

1 Interaction of amisulpride with GLUT1 at the blood-brain 2 barrier. Relevance to Alzheimer's disease

3 Sevda T. Boyanova¹, Ethlyn Lloyd-Morris¹, Christopher Corpe², K. Miraz Rahman¹, Doaa B.
4 Farag³, Lee K. Page¹, Hao Wang¹, Alice L. Fleckney¹, Ariana Gatt⁴, Claire Troakes⁵, Gema
5 Vizcay-Barrena⁶, Roland Fleck⁶, Suzanne J. Reeves⁷, and Sarah A. Thomas^{1*}

6

7 ¹ King's College London, Institute of Pharmaceutical Science, 150 Stamford St, SE1
8 9NH, London, UK; ² King's College London, Department of Nutritional Sciences,
9 School of Life Course Sciences, Faculty of Life Sciences and Medicine, ³Faculty of
10 Pharmacy, Misr International University, 11431, Cairo, Egypt; ⁴ King's College
11 London, Wolfson Centre for Age Related Disease, 20 Newcomen St, SE1 1YR,
12 London, UK; ⁵ King's College London, London Neurodegenerative Diseases Brain
13 Bank, IoPPN, De Crespigny Park, SE5 8AF, London, UK; ⁶ King's College London,
14 Centre for Ultrastructural Imaging, New Hunt's House, Guy's Campus, SE1 1UL,
15 London, UK; ⁷Faculty of Brain Sciences, University College London, 149 Tottenham
16 Court Road, W1T 7NF, London, UK

17

18 **Running title or short title:** Interaction of amisulpride with GLUT1 at the blood-brain barrier.

19 ^{*}Correspondence:

20 sarah.thomas@kcl.ac.uk¹ King's College London, Institute of Pharmaceutical
21 Science, 150 Stamford St, London SE1 9NH, UK

22 Abstract

23 Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of
24 Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies
25 indicate that antipsychotics interact with facilitated glucose transporters (GLUT),
26 including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the
27 hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport
28 of amisulpride is compromised in AD.

29 GLUT1 substrates and inhibitors, and GLUT-interacting antipsychotics were identified
30 by literature review and their physicochemical characteristics summarised. Interactions
31 between amisulpride, and GLUT1 were studied using *in silico* approaches and the
32 human cerebral endothelial cell line, hCMEC/D3. Brain distribution of
33 [³H]amisulpride was determined using *in situ* perfusion in wild type (WT) and
34 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we
35 investigated brain capillary degeneration in WT and 5xFAD mice, and human samples.
36 Western blots determined BBB transporter expression in mouse and human.

37 Literature review revealed that, although D-glucose has no charge, charged molecules
38 can interact with GLUT1. GLUT1 substrates are smaller (184.95 ± 6.45 g/mol) than
39 inhibitors (325.50 ± 14.40 g/mol), and GLUT-interacting antipsychotics (369.38 ± 16.04).
40 Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and
41 amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [¹⁴C]D-
42 glucose accumulation in hCMEC/D3. 5xFAD mice showed increased brain
43 [³H]amisulpride uptake, and no cerebrovascular space changes compared to WT. TEM
44 revealed brain capillary degeneration in human AD. There was no significant effect of

45 AD on mouse GLUT1 and P-gp BBB expression, and in human GLUT1 expression. In
46 contrast, caudate P-glycoprotein expression was decreased in human AD capillaries
47 versus controls.

48 This study provides new details about the BBB transport of amisulpride, evidence that
49 amisulpride interacts with GLUT1, and that BBB transporter expression is altered in
50 AD. This suggests that antipsychotics exacerbate the cerebral hypometabolism in AD.
51 Further research into the mechanism of amisulpride transport by GLUT1 is important
52 for improving antipsychotics safety.

53

54 **Keywords:** blood-brain barrier; amisulpride; adverse events; transporters; GLUT1.

55

56

57

58

59

60

61

62

63

64

65

66 Introduction

67 Psychosis, which most commonly presents as delusions, is highly prevalent (~50%) in
68 people with Alzheimer's disease (AD) (1,2), and is associated with poorer quality of
69 life, a more rapid speed of cognitive and functional decline (2) and greater risk of
70 institutionalisation (3). Safe and effective prescribing of antipsychotic drugs is
71 challenging in older people, particularly those with AD, due to their heightened
72 susceptibility to the side effects of these drugs (4), including sedation, postural
73 hypotension, parkinsonism, and an increased risk of stroke and death (5,6). As a result,
74 antipsychotic use is restricted to those with severe psychosis and/or aggression that
75 have not responded to non-pharmacological approaches. In the UK, the National
76 Institute for Health and Care Excellence guidance advocates use of 'the lowest possible
77 dose for the shortest possible time' (7). There is a lack of guidance on the minimum
78 clinically effective dose for individual drugs, or the factors that predict differing
79 response and side effects, although a recent publication, based on clinical data on
80 risperidone use in AD, suggests that increased dementia severity is an independent risk
81 factor for emergent parkinsonism (7).

82

83 Amisulpride is a second-generation antipsychotic – a substituted benzamide derivative,
84 which is a highly selective dopamine D2 receptor antagonist (8). It can be prescribed
85 off-label in very late onset (> 60 years) schizophrenia-like psychosis (9), and in patients
86 with AD psychosis (10–12). Therapeutic drug monitoring studies in adults
87 predominantly aged under 65 years have shown that therapeutic striatal D2/3 receptor
88 occupancies between 40-70% are achieved at blood drug concentrations of 100-319

89 ng/ml; equivalent to 400-800 mg/day (13–15). Older patients with AD psychosis (aged
90 69-92 years) showed a clinical response to amisulpride and parkinsonian side effects at
91 lower doses (25-75 mg/day) with high D2/3 receptor occupancies in the caudate (41-
92 83%) and lower blood drug concentrations (40-100 ng/ml) than expected (11,12).

93

94 These findings suggest that age and/or AD-related changes in central pharmacokinetics
95 contribute to antipsychotic drug sensitivity and implicate the blood-brain barrier (BBB)
96 which controls the entry of drugs to the brain through selective transport pathways.
97 Evidence from our animal studies further supports this hypothesis (16). Since
98 amisulpride is predominantly positively (17) charged at physiological pH, observed
99 changes in the expression and/or function of BBB transporters for organic cations may
100 help explain the increased amisulpride sensitivity in AD patients. In particular, the
101 organic cation transporter 1 (OCT1; SLC22A1) and the plasma membrane monoamine
102 transporter (PMAT; SLC29A4) (16).

103

104 Compromised function and expression of other SLC transporters at the BBB, such as
105 the glucose transporter, GLUT1 (SLC2A1), has also been observed in AD (18–20).
106 Consequently, AD brains suffer chronic shortages of energy-rich metabolites (21,22).
107 Importantly, antipsychotic drugs, including risperidone and clozapine, inhibit glucose
108 uptake by transporters, it has been suggested that this could be through direct
109 interaction with GLUT transporters (23,24). In addition, the use of clozapine and
110 another antipsychotic drug, olanzapine, has been associated with the development of
111 type 2 diabetes. One of the proposed mechanisms is through the inhibition of glucose
112 transporters inducing hyperglycaemia (25–27). However, detailed studies of the drugs-

113 transporter interaction, including *in silico* molecular docking studies on the specific
114 molecular interactions of antipsychotics with GLUT1 are rare.

115

116 Thus, considering the changes in GLUT1 expression at the BBB and resulting impact
117 on brain metabolism in AD, and the increased sensitivity of AD patients to
118 antipsychotic drugs including risperidone and amisulpride, we wanted to explore the
119 interaction between GLUT1 and amisulpride. To do this we tested the hypotheses that
120 amisulpride interacts with GLUT1 at the BBB, and that expression of BBB transporters
121 and the transport of amisulpride and glucose into the brain will be affected by AD. We
122 utilised a combination of literature review, physicochemical properties analysis,
123 molecular docking approaches, cell culture BBB studies, studies in wild type mice and
124 in an animal model of AD and assessment of tissue from human cases with and without
125 AD. An overview of the methods deployed are presented in Supplementary Fig 1, S1
126 File. Abstracts of this work have been presented (28).

127

128 Materials and Methods

129 Radiolabelled and non-labelled chemicals

130 Radiolabelled [¹⁴C]D-glucose (#NEC042X050UC, Lot: 2389266, specific activity 275
131 mCi/ mmol) and [³H]mannitol (#NET101001MC, Lot: 3632303, specific activity 12.3
132 Ci/ mmol) were purchased from Perkin Elmer. [O-methyl-³H]amisulpride (MW 374.8
133 g/mol; specific activity 77 Ci/mmol; 97% radiochemical purity) was custom tritiated
134 (#TRQ41291 Quotient, UK). [¹⁴C(U)]Sucrose (MW 359.48 g/mol; specific activity 536
135 mCi/mmol; 99% radiochemical purity: # MC266) was purchased from Moravek

136 Biochemicals, USA. Non-labelled amisulpride (MW 369.5 g/mol, >□ 98% purity) was
137 purchased from Cayman Chemicals, UK (#71675-85-9), and non-labelled D-glucose
138 (#10117) was purchased from BDH.

139

140 **Literature review**

141 Three different groups of molecules, which interacted with GLUT, were identified by
142 literature review. These groups were GLUT1 substrates, GLUT1 inhibitors and
143 GLUT-interacting antipsychotics. The inclusion criteria are explained below.

144

145 **Identification of GLUT1 substrates and inhibitors**

146 To identify established substrates and inhibitors of GLUT1 we performed a Pubmed
147 literature search using the parameters ((GLUT1 substrate) OR (GLUT1 inhibitor))
148 AND (review [Publication Type])) AND ((”1985” [Date - Publication]:”2021” [Date -
149 Publication])) (29) and tabulated the results. In the substrates group we included
150 molecules for which there is *in vitro* evidence that they are transported by GLUT1 and
151 that their uptake into cells is inhibited by established GLUT1 inhibitors, such as
152 cytochalasin B. In the inhibitors group we included molecules that were shown to
153 decrease uptake of GLUT1 substrates *in vitro*, and for which there is a proposed
154 inhibitory mechanism of interaction with GLUT1.

155

156 **Identification of antipsychotics that interact with GLUT**

157 We also performed a Pubmed search to identify antipsychotics which interacted with
158 GLUT transporters, using the parameters (((GLUT) AND (antipsychotic)) AND

159 (("1985"[Date - Publication]: "2021"[Date - Publication])) (accessed 04/03/2022). In
160 the antipsychotics group we included both typical and atypical antipsychotics that
161 decreased the uptake of GLUT1 substrates *in vitro*.

162

163 **Physicochemical characterisation of GLUT1 substrates and inhibitors,
164 and GLUT-interacting antipsychotics**

165 The physicochemical characteristics of each member of the three groups (i.e. GLUT1
166 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics) was obtained from
167 the chemical property databases, DrugBank (30) or MarvinSketch (version 22.9.0,
168 2022, ChemAxon) (31) and tabulated.

169

170 Specifically, information about the structure and molecular weight (MW) was obtained
171 from the DrugBank (30). The mean MW \pm SEM, and the median MW of the three
172 groups was then calculated and the results compared.

173

174 The gross charge distribution at pH 7.4 of each molecule was then obtained from
175 MarvinSketch. The mean gross charge distribution at physiological pH (\pm SEM) of the
176 three groups was then calculated and the results compared. The number of
177 microspecies of each molecule at pH7.4 was examined and the percentage prevalence
178 and charge of the top two microspecies was then reported (MarvinSketch). The
179 physicochemical characteristics of the three groups were compared to those obtained
180 for amisulpride.

181

182 ***In silico* molecular docking**

183 *In silico* molecular docking was used to examine the molecular level interactions of
184 amisulpride, alpha-D-glucose, beta-D-glucose, and sucrose with GLUT1 using the
185 molecular docking tool GOLD. The main endogenous substrate of GLUT1 is D-
186 glucose, which is a monosaccharide present in the body as anomers: 36% alpha-D-
187 glucose and 64% beta-D-glucose (32). In this molecular docking study alpha-D-
188 glucose and beta-D-glucose were used as positive controls. Sucrose is a plant
189 disaccharide which is thought not to interact with GLUT1 and was used as the negative
190 control.

191

192 The GLUT1 Protein Database (PDB) code used was 5EQI – the crystal structure of
193 human GLUT1. The 5EQI crystal structure is for the inward open conformation of the
194 transporter which has been reported to be the most favourable for ligand binding (33).

195

196 The results from the molecular docking simulations were expressed as a free energy
197 binding and chem score. A molecule is considered a substrate for a given transporter if
198 their interaction has a free energy binding of $\leq 5\text{kcal/mol}$ and has a high chem score.
199 The chem score is one of the scoring functions of the molecular docking program. It
200 provides information on the strength of the interaction between ligand and binding
201 sites.

202

203 ***In vitro* studies in model of the human BBB (hCMEC/D3 cells)**

204 The human cerebral microvessel endothelial cells/D3 (hCMEC/D3) are an
205 immortalised human adult brain endothelial cell line. This is a well-established and
206 characterised model, regularly used to study the human BBB (16,34). The hCMEC/D3
207 cell line originated from human brain tissue obtained following surgical excision of an
208 area from the temporal lobe of an adult female with epilepsy (34).

209 hCMEC/D3 cells were used to study the interaction between GLUT1 and amisulpride.
210 To do this, the expression of a functional GLUT1 was first confirmed using Western
211 blot (WB) and accumulation assays with [¹⁴C]D-glucose. This was followed by further
212 accumulation assays with [¹⁴C]D-glucose and non-labelled amisulpride. [³H]mannitol
213 was used as a marker of cellular integrity and non-specific binding to the membranes
214 and plastic wear. The hCMEC/D3 cells (passages 30-35) were grown as described
215 previously by Sekhar et al., 2019 (16). All experiments were carried out at King's
216 College London, in accordance with the guidelines of the Local Ethics Committee and
217 research governance guidelines.

218

219 **Western blot studies – expression of GLUT1 in hCMEC/D3 cells**

220 Cells were grown for four to five days in T-75 flasks until they formed a fully confluent
221 monolayer, and then for another two to three days before harvesting and preparing
222 lysates for WB. Lysates were prepared by placing the flask on ice, aspirating the
223 medium and washing the cells in ice-cold phosphate buffered saline (#70011-36 Gibco,
224 Fischer Scientific Ltd, UK). The cells were then incubated on a shaker for 10 minutes
225 in radio-immunoprecipitation assay (RIPA) buffer (#R0278, Sigma, UK) and 1% (v/v)

226 protease inhibitors (#78441, Thermo Fisher Scientific, UK) for cell lysis and protein
227 solubilisation. The cells were then scraped off from the bottom of the flask and
228 transferred to an Eppendorf tube. The tube was then agitated for 20 to 30 minutes at
229 4°C. Next, the cell suspension was centrifuged (Biofuge Fresco, Heraeus Instruments,
230 UK) for 20 minutes at 11,753 x G at 4°C. The resulting supernatant (protein lysate) was
231 snap frozen in liquid nitrogen. Before the start of the WB procedure, the protein lysates
232 were thawed and the total protein concentration in each lysate was estimated by
233 bicinchoninic acid (BCA) assay using bovine serum albumin standards (Thermo
234 Scientific, UK) as described by Sekhar et al., 2019 (16).

235

236 The protein lysates for WB were mixed with sample loading buffer (1:4) (#NP0007
237 NuPAGE LDS Sample Buffer (4x), Invitrogen, Carlsbad, USA), reducing agent (1:10)
238 (#B0009, Novex by Life Technologies, USA), and RIPA buffer. Once prepared, they
239 were heated at 95°C for 5 minutes. The rest of the WB procedure was performed as
240 described in (16) except, 30 µg of protein was loaded in each well, antibody solutions
241 were made in 5% milk in TBS-T, and washes were performed in TBS-T (for antibodies
242 dilutions see Supplementary Table 1, S1 File). Quantification of protein expression was
243 determined by calculating the intensity ratio of the band of interest and the band of the
244 loading control (GAPDH). Band intensity ratio analysis was conducted using ImageJ
245 software (35).

246

247 **Accumulation assays – function of GLUT1 in hCMEC/D3 cells**

248 The cell culture method and experimental design of the accumulation studies are
249 described in the following sections. The cells were grown as already described in the
250 “*In vitro* studies” section. They were split at 80-90% confluence and were seeded at
251 25,000 cells/cm² in the central 60 wells of 96 well plates for accumulation assay
252 experiments (#10212811, Fisher Scientific, UK). They were grown for four to five days
253 until they formed a fully confluent monolayer, and then for another two to three days
254 before the start of the accumulation assay.

