

1 **Restructuring of olfactory representations in the fly brain around odor relationships in**
2 **natural sources**

3
4 Jie-Yoon Yang^{1,2}, Thomas F. O'Connell^{1,2}, Wei-Mien M. Hsu³, Matthew S. Bauer², Kristina V.
5 Dylla², Tatyana O. Sharpee³, Elizabeth J. Hong^{2,4}

6
7 ¹ These authors contributed equally

8 ² Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA,
9 USA

10 ³ Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA,
11 USA; Department of Physics, University of California, San Diego, La Jolla, CA, USA

12 ⁴ Lead contact

13
14 **ABSTRACT**

15 A core challenge of olfactory neuroscience is to understand how neural representations of odor
16 are generated and progressively transformed across different layers of the olfactory circuit into
17 formats that support perception and behavior. The encoding of odor by odorant receptors in the
18 input layer of the olfactory system reflects, at least in part, the chemical relationships between
19 odor compounds. Neural representations of odor in higher order associative olfactory areas,
20 generated by random feedforward networks, are expected to largely preserve these input odor
21 relationships¹⁻³. We evaluated these ideas by examining how odors are represented at different
22 stages of processing in the olfactory circuit of the vinegar fly *D. melanogaster*. We found that
23 representations of odor in the mushroom body (MB), a third-order associative olfactory area in
24 the fly brain, are indeed structured and invariant across flies. However, the structure of MB
25 representational space diverged significantly from what is expected in a randomly connected
26 network. In addition, odor relationships encoded in the MB were better correlated with a metric
27 of the similarity of their distribution across natural sources compared to their similarity with
28 respect to chemical features, and the converse was true for odor relationships encoded in
29 primary olfactory receptor neurons (ORNs). Comparison of odor coding at primary, secondary,
30 and tertiary layers of the circuit revealed that odors were significantly regrouped with respect to
31 their representational similarity across successive stages of olfactory processing, with the
32 largest changes occurring in the MB. The non-linear reorganization of odor relationships in the
33 MB indicates that unappreciated structure exists in the fly olfactory circuit, and this structure
34 may facilitate the generalization of odors with respect to their co-occurrence in natural sources.

35
36
37 **INTRODUCTION**

38 The search for organizing principles of olfaction has often focused on relating the chemical
39 structure or physicochemical properties of odorants to their percept⁴. This approach is principled
40 since odors are detected by their molecular interactions with large families of structurally diverse
41 odorant receptor (OR) proteins expressed in ORNs⁵. Recently, significant inroads have been
42 made in predicting a molecule's odor from its structure^{6,7} but developing a generalized
43 relationship between odorant structure and perception across the space of all possible odor
44 stimuli remains challenging because of discontinuities in this relationship: small changes in

45 structure often result in dramatic changes in a molecule's odor^{8,9}. This gap in understanding
46 motivates a search for additional organizational axes of odor space to complement structure-
47 based approaches towards gaining a better understanding of what determines a molecule's
48 smell.

49
50 Another important property of odorants is how they are organized relative to one another in
51 natural environments. Odors from natural sources are typically complex mixtures of dozens to
52 hundreds of monomolecular odorants, the composition of which is controlled by the conserved
53 biochemical and metabolic processes in the source^{10,11}. The relative abundance or ratios of
54 volatiles in natural odor profiles can provide information about the value or state of the odor
55 source^{12,13}, for instance, if microbes that promote fermentation or spoilage are dominant. Thus,
56 the odor space of the natural world is highly structured, and this structure often contains
57 information about the identity or ethological value of the odor source.

58
59 We investigated how representations of odor at different stages of processing in the brain of the
60 vinegar fly *Drosophila melanogaster* relate to different odor properties, focusing on their
61 chemical properties or their relative abundances in behaviorally significant natural odor sources
62 like food. The fly has a compact olfactory system with a similar overall circuit architecture to its
63 vertebrate counterpart¹⁴. All ORNs that express the same OR project to a common synaptic
64 compartment, called a glomerulus, in the antennal lobe (AL), and the dendrites of uniglomerular
65 second-order projections neurons (PNs) extend into a single glomerulus¹⁵. Thus, each
66 glomerulus, corresponding to a specific OR, represents a fundamental unit of olfactory
67 processing. A major target of PN output from the AL is the mushroom body (MB), a cerebellum-
68 like associative center in the fly brain that encodes representations of odor identity¹⁶. Wiring of
69 PN inputs to Kenyon cells (KCs), the principal neurons of the MB, is probabilistic: each of the
70 ~2000 KCs integrates input from a subset of PNs comprising ~10% of the ~50 olfactory
71 glomeruli in the system¹⁷⁻¹⁹. KCs have high spiking thresholds and act as coincidence detectors
72 that fire only when multiple input PNs are co-active^{20,21}, and local feedback inhibition between
73 KCs is provided from the arborizations of an unusual single, large GABAergic neuron called the
74 APL²².

75
76 This circuit architecture recodes dense, distributed representations of odor in the ~50 glomeruli
77 of the PN layer into a sparse, high-dimensional representation in the MB layer^{3,23-25} that
78 facilitates pattern separation and linear decoding by a smaller number of MB output neurons.
79 Theoretical studies of cerebellum-like circuits, characterized by expansion (PN input onto KCs)
80 and reconvergence (KC output onto MB output neurons), emphasize the role of random,
81 unstructured input for decorrelating activity patterns and maximizing the dimensionality of
82 representations^{26,27}. Such features would promote efficient memory storage and reduced
83 synaptic inference during stimulus-specific associative learning and recall.

84
85 Feedforward random network models of the MB predict that odor relationships encoded in the
86 MB should be strongly decorrelated, invariant across individual brains, and should preserve
87 stimulus relationships encoded at the level of ORN input^{1,28-30}. However, recent large-scale EM
88 reconstructions of MB synaptic connectivity demonstrated that some PN inputs are structured.

89 In particular, inputs from glomeruli tuned to odors common in food are more likely to converge
90 onto the same KC targets¹⁹, though the functional impact on MB representations of odor
91 remains to be determined. Whereas random networks maximize coding capacity and promote
92 the separability of odor representations throughout odor space, structured networks can
93 correlate specific odor representations to promote generalization between odors sharing
94 particular ethological meaning. We investigated how odor coding in the fly olfactory circuit
95 balances these competing needs.

96

97

98 RESULTS

99

100 Population imaging of odor representations in the MB at cellular resolution

101 In the arc of sensorimotor transformation, representations of odor identity encoded in KC activity
102 patterns represent the output from the sensory arm of the pathway, which is flexibly coupled to
103 distinct downstream outputs and behaviors³¹. Thus, we began by investigating representations
104 of odor in the MB. The *Drosophila* olfactory circuit is the most comprehensively mapped
105 metazoan olfactory system, with the tuning of approximately half of the odorant receptors to a
106 large panel of 109 odors described by the Hallem dataset³². We selected 24 monomolecular
107 odors that spanned OR input space (Figure 1A) and investigated the extent to which those
108 relationships at the periphery are maintained in the MB.

109

110 We used *in vivo* volumetric two-photon microscopy to image odor-evoked calcium signals in the
111 MB of flies expressing nuclear-localized GCaMP6s selectively in KCs (directed by the *OK107-*
112 *Gal4* driver³³) (Figure 1B-C). In pilot experiments using cytoplasmic GCaMP6f as the calcium
113 reporter, the small size (~2-3 μ m) and tight, regular packing of KC somata (Figure 1E)
114 presented challenges for motion correction, good cellular segmentation, and reliable pixel
115 assignment to individual KCs over the course of an imaging session, with poor trial-to-trial
116 reliability in odor panels larger than 8 odors. To expand the size of odor panels that could be
117 evaluated in a single brain, we turned to measuring nuclear calcium, which has slower response
118 dynamics, but strongly correlated response amplitudes compared to cytoplasmic calcium^{34,35}.
119 Localization of the calcium indicator to nuclei resulted in a several pixel gap between KCs that
120 facilitated reliable cellular segmentation (Figure 1E, H) and enabled recording of the
121 representations of between 8 to 17 odors in the same MB.

122

123 Flies were presented odors in pseudo-random sequences while rapidly z-scanning through the
124 KC cell body layer. Following volumetric motion correction, odor-evoked KC signals were
125 extracted using the Suite2P software package³⁶. In brief, after correcting for motion in each
126 plane, regions of interests (ROIs) representing each KC were extracted (Figure 1H). Although
127 cell detection in Suite2P is usually neural activity-based, we extracted the spatial footprint of
128 each cell by performing anatomical segmentation on time-averaged images, resulting in
129 detection of between ~85-95% of the expected number of KCs. Since KC odor responses are
130 sparse and many KCs do not respond to any odor in even a relatively large panel, this
131 adjustment enabled reliable estimates of KC response rates. For a subset of experiments, odor
132 responses were registered to KCs across

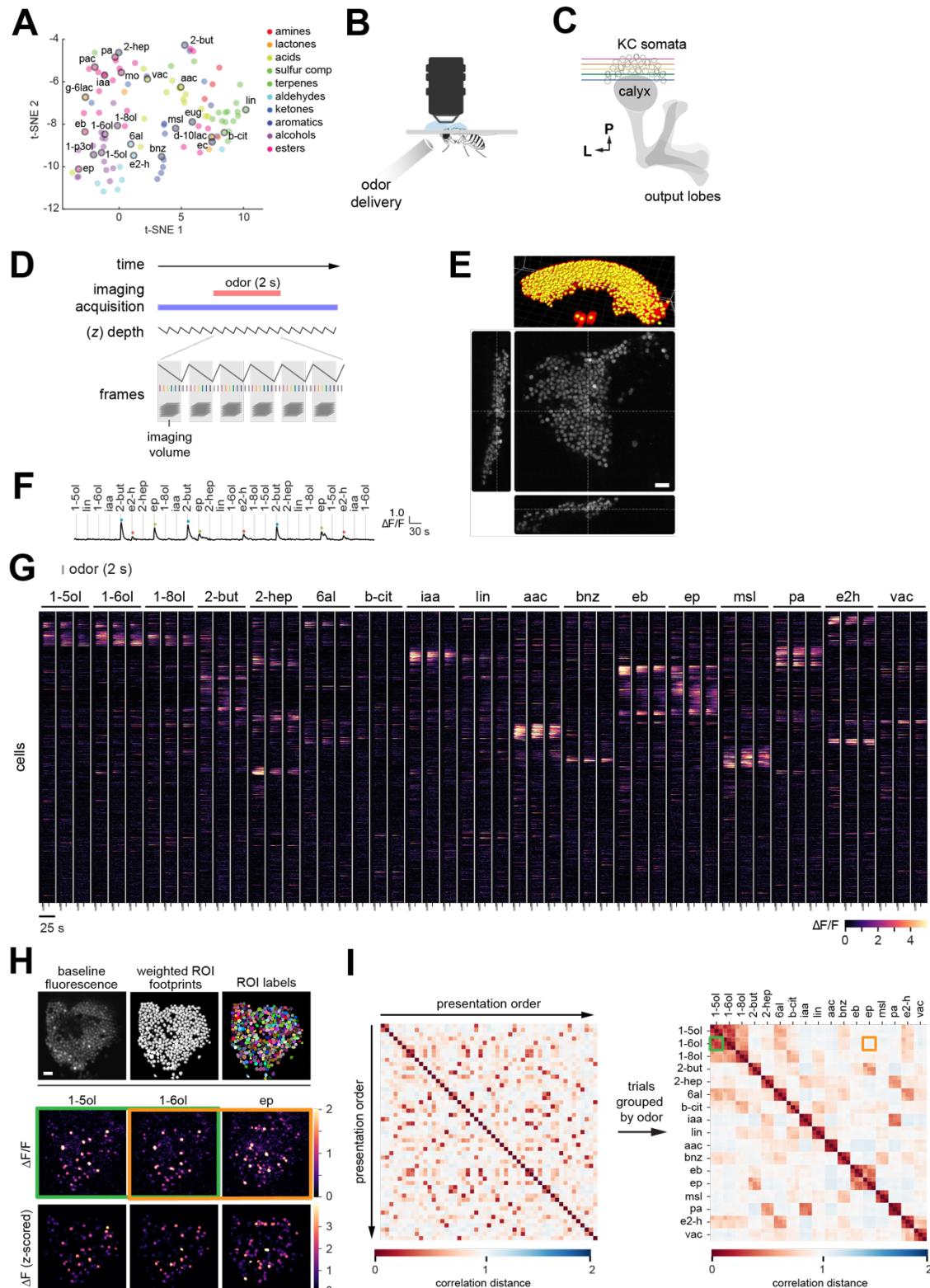


Figure 1: Population representations of odor in the fly MB at cellular resolution.

A) t-SNE embedding of 109 odors based on the patterns of activity they elicit across 24 fly ORs in the Hallem dataset. A subset (open grey symbols) spanning the odor space was selected for measurement in the MB.

B) Odors were delivered to the antennae of immobilized flies expressing nuclear-localized GCaMP6s in all KCs, while imaging from KC somata with a two-photon microscope.

C) Imaging volumes comprising ~11 planes through the KC layer capture the activity of >85% KCs in an MB.

D) Configuration of volumetric imaging trial (3 Hz sweep rate).

E) Reconstruction of 3D ROIs corresponding to each KC from interleaved high-resolution anatomical imaging stacks. Scale bar, 10 μ m.

F) Example odor-evoked calcium signals in an imaging block from a single KC.

G) Population representations in ~1800 KCs to 17 odors in the MB from a representative fly. Each row is a cell and each column is a trial. Cells are sorted by odor tuning.

H) Top: baseline fluorescence (left), weighted ROI masks of KCs (middle), and ROI labels corresponding to individual KCs (right) from a single imaging plane in an MB. Bottom: odor-evoked patterns of KC activity in response to 1-pentanol, 1-hexanol, and ethyl propionate. Scale bar, 10 μ m.

I) Matrix of pairwise correlation between KC population responses in individual odor trials, where trials are shown in presentation order (left) or grouped by odor (right). KC responses elicited by 1-hexanol were more similar to those elicited by 1-pentanol (green) than by ethyl propionate (orange).

Flies had genotype 20xUAS-nls-OpGCaMP6s-p10 (III)/+; OK107-Gal4 (IV)/+. Odors are pentyl acetate (pa), isoamyl acetate (iaa), methyl octanoate (mo), ethyl butyrate (eb), ethyl propionate (ep), 1-pentanol (1-5ol), 1-hexanol (1-6ol), 1-penten-3-ol (1-p3ol), 1-octanol (1-8ol), 2-heptanone (2-hep), 2-butanone (2-but), hexanal (6al), E2-hexenal (e2-h), benzaldehyde (bnz), methyl salicylate (msl), eugenol (eug), ethyl cinnamate (ec), linalool (lin), β -citronellol (b-cit), acetic acid (aac), propionic acid (pac), valeric acid (vac), γ -hexalactone (g-6lac), δ -decalactone (d-10lac).

133 different functional movies collected from the same MB by alignment of ROIs to 3D anatomical
134 models of KC somata constructed from high-resolution structural images through the MB (Figure
135 1E; Figure S1A).

