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Abstract 12 

The development of effective therapeutics and vaccines for human diseases requires a systematic 13 

understanding of human biology. While animal and in vitro culture models have successfully elucidated 14 

the molecular mechanisms of diseases in many studies, they yet fail to adequately recapitulate human 15 

biology as evidenced by the predominant likelihood of failure in clinical trials. To address this broadly 16 

important problem, we developed AutoTransOP, a neural network autoencoder framework to map 17 

omics profiles from designated species or cellular contexts into a global latent space, from which 18 

germane information can be mapped between different contexts. This approach performs as well or 19 

better than extant machine learning methods and can identify animal/culture-specific molecular 20 

features predictive of other contexts, without requiring homology matching. For an especially 21 

challenging test case, we successfully apply our framework to a set of inter-species vaccine serology 22 

studies, where no 1-1 mapping between human and non-human primate features exists. 23 

 24 
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Introduction 25 

Animal and cellular models are essential tools for studying the underlying biology of human diseases, 26 

but these insights are not always clinically translatable, resulting in the failure of numerous therapeutics 27 

in clinical trials1,2. A common approach is to choose orthologous biomolecules, including genes, proteins, 28 

and cellular pathways, to perform direct functional comparisons across species. However, functional 29 

divergence and the absence of orthologous biomarkers can hinder these direct comparisons between 30 

species 3–5.  Furthermore, within the same species, the transcriptional response to chemical stimuli can 31 

be cell type-specific due to distinct genetic profiles, creating an additional barrier to understanding the 32 

mechanism of action of therapeutics6–9. Consequently, computational systems-based approaches are 33 

needed to gain a better understanding of the relationship between biological models and translate 34 

information gained from different model systems. 35 

Advancements in sequencing technologies have enabled the generation of large-scale datasets from 36 

both animal and human species, facilitating more powerful analyses and comparisons of molecular 37 

features between different biological systems2,3,10–13. This has led to the development of numerous new 38 

statistical and machine learning models3,13–17 for identifying similarities between species and 39 

experimental models. Notably, most existing approaches focus on direct correlations between 40 

analogous biomarkers or processes across species despite known species and model system differences. 41 

In an attempt to address this challenge, Brubaker et al. proposed a technique called “Translatable 42 

Components Regression”18 (TransCompR), which maps human data into the principal component space 43 

of data from another species to identify translatable animal features that can predict human disease 44 

processes and phenotypes. Although this approach has been successfully applied to gain insights into 45 

some inflammatory pathologies18,19, it depends on homologs or comparable molecular features between 46 

species.  While TransCompR is well suited to identify omics signatures in one species that is most 47 

germane for understanding phenotype characteristics in another, it is not centrally designed to integrate 48 
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signatures across species. Moreover, this approach is by design only capable of deciphering linear 49 

relationships, thus potentially excluding non-linear biological relationships. 50 

With the advent of deep learning, particularly autoencoders, there is great potential to develop 51 

approaches that can approximate the non-linear relationships underlying different biological systems 52 

and species. Autoencoders are artificial neural networks (ANNs) that can embed raw input data into a 53 

lower dimensional space from which the original data can be reconstructed 20. Autoencoders have been 54 

used in several tasks in biology including analyzing high dimensional data21,22, denoising single-cell RNA 55 

sequencing data23–25, deciphering the hierarchical structure of transcriptomic profiles26,27, and predicting 56 

gene expression caused by various stimuli28–30. One such model, DeepCellState31, focused on translating 57 

cellular states, can predict the transcriptional profile of a cell type after drug treatment based on the 58 

behavior of another cell type. However, similar to TransCompR, this approach depends on a 1-1 59 

mapping of molecular features between cells to capture a global cell representation. Another recently 60 

proposed framework, is the compositional perturbation autoencoder (CPA)32. It can construct a basal 61 

latent space devoid of covariate and perturbation-specific signals, capturing only the basal cell state in 62 

single-cell RNA sequence data. CPA can be used to generate in-silico transcriptional profiles at the single-63 

cell level for different perturbations, cells, and species, although it still requires mapping of orthologous 64 

genes. To overcome such limitations, an approach similar to those used in language translation 65 

autoencoder-based models, which create a global language representation33,34, may be useful and could 66 

aid biological inter-systems translation when 1-1 mappings between features do not exist. 67 

In this study, we incorporate elements of the CPA approach with ideas from language translation 68 

models33,34 to develop an ANN framework hence referred to as AutoTransOP, Autoencoders for 69 

Translating Omics Profiles, which utilizes separate autoencoders for each biological system, enabling the 70 

mapping of samples into a global cross-model space, while providing feature importance estimates for 71 

various phenotype-prediction tasks. The basic model is trained to simultaneously minimize the 72 

reconstruction error of the input and the distance between samples coming from the same condition in 73 
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the global latent space. Our framework is benchmarked, using the latest version of the L1000 dataset12, 74 

against the established approaches of TransCompR18, FIT15 and the ANN approach of DeepCellState31, 75 

which all require 1-1 feature mapping. We demonstrate that our approach outperforms FIT and 76 

DeepCellState, while there is no difference when comparing with TransCompR in cellular models. 77 

Additionally, we present several variations of the model and we illustrate the adaptability of our 78 

framework by applying it to data of varying omics type and sample size to answer different biological 79 

questions of interest. Furthermore, we demonstrate its biological interpretability, an aspect that deep 80 

learning models often struggle to attain, by using an integrated gradients approach 35. To analyze the 81 

performance of the model in inter-species translation we performed mouse36 to human37 translation of 82 

single-cell transcriptomics of lung fibrosis, as well as non-human primate38 to human translation39 of 83 

smaller-scale serology datasets to predict HIV vaccine efficacy in humans. The latter serves as a novel 84 

case study of cross-species translation where no 1-1 mapping between features exists. After building the 85 

model, we identified serological features in non-human primates that are predictive of protection 86 

against HIV in humans, without analogous features necessarily being present in human data. These 87 

findings demonstrate that features derived from this approach can be predictive of the phenotypic 88 

profile of another biological model without requiring them to be homologs, allowing us to maximize the 89 

amount of information we can capture from different model systems to advance our understanding of 90 

complex human disease biology. 91 

Results 92 

A flexible framework for omics translation 93 

We developed a flexible artificial neural network framework (see methods) for omics translation across 94 

biological models. It consists of separate ANN encoders and decoders for each biological system, e.g. cell 95 

line or species, that share a global latent space (Figure 1a), eliminating the need for a 1-1 mapping 96 

between the features between systems. We implement two main variations of the global latent space 97 

intending to remove the system-specific effect of perturbations. The first variation, which is also the 98 
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main model variation of this framework (model variation 1), consists of a single global latent space that 99 

is created by maximizing the similarity of embeddings derived from the same condition/perturbation in 100 

a different species or cell line. The second variation (model variation 2) is based on the recently 101 

published compositional perturbation autoencoder (CPA)32, where there are two separate latent spaces: 102 

1) a global/basal latent space and 2) a composed latent space. The global latent space expands on the 103 

first variation with an additional discriminator that attempts to remove the cell-line or species effect by 104 

penalizing models where the classifier can detect from which encoder the latent representation 105 

originates32. In the composed latent space, a cell/species classifier is simultaneously trained to ensure 106 

there is a cell/species effect, which is either added through a trainable covariate vector32 or added 107 

through two intermediate ANNs, allowing for non-linearity. We utilize integrated gradients35 to estimate 108 

feature importance for various predictive tasks. Lastly, we also introduce a variation (model variation 3), 109 

with one single global latent space, where a classifier is simultaneously trained on the global latent 110 

space (see methods). This is a contradictory learning task where the framework attempts to 111 

simultaneously remove the cell line or species effect globally but also hides cell or species information in 112 

a few of the latent variables.  113 

Benchmarking reconstruction and translation of gene expression profiles between two cell-lines 114 