255 For the control accumulation assay experiments, the hCMEC/D3 cells were incubated
256 in an accumulation buffer (135 mM NaCl, 10 mM HEPES, 5.4 mM KCl, 1.5 mM
257 CaCl₂H₂O, 1.2 mM MgCl₂.H₂O, 1.1 mM D-glucose - the standard non-labelled D-
258 glucose concentration for the accumulation buffer, and water, pH = 7.4) for 1 h. The
259 buffer also contained [¹⁴C]D-glucose (3 µM) and [³H]mannitol (0.05 µM).
260 [³H]Mannitol was used as a marker for non-specific binding, and barrier integrity
261 (36,37). All treatment conditions contained 0.05% DMSO. Incubation was performed
262 in a shaker at 37°C and 120 rotations per minute. Next, the cells were washed with ice-
263 cold phosphate buffered saline (#BR0014G, Oxoid Limited, England) to stop the
264 accumulation process and to remove any radiolabelled molecules and buffer that had
265 not entered the cells. Then the cells were incubated in 1% Triton X (200 µl per well)
266 for 1 h at 37°C, to solubilise the cell membranes, and to free any accumulated
267 radiolabelled compounds via lysis. Half of the cell Triton X lysate from each well was
268 pipetted into a scintillation vial and 4 ml of scintillation fluid (#6013329, Ultima
269 GoldTM, Perkin Elmer, USA) was added. The amount of ¹⁴C and ³H radioactivity in

270 the sample was measured in disintegrations per minute (dpm) on a Tricarb 2900TR
271 liquid scintillation counter. The dpm of each sample were corrected for background
272 dpm. The background dpm was determined from a vial containing 100 μ l 1% Triton X
273 and 4 ml liquid scintillation fluid only. The remaining cell lysate in the plate was used
274 for total protein concentration control in each well, determined by BCA analysis (17).

275

276 In our self-inhibition studies, investigating the presence of a functional GLUT1
277 transporter in the hCMEC/D3 cells, the cells were incubated with accumulation buffer,
278 containing [¹⁴C]D-glucose (3 μ M), [³H]mannitol (0.05 μ M) and 4 mM non-labelled D-
279 glucose. The 4 mM total concentration of non-labelled D-glucose included the standard
280 1.1 mM non-labelled D-glucose normally present in accumulation buffer. Radioactivity
281 uptake was compared to the control condition in which the cells were treated with
282 accumulation buffer of the same composition apart from the non-labelled D-glucose
283 content which was 1.1 mM (the standard non-labelled D-glucose concentration in the
284 accumulation buffer). All treatments contained 0.05% DMSO. After 1 h incubation, the
285 cells were lysed and used for liquid scintillation counting and BCA assay as already
286 described. The non-labelled D-glucose concentration for the treatment condition (4
287 mM) was selected based on previous reports that normal plasma glucose concentrations
288 are kept in a narrow range between 4 and 8 mM in healthy subjects (38) and on
289 preliminary experiments studying the effect of 4, 6, and 9 mM non-labelled D-glucose
290 on the membrane integrity of hCMEC/D3 cells (see Supplementary Fig 2, S1 File).

291 In order to assess the effect of amisulpride on the transport of D-glucose through the
292 hCMEC/D3 membrane, non-labelled amisulpride (20, 50, or 100 μ M) was added to the

293 accumulation buffer, containing [¹⁴C]D-glucose (3 μ M), [³H]mannitol (0.05 μ M), and
294 non-labelled D-glucose (1.1 mM - total standard concentration of non-labelled D-
295 glucose in the accumulation buffer). All treatment conditions contained 0.05% of
296 DMSO. The cells were incubated with this mixture for 1 h, the BCA assay and liquid
297 scintillation counting was performed as described previously.

298 The total cellular accumulation of [¹⁴C]D-glucose was expressed as a volume of
299 distribution (V_d ; μ l/mg). V_d was calculated as the ratio of disintegrations per minute
300 (dpm)/mg protein in the Triton X lysate to dpm/ μ l of the accumulation buffer. The V_d
301 values for [³H]mannitol were subtracted from the V_d values for [¹⁴C]D-glucose to
302 correct for cell membrane integrity. This value was then divided by the protein content
303 in each well to correct for protein content. Values were expressed as a mean \pm SEM.

304

305 Statistical analysis of the results from the self-inhibition studies was performed using
306 unpaired one-tailed Student's t-test. The results from the studies of the interaction
307 between amisulpride and GLUT1 were analysed using One-way ANOVA. All
308 statistical analysis was performed with GraphPad Prism 9.0.

309 **Animal model studies in WT and 5xFamilial AD (FAD) mice**

310 The 5xFAD mice are a model of AD which carry human amyloid- β precursor
311 protein (APP) with the Swedish (K670N, M671L), Florida (I716V), and London
312 (V717I) FAD mutations along with human PSEN-1 with two FAD mutations: M146L
313 and L286V under the murine Thy-1 promotor (39). This model has been described as

314 one of the few models that shows several AD hallmarks, including neural loss,
315 neurodegeneration, gliosis, and spatial memory deficits (40).

316

317 We confirmed the model phenotype in the following ways: comparing the weight of
318 females and males from the two genotypes; using transmission electron microscopy
319 (TEM) to confirm the presence of amyloid plaques in the brain of 5xFAD mice;
320 comparing the expression of APP in brain capillary enriched pellets isolated from WT
321 and 5xFAD mice. Enrichment of the pellets with brain endothelial cells was confirmed
322 using transferrin receptor 1 (TfR1) as an endothelial cell marker.

323

324 **Animal husbandry**

325 All *in vivo* experiments were performed in accordance with the Animal Scientific
326 Procedures Act (1986) and Amendment Regulations 2012 and with consideration to the
327 Animal Research: Reporting of *In Vivo* Experiments (ARRIVE) guidelines. The study
328 was approved by the King's College London Animal Welfare and Ethical Review
329 Body. The UK government home office project license number was 70/7755.

330

331 The mice were housed at King's College London in groups of three or four under
332 standard conditions (20-22°C, 12 h light/dark cycle) with food and water *ad libitum*.
333 They were housed in guideline compliant cages. Animal welfare was assessed daily by
334 animal care technicians. Animals were identified by earmarks. The experimenter was
335 not blinded to the mouse genotype.

336

337 The WT (C57/BL6) mice and the 5xFAD mice (on C57/BL6 background) were
338 between 4.5 and 15 months old. The average lifespan of the C57/BL6 mice has been
339 reported to be 30 months (41). Whereas the 5xFAD mice have been reported to have
340 lifespan of approximately 15 months (42), with some authors reporting a median
341 lifespan of up to 24.6 months (41).

342

343 **TEM ultrastructural study**

344 To assess A β plaque presence in the brain in WT and 5xFAD mice we used TEM. All
345 studied animals were female. The animals of each genotype were grouped into two age
346 ranges. The groups were WT 4.5-6 months, 5xFAD 6 months, WT 12 months, 5xFAD
347 12 months with n=2 mice per group. The weight of the animals was between 21.9 g and
348 26.7 g. For brain dissection, all animals were terminally anaesthetised with
349 intraperitoneal injection of pentobarbital (100 μ l/animal) (Fort Dodge, Southampton,
350 UK).

351

352 Once each mouse was anaesthetised, it was perfuse-fixed. The left ventricle of the heart
353 was infused with ice-cold phosphate buffered saline and the right atrium sectioned to
354 provide an open circuit. Once the vasculature was free of blood, 4% paraformaldehyde
355 (PFA, #F017/2, TAAB, UK) was infused via the heart. Fixation with 4% PFA was
356 performed for 10 minutes. The brain was then removed, and the frontal cortex was
357 dissected, and cut into 1 mm³ samples.

358 The brain samples were processed, and sectioned for TEM, and then imaged. The
359 samples were incubated overnight at 4°C in TEM fixative, containing 2.5% (v/v)

360 glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3). The tissues were post fixed in 1%
361 (w/v) osmium tetroxide (#O021, TAAB, UK) for 1.5 h at 4°C. Then they were washed
362 and dehydrated through serial graded incubations in ethanol: 10%, followed by 70%,
363 and 100%. The tissue was infiltrated in embedding resin medium (#T028, TAAB, UK)
364 for 4 h at room temperature. The samples were embedded on flat moulds and
365 polymerised at 70°C for 24 h. Ultrathin sections (100-120 nm) were cut on a Leica
366 ultramicrotome (Leica Microsystems, Germany) and mounted on mesh copper grids.
367 They were contrasted with uranyl acetate for 2 minutes and with lead citrate for 1
368 minute. The sections were imaged on an EM-1400 (Plus) transmission microscope
369 operated at 120 kV (JEOL USA, Inc.).

370

371 For each frontal cortex sample, a minimum of three images were collected, and
372 amyloid plaques were identified and labelled with reference to electron microscopic
373 atlas of cells, tissues, and organs (43). The dimensions of each image were 3296x2472
374 pixels.

375 **Western blot studies**

376 We isolated the brain capillaries of each mouse used in the *in situ* brain perfusion
377 experiments. The mouse brain was *in situ* perfused via the heart with artificial plasma,
378 infused with rabiolabelled amisulpride and radiolabelled sucrose for 10 minutes. Then
379 it was homogenised in capillary depletion buffer (10.9 mM HEPES, 141 mM NaCl, 4
380 mM KCl, 2.8 mM CaCl₂ (aqueous solution - 1M), 1 mM MgSO₄.7H₂O, 1 mM
381 NaH₂PO₄, 10 mM glucose) (brain weight x 3) and 26% dextran (MW 504.4 g/mol)
382 (#J14495.A1, VWR, UK) (brain weight x 4). The homogenate was centrifuged at 5,400

383 G for 15 min at 4°C. This resulted in separation of an endothelial cell-enriched pellet
384 and a supernatant containing the brain parenchyma and interstitial fluid. Half of the
385 capillary pellets were snap frozen in liquid nitrogen and used for WB analysis to test
386 for TfR1, and BBB transporter expression, including GLUT1, and P-glycoprotein (P-
387 gp).

388

389 For WB, the mouse endothelial cell enriched capillary pellets were thawed,
390 homogenised in 250 µl RIPA buffer with added protease inhibitor (1% v/v). The tissue
391 was incubated in the buffer at 4°C for 30 minutes and then centrifuged (Biofuge
392 Fresco, Heraeus Instruments, UK) at 7,999 G for 15 minutes at 4°C. The resulting
393 supernatant was used for WB analysis. The rest of the WB procedure was performed as
394 previously described in this paper. For antibodies used, see Supplementary Table 1, S1
395 File.

396 Quantification of protein expression was determined by calculating the intensity ratio
397 of the band of interest and the band of the loading control (GAPDH or tubulin). Band
398 intensity ratio analysis was conducted using ImageJ software (35).

399

400 Unpaired two-tailed Student's t-test was used for statistical analysis of the difference in
401 expression of each transporter studied between the WT and the 5xFAD mice.

402

403 ***In situ* brain perfusions**

404 The *in situ* brain perfusion technique allows examination of the movement of slowly
405 moving molecule across the BBB in the absence of systemic metabolism. This method

406 was used to compare [³H]amisulpride and [¹⁴C]sucrose uptake into the brain in WT and
407 in 5xFAD mice.

408

409 The mice were terminally anaesthetised with medetomidine hydrochloride (2 mg/kg,
410 Vetoquinol UK Limited) and ketamine (150 mg/kg, Pfizer, UK, and Chanelle, UK),
411 injected intraperitoneally. Heparin was injected intraperitoneally before the perfusion
412 (100 units heparin dissolved in 0.9 % NaCl (aqueous solution) (heparin – batch
413 number: PS40057; NaCl - Sigma Aldrich, Denmark). Two experimental groups were
414 perfused – WT (12-15 months old, n=7, n=4 females, n=3 males) and 5xFAD (12-15
415 months old, n=7, n=4 males, n=3 females). Weights of the perfused mice were between
416 16.8 g and 41.5 g. Animals with a weight lower than 25 g were excluded from the
417 perfusion analysis as perfusion at a flow rate of 5.5 ml/min could cause loss of BBB
418 integrity (44) but their capillary lysates were used in WB experiments.

419 Artificial plasma was used in the perfusion experiments. It contained 117 mM NaCl,
420 4.7 mM KCl, 2.46 mM MgSO₄.7H₂O, 24.8 mM NaHCO₃, 1.2 mM KH₂PO₄, 2.5 mM
421 CaCl₂ (aqueous solution - 1M), 39 g/L Dextran, 10 mM glucose, 1g/L bovine serum
422 albumin, and it was mixed with Evan's blue dye (0.0551 g per 1 L of artificial plasma,
423 #E2129-10G, Sigma Life Science, India). It was warmed to 37°C and oxygenated by
424 95% O₂/5%CO₂ gas bubbled through the solution. The artificial plasma also contained
425 [³H]amisulpride (6.5 nM) and [¹⁴C]sucrose (9.4 μM). Perfusion time was 10 minutes.

426 After the perfusion, the brain was dissected out and weighed. The frontal cortex,
427 striatum, thalamus, and hypothalamus were dissected under a microscope (Leica,

428 Wetzlar, Germany), weighed, and solubilised in Solvable (#6NE9100, PerkinElmer,
429 Inc., USA) for 2-3 days, then they were taken for liquid scintillation counting. These
430 regions were selected to compare with data from other *in situ* brain perfusion
431 experiments and observations from human brain data sets (16) focused on similar areas,
432 including the caudate nucleus and the putamen which are part of the striatum (45).

433 The rest of the brain was used for capillary depletion as already described. The whole
434 brain homogenate, supernatant (containing brain parenchyma and interstitial fluid), and
435 half of the capillary pellets were also solubilised and used for liquid scintillation
436 counting.

437 The concentration of [³H] or [¹⁴C] radioactivity present in the brain (disintegrations per
438 minute per gram of tissue – dpm/g) was expressed as a percentage of the concentration
439 of radioactivity detected in the artificial plasma (disintegration per minute per
440 millilitre). The value obtained was named %Uptake showing the radioactivity in ml/g
441 of tissue x 100. The %Uptake values for [³H]amisulpride were corrected for vascular
442 space by subtracting the corresponding [¹⁴C]sucrose Uptake values from the
443 [³H]amisulpride Uptake values.

444 Statistical analysis of the difference between the uptake of [¹⁴C]sucrose corrected
445 [³H]amisulpride into the brain of WT and 5xFAD was performed using unpaired two-
446 tailed Student's t-test for the capillary pellet, supernatant, and homogenate . The
447 difference between WT and 5xFAD mice in the [³H]amisulpride uptake in the brain
448 areas studied was analysed with Mixed-effects analysis with Holm-Sidak post hoc test.

449 The same tests were used to analyse the difference in the [¹⁴C]sucrose brain uptake
450 between WT and 5xFAD mice.

451 **Human control and AD tissue studies**

452 We used TEM to examine the brain and brain capillary ultrastructure of an AD case.
453 Brain capillary depletion samples from age-matched human control and AD cases were
454 used to evaluate and compare the total protein levels and the expression levels of Tfr1,
455 GLUT1 and P-gp in the two groups.

456

457 **Ethics statement**

458 Human tissue brain samples were provided via Brains for Dementia Research (BDR)
459 and were anonymised. Written consent was provided by BDR and the specific BDR
460 reference numbers were: TRID_170, TRID_170 amendment, TRID_265 and
461 TRID_287.

462 BDR has ethical approval granted by the National Health Service (NHS) health
463 research authority (NRES Committee London-City & East, UK: REC
464 reference:08/H0704/128+5. IRAS project ID:120436). Tissue samples were supplied
465 by The Manchester Brain Bank and the London Neurodegenerative Diseases Brain
466 Bank, both of which are part of the BDR programme, jointly funded by Alzheimer's
467 Research UK and Alzheimer's Society. Tissue was received on the basis that it will be
468 handled, stored, used, and disposed of within the terms of the Human Tissue Act 2004.
469 The human samples were collected during February 2012 to February 2019. The
470 human tissue studies were conducted during 1st October 2018 to 29th January 2021.

471 The authors conducting the human tissue analysis studies did not have access to
472 information that could reveal the identity of the human tissue donors.

473

474 **TEM ultrastructural study**

475 The tissue used was from one case which was received from the London
476 Neurodegenerative Diseases Brain Bank, Denmark Hill, King's College London. Case
477 details: BBN002.32856; sex: female; age: 74; post-mortem delay: 19 h; pathological
478 diagnosis: Alzheimer's disease, modified Braak staging (BrainNet Europe – BNE
479 staging) stage VI.

480

481 Samples with size of up to 1 x 5 x 1 mm were dissected from the frontal cortex, caudate
482 and putamen. Each sample was immersed in TEM fixative (2.5% glutaraldehyde in
483 0.1M cacodylate buffer) and incubated overnight at 4°C. The samples were then post-
484 fixed in 1% (w/v) osmium tetroxide (#O021, TAAB, UK) for 1.5 h at 4°C. Then they
485 were washed and dehydrated through serial graded incubations in ethanol - 10%
486 ethanol, followed by 70%, followed by 100%. The tissue was infiltrated in embedding
487 resin medium (#T028, TAAB, UK) for 4 h at room temperature. Next, the samples
488 were embedded on flat moulds and polymerised at 70°C for 24 h. Ultrathin sections
489 (100-120 nm) were cut on a Leica ultramicrotome (Leica microsystems, Germany) and
490 mounted on mesh copper grids. They were contrasted with uranyl acetate for 2 minutes
491 and with lead citrate for 1 minute. Finally, the sections were imaged on an EM-1400
492 (Plus) transmission microscope operated at 120 kV (JEOL USA, Inc.). For each section
493 of each brain region (frontal cortex, caudate, putamen), 5 to 10 pictures were examined

494 for pathological changes in the capillary and neurovascular unit. The original
495 dimensions of the images are 3296□x2472 pixels.

