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ABSTRACT

A core challenge of olfactory neuroscience is to understand how neural representations of odor
are generated and progressively transformed across different layers of the olfactory circuit into
formats that support perception and behavior. The encoding of odor by odorant receptors in the
input layer of the olfactory system reflects, at least in part, the chemical relationships between
odor compounds. Neural representations of odor in higher order associative olfactory areas,
generated by random feedforward networks, are expected to largely preserve these input odor
relationships’-3. We evaluated these ideas by examining how odors are represented at different
stages of processing in the olfactory circuit of the vinegar fly D. melanogaster. We found that
representations of odor in the mushroom body (MB), a third-order associative olfactory area in
the fly brain, are indeed structured and invariant across flies. However, the structure of MB
representational space diverged significantly from what is expected in a randomly connected
network. In addition, odor relationships encoded in the MB were better correlated with a metric
of the similarity of their distribution across natural sources compared to their similarity with
respect to chemical features, and the converse was true for odor relationships encoded in
primary olfactory receptor neurons (ORNs). Comparison of odor coding at primary, secondary,
and tertiary layers of the circuit revealed that odors were significantly regrouped with respect to
their representational similarity across successive stages of olfactory processing, with the
largest changes occurring in the MB. The non-linear reorganization of odor relationships in the
MB indicates that unappreciated structure exists in the fly olfactory circuit, and this structure
may facilitate the generalization of odors with respect to their co-occurence in natural sources.

INTRODUCTION

The search for organizing principles of olfaction has often focused on relating the chemical
structure or physicochemical properties of odorants to their percept*. This approach is principled
since odors are detected by their molecular interactions with large families of structurally diverse
odorant receptor (OR) proteins expressed in ORNs?®. Recently, significant inroads have been
made in predicting a molecule’s odor from its structure®” but developing a generalized
relationship between odorant structure and perception across the space of all possible odor
stimuli remains challenging because of discontinuities in this relationship: small changes in
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structure often result in dramatic changes in a molecule’s odor8°. This gap in understanding
motivates a search for additional organizational axes of odor space to complement structure-
based approaches towards gaining a better understanding of what determines a molecule’s
smell.

Another important property of odorants is how they are organized relative to one another in
natural environments. Odors from natural sources are typically complex mixtures of dozens to
hundreds of monomolecular odorants, the composition of which is controlled by the conserved
biochemical and metabolic processes in the source'®''. The relative abundance or ratios of
volatiles in natural odor profiles can provide information about the value or state of the odor
source'?13, for instance, if microbes that promote fermentation or spoilage are dominant. Thus,
the odor space of the natural world is highly structured, and this structure often contains
information about the identity or ethological value of the odor source.

We investigated how representations of odor at different stages of processing in the brain of the
vinegar fly Drosophila melanogaster relate to different odor properties, focusing on their
chemical properties or their relative abundances in behaviorally significant natural odor sources
like food. The fly has a compact olfactory system with a similar overall circuit architecture to its
vertebrate counterpart'4. All ORNSs that express the same OR project to a common synaptic
compartment, called a glomerulus, in the antennal lobe (AL), and the dendrites of uniglomerular
second-order projections neurons (PNs) extend into a single glomerulus'. Thus, each
glomerulus, corresponding to a specific OR, represents a fundamental unit of olfactory
processing. A major target of PN output from the AL is the mushroom body (MB), a cerebellum-
like associative center in the fly brain that encodes representations of odor identity'6. Wiring of
PN inputs to Kenyon cells (KCs), the principal neurons of the MB, is probabilistic: each of the
~2000 KCs integrates input from a subset of PNs comprising ~10% of the ~50 olfactory
glomeruli in the system'”-'9. KCs have high spiking thresholds and act as coincidence detectors
that fire only when multiple input PNs are co-active?°2!, and local feedback inhibition between
KCs is provided from the arborizations of an unusual single, large GABAergic neuron called the
APL?2,