First, we compared our ANN framework with state-of-the-art techniques in the context of translating 115 

homologous genes between in-vitro models within the same species. We use the L1000 transcriptomics  116 

dataset12  to benchmark different approaches to translate the effects of perturbations between different 117 

human cell lines. The two main variations of our approach, as well as the variation where a classifier is 118 

simultaneously trained on the global latent space, are compared with three previously published 119 

approaches (DeepCellState31, FIT15, TransCompR18). As a baseline, the models are also compared to 120 

“direct translation”, i.e. directly using the gene expression profile in one cell line as a prediction for the 121 

effect in another cell line. We evaluate the models both on the task of translating the gene expression 122 

profile between cell lines, as well as the task of accurately reconstructing the gene expression for the 123 
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same cell line. We evaluate them using several different metrics: i) Pearson’s correlation between 124 

predicted gene expression and actual gene expression, ii) the per sample Spearman’s rank correlation, 125 

and iii) the accuracy in correctly predicting the sign of drug-induced gene expression.  126 

When utilizing the 978 landmark genes measured in the L1000, all of our framework’s variations provide 127 

a statistically significant increase in performance compared to the direct translation across all metrics 128 

(Figure 1b, Supplementary Tables 1-4 with p-values). When translating from the HT29 cell line to A375, 129 

our main model variation outperformed FIT15 and the basic DeepCellState31 (DCS) methods. When 130 

translating in the reverse direction, from A375 to HT29, our framework also outperforms the different 131 

modifications of DCS (Figure 1b).  It can be noted that the 2nd modification of DCS that enforces 132 

similarity in the latent space like our model, also outperforms the basic DCS, which may support the 133 

importance of enforcing similarity in the global latent space via some distance metric. For reconstruction 134 

of the input within a single cell line, the basic DCS approach outperforms the other approaches, at the 135 

expense of its translation performance. On this metric, our approach performs well and comparably 136 

with the other methods (Figure 1b). The alternative variations of our framework also perform 137 

comparably well.  138 

When using the L1000 dataset with computationally imputed expression of 10,086 genes, the 139 

performance of all approaches drops, though still better than the baseline. There is generally no 140 

statistically significant difference between our approach and the other state-of-the-art approaches 141 

(Figure 1c). Interestingly, our approach performs better than direct translation also in the case of using 142 

different genes as input for each cell line, e.g. using only the 978 landmark genes for the A375 cell line 143 

and all the 10,086 genes for HT29 (Figure 1f). The performance is comparable to that using the same 144 

genes for both cell lines, indicating the potential to later extend the method in cases where no 1-1 145 

mapping exists. 146 
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Performance in using predicted gene expression to infer transcription factor activity 147 

While the performance was worse in predicting the full set of 10,086 imputed genes, we reasoned that 148 

these imputed transcriptomic profiles may still be useful as input into different aggregation methods, 149 

e.g. to infer the activity of transcription factors (TFs). When we inferred transcription factor activity (see 150 

methods), model performance increased relative to using all 10,086 genes and was comparable to that 151 

in the case of the landmark genes (Figure 1b and 1d). Our model was not as successful at predicting 152 

gene set enrichment (Supplementary Method 1, Supplementary Figure 3). Autoencoders have been 153 

previously shown to be capable of capturing regulatory relationships between genes26,31 but, to our 154 

knowledge, not gene set enrichment, which might explain why we observed increased performance only 155 

when inferring TF activity.  156 

Creating cell-line-specific regions in the latent space enables robust cell classification 157 

It is important to evaluate whether the cell line or species effect is successfully added to the composed 158 

latent space and whether the framework can retrieve it. To establish the ability of the model to capture 159 

cell-line-specific information we evaluated the performance in classifying the cell line when using all 160 

10,086 genes (Figure 1e) and the landmark genes (Supplementary Table 11) of the L1000 dataset. The 161 

performance of ANN classifiers trained directly on the L1000 gene expression data serves as the 162 

baseline. Classifiers built with pre-trained embeddings, from DCS or our framework with one global 163 

latent space, are expected to have lower performance than the baseline as these approaches generate 164 

embeddings aiming to filter the cell-line effect as much as possible. Our framework seems to be better 165 

at “forgetting” the cell line of origin in the global space than DCS, thus generating more global 166 

embeddings (Figure 1e). Interestingly, when simultaneously training a classifier in the global latent space 167 

we can outperform the baseline while the cell-line effect is still partially filtered in the higher dimensions 168 

(Supplementary Figure 4). The CPA-based model in the composed latent space classifies cell lines with 169 

100% accuracy, even though the similarity of input gene expression data between training and 170 

validation sets, as well as the latent space embedding similarity, is generally low (Supplementary Figure 171 
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5). The CPA-based framework can create very well-separated cell-line-specific regions (Supplementary 172 

Figure 6) in the composed latent space, indicating the framework's ability to shape the latent spaces 173 

with robust cell-line-specific regions and explaining the observed accuracy. 174 

Analysis of the framework’s dependence on different aspects of the data 175 

We further investigated how the performance of the framework was influenced by different factors, 176 

focusing on the CPA-like approach. The framework has similar behavior and performance across cell-line 177 

pairs (Figure 2a). For all cell lines, ~600 total training samples are sufficient to train a high-performance 178 

model. Some cell-line pairs perform slightly worse, as the original correlation between the same 179 

perturbations in the cell-line pair correlates with the model’s performance (Figure 2b). Interestingly, the 180 

amount of paired conditions, meaning similar perturbations across biological systems, required to 181 

successfully facilitate translation can be as low as ~10-15% of the samples being paired (Figure 2c). 182 

Finally, it seems the model is not affected by a moderate imbalance in the number of conditions coming 183 

from each cell line (Figure 2d). Similar trends are observed when using 10,086 genes (Supplementary 184 

Figure 7). 185 

Evaluation of latent space embeddings 186 

A global latent space is expected to have several properties to be suitable for translation. We evaluate 187 

the embeddings produced from our framework based on three criteria (Figure 3a-3c): i) different cell 188 

lines should not occupy different subspaces, so embeddings of pairs coming from the same cell line 189 

should not be more similar to each other than embeddings from random pairs, ii) pairs of embeddings 190 

coming from the same condition, regardless of cell line, should be similar, and iii) biological replicates 191 

should give similar embeddings, so pairs of embeddings from biological duplicates should be similar to 192 

each other. We evaluated these criteria using the cosine distance in latent space. No cell-line effect is 193 

observed in the global latent space, both for training and validation embeddings (Figure 3a, 194 

Supplementary Figure 8). Embeddings coming from the same condition are closer to each other than 195 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.08.544243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.08.544243
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

embeddings coming from random pairs (Figure 3b), while biological duplicates are even closer (Figure 196 

3c), validating that indeed we have successfully constructed a stimuli-specific global latent space. Similar 197 

patterns can be observed in the global latent space when using the CPA-based approach (Figure 3d), but 198 

with a cell-line effect visible in the composed latent space, as expected with this method. We use 199 