136
137 Reproducible odor-specific response dynamics were observed in some cells (Figure 1F), but,
138 given the overall slow kinetics of nuclear-localized GCaMP6s, we focused our analysis in this
139 study on the peak amplitude of odor-evoked responses. KC population responses were stable,
140 odor-specific, and reliable across repeated trials of the same stimulus (Figure 1F-1G, Figure
141 S1A). The pairwise relationship between odor representations in MB coding space was
142 quantified using the correlation distance $1-r$, where r is Pearson's correlation between the
143 vectors of KC responses to each pair of odor. Quantifying odor relationships using other metrics
144 such as cosine distance yielded similar results (e.g., Figure S3H). When we computed the
145 correlation distance between the KC response vector for every pairwise combination of trials in
146 an experiment (Figure 1I, left) and reordered the distance matrix to group together trials by odor,
147 we observed that KC responses to repeated presentations of the same odor were very strongly
148 correlated (on-diagonal blocks, Figure 1I, right). These results demonstrate the reliability of KC
149 odor responses across multiple presentations spanning the time course of an experiment. As
150 expected, the pairwise correlation distance between odors reflected the qualitative similarity of
151 their respective KC response patterns (Figure 1H-I), with visually similar activity patterns
152 corresponding to short odor distances.

153
154 The percentage of KCs responding to each odor was similar in each MB, ranging from ~5-13%
155 depending on the odor (Figure S1B). When compared against mean OR activity for each odor,
156 estimated by averaging the firing rates evoked by each odor across all ORs in the Hallem
157 dataset, KC response rate was not significantly correlated with mean ORN response strength
158 (Figure S1B, Spearman's rho=0.48, $p=0.05$). However, we note that the Hallem dataset

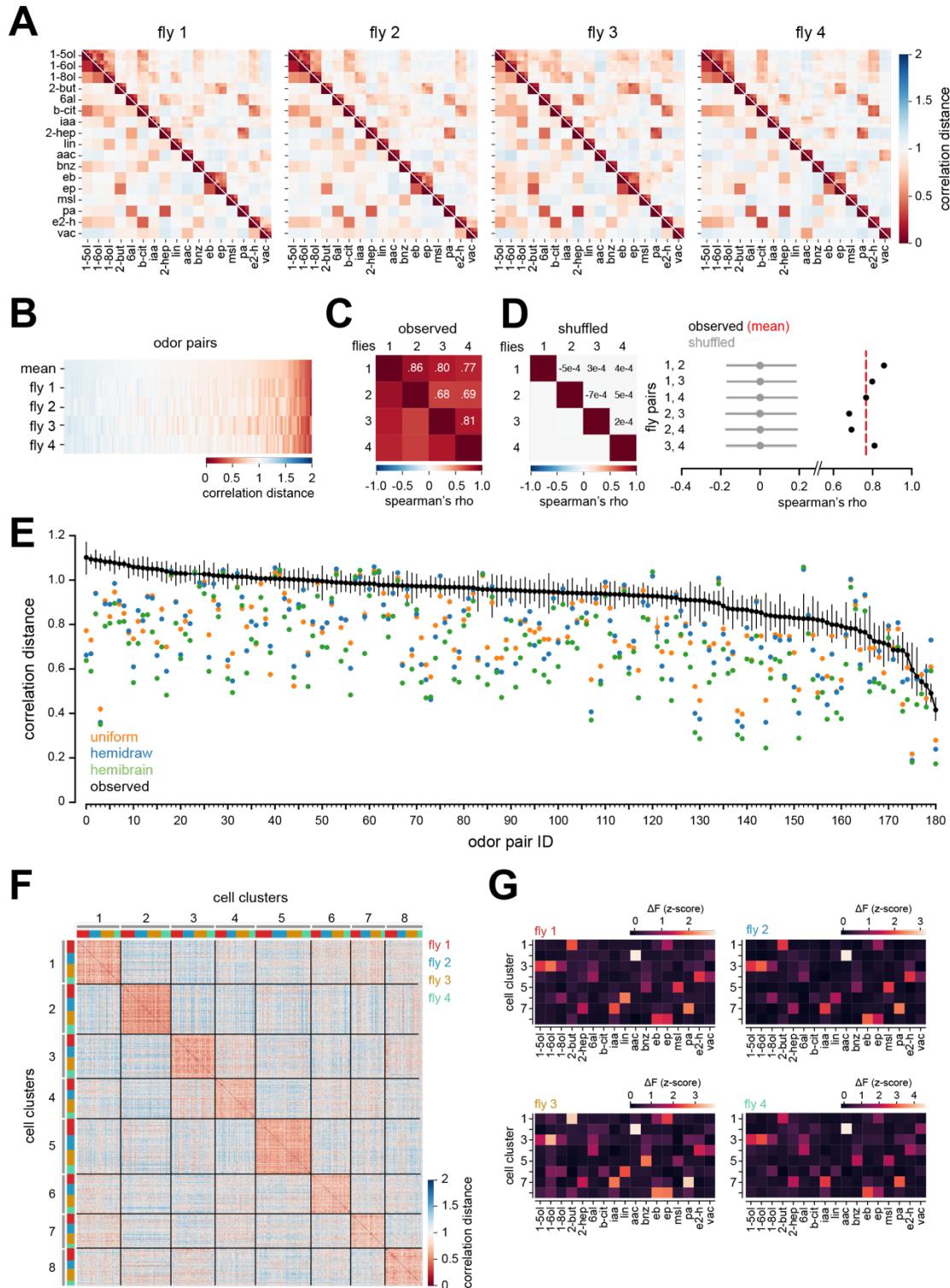


Figure 2: MB representational space is structured and invariant across individuals.

A) Correlation distance matrices for four different flies showing pairwise relationships between KC population responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower triangle).

B) Correlation distance between trial-averaged KC responses for every odor pair for the four flies in **A**. Odor pairs are in the same order in each row, arranged by the rank of their mean correlation distance across the four flies. Odors that evoke similar KC response patterns in one fly tend to also elicit similar response patterns in other flies.

C) Spearman's rank correlation between the rows of **B** (i.e., between flies), evaluating the similarity of the rank ordering of odor pairs between flies according to their representational distance in KCs.

D) Left: same as **C**, but for shuffled data in which the odor labels were randomly permuted for the responses of individual flies. The matrix shows the mean Spearman's correlation across 10,000 shuffles. Right: observed Spearman's correlation (black) and the mean and 95% CI of the Spearman's correlation across 10,000 shuffles (grey) for each fly pair. Red dotted line marks the mean observed Spearman's correlation ($\rho=0.76$).

E) Correlation distance (mean and 95% CI) between KC responses for each odor pair, averaged across all flies in which the odor pair was sampled ($n=3-22$, see Supplemental Table 1). Each unique odor pair was assigned a reference ID (see Supplemental Table 1). A one-way ANOVA showed there was a significant difference in the odor-odor correlation distance between different odor pairs (F statistic=12.6, $p=10^{-180}$), consistent with odor-odor relationships being reliable across MBs in different flies. The correlation distance (mean and 95% CI across 100 model MBs) between predicted KC responses for odor pairs in the uniform, hemidraw, and hemibrain models are plotted for reference (see Figure 3).

F) Matrix of pairwise correlation distances between odor response profiles of every KC in the four flies in **A** that responded to at least one odor. The distance matrix was ordered by spectral clustering on the mean odor response vector of each cell. Each response cluster contained KCs from every fly.

G) Mean KC tuning profiles of each cluster, computed across KCs in each cluster in each fly. KCs with conserved odor tuning profiles are found in every MB.

159 underestimates ORN population responses to acids and amines since it does not include
160 odorant receptors from the ionotropic receptor (IR) family³⁷.
161
162 Overall, KCs were narrowly tuned, with most cells responding to two or fewer odors, and a
163 significant fraction (~34%) responding to no odor in a diverse 17-odor panel (Figure S2B).
164 However, compared against modeled KC responses (see below), observed odor responses in
165 KCs were more broadly tuned. This result is consistent with observations that existing MB
166 models poorly predict KC response rates to narrowly activating odors that selectively excite only
167 one or very few ORN classes (e.g., CO_2 or methyl salicylate, Figure S1D-E). These results
168 confirm that KC responses are sparse and selective. They also indicate that current
169 assumptions about MB circuit properties do not fully account for observed KC response rates to
170 all odors, particularly for narrowly activating odors.
171

172 **Representations of odor in the MB are structured and invariant across individuals**
173 In most circuits of the fly brain, neuronal connectivity is invariant across individuals, but the MB
174 is distinct in that the wiring of PN inputs is probabilistic: each of the ~2000 KCs, the principal
175 neurons of the MB, integrates input from a quasi-random subset of PNs comprising ~10% of the
176 ~50 olfactory glomeruli in the system. As the number of possible glomerular combinations far
177 exceeds the number of KCs in any given MB, stereotyped KC connectivity, defined by a specific
178 set of synaptic inputs, does not exist across individual MBs. Indeed, a small set of genetically
179 defined KCs labeled by a sparse Gal4 driver did not exhibit stereotyped odor tuning³⁸. However,
180 feedforward network models that assume random divergent connectivity between second- and
181 third-order olfactory layers predict that, while third-order olfactory responses will be
182 comparatively decorrelated, they will otherwise maintain relative pairwise odor relationships
183 present in the prior layer. Thus, these models predict that the geometry of third-order olfactory
184 representations will be invariant across different instantiations of the network (i.e., MBs), with
185 preserved odor relationships that are predictable from the stereotyped tuning of OR inputs.
186

187 To evaluate these ideas, we compared the correlational structure of odor representations
188 encoded in KC activity patterns in multiple flies. We found that the relationships between odors
189 in MB representational space were indeed structured and highly invariant across individual
190 brains (Figure 2A, S2A), consistent with prior work³. We evaluated the similarity of the
191 correlational structure across MBs by comparing the rank order of odor-odor correlation
192 distances in each MB (Figure 2B-C). The observed distribution of MB-MB correlations
193 (Spearman's $\rho=0.76 \pm 0.06$) was significantly different from shuffled controls (Figure 2D, p
194 $<10^{-4}$). Also, the correlation distance between specific pairs of odors was consistent across
195 individual MBs: odors that evoked similar KC response patterns in one fly tended to also have
196 similar KC responses in other flies, and the same was observed for odors that evoked dissimilar
197 representations (Figure 2E, S2B; $p=10^{-186}$, one-way ANOVA). Finally, we combined all KCs that
198 respond to one or more odors from four different flies and clustered the KCs based on each
199 cell's odor response profile. This analysis identified reliable response types with specific odor
200 tuning profiles, and each response type was found in each of the four flies (Figure 2F). For
201 instance, KCs that are strongly co-tuned to 2-heptanone, isoamyl acetate, and pentyl acetate
202 were reliably observed in every MB (Figure 2G). These results demonstrate that the structure of
203 the representational space of odors is highly conserved across individual MBs in the fly.
204

205 **Odor distances in MB coding space diverge from odor relationships predicted by a
206 random feedforward network model**

207 To compare the observed structure of MB representational space to what is predicted by a
208 feedforward random network, we modeled KC population responses by adapting a previously
209 described, biologically plausible spiking model of the fly olfactory circuit³⁰ (Figure 3A). PN
210 responses, modeled from OR firing rates in the Hallem dataset³², were used as input to a
211 population of 2000 spiking KCs. KCs were modeled as leaky integrate-and-fire units with a small
212 number of input sites, typically ~5-7 dendritic claws, that each receive input from a single PN
213 bouton. Under assumptions of random feedforward connectivity, the matrix of PN-KC
214 connections in each model instantiation was created by assigning each KC claw a single
215 glomerular input, with all glomeruli having an equal likelihood of being drawn ("uniform" model).
216 The inputs to the model were the firing rates of approximately half of fly ORs to 109 odors from
217 the Hallem dataset. KC activity was normalized by global feedback inhibition from the
218 GABAergic APL. KC spiking thresholds and APL-KC inhibitory weights were tuned to achieve a
219 mean KC response rate of ~10% across odors (see Methods), which matches experimental
220 observations.
221

222 The correlation between modeled KC responses for specific odor pairs was indeed consistent
223 across 100 simulated MBs with different, independently drawn random PN-KC connectivity
224 matrices (Figure 3B, error bars are 95% CI across simulations). However, the observed
225 structure of odor representations in KC coding space was only partially predicted by the
226 feedforward random model, with the observed relationship between odors deviating significantly
227 from model predictions for many odor pairs (Figure 2E, 3C, Di, S3H). In particular, observed
228 pairwise odor relationships were overall more decorrelated than those predicted from modeled
229 KC populations (Figure 3Di). Adjusting fit parameters to yield a lower mean KC response rate of
230 5% across odors did not appreciably

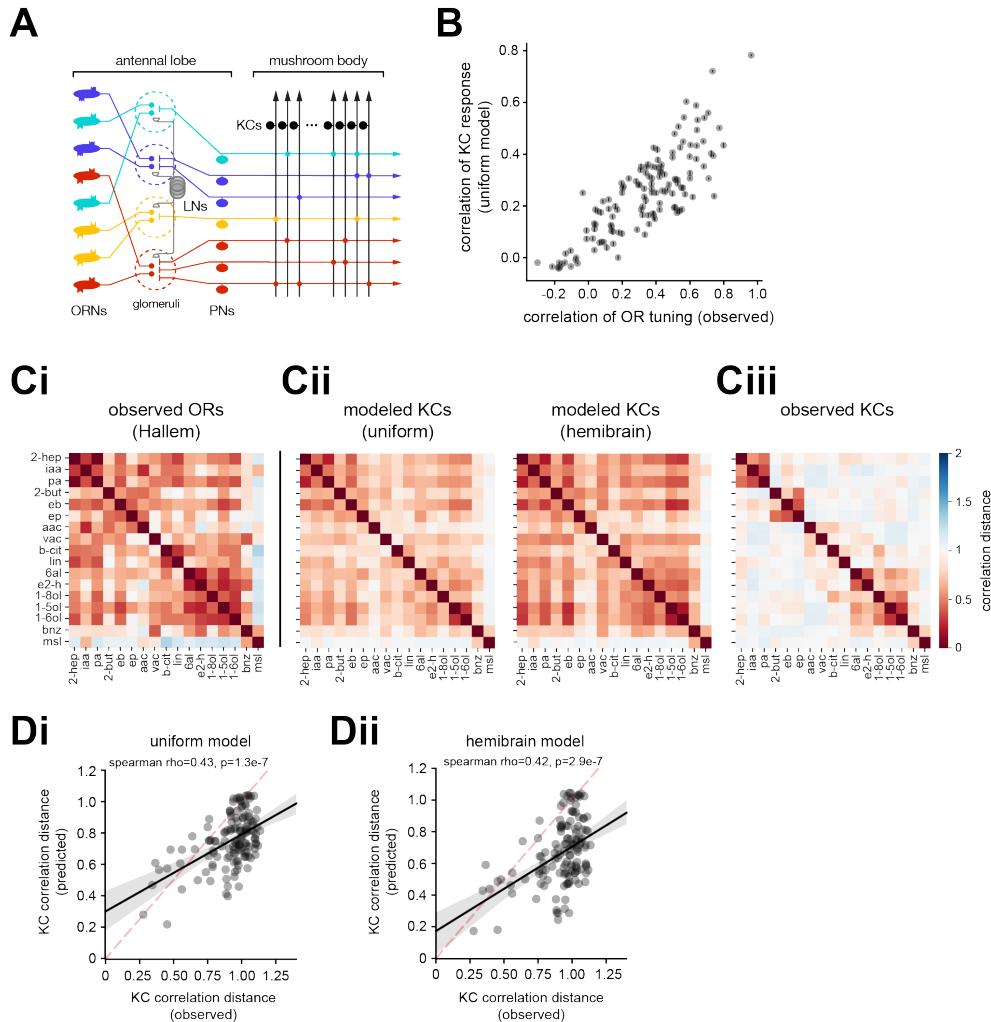


Figure 3: Odor relationships in MB representational space deviate from predicted relationships in a random feedforward network

A) Schematic of the fly olfactory network. Not depicted is a single GABAergic neuron (APL) in the MB that mediates feedback inhibition among KCs.