This circuit architecture recodes dense, distributed representations of odor in the ~50 glomeruli
of the PN layer into a sparse, high-dimensional representation in the MB layer323-25 that
facilitates pattern separation and linear decoding by a smaller number of MB output neurons.
Theoretical studies of cerebellum-like circuits, characterized by expansion (PN input onto KCs)
and reconvergence (KC output onto MB output neurons), emphasize the role of random,
unstructured input for decorrelating activity patterns and maximizing the dimensionality of
representations?6:27. Such features would promote efficient memory storage and reduced
synaptic inference during stimulus-specific associative learning and recall.

Feedforward random network models of the MB predict that odor relationships encoded in the
MB should be strongly decorrelated, invariant across individual brains, and should preserve
stimulus relationships encoded at the level of ORN input '.28-30, However, recent large-scale EM
reconstructions of MB synaptic connectivity demonstrated that some PN inputs are structured.


https://doi.org/10.1101/2023.02.15.528627
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.15.528627; this version posted February 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

89  In particular, inputs from glomeruli tuned to odors common in food are more likely to converge

90 onto the same KC targets'®, though the functional impact on MB representations of odor

91 remains to be determined. Whereas random networks maximize coding capacity and promote

92  the separability of odor representations throughout odor space, structured networks can

93  correlate specific odor representations to promote generalization between odors sharing

94  particular ethological meaning. We investigated how odor coding in the fly olfactory circuit

95  balances these competing needs.

96

97

98 RESULTS

99
100  Population imaging of odor representations in the MB at cellular resolution
101  In the arc of sensorimotor transformation, representations of odor identity encoded in KC activity
102  patterns represent the output from the sensory arm of the pathway, which is flexibly coupled to
103  distinct downstream outputs and behaviors®'. Thus, we began by investigating representations
104  of odor in the MB. The Drosophila olfactory circuit is the most comprehensively mapped
105  metazoan olfactory system, with the tuning of approximately half of the odorant receptors to a
106  large panel of 109 odors described by the Hallem dataset®2. We selected 24 monomolecular
107  odors that spanned OR input space (Figure 1A) and investigated the extent to which those
108  relationships at the periphery are maintained in the MB.
109
110  We used in vivo volumetric two-photon microscopy to image odor-evoked calcium signals in the
111 MB of flies expressing nuclear-localized GCaMP6s selectively in KCs (directed by the OK107-
112 Gal4 drivers?) (Figure 1B-C). In pilot experiments using cytoplasmic GCaMP6f as the calcium
113 reporter, the small size (~2-3 um) and tight, regular packing of KC somata (Figure 1E)
114  presented challenges for motion correction, good cellular segmentation, and reliable pixel
115  assignment to individual KCs over the course of an imaging session, with poor trial-to-trial
116  reliability in odor panels larger than 8 odors. To expand the size of odor panels that could be
117  evaluated in a single brain, we turned to measuring nuclear calcium, which has slower response
118  dynamics, but strongly correlated response amplitudes compared to cytoplasmic calciums34:35,
119  Localization of the calcium indicator to nuclei resulted in a several pixel gap between KCs that
120  facilitated reliable cellular segmentation (Figure 1E, H) and enabled recording of the
121  representations of between 8 to 17 odors in the same MB.
122
123 Flies were presented odors in pseudo-random sequences while rapidly z-scanning through the
124 KC cell body layer. Following volumetric motion correction, odor-evoked KC signals were
125  extracted using the Suite2P software package?®. In brief, after correcting for motion in each
126  plane, regions of interests (ROIs) representing each KC were extracted (Figure 1H). Although
127  cell detection in Suite2P is usually neural activity-based, we extracted the spatial footprint of
128  each cell by performing anatomical segmentation on time-averaged images, resulting in
129  detection of between ~85-95% of the expected number of KCs. Since KC odor responses are
130  sparse and many KCs do not respond to any odor in even a relatively large panel, this
131  adjustment enabled reliable estimates of KC response rates. For a subset of experiments, odor
132 responses were registered to KCs across
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Figure 1: Population representations of odor in the fly MB at cellular resolution.
A) t-SNE embedding of 109 odors based on the patterns of activity they elicit across 24 fly ORs in the Hallem
dataset. A subset (open grey symbols) spanning the odor space was selected for measurement in the MB.
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B) Odors were delivered to the antennae of immobilized flies expressing nuclear-localized GCaMP6s in all KCs,
while imaging from KC somata with a two-photon microscope.