Cohen’s d to quantify the difference between the distributions of cosine distances across all folds in 10-200 

fold cross-validation (Figure 3e), proving that indeed there is a much higher cell-line effect in the latent 201 

space than the effect in the global latent space.  202 

Interpreting the biological information captured in the parameters 203 

Deep learning models are often criticized for their lack of interpretability, so we investigate the 204 

biological information captured by some of the model’s parameters. Since only the cell-line effect is 205 

minimized in the global latent space of the CPA-like framework, the trainable covariate (covariates such 206 

as species, cell type etc.) vectors should only add a cell-specific effect. Intuitively, the global latent 207 

embeddings are expected to capture a “zero”/basal cell state corresponding to expression of untreated 208 

cells (controls), and thus the trained covariate which is added to that global representation should be 209 

similar to the composed latent space vectors which now captures the cell line effect.  To investigate this 210 

we used control samples from the L1000 dataset not seen by the model during training, as well as 211 

samples coming from untreated cell lines from the Cancer Cell Line Encyclopedia40 (CCLE), using only the 212 

genes included in the L1000 landmark genes. Additionally, for this investigation two models were 213 

trained completely separately: the original benchmark model of A375/HT29 cell lines and another model 214 

using the PC3 prostate cancer cell line and the HA1E normal epithelial cell line. The latter pair was 215 

chosen because of high model performance (Figure 2a) and because these two cell lines are significantly 216 

different in terms of biology. Each trained covariate, even though the models were trained separately, is 217 

observed to be closer to its respective cell-line control signatures, both when using PCA for 218 

dimensionality reduction (Figure 3f), where clearly defined cell-line specific regions are observed, as well 219 
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as when using t-SNE (Figure 3g). This demonstrates that some parts of the model are biologically 220 

interpretable and capture specific information. 221 

Identification of features that are important for translation and cell classification 222 

The framework can be used to identify latent variables and genes that can be of biological importance. 223 

As a case study, we selected the model of the PC3 and HA1E cell lines with a classifier trained 224 

simultaneously to classify the cell lines from which the samples were derived (contradictory learning 225 

tasks). To identify the importance of genes according to the model for a variety of tasks with respect to 226 

their output, an integrated gradient-based approach35 was utilized (Methods) that attributes an 227 

importance score to each variable of interest. Since the same genes are used for both cell lines, it can be 228 

interesting to identify which are important for the model to translate a gene expression profile from one 229 

cell line to another cell line. Interestingly, the model attributes more importance to many genes other 230 

than the gene of interest when translating to across cell lines for the same condition (Figure 4a). In the 231 

case of the landmark genes, that phenomenon is slightly less prominent (Figure 4b). This is particularly 232 

interesting since one of the selected cell lines is cancerous and the other is non-cancerous, suggesting 233 

that the model may avert the fallacy of using the same gene as a proxy for its gene expression across 234 

disparate biological systems. Additionally, the model does not just attribute importance to genes that 235 

are highly expressed, based on Spearman’s correlation between the absolute importance scores and the 236 

absolute gene expression (Figure 4c).  237 

The simultaneously trained classifier can also be used to identify subsets of latent variables in the global 238 

latent space that are important for classifying samples by cell type. Although the cell line effect is 239 

partially filtered and embeddings coming from the same condition are globally close to each other 240 

(Supplementary Figure 4), there are still 11 latent variables that allow the classification of cell line 241 

(Figure 4d) using a k-means-based approach (see Methods). These latent variables can separate the 242 

samples based on cell line (Figure 4e), even though globally the cell line-specific effect in the latent 243 

space is still filtered out. Genes considered important by the encoders to control these latent variables 244 
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should be either cell line-specific genes or a subset of genes that can easily distinguish between cell 245 

lines.  The importance scores of the genes for each cell line-specific encoder do not correlate at all and 246 

are different between the two cell lines (Figure 4f). It is possible to even train a very simple generalized 247 

linear model to classify cell lines based on gene expression, only using a subset of these important 248 

genes, achieving high performance with only few genes from each cell line (Figure 4g). 249 

Performance in inter-species translation for lung fibrosis 250 

Animal models don’t recapitulate human biology perfectly, so computational modeling can be used to 251 

improve the translation between humans and animal models. We evaluate the ability of the framework 252 

to perform inter-species translation. We utilize the raw gene counts coming from single-cell RNA-253 

sequencing of a mouse36 and human37 lung fibrosis dataset. Similar to the original CPA study32, the 254 

decoders predict a mean and a variance for every gene, derived from a negative binomial distribution. 255 

Furthermore, both a trainable species vector and another trainable cell type vector are added to the 256 

global space, in attempt to minimize both species and cell type effects. We evaluate the performance in 257 

the reconstruction of gene expression profiles and the ability to translate between mouse and human 258 

under 10-fold cross-validation in terms of R2 of the predicted per gene means and variances, where we 259 

would expect to observe a similar distribution in a successful translation, and thus mean and variance. 260 

Our framework outperforms the other approaches in terms of R2 of the means both in reconstruction 261 

and translation (Figure 5a). When predicting the within-gene variance, there is not always a statistically 262 

significant improvement, as all approaches have generally low performance (Figure 5b), which suggests 263 

that the models fail to capture variation in gene expression. We do not find any significant difference in 264 

performance between using all genes or just homologs (Figure 5a-5b). It is worth noting that based only 265 

on the human lung fibrosis dataset, three of the top ten genes contributing to the top principal 266 

components do not have homologs in mice (Supplementary Figure 11), meaning that irrespective of 267 

performance, a method considering only homologs would exclude important genes for lung fibrosis.  268 
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We also evaluate the ability of each approach to classify fibrosis, species, and cell type and to classify 269 

correctly a signature as a different species when that is translated in the composed latent space, by 270 

adding a different species effect. In our framework, utilization of all genes outperforms the homolog 271 

genes approaches in predicting fibrosis and species-translation, though the performance of all 272 

approaches is high (Figure 5c). Similar to what was observed for the L1000 dataset, species and cell type 273 

are perfectly predicted in our framework. Additionally, both the species and cell-type effects are filtered 274 

(Figure 5e-5f, Supplementary Figures 9-10) in the global latent space compared to the composed latent 275 

space, meaning the model succeeds in removing the cell type and species effect in the global latent 276 

space and then retrieving it again in the composed latent space.  277 

Generalization in other disease datasets 278 

Models that are trained on a specific data set can often perform worse on external test sets, and it is, 279 

therefore, useful to investigate to which extent the model can predict disease, species, and cell types in 280 

other datasets, as well as different tissue and disease datasets. For this, we use an independent dataset 281 

on mouse lung fibrosis41 and a dataset on human liver cirrhosis42. In the mouse dataset, even though 282 

different genes were measured than those in our model, the performance is still decent in disease 283 

classification (Figure 5d). For the human dataset, which is an extreme case of fibrosis in a different 284 

organ, the model has markedly lower performance although better than chance (Figure 5d). 285 

Interestingly, in both cases, the model can still perfectly identify cell types and species (Figure 5d), once 286 

again displaying the model’s ability to capture the general characteristics of the system.  287 

An inter-species model from serology data for predicting protection against HIV 288 

As a final case study, we developed a model for cross-species translation of serology data, where there 289 

are no 1-1 mapping of features, to predict vaccine-induced protection from HIV in humans. Previous 290 

failed HIV vaccine trials have suggested that neutralizing antibody titers, the primary outcome for most 291 

vaccine trials, do not consistently correlated with vaccine efficacy. Moreover, recent research suggests 292 
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that deeper characterization of the antibody response, including antibody subtype prevalence and Fc-293 

receptor binding affinity, may be necessary to predict the quality of the vaccine response. Notably, the 294 

primary challenge in comparing pre-clinical animal models and human clinical trial data in this context is 295 

that antibodies and Fc-receptors with similar names across species can be structurally and functionally 296 

distinct and orthologous features might not exist. Our ANN approach has the potential to advance our 297 

understanding of which preclinical features might best predict efficacy of a HIV vaccine. Here we utilize 298 

serology data from non-human primate (NHP) and human datasets 38,39 following vaccination against 299 

