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Abstract

The development of effective therapeutics and vaccines for human diseases requires a systematic
understanding of human biology. While animal and in vitro culture models have successfully elucidated
the molecular mechanisms of diseases in many studies, they yet fail to adequately recapitulate human
biology as evidenced by the predominant likelihood of failure in clinical trials. To address this broadly
important problem, we developed AutoTransOP, a neural network autoencoder framework to map
omics profiles from designated species or cellular contexts into a global latent space, from which
germane information can be mapped between different contexts. This approach performs as well or
better than extant machine learning methods and can identify animal/culture-specific molecular
features predictive of other contexts, without requiring homology matching. For an especially
challenging test case, we successfully apply our framework to a set of inter-species vaccine serology

studies, where no 1-1 mapping between human and non-human primate features exists.
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25 Introduction

26  Animal and cellular models are essential tools for studying the underlying biology of human diseases,

27 but these insights are not always clinically translatable, resulting in the failure of numerous therapeutics
28 in clinical trials2. A common approach is to choose orthologous biomolecules, including genes, proteins,
29 and cellular pathways, to perform direct functional comparisons across species. However, functional

30 divergence and the absence of orthologous biomarkers can hinder these direct comparisons between
31  species >®. Furthermore, within the same species, the transcriptional response to chemical stimuli can
32 be cell type-specific due to distinct genetic profiles, creating an additional barrier to understanding the
33 mechanism of action of therapeutics®®. Consequently, computational systems-based approaches are

34  needed to gain a better understanding of the relationship between biological models and translate

35 information gained from different model systems.

36  Advancements in sequencing technologies have enabled the generation of large-scale datasets from
37  both animal and human species, facilitating more powerful analyses and comparisons of molecular
38 features between different biological systems?>1%13, This has led to the development of nhumerous new

313-17 for identifying similarities between species and

39 statistical and machine learning models
40 experimental models. Notably, most existing approaches focus on direct correlations between

41 analogous biomarkers or processes across species despite known species and model system differences.
42 In an attempt to address this challenge, Brubaker et al. proposed a technique called “Translatable

43 Components Regression”*® (TransCompR), which maps human data into the principal component space
44  of data from another species to identify translatable animal features that can predict human disease

45 processes and phenotypes. Although this approach has been successfully applied to gain insights into

1819 it depends on homologs or comparable molecular features between

46  some inflammatory pathologies
47  species. While TransCompR is well suited to identify omics signatures in one species that is most

48  germane for understanding phenotype characteristics in another, it is not centrally designed to integrate
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signatures across species. Moreover, this approach is by design only capable of deciphering linear

relationships, thus potentially excluding non-linear biological relationships.

With the advent of deep learning, particularly autoencoders, there is great potential to develop
approaches that can approximate the non-linear relationships underlying different biological systems
and species. Autoencoders are artificial neural networks (ANNs) that can embed raw input data into a
lower dimensional space from which the original data can be reconstructed %. Autoencoders have been
used in several tasks in biology including analyzing high dimensional data?"?2, denoising single-cell RNA

2627 and predicting

sequencing data?* 2>, deciphering the hierarchical structure of transcriptomic profiles
gene expression caused by various stimuli?®=°, One such model, DeepCellState3!, focused on translating
cellular states, can predict the transcriptional profile of a cell type after drug treatment based on the
behavior of another cell type. However, similar to TransCompR, this approach depends on a 1-1
mapping of molecular features between cells to capture a global cell representation. Another recently
proposed framework, is the compositional perturbation autoencoder (CPA)®2. It can construct a basal
latent space devoid of covariate and perturbation-specific signals, capturing only the basal cell state in
single-cell RNA sequence data. CPA can be used to generate in-silico transcriptional profiles at the single-
cell level for different perturbations, cells, and species, although it still requires mapping of orthologous
genes. To overcome such limitations, an approach similar to those used in language translation

33,34

autoencoder-based models, which create a global language representation®*>*, may be useful and could

aid biological inter-systems translation when 1-1 mappings between features do not exist.

In this study, we incorporate elements of the CPA approach with ideas from language translation
models*3* to develop an ANN framework hence referred to as AutoTransOP, Autoencoders for
Translating Omics Profiles, which utilizes separate autoencoders for each biological system, enabling the
mapping of samples into a global cross-model space, while providing feature importance estimates for
various phenotype-prediction tasks. The basic model is trained to simultaneously minimize the

reconstruction error of the input and the distance between samples coming from the same condition in
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74  the global latent space. Our framework is benchmarked, using the latest version of the L1000 dataset??,
75  against the established approaches of TransCompR*®, FIT*> and the ANN approach of DeepCellState®?,
76  which all require 1-1 feature mapping. We demonstrate that our approach outperforms FIT and

77 DeepCellState, while there is no difference when comparing with TransCompR in cellular models.

78  Additionally, we present several variations of the model and we illustrate the adaptability of our

79 framework by applying it to data of varying omics type and sample size to answer different biological
80 guestions of interest. Furthermore, we demonstrate its biological interpretability, an aspect that deep
81 learning models often struggle to attain, by using an integrated gradients approach . To analyze the
82 performance of the model in inter-species translation we performed mouse®® to human®” translation of
83 single-cell transcriptomics of lung fibrosis, as well as non-human primate3® to human translation® of

84  smaller-scale serology datasets to predict HIV vaccine efficacy in humans. The latter serves as a novel
85  case study of cross-species translation where no 1-1 mapping between features exists. After building the
86  model, we identified serological features in non-human primates that are predictive of protection

87  against HIV in humans, without analogous features necessarily being present in human data. These

88 findings demonstrate that features derived from this approach can be predictive of the phenotypic

89 profile of another biological model without requiring them to be homologs, allowing us to maximize the
90 amount of information we can capture from different model systems to advance our understanding of

91  complex human disease biology.

92  Results

93 A flexible framework for omics translation

94  We developed a flexible artificial neural network framework (see methods) for omics translation across
95 biological models. It consists of separate ANN encoders and decoders for each biological system, e.g. cell
96 line or species, that share a global latent space (Figure 1a), eliminating the need for a 1-1 mapping

97 between the features between systems. We implement two main variations of the global latent space

98 intending to remove the system-specific effect of perturbations. The first variation, which is also the
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99 main model variation of this framework (model variation 1), consists of a single global latent space that
100 s created by maximizing the similarity of embeddings derived from the same condition/perturbation in
101  adifferent species or cell line. The second variation (model variation 2) is based on the recently
102 published compositional perturbation autoencoder (CPA)*2, where there are two separate latent spaces:
103 1) a global/basal latent space and 2) a composed latent space. The global latent space expands on the
104  first variation with an additional discriminator that attempts to remove the cell-line or species effect by
105 penalizing models where the classifier can detect from which encoder the latent representation
106 originates®2. In the composed latent space, a cell/species classifier is simultaneously trained to ensure
107  thereis a cell/species effect, which is either added through a trainable covariate vector®? or added
108  through two intermediate ANNs, allowing for non-linearity. We utilize integrated gradients® to estimate
109 feature importance for various predictive tasks. Lastly, we also introduce a variation (model variation 3),
110  with one single global latent space, where a classifier is simultaneously trained on the global latent
111  space (see methods). This is a contradictory learning task where the framework attempts to
112  simultaneously remove the cell line or species effect globally but also hides cell or species information in

113 a few of the latent variables.