C) Imaging volumes comprising ~11 planes through the KC layer capture the activity of >85% KCs in an MB.

D) Configuration of volumetric imaging trial (3 Hz sweep rate).

E) Reconstruction of 3D ROIs corresponding to each KC from interleaved high-resolution anatomical imaging
stacks. Scale bar, 10 ym.

F) Example odor-evoked calcium signals in an imaging block from a single KC.

G) Population representations in ~1800 KCs to 17 odors in the MB from a representative fly. Each row is a cell and
each column is a trial. Cells are sorted by odor tuning.

H) Top: baseline fluorescence (left), weighted ROI masks of KCs (middle), and ROI lablels corresponding to
individual KCs (right) from a single imaging plane in an MB. Bottom: odor-evoked patterns of KC activity in
response to 1-pentanol, 1-hexanol, and ethyl propionate. Scale bar, 10 yum.

I) Matrix of pairwise correlation between KC population responses in individual odor trials, where trials are shown
in presentation order (left) or grouped by odor (right). KC responses elicited by 1-hexanol were more similar to
those elicited by 1-pentanol (green) than by ethyl propionate (orange).

Flies had genotype 20xUAS-nls-OpGCaMP6s-p10 (l11)/+; OK107-Gal4 (IV)/+. Odors are pentyl acetate (pa),
isoamyl acetate (iaa), methyl octanoate (mo), ethyl butyrate (eb), ethyl propionate (ep), 1-pentanol (1-50l), 1-
hexanol (1-60l), 1-penten-3-ol (1-p3ol), 1-octanol (1-80l), 2-heptanone (2-hep), 2-butanone (2-but), hexanal (6al),
E2-hexenal (e2-h), benzaldehyde (bnz), methyl salicylate (msl), eugenol (eug), ethyl cinnamate (ec), linalool (lin), -
citronellol (b-cit), acetic acid (aac), propionic acid (pac), valeric acid (vac), y-hexalactone (g-6lac), §-decalactone
(d-10lac).

133 different functional movies collected from the same MB by alignment of ROIs to 3D anatomical
134 models of KC somata constructed from high-resolution structural images through the MB (Figure
135  1E; Figure S1A).

136

137  Reproducible odor-specific response dynamics were observed in some cells (Figure 1F), but,
138  given the overall slow kinetics of nuclear-localized GCaMP6s, we focused our analysis in this
139  study on the peak amplitude of odor-evoked responses. KC population responses were stable,
140  odor-specific, and reliable across repeated trials of the same stimulus (Figure 1F-1G, Figure

141  S1A). The pairwise relationship between odor representations in MB coding space was

142 quantified using the correlation distance 1-r, where ris Pearson’s correlation between the

143 vectors of KC responses to each pair of odor. Quantifying odor relationships using other metrics
144 such as cosine distance yielded similar results (e.g., Figure S3H). When we computed the

145  correlation distance between the KC response vector for every pairwise combination of trials in
146  an experiment (Figure 11, left) and reordered the distance matrix to group together trials by odor,
147  we observed that KC responses to repeated presentations of the same odor were very strongly
148  correlated (on-diagonal blocks, Figure 11, right). These results demonstrate the reliability of KC
149  odor responses across multiple presentations spanning the time course of an experiment. As
150  expected, the pairwise correlation distance between odors reflected the qualitative similarity of
151  their respective KC response patterns (Figure 1H-1), with visually similar activity patterns

152 corresponding to short odor distances.