SHIV and HIV, respectively. In this case, we added a non-linear species effect using two small 300 

intermediate fully-connected neural networks with non-linear activation functions (Figure 6a). In line 301 

with other models constructed using this framework, the model was trained so that protected 302 

individuals are close in the global latent space regardless of species. While two separate classifiers try to 303 

predict vaccination status and protection in the global space (Figure 6a), a third classifier predicts 304 

species in the composed latent space. For the human serology features, the model has high 305 

performance when reconstructing each feature (Figure 6b, r = 0.89±0.01). Ιn NHPs, while some features 306 

are not predicted well and there is a big variation in performance between folds, the overall 307 

performance is still good (Figure 6c, r = 0.71±0.04). Finally, the performance across all classification tasks 308 

is exceptionally high (Figure 6d) including 100% accuracy in species classification and translation, which 309 

is evaluated by how well the species classifier predicts species label when translating a signature to 310 

another species in the latent space. 311 

Using the model, we aimed to identify features from both species that are predictive of human 312 

protection. For this, we performed the integrated gradient approach in parallel to likelihood ratio tests 313 

(LRT) on each latent variable (see methods). Latent variables are denoted as important in predicting 314 

human protection only if there is an agreement between the likelihood ratio test results and the 315 

integrated gradients (Supplementary Figure 17). The human features identified indeed have a 316 

statistically significant difference between protected and non-protected individuals (Figure 6e). Finally, 317 

we identified NHP features that have a high gradient score when translating to human signatures, 318 
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meaning these NHP features are predictive of human features linked with viral protection (Figure 6f). 319 

These features are not necessarily associated with NHP protection (Supplementary Figure 18) but they 320 

could be predictive of human protection. Notably, while the top human features identified are generally 321 

related to IgG titers, the top NHP features are mostly related to the Fcg-2A and Fcg-3A receptors. 322 

Further analysis of feature importance could potentially identify a set of serological biomarkers in NHPs 323 

that is highly predictive of human HIV vaccine efficacy. 324 

Discussion 325 

Here we develop AutoTransOP, an ANN framework that facilitates the translation of omics profiles 326 

between different biological systems. The framework builds upon ideas of the CPA approach32 and other 327 

species and cellular translation methods13,15,18,31, together with ideas from language translation 328 

models33.  The explicit goal is to align omics signatures between systems, rather than identifying what 329 

information inherent in the signature of one system is most germane for understanding phenotype 330 

characteristics in the other, which has been the objective in many previous studies16–19. The framework 331 

performs as well as (or even better than) other state-of-the-art translation techniques, when using 332 

homolog features between systems, and performs similarly also without a 1-1 mapping between 333 

features. Notably, the framework constructs a truly global latent space with stimuli-specific regions, for 334 

which classifiers can be jointly trained to make predictions for various tasks such as the diagnosis of 335 

diseases. 336 

Most current approaches to translating between systems require homolog features and utilize linear 337 

transformations to facilitate translation13–18, and are thus restricted to represent linear inter-species 338 

relationships. Also, the non-linear ANN-based approach DeepCellState31 requires homology of the 339 

molecular features used to describe the biological systems. In contrast, our framework can represent 340 

non-linear relationships between different biological systems, without requiring any kind of homology, 341 

and achieves high performance using only a small percentage of paired conditions. This enabled us to 342 

train a translation model on serology datasets for which a 1-1 mapping of the features between the two 343 
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biological models did not exist. Through interpretation of this model, relationships between very 344 

different molecular profiles that correlate with specific phenotypes can be identified, e.g. protection 345 

against infection. 346 

Interpretability of deep learning models in biology remains a challenge.  These models have been 347 

criticized for providing a poor understanding of which biological relationships they capture 43,44. On this 348 

front, we demonstrate in our framework how integrated gradient approaches35 can be used to estimate 349 

the importance of features used by different parts of the framework for various tasks, enabling some 350 

biological interpretation of the model. Based on this, we could propose serological features predictive of 351 

human protection against HIV, including non-human primate-specific features that can be observed in 352 

preclinical stages of vaccine development. Finally, elements of the framework can be used to interpret 353 

and successfully retrieve the effects of species or cell types, filtered from the global latent space. This 354 

can explain the ability of the framework to predict cell types and species with high performance also in 355 

independent disease datasets, derived from different organs/tissues. However, there are still limitations 356 

in the generalization of in the models to external datasets. In particular, the performance on such 357 

datasets drops significantly as samples from different pathologies and tissues are considered. Even 358 

within the same disease, the inclusion of different features can lead to reduced performance in 359 

predicting disease diagnosis.  360 

Despite our framework being trained successfully on datasets with relatively small sample sizes, the 361 

model still contains many parameters, especially when using a larger number of features, which 362 

inevitably leads to overfitting. Some of these shortcomings could likely be alleviated by applying our 363 

framework to larger datasets, such as ARCHS410, which contains hundreds of thousands of publicly 364 

available RNA-sequencing data from humans and mice. Training with more data and more diverse 365 

unique conditions may enable higher generalization and higher granularity in modeling different 366 

biological covariates. Additionally, with the advent of Natural Language Processing (NLP) models45 and 367 

attention-based models46, our encoder modules could potentially be modified with NLP-like 368 
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representations. Recently, Geneformer47, an attention-based model, was pre-trained on a corpus of 30 369 

million single-cell transcriptomic profiles and was proven to be context-aware of the system it encodes. 370 

Although it still requires some level of homology, it paves the way to utilize NLP approaches for transfer 371 

learning in biology, and ultimately translation. 372 

The flexibility of our framework allows the modeling of many different biological systems. This could 373 

lead to the computational optimization of biological systems and assays aiming to model human 374 

pathology. Using our framework, we can both explore potential transcriptional modifications to design 375 

better disease models and identify features predictive of human biology without requiring homology 376 

between systems, ultimately reducing resources spent during experimental modeling and potentially 377 

expediting the translation of in-vitro and pre-clinical findings to human therapeutic advancement. 378 

Methods 379 

Pre-processing of in-vitro transcriptomics benchmark dataset 380 

The L1000 CMap resource12 contains bulk gene expression data from drug perturbations across different 381 

cell lines and provides a benchmark dataset with diverse conditions and a large sample size (for a total 382 

of 720,216 samples of drug perturbations of varying quality). Additionally, several equivalent 383 

perturbations across different biological systems are available (406 paired conditions for the case of 384 