114  Benchmarking reconstruction and translation of gene expression profiles between two cell-lines

115 First, we compared our ANN framework with state-of-the-art techniques in the context of translating
116 homologous genes between in-vitro models within the same species. We use the L1000 transcriptomics
117  dataset? to benchmark different approaches to translate the effects of perturbations between different
118  human cell lines. The two main variations of our approach, as well as the variation where a classifier is
119  simultaneously trained on the global latent space, are compared with three previously published

120  approaches (DeepCellState3:, FIT?®, TransCompR!®). As a baseline, the models are also compared to

121 “direct translation”, i.e. directly using the gene expression profile in one cell line as a prediction for the
122 effect in another cell line. We evaluate the models both on the task of translating the gene expression

123 profile between cell lines, as well as the task of accurately reconstructing the gene expression for the
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124 same cell line. We evaluate them using several different metrics: i) Pearson’s correlation between
125 predicted gene expression and actual gene expression, ii) the per sample Spearman’s rank correlation,

126  andiii) the accuracy in correctly predicting the sign of drug-induced gene expression.

127  When utilizing the 978 landmark genes measured in the L1000, all of our framework’s variations provide
128  astatistically significant increase in performance compared to the direct translation across all metrics
129 (Figure 1b, Supplementary Tables 1-4 with p-values). When translating from the HT29 cell line to A375,
130  our main model variation outperformed FIT'® and the basic DeepCellState®! (DCS) methods. When

131 translating in the reverse direction, from A375 to HT29, our framework also outperforms the different
132 modifications of DCS (Figure 1b). It can be noted that the 2" modification of DCS that enforces

133 similarity in the latent space like our model, also outperforms the basic DCS, which may support the

134 importance of enforcing similarity in the global latent space via some distance metric. For reconstruction
135 of the input within a single cell line, the basic DCS approach outperforms the other approaches, at the
136 expense of its translation performance. On this metric, our approach performs well and comparably

137  with the other methods (Figure 1b). The alternative variations of our framework also perform

138  comparably well.

139 When using the L1000 dataset with computationally imputed expression of 10,086 genes, the

140 performance of all approaches drops, though still better than the baseline. There is generally no

141  statistically significant difference between our approach and the other state-of-the-art approaches
142 (Figure 1c). Interestingly, our approach performs better than direct translation also in the case of using
143  different genes as input for each cell line, e.g. using only the 978 landmark genes for the A375 cell line
144  and all the 10,086 genes for HT29 (Figure 1f). The performance is comparable to that using the same
145  genes for both cell lines, indicating the potential to later extend the method in cases where no 1-1

146 mapping exists.
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147  Performance in using predicted gene expression to infer transcription factor activity

148  While the performance was worse in predicting the full set of 10,086 imputed genes, we reasoned that
149  these imputed transcriptomic profiles may still be useful as input into different aggregation methods,
150 e.g. to infer the activity of transcription factors (TFs). When we inferred transcription factor activity (see
151 methods), model performance increased relative to using all 10,086 genes and was comparable to that
152 in the case of the landmark genes (Figure 1b and 1d). Our model was not as successful at predicting

153  gene set enrichment (Supplementary Method 1, Supplementary Figure 3). Autoencoders have been

154  previously shown to be capable of capturing regulatory relationships between genes?*3! but, to our

155 knowledge, not gene set enrichment, which might explain why we observed increased performance only

156  when inferring TF activity.

157  Creating cell-line-specific regions in the latent space enables robust cell classification

158 It is important to evaluate whether the cell line or species effect is successfully added to the composed
159 latent space and whether the framework can retrieve it. To establish the ability of the model to capture
160 cell-line-specific information we evaluated the performance in classifying the cell line when using all

161 10,086 genes (Figure 1e) and the landmark genes (Supplementary Table 11) of the L1000 dataset. The
162 performance of ANN classifiers trained directly on the L1000 gene expression data serves as the

163 baseline. Classifiers built with pre-trained embeddings, from DCS or our framework with one global

164 latent space, are expected to have lower performance than the baseline as these approaches generate
165 embeddings aiming to filter the cell-line effect as much as possible. Our framework seems to be better
166 at “forgetting” the cell line of origin in the global space than DCS, thus generating more global

167 embeddings (Figure 1e). Interestingly, when simultaneously training a classifier in the global latent space
168  we can outperform the baseline while the cell-line effect is still partially filtered in the higher dimensions
169 (Supplementary Figure 4). The CPA-based model in the composed latent space classifies cell lines with
170 100% accuracy, even though the similarity of input gene expression data between training and

171  validation sets, as well as the latent space embedding similarity, is generally low (Supplementary Figure
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172 5). The CPA-based framework can create very well-separated cell-line-specific regions (Supplementary
173 Figure 6) in the composed latent space, indicating the framework's ability to shape the latent spaces

174  with robust cell-line-specific regions and explaining the observed accuracy.

175  Analysis of the framework’s dependence on different aspects of the data

176  We further investigated how the performance of the framework was influenced by different factors,
177  focusing on the CPA-like approach. The framework has similar behavior and performance across cell-line
178 pairs (Figure 2a). For all cell lines, ~600 total training samples are sufficient to train a high-performance
179 model. Some cell-line pairs perform slightly worse, as the original correlation between the same

180 perturbations in the cell-line pair correlates with the model’s performance (Figure 2b). Interestingly, the
181  amount of paired conditions, meaning similar perturbations across biological systems, required to

182  successfully facilitate translation can be as low as ~10-15% of the samples being paired (Figure 2c).

183 Finally, it seems the model is not affected by a moderate imbalance in the number of conditions coming
184  from each cell line (Figure 2d). Similar trends are observed when using 10,086 genes (Supplementary

185 Figure 7).

186  Evaluation of latent space embeddings

187 A global latent space is expected to have several properties to be suitable for translation. We evaluate
188  the embeddings produced from our framework based on three criteria (Figure 3a-3c): i) different cell
189  lines should not occupy different subspaces, so embeddings of pairs coming from the same cell line
190  should not be more similar to each other than embeddings from random pairs, ii) pairs of embeddings
191  coming from the same condition, regardless of cell line, should be similar, and iii) biological replicates
192  should give similar embeddings, so pairs of embeddings from biological duplicates should be similar to
193  each other. We evaluated these criteria using the cosine distance in latent space. No cell-line effect is
194 observed in the global latent space, both for training and validation embeddings (Figure 3a,

195 Supplementary Figure 8). Embeddings coming from the same condition are closer to each other than


https://doi.org/10.1101/2023.06.08.544243
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.08.544243; this version posted July 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

196 embeddings coming from random pairs (Figure 3b), while biological duplicates are even closer (Figure
197  3c), validating that indeed we have successfully constructed a stimuli-specific global latent space. Similar
198  patterns can be observed in the global latent space when using the CPA-based approach (Figure 3d), but
199  with a cell-line effect visible in the composed latent space, as expected with this method. We use

200 Cohen’s d to quantify the difference between the distributions of cosine distances across all folds in 10-
201 fold cross-validation (Figure 3e), proving that indeed there is a much higher cell-line effect in the latent

202 space than the effect in the global latent space.