153

154  The percentage of KCs responding to each odor was similar in each MB, ranging from ~5-13%
155  depending on the odor (Figure S1B). When compared against mean OR activity for each odor,
156  estimated by averaging the firing rates evoked by each odor across all ORs in the Hallem

157  dataset, KC response rate was not significantly correlated with mean ORN response strength
158 (Figure S1B, Spearman’s rho=0.48, p=0.05). However, we note that the Hallem dataset
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Figure 2: MB representational space is structured and invariant across individuals.

A) Correlation distance matrices for four different flies showing pairwise relationships between KC population
responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower triangle).
B) Correlation distance between trial-averaged KC responses for every odor pair for the four flies in A. Odor pairs
are in the same order in each row, arranged by the rank of their mean correlation distance across the four flies.
Odors that evoke similar KC response patterns in one fly tend to also elicit similar response patterns in other flies.
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C) Spearman’s rank correlation between the rows of B (i.e., between flies), evaluating the similarity of the rank
ordering of odor pairs between flies according to their representational distance in KCs.

D) Left: same as C, but for shuffled data in which the odor labels were randomly permuted for the responses of
individual flies. The matrix shows the mean Spearman’s correlation across 10,000 shuffles. Right: observed
Spearman’s correlation (black) and the mean and 95% CI of the Spearman’s correlation across 10,000 shuffles
(grey) for each fly pair. Red dotted line marks the mean observed Spearman’s correlation (rho=0.76).

E) Correlation distance (mean and 95% CI) between KC responses for each odor pair, averaged across all flies in
which the odor pair was sampled (n=3-22, see Supplemental Table 1). Each unique odor pair was assigned a
reference ID (see Supplemental Table 1). A one-way ANOVA showed there was a significant difference in the
odor-odor correlation distance between different odor pairs (F statistic=12.6, p=10-18%), consistent with odor-odor
relationships being reliable across MBs in different flies. The correlation distance (mean and 95% CI across 100
model MBs) between predicted KC responses for odor pairs in the uniform, hemidraw, and hemibrain models are
plotted for reference (see Figure 3).

F) Matrix of pairwise correlation distances between odor response profiles of every KC in the four flies in A that
responded to at least one odor. The distance matrix was ordered by spectral clustering on the mean odor
response vector of each cell. Each response cluster contained KCs from every fly.

G) Mean KC tuning profiles of each cluster, computed across KCs in each cluster in each fly. KCs with conserved
odor tuning profiles are found in every MB.

159  underestimates ORN population responses to acids and amines since it does not include

160  odorant receptors from the ionotropic receptor (IR) family®7.

161

162  Overall, KCs were narrowly tuned, with most cells responding to two or fewer odors, and a

163  significant fraction (~34%) responding to no odor in a diverse 17-odor panel (Figure S2B).

164  However, compared against modeled KC responses (see below), observed odor responses in
165  KCs were more broadly tuned. This result is consistent with observations that existing MB

166  models poorly predict KC response rates to narrowly activating odors that selectively excite only
167  one or very few ORN classes (e.g., CO2 or methyl salicylate, Figure S1D-E). These results

168  confirm that KC responses are sparse and selective. They also indicate that current

169  assumptions about MB circuit properties do not fully account for observed KC response rates to
170  all odors, particularly for narrowly activating odors.