A375 and HT29 cell lines after filtering and pre-processing, explained below) to evaluate the 385 

performance in translating omics profiles. We selected high-quality drug perturbations from the latest 386 

version of the L1000 dataset (accessed via clue.io). The level 5 z-score transformed and pre-processed 387 

differential gene expression data of 978 landmark genes, measured with the L1000 assay, and 388 

additionally, 9,196 computationally inferred genes in the CMap resource that were marked as well-389 

inferred, were considered in the subsequent analysis. We consider perturbations as high-quality if they 390 

consist of signatures with more than three replicates, where at least half of them passed the standard 391 

quality control protocols in the assay, as provided in the dataset, and were not identified as statistical 392 
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outliers (as considered by the L1000). Additionally, where multiple-signature perturbagens, i.e. technical 393 

duplicates, only the signature with the highest transcriptional activity score (TAS) across these technical 394 

duplicates was retained in the dataset, these signatures are labeled ‘exemplars’ by the CLUE platform 395 

and are specifically designated for further analysis by the platform48. The TAS metric is provided along 396 

with the L1000 dataset and quantifies signal strength and reproducibility. Finally, the ability to 397 

distinguish between random signatures and true biological duplicates, meaning the same perturbagen 398 

tested on the same cell line for the same duration and dosage, was evaluated for different parts of the 399 

dataset, split using varying TAS thresholds (Supplementary Figure 19) and samples with a TAS≥0.3 were 400 

retained. After filtering and 13,699 samples remained, with 1107 conditions available in total for the 401 

HT29 cell line and 1213 for the A375 cell line. In the case of control signatures, we followed the same 402 

procedure but without filtering based on TAS.  403 

Pre-processing single-cell RNA sequencing interspecies datasets 404 

For the human and mouse single-cell RNA-sequencing datasets, we first re-annotated manually each 405 

annotated cell into one of the four classes: i) immune cells, ii) mesenchymal cells, iii) epithelial cells, iv) 406 

endothelial cells, and iv) stem cells. These high-level labels were later used to remove cell effect from 407 

the global latent space and were also used in the subsequent cell-type classification. Finally, while the 408 

raw gene counts are used for reconstruction from the decoder in the loss function, the encoders take as 409 

input the log-transformed counts (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = log10(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1) ), which acts as an activation function in 410 

the first layer of the encoder. 411 

Pre-processing of the serology datasets  412 

For all serology data, we aimed to construct a model using only antibody and receptor measurements. 413 

The human data were retrieved from Chung, Kumar, Arnold et al.39 upon request, the avidity molecular 414 

features were dropped and the data were z-scored per feature. The non-human primates’ data were 415 

retrieved from Barouch, Tomaka, Wegmann, et al.38 upon request, the samples taken in week 28 were 416 
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used, and antibody-dependent cellular function features and mass spectrometry data were dropped. 417 

The data were log-transformed (𝑥𝑥 = log10(𝑀𝑀𝑀𝑀𝑀𝑀 + 1)), the median per feature from controls is 418 

subtracted from each feature to standardize the data. Finally, the data are z-scored per feature. 419 

The general framework and the training procedure 420 

In this implementation, the framework always models pairs of systems for translation, species, or cell 421 

lines. Each is modeled with separate encoders and decoders for each of the species or cell lines in the 422 

pair attempting translation, while inside a latent module, the global latent space is shaped (Figure 1a). 423 

Both the encoders and the decoders are multi-layered neural networks, with each layer consisting of, 424 

sequentially: a fully-connected layer, a batch normalization layer49, an ELU activation function50, and a 425 

dropout layer51. The final output layer of the encoder and the decoder consists of only one fully 426 

connected layer without a trainable bias term.  427 

For the construction of the global latent space several metrics are optimized: the distance (𝑳𝑳𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) 428 

between embeddings of profiles coming from different systems undergoing the same perturbation is 429 

minimize and their cosine similarity (𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) and mutual information (𝑳𝑳𝑴𝑴𝑴𝑴, see details below) is 430 

maximized; and the divergence of the distribution of the latent variables from a random uniform 431 

distribution is minimized (𝑳𝑳𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑).  Both cosine similarity and Euclidean distance losses were added to 432 

enforce the strongest possible filtering of species and cell type effect, while the cosine similarity also 433 

enforces normalization of the latent embeddings. This is achieved using two different ANN 434 

discriminators, as previously proposed in the MINE52, Deep InfoMax53 and InfoGraph54 studies, where 435 

the Jensen-Shannon Mutual Information between embeddings coming from the same perturbation is 436 

estimated and the extra prior loss is calculated and added in the final loss, according to the following 437 

equations with the implementation taken from the deepSNEM model55. 438 
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• 𝑳𝑳𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏
𝑵𝑵
∑ �𝐥𝐥𝐥𝐥𝐥𝐥�𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝟐𝟐(𝒗𝒗𝒊𝒊)� + 𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏 − 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝒓𝒓𝟐𝟐 �𝒛𝒛𝒈𝒈𝒊𝒊���
𝑵𝑵
𝒊𝒊=𝟏𝟏  , where 𝑣𝑣𝑖𝑖 is a randomly 439 

sampled embedding from a prior random uniform distribution ranging from 0 to 1 and 𝑧𝑧𝑔𝑔𝑖𝑖  is a 440 

global latent space embedding. N is the number of samples in a batch during training. 441 

• 𝑳𝑳𝑴𝑴𝑴𝑴 = −(𝑴𝑴𝑰𝑰+ −𝑴𝑴𝑰𝑰−),  𝑴𝑴𝑴𝑴 = 𝟏𝟏
𝑵𝑵𝑵𝑵+𝑵𝑵𝑵𝑵

∑ ∑ 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝟏𝟏 �𝒛𝒛𝒈𝒈𝒊𝒊,𝒛𝒛𝒈𝒈𝒋𝒋�
𝑵𝑵𝑵𝑵
𝒋𝒋=𝟏𝟏

𝑵𝑵𝑵𝑵
𝒊𝒊=𝟏𝟏 , where MI+ and MI- are 442 

respectively the mutual information between pairs derived from the same conditions and pairs 443 

coming from different conditions, averaged for every possible pair in a batch during training. 444 

𝑧𝑧𝑔𝑔𝑖𝑖, 𝑧𝑧𝑔𝑔𝑗𝑗 are global latent space embeddings, whose mutual information is estimated by the 445 

Discr1 discriminator.  446 

Discr1 is the discriminator estimating the mutual information between two embeddings from the global 447 

latent space. It takes as input two global latent space embeddings and passes them through the same 3 448 

fully-connected layers, each of them followed by a ReLU activation function50 and one fully-connected 449 

skip connection. Then the product of the result of this non-linear transformation of the two embeddings 450 

is used to approximate a lower bound of their Mutual Information, as proposed originally in MINE52 and 451 

Deep InfoMax53.  Discr2 is the second discriminator which takes as input an embedding vector and 452 

calculates the probability a point in this embedding space is sampled from a specific distribution. This 453 

way 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  forces each feature of the learned embeddings to be sampled from a distribution close to the 454 

random uniform distribution ranging from 0 to 1. It has three similar fully-connected layers and the final 455 

scalar output is passed through a sigmoid activation function50. These regularization loss terms 456 

(𝑳𝑳𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅, 𝑳𝑳𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝑳𝑳𝑴𝑴𝑴𝑴) are calculated and averaged across every pair of global embeddings (𝑧𝑧𝑔𝑔𝑖𝑖 , 𝑧𝑧𝑔𝑔𝑗𝑗) 457 

that are coming from the same condition. The 𝑳𝑳𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 is calculated for every sample in the dataset, 458 

meaning every global latent embedding and averaged across samples. For the case of the L1000 dataset, 459 

we consider similar perturbations those that are coming from experiments of the same drug, tested on 460 

the same cell line, with the same dose and time duration. For the lung fibrosis dataset, similar profiles 461 

are considered those coming from samples that have the same diagnosis (fibrosis or not). For the 462 
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serology datasets, we train the framework so that embeddings coming from protected individuals 463 

against HIV are close to each other regardless of species (and even vaccination status) 464 