203  Interpreting the biological information captured in the parameters

204 Deep learning models are often criticized for their lack of interpretability, so we investigate the

205 biological information captured by some of the model’s parameters. Since only the cell-line effect is

206  minimized in the global latent space of the CPA-like framework, the trainable covariate (covariates such
207  asspecies, cell type etc.) vectors should only add a cell-specific effect. Intuitively, the global latent

208 embeddings are expected to capture a “zero”/basal cell state corresponding to expression of untreated
209  cells (controls), and thus the trained covariate which is added to that global representation should be
210 similar to the composed latent space vectors which now captures the cell line effect. To investigate this
211 we used control samples from the L1000 dataset not seen by the model during training, as well as

212 samples coming from untreated cell lines from the Cancer Cell Line Encyclopedia® (CCLE), using only the
213 genes included in the L1000 landmark genes. Additionally, for this investigation two models were

214  trained completely separately: the original benchmark model of A375/HT29 cell lines and another model
215 using the PC3 prostate cancer cell line and the HALE normal epithelial cell line. The latter pair was

216  chosen because of high model performance (Figure 2a) and because these two cell lines are significantly
217  different in terms of biology. Each trained covariate, even though the models were trained separately, is
218  observed to be closer to its respective cell-line control signatures, both when using PCA for

219 dimensionality reduction (Figure 3f), where clearly defined cell-line specific regions are observed, as well
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220 as when using t-SNE (Figure 3g). This demonstrates that some parts of the model are biologically

221 interpretable and capture specific information.

222  Identification of features that are important for translation and cell classification

223  The framework can be used to identify latent variables and genes that can be of biological importance.
224  As a case study, we selected the model of the PC3 and HALE cell lines with a classifier trained

225 simultaneously to classify the cell lines from which the samples were derived (contradictory learning
226  tasks). To identify the importance of genes according to the model for a variety of tasks with respect to
227  their output, an integrated gradient-based approach® was utilized (Methods) that attributes an

228 importance score to each variable of interest. Since the same genes are used for both cell lines, it can be
229 interesting to identify which are important for the model to translate a gene expression profile from one
230  cell line to another cell line. Interestingly, the model attributes more importance to many genes other
231  than the gene of interest when translating to across cell lines for the same condition (Figure 4a). In the
232  case of the landmark genes, that phenomenon is slightly less prominent (Figure 4b). This is particularly
233 interesting since one of the selected cell lines is cancerous and the other is non-cancerous, suggesting
234 that the model may avert the fallacy of using the same gene as a proxy for its gene expression across
235 disparate biological systems. Additionally, the model does not just attribute importance to genes that
236  are highly expressed, based on Spearman’s correlation between the absolute importance scores and the

237 absolute gene expression (Figure 4c).

238  The simultaneously trained classifier can also be used to identify subsets of latent variables in the global
239 latent space that are important for classifying samples by cell type. Although the cell line effect is

240 partially filtered and embeddings coming from the same condition are globally close to each other

241 (Supplementary Figure 4), there are still 11 latent variables that allow the classification of cell line

242 (Figure 4d) using a k-means-based approach (see Methods). These latent variables can separate the
243  samples based on cell line (Figure 4e), even though globally the cell line-specific effect in the latent

244  space is still filtered out. Genes considered important by the encoders to control these latent variables

10
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245 should be either cell line-specific genes or a subset of genes that can easily distinguish between cell
246  lines. The importance scores of the genes for each cell line-specific encoder do not correlate at all and
247  are different between the two cell lines (Figure 4f). It is possible to even train a very simple generalized
248 linear model to classify cell lines based on gene expression, only using a subset of these important

249  genes, achieving high performance with only few genes from each cell line (Figure 4g).

250 Performance in inter-species translation for lung fibrosis

251 Animal models don’t recapitulate human biology perfectly, so computational modeling can be used to
252 improve the translation between humans and animal models. We evaluate the ability of the framework
253 to perform inter-species translation. We utilize the raw gene counts coming from single-cell RNA-

254  sequencing of a mouse®® and human?®’ lung fibrosis dataset. Similar to the original CPA study??, the

255  decoders predict a mean and a variance for every gene, derived from a negative binomial distribution.
256 Furthermore, both a trainable species vector and another trainable cell type vector are added to the
257  global space, in attempt to minimize both species and cell type effects. We evaluate the performance in
258  the reconstruction of gene expression profiles and the ability to translate between mouse and human
259 under 10-fold cross-validation in terms of R? of the predicted per gene means and variances, where we
260  would expect to observe a similar distribution in a successful translation, and thus mean and variance.
261 Our framework outperforms the other approaches in terms of R? of the means both in reconstruction
262 and translation (Figure 5a). When predicting the within-gene variance, there is not always a statistically
263  significant improvement, as all approaches have generally low performance (Figure 5b), which suggests
264  that the models fail to capture variation in gene expression. We do not find any significant difference in
265 performance between using all genes or just homologs (Figure 5a-5b). It is worth noting that based only
266  onthe human lung fibrosis dataset, three of the top ten genes contributing to the top principal

267  components do not have homologs in mice (Supplementary Figure 11), meaning that irrespective of

268 performance, a method considering only homologs would exclude important genes for lung fibrosis.

11
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269  We also evaluate the ability of each approach to classify fibrosis, species, and cell type and to classify
270  correctly a signature as a different species when that is translated in the composed latent space, by

271  adding a different species effect. In our framework, utilization of all genes outperforms the homolog
272  genes approaches in predicting fibrosis and species-translation, though the performance of all

273 approaches is high (Figure 5c). Similar to what was observed for the L1000 dataset, species and cell type
274 are perfectly predicted in our framework. Additionally, both the species and cell-type effects are filtered
275 (Figure 5e-5f, Supplementary Figures 9-10) in the global latent space compared to the composed latent
276  space, meaning the model succeeds in removing the cell type and species effect in the global latent

277 space and then retrieving it again in the composed latent space.

278 Generalization in other disease datasets

279 Models that are trained on a specific data set can often perform worse on external test sets, and it is,
280 therefore, useful to investigate to which extent the model can predict disease, species, and cell types in
281 other datasets, as well as different tissue and disease datasets. For this, we use an independent dataset
282  on mouse lung fibrosis*! and a dataset on human liver cirrhosis*2. In the mouse dataset, even though
283 different genes were measured than those in our model, the performance is still decent in disease

284 classification (Figure 5d). For the human dataset, which is an extreme case of fibrosis in a different

285 organ, the model has markedly lower performance although better than chance (Figure 5d).