B) Comparison of relationships between predicted KC representations (uniform model) and observed OR tuning profiles for each odor pair (grey symbols). Error bars are 95% CI of KC correlation for each odor pair across 100 model MBs; each simulated MB has an independently generated PN-KC connectivity matrix drawn under assumptions of uniform input (each glomerulus drawn with equal probability).

C) Matrix of pairwise correlation distances between OR tuning profiles from the Hallem dataset (**Ci**); predicted KC responses in the uniform model (**Cii**, left) or hemibrain model (**Cii**, right); or observed KC responses (**Ciii**) for 17 odors.

D) Comparison of correlation distances for each odor pair between observed KC responses for each odor pair and predicted KC responses in the uniform (**Di**) and hemibrain (**Dii**) models. Each symbol is an odor pair.

231 affect the systematic overprediction of the degree of correlation between odor representations,
 232 nor did it affect the rank order of predicted odor-odor correlation distances (data not shown).
 233
 234 Recent analysis of the global structure of glomerular input sampling by third-order olfactory
 235 neurons (Figure S3A) using large-scale EM-level reconstructions of part of the *Drosophila* brain
 236 at synaptic resolution revealed that the wiring of PN inputs to KCs is not fully random^{18,19}, as

237 was previously believed. Indeed, analysis of the complete matrix of PN-KC connectivity from
238 two independently reconstructed fly brains confirmed that KCs sample particular combinations
239 of PN inputs at a higher rate than is expected based on their numerical frequency, and the
240 structure of this biased input onto KCs is similar between two MBs from different flies¹⁹ (Figure
241 S3B-E). We also observed that the glomerular input structure to KCs bears significant similarity
242 to the structure of glomerular input to third-order olfactory neurons in the lateral horn (Figure
243 S3E), a brain region dedicated to innate odor processing in which neurons have stereotyped
244 connectivity and tuning^{39,40}.

245
246 To assess the possible impact of structured input on MB odor representations, we predicted KC
247 odor responses in the model under conditions in which the PN-KC connectivity matrix was
248 drawn according to the observed frequency of PN boutons corresponding to each glomerulus in
249 the hemibrain dataset (“hemidraw”) or in which the experimentally reconstructed hemibrain PN-
250 KC connectivity matrix was directly implemented (“hemibrain”) (see Methods). Neither
251 adjustment to PN-KC connectivity improved predictions of observed KC odor relationships
252 (Figure 3C, 3Dii, S3F-H); in fact, predicted responses for most odor pairs tended towards being
253 more correlated compared to the uniform model. These results indicate that observed biases in
254 PN-KC connectivity are unlikely to account for the differences between observed and predicted
255 KC odor responses; they suggest additional sources of structure are present in the olfactory
256 circuit that mediate the observed transformation of odor representations from the periphery to
257 the MB.

258
259 **Reorganization of representations of odor in the MB around odor relationships in natural
260 sources**

261 Comparisons of odor representations in the OR input layer and in the MB showed that, although
262 the representations of most pairs of odors were substantially decorrelated, as expected, some
263 odor pairs were comparatively less decorrelated between the OR and MB layers. This
264 transformation resulted in a significant regrouping of odor relationships in OR versus MB coding
265 space. For instance, the odors 2-heptanone, isoamyl acetate, and pentyl acetate emerged as a
266 cluster with similar KC representations, distinct from other odors in the panel, whereas the
267 representation of each of these odors is similar to many others at the level of its OR
268 representation (Figure 3Ci, iii).

269
270 To better understand the functional implications of this reorganization, we asked how odor
271 representations at different stages of olfactory processing relate to the properties of the odors,
272 focusing in particular on their chemical properties and on how they are correlated across natural
273 odor sources. For each odor, we computed molecular and physicochemical descriptors using
274 Mordred, an open-source molecular descriptor calculation software⁴¹. Since many descriptors
275 are highly correlated across odors, we identified a reduced set of 570 molecular descriptors that
276 captured the chemical relationships between odors equivalently to the full set of descriptors
277 (Supplemental Table S3).

278
279 *D. melanogaster* is an ecological generalist and human commensal⁴²; as a starting point for
280 understanding the structure of natural odor space for *Drosophila*, we used a database of the

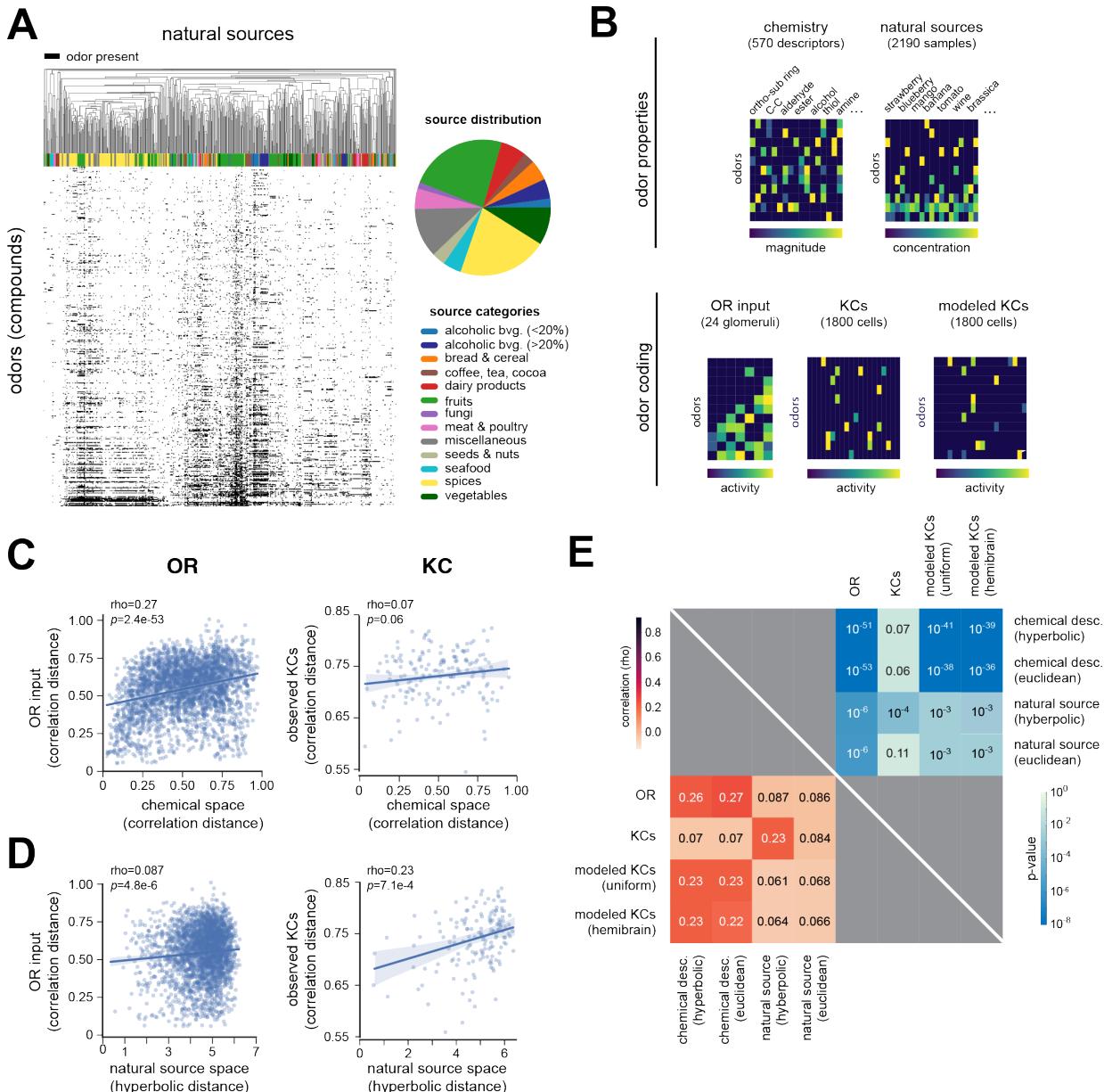


Figure 4: Reorganization of odor representations in the fly MB reflects odor relationships in natural sources.

A) Distribution of odors (monomolecular compounds, rows) in a literature-based database of the volatile headspace composition of many natural food odor sources (columns). The pie chart shows the distribution of odor sources in each food category.

B) Schematic summary of datasets for comparing the properties of odors (top) with their different neural representations (bottom).

C) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their distances in chemical descriptor space.

D) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their embedded distances in a hyperbolic model of natural source space.

E) Summary of correlation (lower triangle) and p -values (upper triangle) for comparisons between observed OR, observed KC, or modeled KC (uniform or hemibrain) odor relationships and odor-odor relationships in chemical or natural source space.

281 headspace volatile profiles for many food odor sources, compiled from 4407 published chemical
282 datasets primarily from the food and flavor science literature (Figure 4A). The odor sources are
283 biased towards fruits, plants, and vegetables, but also includes other common human foods
284 such as alcoholic beverages, meat, and dairy products. The database comprises thousands of
285 samples measured from 887 types of natural sources (apple, tomato, wine, etc.) and contains
286 over 8,000 monomolecular volatiles. Like other datasets profiling the chemical volatiles emitted
287 from natural sources⁴³, the majority of odorants occur sparsely in a small number of sources,
288 though a significant minority of odors are present broadly across many sources (Figure 4A).
289

290 Recently, we showed that the use of hyperbolic coordinates to embed the concentrations of
291 individual monomolecular odorants as they occur in natural odor sources better captures odor
292 relationships in the space of natural sources, compared to embeddings that use Euclidean
293 metrics^{12,45}. Thus, to describe the similarity in distribution across natural odor sources for a
294 given pair of odors, we started with a normalized correlation coefficient computed between odor
295 abundances across different natural sources. Based on these distances, we performed
296 nonlinear dimensionality reduction using different curved and flat metrics⁶⁴. The method
297 automatically adjusts the curvature of the embedding space and selects the best fitting
298 dimension based on the Bayesian Information Criterion⁴⁴. We found that the natural odor
299 abundance data was best described by a three-dimensional hyperbolic space with a negative
300 curvature of -5.12. This observation mirrors previous results using a more limited dataset of
301 natural fruit or flower odor sources in which hyperbolic geometry also provided a significantly
302 better fit of the natural source space than the standard Euclidean geometry^{12,45}. The intuitive
303 explanation for these results is that hyperbolic spaces provide good descriptions of the structure
304 of natural odor spaces because they arise as continuous approximations to tree-like hierarchical
305 networks. In the case of natural source data, the hierarchical relationships are hypothesized to
306 reflect dependencies produced by biochemical and metabolic pathways acting in plants and
307 other food sources, including in associated microbes like bacteria and fungi. In contrast,
308 nonlinear dimensionality reduction of odor distances computed from chemical descriptors
309 resulted in a hyperbolic embedding with higher dimension (dim=6) and much reduced curvature
310 (0.05) that did not provide a better fit of the dataset than a Euclidean model. Since odor
311 distances in the hyperbolic embedding better captured the correlational structure of abundances
312 of odors across natural sources compared to equivalent distances computed from a Euclidean
313 embedding, we used hyperbolic distances as a metric of odor relationships in natural source
314 space.
315

316 For each pair of odors in the dataset, we compared their representational distance in OR or KC
317 coding space with their relationship in chemical descriptor space or natural source space
318 (Figure 4B). We found that pairwise odor distances in OR coding space were better correlated
319 with their distances in chemical descriptor space ($\rho=0.27$, $p=2.4e-53$) as compared with their
320 distances in natural source space ($\rho=0.087$, $p=4.8e-6$) (Figure 4C-D). The converse was true
321 for odor distances in KC coding space: pairwise distances in KC coding space were better
322 correlated with their distances in natural source space ($\rho=0.23$, $p=7.1e-4$) compared to their
323 distances in chemical descriptor space ($\rho=0.07$, $p=0.06$) (Figure 4C-D). The correlation to
324 distances in KC coding space was observed only for natural source odor relationships quantified

325 by the hyperbolic embedding of natural source space, but not by Euclidean distance (Figure
326 4E), suggesting that capturing hierarchical relationships in the dataset is important and that the
327 low-dimensional embedding helps to de-noise the data. We also evaluated the relationship of
328 odor properties to odor distances in the modeled KC coding space under assumptions of
329 unstructured PN-KC connectivity. In contrast to the observed KC distances between odors,
330 modeled KC distances were better correlated with odor distances in chemical descriptor space
331 ($\rho=0.23$, $p=1.4\text{e-}38$) compared to hyperbolic odor distances in natural source space
332 ($\rho=0.061$, $p=8.4\text{e-}3$) (Figure 4E). This result is expected since, under assumptions of
333 unstructured connectivity in the olfactory circuit, the relationship of odors in KC coding space
334 stems from their relationships in OR input space. Similar results were observed for odor
335 relationships computed from KC responses predicted using the hemibrain circuit model,
336 indicating that the observed degree of glomerular input bias to KCs in the hemibrain does not
337 explain the reformatting of odor relationships in the MB. Overall, these data indicate that the
338 realignment of odor representation with natural source relationships that we observed in KCs
339 cannot be derived simply by random resampling of OR responses.
340

341 To determine if the relationships between odor representations and odor properties were driven
342 by only a small number of odor pairs in the dataset, we recomputed the correlations between
343 OR or KC representational distance and chemical descriptor or natural source distance using
344 100 subsamples comprising 75% of the odor pairs, dropping out a random 25% of the odor
345 pairs in each resampling. This analysis confirmed that odor distances in OR space were more
346 correlated with distances in chemical descriptor space as compared to in natural source space,
347 and vice versa for odor distances in KC space. These findings are consistent with a
348 reorganization of the fly olfactory code between the periphery and the MB from encoding the
349 chemical or structural relationships between odors to reflecting the odor relationships in
350 complex mixtures arising from natural sources.
351

352 **Odor relationships are restructured across successive stages of olfactory processing**

353 To better understand how representations of odor are reformatted from the periphery to the MB,
354 we used functional imaging to measure odor-evoked patterns of activity at each successive
355 stage of processing in the olfactory circuit. While delivering odors to the antennae of the fly, we
356 volumetrically imaged from all ORN axon terminals (labeled by the *pebbled-Gal4* driver) or from
357 ~70% of PN dendrites (labeled by the *GH146-Gal4* driver) in the antennal lobe⁴⁶, where the
358 neurites from these cell populations are stereotypically organized into glomerular compartments
359 with characteristic size and position (Figure 5A-B). Population imaging from the terminals of all
360 ORN classes allowed odor relationships to be assessed in the complete OR input space to the
361 olfactory system, whereas the Hallem dataset measures the tuning of only approximately half of
362 all fly ORs (Supplemental Figure S4B). ROIs corresponding to individual glomeruli were
363 manually segmented from movies of odor responses in ORN axon or PN dendrites and their
364 odor response profiles extracted. To evaluate patterns of odor-evoked PN output, we
365 volumetrically imaged from the axonal boutons of ~70% of PNs (labeled by the *GH146-Gal4*
366 driver) in the calyx of the MB, where they synapse onto the sites of KC input (claws) (Figure 5A-
367 B). ROIs corresponding to PN boutons were automatically segmented using Suite2P; visual