496

497 The presence of a single layer of endothelial cell surrounded by a layer of basement
498 membrane was considered to be an intact capillary. The observation of oedematous
499 space and vacuoles around the vessels, vacuolated pericytes, large vacuoles in the
500 endothelial cells or endoplasmic reticulum swelling, as well as oedema around the
501 capillary and multiple layers of basement membrane were considered as signs of
502 pathological changes (46). Neurodegeneration was identified by the presence of
503 lipofuscin granules, loss of myelin compactness, neurite degeneration and fibrillary
504 deposits (47,48).

505

506 **Western blot studies**

507 Post-mortem brain capillaries from neurologically healthy individuals and AD cases
508 were used to investigate the expression of transporters. The Braak stage of the control
509 cases was between I, and II (age-related pathology only). For the AD cases, the Braak
510 stage was between IV and VI. See Supplementary Information about the sex, age,
511 post-mortem delay (PMD), clinical diagnosis, and Braak stage of the individual cases
512 (Supplementary Table 2, S1 File).

513

514 Brain capillaries isolated from healthy individuals and AD patients were used to
515 investigate the expression levels of BBB transporters of interest by WB analysis. Brain
516 capillaries were isolated after homogenising brain tissue from the frontal cortex or the

517 caudate and carrying out a dextran-based density-gradient centrifugation to produce a
518 capillary enriched pellet. The capillary pellet was then homogenised in capillary
519 depletion buffer (brain weight x 3) and 26% dextran (brain weight x 4). The
520 homogenate was subjected to density gradient centrifugation (5,400 G for 15 minutes at
521 4°C) to give an endothelial cell-enriched pellet, the resulting supernatant was discarded
522 (49). The pellet was further lysed in 150-200 µl ice-cold RIPA buffer with added
523 protease inhibitors at 4°C, and then centrifuged at 8,000 G for 15 minutes at 4°C.

524

525 The protein concentration in each lysate was determined using a BCA assay and the
526 WB procedure was carried out as already described. For antibodies used, see
527 Supplementary Table 1, S1 File.

528

529 We used anti-TfR1 antibodies to detect TfR1 - an endothelial cell marker. This way we
530 aimed to confirm that the capillary pellets were enriched in endothelial cells. We also
531 used antibodies to detect GLUT1, and P-gp.

532

533 Quantification of protein expression was determined by calculating the intensity ratio
534 of the band of interest and the band of the loading control (GAPDH). Band intensity
535 ratio analysis was conducted using ImageJ software (35).

536

537 For statistical analysis, we used two-tailed unpaired Student's t-test to compare the
538 difference of transporter expression in the frontal cortex and the caudate between
539 control and AD cases.

540

541 Results

542 Physicochemical characteristics of amisulpride and glucose

543 We determined the physicochemical characteristics of amisulpride and D-glucose using
544 DrugBank and MarvinSketch. Amisulpride (chemical abstracts service (CAS) number
545 71675-85-9) has a MW of 369.48 g/mol, a pKa of 9.37 and exists as two microspecies
546 at physiological pH. The predominant (96.77%) microspecies is positively charged and
547 has a single positive charge at pH 7.4. The other microspecies (3.23%) has no charge
548 (Fig 1). The gross charge distribution at pH 7.4 of amisulpride is +0.968.

549

550 **Fig 1. The percentage distribution and chemical structures of the two amisulpride**
551 **microspecies found at physiological pH.** Microspecies A has a single positive charge
552 and Microspecies B has no charge, according to MarvinSketch 22.9.0.

553

554 D-glucose has a MW of 180.16 g/mol, and a pKa of 11.8. In solution, at equilibrium,
555 D-glucose exists as two anomers that interconvert spontaneously: ~36% alpha-D-
556 glucose, and ~64% beta-D-glucose, with less than 0.01% being present as an open-
557 chain form (linear glucose) (32,50). The major microspecies (99.99%) of both alpha-
558 D-glucose and beta-D-glucose has no charge (Supplementary Table 2, S1 File). The
559 other microspecies (0.01%) of each anomer has a single negative charge at
560 physiological pH. The linear form of D-glucose was found to be 100% neutral. Only
561 alpha- and beta-D-glucose have been included in the GLUT1 substrates group
562 (Supplementary Table 2, S1 File).

563

564 Identification of GLUT1 substrates and inhibitors

565 Our two PubMed searches identified 99 reviews, and 16 primary research articles,
566 which discussed GLUT1 substrates, GLUT1 inhibitors or antipsychotics which
567 interacted with GLUT transporters and matched our inclusion criteria. In these reviews
568 and primary research articles, 9 GLUT1 substrates, 33 GLUT1 inhibitors, and 11
569 GLUT-interacting antipsychotics (including 6 typical antipsychotics and 5 atypical
570 antipsychotics) were described and are listed in Supplementary Table 3-5, S1 File.
571 They include the typical antipsychotics: chlorpromazine, fluphenazine, loxapine,
572 pimozide and spiperone. Haloperidol is also included although some studies suggest
573 no interaction with GLUT (23)(51). Atypical antipsychotics include: clozapine,
574 desmethylclozapine, olanzapine, quetiapine and risperidone. Supplementary Table 6
575 (S1 File) provides specific details about the experimental evidence that indicates that
576 these 11 antipsychotics interact with GLUT. In all cases this interaction was
577 considered to be inhibitory.

578

579 Physicochemical characteristics of published substrates and 580 inhibitors of GLUT1

581 Molecular Weight

582 The physicochemical characteristics of the identified GLUT1 substrates, GLUT1
583 inhibitors and the antipsychotics that interact with GLUT are summarised and
584 compared to amisulpride (Fig 2, Table 1, and Supplementary Table 3-5, S1 File). The
585 MW range for the GLUT1 substrates was 164.16 g/mol to 232.28 g/mol, with a

586 mean \pm SEM of 184.95 ± 6.45 g/mol, the MW range of the GLUT1 inhibitors was 180.16
587 g/mol to 518.55 g/mol with a mean \pm SEM of 325.50 ± 14.4 g/mol and the MW range for
588 GLUT interacting antipsychotics was 312.44 to 461.55 g/mol with a mean \pm SEM of
589 369.38 ± 16.04 g/mol (Table 1). One-way ANOVA showed differences in the MW F (2,
590 50) = 18.72, Tukey's multiple comparisons test showed significant difference between
591 the MW of GLUT1 substrates and inhibitors ($p<0.0001$), and between GLUT1
592 substrates and antipsychotics ($p<0.0001$) (Fig 2A). No significant difference was
593 observed between the MW of the GLUT1 inhibitors and the group of antipsychotics
594 (Fig 2A).

595

596 **Fig 2. Physicochemical characteristics of GLUT1 substrates and inhibitors.**
597 Evaluation of the PubMed database identified 9 substrates and 33 inhibitors of GLUT1,
598 and 11 antipsychotics inhibiting cell entry of GLUT1 substrates. A) Comparison of the
599 molecular weight (g/mol) of substrates, inhibitors of GLUT1, and antipsychotics. Each
600 square, dot, and triangle represents a compound. Comparison of the predicted gross
601 charge of substrates, inhibitors of GLUT1, and antipsychotics at pH=7.4, according to
602 MarvinSketch 22.9.0. Data was analysed using One-way ANOVA, GraphPad Prism 9.
603 B) The pie charts show the molecular weight of the substrates and inhibitors of
604 GLUT1, and of antipsychotics inhibiting cell entry of GLUT1 substrates. C) The pie
605 charts show the charge of the most prevalent microspecies of the GLUT1 substrates,
606 inhibitors, and antipsychotics interacting with GLUT at physiological pH according to
607 MarvinSketch 22.9.0.

608

609 The median for the GLUT1 substrates was 180.16 g/mol, for the GLUT1 inhibitors it
610 was 308.34 g/mol, for the antipsychotics it was 375.86 g/mol (Table 1). We found that
611 88.89% of the GLUT1 substrates were small molecules with a MW between 101 and
612 200 g/mol (Fig 2B). The GLUT1 inhibitors showed a wider range of molecular weight
613 with the majority falling (69.7 %) between 250 and 400 g/mol (Figure 2B). The
614 majority (72.73%) of the antipsychotics affecting GLUT1 substrates uptake were in
615 the range of 301-400 g/mol (Fig 2B). There was no significant difference in the
616 molecular weight between the typical (386.18±23.42) and the atypical antipsychotics
617 (349.21±20.14) ($t=1.169$, $df=9$, $p= 0.27$, two-tailed unpaired t-test).

618

619

620

621 **Table 1: Summary of the MW range, Mean±SEM, Median (g/mol), and gross charge at**

	GLUT1 substrates n=9	GLUT1 inhibitors n=33	Antipsychotics n=11		
			All	Typical n=6	Atypical n=5
MW Range (g/mol)	164.16-232.28	180.16-518.55	312.44-461.55	318.86-461.55	312.44-410.49
Mean ± SEM (g/mol)	184.95±6.45	325.50±14.4	369.38±16.04	386.18±23.42	349.21±20.14
Median (g/mol)	180.16	308.34	375.86	385.76	326.82
Gross charge at physiological pH	+0.089 ± 0.09	-0.30 ±0.06	+0.89 ±0.02	+0.90 ±0.02	+0.87 ±0.05

622 **physiological pH of GLUT1 substrates, inhibitors, and antipsychotics interacting with GLUT.**

623

624 **Charge**

625 We investigated the predicted gross charge distribution at physiological pH of the
626 identified substrates and inhibitors of GLUT1 as well as the GLUT interacting

627 antipsychotics (Fig 2A), and also reported the predicted charge and the percentage
628 distribution of the top two microspecies (Supplementary Table3-5, S1 File).

629

630 Overall, we found that GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting
631 antipsychotics had an average gross charge distribution at pH 7.4 of $+0.089 \pm 0.09$,
632 -0.30 ± 0.06 , and $+0.89 \pm 0.02$, respectively (Fig 2A, and Table 1). There was a
633 significant difference between all three groups (One-way ANOVA $F(2,50) = 58.96$,
634 $p < 0.0001$, Tukey's multiple comparisons test GLUT1 substrates vs GLUT1 inhibitors
635 ($p = 0.0057$); GLUT1 substrates vs antipsychotics $p < 0.0001$; GLUT1 inhibitors vs
636 antipsychotics $p < 0.0001$). There was no significant difference in the gross charge
637 between the typical (0.90 ± 0.02) and the atypical (0.87 ± 0.05) antipsychotics ($t = 0.678$,
638 $df = 9$, $p = 0.5147$, two-tailed unpaired t-test).

639

640 Importantly, there were two molecules which could be outliers within their groups.
641 This included the GLUT1 substrate, glucosamine, which had a much greater charge of
642 $+0.827$, and the atypical antipsychotic, quetiapine, which had a lower charge of $+0.696$
643 (Fig 2A).

644

645 GLUT1 substrates existed as either one, two or three microspecies at physiological pH.
646 GLUT1 inhibitors could exist as non-ionizable molecules (e.g. mercuric chloride) or as
647 up to 25 microspecies (e.g. morin) at physiological pH. The antipsychotics suggested
648 to interact with GLUT existed at physiological pH as either two, three or four
649 microspecies. This information plus the predicted charge of the top two microspecies
650 (if present) at physiological pH is tabulated in Supplementary Tables 3-5, S1 File. The

651 charge of the major microspecies of each group is presented in the form of pie charts
652 (Fig 2C). The major microspecies of GLUT1 substrates were neutral or had +1 charge,
653 GLUT inhibitors were neutral or had -1 charge and the anti-psychotics which interacted
654 with GLUT all had +1 charge at physiological pH.

655

656 ***In silico* molecular docking**

657 *In silico* molecular docking studies revealed that amisulpride could interact with
658 GLUT1 based on the low free energy binding of the interaction: -29.04 kcal/mol, and
659 the high chem score: 26.79. The molecular docking predicted conventional hydrogen
660 bonds between oxygen atoms from amisulpride and the amino acids: threonine (THR)
661 A: 137, and tryptophan (TRP) A: 412, and between hydrogen atom in the NH₂ group of
662 amisulpride and asparagine (ASN) A: 411. Alkyl interaction between amisulpride and
663 the amino isoleucine (ILE) A: 164, and pi-pi stacking interaction between amisulpride
664 and TRP A: 412 were also observed (Fig 3A).

665

666 **Fig 3. Molecular level interactions of amisulpride, alpha-D-glucose, beta-D-**
667 **glucose, and sucrose with the binding sites of GLUT1.** 2D (left) and 3D (right)
668 representations. In the 2D representations, green dotted lines are used to show
669 hydrogen bonds, pink dotted lines are used to depict hydrophobic interactions. A) Stick
670 representation is used for amisulpride, and line representation for the amino acid
671 residues from GLUT1. B) Stick representation is used for alpha-D-glucose, and line
672 representation for the amino acid residues from GLUT1. C) Stick representation is used
673 for beta-D-glucose, and line representation for the amino acid residues from GLUT1.

674 D) Stick representation is used for sucrose, and line representation for the amino acid
675 residues from GLUT1.

676

677 We also studied the interaction of GLUT1 with alpha-D-glucose and beta-D-glucose.
678 This interaction was used as a positive control. Molecular docking study found that
679 both alpha-D-glucose, and beta-D-glucose are substrates for GLUT1 with free binding
680 energy of -15.39 kcal/mol and chem score of 15.29. Conventional hydrogen bonds
681 between alpha-D-glucose and beta-D-glucose, and GLUT1 were observed at TRP A:
682 388, glutamine (GLN) A: 282, ASN A: 411, and THR A: 137 (Fig 3B and 3C). The
683 negative control sucrose, a disaccharide, showed higher free binding energy and lower
684 chem score than amisulpride, and alpha- and beta-D-glucose (monosaccharide). The
685 free energy binding for the interaction of sucrose with GLUT1 was -8.58 kcal/mol, and
686 the chem score was 6.55 (Fig 3D).

687

688 **Expression and Function of GLUT1 in hCMEC/D3 cells**

689 We examined the expression and function of GLUT1 in an established cell model of
690 the human BBB - the hCMEC/D3 immortalised cell line. Verification studies of the
691 experimental design were also performed.

692 **Expression of GLUT1 in hCMEC/D3 cells**

693 The hCMEC/D3 cells were found to express the GLUT1 transporter (40-60 kDa).
694 GAPDH was used as a loading control. Lysates from human colon adenocarcinoma
695 (Caco-2) cells were used as a positive control, and lysate from the human lung cancer

696 cell line (Calu-3) or human embryonic kidney cell line (HEK-293) were used as a
697 negative control (Fig 4A).

698

699 **Fig 4. Function of GLUT1 in hCMEC/D3 cells – self inhibition.** A) GLUT1
700 expression in hCMEC/D3 cells. Three passages of hCMEC/D3 cells (P30, 31, 33) (30
701 µg of protein per well) were tested for GLUT1 (40-60 kDa) expression. The figure is an
702 example membrane of three technical repeats. Caco-2 cell lysate was used as a positive
703 control; HEK-293 cell lysate was used as a negative control. GAPDH (37 kDa) was
704 used as a loading control. Antibodies used: anti-GLUT1 antibody – 1:100 000,
705 #ab115730; anti-GAPDH antibody – 1:2500, #ab9485, Abcam; secondary anti-rabbit
706 IgG, HRP-linked antibody – 1:2000, #7074, Cell Signalling Technology. B) V_d of
707 [³H]mannitol was not significantly different between the control and the experimental
708 conditions. C) Non-labelled glucose decreased significantly the accumulation of
709 [¹⁴C]D-glucose ([³H]mannitol corrected) in hCMEC/D3 cells after 1 h of incubation.
710 Results are expressed as mean ± SEM, n=3-4 plates, passages (P33, 34, and 35) with
711 five well replicates per treatment in each plate. Data were analysed with an unpaired
712 one-tailed Student's t-test, using GraphPad Prism 9, each point represents a plate.

713

714 **Accumulation assays – function of GLUT1 in hCMEC/D3 cells**

715 To check that excess concentrations of D-glucose did not affect the membrane integrity
716 of the hCMEC/D3 cells, verification studies were performed. Cells were incubated
717 with [¹⁴C]D-glucose and [³H]mannitol as a control (containing the standard amount of
718 non-labelled D-glucose – 1.1 mM), and with [¹⁴C]D-glucose, [³H]mannitol, and non-

719 labelled D-glucose (4 mM) as a test condition. There was no significant change in the
720 permeability of [³H]mannitol (cell permeability marker) when the cells were treated
721 with 4 mM non-labelled D-glucose for 1 h (Fig 4B). Further analysis and studies
722 could therefore be performed using similar D-glucose concentrations.

723

724 To investigate the function of GLUT1 in hCMEC/D3 cells, we performed a self-
725 inhibition experiment. Incubation of the cells with 4 mM non-labelled D-glucose for 1
726 h led to a significant decrease in the V_d of [¹⁴C]D-glucose (³H]mannitol and protein
727 corrected) (from $97.5 \pm 22.3 \mu\text{l/mg}$ to $37.3 \pm 10.8 \mu\text{l/mg}$; $t=2.161$, $df=5$, $p= 0.0415$,
728 unpaired one-tailed Student's t-test, data is presented as mean \pm SEM) (Fig 4C).

729 When we tested the interaction of amisulpride with GLUT1 in hCMEC/D3 cells, the
730 entry of [³H]mannitol (0.05 μM) into the cells was used as a cell integrity marker.
731 There was no significant change in the [³H]mannitol permeability when the cells were
732 treated with amisulpride (20, 50, or 100 μM) (Fig 5A). There was also no significant
733 effect on the V_d of [¹⁴C]D-glucose when the cells were treated with amisulpride (20, 50,
734 or 100 μM) (Fig 5B).