286 Interestingly, in both cases, the model can still perfectly identify cell types and species (Figure 5d), once

287  again displaying the model’s ability to capture the general characteristics of the system.

288  Aninter-species model from serology data for predicting protection against HIV

289  As afinal case study, we developed a model for cross-species translation of serology data, where there
290 are no 1-1 mapping of features, to predict vaccine-induced protection from HIV in humans. Previous
291 failed HIV vaccine trials have suggested that neutralizing antibody titers, the primary outcome for most

292 vaccine trials, do not consistently correlated with vaccine efficacy. Moreover, recent research suggests

12
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293 that deeper characterization of the antibody response, including antibody subtype prevalence and Fc-
294  receptor binding affinity, may be necessary to predict the quality of the vaccine response. Notably, the
295 primary challenge in comparing pre-clinical animal models and human clinical trial data in this context is
296  that antibodies and Fc-receptors with similar names across species can be structurally and functionally
297  distinct and orthologous features might not exist. Our ANN approach has the potential to advance our
298 understanding of which preclinical features might best predict efficacy of a HIV vaccine. Here we utilize
299  serology data from non-human primate (NHP) and human datasets 3% following vaccination against
300 SHIV and HIV, respectively. In this case, we added a non-linear species effect using two small

301 intermediate fully-connected neural networks with non-linear activation functions (Figure 6a). In line
302 with other models constructed using this framework, the model was trained so that protected

303 individuals are close in the global latent space regardless of species. While two separate classifiers try to
304  predict vaccination status and protection in the global space (Figure 6a), a third classifier predicts

305  species in the composed latent space. For the human serology features, the model has high

306  performance when reconstructing each feature (Figure 6b, r =0.8910.01). In NHPs, while some features
307 are not predicted well and there is a big variation in performance between folds, the overall

308 performance is still good (Figure 6¢, r = 0.71+0.04). Finally, the performance across all classification tasks
309 is exceptionally high (Figure 6d) including 100% accuracy in species classification and translation, which
310 is evaluated by how well the species classifier predicts species label when translating a signature to

311 another species in the latent space.

312 Using the model, we aimed to identify features from both species that are predictive of human

313 protection. For this, we performed the integrated gradient approach in parallel to likelihood ratio tests
314 (LRT) on each latent variable (see methods). Latent variables are denoted as important in predicting
315 human protection only if there is an agreement between the likelihood ratio test results and the

316  integrated gradients (Supplementary Figure 17). The human features identified indeed have a

317  statistically significant difference between protected and non-protected individuals (Figure 6e). Finally,
318 we identified NHP features that have a high gradient score when translating to human signatures,
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319 meaning these NHP features are predictive of human features linked with viral protection (Figure 6f).
320 These features are not necessarily associated with NHP protection (Supplementary Figure 18) but they
321  could be predictive of human protection. Notably, while the top human features identified are generally
322 related to IgG titers, the top NHP features are mostly related to the Fcg-2A and Fcg-3A receptors.

323 Further analysis of feature importance could potentially identify a set of serological biomarkers in NHPs

324  thatis highly predictive of human HIV vaccine efficacy.

325  Discussion

326 Here we develop AutoTransOP, an ANN framework that facilitates the translation of omics profiles

327  between different biological systems. The framework builds upon ideas of the CPA approach3? and other
328  species and cellular translation methods'*!>1831, together with ideas from language translation

329 models®. The explicit goal is to align omics sighatures between systems, rather than identifying what
330 information inherent in the signature of one system is most germane for understanding phenotype

331 characteristics in the other, which has been the objective in many previous studies'®*°, The framework
332 performs as well as (or even better than) other state-of-the-art translation techniques, when using

333 homolog features between systems, and performs similarly also without a 1-1 mapping between

334  features. Notably, the framework constructs a truly global latent space with stimuli-specific regions, for
335  which classifiers can be jointly trained to make predictions for various tasks such as the diagnosis of

336 diseases.

337 Most current approaches to translating between systems require homolog features and utilize linear

338  transformations to facilitate translation®38

, and are thus restricted to represent linear inter-species
339 relationships. Also, the non-linear ANN-based approach DeepCellState3! requires homology of the

340 molecular features used to describe the biological systems. In contrast, our framework can represent
341 non-linear relationships between different biological systems, without requiring any kind of homology,
342  and achieves high performance using only a small percentage of paired conditions. This enabled us to

343 train a translation model on serology datasets for which a 1-1 mapping of the features between the two
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344 biological models did not exist. Through interpretation of this model, relationships between very
345  different molecular profiles that correlate with specific phenotypes can be identified, e.g. protection

346  against infection.

347 Interpretability of deep learning models in biology remains a challenge. These models have been

348 criticized for providing a poor understanding of which biological relationships they capture ***4. On this
349  front, we demonstrate in our framework how integrated gradient approaches® can be used to estimate
350 theimportance of features used by different parts of the framework for various tasks, enabling some
351 biological interpretation of the model. Based on this, we could propose serological features predictive of
352 human protection against HIV, including non-human primate-specific features that can be observed in
353 preclinical stages of vaccine development. Finally, elements of the framework can be used to interpret
354 and successfully retrieve the effects of species or cell types, filtered from the global latent space. This
355 can explain the ability of the framework to predict cell types and species with high performance also in
356 independent disease datasets, derived from different organs/tissues. However, there are still limitations
357 in the generalization of in the models to external datasets. In particular, the performance on such

358  datasets drops significantly as samples from different pathologies and tissues are considered. Even

359 within the same disease, the inclusion of different features can lead to reduced performance in

360 predicting disease diagnosis.

361 Despite our framework being trained successfully on datasets with relatively small sample sizes, the
362 model still contains many parameters, especially when using a larger number of features, which

363 inevitably leads to overfitting. Some of these shortcomings could likely be alleviated by applying our
364  framework to larger datasets, such as ARCHS4%, which contains hundreds of thousands of publicly
365  available RNA-sequencing data from humans and mice. Training with more data and more diverse
366 unique conditions may enable higher generalization and higher granularity in modeling different

367 biological covariates. Additionally, with the advent of Natural Language Processing (NLP) models* and

368 attention-based models*, our encoder modules could potentially be modified with NLP-like
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369 representations. Recently, Geneformer®’, an attention-based model, was pre-trained on a corpus of 30
370  million single-cell transcriptomic profiles and was proven to be context-aware of the system it encodes.
371  Although it still requires some level of homology, it paves the way to utilize NLP approaches for transfer

372 learning in biology, and ultimately translation.