The basic task of this autoencoder framework is reconstruction, which is achieved by minimizing some 465 

kind of reconstruction loss (𝑳𝑳𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓). In the case of z-scored profiles from bulk data, this is done by 466 

minimizing the mean sum of squared errors between the input of the encoders and the output of the 467 

decoders. The sum of squares error is averaged across samples. For only the case of single-cell RNA-468 

sequencing data, based on the implementation proposed in the CPA manuscript32 (found here 469 

https://github.com/facebookresearch/CPA), the negative binomial negative log-likelihood is used to 470 

optimize the reconstruction, by assuming that the data are derived from a negative-binomial 471 

distribution characterized by a mean and variance that are both predicted. The negative binomial 472 

negative log-likelihood loss is calculated for every sample and the average across all samples in the 473 

batch is minimized. 474 

Classifiers are used for different classification tasks. These consist of multiple fully connected layers and 475 

a final SoftMax activation function before the output. The average entropy loss across samples for every 476 

classification task in the latent space is minimized: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑖𝑖 =477 

1
𝑁𝑁
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑖𝑖�𝑧𝑧𝑗𝑗�, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗�𝑁𝑁
𝑗𝑗=1 , where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑖𝑖  is the average cross entropy between 478 

every jth prediction of a classifier taking a latent vector as input and the true label for that sample.  479 

L2-regularization of the weights and bias of the encoders (𝑳𝑳𝟐𝟐𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆,𝒊𝒊), decoders (𝑳𝑳𝟐𝟐𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅,𝒊𝒊), and 480 

classifiers (𝑳𝑳𝟐𝟐𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝒊𝒊) is also enforced by minimizing the sum of squares for the aforementioned 481 

trainable parameters. 482 

Taken together, for the basic variation the following loss function is optimized 483 

𝑳𝑳𝑳𝑳𝑳𝑳𝒔𝒔𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 = 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 + 𝜆𝜆𝑀𝑀𝑀𝑀 ∗ 𝐿𝐿𝑀𝑀𝑀𝑀 + 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ∑ �𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 ∗2
𝑖𝑖=1484 

𝐿𝐿2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖� +∑ �𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 ∗ 𝐿𝐿2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖� 2
𝑖𝑖=1 + ∑ �𝜆𝜆𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 ∗ 𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖� 𝑀𝑀

𝑖𝑖=1 +∑ �𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 ∗𝑀𝑀
𝑖𝑖=1485 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑖𝑖� −  𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, where M is the number of classifiers and thus individual classification 486 
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tasks, and the rest of the terms, together with how they are calculated, have already been described in 487 

the previous paragraphs of this section. For values for each of the λ used in the loss function see 488 

Supplementary Table 5. 489 

Variation of the global latent space with a simultaneously and competitively trained classifier  490 

For the variation of the global latent space with a simultaneously and competitively trained classifier the 491 

aim is to embed some species or cell line information in some of the latent variables. A simple classifier 492 

for correctly predicting the cell line label is trained simultaneously on the global latent space with the 493 

rest of the framework and an entropy loss is added to the original description of the framework. The 494 

construction of a global latent space and the training of the classifier are competing tasks, where the 495 

framework is trained to achieve a stable trade-off. 496 

CPA-based variation of the framework 497 

For the CPA-based framework, the global latent space is expanded by augmenting the loss function with 498 

some additional terms. 499 

An adverse classifier of species and cell types is added. As described in the original CPA manuscript32, 500 

during training we iterate between training the classifier (updating only its parameters) on the global 501 

latent space, and training the rest of the framework with the addition of a penalty (𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒚𝒚𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) if 502 

the classifier correctly classifies species and cell types. To improve the robustness of the discriminator it 503 

is initially pre-trained only with encoders and discriminators, without other classifiers and the decoders, 504 

so that it can already distinguish cell types and species in the global space. 505 

Furthermore, species and cell type effects are added to the latent space via trainable vectors. In the 506 

newly composed latent space, from which the decoders are sampling embeddings, classifiers are jointly 507 

trained to correctly classify cell types, and species (or even disease diagnosis). Additionally, the trainable 508 

vectors are regularized by the L2 norm (𝑳𝑳𝟐𝟐𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒅𝒅𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆). All the above can be summarized in this new 509 

loss function: 510 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝐿𝐿2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  511 

Framework for the serology datasets 512 

In the serology dataset we utilize the CPA-based framework but instead of adding the species effect with 513 

trainable vectors, small artificial neural networks are utilized consisting of two fully-connected layers. 514 

L2-regularization terms for these small ANNs are added to the training loss function. 515 

Additionally, it is aimed to later identify features predictive of protection or vaccination status regardless 516 

of species. For this purpose, we train two classifiers predicting vaccination and protection status in the 517 

global latent space. We care more about protection and thus, as described previously, we aim to create 518 

similar embeddings and minimize their distance in the global latent space just by looking at protection 519 

status. 520 

Framework’s basic hyperparameters 521 

Here we present the basic parameters used to train the model. No thorough hyperparameter tuning was 522 

performed, and values were selected based on empirical values and tuned so that there is convergence 523 

in the training loss and the training reconstruction performance (Pearson’s r and/or R2). Additionally, 524 

these values were also tuned so that the performance in training (not validation) is sufficiently high, 525 

meaning that the model is at least able to fit the given data. This empirical tuning was done only based 526 

on the 1st training set in 10-fold cross-validation. 527 

The latent space dimension was chosen to be as small as possible until the model’s performance 528 

dropped in both training and validation of only the 1st fold. Based on this latent dimension and the 529 

original input dimension of the data the sizes of hidden layers of the encoders were chosen to be in-530 

between, gradually reducing the input dimension to that of the latent space. The actual size and number 531 

were constrained by practical memory limits. The decoders had the same number and sizes of hidden 532 

layers as those of the encoders, but now they increase the size of the embeddings from the latent 533 

dimension to the original input dimension. 534 
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hyperparameter L1000: 978 genes L1000: 10,086 genes Lung fibrosis Serology 

latent dimension 292 1025 512 32 

hidden encoder layers dimensions [640,384] [4096,2048,1024,512] [4096,2048] [64] 

hidden decoder layers dimensions [384,640] [512,1024,2048, 4096] [2048, 4096] [64] 

cell type classifier hidden layer dimensions [256,128,64] [512,256,128] [256,128,64,32] - 

species classifier hidden layer dimensions - - [256,128,64,32] [32,16,8] 

fibrosis classifier hidden layer dimensions - - [256,128,64,32] - 

serology phenotype classifiers classifier 

hidden layer dimensions 

- - - [32,16,8] 

adverse classifiers hidden layers 

dimensions 

[256,128,64] [512,256,128] [512,256,128,64] [32,16,8] 

intermediate ANN translators hidden 

layers dimensions 

- - - [32] 

total batch size 512 512 1024 2000 

number of epochs 1000 1000 200 50 

learning rate 0.001 0.001 0.001 0.001 

 535 

Evaluation procedure and metrics 536 

The model performance was evaluated using 10-fold cross-validation. One fold of the data was hidden 537 

during training and used to evaluate performance in unseen data, and 90% of the data from each system 538 