735

736 **Fig 5. Interaction of amisulpride with GLUT1 in hCMEC/D3 cells.** A) Amisulpride
737 at three different concentrations (20, 50, or 100 μM) did not have a significant effect on
738 the accumulation of [³H]mannitol in hCMEC/D3 cells after 1 h of incubation. B)
739 Amisulpride at three different concentrations (20, 50, or 100 μM) did not have a
740 significant effect on the accumulation of [¹⁴C]glucose (³H]mannitol corrected) in
741 hCMEC/D3 cells after 1 h of incubation. Results are expressed as mean \pm SEM, $n=3-4$

742 plates, passages (P33, 34, and 35) with five well replicates per treatment in each plate.
743 Data were analysed with a One-way ANOVA, using GraphPad Prism 9, each point
744 represents a plate.

745

746 **Animal model of AD - validation**

747 **Mouse weight comparison**

748 We compared the weight of the WT and 5xFAD mice and of the two sexes (age
749 between 12 and 15 months). All data are presented as mean \pm SEM. The WT mice had
750 higher average weight than the 5xFAD mice (32.31 ± 2.93 g vs 26.15 ± 2.5 g), and all
751 the 5xFAD mice with weight lower than 25 g were female. We observed that the
752 females had significantly lower weight (g) than the males in the 5xFAD group ($19.7 \pm$
753 1.46 vs 31 ± 1.61 ; $t=4.983$, $df=5$, $p=0.0042$; unpaired two-tailed Student's t-test). In the
754 WT group, weight difference between the sexes was smaller and did not reach
755 significance (Supplementary Fig 3, S1 File).

756

757 **TEM ultrastructural study**

758 We examined frontal cortex samples of WT and 5xFAD mice for the presence of A β
759 plaques using TEM. Structures were identified as A β plaques by comparison to A β
760 plaques which had previously been identified in TEM images (40). Amyloid plaques
761 were not observed in the frontal cortex of the young WT mice (4.5-6 months; weight
762 25.4 g, 26.1 g). Importantly, structures identical to A β plaques previously reported in
763 the literature (40) were present in the 5xFAD mice in both the young (6 months; weight
764 23.8 g, 23.5 g) and the old (12 months 21.9 g, 22 g, data not shown) group (Fig 6).

765 **Fig 6. TEM ultrastructural study in WT and 5xFAD mice.** TEM image of the
766 frontal cortex of A) WT mouse, which is free of A β plaques, and B) 5xFAD mouse,
767 with A β plaques. Mouse age – 4.5 – 6 months. Magnification – 1200x, scale bar – 10
768 μ m, n=2 mice per group.

769 **Western blot studies**

770 We performed WB for human APP to examine the genotype of each mouse used in this
771 study. APP is the precursor protein from which amyloid- β (A β) is cleaved by β -
772 secretase and γ -secretase (52). Our studies confirmed human APP expression was not
773 detectable in the WT mice, but was detectable in the 5xFAD mice cerebral capillaries
774 (See Supplementary Fig 4, S1 File)

775 We observed TfR1 and transporter expression in the mouse brain endothelial cell
776 lysates from WT and 5xFAD mice used in the *in situ* brain perfusions (See
777 Supplementary Fig 5, S1 File). Thus, these experiments confirmed we have
778 successfully isolated the BBB compartment from the whole brain.

779 In particular, brain capillaries from WT and 5xFAD mice were found to express
780 GLUT1, PMAT, multi-drug and toxin extrusion protein 1 (MATE1), OCT1, and P-gp.
781 No significant effect of the genotype was found on the expression of these proteins
782 (See Supplementary Figs 5-9, S1 File).

783

784 ***In situ* brain perfusions**

785 [3 H]amisulpride uptake (uncorrected for [14 C]sucrose) was significantly greater than
786 [14 C]sucrose uptake in all brain areas studied apart from the hypothalamus, thalamus,

787 and capillary pellet in the WT mice (paired two-tailed t-test, data not shown). In the
788 5xFAD mice the [³H]amisulpride uptake (uncorrected for [¹⁴C]sucrose) was
789 significantly greater than [¹⁴C]sucrose uptake in all brain areas studied (paired two-
790 tailed t-test, data not shown).

791

792 When comparing WT and 5xFAD mice, there was a trend for an increase in
793 [³H]amisulpride uptake into specific brain regions, whole brain homogenate, and
794 capillary pellet in the 5xFAD mice but this failed to reach statistical significance (Fig
795 7A and 7B). However, there was a statistically significant increase in the uptake of
796 radiolabelled amisulpride in the supernatant (made of brain parenchyma and interstitial
797 fluid) of 5xFAD mice compared to WT mice ($t=2.550$, $df=8$, $p=0.0342$, unpaired two-
798 tailed t-test, by 104.86%). These results were [¹⁴C]sucrose corrected. None of the
799 regions showed a significant difference in the [¹⁴C]sucrose uptake between the WT and
800 the 5xFAD mice (Fig 7A and 7B).

801

802 **Fig 7. [³H]Amisulpride (sucrose corrected) and [¹⁴C]sucrose uptake into the brain**
803 **of WT and 5xFAD mice.** WT and 5xFAD mice were perfused with [³H]amisulpride
804 and [¹⁴C]sucrose. Perfusion time - 10 minutes, fluid flow rate – 5.5 ml/min. Mouse age:
805 12-15 months. WT n=6, 5xFAD n=4, apart for the hypothalamus where WT n=5,
806 5xFAD n=4; the capillary pellet where WT n=3, 5xFAD n=3, and the homogenate
807 where WT n=6, 5xFAD n=3. No significant differences in paracellular permeability
808 and membrane integrity were observed in any region. Each dot represents data from
809 one mouse. All data are expressed as mean \pm SEM, Mixed effects analysis and
810 unpaired two-tailed Student's t-test, GraphPad Prism 9.

811

812 **Human control and AD tissue studies**

813 **TEM ultrastructural study**

814 For each brain region (frontal cortex, caudate, putamen), 10 to 20 pictures were
815 examined, and the endothelial cells, basement membranes, capillary lumens, axons,
816 myelin sheets and markers of degeneration were identified and labelled with reference
817 to Electron Microscopic Atlas of cells, tissues and organs (43). We observed thickened
818 basement membrane, vacuolisation of the endothelial cell, fibrillary deposits, and
819 oedema around brain capillaries in the frontal cortex, caudate and the putamen (Fig 8).
820 Various other features of degeneration were observed in our AD case (BNE stage VI),
821 including: lipofuscin granules in the frontal cortex and the putamen, and myelin
822 degeneration in the caudate (Fig 9).

823

824 **Fig 8. TEM image of capillaries in the frontal cortex (A) putamen (B) and caudate**
825 **(C) of a human AD case.** Frontal cortex and caudate magnification – 3000x scale bar –
826 2 μ m. Putamen magnification – 2000x, scale bar – 5 μ m. n=1 case, two sections per
827 brain area were stained and imaged, 5 to 10 images were examined per section. Case
828 number: BBN002.32856; Sex: F; Age: 74; PM delay: 19 h; Alzheimer's disease, BNE
829 stage VI.

830

831 **Fig 9. TEM image of the A) frontal cortex (A and C), putamen (B), and caudate**
832 **(D) of human AD case.**

833 A) TEM image of the frontal cortex of human AD case.

834 B) TEM image of the putamen of human AD case.
835 A and B showing electron dense and lucid portions of lipofuscin granules.
836 Magnification – 1500x, scale bar – 5 μ m.
837 C) TEM image of degenerating neurites and degenerating myelinated axon in the
838 frontal cortex of a human AD case. Magnification – 6000x, scale bar – 2 μ m.
839 D) TEM image of myelin and axon degeneration in the caudate of a human AD case.
840 Magnification – 2500x, scale bar – 5 μ m.
841 Case, n=1, two sections per brain area were stained and imaged, 5 to 10 images were
842 examined per section. Case number: BBN002.32856; Sex: F; Age: 74; PM delay: 19 h;
843 Alzheimer's disease, BNE stage VI.
844

845 **Total protein concentration**

846 A BCA assay was used to compare the total protein concentration in the frontal cortex
847 and caudate capillary lysates of control vs AD cases. For the frontal cortex control
848 cases n=9; AD cases n=9) and caudate (control cases n=9; AD cases n=5), an unpaired
849 two-tailed t-tests showed no significant difference between AD and control
850 (Supplementary Fig 10, S1 File).

851

852 **Western blot studies**

853 TfR1 was detected in the capillary protein lysates from the frontal cortex and caudate
854 of human brains both in the control and in AD cases. There was no significant
855 difference between the two groups in the frontal cortex or the caudate (unpaired two-

856 tailed t-test). The expression of TfR1 in the samples confirms they are endothelial cell
857 enriched (Fig 10).

858 **Fig 10: TfR1, GLUT1 and P-gp expression in human frontal cortex and caudate**
859 **brain capillary lysates. Comparing control and AD expression.** Intensity ratio was
860 calculated using the intensity of the band of TfR1, GLUT1 or P-gp, and controlling it
861 for the intensity of the loading control GAPDH. Results are presented as mean±SEM,
862 each dot represents a case, data was analysed using unpaired two-tailed Student's t-test.
863 All analysis was performed using Image J, Excel, and GraphPad Prism 9.

864

865 We studied the expression of GLUT1 in control and AD age-matched cases. We did
866 not see a significant change in the expression of GLUT1 between control and AD in the
867 frontal cortex or the caudate (Fig 10).

868

869 We also studied the expression of P-gp in control and AD age-matched cases. The
870 brain areas we examined were the frontal cortex and the caudate. We observed a
871 decrease in P-gp expression in the AD group compared to control, both in the frontal
872 cortex and the caudate. In the caudate this decrease was significant ($t=2.841$, $df=16$,
873 $p=0.0118$), unpaired two-tailed Student's t-test (Fig 10; Supplementary Figs 11-13, S1
874 File).

875

876 **Discussion**

877 This study investigated the role of GLUT1 in the transport of the antipsychotic,
878 amisulpride at the BBB, to understand better its role in the hypersensitivity of AD

879 patients to the side effects of antipsychotics compared to healthy aged patients (4). We
880 used an integrative approach to test the hypotheses that amisulpride interacts with
881 GLUT1 at the BBB, and that expression of BBB transporters and the transport of
882 amisulpride and glucose into the brain is affected by AD. Analysis of the published
883 literature allowed us to identify three groups of molecules: GLUT1 substrates, GLUT1
884 inhibitors and antipsychotics that interacted with GLUT. We then utilized specialist
885 chemical property databases to obtain a clearer picture of the physicochemical
886 characteristics of these molecules and their groups as well as amisulpride. *In silico*
887 docking studies allowed us to explore the specific molecular interactions of amisulpride
888 with GLUT1. WB and *in vitro* accumulation assays in hCMEC/D3 cells were used to
889 confirm the expression of GLUT1 protein in these BBB cells, the presence of
890 functional GLUT1 transporter, and to determine possible interactions between GLUT1
891 and amisulpride. We also examined the neurovascular unit architecture in WT and
892 5xFAD mice at an ultrastructural level using TEM and assessed the suitability of the
893 5xFAD mouse model to study the BBB permeability of amisulpride in AD. WB was
894 used to study the expression of SLC and ABC transporters, including GLUT1 at the
895 BBB in WT and 5xFAD mice. The *in situ* brain perfusion technique allowed us to
896 compare amisulpride uptake into compartments of the brain in WT and 5xFAD mice.
897 We also compared transporter expression in capillaries from human cases with and
898 without Alzheimer's dementia. TEM was utilised to directly visualise cellular
899 structures in an individual with AD.

900

901 **Physicochemical characteristics of GLUT1 substrates and**
902 **inhibitors**

903 Amisulpride is an atypical antipsychotic and has a MW of 369.48 g/mol. The main
904 microspecies (96.77%) at physiological pH has one positive charge. The other
905 microspecies (3.23%) of amisulpride at physiological pH has no charge. The gross
906 charge distribution at pH 7.4 of amisulpride is +0.968.

907

908 Our literature review and analysis of the chemical property databases revealed that
909 GLUT1 substrates are typically neutral, however, we have identified one substrate, D-
910 glucosamine, which has a positive gross charge distribution physiological pH of
911 +0.827. GLUT1 inhibitors are predominately neutral, but we identified inhibitors which
912 had a negative gross charge distribution at pH 7.4 (for example, -1.043 - Lavendustin
913 B).

914

915 Importantly, both typical and atypical antipsychotics were identified which impede
916 uptake of GLUT1 substrates *in vitro*. They all have a gross charge distribution which is
917 positive at physiological pH and their main microspecies at physiological pH has a
918 single positive charge, similar to amisulpride. An example is olanzapine for which
919 there is also *in silico* molecular docking data for an inhibitory interaction with a
920 bacterial glucose/H⁺ symporter from *Staphylococcus epidermidis*. It can impede the
921 alternating opening and closing of the substrate cavity necessary for glucose transport
922 (53). Another example is risperidone (24), which has been reported to interact with

923 GLUT, and to inhibit glucose uptake *in vitro* (in rat PC12 cells). Thus, it is plausible
924 that other atypical antipsychotics such as amisulpride could interact with GLUT1.

925

926 Although it is important to consider that not all antipsychotics interact with GLUT. For
927 example, sulpiride (CAS 23756-79-8; MW 341.43, gross charge at physiological pH
928 +0.972) and clozapine N-oxide (a clozapine metabolite: CAS 34233-69-7; MW 342.83,
929 gross charge at physiological pH +1.616) were reported to not have a significant effect
930 on glucose uptake *in vitro* (23,51).

931

932 When it comes to MW, all the established substrates of GLUT1 are smaller than
933 amisulpride – 164.16 to 232.28 g/mol (MW of the main substrate - glucose is 180.16
934 g/mol). Amisulpride, has a MW similar to the established GLUT1 inhibitors and to
935 the antipsychotics reported to inhibit uptake of GLUT1 substrates. Amisulpride is
936 therefore more likely to represent a GLUT1 inhibitor than substrate. However, this
937 interpretation is limited by the small number of established GLUT1 substrates, even
938 though a large number of reviews (99) were examined.

939

940 First generation antipsychotics are known to inhibit dopaminergic neurotransmission
941 most effectively by blocking about 72% of the D2 dopamine receptors in the brain.
942 They also block noradrenergic, cholinergic, and histaminergic receptors. Whereas,
943 second generation antipsychotics block D2 dopamine receptors and serotonin receptors
944 (5-HT), mainly the 5-HT2A subtype (54).

945

946 Interestingly, amisulpride (second generation antipsychotic) shows high and similar
947 affinities for the D2 and D3 dopamine receptor subtypes but it does not have significant
948 affinity to the other receptor subtypes (55).

949

950 Although atypical antipsychotics are usually considered to have a broader mechanism
951 of action compared to typical antipsychotics, there were no significant differences in
952 physicochemical characteristics of the two groups or in their reported type of
953 interaction with GLUT1.

954

955 ***In silico* studies**

956 *In silico*, GLUT1 was found to interact with amisulpride with a free energy binding of -
957 29.04 kcal/mol (the positive control, beta-D-glucose, showed free energy binding of -
958 15.39 kcal/mol, and the negative control, sucrose, showed much higher free energy
959 binding of -8.58 kcal/mol). Previous studies have shown that interactions with TRP412,
960 TRP388, phenylalanine (PHE) 291, PHE379 and glutamate (GLU) 380 may play
961 critical roles in ligand binding to GLUT1 in the inward open conformation (33). Also,
962 another study reported interactions between cytochalasin B, a competitive inhibitor of
963 glucose exit via GLUT1 (56), and THR137, ASN411, GLN282, ASN288, glycine
964 (GLY) 384 and TRP388 in GLUT1 (57). In addition, ASN411 and TRP412 were found
965 to be important for the binding of inhibitors in the central binding site of GLUT1 (57).
966 Importantly, we see interactions between amisulpride and GLUT1 at some of the
967 reported amino acid residues – TRP412, THR137 and ASN411. The interaction of
968 amisulpride with these specific amino acid residues in GLUT1, taken together with the

969 size of amisulpride compared to GLUT1 substrates and inhibitors, and its positive
970 charge, suggests amisulpride might competitively inhibit glucose delivery to the CNS
971 via GLUT1.

972

973 Dysfunction of GLUT1 is likely to cause further dysregulation of the neurovascular
974 unit (NVU), resulting in the loss of BBB integrity as well as the observed altered
975 transporter expression and increased A β toxicity in AD. Interestingly, increased
976 neuronal uptake of glucose has been shown to protect against A β toxicity, and altering
977 glucose delivery to the brain could influence progression of AD pathology (58). A
978 situation that may be exacerbated by the additional medications AD patients usually
979 receive (59). Antipsychotics are commonly prescribed with antidepressant or sedative
980 drugs (60), i.e., citalopram (2) (MW: 324.4; +1 charge at pH 7.4) (30). It can be
981 assumed that if two of these psychotropics are substrates (or inhibitors) for the same
982 transporter and are prescribed together then this is likely to change individual drug
983 delivery and potentially nutrient delivery to the CNS and contribute to the drug
984 hypersensitivity. In fact, polypharmacy is an important predictor of adverse drug
985 reactions for people with and without dementia (59).

