavarria, J.C. (2020). Modified synaptic dynamics
937 predict neural activity patterns in an auditory field within the frontal cortex. *Eur J Neurosci* 51, 1011-1025.

938 Luo, H., and Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in
939 human auditory cortex. *Neuron* 54, 1001-1010.

940 Mara, M., and Julian, F.T. (2018). How heart rate variability affects emotion regulation brain networks.
941 *Current Opinion in Behavioral Sciences* 19, 98-104.

942 Medvedev, A.V., and Kanwal, J.S. (2004). Local field potentials and spiking activity in the primary auditory
943 cortex in response to social calls. *J Neurophysiol* 92, 52-65.

944 Mikutta, C., Wenke, M., Spiegelhalder, K., Hertenstein, E., Maier, J.G., Schneider, C.L., Feher, K.,
945 Koenig, J., Altorfer, A., Riemann, D., *et al.* (2022). Co-ordination of brain and heart oscillations during
946 non-rapid eye movement sleep. *J Sleep Res* 31, e13466.

947 Mochizuki, Y., Onaga, T., Shimazaki, H., Shimokawa, T., Tsubo, Y., Kimura, R., Saiki, A., Sakai, Y.,
948 Isomura, Y., Fujisawa, S., *et al.* (2016). Similarity in Neuronal Firing Regimes across Mammalian Species.
949 *J Neurosci* 36, 5736-5747.

950 Mountcastle, V.B. (1997). The columnar organization of the neocortex. *Brain* 120 (Pt 4), 701-722.

951 Neymotin, S.A., Tal, I., Barczak, A., O'Connell, M.N., McGinnis, T., Markowitz, N., Espinal, E., Griffith, E.,
952 Anwar, H., Dura-Bernal, S., *et al.* (2022). Detecting Spontaneous Neural Oscillation Events in Primate
953 Auditory Cortex. *eNeuro* 9.

954 Pandya, D.N., and Yeterian, E.H. (1996). Comparison of prefrontal architecture and connections. *Philos
955 Trans R Soc Lond B Biol Sci* 351, 1423-1432.

956 Passingham, R.E., Stephan, K.E., and Kotter, R. (2002). The anatomical basis of functional localization in
957 the cortex. *Nat Rev Neurosci* 3, 606-616.

958 Pittman-Polletta, B.R., Wang, Y., Stanley, D.A., Schroeder, C.E., Whittington, M.A., and Kopell, N.J.
959 (2021). Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via
960 flexible phase-locking in neural oscillators. *PLoS Comput Biol* 17, e1008783.

961 Rajan, A., Siegel, S.N., Liu, Y., Bengson, J., Mangun, G.R., and Ding, M. (2019). Theta Oscillations Index
962 Frontal Decision-Making and Mediate Reciprocal Frontal-Parietal Interactions in Willed Attention. *Cereb
963 Cortex* 29, 2832-2843.

964 Ray, S. (2015). Challenges in the quantification and interpretation of spike-LFP relationships. *Curr Opin
965 Neurobiol* 31, 111-118.

966 Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M., and Sanchez-Vives, M.V. (2011). Slow and fast rhythms
967 generated in the cerebral cortex of the anesthetized mouse. *J Neurophysiol* 106, 2910-2921.

968 Schaworonkow, N., and Nikulin, V.V. (2019). Spatial neuronal synchronization and the waveform of
969 oscillations: Implications for EEG and MEG. *PLoS Comput Biol* 15, e1007055.

970 Schaworonkow, N., and Voytek, B. (2021). Longitudinal changes in aperiodic and periodic activity in
971 electrophysiological recordings in the first seven months of life. *Dev Cogn Neurosci* 47, 100895.

972 Shepherd, G.M. (2009). Intracortical cartography in an agranular area. *Front Neurosci* 3, 337-343.

973 Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H.,
974 Doi, T., Kawano, K., *et al.* (2009). Relating neuronal firing patterns to functional differentiation of cerebral
975 cortex. *PLoS Comput Biol* 5, e1000433.

976 Tan, L.L., Oswald, M.J., Heinl, C., Retana Romero, O.A., Kaushalya, S.K., Monyer, H., and Kuner, R.
977 (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic
978 pathways in aversion and nociception. *Nat Commun* 10, 983.

979 Tavares, L.C.S., and Tort, A.B.L. (2022). Hippocampal-prefrontal interactions during spatial decision-
980 making. *Hippocampus* 32, 38-54.

981 Teng, X., Tian, X., Rowland, J., and Poeppel, D. (2017). Concurrent temporal channels for auditory
982 processing: Oscillatory neural entrainment reveals segregation of function at different scales. *PLoS Biol*
983 15, e2000812.

984 Tort, A.B.L., Brankack, J., and Draguhn, A. (2018). Respiration-Entrained Brain Rhythms Are Global but
985 Often Overlooked. *Trends Neurosci* 41, 186-197.

986 Uran, C., Peter, A., Lazar, A., Barnes, W., Klon-Lipok, J., Shapcott, K.A., Roeser, R., Fries, P., Singer, W.,
987 and Vinck, M. (2022). Predictive coding of natural images by V1 firing rates and rhythmic synchronization.
988 *Neuron* 110, 2886-2887.

989 Veniero, D., Gross, J., Morand, S., Duecker, F., Sack, A.T., and Thut, G. (2021). Top-down control of
990 visual cortex by the frontal eye fields through oscillatory realignment. *Nat Commun* 12, 1757.

991 Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., and Pennartz, C.M. (2010). The pairwise phase
992 consistency: a bias-free measure of rhythmic neuronal synchronization. *Neuroimage* 51, 112-122.

993 Weineck, K., Garcia-Rosales, F., and Hechavarria, J.C. (2020). Neural oscillations in the fronto-striatal
994 network predict vocal output in bats. *PLoS Biol* 18, e3000658.

995 Zhang, S., Xu, M., Chang, W.C., Ma, C., Hoang Do, J.P., Jeong, D., Lei, T., Fan, J.L., and Dan, Y. (2016).
996 Organization of long-range inputs and outputs of frontal cortex for top-down control. *Nat Neurosci* 19,
997 1733-1742.

998

999

1000 **Author Contributions**

1001 F.G.R, N.S., and J.C.H. conceived and designed the research. F.G.R collected and analysed the data,
1002 produced original figures, and wrote the first draft of the manuscript. F.G.R., N.S, and J.C.H. discussed
1003 analyses and results, interpreted data, and reviewed figures and text.

1004