373  The flexibility of our framework allows the modeling of many different biological systems. This could
374  lead to the computational optimization of biological systems and assays aiming to model human

375 pathology. Using our framework, we can both explore potential transcriptional modifications to design
376  better disease models and identify features predictive of human biology without requiring homology
377  between systems, ultimately reducing resources spent during experimental modeling and potentially

378 expediting the translation of in-vitro and pre-clinical findings to human therapeutic advancement.

379 Methods

380  Pre-processing of in-vitro transcriptomics benchmark dataset

381  The L1000 CMap resource’? contains bulk gene expression data from drug perturbations across different
382 cell lines and provides a benchmark dataset with diverse conditions and a large sample size (for a total
383  of 720,216 samples of drug perturbations of varying quality). Additionally, several equivalent

384  perturbations across different biological systems are available (406 paired conditions for the case of
385  A375 and HT29 cell lines after filtering and pre-processing, explained below) to evaluate the

386  performance in translating omics profiles. We selected high-quality drug perturbations from the latest
387  version of the L1000 dataset (accessed via clue.io). The level 5 z-score transformed and pre-processed
388 differential gene expression data of 978 landmark genes, measured with the L1000 assay, and

389 additionally, 9,196 computationally inferred genes in the CMap resource that were marked as well-
390 inferred, were considered in the subsequent analysis. We consider perturbations as high-quality if they
391 consist of signatures with more than three replicates, where at least half of them passed the standard

392 quality control protocols in the assay, as provided in the dataset, and were not identified as statistical
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393 outliers (as considered by the L1000). Additionally, where multiple-signature perturbagens, i.e. technical
394  duplicates, only the signature with the highest transcriptional activity score (TAS) across these technical
395  duplicates was retained in the dataset, these signatures are labeled ‘exemplars’ by the CLUE platform
396  and are specifically designated for further analysis by the platform®. The TAS metric is provided along
397  with the L1000 dataset and quantifies signal strength and reproducibility. Finally, the ability to

398 distinguish between random signatures and true biological duplicates, meaning the same perturbagen
399  tested on the same cell line for the same duration and dosage, was evaluated for different parts of the
400 dataset, split using varying TAS thresholds (Supplementary Figure 19) and samples with a TAS>0.3 were
401 retained. After filtering and 13,699 samples remained, with 1107 conditions available in total for the
402 HT29 cell line and 1213 for the A375 cell line. In the case of control signatures, we followed the same

403 procedure but without filtering based on TAS.

404  Pre-processing single-cell RNA sequencing interspecies datasets

405 For the human and mouse single-cell RNA-sequencing datasets, we first re-annotated manually each
406 annotated cell into one of the four classes: i) immune cells, ii) mesenchymal cells, iii) epithelial cells, iv)
407 endothelial cells, and iv) stem cells. These high-level labels were later used to remove cell effect from
408  the global latent space and were also used in the subsequent cell-type classification. Finally, while the
409 raw gene counts are used for reconstruction from the decoder in the loss function, the encoders take as
410  input the log-transformed counts (Xinpy: = logqo(count + 1) ), which acts as an activation function in

411 the first layer of the encoder.

412  Pre-processing of the serology datasets

413 For all serology data, we aimed to construct a model using only antibody and receptor measurements.
414  The human data were retrieved from Chung, Kumar, Arnold et al.>* upon request, the avidity molecular
415  features were dropped and the data were z-scored per feature. The non-human primates’ data were

416 retrieved from Barouch, Tomaka, Wegmann, et al.3® upon request, the samples taken in week 28 were
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417 used, and antibody-dependent cellular function features and mass spectrometry data were dropped.
418  The data were log-transformed (x = log;o(MFI + 1)), the median per feature from controls is

419  subtracted from each feature to standardize the data. Finally, the data are z-scored per feature.

420 The general framework and the training procedure

421 In this implementation, the framework always models pairs of systems for translation, species, or cell

422 lines. Each is modeled with separate encoders and decoders for each of the species or cell lines in the

423 pair attempting translation, while inside a latent module, the global latent space is shaped (Figure 1a).
424 Both the encoders and the decoders are multi-layered neural networks, with each layer consisting of,

425  sequentially: a fully-connected layer, a batch normalization layer®, an ELU activation function®, and a
426  dropout layer®. The final output layer of the encoder and the decoder consists of only one fully

427  connected layer without a trainable bias term.

428  For the construction of the global latent space several metrics are optimized: the distance (Lgjstance)
429  between embeddings of profiles coming from different systems undergoing the same perturbation is
430  minimize and their cosine similarity (L;osine) and mutual information (L, see details below) is

431 maximized; and the divergence of the distribution of the latent variables from a random uniform

432 distribution is minimized (Lpyior). Both cosine similarity and Euclidean distance losses were added to
433  enforce the strongest possible filtering of species and cell type effect, while the cosine similarity also

434 enforces normalization of the latent embeddings. This is achieved using two different ANN

435  discriminators, as previously proposed in the MINE®?, Deep InfoMax>® and InfoGraph® studies, where
436  the Jensen-Shannon Mutual Information between embeddings coming from the same perturbation is
437 estimated and the extra prior loss is calculated and added in the final loss, according to the following

438 equations with the implementation taken from the deepSNEM model®>.
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o Lyrior = % N [log(Discrz () + log (1 — Discr, (zgi))] , where v; is a randomly
sampled embedding from a prior random uniform distribution ranging from 0 to 1 and Zg, is a

global latent space embedding. N is the number of samples in a batch during training.

_ + - __1 N1 vN2 s + -
o Ly;=—(MI"—MI"), MI = NTNg =1 2j=1 Discrq (zgi,zg]_), where MI* and MI" are

respectively the mutual information between pairs derived from the same conditions and pairs
coming from different conditions, averaged for every possible pair in a batch during training.

Zg Zgj are global latent space embeddings, whose mutual information is estimated by the

Discr; discriminator.

Discri is the discriminator estimating the mutual information between two embeddings from the global
latent space. It takes as input two global latent space embeddings and passes them through the same 3
fully-connected layers, each of them followed by a ReLU activation function®® and one fully-connected
skip connection. Then the product of the result of this non-linear transformation of the two embeddings
is used to approximate a lower bound of their Mutual Information, as proposed originally in MINE>? and
Deep InfoMax®3. Discr; is the second discriminator which takes as input an embedding vector and
calculates the probability a point in this embedding space is sampled from a specific distribution. This
way Ly, forces each feature of the learned embeddings to be sampled from a distribution close to the
random uniform distribution ranging from 0 to 1. It has three similar fully-connected layers and the final
scalar output is passed through a sigmoid activation function®. These regularization loss terms

(Lgistancer Lcosine» Lmi) are calculated and averaged across every pair of global embeddings (Zgi, Zgj)

that are coming from the same condition. The L,,.;,, is calculated for every sample in the dataset,
meaning every global latent embedding and averaged across samples. For the case of the L1000 dataset,
we consider similar perturbations those that are coming from experiments of the same drug, tested on
the same cell line, with the same dose and time duration. For the lung fibrosis dataset, similar profiles

are considered those coming from samples that have the same diagnosis (fibrosis or not). For the
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463 serology datasets, we train the framework so that embeddings coming from protected individuals

464  against HIV are close to each other regardless of species (and even vaccination status)

465  The basic task of this autoencoder framework is reconstruction, which is achieved by minimizing some
466  kind of reconstruction l0ss (L, econ)- In the case of z-scored profiles from bulk data, this is done by

467  minimizing the mean sum of squared errors between the input of the encoders and the output of the
468  decoders. The sum of squares error is averaged across samples. For only the case of single-cell RNA-
469  sequencing data, based on the implementation proposed in the CPA manuscript3 (found here

470  https://github.com/facebookresearch/CPA), the negative binomial negative log-likelihood is used to

471  optimize the reconstruction, by assuming that the data are derived from a negative-binomial
472 distribution characterized by a mean and variance that are both predicted. The negative binomial
473 negative log-likelihood loss is calculated for every sample and the average across all samples in the

474 batch is minimized.