986

987 ***In vitro* studies in model of the human BBB (hCMEC/D3
988 cells)**

989 We confirmed the expression of GLUT1 in the hCMEC/D3 cells with WBs. These
990 results are in line with previous studies. GLUT1 protein expression has been detected
991 in hCMEC/D3 cells and in brain microvascular endothelial cells derived from healthy

992 patient-derived induced pluripotent stem cells (61,62). Other glucose transporters'
993 mRNA has also been detected in the hCMEC/D3 cells, namely GLUT3 and sodium-
994 dependent glucose transporter 1 (SGLT1) (62,63). Protein expression of GLUT3 and
995 GLUT4, but not SGLT1, has also been reported in hCMEC/D3 cells (61). Nevertheless,
996 there is consensus that GLUT1 is the most highly expressed transporter in the
997 hCMEC/D3 cells and the BBB (64).

998

999 *In vitro*, our self-inhibition study using 4 mM non-labelled glucose, showed that 4 mM
1000 glucose significantly decreased the uptake of [¹⁴C]D-glucose into the hCMEC/D3 cells
1001 but did not affect membrane integrity as measured with [³H]mannitol. This suggests the
1002 presence of functional glucose transporter on the hCMEC/D3 cells.

1003

1004 Our *in vitro* experiments looking at the interaction between antipsychotics and GLUT1
1005 showed no effect of micromolar concentrations of amisulpride on the accumulation of
1006 [¹⁴C]D-glucose into the hCMEC/D3 cells. This suggests that clinically relevant
1007 concentrations of amisulpride do not inhibit GLUT1 (amisulpride has a plasma C_{max}
1008 of 0.17-1.19 μM) (4,65). However, these results are difficult to interpret conclusively
1009 as the GLUT1 is partially saturated due to the presence of non-labelled glucose in the
1010 control accumulation assay buffer. The non-labelled glucose being essential for
1011 endothelial cell survival.

1012

1013 Overall, the high affinity (K_m = ~2mM (66)) of the GLUT1 transporter, high
1014 expression of GLUT1 at the BBB, excess glucose concentrations in buffer/plasma and
1015 the low concentrations of amisulpride could make the interaction between amisulpride

1016 and GLUT1 difficult to detect *in vitro*. Amisulpride has been associated with
1017 hyperglycemia as a side effect in 1 in 100 people (67). The hyperglycaemia possibly
1018 being caused by inhibition of GLUT1 transport. Interestingly, recent studies did not
1019 associate its use with a higher prevalence of diabetes (68)

1020

1021 Cell culture studies have shown that another second-generation antipsychotic -
1022 clozapine, inhibits glucose uptake (at 20 μ M) in PC12 rat cells after a 30-minute
1023 incubation. Exposure to clozapine beyond 24 h (at concentrations up to 20 μ M), there
1024 was a significant increase in the cellular expression of GLUT1 and GLUT3 (23).

1025

1026 Later studies have confirmed that both clozapine and risperidone interact with glucose
1027 transporters and inhibit glucose transport. It has been suggested that this could be
1028 mediated by directly binding to glucose transporters and allosterically modulating
1029 either a glucose binding site or the conformational change in the protein conformation
1030 required for transport (24). Importantly, risperidone which is the only antipsychotics
1031 licensed for use in AD, shows treatment response and emergent side effects at very low
1032 doses and low plasma concentrations (7), similar to amisulpride (10). Also, clozapine is
1033 used at low doses and at correspondingly low plasma concentrations in the treatment of
1034 psychosis in Parkinson's disease patients (69).

1035

1036 **Animal model studies in WT and 5xFamilial AD (FAD) mice**

1037 In order to study the effect of AD on the BBB and how this contributes to the increased
1038 sensitivity of AD patients to antipsychotics, we need good preclinical models. In this

1039 study we utilized the 5xFAD mice. The significantly lower weight of the female mice,
1040 compared to the male mice of the 5xFAD genotype which we observed, matches with
1041 previous reports that female mice develop the pathology earlier than male mice (70).
1042 This could be related to increased expression of the Thy1 promoter which drives the
1043 transgenes in the 5xFAD mice and has an oestrogen response element (71) resulting in
1044 generation of higher levels of A β (72).

1045

1046 **TEM ultrastructural study**

1047 Using TEM, we detected A β plaques in the frontal cortex of 5xFAD mice from 6
1048 months of age. This is in agreement with previous data, reporting amyloid deposition in
1049 these mice from the age of 2 months (40) and with our Western blot studies which
1050 confirmed APP expression.

1051

1052 ***In situ* brain perfusions**

1053 When we studied the permeability of [³H]amisulpride across the BBB in a whole
1054 animal *in vivo*, we observed low permeability of the drug across the BBB in WT and in
1055 5xFAD mice (both groups 12-15 months of age).

1056 Interestingly, as measured by [¹⁴C]sucrose (MW 359.48 g/mol), there was no
1057 significant change in vascular integrity between age-matched WT and 5xFAD mice in
1058 all areas that we investigated even though there was a trend for increased permeability
1059 in the 5xFAD mice in the frontal cortex, thalamus, supernatant, and homogenate.

1060 Importantly, there was significantly higher uptake of [³H]amisulpride (corrected for
1061 [¹⁴C]sucrose) in the supernatant of 5xFAD mice compared to WT mice. An earlier

1062 animal study has also reported difference in the brain uptake of amisulpride in an AD
1063 mouse model compared to WT, without significant change in the [¹⁴C]sucrose uptake,
1064 i.e. without significant change in BBB integrity (16). The 3xTg mouse model of AD
1065 had increased [³H]amisulpride uptake in the frontal cortex, but not the occipital cortex,
1066 compared to WT mice at 24 months of age (age matched) (16). Thus, suggesting that
1067 the increased uptake of amisulpride in the brain of the 5xFAD mice could be related to
1068 regional BBB changes in transporter expression associated with AD.

1069 **Western blot studies**

1070 A decrease in GLUT1 expression in brain samples has been observed previously using
1071 WB in 5xFAD mice compared to WT at 9 months of age (73). This study used whole
1072 brain samples and pooled the samples from all of their WT mice together and from all
1073 of their 5xFAD mice together (73). In our study we confirmed the expression of
1074 GLUT1 in 5xFAD and WT mouse capillaries at 12-15 months of age. We did not
1075 observe significant difference between the genotypes, this is likely related to the fact
1076 that we did not pool our samples but analysed each mouse separately which would have
1077 increased variability.

1078

1079 Other studies using the 5xFAD mouse model have reported a decrease in the
1080 expression of P-gp and GLUT1 in the cortex capillaries of 6-month-old 5xFAD mice,
1081 compared to age-matched WT mice (74). We did not detect any effect of the genotype;
1082 this could be because we used the whole mouse brain to prepare the capillary samples
1083 and to perform WB, and the expression changes could be region-specific.

1084 Finally, expression of PMAT, MATE1, OCT1, and P-gp has been reported in the BBB
1085 of 3xTg mice. No difference in expression levels was observed when they were
1086 compared to age matched WT mice (16). These results are in line with our observations
1087 in the 5xFAD model. This could be because both studies used the whole brain to do
1088 capillary isolation, whereas the AD-associated transporter expression changes might be
1089 regional, as seen in human control and AD cases (16).

1090

1091 **Human control and AD tissue studies**

1092 **TEM ultrastructural study**

1093 In our AD case we were able to identify brain capillaries, myelinated axons and
1094 neurites using TEM. Our images showed signs of NVU, and brain degeneration such as
1095 swollen basement membrane and oedema around the capillaries, lipofuscin granules,
1096 degenerating neurites, degenerating myelin, and fibrillary depositions.

1097

1098 Previous EM studies have also reported abnormalities in the brain capillaries,
1099 associated with AD, these include, splitting and duplication of the basement membrane,
1100 reduction of the length of the tight junctions, morphological alterations of the
1101 mitochondria of the endothelial cells, the pericytes and the perivascular astrocytic
1102 processes. The number of the pinocytic vesicles was substantially increased in the
1103 endothelium of the brain capillaries in AD in comparison with age-matched controls.
1104 Thus, it has been suggested that abnormalities in the brain capillaries may result in the
1105 release of neurotoxic factors and abnormal A β homeostasis in the brain and contribute
1106 to AD pathology (75).

1107

1108 **Western blot studies**

1109 Expression of the endothelial marker TfR1 in our human brain capillary lysates
1110 confirms that we have isolated brain capillary pellets enriched in endothelial cells.
1111 There was no significant change in TfR1 expression between control and AD samples
1112 observed.

1113

1114 Diminished glucose uptake has been reported in the hippocampus, parietotemporal
1115 cortex and/or posterior cingulate cortex in individuals at genetic risk for AD (76),
1116 positive family history (77) and/or mild or no cognitive impairment who develop AD
1117 (78,79). Reduced levels of GLUT1 in cerebral microvessels have also been reported in
1118 AD in the caudate nucleus (80), frontal cortex (protein was decreased but not mRNA)
1119 (19), and the hippocampus (18). It has been suggested that GLUT1 deficiency can
1120 contribute to the disease process, acting in tandem with A β to initiate or amplify
1121 vascular damage and A β accumulation (81). We did not observe a significant change in
1122 GLUT1 expression in the frontal cortex and caudate between controls and AD patients.
1123 This could be related to the insufficient selectivity of the antibody, the need of more
1124 cases, or the heterogeneity in the group of cases.

1125

1126 P-gp is ubiquitously and abundantly expressed in the brain capillaries (82).
1127 Importantly, protein expression has been reported to decrease significantly in the
1128 prefrontal cortex of AD patients, compared to healthy ageing controls (61 to 100 years
1129 old) (83). In line with other studies, we observed a decrease in the P-gp expression in

1130 the caudate capillaries of AD patients, compared to healthy controls. Importantly, P-gp
1131 protects the brain from potentially toxic substances and has been reported to extrude
1132 A β from the brain (84). It has been suggested that downregulation of P-gp could allow
1133 pharmaceuticals into the central nervous system and may increase the accumulation of
1134 A β (83).

1135

1136 Conclusion

1137 In conclusion, a literature review identified GLUT1 substrates, GLUT1 inhibitors and
1138 antipsychotics that interacted with GLUT. Physicochemical characterization of these
1139 groups using chemical property databases established that amisulpride had similar
1140 properties to the GLUT-interacting antipsychotics group. Our *in silico* molecular
1141 docking studies revealed that amisulpride interacts with GLUT1 and could potentially
1142 affect glucose delivery to the CNS. We also have *in vitro* evidence for the presence of
1143 functional glucose transporter in the hCMEC/D3 cells line. However, we could not
1144 detect any interaction of amisulpride with GLUT1 in this assay. This is possibly
1145 because glucose being essential for endothelial cell survival limits the sensitivity of this
1146 assay for exploring antipsychotic interaction with GLUT1 *in vitro*. TEM and WB
1147 analysis validated the 5xFAD mouse model for our study. The *in situ* brain perfusion
1148 studies showed limited entry of amisulpride across the BBB in both WT and 5xFAD
1149 mice, and an increased uptake into the brain of the 5xFAD mice compared to WT mice,
1150 although the cerebrovascular space was similar in both genotypes. Our WB work with
1151 P-gp further confirms that transporter expression at the human BBB is altered in AD,
1152 although a significant difference was not observed for GLUT1 expression in our cases.

1153 It is possible that amisulpride competitively inhibits glucose entry via GLUT1, which
1154 may further compromise the neurovascular unit and increase BBB permeability, and
1155 therefore increase central drug access, and contribute to the amisulpride sensitivity
1156 observed in AD. This research further confirms the national guidance that antipsychotic
1157 drugs should only be prescribed at the lowest dose possible for the shortest durations in
1158 AD. It is also plausible that, in the longer term, the impact on energy delivery to the
1159 brain may lead to further cellular degeneration. The implications of our findings extend
1160 to other antipsychotic drugs.

1161

1162 List of abbreviations

1163 3xTgAD: triple transgenic, A β : amyloid beta, AD model; 5xFAD: five times familial
1164 Alzheimer's disease mouse model; ABC: Adenosine triphosphate binding cassette;
1165 AD: Alzheimer's disease; APP: amyloid precursor protein; ASN: asparagine; BBB:
1166 blood–brain barrier; BCA: bicinchoninic acid; BDR: Brain for Dementia Research;
1167 dpm: disintegrations per minute; CAS: chemical abstracts service number; FBS: foetal
1168 bovine serum; GLN: glutamine; GLU: glutamate; GLUT1: glucose transporter 1; GLY:
1169 glycine; hCMEC/D3: immortalized human cerebral microvessel endothelial cell line;
1170 HEK cells: human embryonic kidney cells; MATEs: multi-drug and toxin extrusion
1171 proteins; MW: molecular weight; OCT: organic cation transporters; NVU:
1172 neurovascular unit; PFA: paraformaldehyde; P-gp: P-glycoprotein; PHE:
1173 phenylalanine; PMAT: plasma membrane monoamine transporter; PMD: post-mortem
1174 delay; RIPA: radio-immunoprecipitation assay; SGLT1: sodium-dependent glucose
1175 transporter 1; SLC: solute carrier; TEM: transmission electron microscopy; TfR1:

1176 transferrin receptor 1; THR: threonine; TRP: tryptophan; V_d: volume of distribution;
1177 WB: Western blot; WT: wild type.

1178

1179 **Declarations**

1180 **Ethics approval and consent to practice**

1181 All *in vivo* animal experiments were performed in accordance with the Animal
1182 Scientific Procedures Act (1986) and Amendment Regulations 2012 and with
1183 consideration to the Animal Research: Reporting of *In Vivo* Experiments (ARRIVE)
1184 guidelines. The study was approved by the King's College London Animal Welfare
1185 and Ethical Review Body. The UK government home office project license number
1186 was 70/7755.

1187

1188 Human tissue brain samples were provided via Brains for Dementia Research (BDR)
1189 and were anonymised. Written consent was provided by BDR and the specific BDR
1190 reference numbers were: TRID_170, TRID_170 amendment, TRID_265 and
1191 TRID_287.

1192 BDR has ethical approval granted by the National Health Service (NHS) health
1193 research authority (NRES Committee London-City & East, UK: REC
1194 reference:08/H0704/128+5. IRAS project ID:120436). Tissue samples were supplied
1195 by The Manchester Brain Bank and the London Neurodegenerative Diseases Brain
1196 Bank, which are both part of the BDR programme, jointly funded by Alzheimer's
1197 Research UK and Alzheimer's Society. Tissue was received on the basis that it will be
1198 handled, stored, used, and disposed of within the terms of the Human Tissue Act 2004.

1199

1200 **Consent for publication**

1201 This research was funded in whole, or in part, by the Wellcome Trust [080268]. For the
1202 purpose of Open Access, the author has applied a CC BY public copyright licence to
1203 any Author Accepted Manuscript version arising from this submission.

1204

1205 **Availability of data and materials**

1206 The datasets supporting the conclusions of this article are included within the article
1207 and supplementary S1 File.

1208 **Competing interests**

1209 The authors declare that they have no competing interests.

1210

1211

1212

1213 **Acknowledgements**

1214 We acknowledge the support of Professor D.M. Mann from the Manchester Brain Bank
1215 who provided some of the human brain tissue samples used in this study. We would
1216 also like to thank Ms S. Selvackadunco from the London Neurodegenerative Diseases
1217 Brain Bank for her assistance with acquiring the human brain samples used in our WB
1218 and TEM studies. We also acknowledge the support of Professors I. Romero, B.
1219 Weksler, and P. Couraud who provided the hCMEC/D3 cell line under MTA.