(species or cell line in the case of L1000) were. For the L1000 dataset, for evaluating the translation of 539 

the whole omics profile, we made sure that for the case of paired conditions, the perturbation in both 540 

cell lines was hidden during training. 541 
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The classification tasks were evaluated by total accuracy and F1-score (or micro F1 for multiple 542 

categories): 543 

Accuracy =
∑ TPiK
i=1 +∑ TNi

K
i=1

∑ TPiK
i=1 + ∑ TNi

K
i=1 + ∑ FPiK

i=1 +∑ FNi
K
i=1

, 544 

F1micro =
∑ TPiK
i=1

∑ TPiK
i=1 + 1

2 ∗ �∑ FPiK
i=1 + ∑ FNi

K
i=1 �

, 545 

where K is the total number of classes in multi-class classification, TP and FP symbolize true and false 546 

positives, and TN and FN symbolize true and false negatives. For the case of multiple classes, we define 547 

as positives the samples belonging to that specific class while everything else is a negative sample. Using 548 

this definition of positives and negatives we further calculate the TP, FP, TN and FN per class. In the case 549 

of cell-type classification in lung fibrosis K=5.  550 

For the cell line classification in L1000, species classification both in lung fibrosis and the serology 551 

datasets, and vaccination and protection status in the serology dataset we use the F1 score and accuracy 552 

for binary classification (Accuracy = TP+T𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 ,𝐹𝐹1 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+12(𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

). 553 

To evaluate the validity of the predictions (𝑦𝑦�) of whole signatures in translation and reconstruction, 554 

compared to the ground truth (𝑦𝑦), we utilized:  555 

i. the global Pearson’s correlation r(y�, y) = ∑(yi−y�)(y�i−y��)

�∑(yi−y�)2 ∑�y�i−y���
2
, where y� and y are flattened and the 556 

ith element is the ith point in these flattened vectors. 557 

ii. the average per sample Spearman’s correlation rs =
∑ r�Rank(y�),Rank(y)�i
N
i=1

N
, where N is the 558 

number of samples and Rank() means ranking the gene based on their differential gene 559 

expression and using these ranks to calculate Spearman’s correlation. 560 

iii. the average per sample sign accuracy = TP+TN+TrueZeros
total predictions

, where TP signifies the genes that 561 

have a positive sign regulation both in the actual data and predictions, TN signifies the genes in 562 
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the sample that have a negative sign regulation both in the actual data and predictions, and 563 

TrueZeros are the genes that have an absolute expression ≤10-6 both in the actual data and 564 

predictions (a small tolerance rather than strictly zero was chosen for numerical reasons). 565 

For the single-cell RNA-sequencing data where we predict the per gene mean and variance we calculate 566 

the coefficient of determination (R2) per gene mean and variance, similar to the original CPA 567 

manuscript32. In general, R2 is calculated as: 𝑅𝑅2 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅 = ∑(y�i − 𝑦𝑦𝑖𝑖)2  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇 =568 

∑(yi − y�)2  569 

Separation of latent space embeddings 570 

To evaluate   the similarity of embeddings for different signatures, and whether there is separation 571 

based on cell, species, or conditions in the latent space, we utilize cosine distance, ranging from 0 (the 572 

same) to 2 (completely) different: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − ∑ z1,i𝑧𝑧2,𝑖𝑖
d
i=1

�∑ z1,i
2d

i=1 �∑ z2,i
2d

i=1

 , 573 

where z1 a and z2 are two latent space vectors to be compared and d is the total number of elements in 574 

the vector, i.e. the latent dimension. 575 

To estimate if there is a cell, species, or condition effect, and compare it between the composed and 576 

global latent space we utilize Cohen’s d to estimate the effect size between the distributions of cosine 577 

distances, derived from random pairs of embeddings and pairs coming from the same cell, species, or 578 

condition. The effect size is thus calculated using the mean and standard deviations of two cosine 579 

distance (cos) distributions as: 𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐�����1−𝑐𝑐𝑐𝑐𝑐𝑐�����2

��(𝑛𝑛1−1)𝑠𝑠1
2+(𝑛𝑛2−1)𝑠𝑠2

2�
𝑛𝑛1+𝑛𝑛2−2

 , where n1, n2 is the number of samples of each of 580 

the two distance distributions, 𝑐𝑐𝑐𝑐𝑐𝑐�����1, 𝑐𝑐𝑐𝑐𝑐𝑐�����2 are the means of the cosine distance distributions and s1,s2 are 581 

the standard deviations of the cosine distance distributions. A Cohen’s d around 0.8 is a large effect size 582 

(around 2 is considered a huge effect size) while around 0.5 is a medium effect size, and around 0.2 and 583 

below is considered small or very small56,57. 584 
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Feature importance using integrated gradients 585 

To estimate the importance of features we utilize integrated gradients35 from the Captum library58.  586 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑖𝑖(𝑥𝑥) = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)∫
𝑑𝑑𝑑𝑑�𝑥𝑥′+𝑎𝑎�𝑥𝑥−𝑥𝑥′��

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑1

𝑎𝑎=0 , 𝑥𝑥′ = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0   587 

The importance scores are calculated based on the gradient with respect to the input of the model, and 588 

thus the higher the absolute integrated gradient the higher the importance of that input feature to 589 

control the output. A negative score means the variable has a negative effect pushing the prediction to 590 

the other class, while a positive score has a positive effect. 591 

For example, if we want to identify important latent variables to classify a sample as one coming from a 592 

particular cell line we calculate the integrated gradient of every latent variable to make the classification 593 

and take the average across all samples. Similarly, if for example, we are aiming to calculate the 594 

importance of genes to control latent variables in the global latent space we can calculate the integrated 595 

gradient score of every gene for every variable in every sample, and then take the average across 596 

samples. 597 

K-means-based separation of important latent variables 598 

Latent variables can be separated into important and unimportant ones using k-means, inspired by an 599 

approach that was used to identify important connections between latent components and genes in 600 

microbial organisms by using the weights derived from independent component analysis 59,60. We 601 

assume that only 2 main clusters of latent variables exist, one containing important variables and one 602 

containing unimportant ones. On this front, the latent variables are clustered based on their absolute 603 

gradient scores into 3 clusters, where 3rd cluster is assumed to be a very small cluster of outliers. The 604 

midpoint between the variable with the highest score in the unimportant cluster and the variable with 605 

the lowest score in the important cluster is used as a threshold to distinguish between significantly 606 
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important and unimportant latent variables. As a sanity check the important variables are also 607 

compared with the top-ranked variables based on their score. 608 

Likelihood ratio tests for the identification of important latent variables 609 

To identify which latent embeddings correlate with viral protection after accounting for vaccination 610 

status and species, a likelihood ratio test (LRT) was performed on each individual latent variable. Here, 611 

the likelihood (L) of the alternative model  (𝐻𝐻𝐴𝐴 ): 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ~ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +612 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was compared to the likelihood of the nested model, or null hypothesis, 613 

(𝐻𝐻0 ): 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ~ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝐿𝐿𝐿𝐿𝐿𝐿 = −2 ln �𝐿𝐿(𝐻𝐻0 )
𝐿𝐿(𝐻𝐻𝐴𝐴 )

� . We rejected 614 

𝐻𝐻0 for 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 when the FDR-adjusted p-value of the chi-square test was less than 0.05, 615 

concluding that the model including protection has a statistically significant better fit than the model 616 

without protection. In the volcano plots, the − log(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is plotted against the t-value for the 617 

protection term in the alternative model. This method assumes that the relationship between the latent 618 

variable embeddings and protection is linear. R package lmtest61 (version 0.9.40) was used to perform 619 

these statistical tests. Finally, the intersection of these latent variables with significant latent variables 620 

(average percentage importance score across folds ≥10%), based on their gradient score from the 621 

trained protection classifier, is used for the final identification of robust latent variables associated with 622 

viral protection. We keep latent variables that the sign of correlation with protection agrees in both 623 

approaches.  624 

Identification of protection-associated serological features 625 

The importance of the serological features is calculated as previously described with the integrated 626 

gradient score of every feature for every latent variable that was identified to be statistically significant 627 

for predicting viral protection of humans, averaged across samples coming from the respective species.  628 