475 Classifiers are used for different classification tasks. These consist of multiple fully connected layers and
476 a final SoftMax activation function before the output. The average entropy loss across samples for every

477  classification task in the latent space is minimized: entropy; =
478 %Z?’zl CrossEntropy(Classifieri (zj), labelj), where entropy; is the average cross entropy between

479  every " prediction of a classifier taking a latent vector as input and the true label for that sample.

480  L2-regularization of the weights and bias of the encoders (L2.pcoder,i), decoders (L2 gecoger,i), and
481  classifiers (L2 ¢yqssifier,i) is also enforced by minimizing the sum of squares for the aforementioned

482  trainable parameters.

483  Taken together, for the basic variation the following loss function is optimized

484 Lossbasic = Arecon * Lrecon + Adistance * Ldistance + AMI * LMI + Aprior * Lprior + Ziz:l(lenc,i *
485 Lzencoder,i) + Z%:l(ldec,i * deecoder,i) + Zﬁvil(ALchass,i * Lchassifier,i) + Zﬁvil(lclass,i *

486 entropyi) — Acosine * Leosine, Where M is the number of classifiers and thus individual classification
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487  tasks, and the rest of the terms, together with how they are calculated, have already been described in
488  the previous paragraphs of this section. For values for each of the A used in the loss function see

489  Supplementary Table 5.

490 Variation of the global latent space with a simultaneously and competitively trained classifier

491 For the variation of the global latent space with a simultaneously and competitively trained classifier the
492 aim is to embed some species or cell line information in some of the latent variables. A simple classifier
493 for correctly predicting the cell line label is trained simultaneously on the global latent space with the
494 rest of the framework and an entropy loss is added to the original description of the framework. The
495 construction of a global latent space and the training of the classifier are competing tasks, where the

496 framework is trained to achieve a stable trade-off.

497 CPA-based variation of the framework

498 For the CPA-based framework, the global latent space is expanded by augmenting the loss function with

499 some additional terms.

500  An adverse classifier of species and cell types is added. As described in the original CPA manuscript®?2,
501 during training we iterate between training the classifier (updating only its parameters) on the global
502  latent space, and training the rest of the framework with the addition of a penalty (entropy qverse) if
503 the classifier correctly classifies species and cell types. To improve the robustness of the discriminator it
504 is initially pre-trained only with encoders and discriminators, without other classifiers and the decoders,

505 so that it can already distinguish cell types and species in the global space.

506 Furthermore, species and cell type effects are added to the latent space via trainable vectors. In the
507 newly composed latent space, from which the decoders are sampling embeddings, classifiers are jointly
508 trained to correctly classify cell types, and species (or even disease diagnosis). Additionally, the trainable

509  vectors are regularized by the L2 norm (L2qined ). All the above can be summarized in this new

effect
510 loss function:
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511 Loss = Lossbasic - Aadverse * entropYaqverse + Atrainedeffect * thrainedeffect
512  Framework for the serology datasets

513 In the serology dataset we utilize the CPA-based framework but instead of adding the species effect with
514  trainable vectors, small artificial neural networks are utilized consisting of two fully-connected layers.

515 L2-regularization terms for these small ANNs are added to the training loss function.

516  Additionally, it is aimed to later identify features predictive of protection or vaccination status regardless
517  of species. For this purpose, we train two classifiers predicting vaccination and protection status in the
518 global latent space. We care more about protection and thus, as described previously, we aim to create
519  similar embeddings and minimize their distance in the global latent space just by looking at protection

520 status.
521  Framework’s basic hyperparameters

522 Here we present the basic parameters used to train the model. No thorough hyperparameter tuning was
523 performed, and values were selected based on empirical values and tuned so that there is convergence
524 in the training loss and the training reconstruction performance (Pearson’s r and/or R?). Additionally,
525  these values were also tuned so that the performance in training (not validation) is sufficiently high,

526  meaning that the model is at least able to fit the given data. This empirical tuning was done only based

527  onthe 1** training set in 10-fold cross-validation.

528  The latent space dimension was chosen to be as small as possible until the model’s performance

529  dropped in both training and validation of only the 1 fold. Based on this latent dimension and the

530  original input dimension of the data the sizes of hidden layers of the encoders were chosen to be in-

531 between, gradually reducing the input dimension to that of the latent space. The actual size and number
532  were constrained by practical memory limits. The decoders had the same number and sizes of hidden
533 layers as those of the encoders, but now they increase the size of the embeddings from the latent

534 dimension to the original input dimension.
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hyperparameter L1000: 978 genes L1000: 10,086 genes Lung fibrosis Serology
latent dimension 292 1025 512 32
hidden encoder layers dimensions [640,384] [4096,2048,1024,512] [4096,2048] [64]
hidden decoder layers dimensions [384,640] [512,1024,2048, 4096] [2048, 4096] [64]
cell type classifier hidden layer dimensions [256,128,64] [512,256,128] [256,128,64,32] -
species classifier hidden layer dimensions - - [256,128,64,32] [32,16,8]
fibrosis classifier hidden layer dimensions - - [256,128,64,32] -
serology phenotype classifiers classifier - - - [32,16,8]
hidden layer dimensions
adverse classifiers hidden layers [256,128,64] [512,256,128] [512,256,128,64] | [32,16,8]
dimensions
intermediate ANN translators hidden - - - [32]
layers dimensions
total batch size 512 512 1024 2000
number of epochs 1000 1000 200 50
learning rate 0.001 0.001 0.001 0.001

535

536  Evaluation procedure and metrics

537  The model performance was evaluated using 10-fold cross-validation. One fold of the data was hidden
538 during training and used to evaluate performance in unseen data, and 90% of the data from each system
539 (species or cell line in the case of L1000) were. For the L1000 dataset, for evaluating the translation of
540  the whole omics profile, we made sure that for the case of paired conditions, the perturbation in both

541  cell lines was hidden during training.
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542  The classification tasks were evaluated by total accuracy and F1-score (or micro F1 for multiple

543  categories):

K TR+ X5, TN
{(=1 TP, + ZF:l TN; + ZF=1 FP, + Z{il FNi’

544 Accuracy =

Y1 TP
1 )
i1 TP + 2" (T, FP + 2 FNy)

545 Fliicro =

546 where K is the total number of classes in multi-class classification, TP and FP symbolize true and false
547  positives, and TN and FN symbolize true and false negatives. For the case of multiple classes, we define
548  as positives the samples belonging to that specific class while everything else is a negative sample. Using
549  this definition of positives and negatives we further calculate the TP, FP, TN and FN per class. In the case
550 of cell-type classification in lung fibrosis K=5.