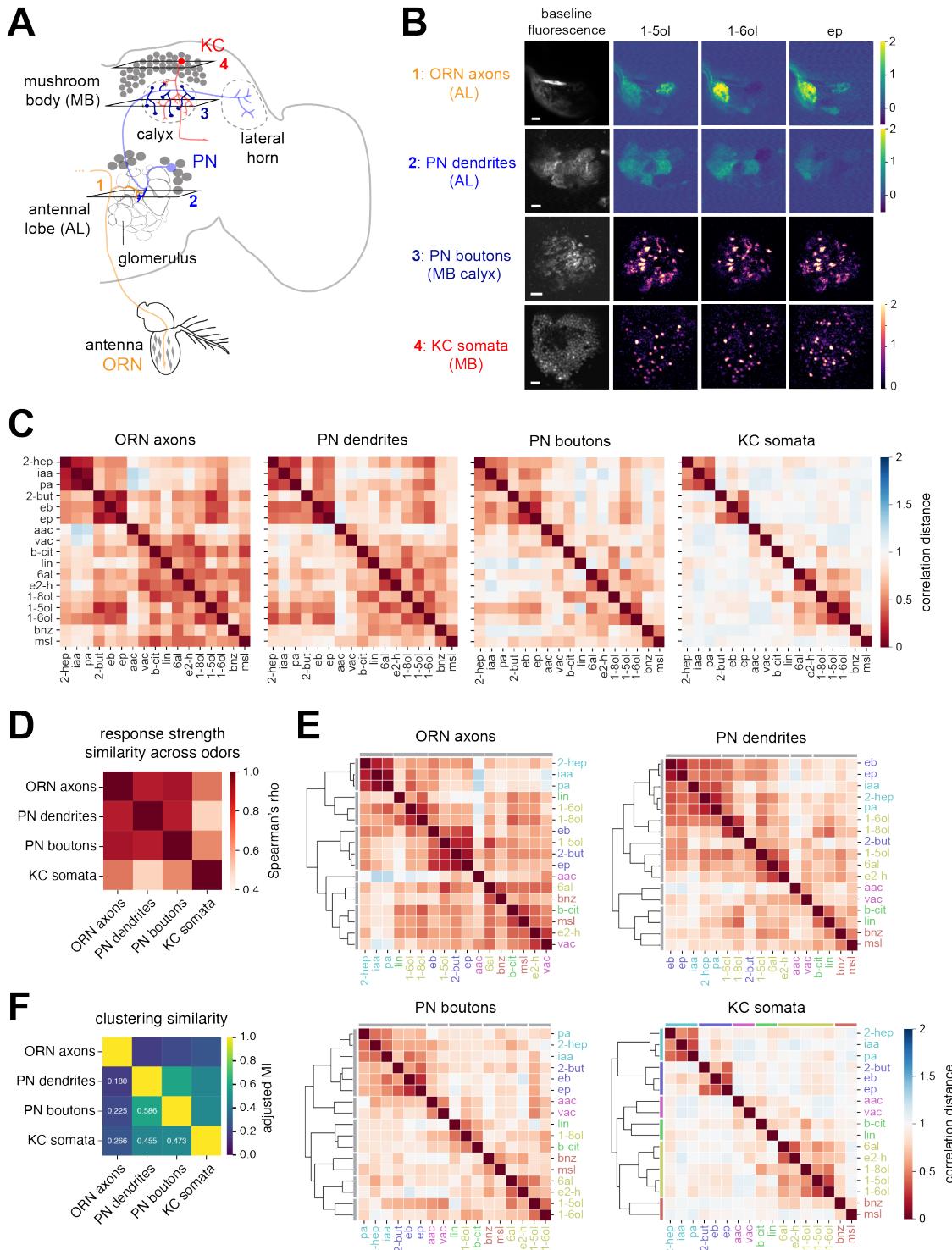


Figure 5: Reformatting of odor representations across four stages of olfactory processing.

A) Anatomical schematic of fly olfactory circuit. ORN axon terminals are organized in a stereotyped glomerular map in the AL. Each uniglomerular PN has dendrites in a single AL glomerulus and projects to the calyx of the MB, where its axonal arbor terminates in multiple boutons that each synapse with KC input claws.

B) Representative baseline fluorescence and peak $\Delta F/F$ heatmaps of odor-evoked calcium signals in ORN axon terminals, PN dendrites, PN boutons, and KC somata to 1-pentanol, 1-hexanol, and ethyl propionate. KC data are reproduced from Figure 1. Scale bar, 10 μ m. Genotypes: ORN axons are imaged in *pebbled-Gal4*, *UAS-GCaMP6f*,

+, *GH146-QF*, *QUAS-tdTomato*. PN dendrites and PN boutons are imaged in *GH146-Gal4/20xUAS-IVS-jGCaMP8m* (II).

C) Matrix of mean pairwise correlation distances (averaged across flies) of trial-averaged odor representations in ORN axons ($n = 4$ flies), PN dendrites ($n = 6$ flies), PN boutons ($n = 6$ flies), and KC somata ($n = 4$ flies) to a panel of 17 odors. Odors are displayed in the same order in each matrix according to the clustering of their representations in KC representational space.

D) Spearman's correlations measuring the similarity of rank ordering of odor response strengths at each stage of processing.

E) Hierarchical clustering of distance matrices in **C** showing best odor groupings in each representational space.

F) Pairwise adjusted mutual information (MI) score evaluating the similarity of clustering of odor representations in each representational space. The adjusted MI has a value of 1 when two clusterings are identical, and a value of 0 when the MI between two clustering is the value expected due to chance.

368 inspection confirmed that > 95% of ROIs reliably corresponded to single PN boutons. Odor
369 relationships were invariant across the brains of different individuals at each of these earlier
370 stages of olfactory processing (Figure S4A), consistent with the stereotyped connectivity of the
371 antennal lobe.

372
373 Comparing the pairwise correlation distances between odor representations in each layer of the
374 olfactory circuit, odor representations were progressively decorrelated at each feedforward
375 stage of processing (Figure 5C), with the mean and median odor-odor correlation becoming
376 systematically lower in each successive layer (Figure S4D). The largest decorrelation occurred
377 between PN boutons and KC somata, consistent with the divergent expansion of the circuit at
378 this synaptic step. However, the rank order of odor-odor distances was not maintained across
379 layers (ORN terminals versus KC somata, Spearman's rho=0.48), indicating that odor
380 relationships are transformed beyond a simple linear scaling between layers. For comparison, in
381 a model that assumes unstructured PN input to KCs and uniform inhibition in the AL and MB
382 ("uniform"), the Spearman's correlation between odor relationships in the input OR layer and in
383 modeled KCs is rho=0.83. Furthermore, whereas the relative levels of odor-evoked activity in
384 PNs dendrites or boutons was well-predicted by levels of overall ORN input to the circuit, odor-
385 evoked KC response rates (and mean activity) were comparatively less well-predicted (Figure
386 5D, S4Ci-iv, and data not shown). These observations all point towards a non-linear
387 reformatting of odors in the MB representational space that alters the rank ordering of odor
388 relationships compared to earlier stages of coding.

389
390 We examined odor relationships at each step of processing using hierarchical clustering of odor
391 representations in each neural population, in order to better understand the origins of odor
392 relationships in MB coding space. For instance, one of the strongest odor clusters at the level of
393 input representations – 2-heptanone, isoamyl acetate, and pentyl acetate – was maintained in
394 each subsequent stage of processing through to the KCs (Figure 5C, E). These odors share a
395 high degree of chemical similarity as well as co-occurrence in natural sources, which may
396 explain their robust grouping. However, other odor representations that were similarly well-
397 correlated and clustered in OR space (e.g., 1-pentanol and 2-butanone) were selectively
398 decorrelated in KC coding space, with each odor becoming reassigned to distinct, non-
399 overlapping groups of odors in KC coding space (Figure 5C, E). Additionally, the
400 representations for some odor pairs were observed to become reliably *more* similar at later
401 stages of olfactory processing. For instance, the pairwise correlation distances between 1-

402 pentanol and 1-hexanol was actually shorter in KC coding space as compared to in ORN axon,
403 PN dendrite, or PN bouton coding space.

404

405 Typically, these transformations in the representational geometry among odors occur
406 progressively at each successive stage of processing, with the largest change occurring
407 between PN boutons and KC somata (Figure 5C). However, we observed significant
408 reorganization of odor representations even between the inputs and outputs of the same cell
409 population, PNs; odor relationships encoded in PNs boutons better reflect odor relationships in
410 KC coding space compared to PN dendrites (Figure 5C, E). The nonlinear reformatting of odor
411 relationships across successive stages of olfactory coding indicates that prevailing models of
412 olfactory networks that assume global or uniform processing across neurons are incomplete,
413 and additional sources of structure exist in the fly olfactory circuit that mediate non-uniform
414 interactions between olfactory coding units (e.g., neurons or glomeruli).

415

416

417 **DISCUSSION**

418

419 We show that representations of odor are structured and invariant across MBs in individual flies,
420 and that the structure of MB odor coding space is only partially predicted by models that
421 assume random sampling of olfactory glomerular inputs by KCs. The latter is true even after
422 adjusting the MB model to account for the over- or under-representation of PN boutons from
423 specific glomeruli (“hemidraw” model) or the amount of over- and under-convergence of PN
424 inputs from specific sets of glomeruli onto KCs (“hemibrain” model). Thus, certain assumptions
425 of olfactory system architecture – for instance, of uniform strengths of unitary feedforward
426 synapses, uniform spiking thresholds, or nonselective, global inhibition in the AL or MB – are
427 likely oversimplifications, motivating a search for source(s) of structured interactions between
428 glomeruli or neurons in the olfactory circuit.

429

430 We demonstrate a significant transformation of the fly olfactory code between the periphery and
431 the MB, in which the encoding of odors by ORs better reflects the chemical relationships
432 between odors and the encoding of odors in the MB better reflects the distributions of odors
433 across behaviorally relevant natural sources. That representations at the olfactory periphery
434 better capture odor relationships in terms of their chemical or molecular properties is perhaps
435 unsurprising, since odor-OR interactions are governed by the structural features of the odor.
436 The reorganization of MB odor representations to better correlate with the relationships of these
437 odors in natural source space may reflect the progressive transformation of odor
438 representations in the olfactory network to encode latent variables that relate more directly to
439 behavioral value or perception.

440

441 Odor distances in the hyperbolic embedding of natural odor mixtures reflect correlations
442 between volatiles in the headspace profiles across natural sources that arise from conserved
443 metabolic pathways⁴⁵. The transformation of odor representations in the MB is predicted to
444 facilitate the perceptual compression of odors that have shorter metabolic tree distances in the
445 hierarchical organization of natural odor mixtures relative to their chemical similarity. Consistent

446 with this idea, a recent preprint reports that distances between odors in a neural network
447 embedding trained on human olfactory perceptual labels are correlated with the metabolic
448 distance between odors in experimentally elucidated biochemical pathways⁴⁷.
449
450 The specific structure of odor relationships was largely invariant across individual brains at each
451 stage of olfactory processing (Figure 2), even in the MB where PN boutons connect
452 probabilistically with KCs. An important open question is the extent to which the invariance of
453 MB representational space may arise from genetically specified developmental processes
454 (sculpted by evolution) or from activity-dependent processes that reflect shared olfactory
455 experience². Unlike their mammalian analogues in piriform cortex, KCs are not strongly
456 connected through recurrent excitation, although the degree to which PN-KC synapses or APL-
457 KC synapses may be regulated by experience is not well understood. We note that the structure
458 of PN overconvergence onto KCs bears significant similarity to the structure of PN input to third-
459 order olfactory neurons in the lateral horn (LH) (Figure S3E). LH neurons are stereotyped in
460 their anatomical connectivity and odor tuning and are believed to mediate innate olfactory
461 behaviors. The similarity in PN input structure between the MB and LH points to the likely
462 ethological significance of these over-represented glomerular combinations. It also raises the
463 possibility that the LH may have additional roles in shaping odor representations in the MB. For
464 instance, neurons downstream of the LH send centrifugal input to the MB calyx⁴⁸ which could
465 contribute to the remapping of odor representations in PN boutons. Other possible sources of
466 structure in the circuit are selective inhibition from the APL or MB-C1 neurons in the calyx, or
467 non-uniform PN-KC synaptic weights. Understanding the specific circuit mechanisms that shape
468 the reorganization of odor representations in the MB will be important for understanding how
469 odor relationships in natural sources become reflected in the olfactory code.
470

471 Theoretical studies of divergent expansive cerebellum-like circuits such as the MB emphasize
472 the computational benefits of random networks for maximizing coding capacity and promoting
473 the separability and discriminability of representations. However, structured networks can
474 correlate odor representations and promote generalization of odors along important directions of
475 odor space, for instance, related to the relationships of odorant molecules in behaviorally salient
476 natural odor sources. Our results suggest a revision of classic formulations of cerebellar-like
477 network architectures is warranted at least in some systems: the MB may trade-off the capacity
478 to maximally decorrelate activity patterns in parts of representational space for an increase in
479 coding capacity and robustness in a part of representational space of particular ethological
480 significance⁴⁹. The recoding of odors in the MB to reflect relationships in natural sources would
481 predict greater generalization to odors with similar distributions in the environment, facilitating
482 the decoding of natural source identity in noisy or ambiguous situations.
483

484 METHODS

485

486 *Experimental model*

487 *Drosophila melanogaster* were raised on a 12:12 light:dark cycle at 25°C and 70% relative
488 humidity on cornmeal/molasses food containing: water (17.8 l), agar (136 g), cornmeal (1335.4
489 g), yeast (540 g), sucrose (320 g), molasses (1.64 l), CaCl₂ (12.5 g), sodium tartrate (150 g),

490 tegosept (18.45 g), 95% ethanol (153.3 ml) and propionic acid (91.5 ml). All experiments were
491 performed in female flies aged 3–10 days post-eclosion. Unless otherwise noted, the
492 transgenes in this study were acquired from the Bloomington Drosophila Stock Center (BDSC)
493 and have been previously characterized as follows: *pebbled-Gal4* (X) directs expression in all
494 ORNs⁵⁰ (RRID:BDSC_80570); *GH146-Gal4* (II) directs expression in ~70% of PNs⁵¹
495 (RRID:BDSC_30026); *GH146-QF*, *QUAS-tdTomato* (III) expresses the red-fluorescent protein
496 *tdTomato* in ~70% of PNs⁵² (RRID:BDSC_30037); *UAS-IVS-jGCaMP8m* (II) expresses the
497 calcium indicator *jGCaMP8m*⁵³ in a Gal4-dependent manner (RRID:BDSC_92591); *OK107-Gal4*
498 (IV) directs expression in all KCs³³ (RRID:BDSC_854); *UAS-OpGCaMP6f* (X) was from B. D.
499 Pfeiffer and D. J. Anderson (Caltech, Pasadena, CA) and expresses the calcium indicator
500 codon-optimized *GCaMP6f*⁵⁴ in a Gal4-dependent manner; and *UAS-nls-OpGCaMP6s-p10* (III)
501 was from H. Chiu and D. J. Anderson (Caltech, Pasadena, CA) and expresses nuclear-
502 localized, codon-optimized *OpGCaMP6s*³⁵ in a Gal4-dependent manner.
503