171

172  Representations of odor in the MB are structured and invariant across individuals

173 In most circuits of the fly brain, neuronal connectivity is invariant across individuals, but the MB
174 s distinct in that the wiring of PN inputs is probabilistic: each of the ~2000 KCs, the principal
175  neurons of the MB, integrates input from a quasi-random subset of PNs comprising ~10% of the
176  ~50 olfactory glomeruli in the system. As the number of possible glomerular combinations far
177  exceeds the number of KCs in any given MB, stereotyped KC connectivity, defined by a specific
178  set of synaptic inputs, does not exist across individual MBs. Indeed, a small set of genetically
179  defined KCs labeled by a sparse Gal4 driver did not exhibit stereotyped odor tuning38. However,
180 feedforward network models that assume random divergent connectivity between second- and
181  third-order olfactory layers predict that, while third-order olfactory responses will be

182  comparatively decorrelated, they will otherwise maintain relative pairwise odor relationships

183  present in the prior layer. Thus, these models predict that the geometry of third-order olfactory
184  representations will be invariant across different instantiations of the network (i.e., MBs), with
185  preserved odor relationships that are predictable from the stereotyped tuning of OR inputs.

186
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187  To evaluate these ideas, we compared the correlational structure of odor representations

188  encoded in KC activity patterns in multiple flies. We found that the relationships between odors
189  in MB representational space were indeed structured and highly invariant across individual

190  brains (Figure 2A, S2A), consistent with prior work3. We evaluated the similarity of the

191  correlational structure across MBs by comparing the rank order of odor-odor correlation

192  distances in each MB (Figure 2B-C). The observed distribution of MB-MB correlations

193  (Spearman’s rho=0.76 +/- 0.06) was significantly different from shuffled controls (Figure 2D, p
194  <10+). Also, the correlation distance between specific pairs of odors was consistent across

195 individual MBs: odors that evoked similar KC response patterns in one fly tended to also have
196  similar KC responses in other flies, and the same was observed for odors that evoked dissimilar
197  representations (Figure 2E, S2B; p=10-186, one-way ANOVA). Finally, we combined all KCs that
198  respond to one or more odors from four different flies and clustered the KCs based on each

199  cell’s odor response profile. This analysis identified reliable response types with specific odor
200  tuning profiles, and each response type was found in each of the four flies (Figure 2F). For

201 instance, KCs that are strongly co-tuned to 2-heptanone, isoamyl acetate, and pentyl acetate
202 were reliably observed in every MB (Figure 2G). These results demonstrate that the structure of
203  the representational space of odors is highly conserved across individual MBs in the fly.

204

205 Odor distances in MB coding space diverge from odor relationships predicted by a

206  random feedforward network model

207  To compare the observed structure of MB representational space to what is predicted by a

208  feedforward random network, we modeled KC population responses by adapting a previously
209  described, biologically plausible spiking model of the fly olfactory circuit3® (Figure 3A). PN

210  responses, modeled from OR firing rates in the Hallem dataset®?, were used as input to a

211  population of 2000 spiking KCs. KCs were modeled as leaky integrate-and-fire units with a small
212 number of input sites, typically ~5-7 dendritic claws, that each receive input from a single PN
213 bouton. Under assumptions of random feedforward connectivity, the matrix of PN-KC

214 connections in each model instantiation was created by assigning each KC claw a single

215  glomerular input, with all glomeruli having an equal likelihood of being drawn (“uniform” model).
216  The inputs to the model were the firing rates of approximately half of fly ORs to 109 odors from
217  the Hallem dataset. KC activity was normalized by global feedback inhibition from the

218  GABAergic APL. KC spiking thresholds and APL-KC inhibitory weights were tuned to achieve a
219  mean KC response rate of ~10% across odors (see Methods), which matches experimental
220  observations.

221

222 The correlation between modeled KC responses for specific odor pairs was indeed consistent
223 across 100 simulated MBs with different, independently drawn random PN-KC connectivity

224  matrices (Figure 3B, error bars are 95% CI across simulations). However, the observed

225  structure of odor representations in KC coding space was only partially predicted by the

226  feedforward random model, with the observed relationship between odors deviating significantly
227  from model predictions for many odor pairs (Figure 2E, 3C, Di, S3H). In particular, observed
228  pairwise odor relationships were overall more decorrelated than those predicted from modeled
229  KC populations (Figure 3Di). Adjusting fit parameters to yield a lower mean KC response rate of
230 5% across odors did not appreciably
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Figure 3: Odor relationships in MB representational space deviate from predicted relationships in a
random feedforward network

A) Schematic of the fly olfactory network. Not depicted is a single GABAergic neuron (APL) in the MB that
mediates feedback inhibition among KCs.