551 For the cell line classification in L1000, species classification both in lung fibrosis and the serology

552 datasets, and vaccination and protection status in the serology dataset we use the F1 score and accuracy

TP+TN _ TP
TP+TN+FP+FN " =~ TP+%(FP+FN)

553  for binary classification (Accuracy =

).

554  To evaluate the validity of the predictions (y) of whole signatures in translation and reconstruction,

555  compared to the ground truth (y), we utilized:

556 i.  the global Pearson’s correlation r(§,y) = 201 Y)G1-9) =, where § and y are flattened and the
\/E(Yi—?)z 2(7i-9)
557 i"" element is the i" point in these flattened vectors.
N . r(Rank(9),Rank(y)).

558 ii. the average per sample Spearman’s correlation rg = Zizy r(Ran Ny e )‘, where N is the
559 number of samples and Rank() means ranking the gene based on their differential gene
560 expression and using these ranks to calculate Spearman’s correlation.

. _ TP+TN+TrueZeros T
561 iii. the average per sample sign accuracy = total predictions ’ where TP signifies the genes that
562 have a positive sign regulation both in the actual data and predictions, TN signifies the genes in
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563 the sample that have a negative sign regulation both in the actual data and predictions, and
564 TrueZeros are the genes that have an absolute expression <10® both in the actual data and
565 predictions (a small tolerance rather than strictly zero was chosen for numerical reasons).

566 For the single-cell RNA-sequencing data where we predict the per gene mean and variance we calculate

567 the coefficient of determination (R?) per gene mean and variance, similar to the original CPA

568  manuscript®. In general, R?is calculated as: R? = 1 — :—zz,where RSS =Y @; — y))? and TSS =
569 X(vi—¥)°

570  Separation of latent space embeddings

571 Toevaluate the similarity of embeddings for different signatures, and whether there is separation
572 based on cell, species, or conditions in the latent space, we utilize cosine distance, ranging from 0 (the

d
Yi=121iZ2i
7
d 2 d 2
J2i=121i =122

574  where z; a and z; are two latent space vectors to be compared and d is the total number of elements in

573 same) to 2 (completely) different: cosine distance = 1 — cosine similarity = 1 —

575 the vector, i.e. the latent dimension.

576  To estimate if there is a cell, species, or condition effect, and compare it between the composed and
577  global latent space we utilize Cohen’s d to estimate the effect size between the distributions of cosine
578 distances, derived from random pairs of embeddings and pairs coming from the same cell, species, or

579 condition. The effect size is thus calculated using the mean and standard deviations of two cosine

€051 —C05,

\j((nl - 1)s%+(n2 —1)5%)

ni+ny—2

580 distance (cos) distributions as: d = , Where ni, n; is the number of samples of each of

581  the two distance distributions, cos;, cos, are the means of the cosine distance distributions and s,s; are
582  the standard deviations of the cosine distance distributions. A Cohen’s d around 0.8 is a large effect size
583 (around 2 is considered a huge effect size) while around 0.5 is a medium effect size, and around 0.2 and

584  below is considered small or very small*%%7,
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585 Feature importance using integrated gradients
586  To estimate the importance of features we utilize integrated gradients®® from the Captum library>8.

dF(x'+a(x—x'))

587  InterGrad;(x) = (x; — x;) fal=0 da,x' = baseline =0

dx;

588  The importance scores are calculated based on the gradient with respect to the input of the model, and
589  thus the higher the absolute integrated gradient the higher the importance of that input feature to
590 control the output. A negative score means the variable has a negative effect pushing the prediction to

591 the other class, while a positive score has a positive effect.

592 For example, if we want to identify important latent variables to classify a sample as one coming from a
593 particular cell line we calculate the integrated gradient of every latent variable to make the classification
594  and take the average across all samples. Similarly, if for example, we are aiming to calculate the

595 importance of genes to control latent variables in the global latent space we can calculate the integrated
596  gradient score of every gene for every variable in every sample, and then take the average across

597  samples.
598 K-means-based separation of important latent variables

599 Latent variables can be separated into important and unimportant ones using k-means, inspired by an
600 approach that was used to identify important connections between latent components and genes in
601 microbial organisms by using the weights derived from independent component analysis >, We

602  assume that only 2 main clusters of latent variables exist, one containing important variables and one
603  containing unimportant ones. On this front, the latent variables are clustered based on their absolute
604  gradient scores into 3 clusters, where 3™ cluster is assumed to be a very small cluster of outliers. The
605 midpoint between the variable with the highest score in the unimportant cluster and the variable with

606  the lowest score in the important cluster is used as a threshold to distinguish between significantly
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607 important and unimportant latent variables. As a sanity check the important variables are also

608  compared with the top-ranked variables based on their score.

609  Likelihood ratio tests for the identification of important latent variables

610 To identify which latent embeddings correlate with viral protection after accounting for vaccination
611 status and species, a likelihood ratio test (LRT) was performed on each individual latent variable. Here,
612  the likelihood (L) of the alternative model (Hy ): latent variable; embeddings ~ protection +

613 vaccination + species was compared to the likelihood of the nested model, or null hypothesis,

L(Hg)
L(Hy)

614  (Hy): latent variable; embeddings ~ vaccination + species in LRT = —2 ln( ) . We rejected

615 H, for latent variable; when the FDR-adjusted p-value of the chi-square test was less than 0.05,

616 concluding that the model including protection has a statistically significant better fit than the model
617  without protection. In the volcano plots, the — log(pvalue) is plotted against the t-value for the

618 protection term in the alternative model. This method assumes that the relationship between the latent
619  variable embeddings and protection is linear. R package Imtest®® (version 0.9.40) was used to perform
620  these statistical tests. Finally, the intersection of these latent variables with significant latent variables
621 (average percentage importance score across folds 210%), based on their gradient score from the

622 trained protection classifier, is used for the final identification of robust latent variables associated with
623  viral protection. We keep latent variables that the sign of correlation with protection agrees in both

624  approaches.
625 Identification of protection-associated serological features

626  The importance of the serological features is calculated as previously described with the integrated

627  gradient score of every feature for every latent variable that was identified to be statistically significant
628  for predicting viral protection of humans, averaged across samples coming from the respective species.
629  Serological features with high scores (and at least 220%) can control latent variables in the global latent

630  space associated with human viral protection, and thus they are predictive of human protection. For
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631 human features, we also validate that the univariate differences between protected and unprotected
632 individuals are indeed significant, by using a non-parametric Wilcoxon test, with Bonferroni correction

633  for multiple hypothesis testing.