1220

1221 References

1. Jeste D V, Jin H, Golshan S, Mudaliar S, Glorioso D, Fellows I, et al. Discontinuation of quetiapine from an NIMH-funded trial due to serious adverse events. *Am J Psychiatry*. 2009 Aug;166(8):937–8.
2. Jeste D V, Blazer D, Casey D, Meeks T, Salzman C, Schneider L, et al. ACNP White Paper: update on use of antipsychotic drugs in elderly persons with dementia. *Neuropsychopharmacology* [Internet]. 2008 Apr;33(5):957–70. Available from: <http://dx.doi.org/10.1038/sj.npp.1301492>
3. Murray PS, Kumar S, Demichele-Sweet MAA, Sweet RA. Psychosis in Alzheimer's disease. *Biol Psychiatry* [Internet]. 2014 Apr;75(7):542–52. Available from: <http://dx.doi.org/10.1016/j.biopsych.2013.08.020>
4. Reeves S, Bertrand J, D'Antonio F, McLachlan E, Nair A, Brownings S, et al. A population approach to characterise amisulpride pharmacokinetics in older people and Alzheimer's disease. *Psychopharmacology (Berl)* [Internet]. 2016 Sep;233(18):3371–81. Available from: <http://dx.doi.org/10.1007/s00213-016-4379-6>
5. Ballard C, Howard R. Neuroleptic drugs in dementia: benefits and harm. *Nat Rev Neurosci* [Internet]. 2006 Jun;7(6):492–500. Available from: <http://dx.doi.org/10.1038/nrn1926>
6. Schneider LS, Tariot PN, Dagerman KS, Davis SM, Hsiao JK, Ismail MS, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer's disease. *N Engl J Med* [Internet]. 2006 Oct;355(15):1525–38. Available from: <http://dx.doi.org/10.1056/NEJMoa061240>
7. Reeves S, Bertrand J, Uchida H, Yoshida K, Otani Y, Ozer M, et al. Towards safer risperidone prescribing in Alzheimer's disease. *British Journal of Psychiatry*. 2021 May 1;218(5):268–75.
8. Schlösser R, Gründer G, Anghelescu I, Hillert A, Ewald-Gründer S, Hiemke C, et al. Long-Term Effects of the Substituted Benzamide Derivative Amisulpride on Baseline and Stimulated Prolactin Levels. *Neuropsychobiology*. 2002;46(1):33–40.
9. Reeves S, Eggleston K, Cort E, McLachlan E, Brownings S, Nair A, et al. Therapeutic D2/3 receptor occupancies and response with low amisulpride blood concentrations in very late-onset schizophrenia-like psychosis (VLOSLP). *Int J Geriatr Psychiatry*. 2018;33(2):396–404.
10. Reeves S, Bertrand J, D'Antonio F, McLachlan E, Nair A, Brownings S, et al. A population approach to characterise amisulpride pharmacokinetics in older people and Alzheimer's disease. *Psychopharmacology (Berl)* [Internet]. 2016 Sep;233(18):3371–81. Available from: <http://dx.doi.org/10.1007/s00213-016-4379-6>
11. Reeves S, McLachlan E, Bertrand J, D'Antonio F, Brownings S, Nair A, et al. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer's disease. *Brain*. 2017;140(4):1117–27.
12. Clark-Papasavas C, Dunn JT, Greaves S, Mogg A, Gomes R, Brownings S, et al. Towards a therapeutic window of D2/3 occupancy for treatment of psychosis in Alzheimer's disease, with [18F]fallypride positron emission tomography. *Int J Geriatr Psychiatry* [Internet]. 2014 Oct;29(10):1001–9. Available from: <http://dx.doi.org/10.1002/gps.4090>
13. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. *Pharmacopsychiatry*. 2011 Sep;44(6):195–235.

1265 14. Lako IM, van den Heuvel ER, Knegtering H, Bruggeman R, Taxis K. Estimating dopamine
1266 D \square receptor occupancy for doses of 8 antipsychotics: a meta-analysis. *J Clin*
1267 *Psychopharmacol*. 2013 Oct;33(5):675–81.

1268 15. Sparshatt A, Taylor D, Patel MX, Kapur S. Amisulpride - dose, plasma concentration,
1269 occupancy and response: implications for therapeutic drug monitoring. *Acta Psychiatr Scand*.
1270 2009 Dec;120(6):416–28.

1271 16. Sekhar GN, Fleckney AL, Boyanova ST, Rupawala H, Lo R, Wang H, et al. Region-specific
1272 blood–brain barrier transporter changes leads to increased sensitivity to amisulpride in
1273 Alzheimer’s disease. *Fluids Barriers CNS*. 2019 Dec 17;16(1):38.

1274 17. dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero
1275 IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are
1276 substrates of the organic cation transporters from the SLC22 family. *AAPS J*. 2014
1277 Nov;16(6):1247–58.

1278 18. Horwood N, Davies DC. Immunolabelling of hippocampal microvessel glucose transporter
1279 protein is reduced in Alzheimer’s disease. *Virchows Arch*. 1994;425(1):69–72.

1280 19. Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with
1281 Alzheimer’s disease. *Neurobiol Aging*. 18(5):469–74.

1282 20. Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral
1283 cortex in Alzheimer disease. *J Neurochem*. 1989 Oct;53(4):1083–8.

1284 21. Hooijmans CR, Graven C, Dederen PJ, Tanila H, van Groen T, Kiliaan AJ. Amyloid beta
1285 deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in
1286 brains of aged APP/PS1 mice. *Brain Res*. 2007 Nov 21;1181:93–103.

1287 22. Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM. Vascular β -amyloid and early
1288 astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic
1289 arcA β mice. *Acta Neuropathol*. 2011 Sep;122(3):293–311.

1290 23. Dwyer DS, Pinkofsky HB, Liu Y, Bradley RJ. Antipsychotic drugs affect glucose uptake and
1291 the expression of glucose transporters in PC12 cells. *Prog Neuropsychopharmacol Biol*
1292 *Psychiatry*. 1999 Jan;23(1):69–80.

1293 24. Ardizzone TD, Bradley RJ, Freeman AM, Dwyer DS. Inhibition of glucose transport in PC12
1294 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of
1295 clozapine. *Brain Res [Internet]*. 2001 Dec 27;923(1–2):82–90. Available from:
1296 <http://www.ncbi.nlm.nih.gov/pubmed/11743975>

1297 25. Lean MEJ, Pajonk FG. Patients on Atypical Antipsychotic Drugs. *Diabetes Care*. 2003 May
1298 1;26(5):1597–605.

1299 26. Dwyer DS, Donohoe D. Induction of hyperglycemia in mice with atypical antipsychotic
1300 drugs that inhibit glucose uptake. *Pharmacol Biochem Behav*. 2003 May;75(2):255–60.

1301 27. Dwyer DS, Pinkofsky HB, Liu Y, Bradley RJ. Antipsychotic drugs affect glucose uptake and
1302 the expression of glucose transporters in PC12 cells. *Prog Neuropsychopharmacol Biol*
1303 *Psychiatry*. 1999 Jan;23(1):69–80.

1304 28. Boyanova S, Wang H, Fleckney AL, Gatt A, Farag DB, Rahman KM, et al. Heightened
1305 sensitivity of people with Alzheimer’s disease to the side effects of antipsychotic drug
1306 amisulpride may be mediated through an interaction with glucose transporter 1 at the
1307 blood \square brain barrier. In: *Alzheimer’s Dement* 2020;16(Suppl3):e047395. 2020.

1308 29. Bethesda (MD): National Library of Medicine (US) NC for BI. PubMed.
1309 <https://pubmed.ncbi.nlm.nih.gov/> Accessed 16 March 2021.

1310 30. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major
1311 update to the DrugBank database for 2018. *Nucleic Acids Res*. 2018;46(D1):D1074–82.

1312 31. MarvinSketch version 22.9.0. ChemAxon <http://chemaxon.com> Accessed April 2022 and
1313 April 2023.

1314 32. Oliva L, Fernandez-Lopez JA, Remesar X, Alemany M. The Anomeric Nature of Glucose
1315 and Its Implications on Its Analyses and the Influence of Diet: Are Routine Glycaemia
1316 Measurements Reliable Enough? *J Endocrinol Metab.* 2019;9(3):63–70.

1317 33. Almahmoud S, Wang X, Vennerstrom JL, Zhong HA. Conformational Studies of Glucose
1318 Transporter 1 (GLUT1) as an Anticancer Drug Target. *Molecules.* 2019 Jun 7;24(11).

1319 34. Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood-
1320 brain barrier-specific properties of a human adult brain endothelial cell line. *FASEB J.* 2005
1321 Nov;19(13):1872–4.

1322 35. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis.
1323 Vol. 9, *Nature Methods.* 2012. p. 671–5.

1324 36. Wolff A, Antfolk M, Brodin B, Tenje M. In Vitro Blood-Brain Barrier Models-An Overview
1325 of Established Models and New Microfluidic Approaches. *J Pharm Sci.* 2015
1326 Sep;104(9):2727–46.

1327 37. Cloyd JC, Snyder BD, Cleeremans B, Bundlie SR, Blomquist CH, Lakatua DJ. Mannitol
1328 pharmacokinetics and serum osmolality in dogs and humans. *J Pharmacol Exp Ther.* 1986
1329 Feb;236(2):301–6.

1330 38. Sprague JE, Arbeláez AM. Glucose counterregulatory responses to hypoglycemia. *Pediatr
1331 Endocrinol Rev.* 2011 Sep;9(1):463–73; quiz 474–5.

1332 39. Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O. Gene Dosage
1333 Dependent Aggravation of the Neurological Phenotype in the 5XFAD Mouse Model of
1334 Alzheimer’s Disease. *J Alzheimers Dis.* 2015;45(4):1223–36.

1335 40. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid
1336 aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial
1337 Alzheimer’s disease mutations: potential factors in amyloid plaque formation. *J Neurosci.*
1338 2006 Oct 4;26(40):10129–40.

1339 41. Rae EA, Brown RE. The problem of genotype and sex differences in life expectancy in
1340 transgenic AD mice. *Neurosci Biobehav Rev.* 2015 Oct;57:238–51.

1341 42. Szu J, Jullienne A, Obenaus A, Territo PR, Consortium M. Lifespan neuroimaging of the
1342 5xFAD mouse model of Alzheimer’s disease: Evolution of metabolic and vascular
1343 perturbations. *Alzheimer’s & Dementia.* 2020 Dec 7;16(S4).

1344 43. Jastrow H. Dr. Jastrows electron microscopic atlas.
1345 <http://www.drjastrow.de/WAI/EM/EMAtlas.html> Accessed 10 October 2019.

1346 44. Mason BL, Pariante CM, Jamel S, Thomas SA. Central Nervous System (CNS) Delivery of
1347 Glucocorticoids Is Fine-Tuned by Saturable Transporters at the Blood-CNS Barriers and
1348 Nonbarrier Regions. *Endocrinology.* 2010 Nov 1;151(11):5294–305.

1349 45. Báez-Mendoza R, Schultz W. The role of the striatum in social behavior. *Front Neurosci.*
1350 2013;7.

1351 46. Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE,
1352 Borlongan C v, et al. Amyotrophic lateral sclerosis: a neurovascular disease. *Brain Res.* 2011
1353 Jun 29;1398:113–25.

1354 47. Merlo S, Nakayama ABS, Brusco J, Rossi MA, Carlotti CG, Moreira JE. Lipofuscin
1355 Granules in the Epileptic Human Temporal Neocortex with Age. *Ultrastruct Pathol.*
1356 2015;39(6):378–84.

1357 48. Pickett EK, Rose J, McCrory C, McKenzie CA, King D, Smith C, et al. Region-specific
1358 depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. *Acta*
1359 *Neuropathol.* 2018;136(5):747–57.

1360 49. Sanderson L, Dogruel M, Rodgers J, de Koning HP, Thomas SA. Pentamidine movement
1361 across the murine blood-brain and blood-cerebrospinal fluid barriers: effect of trypanosome
1362 infection, combination therapy, P-glycoprotein, and multidrug resistance-associated protein. *J*
1363 *Pharmacol Exp Ther.* 2009 Jun;329(3):967–77.

1364 50. Ouellette RJ, Rawn JD. Carbohydrates. In: *Organic Chemistry*. Elsevier; 2018. p. 889–928.

1365 51. Dwyer DS, Liu Y, Bradley RJ. Dopamine receptor antagonists modulate glucose uptake in
1366 rat pheochromocytoma (PC12) cells. *Neurosci Lett.* 1999 Oct;274(3):151–4.

1367 52. Chow VW, Mattson MP, Wong PC, Gleichmann M. An Overview of APP Processing
1368 Enzymes and Products. *Neuromolecular Med.* 2010 Mar 24;12(1):1–12.

1369 53. Babkin P, George Thompson AM, Iancu C v, Walters DE, Choe JY. Antipsychotics inhibit
1370 glucose transport: Determination of olanzapine binding site in *Staphylococcus epidermidis*
1371 glucose/H(+) symporter. *FEBS Open Bio.* 2015;5:335–40.

1372 54. Chokhawala K, Stevens L. Antipsychotic Medications [Internet]. In: *StatPearls* [Internet].
1373 Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Apr 6]. Available from:
1374 <https://www.ncbi.nlm.nih.gov/books/NBK519503/>

1375 55. Natesan S, Reckless GE, Barlow KBL, Nobrega JN, Kapur S. Amisulpride the 'atypical'
1376 atypical antipsychotic — Comparison to haloperidol, risperidone and clozapine. *Schizophr*
1377 *Res.* 2008 Oct;105(1–3):224–35.

1378 56. Devés R, Krupka RM. Cytochalasin B and the kinetics of inhibition of biological transport. A
1379 case of asymmetric binding to the glucose carrier. *Biochimica et Biophysica Acta (BBA) -*
1380 *Biomembranes.* 1978 Jul;510(2):339–48.

1381 57. Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, et al. Mechanism
1382 of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and
1383 phenylalanine amides. *Proc Natl Acad Sci U S A.* 2016 Apr 26;113(17):4711–6.

1384 58. Niccoli T, Cabecinha M, Tillmann A, Kerr F, Wong CT, Cardenes D, et al. Increased
1385 Glucose Transport into Neurons Rescues A β Toxicity in Drosophila. *Current Biology.* 2016
1386 Sep;26(17):2291–300.

1387 59. Kable A, Fullerton A, Fraser S, Palazzi K, Hullick C, Oldmeadow C, et al. Comparison of
1388 Potentially Inappropriate Medications for People with Dementia at Admission and Discharge
1389 during An Unplanned Admission to Hospital: Results from the SMS Dementia Study.
1390 *Healthcare.* 2019 Jan 9;7(1):8.

1391 60. Orsel K, Taipale H, Tolppanen AM, Koponen M, Tanskanen A, Tiihonen J, et al.
1392 Psychotropic drugs use and psychotropic polypharmacy among persons with Alzheimer's
1393 disease. *European Neuropsychopharmacology.* 2018 Nov;28(11):1260–9.

1394 61. Al-Ahmad AJ. Comparative study of expression and activity of glucose transporters between
1395 stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. *Am J Physiol*
1396 *Cell Physiol.* 2017 Oct 1;313(4):C421–9.

1397 62. Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, et al. Quantitative targeted
1398 absolute proteomic analysis of transporters, receptors and junction proteins for validation of
1399 human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain
1400 barrier model. *Mol Pharm.* 2013 Jan 7;10(1):289–96.

1401 63. Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human
1402 blood brain barrier. *Fluids Barriers CNS.* 2013 Mar 26;10(1):16.

1403 64. Meireles M, Martel F, Araújo J, Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, et al.
1404 Characterization and modulation of glucose uptake in a human blood-brain barrier model. *J*
1405 *Membr Biol.* 2013 Sep;246(9):669–77.

1406 65. Coukell AJ, Spencer CM, Benfield P, Carpenter Tr WT. DRUG EVALUATION
1407 Amisulpride eNS A Review of its Pharmacodynamic and Pharmacokinetic Properties and
1408 Therapeutic Efficacy in the Management of Schizophrenia. Vol. 6, *Drugs*. 1996.

1409 66. Burant CF, Sivitz WI, Fukumoto H, Toshiaki K, Nagamatsu S, Susumo S, et al. Mammalian
1410 Glucose Transporters: Structure and Molecular Regulation. Vol. 47, *RECENT PROGRESS*
1411 IN HORMONE RESEARCH: Proceedings of the 1990 Laurentian Hormone Conference.
1412 1991.

1413 67. Zentiva. Patient Information Leaflet: Amisulpride.
1414 <https://www.medicines.org.uk/emc/files/pil.3965.pdf> Accessed 13 January 2022.

1415 68. Holt RIG. Association Between Antipsychotic Medication Use and Diabetes. *Curr Diab Rep.*
1416 2019 Oct 2;19(10):96.

1417 69. Ruggieri S, de Pandis MF, Bonamartini A, Vacca L, Stocchi F. Low dose of clozapine in the
1418 treatment of dopaminergic psychosis in Parkinson's disease. *Clin Neuropharmacol.* 1997
1419 Jun;20(3):204–9.

1420 70. Forner S, Kawauchi S, Balderrama-Gutierrez G, Kramár EA, Matheos DP, Phan J, et al.
1421 Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's
1422 disease. *Sci Data.* 2021;8(1):270.

1423 71. Sadleir KR, Eimer WA, Cole SL, Vassar R. A β reduction in BACE1 heterozygous null
1424 5XFAD mice is associated with transgenic APP level. *Mol Neurodegener.* 2015 Jan 7;10:1.

1425 72. Maarouf CL, Kokjohn TA, Whiteside CM, Macias MP, Kalback WM, Sabbagh MN, et al.
1426 Molecular Differences and Similarities Between Alzheimer's Disease and the 5xFAD
1427 Transgenic Mouse Model of Amyloidosis. *Biochem Insights.* 2013;6:1–10.

1428 73. Ahn KC, Learman CR, Dunbar GL, Maiti P, Jang WC, Cha HC, et al. Characterization of
1429 Impaired Cerebrovascular Structure in APP/PS1 Mouse Brains. *Neuroscience.*
1430 2018;385:246–54.

1431 74. Park R, Kook SY, Park JC, Mook-Jung I. A β 1-42 reduces P-glycoprotein in the blood-brain
1432 barrier through RAGE-NF- κ B signaling. *Cell Death Dis.* 2014 Jun 26;5:e1299.

1433 75. Baloyannis SJ. Brain capillaries in Alzheimer's disease. *Hell J Nucl Med.* 18 Suppl 1:152.

1434 76. Ossenkoppele R, Prins ND, van Berckel BN. Amyloid imaging in clinical trials. *Alzheimers*
1435 *Res Ther.* 2013;5(4):36.

1436 77. Mosconi L, Rinne JO, Tsui WH, Murray J, Li Y, Glodzik L, et al. Amyloid and metabolic
1437 positron emission tomography imaging of cognitively normal adults with Alzheimer's
1438 parents. *Neurobiol Aging.* 2013 Jan;34(1):22–34.