504 *Odor stimuli*

505 Odors were delivered essentially as previously described⁵⁵. A custom-built multi-channel
506 olfactometer delivered a constant 2 L/min stream of charcoal-filtered air. A 3-way solenoid
507 valve directed 200 mL/min of this flow either through a 20-ml glass vial containing 2-ml of odor
508 solution (valve open) or an equivalent vial containing 2-ml of the solvent. Air flow was
509 controlled using mass flow controllers (MC series, Alicat Scientific, Tucson, AZ). The 200
510 ml/min control or odor streams were carried by tubing of matched lengths and rejoined the
511 carrier stream at the same point along the carrier tube, approximately 10 cm from the fly. The
512 terminal end of the carrier tube had an inner diameter ~8mm and was ~1 cm away from the fly.
513

514 Odor concentrations refer to the v/v dilution factor of the odor solution in the vial. The
515 concentration of odor in the headspace is further diluted 10-fold in air prior to reaching the fly.
516 Unless otherwise indicated, all odors in this study were presented from a 10⁻³ (0.1%) dilution in
517 paraffin oil (J.T. Baker, VWR #JTS894), with the exception of movies collected from one fly, in
518 which odors were diluted to 10⁻² (1%).
519

520 *Two-photon calcium imaging*

521 Volumetric, *in vivo* functional calcium imaging was performed essentially as previously
522 described^{46,55}. After a brief period of cold anesthesia (<20 s), the fly was head-fixed, and the
523 cuticle, fat, and air sacs were removed to expose the brain region of interest. Two-photon
524 *GCaMP6f* or *GCaMP8m* fluorescence was excited with 925 nm light from a Mai Tai DeepSee
525 laser (Spectra-Physics, Santa Clara, CA). Images were acquired with an Olympus 20X/1.0
526 numerical aperture objective (XLUMPLFLN20XW) driven by a piezo motor that enabled fast z-
527 scanning, and the collection filter was centered at 525 nm with a 50 nm bandwidth.
528 Experiments were conducted at room temperature (~22°C). The brain was constantly perfused
529 by gravity flow with saline containing (in mM): 103 NaCl, 3 KCl, 5 N-Tris(hydroxymethyl)methyl-
530 2-aminoethane-sulfonic acid, 8 trehalose, 10 glucose, 26 NaHCO₃, 1 NaH₂PO₄, 1.5 CaCl₂,
531 and 4 MgCl₂ (pH 7.3, osmolarity adjusted to 270–275 mOsm). The saline was bubbled with
532 95% O₂/5% CO₂ and circulated in the bath at ~2–3 ml min⁻¹.
533

533 **AL imaging.** Flies were head-fixed with the dorsal surface of the head approximately parallel to
534 the imaging plane; the dorsal cuticle was removed, and the antennal lobes were exposed. The
535 antennae were snugly secured below the imaging chamber, keeping them dry and responsive
536 to odors. ORN axon terminals and PN dendrites were imaged with a galvo-galvo scanning
537 system (Thorlabs Bergamo). Flies were imaged from the dorsal side, with 5 planes spaced 12
538 μm apart. The depth of the first imaging plane was chosen to maximize the number of
539 glomeruli visible across the 5 planes. Images were acquired at a resolution of 192x192 pixels,
540 with typical fields-of-view of $\sim 90\text{-}100\mu\text{m}^2$ and volumetric sampling rates of ~ 1 Hz through the
541 antennal lobe. For ORN axon and PN dendrite experiments, odors were presented in a
542 pseudorandom order, with the three trials of each odor being presented contiguously. Trials
543 consisted of a 7 s baseline recording, the odor pulse (2s for ORN experiments and 3s for PN
544 experiments), and a 20 s post-stimulus period.

545
546 **MB imaging.** Flies were head fixed with the head tilted acutely downward, rotated $\sim 70^\circ$ from
547 its normal resting position. The posterior plate of the head was approximately parallel to the
548 imaging plane, and the antennae were dry underneath the imaging platform. The entire
549 perimeter of the head capsule was stabilized to the imaging platform with glue, and the
550 proboscis and legs were immobilized to minimize motion. KC somata and PN boutons were
551 imaged with a galvo/resonance scanning system (Thorlabs Bergamo), with the exception of
552 one fly in which KC somata were imaged on a galvo-galvo scanning system at a volumetric
553 sampling rate of 0.55 Hz. For PN bouton experiments, odors were presented in a
554 pseudorandom order, with the three trials of each odor being presented contiguously. Trials
555 consisted of a 7 s baseline recording, a 3s odor pulse, and a 20 s post-stimulus period, with
556 stimulus onset occurring every 30s. For KC somata experiments, stimulus order was
557 pseudorandomized such that all odors were presented before any were repeated; thus,
558 repetitions of a given odor usually did not occur on consecutive trials. If paraffin was included
559 as an odor stimulus, it was always presented first in each repetition block. Trials consisted of a
560 13 s baseline recording, a 2 s odor pulse, and a 45 s post-stimulus period, with stimulus onset
561 occurring every 60s.

562 For resonance imaging of KC somata, movies were collected at a frame rate of ~ 60 Hz
563 at 256 x 256 pixels in fast-z mode. The field-of-view was $\sim 150\mu\text{m} \times 150\mu\text{m}$ giving a pixel size
564 of $\sim 0.6\mu\text{m}/\text{pixel}$. The bulk of the KC somata cluster was captured in 16 planes (and 4 flyback
565 frames) collected 2 μm apart, spanning a $\sim 30\mu\text{m}$ depth through the MB. This resulted in a
566 volumetric sampling rate of ~ 3 Hz. For a subset of experiments, KCs were sampled using fewer
567 imaging planes (eleven) with a z-step size of 3 μm . Since odor response rates and odor-odor
568 relationships were similar with these imaging parameters, KC somata datasets were combined.
569 For imaging of PN boutons in the MB calyx, movies were collected at a frame rate of ~ 60
570 Hz at a resolution of 256 x 256 pixels in fast-z mode. The field of view was $\sim 75\mu\text{m} \times \sim 75\mu\text{m}$
571 yielding a pixel size of $\sim 0.3\mu\text{m}/\text{pixel}$. The full population of labeled PN boutons in the calyx
572 was captured using 8 planes (and 2 flyback frames) spaced $\sim 3\mu\text{m}$ apart, spanning a $\sim 21\mu\text{m}$
573 depth in z, giving a volumetric sampling rate of ~ 6 Hz.

574
575 *Image analysis*

576 **AL imaging**

577 Image analysis was performed using custom Python scripts
578 (https://github.com/ejhonglab/al_analysis). Motion correction was performed separately in each
579 plane using the registration module in Suite2p. ROIs corresponding to individual glomeruli were
580 manually defined in each imaging plane in Fiji⁵⁶, using a combination of the resting
581 fluorescence and per-trial responses to visualize the glomerular boundaries. Responses ($\Delta F/F$)
582 were calculated using a 6 s baseline (F) that ended 1 s prior to nominal odor onset in each trial.
583 The odor response was quantified as the mean $\Delta F/F$ during the 2 s after odor onset. Odor
584 tuning of identified glomeruli, assigned using a combination of anatomical position, size,
585 shape, and responses to a diagnostic panel of 10 narrowly activating odor stimuli, matched
586 previous descriptions^{32,57,58}.

587

588 **MB imaging**

589 Motion correction. For PN bouton and KC somata imaging, an initial round of 3D motion
590 correction was performed with the ‘NormCorre’ algorithm, using either the Matlab
591 implementation⁵⁹ (<https://github.com/flatironinstitute/NoRMCorre>) or Python implementation
592 from the calcium imaging analysis library ‘CalmAn’⁶⁰
(<https://github.com/flatironinstitute/CalmAn>). As necessary, planes were dropped following
593 motion correction due to field-of-view drift; typically the most superficial or deepest planes
594 were dropped if they were not consistently captured through the entire recording.

595

596 Source extraction. For movies of PN boutons and KC somata collected in the MB, source
597 extraction was carried out using either Suite2p³⁶ or CalmAn⁶⁰. For all PN bouton, and for KC
598 somata data collected at a z-step of 2 μ m, Suite2p was used to perform source extraction on a
599 plane-by-plane basis. ROIs corresponding to PN boutons and odor-evoked signals were
600 extracted in Suite2p’s *functional* mode, using the activity-based algorithm. KC ROIs and
601 signals were extracted in Suite2p’s *anatomical* mode, using the ‘cellpose’ model to perform
602 anatomical segmentation on the mean (time-averaged) image. Extracted fluorescence traces
603 were neuropil-corrected ($F_{\text{corrected}} = F - 0.7 * F_{\text{neuropil}}$) and normalized by z-scoring over time. The
604 ‘rastermap’ function⁶¹ was used to visualize $F_{\text{corrected}}$ for all extracted components, with cells
605 sorted to cluster those with similar patterns of activity. Stimulus-responsive clusters were
606 manually selected. For PN bouton movies, this step was used to filter out spurious ROIs – only
607 components belonging to stimulus-responsive clusters were included in subsequent analyses.
608 For KC movies, the relatively high level of baseline fluorescence in combination with the use of
609 a nuclear-targeted calcium indicator resulted in very high-quality cellular segmentation, with
610 very few (if any) spurious ROIs. Figure 1G shows the responses of all extracted cells from one
611 representative experiment, with cells (rows) corresponding to stimulus-responsive clusters
612 displayed at the top of the matrix, and non-responder cell clusters shown at the bottom.

613 CalmAn-MATLAB was used to perform 3D source extraction on KC somata data
614 collected at a z-step size of 3 μ m. For each KC, a single ROI was extracted, which was roughly
615 spheroid and spanned multiple planes. The fluorescence baseline F_0 was computed at each
616 timepoint by taking a fixed percentile (ranging from 20-40%) of a rolling 30 s time window.
617 Extracted raw calcium signals were detrended and normalized to baseline fluorescence F_0 to
618 compute $\Delta F/F$ responses. All components extracted by CalmAn were included in subsequent
619 analyses. Between ~1500-1900 KCs and ~500-800 PN bouton ROIs were extracted per movie.

621

622 Quantification of odor response. For Suite2p extracted signals, ROI response strength in a
623 single trial was computed by averaging the signal over an expected response peak time
624 window (0.25-2s post-stimulus onset for PN boutons, 2-8s post-stimulus for KCs), and
625 subtracting the mean pre-stimulus baseline (initiating 5s pre-stimulus for PN boutons, and 10s
626 pre-stimulus onset for KC soma). For CalmAn-extracted KC signals, the response strength for
627 each trial was calculated by subtracting the median 10s pre-stimulus baseline from the mean
628 15s post-stimulus $\Delta F/F$ signal. For all datasets, mean odor response strength was computed
629 by averaging across all trials in which the odor was presented.

630

631 *KC response rate*

632 KC response rates (Supplementary Figure S1) were computed from datasets in which source
633 extraction was performed using Suite2p, applying the 'cellpose' model to perform anatomical
634 segmentation. All extracted components were used in the analysis of response strength and
635 response breadth, including 'silent' cells that did not respond to any stimulus in the odor panel.
636 A cell was considered a 'responder' if its trial-averaged response to a given odor exceeded a
637 fixed threshold. The response threshold was determined separately for each dataset using
638 ethyl propionate (a consistently strongly activating odor) as a reference, in order to adjust for
639 small differences in responsiveness of different experimental preparations. The KC response
640 rate to ethyl propionate was computed over a range of thresholds, with a step size of 0.05
641 between threshold values. Threshold values resulting in a 12-15% ethyl propionate response
642 rate were selected. The median of these values was chosen as the final response threshold
643 and was used to compute response rates for the other odors in the dataset.

644

645 *Analysis of the representational space of odors*

646 Distances between population representations of odor. The correlation distance between the
647 population representation of two odors was computed as $1-r$, where r is Pearson's correlation
648 between the population response vectors of the two odors. The population response vector
649 had length l , where l was the number of glomeruli, boutons, or cells in each experiment. Each
650 element of this vector was the trial-averaged response of each glomerulus/bouton/cell to the
651 stimulus. Representational dissimilarity matrices (RDM) show the pairwise correlation distances
652 for every pair of odors imaged and aligned in the same experiment (same MB) and were
653 computed using only the set of cells, glomeruli, or boutons in each experiment that responded
654 to one or more odor stimuli. For each stage of processing, we computed a mean RDM by
655 averaging the odor x odor RDMs across individual flies.

656

657 Comparison of representational space across individual MBs. For each MB, we generated an
658 odor-odor distance vector of the correlation distances for every odor pair measured in
659 common across the flies being compared. To evaluate the similarity of MB odor
660 representational space across flies, we computed the Spearman's rank correlation between
661 the odor-odor distance vectors for every pairwise combination of MBs. As a control, the cell x
662 odor response matrices for each MB were shuffled, and the same series of calculations
663 applied. For each iteration of the shuffle, odor responses were randomized by permuting the
664 columns of the cell x odor response matrix for each MB. The Spearman's correlation computed

665 from 10,000 iterations of this shuffle procedure was used to construct a distribution of
666 Spearman's correlations that would arise from chance for each pair of MBs, to be compared
667 against the observed correlation.

668

669 Cell clustering. KCs were grouped by spectral clustering carried out on KC odor tuning profiles
670 using 'sklearn.cluster.SpectralClustering'⁶². Trial-averaged odor response vectors for all KCs
671 that respond to one or more odors were pooled together from individual flies to create a grand
672 cell x odor response matrix. The number of rows in this matrix equaled the sum of the number
673 of responsive KCs across all flies and the number of columns equaled the number of odors
674 that were sampled in common across all flies. A KC x KC affinity matrix was computed by
675 taking the radial-basis transform of the KC x KC correlation distance matrix. Odor response
676 profiles for each cluster were calculated by averaging the responses of all cells assigned to
677 that cluster from each fly.

678

679 *Modeling KC responses*

680 We adapted a dynamic spiking model of the *Drosophila* olfactory network³⁰
681 (<https://github.com/annkennedy/mushroomBody>) that implements the functional and
682 anatomical organization of the circuit. ORN input to the model was derived from a published
683 experimental dataset of the firing rate responses of 23 fly ORs to a panel of 109 odors³². The
684 model implements lateral inhibition in the AL with a divisive inhibition term that normalizes PN
685 firing rates. The model captures the response dynamics of PN and KC firing rates to an odor
686 pulse, where ORN input is estimated by simply convolving a step to the steady-state firing rate
687 with the cell's synaptic membrane filter. For our analyses in this study, we focused on the
688 mean firing rate of each cell (PN or KC) averaged over the odor pulse.