634 Finally, we calculate the integrated gradient score for translating each non-human primate serological
635 profile to a human profile. The non-human features with high scores the human ones associated with

636  protection, can be considered serological non-human features predictive of human viral protection.

637 Inference of transcription factor activity

638  To infer the transcription factor activity, we utilized the VIPER algorithm?®? together with the Dorothea
639 Regulon®. The VIPER algorithm calculates the enrichment of gene expression signatures of regulons,
640  that are based on transcription regulatory networks. This way the activity of a transcription factor (TF) is
641 inferred based on the expression of downstream genes known to be regulated by this specific TF. The
642 Dorothea regulon contains known regulatory interactions, annotated based on the confidence that this

643 interaction exists. Here interactions are restricted to confidence levels A and B.

644  Hardware and software specifications

645  All models were expressed in and trained using the PyTorch framework® (version 1.12) in Python

646 (version 3.8.8). When using the 978 landmark genes and for the serology case study, the models were
647  trained in an NVIDIA GeForce RTX 3060 Laptop GPU with 6 GB of memory. The larger models (using
648 10,086 genes and the single-cell lung fibrosis data) were trained on the MIT Satori GPU cluster using
649 NVIDIA V100 32GB memory GPU cards. Pre-processing and statistical analysis of the results were done
650 in the R programming language (version 4.1.2). Visualization of results was done mainly using ggplot2°.
651 More information about the versions of each library used can be found in the GitHub provided in the

652 Data and code availability section.

28


https://doi.org/10.1101/2023.06.08.544243
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.08.544243; this version posted July 3, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

653  Data and code availability

654  The study did not produce new experimental data. All analyzed data that were used to train our models
655 and produce all tables and figures, as well as all the code to generate those data, figures and tables are

656 available at https://github.com/NickMeim/OmicTranslationBenchmark .
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Figure 1: Model architecture and basic performance metrics. a) Framework architecture main

variations: 1) model variation 1: One global space is constructed by mapping omic profiles in a space
where the distance between embeddings coming from the same perturbation is minimized. II) model
variation 2: CPA-based architecture where the latent space is separated into two, one global devoid of
species/cell effect and a composed latent space. b) Model performance in reconstructing and translating
gene expression profiles between the two cell lines with the most common perturbations in the L1000
dataset, A375 and HT29, by using only the 978 measured landmark genes. The model variation 3 is the
one with a classifier simultaneously trained in one global latent space. For DCS modified v1-v2 see
Supplementary Methods 2.2-2.3. It is worth noting that DCS modified v2 has a distance term and a
direct translation term in its training loss. c¢) Model performance in reconstructing and translating gene
expression profiles between A375 and HT29 by using all 10,086 genes that are either measured or
belong to those that are well-inferred computationally. d) Performance in inferring transcription factors
activity by using the translated/predicted gene expression. e) Performance in correctly classifying cell

lines in different cases. f) Performance by using diffe
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Figure 2: Analysis of framework’s performance and dependence on the data a) Performance in the

translation task of the CPA-based approach across different cell-line pairs and different sizes of training
data. b) Model performance in translation as a function of the initial similarity of 2 cell lines. c) Model
performance in translation for different percentages of paired conditions. d) Model performance in
translation for low-to-medium cell-line imbalance in the conditions of the training samples.
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842  Figure 3: Properties of the latent space and model parameters interpretation. The two splits in 10-fold
843  cross-validation present each time here are the ones where the maximum and minimum difference
844  between the two distributions is observed. For every other split, the difference is between these two
845  extreme cases. Additionally, panels a-c come from the first variation of the model with one global latent
846  space while the rest come from the CPA-based approach a) Cosine distance between embeddings
847  coming from random pairs of signatures and pairs coming from the same cell line. b) Cosine distance
848 between embeddings coming from random pairs of signatures and pairs coming from the same
849 condition tested on a different cell line c) Cosine distance between embeddings coming from random
850 pairs of signatures and pairs being biological duplicates d) Distance between embeddings coming from
851 random pairs of signatures and pairs coming from the same cell-line in the global and then the
852 composed latent space in the CPA-based approach. e) Cohen’s d between distributions of cosine
853  distances between random pairs of embeddings and embeddings coming from the same cell
854 distribution. f-g) 2D-Visualization of L1000 control conditions, untreated cell lines from the CCLE dataset,
855  and the trainable vectors of the CPA-based framework containing the cell line basal effect added to
856  perturbations.
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858  Figure 4: Feature importance investigation a-b) Distribution of percentage rank in terms of the

859  importance of a gene to translate its expression to itself, using the 10,086 genes and the 978 landmark
860  genes respectively in the L1000 dataset. ¢) Per sample Spearman’s correlation between absolute gene
861 importance scores and absolute gene expression. d) Important latent variable to classify a sample as PC3
862  or HALE in the global latent space, when a classifier is simultaneously trained. e) Separation of cell lines
863 based on the top 2 most important latent variables according to the classifier. f) Average importance
864  scores of genes from PC3 to control cell-specific latent variables versus the importance scores from

865 HA1E, according to the individual encoders. g) Generalized Linear model classification performance by
866 using increasingly more important genes.
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Figure 5: Evaluation of the framework in inter-species translation in fibrosis a-b) Performance (R?) in

predicting the per gene mean and variance of single-cell RNA-sequencing data for the tasks of
reconstruction and species translation in the human-mouse lung fibrosis datasets. The comparison is
done between the CPA-based framework using all genes or homologs and TransCompR c) Classification
performance comparison in different tasks. d) Classification performance of the CPA-based framework
using all genes in external disease datasets. e) Embeddings separation based on species in the global
latent space versus the composed latent space. The effect size d is calculated as Cohen’s d. f)
Embeddings separation based on the cell type in the global latent space versus the composed latent
space. The effect size d is calculated as Cohen’s d.
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878  Figure 6: Inter-species translation of serology data a) Framework architecture for inter-species
879 translation in the serology dataset. Instead of adding the species effect with a trained vector, it is adding
880 completely non-linear with 2 small intermediate neural networks. b) Per feature Pearson correlation
881  across in 10-fold cross-validation for human’s features. c) Per feature Pearson correlation across in 10-
882  fold cross-validation for non-human primates’ features. d) Classifiers’ performance in various tasks. e)
883 Univariate differences between protected and non-protected individuals, for human serological features
884  related to viral protection, as found from the integrated gradient and LRT approach. f) Non-human
885 primate features predictive of human protection, by using importance score for translating them into
886 human features. Their quality is assigned based on the average reconstruction Pearson’s r of these
887  features in 10-fold cross-validation: i) low quality = 0<r<0.25, ii) medium quality = 0.25<r<0.5, iii) good
888  quality = 0.5<r<0.75, iv) high quality = r=0.75
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