1439 78. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in
1440 brain glucose metabolism from normal cognition to pathologically verified Alzheimer's
1441 disease. *Eur J Nucl Med Mol Imaging.* 2009 May;36(5):811–22.

1442 79. Landau SM, Harvey D, Madison CM, Koeppen RA, Reiman EM, Foster NL, et al.
1443 Associations between cognitive, functional, and FDG-PET measures of decline in AD and
1444 MCI. *Neurobiol Aging.* 2011 Jul;32(7):1207–18.

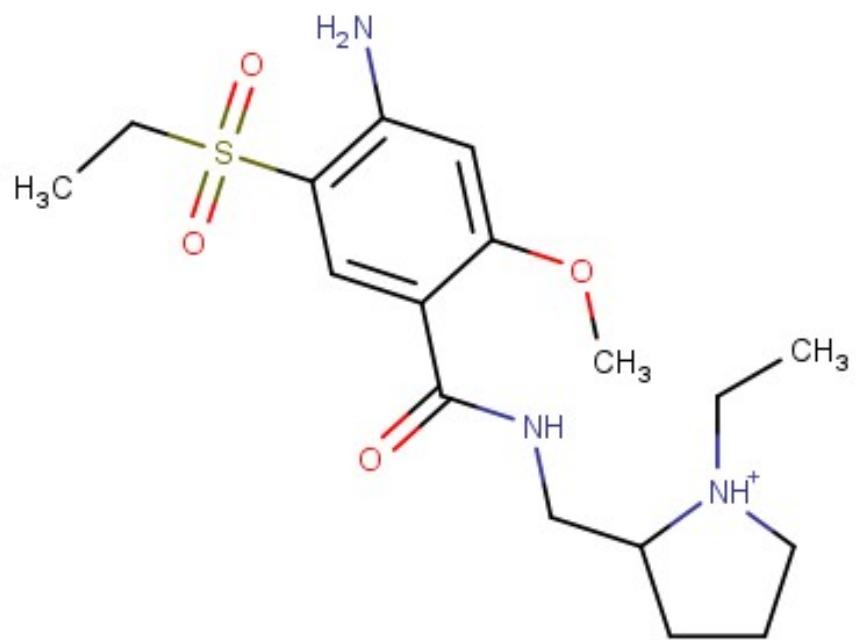
1445 80. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of
1446 GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease.
1447 *Ann Neurol.* 1994 May;35(5):546–51.

1448 81. Winkler EA, Nishida Y, Sagare AP, Rege S v, Bell RD, Perlmutter D, et al. GLUT1
1449 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration.
1450 *Nat Neurosci.* 2015 Apr;18(4):521–30.

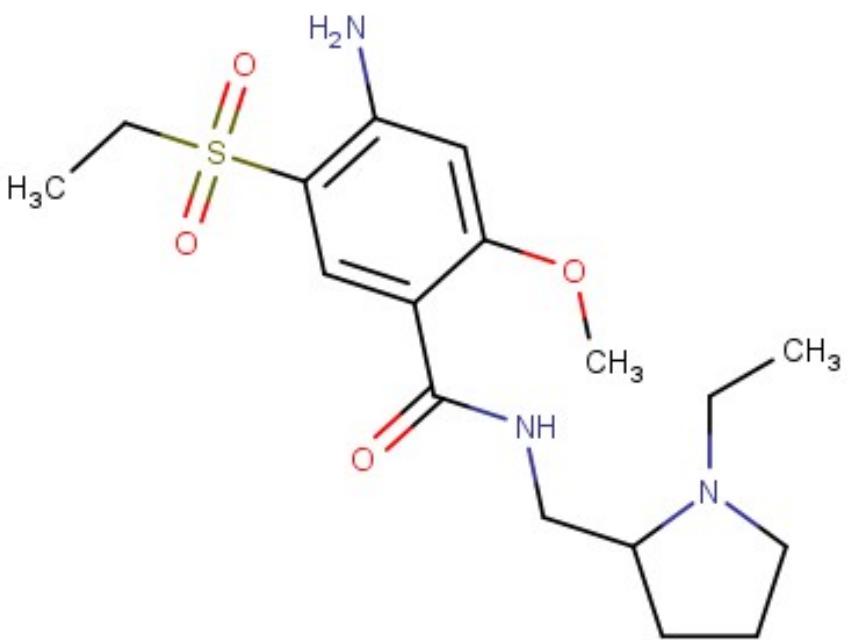
1451 82. Löscher W, Langer O. Imaging of P-glycoprotein function and expression to elucidate
1452 mechanisms of pharmacoresistance in epilepsy. *Curr Top Med Chem.* 2010;10(17):1785–91.

1453 83. Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein
1454 expression and amyloid accumulation in human aging and Alzheimer's disease: preliminary
1455 observations. *Neurobiol Aging.* 2015 Sep;36(9):2475–82.

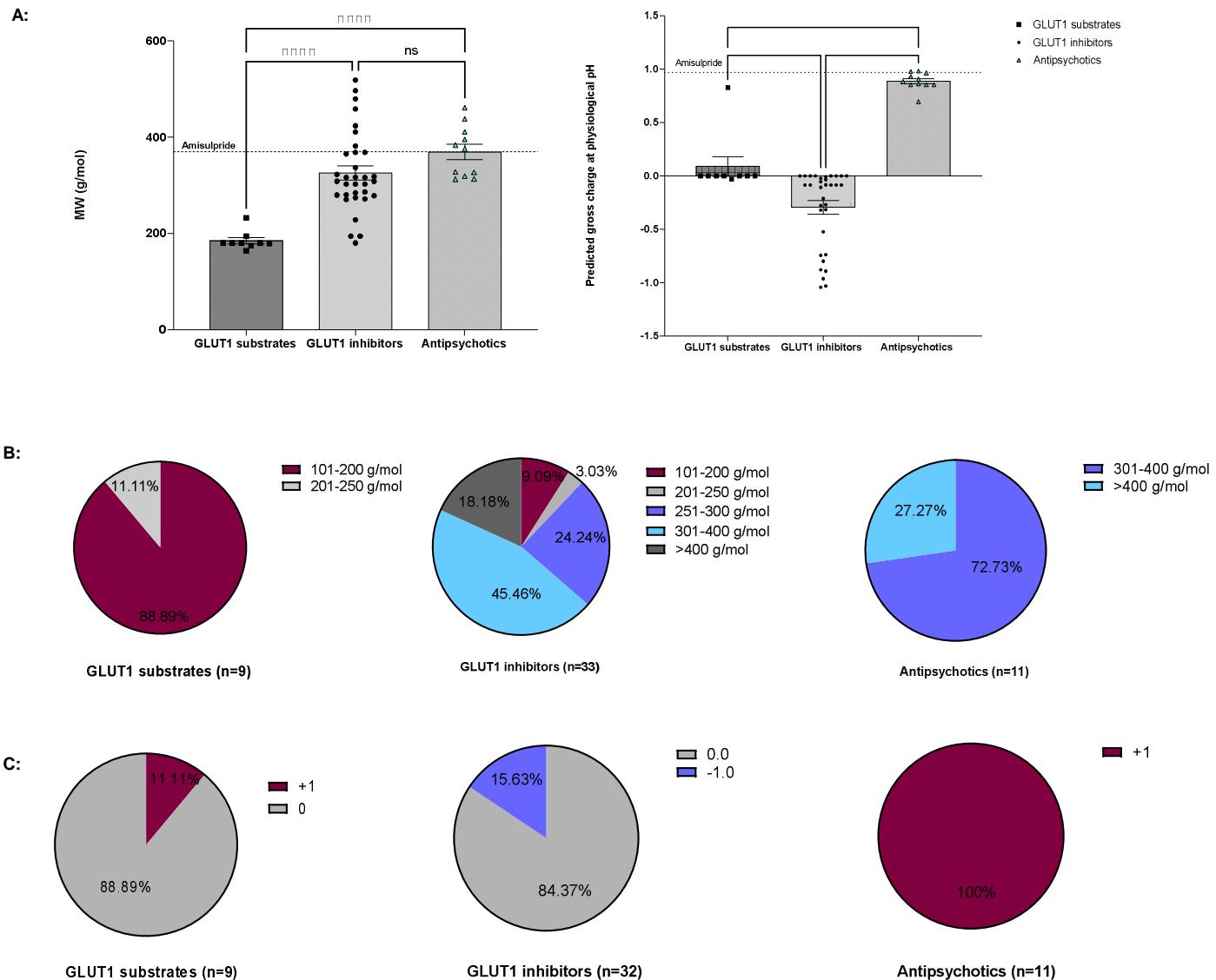
1456 84. Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of
1457 amyloid- β in Alzheimer's disease? *FEBS J.* 2020;287(4):612–25.