689 The model was implemented under several different assumptions of PN-KC
690 connectivity. In the 'uniform' model, each of 2000 KCs had a mean of six input glomeruli, with
691 each input independently assigned to a glomerulus at random. Each glomerulus had an equal
692 likelihood of being selected at every input. In the 'hemidraw' model, each KC in the model
693 (1748 cells) corresponded to a KC in the hemibrain connectome dataset⁶³ and was assigned its
694 observed number of claws (between 1 and 12, mean of 5.36 claws). Each claw was then
695 independently assigned to a glomerulus according to the frequency of PN boutons for that
696 glomerulus in the hemibrain MB; thus, glomeruli varied in their likelihood of being drawn as an
697 input to each claw. In the 'hemibrain' model, each KC in the model was directly assigned the
698 set of glomerular inputs of its corresponding cell in the hemibrain connectome. However, since
699 glomeruli in the model were limited to the 23 ORs available in the Hallem dataset, modeled
700 'hemibrain' KCs had only an average of ~4 inputs. To evaluate the impact of a reduced number
701 of inputs, versions of the 'uniform' and 'hemidraw' models were run with the distribution of the
702 number of claws per KC centered on 4. These models predicted very similar odor-odor
703 relationships to the earlier versions (data not shown).

704 The response rate of KCs to odor depends on both KC spiking threshold and the
705 strength of feedback inhibition to KCs from the anterior paired lateral (APL) GABAergic neuron.
706 In all versions of the model, KC spiking thresholds were assumed to be uniform across KCs
707 and were set to achieve an average KC response rate of 20% across odors. Global inhibition
708 by the APL was modeled as divisive inhibition at KC presynaptic terminals, and APL-KC

709 weights were adjusted to halve the mean response rate across odors to 10%. This procedure
710 was motivated by experimental observations that silencing APL output roughly doubles KC
711 response rates.²² The APL was assumed to uniformly receive equal input from, and send equal
712 output to, all KCs. For modeling of KC responses to CO₂ (a stimulus not in the Hallem dataset),
713 an additional glomerulus (corresponding to glomerulus V) and odor (CO₂) was added into the
714 OR input matrix. To estimate an upper bound for KC response rates to CO₂, the firing rate of
715 glomerulus V to CO₂ was set to the maximum ORN firing rate (300 Hz) and set to zero for all
716 other odors⁵⁷.

717

718 *Odor properties*

719 Chemical descriptors were computed for each odor using the software Mordred⁴¹. Clustering
720 over features identified a reduced set of 570 descriptors that captured odor-odor relationships in
721 the full set of ~1800 descriptors; our analysis used this reduced set of descriptors
722 (Supplemental Table S3). Odor relationships in natural odor space were estimated from a large
723 database of headspace volatile profiles of natural food sources compiled from published
724 datasets from the food science literature (Volatile Compounds in Food, VCF16.9 database,
725 BeWiDo BV). The database contains 5564 observations from thousands of references. We
726 focused on 2190 observations for which volatile profiles were quantitatively described in
727 standardized units that could be compared between sources. For our analysis, we filtered
728 compounds to isolate those present in ten or more observations (775 odors) and used the log
729 scale of odor concentration.

730

731 *Multidimensional scaling of odors in natural source space*

732 We used hyperbolic non-metric multidimensional scaling (H-MDS)⁶⁴ to embed odors into a low-
733 dimensional hyperbolic space based on correlation distance, which reconstructs original
734 distances monotonically (with preserved rank-ordering). The minimum Bayesian information
735 criteria (BIC) determines the best dimension of the embedding. A hyperbolic metric was then
736 used to measure distances between odors within the low-dimensional embedding space. To
737 check that the results generalize across different subsets of natural odor sources, we repeated
738 the analysis for a separate, albeit smaller secondary dataset that was compiled from another set
739 of natural source literature references (see Supplemental Table S4). We find that odor pair
740 distances computed in the VCF and in the secondary natural source dataset were positively
741 correlated (rho=0.85, p=1.5e-8). The correlation between datasets increased with increasing the
742 minimum number of odor sources for which a monomolecular odorant was required to be
743 present in calculating distances between odorants. This result indicates increased stability of
744 distances between more common odorants, that are ubiquitously present in natural
745 environment. Furthermore, in both datasets, the hyperbolic space provided the best low-
746 dimensional description. The curvature and best fitting dimensionality (dim=3) were similar, with
747 curvature = -5.1 for the VCF dataset and curvature = -4.1 for the secondary natural source
748 dataset.

749

750 *Hierarchical clustering of odor representations*

751 Representational dissimilarity matrices (RDM) show the pairwise correlation distances between
752 every pairwise combination of odors imaged and aligned in the same experiment. For each

753 stage of processing, a mean RDM was computed by averaging the odor x odor RDMs across
754 individual flies. Dendograms describing the relationships among odors at each stage of
755 processing were generated from the mean odor x odor RDM for each stage. Hierarchical
756 clustering of odors was implemented with ‘`sklearn.cluster.AgglomerativeClustering`’, using
757 Pearson’s correlation as the distance metric and average linkage criterion (minimizes the
758 average of the distances between all observations of pairs of clusters). These odor x odor RDM
759 matrices were treated as feature matrices with dimensions (samples, features) rather than
760 distance matrices – each odor was a different sample/row, and that odor’s features were its
761 distance to the odors.

762
763 *Data inclusion criteria.*
764 The number of flies (observations, n) in which each odor was measured is in Supplemental
765 Table S1. The number of observations of each odor-odor distance (odor pair measured in the
766 same MB) is in Supplemental Table S2. All flies analyzed in this study satisfied the following
767 criteria. First, any field-of-view drift and warping of structure could be fully corrected using
768 posthoc image registration, as evaluated by the ‘crispness’ of time-averaged movies (individual
769 nuclei distinct and separated). Second, stimulus-evoked responses were reliably observed over
770 the course of the entire recording in a ‘bulk’ fluorescence signal extracted in each frame from a
771 global ROI circumscribing the entire imaged structure. Third, trial-trial correlation distances for
772 repeated presentations of the same odor stimulus were clearly more similar to one another
773 than for presentations of different odor stimuli. Sample sizes were not predetermined using a
774 power analysis. We used sample sizes comparable to those used in similar types of studies^{2,3}.
775
776

777 **ACKNOWLEDGEMENTS**

778 We thank D. Anderson for sharing the *UAS-OpGCaMP6f* and *nls-OpGCaMP6s* fly lines. We
779 thank A. Kennedy for modeling code and assistance with adapting the olfactory network model
780 in this study. We thank V. Hauser for contributions to compiling natural odor source datasets.
781 We thank P. Kandimalla for advising on connectomic analyses. We thank members of the Hong
782 lab for careful readings of the manuscript. This work was supported by NIH grant
783 R01MH117825 to E.J.H., and by the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation
784 Networks for Neuroscience Program (Award #2014217) to T.O.S. and E.J.H.
785

786 **AUTHOR CONTRIBUTIONS**

787 J.Y.Y., T. F.O., T.O.S., and E.J.H. conceived the project, analyzed data, and wrote the
788 manuscript. J.Y.Y. and K.V.D. performed imaging experiments in PN axons and KC somata.
789 T.F.O. performed imaging experiments in ORN axons and PN dendrites and supervised
790 curation of the natural odor source database. J.Y.Y., T.F.O., M.S.B., and W.M.H. analyzed data
791 and generated figures. E.J.H. and T.O.S. supervised the project and acquired funding.
792
793

794 **DECLARATION OF INTERESTS**

795
796 The authors declare no competing interests.

797 **REFERENCES**

- 798 1. Schaffer, E.S., Stettler, D.D., Kato, D., Choi, G.B., Axel, R., and Abbott, L.F. (2018). Odor
799 Perception on the Two Sides of the Brain: Consistency Despite Randomness. *Neuron* **98**,
800 736–742.e3. 10.1016/j.neuron.2018.04.004.
- 801 2. Pashkovski, S.L., Iurilli, G., Brann, D., Chicharro, D., Drumme, K., Franks, K.M., Panzeri,
802 S., and Datta, S.R. (2020). Structure and flexibility in cortical representations of odour
803 space. *Nature* **583**, 253–258.
- 804 3. Endo, K., Tsuchimoto, Y., and Kazama, H. (2020). Synthesis of conserved odor object
805 representations in a random, divergent-convergent network. *Neuron* **108**, 367–381.
- 806 4. Secundo, L., Snitz, K., and Sobel, N. (2014). The perceptual logic of smell. *Current opinion*
807 in neurobiology
- 808 5. Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a
809 molecular basis for odor recognition. *Cell* **65**, 175–187.
- 810 6. Khan, R.M., Luk, C.-H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., and Sobel, N.
811 (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of
812 the physical world. *Journal of Neuroscience* **27**, 10015–10023.
- 813 7. Keller, A., Gerkin, R.C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., Mainland, J.D.,
814 Ihara, Y., Yu, C.W., and Wolfinger, R. (2017). Predicting human olfactory perception from
815 chemical features of odor molecules. *Science* **355**, 820–826.
- 816 8. Genva, M., Kenne Kemene, T., Deleu, M., Lins, L., and Fauconnier, M.-L. (2019). Is It
817 Possible to Predict the Odor of a Molecule on the Basis of its Structure? *International journal*
818 of molecular sciences
- 819 9. Sell, C.S. (2006). On the unpredictability of odor. *Angewandte Chemie International Edition*
820 45, 6254–6261.
- 821 10. Dzalo, M.C., Park, R., Steensels, J., Lievens, B., and Verstrepen, K.J. (2017). Physiology,
822 ecology and industrial applications of aroma formation in yeast. *FEMS microbiology reviews*
823 41, S95–S128.
- 824 11. Junker, R.R., Kuppler, J., Amo, L., Blande, J.D., Borges, R.M., van Dam, N.M., Dicke, M.,
825 Dötterl, S., Ehlers, B.K., and Etl, F. (2018). Covariation and phenotypic integration in
826 chemical communication displays: Biosynthetic constraints and eco-evolutionary
827 implications. *New Phytologist* **220**, 739–749.
- 828 12. Ghaninia, M., Zhou, Y., Knauer, A.C., Schiestl, F.P., Sharpee, T.O., and Smith, B.H. (2022).
829 Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants
830 and bees. *PloS one* **17**, e0270358.
- 831 13. Wright, G.A., and Schiestl, F.P. (2009). The evolution of floral scent: the influence of
832 olfactory learning by insect pollinators on the honest signalling of floral rewards. *Functional
833 Ecology* **23**, 841–851.

834 14. Wilson, R.I., and Mainen, Z.F. (2006). Early events in olfactory processing. *Annual Review*
835 of Neuroscience 29, 163–201.

836 15. Vosshall, L.B., and Stocker, R.F. (2007). Molecular architecture of smell and taste in
837 *Drosophila*. *Annu Rev Neurosci* 30, 505–533. 10.1146/annurev.neuro.30.051606.094306.

838 16. Modi, M.N., Shuai, Y., and Turner, G.C. (2020). The *Drosophila* mushroom body: from
839 architecture to algorithm in a learning circuit. *Annual review of neuroscience* 43, 465–484.

840 17. Caron, S.J., Ruta, V., Abbott, L.F., and Axel, R. (2013). Random convergence of olfactory
841 inputs in the *Drosophila* mushroom body. *Nature* 497, 113–117. 10.1038/nature12063.

842 18. Li, F., Lindsey, J.W., Marin, E.C., Otto, N., Dreher, M., Dempsey, G., Stark, I., Bates, A.S.,
843 Pleijzier, M.W., Schlegel, P., et al. (2020). The connectome of the adult *Drosophila*
844 mushroom body provides insights into function. *eLife* 9, e62576. 10.7554/eLife.62576.

845 19. Zheng, Z., Li, F., Fisher, C., Ali, I.J., Sharifi, N., Calle-Schuler, S., Hsu, J., Masoodpanah,
846 N., Kmecova, L., and Kazimiers, T. (2022). Structured sampling of olfactory input by the fly
847 mushroom body. *Current Biology* 32, 3334–3349.

848 20. Turner, G.C., Bazhenov, M., and Laurent, G. (2008). Olfactory representations by
849 *Drosophila* mushroom body neurons. *Journal of neurophysiology* 99, 734–746.

850 21. Gruntman, E., and Turner, G.C. (2013). Integration of the olfactory code across dendritic
851 claws of single mushroom body neurons. *Nature neuroscience* 16, 1821–1829.
852 10.1038/nn.3547.

853 22. Lin, A.C., Bygrave, A.M., De Calignon, A., Lee, T., and Miesenböck, G. (2014). Sparse,
854 decorrelated odor coding in the mushroom body enhances learned odor discrimination.
855 *Nature neuroscience* 17, 559–568.

856 23. Honegger, K.S., Campbell, R.A., and Turner, G.C. (2011). Cellular-resolution population
857 imaging reveals robust sparse coding in the *Drosophila* mushroom body. *The Journal of*
858 *neuroscience* : the official journal of the Society for Neuroscience 31, 11772–11785.
859 10.1523/JNEUROSCI.1099-11.2011.

860 24. Campbell, R.A., Honegger, K.S., Qin, H., Li, W., Demir, E., and Turner, G.C. (2013).
861 Imaging a population code for odor identity in the *Drosophila* mushroom body. *The Journal*
862 *of neuroscience* : the official journal of the Society for Neuroscience 33, 10568–10581.
863 10.1523/JNEUROSCI.0682-12.2013.

864 25. Bhandawat, V., Olsen, S.R., Schlief, M.L., Gouwens, N.W., and Wilson, R.I. (2007). Sensory
865 processing in the *Drosophila* antennal lobe increases the reliability and separability of
866 ensemble odor representations. *Nature Neuroscience* 10, 1474–1482.

867 26. Cayco-Gajic, N.A., and Silver, R.A. (2019). Re-evaluating circuit mechanisms underlying
868 pattern separation. *Neuron* 101, 584–602.

869 27. Litwin-Kumar, A., Harris, K.D., Axel, R., Sompolinsky, H., and Abbott, L.F. (2017). Optimal
870 Degrees of Synaptic Connectivity. *Neuron* *93*, 1153–1164.e7.
871 10.1016/j.neuron.2017.01.030.

872 28. Babadi, B., and Sompolinsky, H. (2014). Sparseness and expansion in sensory
873 representations. *Neuron* *83*, 1213–1226.

874 29. Barak, O., Rigotti, M., and Fusi, S. (2013). The sparseness of mixed selectivity neurons
875 controls the generalization–discrimination trade-off. *Journal of Neuroscience* *33*, 3844–
876 3856.

877 30. Kennedy, A. (2019). Learning with naturalistic odor representations in a dynamic model of
878 the *Drosophila* olfactory system (Neuroscience) 10.1101/783191.

879 31. Owald, D., and Waddell, S. (2015). Olfactory learning skews mushroom body output
880 pathways to steer behavioral choice in *Drosophila*. *Current opinion in neurobiology* *35*, 178–
881 184.

882 32. Hallem, E.A., and Carlson, J.R. (2006). Coding of odors by a receptor repertoire. *Cell* *125*,
883 143–160.

884 33. Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the *Drosophila*
885 mushroom body. *J Comp Neurol* *508*, 711–755.

886 34. Eder, A., and Bading, H. (2007). Calcium signals can freely cross the nuclear envelope in
887 hippocampal neurons: somatic calcium increases generate nuclear calcium transients. *BMC*
888 *neuroscience* *8*, 1–11.

889 35. Jung, Y., Kennedy, A., Chiu, H., Mohammad, F., Claridge-Chang, A., and Anderson, D.J.
890 (2020). Neurons that function within an integrator to promote a persistent behavioral state in
891 *Drosophila*. *Neuron* *105*, 322–333.