Serological features with high scores (and at least ≥20%) can control latent variables in the global latent 629 

space associated with human viral protection, and thus they are predictive of human protection. For 630 
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human features, we also validate that the univariate differences between protected and unprotected 631 

individuals are indeed significant, by using a non-parametric Wilcoxon test, with Bonferroni correction 632 

for multiple hypothesis testing. 633 

Finally, we calculate the integrated gradient score for translating each non-human primate serological 634 

profile to a human profile. The non-human features with high scores the human ones associated with 635 

protection, can be considered serological non-human features predictive of human viral protection. 636 

Inference of transcription factor activity  637 

To infer the transcription factor activity, we utilized the VIPER algorithm62 together with the Dorothea 638 

Regulon63. The VIPER algorithm calculates the enrichment of gene expression signatures of regulons, 639 

that are based on transcription regulatory networks. This way the activity of a transcription factor (TF) is 640 

inferred based on the expression of downstream genes known to be regulated by this specific TF. The 641 

Dorothea regulon contains known regulatory interactions, annotated based on the confidence that this 642 

interaction exists. Here interactions are restricted to confidence levels A and B. 643 

Hardware and software specifications 644 

All models were expressed in and trained using the PyTorch framework64 (version 1.12) in Python 645 

(version 3.8.8). When using the 978 landmark genes and for the serology case study, the models were 646 

trained in an NVIDIA GeForce RTX 3060 Laptop GPU with 6 GB of memory. The larger models (using 647 

10,086 genes and the single-cell lung fibrosis data) were trained on the MIT Satori GPU cluster using 648 

NVIDIA V100 32GB memory GPU cards. Pre-processing and statistical analysis of the results were done 649 

in the R programming language (version 4.1.2). Visualization of results was done mainly using ggplot265. 650 

More information about the versions of each library used can be found in the GitHub provided in the 651 

Data and code availability section. 652 
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Data and code availability 653 

The study did not produce new experimental data. All analyzed data that were used to train our models 654 

and produce all tables and figures, as well as all the code to generate those data, figures and tables are 655 

available at https://github.com/NickMeim/OmicTranslationBenchmark . 656 
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Figure 1: Model architecture and basic performance metrics. a) Framework architecture main 821 
variations: I) model variation 1: One global space is constructed by mapping omic profiles in a space 822 
where the distance between embeddings coming from the same perturbation is minimized. II) model 823 
variation 2: CPA-based architecture where the latent space is separated into two, one global devoid of 824 
species/cell effect and a composed latent space. b) Model performance in reconstructing and translating 825 
gene expression profiles between the two cell lines with the most common perturbations in the L1000 826 
dataset, A375 and HT29, by using only the 978 measured landmark genes. The model variation 3 is the 827 
one with a classifier simultaneously trained in one global latent space. For DCS modified v1-v2 see 828 
Supplementary Methods 2.2-2.3. It is worth noting that DCS modified v2 has a distance term and a 829 
direct translation term in its training loss. c) Model performance in reconstructing and translating gene 830 
expression profiles between A375 and HT29 by using all 10,086 genes that are either measured or 831 
belong to those that are well-inferred computationally. d) Performance in inferring transcription factors 832 
activity by using the translated/predicted gene expression. e) Performance in correctly classifying cell 833 
lines in different cases. f) Performance by using different inputs in the L1000. 834 

 835 

Figure 2: Analysis of framework’s performance and dependence on the data a) Performance in the 836 
translation task of the CPA-based approach across different cell-line pairs and different sizes of training 837 
data. b) Model performance in translation as a function of the initial similarity of 2 cell lines. c) Model 838 
performance in translation for different percentages of paired conditions. d)  Model performance in 839 
translation for low-to-medium cell-line imbalance in the conditions of the training samples. 840 
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 841 

Figure 3: Properties of the latent space and model parameters interpretation. The two splits in 10-fold 842 
cross-validation present each time here are the ones where the maximum and minimum difference 843 
between the two distributions is observed. For every other split, the difference is between these two 844 
extreme cases. Additionally, panels a-c come from the first variation of the model with one global latent 845 
space while the rest come from the CPA-based approach a) Cosine distance between embeddings 846 
coming from random pairs of signatures and pairs coming from the same cell line. b) Cosine distance 847 
between embeddings coming from random pairs of signatures and pairs coming from the same 848 
condition tested on a different cell line c) Cosine distance between embeddings coming from random 849 
pairs of signatures and pairs being biological duplicates d) Distance between embeddings coming from 850 
random pairs of signatures and pairs coming from the same cell-line in the global and then the 851 
composed latent space in the CPA-based approach. e) Cohen’s d between distributions of cosine 852 
distances between random pairs of embeddings and embeddings coming from the same cell 853 
distribution. f-g) 2D-Visualization of L1000 control conditions, untreated cell lines from the CCLE dataset, 854 
and the trainable vectors of the CPA-based framework containing the cell line basal effect added to 855 
perturbations. 856 
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 857 

Figure 4: Feature importance investigation a-b) Distribution of percentage rank in terms of the 858 
importance of a gene to translate its expression to itself, using the 10,086 genes and the 978 landmark 859 
genes respectively in the L1000 dataset. c) Per sample Spearman’s correlation between absolute gene 860 
importance scores and absolute gene expression. d) Important latent variable to classify a sample as PC3 861 
or HA1E in the global latent space, when a classifier is simultaneously trained. e) Separation of cell lines 862 
based on the top 2 most important latent variables according to the classifier. f) Average importance 863 
scores of genes from PC3 to control cell-specific latent variables versus the importance scores from 864 
HA1E, according to the individual encoders.  g) Generalized Linear model classification performance by 865 
using increasingly more important genes. 866 
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 867 

Figure 5: Evaluation of the framework in inter-species translation in fibrosis a-b) Performance (R2) in 868 
predicting the per gene mean and variance of single-cell RNA-sequencing data for the tasks of 869 
reconstruction and species translation in the human-mouse lung fibrosis datasets. The comparison is 870 
done between the CPA-based framework using all genes or homologs and TransCompR c) Classification 871 
performance comparison in different tasks. d) Classification performance of the CPA-based framework 872 
using all genes in external disease datasets. e) Embeddings separation based on species in the global 873 
latent space versus the composed latent space. The effect size d is calculated as Cohen’s d. f) 874 
Embeddings separation based on the cell type in the global latent space versus the composed latent 875 
space. The effect size d is calculated as Cohen’s d. 876 
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 877 

Figure 6: Inter-species translation of serology data a) Framework architecture for inter-species 878 
translation in the serology dataset. Instead of adding the species effect with a trained vector, it is adding 879 
completely non-linear with 2 small intermediate neural networks. b) Per feature Pearson correlation 880 
across in 10-fold cross-validation for human’s features. c) Per feature Pearson correlation across in 10-881 
fold cross-validation for non-human primates’ features. d) Classifiers’ performance in various tasks. e) 882 
Univariate differences between protected and non-protected individuals, for human serological features 883 
related to viral protection, as found from the integrated gradient and LRT approach. f) Non-human 884 
primate features predictive of human protection, by using importance score for translating them into 885 
human features. Their quality is assigned based on the average reconstruction Pearson’s r of these 886 
features in 10-fold cross-validation: i) low quality = 0<r<0.25, ii) medium quality = 0.25≤r<0.5, iii) good 887 
quality = 0.5≤r<0.75, iv) high quality = r≥0.75 888 
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