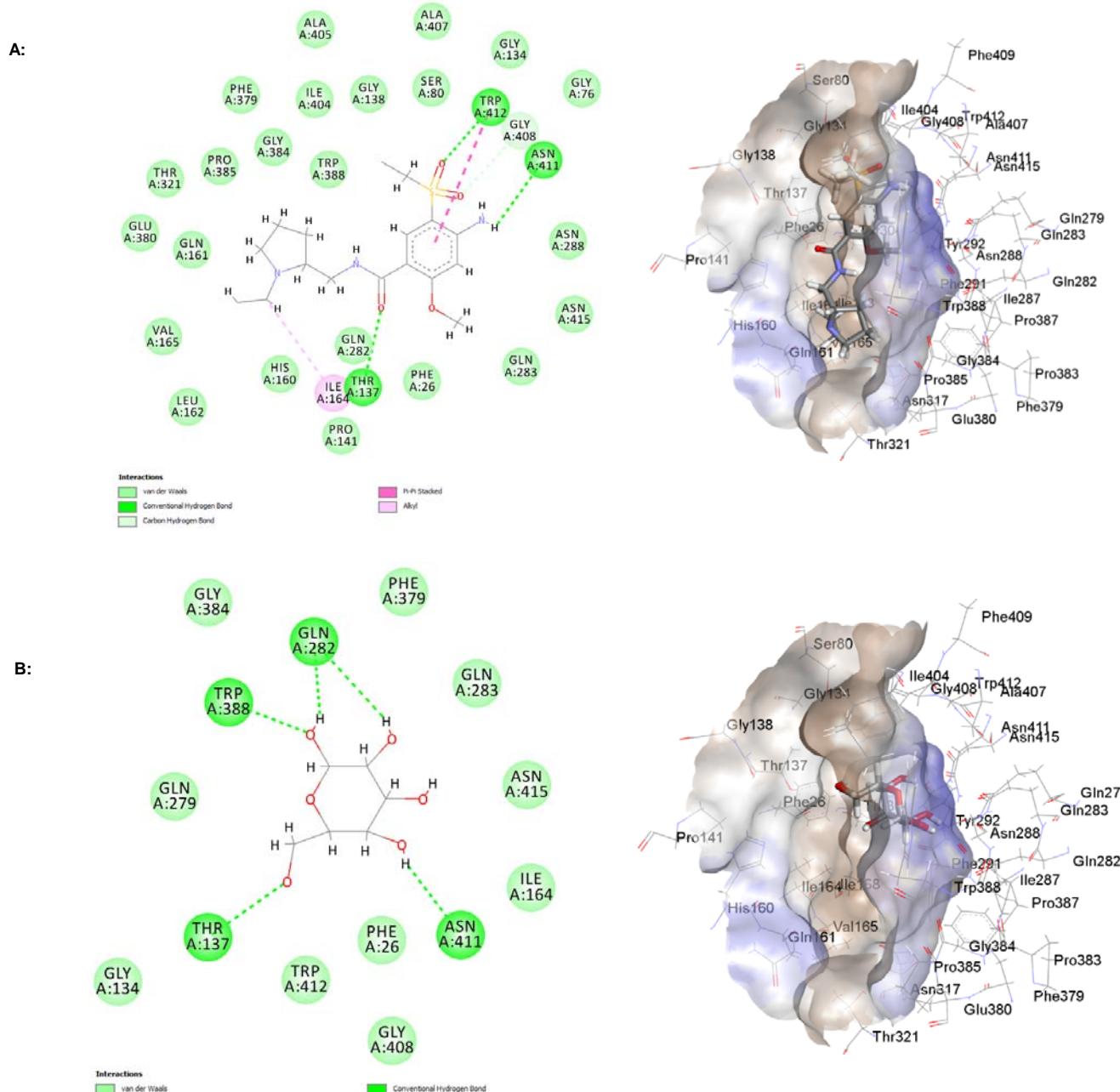

1458

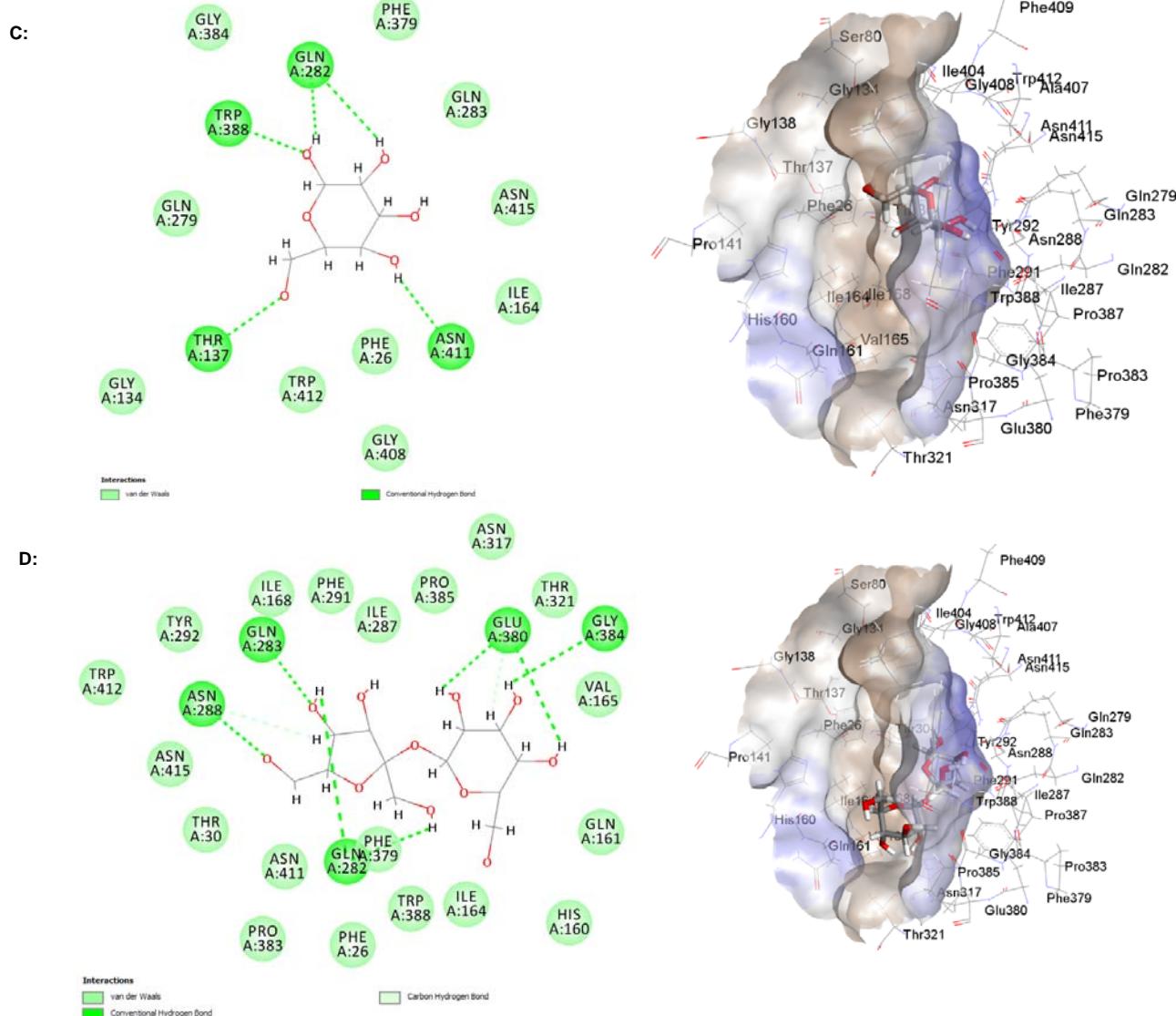
1459

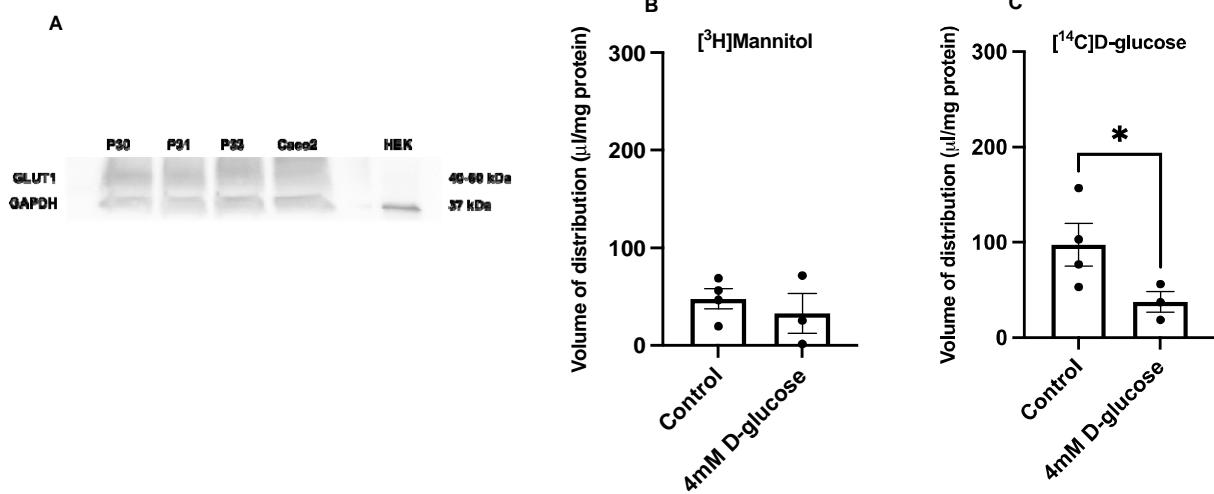

1460 **Supporting Information**

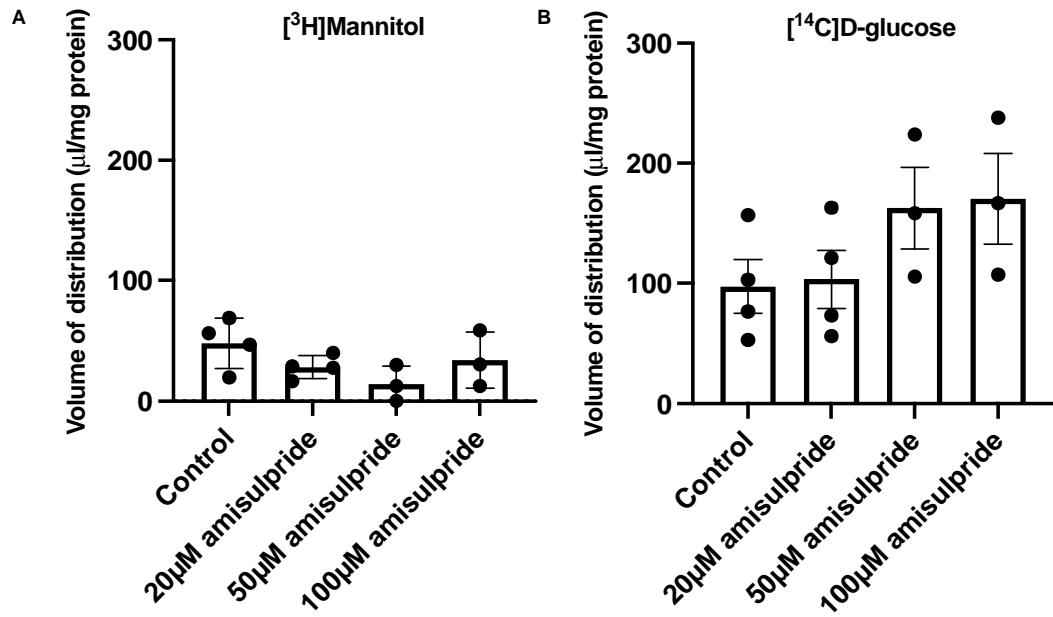
1461

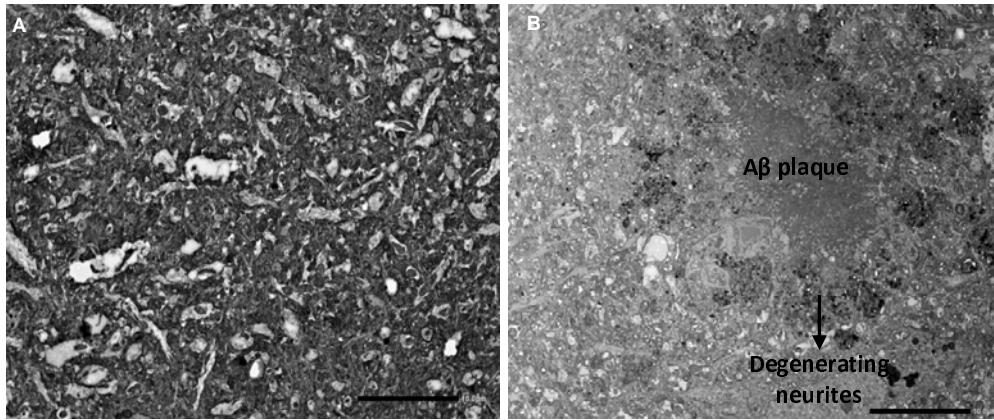

- 1462 • S1 File.docx
- 1463
- 1464 • 6 Supplementary Tables
- 1465
- 1466 • 13 Supplementary Figures

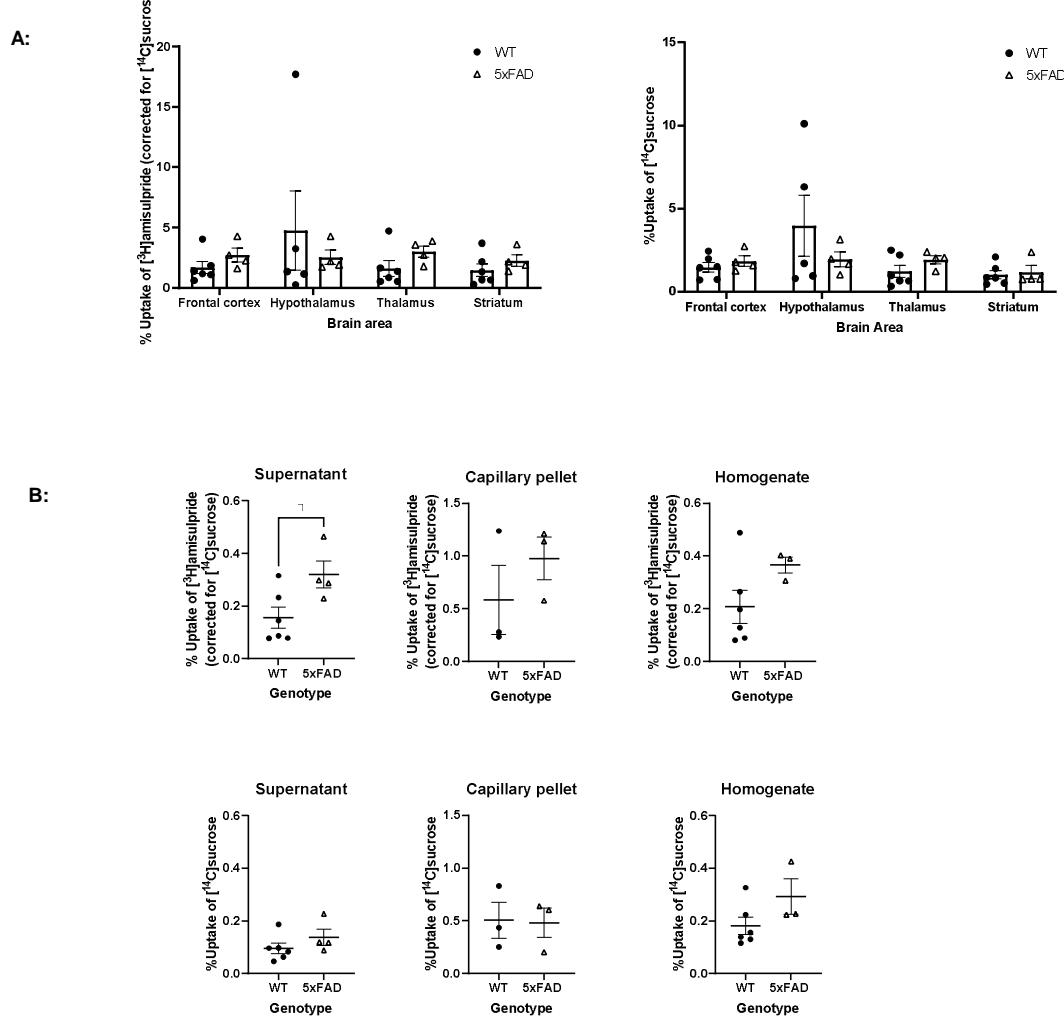


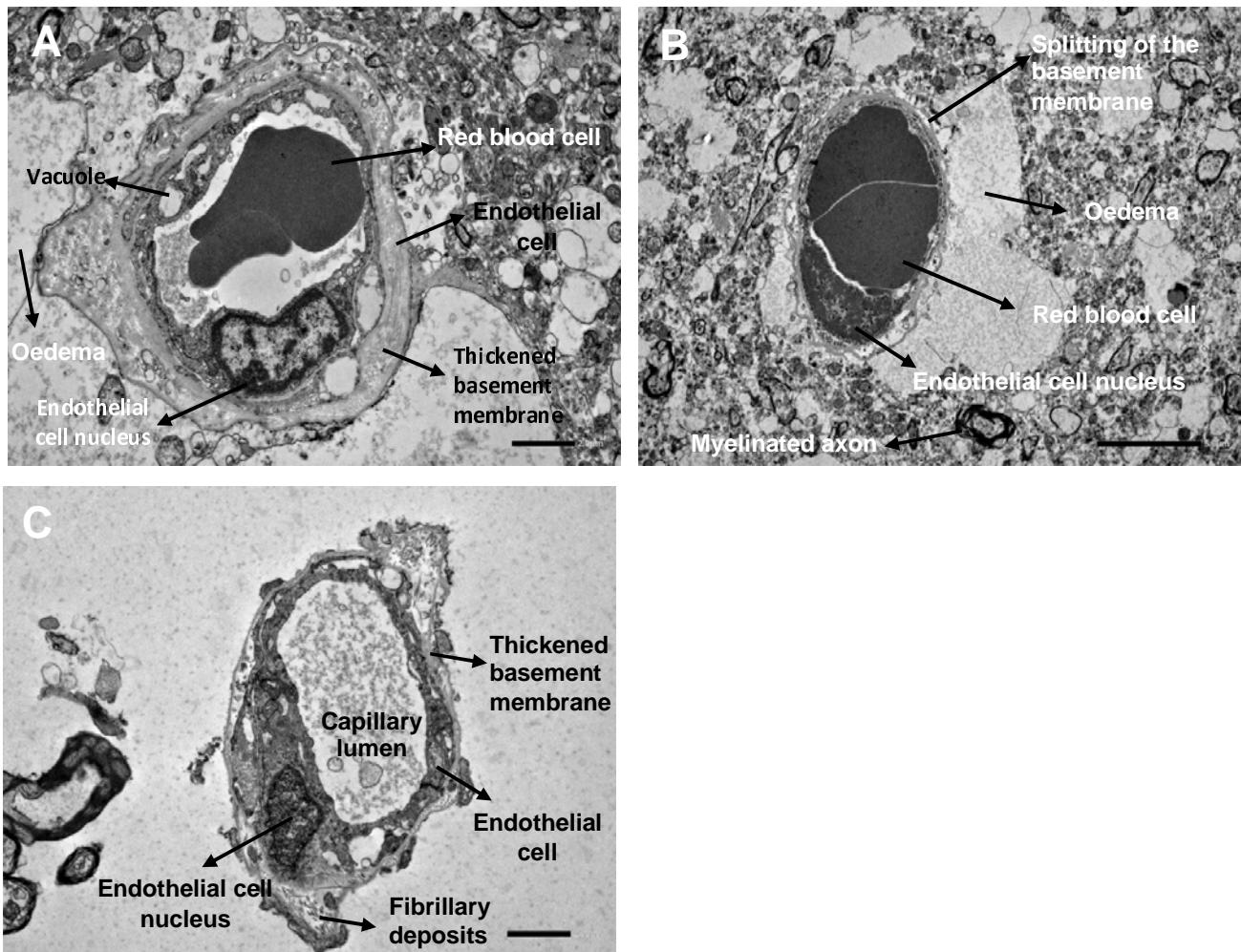

Amisulpride microspecies A (96.77%)

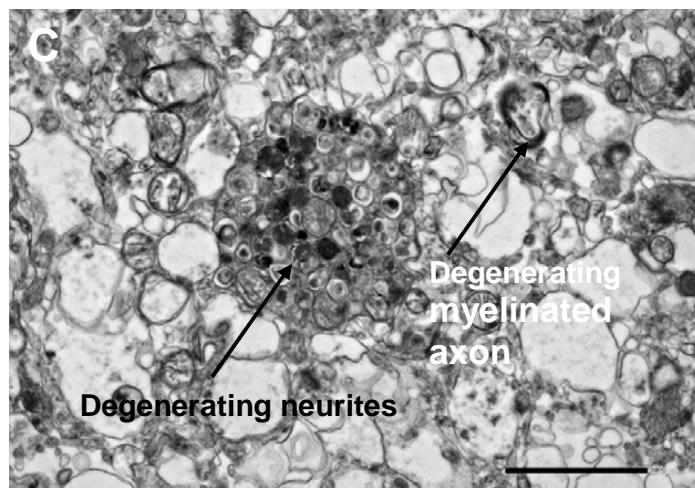
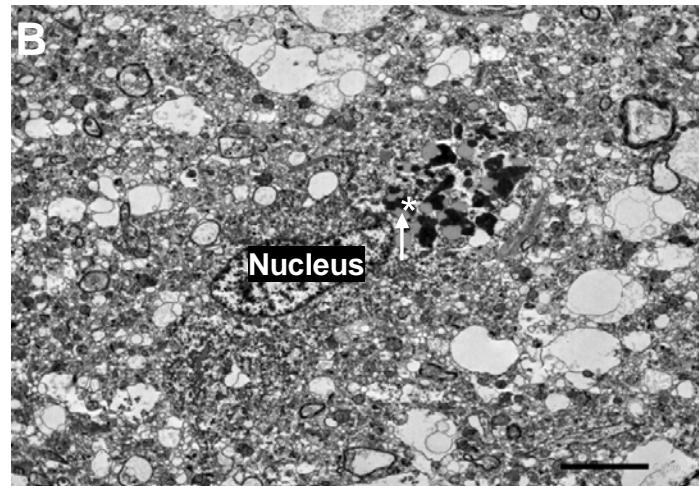
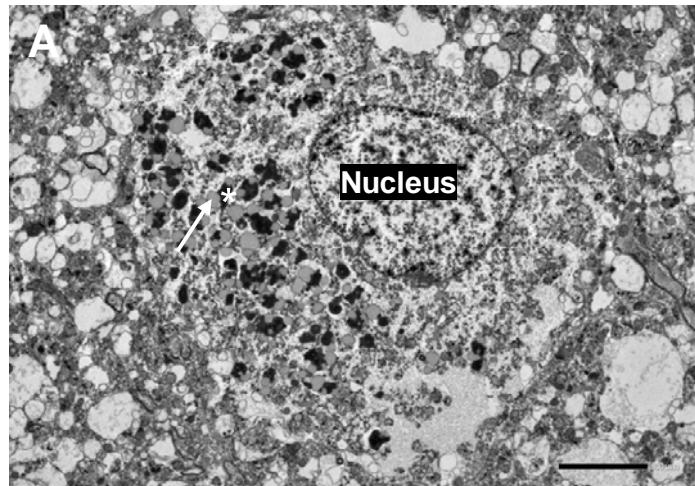


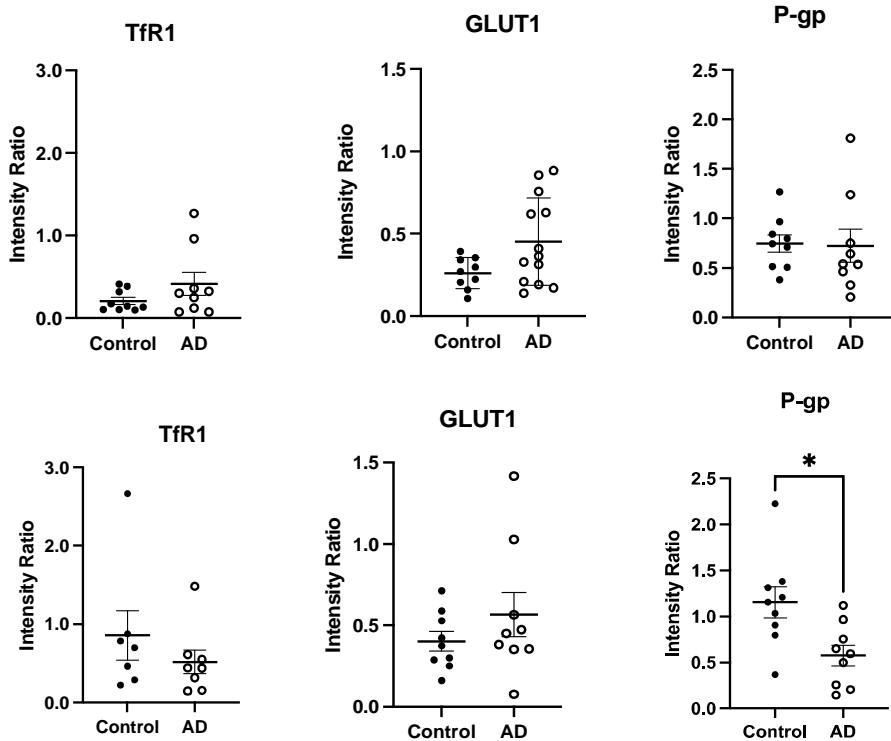

Amisulpride microspecies B (3.23%)









* - electron dense portions of lipofuscin granules, 1 - lucid portions of lipofuscin granules
* - vacuolisation, ▲ - myelinated whorled masses, * - condensed axonal cytoplasm

Frontal Cortex