892 36. Pachitariu, M., Stringer, C., Schröder, S., Dipoppa, M., Rossi, L.F., Carandini, M., and
893 Harris, K.D. (2016). Suite2p: beyond 10,000 neurons with standard two-photon microscopy.
894 *BioRxiv*, 061507.

895 37. Benton, R., Vannice, K.S., Gomez-Diaz, C., and Vosshall, L.B. (2009). Variant ionotropic
896 glutamate receptors as chemosensory receptors in *Drosophila*. *Cell* *136*, 149–162.
897 10.1016/j.cell.2008.12.001.

898 38. Murthy, M., Fiete, I., and Laurent, G. (2008). Testing odor response stereotypy in the
899 *Drosophila* mushroom body. *Neuron* *59*, 1009–1023.

900 39. Frechter, S., Bates, A.S., Tootoonian, S., Dolan, M.-J., Manton, J., Jamasb, A.R., Kohl, J.,
901 Bock, D., and Jefferis, G. (2019). Functional and anatomical specificity in a higher olfactory
902 centre. *eLife* *8*, e44590. 10.7554/eLife.44590.

903 40. Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo,
904 L. (2007). Comprehensive maps of *Drosophila* higher olfactory centers: spatially segregated
905 fruit and pheromone representation. *Cell* *128*, 1187–1203.

906 41. Moriwaki, H., Tian, Y.-S., Kawashita, N., and Takagi, T. (2018). Mordred: a molecular
907 descriptor calculator. *Journal of cheminformatics* *10*, 1–14.

908 42. Markow, T.A. (2015). The secret lives of *Drosophila* flies. *eLife* *4*, e06793.
909 10.7554/eLife.06793.

910 43. Dunkel, A., Steinhaus, M., Kotthoff, M., Nowak, B., Krautwurst, D., Schieberle, P., and
911 Hofmann, T. (2014). Nature's chemical signatures in human olfaction: a foodborne
912 perspective for future biotechnology. *Angewandte Chemie International Edition* *53*, 7124–
913 7143.

914 44. Schwarz, G. (1978). Estimating the dimension of a model. *The annals of statistics*, 461–464.

915 45. Zhou, Y., Smith, B.H., and Sharpee, T.O. (2018). Hyperbolic geometry of the olfactory
916 space. *Science advances* *4*, eaaq1458.

917 46. Zocchi, D., Emily, S.Y., Hauser, V., O'Connell, T.F., and Hong, E.J. (2022). Parallel
918 encoding of CO₂ in attractive and aversive glomeruli by selective lateral signaling between
919 olfactory afferents. *Current Biology*.

920 47. Qian, W.W., Wei, J.N., Sanchez-Lengeling, B., Lee, B.K., Luo, Y., Vlot, M., Dechering, K.,
921 Peng, J., Gerkin, R.C., and Wiltschko, A. (2022). Metabolic activity organizes olfactory
922 representations. *bioRxiv*, 2022–07.

923 48. Dolan, M.-J., Frechter, S., Bates, A.S., Dan, C., Huoviala, P., Roberts, R.J., Schlegel, P.,
924 Dhawan, S., Tabano, R., and Dionne, H. (2019). Neurogenetic dissection of the *Drosophila*
925 lateral horn reveals major outputs, diverse behavioural functions, and interactions with the
926 mushroom body. *Elife* *8*, e43079.

927 49. Nguyen, T.M., Thomas, L.A., Rhoades, J.L., Ricchi, I., Yuan, X.C., Sheridan, A., Hildebrand,
928 D.G., Funke, J., Regehr, W.G., and Lee, W.-C.A. (2022). Structured cerebellar connectivity
929 supports resilient pattern separation. *Nature*, 1–7.

930 50. Sweeney, L.B., Couto, A., Chou, Y.H., Berdnik, D., Dickson, B.J., Luo, L., and Komiyama, T.
931 (2007). Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-
932 mediated axon-axon interactions. *Neuron* *53*, 185–200. 10.1016/j.neuron.2006.12.022.

933 51. Stocker, R.F., Heimbeck, G., Gendre, N., and de Belle, J.S. (1997). Neuroblast ablation in
934 *Drosophila* P[GAL4] lines reveals origins of olfactory interneurons. *Journal of Neurobiology*
935 *32*, 443–456.

936 52. Potter, C.J., Tasic, B., Russler, E.V., Liang, L., and Luo, L. (2010). The Q system: a
937 repressible binary system for transgene expression, lineage tracing, and mosaic analysis.
938 *Cell* *141*, 536–548. 10.1016/j.cell.2010.02.025.

939 53. Zhang, Y., Rózsa, M., Bushey, D., Zheng, J., Reep, D., Broussard, G., Tsang, A., Tsegaye,
940 G., Patel, R., and Narayan, S. (2020). jGCaMP8 fast genetically encoded calcium indicators.
941 *Janelia Research Campus* *10*, 13148243.

942 54. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter,
943 E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent
944 proteins for imaging neuronal activity. *Nature* **499**, 295–300. 10.1038/nature12354.

945 55. Hong, E.J., and Wilson, R.I. (2015). Simultaneous encoding of odors by channels with
946 diverse sensitivity to inhibition. *Neuron* **85**, 573–589. 10.1016/j.neuron.2014.12.040.

947 56. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
948 Preibisch, S., Rueden, C., Saalfeld, S., and Schmid, B. (2012). Fiji: an open-source platform
949 for biological-image analysis. *Nature methods* **9**, 676–682.

950 57. de Bruyne, M., Foster, K., and Carlson, J.R. (2001). Odor coding in the *Drosophila* antenna.
951 *Neuron* **30**, 537–552.

952 58. Silbering, A.F., Rytz, R., Grosjean, Y., Abuin, L., Ramdy, P., Jefferis, G.S., and Benton, R.
953 (2011). Complementary function and integrated wiring of the evolutionarily distinct
954 *Drosophila* olfactory subsystems. *The Journal of Neuroscience : the official journal of the
955 Society for Neuroscience* **31**, 13357–13375. 10.1523/JNEUROSCI.2360-11.2011.

956 59. Pnevmatikakis, E.A., and Giovannucci, A. (2017). NoRMCorre: An online algorithm for
957 piecewise rigid motion correction of calcium imaging data. *J Neurosci Methods* **291**, 83–94.
958 10.1016/j.jneumeth.2017.07.031.

959 60. Giovannucci, A., Friedrich, J., Gunn, P., Kalfon, J., Brown, B.L., Koay, S.A., Taxidis, J.,
960 Najafi, F., Gauthier, J.L., and Zhou, P. (2019). CalmAn an open source tool for scalable
961 calcium imaging data analysis. *elife* **8**, e38173.

962 61. Stringer, C., and Pachitariu, M. (2019). Computational processing of neural recordings from
963 calcium imaging data. *Current Opinion in Neurobiology* **55**, 22–31.
964 10.1016/j.conb.2018.11.005.

965 62. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
966 Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in
967 Python. *the Journal of machine Learning research* **12**, 2825–2830.

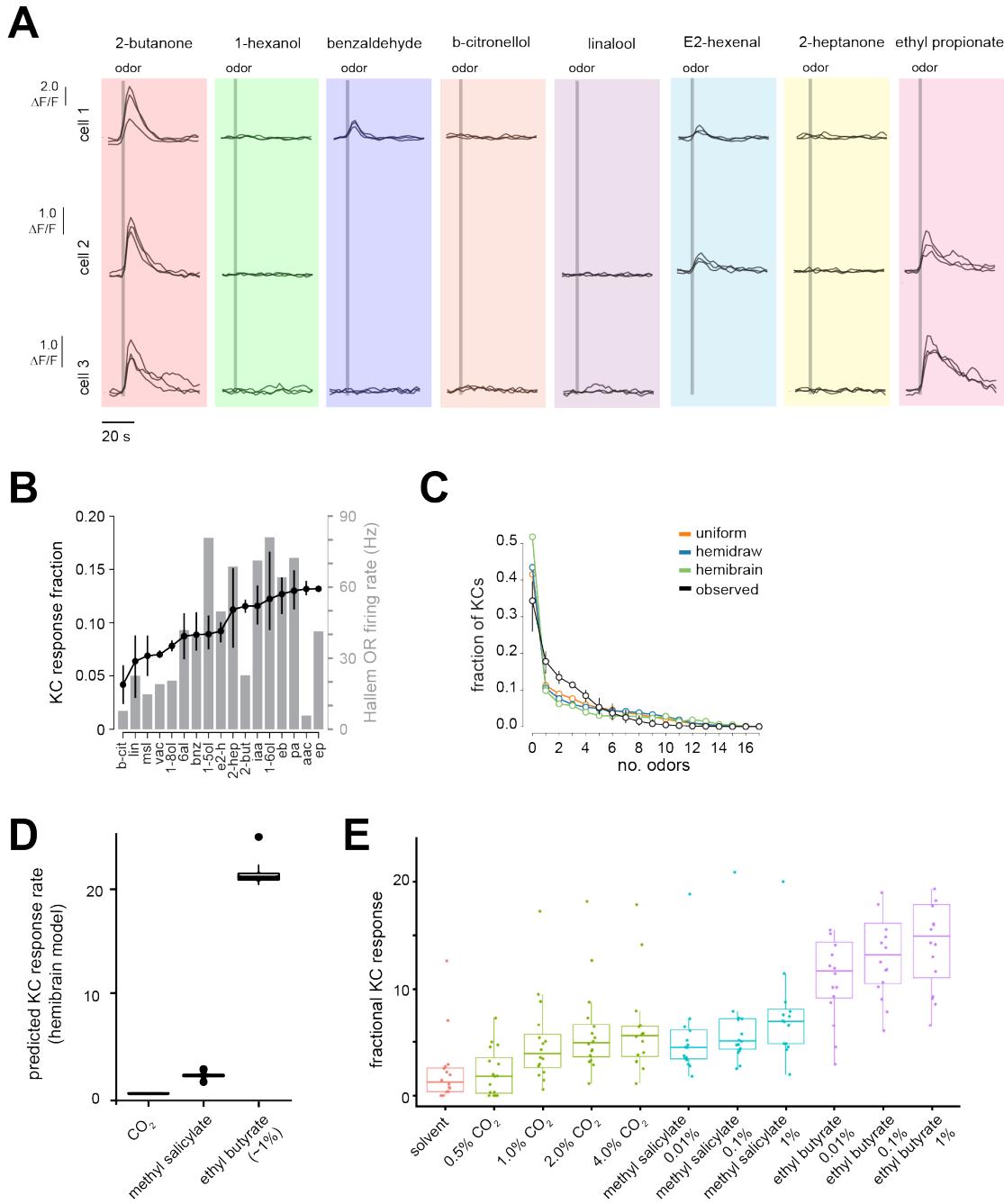
968 63. Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S., Hayworth, K.J., Huang,
969 G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., et al. (2020). A connectome and analysis
970 of the adult *Drosophila* central brain. *eLife* **9**, e57443. 10.7554/eLife.57443.

971 64. Praturu, A., and Sharpee, T.O. (2022). A Bayesian Approach to Hyperbolic Multi-
972 Dimensional Scaling. *bioRxiv*, 2022–10.

973 65. Strona, G., Nappo, D., Boccacci, F., Fattorini, S., and San-Miguel-Ayanz, J. (2014). A fast
974 and unbiased procedure to randomize ecological binary matrices with fixed row and column
975 totals. *Nature communications* **5**, 4114.

976 66. Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., Torrens, O.,
977 Price, J., Fisher, C.B., Sharifi, N., et al. (2018). A Complete Electron Microscopy Volume of
978 the Brain of Adult *Drosophila melanogaster*. *Cell* **174**, 730-743.e22.
979 10.1016/j.cell.2018.06.019.

980 **SUPPLEMENTAL MATERIALS**
981



Supplementary Figure S1: KC response properties.

A) Odor-evoked responses in three example KCs from odor trials in different movies (imaging sessions with overlapping but distinct panels) collected in the same MB. Tracking and assignment of odor responses to KCs is reliable across imaging sessions.

B) Comparison of KC response rate (mean and 95% CI, $n=4$ flies) and mean evoked OR firing rate (across glomeruli) in the Hallem dataset to each odor.

C) Observed fraction of KCs (mean and 95% CI, $n=4$ flies) responding to the indicated number of odors for a panel containing 17 odors. The distribution of the fraction of modeled KCs responding to different numbers of odors in the uniform, hemidraw, and hemibrain models (see Figure 3) are plotted for comparison.

D) Predicted KC response rates to narrowly activating (CO_2 , methyl salicylate) and broadly activating (ethyl butyrate) odors, under assumptions of uniform connectivity. For selective odors, the input firing rate for the cognate OR was set to saturating firing rates (300 Hz) to estimate the upper bound for KC response rate. For ethyl butyrate, the observed firing rates across ORs in the Hallem dataset was used as input to the model.

E) Observed KC response rates to varying concentrations of the odors in **D**.

982
983
984

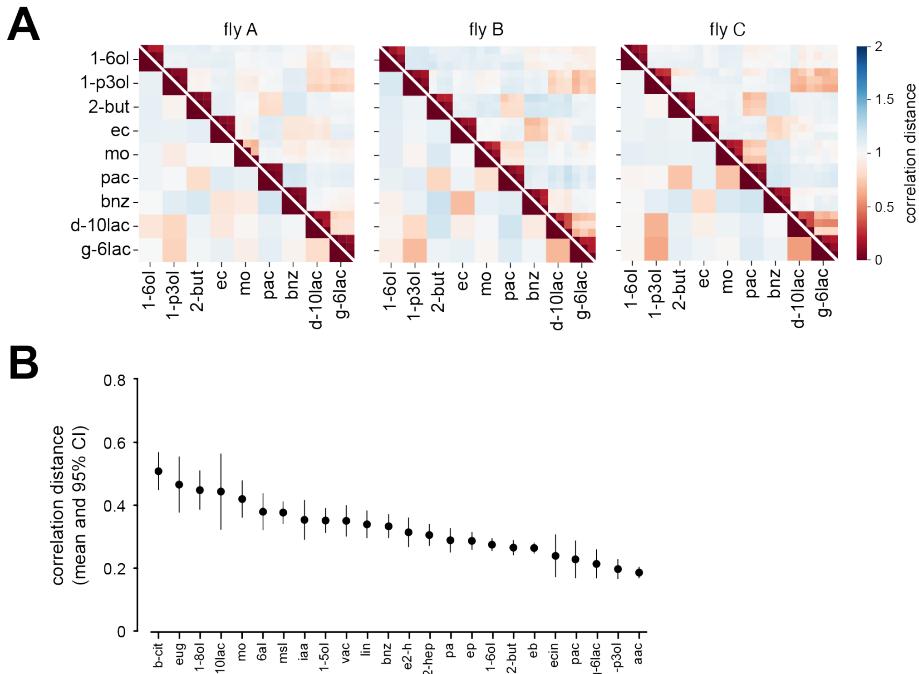


Figure S2: KC population responses to another example odor panel, illustrating the invariance of MB representational space across individuals.

A) Matrices of correlation distances from three different flies showing pairwise relationships between KC population responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower triangle).

B) Correlation distances between KC response vectors from different trials of the same odor. For each odor, the trial-trial KC response correlation was computed for all pairs of trials of this odor in each fly and averaged. The plot shows the mean and 95% CI of the fly averages. Compare to Figure 2E. Weaker odors tend to be less reliable than stronger odors.

985
986

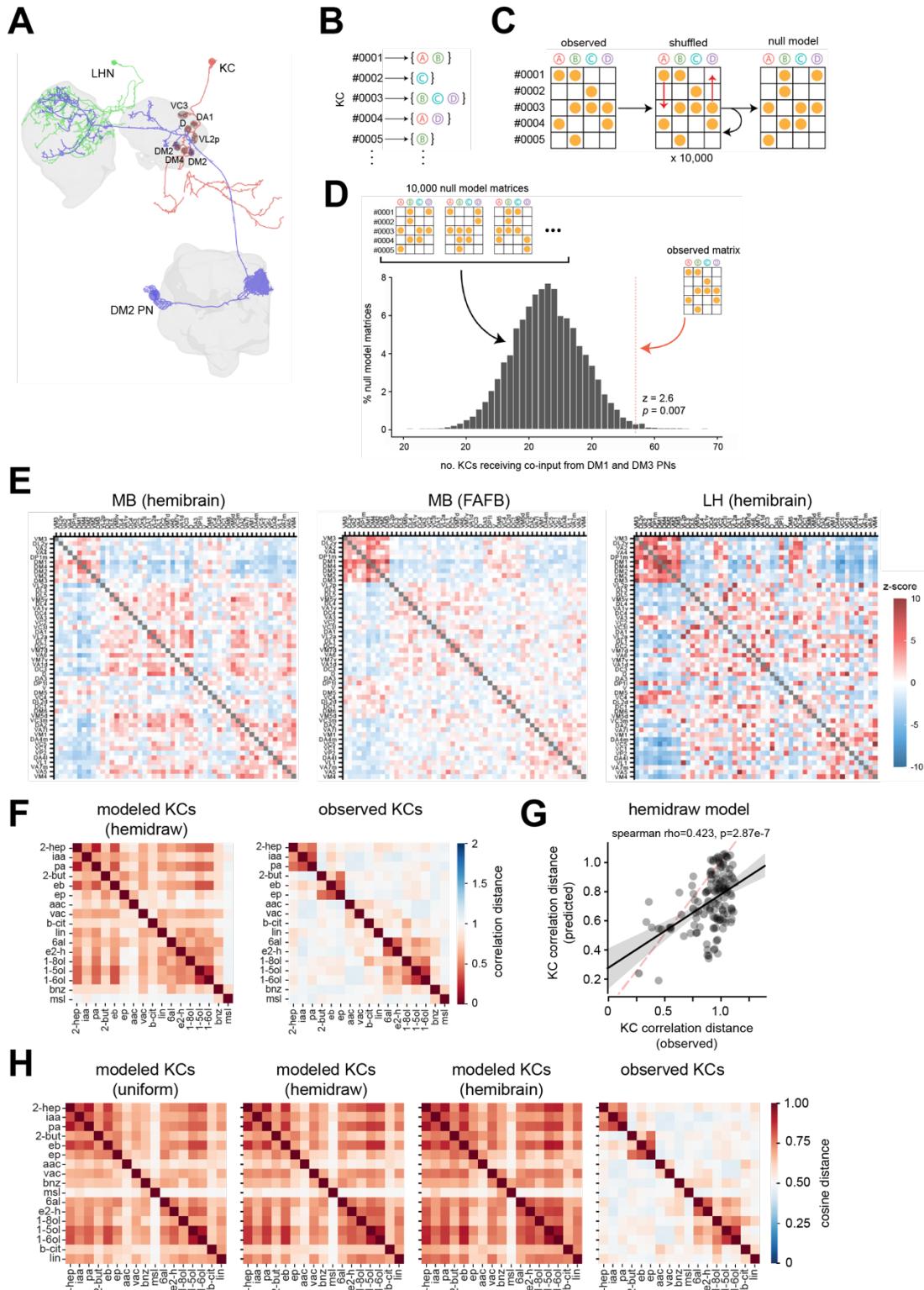


Figure S3: The structure of olfactory glomerular inputs to third-order olfactory neurons and the impact on MB representations of odor.

A) Example reconstruction from the hemibrain connectome⁶³ of a uniglomerular DM2 PN and two example postsynaptic partners, a Kenyon cell (KC) and a lateral horn neuron (LHN). Synaptic connections between identified neurons contained within the hemibrain volume are fully described.

B) For each third-order olfactory neuron, the set of glomeruli providing direct presynaptic input via PNs was extracted from connectome datasets (hemibrain and FAFB). For this analysis, synaptic connections were binarized (e.g., all glomerular inputs >5 synapses were treated equally regardless of synapse count).

C) The mapping of glomerular inputs to KCs was represented as a binary matrix, where a 1 in cell(i,j) indicates that neuron i receives input from glomerulus j . The 'Curveball' algorithm was used to generate random matrices (null model) that preserve the row and column totals of the original matrix⁶⁵.

D) For each pair of glomeruli, a distribution of the number of KCs receiving co-input from the two glomeruli in each shuffled matrix was generated. The observed number of KCs receiving co-input from each pair of glomeruli in the hemibrain was compared to this distribution to generate a z-score. An example distribution and z-score for the over-convergent glomerular pair DM1 and DM3 are given.

E) Glomerular input structure to KCs in the hemibrain MB⁶³ (left), KCs in the FAFB MB⁶⁶ (center), and lateral horn neurons in the hemibrain LH (right). The z-score for each pair of glomeruli measures the degree to which the glomeruli are over- or under-convergent in the observed population, compared to null models. A large positive value indicates strong over-convergence, and a large negative value indicates strong under-convergence. The ordering of glomeruli is the same in all matrices and was based on k-means clustering of the hemibrain MB matrix.

F) Matrix of pairwise correlation distances between predicted KC responses to 17 odors in the hemidraw model (left). The mean pairwise relationships for observed KC responses are reproduced from Figure 3Ciii (right) for ease of comparison.

G) Comparison of odor-odor correlation distances between observed KC responses and predicted KC responses in the hemidraw model. Each symbol is an odor pair.

H) Matrix of pairwise cosine distances between predicted KC responses (uniform, hemidraw, or hemibrain models), or observed KC responses, for 17 odors.

987
988

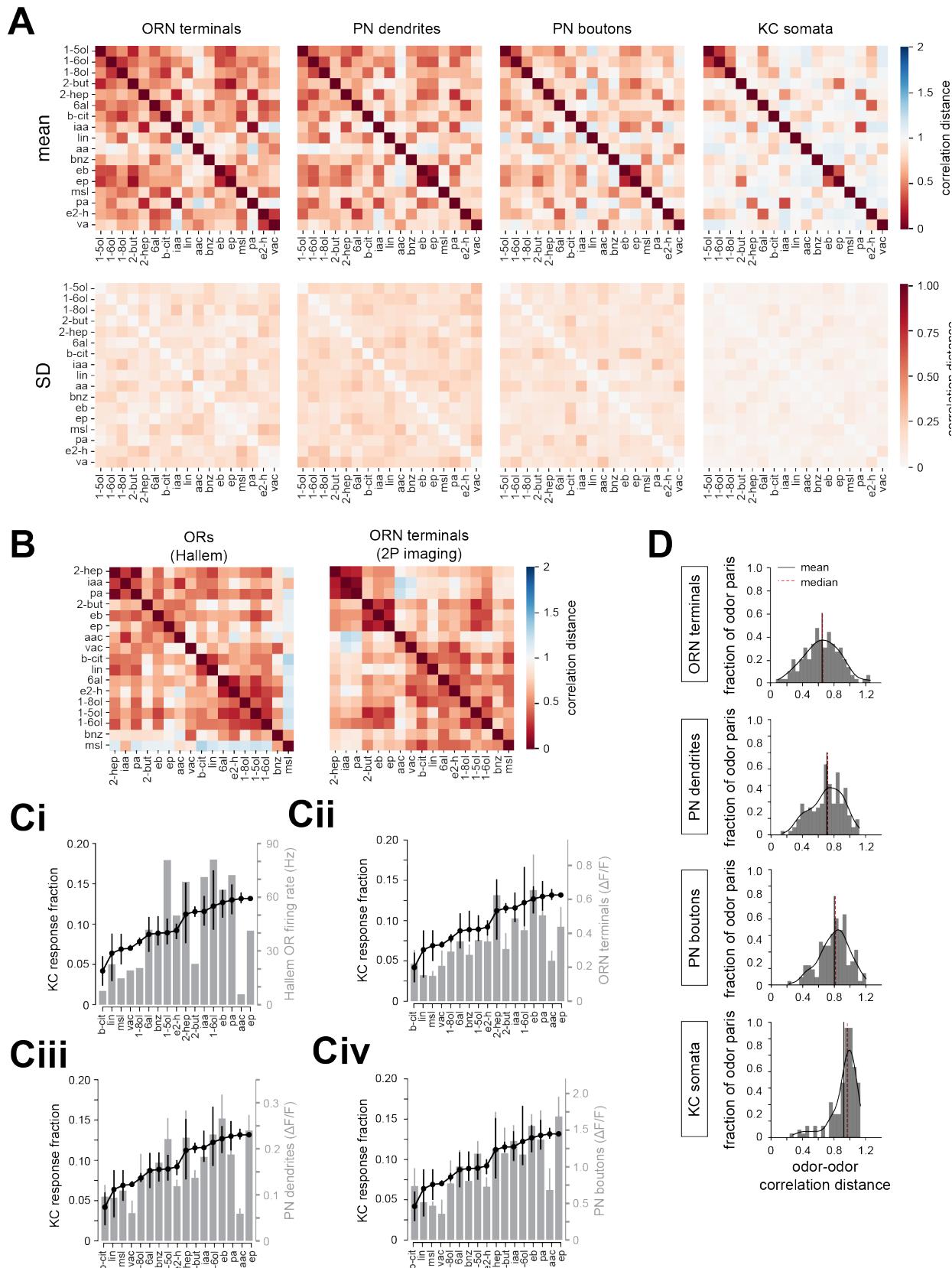


Figure S4: Transformation of odor representations in the fly olfactory circuit.

A) Mean (top row) and standard deviation (bottom row) across flies of pairwise correlation distances of odor representations in ORN axons ($n = 4$ flies), PN dendrites ($n = 6$ flies), PN boutons ($n = 6$ flies), and KC somata ($n = 4$ flies) for a panel of 17 odors.

B) Pairwise correlation distances of OR tuning in the Hallem dataset (left) and ORN axon terminal responses measured in this study (right) for a panel of 17 odors.

C) Comparison of fractional KC response rates with odor-evoked **Ci**) firing rates across ORs in the Hallem dataset (grey); **Cii**) ORN terminal responses (grey); **Ciii**) PN dendrite responses (grey); and **Civ**) PN bouton responses (grey) for 17 odors. ORN terminal, PN dendrite, PN bouton, and KC responses are mean and 95% CI across flies of the ROI-averaged evoked response to each odor in each fly.

D) Distribution of odor-odor correlation distances for representations at each stage of olfactory processing.

989

990 **Supplemental Table S1:** Odor information and number of observations (flies) for each odor in
991 KC somata datasets.

Odor	Abbreviation	InChI	Sigma-Aldrich Cat. No.	CAS	No. flies sampled (n)
1-hexanol	1-6ol	InChI=1S/C6H14O/c1-2-3-4-5-6-7/h7H,2-6H2,1H3	471402	111-27-3	22
1-octanol	1-8ol	InChI=1S/C8H18O/c1-2-3-4-5-6-7-8-9/h9H,2-8H2,1H3	297887	111-87-5	16
1-pentanol	1-5ol	InChI=1S/C5H12O/c1-2-3-4-5-6/h6H,2-5H2,1H3	138975	71-41-0	10
1-penten-3-ol	1-p3ol	InChI=1S/C5H100/c1-3-5(6)4-2/h3,5-6H,1,4H2,2H3	1984	616-25-1	7
2-butanone	2-but	InChI=1S/C4H8O/c1-3-4(2)/h3H2,1-2H3	360473	78-93-3	21
2-heptanone	2-hep	InChI=1S/C7H14O/c1-3-4-5-6-7(2)8/h3-6H2,1-2H3	537683	110-43-0	14
acetic acid	aac	InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)	695092	64-19-7	5
B-citronellol	b-cit	InChI=1S/C10H20O/c1-9(2)5-4-6-10(3)7-8-11/h5,10-11H,4,6-8H2,1-3H3	C83201	106-22-9	12
benzaldehyde	bnz	InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H	418099	100-52-7	20
delta-decalactone	d-10lac	InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-10(11)12-9/h9H,2-8H2,1H3	74026	705-86-2	5
E2-hexenal	e2-h	InChI=1S/C6H100/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+	158131000	6728-26-3	11
ethyl butyrate	eb	InChI=1S/C6H12O2/c1-3-5(6)7-8-4-2/h3-5H2,1-2H3	E15701	105-54-4	14
ethyl cinnamate	ec	InChI=1S/C11H12O2/c1-2-13-11(12)9-8-10-6-4-3-5-7-10/h3-9H,2H2,1H3/b9-8+	66761	103-36-6	5
ethyl propionate	ep	InChI=1S/C5H10O2/c1-3-5(6)7-4-2/h3-4H2,1-2H3	112305	105-37-3	16
eugenol	eug	InChI=1S/C10H12O2/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3,5-7,11H,1,4H2,2H3	E51791	97-53-0	7
gamma-hexalactone	g-glac	InChI=1S/C6H1002/c1-2-5-3-4-6(7)8-5/h5H,2-4H2,1H3	68554	695-06-7	6
hexanal	6al	InChI=1S/C6H12O/c1-2-3-4-5-6-7/h6H,2-5H2,1H3	115606	66-25-1	15
isoamyl acetate	iaa	InChI=1S/C7H14O2/c1-6(2)4-5-9-7(3)8/h6H,4-5H2,1-3H3	W205532	123-92-2	12
linalool	lin	InChI=1S/C10H18O/c1-5-10(4,11)8-6-7-9(2)3/h5,7,11H,1,6,8H2,2-4H3	L2602	78-70-6	10
methyl octanoate	mo	InChI=1S/C9H18O2/c1-3-4-5-6-7-8-9(10)11-2/h3-8H2,1-2H3	21719	111-11-5	9
methyl salicylate	msl	InChI=1S/C8H8O3/c1-11-8(10)6-4-2-3-5-7(6)9/h2-5,9H,1H3	M6752	119-36-8	14
pentyl acetate	pa	InChI=1S/C7H14O2/c1-3-4-5-6-9-7(2)/h3-6H2,1-2H3	109584	628-63-7	15
propyl acetate	pac	InChI=1S/C5H10O2/c1-3-4-7-5(2)/h3-4H2,1-2H3	40858	109-60-4	7
valeric acid	va	InChI=1S/C5H10O2/c1-2-3-4-5(6)7/h2-4H2,1H3,(H,6,7)	240370	109-52-4	13

992

993

994 **Supplemental Table S2:** Mean, 95% CI, SEM, and number of observations (flies) of the
995 correlation distance for every unique odor pair in KC somata datasets.

996

997 **Supplemental Table S3:** Reduced list of Mordred molecular descriptors used in this study.

998

999 **Supplemental Table S4:** References contributing to a secondary natural odor source database.

1000