B) Comparison of relationships between predicted KC representations (uniform model) and observed OR tuning
profiles for each odor pair (grey symbols). Error bars are 95% CI of KC correlation for each odor pair across 100
model MBs; each simulated MB has an independently generated PN-KC connectivity matrix drawn under
assumptions of uniform input (each glomerulus drawn with equal probability).

C) Matrix of pairwise correlation distances between OR tuning profiles from the Hallem dataset (Ci); predicted KC
responses in the uniform model (Cii, left) or hemibrain model (Cii, right); or observed KC responses (Ciii) for 17
odors.

D) Comparison of correlation distances for each odor pair between observed KC responses for each odor pair and
predicted KC responses in the uniform (Di) and hemibrain (Dii) models. Each symbol is an odor pair.

231  affect the systematic overprediction of the degree of correlation between odor representations,
232 nor did it affect the rank order of predicted odor-odor correlation distances (data not shown).
233

234 Recent analysis of the global structure of glomerular input sampling by third-order olfactory

235  neurons (Figure S3A) using large-scale EM-level reconstructions of part of the Drosophila brain
236  at synaptic resolution revealed that the wiring of PN inputs to KCs is not fully random?8.19, as
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237  was previously believed. Indeed, analysis of the complete matrix of PN-KC connectivity from
238  two independently reconstructed fly brains confirmed that KCs sample particular combinations
239  of PN inputs at a higher rate than is expected based on their numerical frequency, and the

240  structure of this biased input onto KCs is similar between two MBs from different flies'® (Figure
241  S3B-E). We also observed that the glomerular input structure to KCs bears significant similarity
242 to the structure of glomerular input to third-order olfactory neurons in the lateral horn (Figure
243 S3E), a brain region dedicated to innate odor processing in which neurons have stereotyped
244 connectivity and tuning3°40.

245

246  To assess the possible impact of structured input on MB odor representations, we predicted KC
247  odor responses in the model under conditions in which the PN-KC connectivity matrix was

248  drawn according to the observed frequency of PN boutons corresponding to each glomerulus in
249  the hemibrain dataset (“hemidraw”) or in which the experimentally reconstructed hemibrain PN-
250  KC connectivity matrix was directly implemented (“hemibrain”) (see Methods). Neither

251 adjustment to PN-KC connectivity improved predictions of observed KC odor relationships

252  (Figure 3C, 3Dii, S3F-H); in fact, predicted responses for most odor pairs tended towards being
253  more correlated compared to the uniform model. These results indicate that observed biases in
254  PN-KC connectivity are unlikely to account for the differences between observed and predicted
255  KC odor responses; they suggest additional sources of structure are present in the olfactory
256  circuit that mediate the observed transformation of odor representations from the periphery to
257  the MB.

258

259  Reorganization of representations of odor in the MB around odor relationships in natural
260  sources

261  Comparisons of odor representations in the OR input layer and in the MB showed that, although
262  the representations of most pairs of odors were substantially decorrelated, as expected, some
263  odor pairs were comparatively less decorrelated between the OR and MB layers. This

264  transformation resulted in a significant regrouping of odor relationships in OR versus MB coding
265  space. For instance, the odors 2-heptanone, isoamyl acetate, and pentyl acetate emerged as a
266  cluster with similar KC representations, distinct from other odors in the panel, whereas the

267  representation of each of these odors is similar to many others at the level of its OR

268  representation (Figure 3Ci, iii).

269

270  To better understand the functional implications of this reorganization, we asked how odor

271  representations at different stages of olfactory processing relate to the properties of the odors,
272  focusing in particular on their chemical properties and on how they are correlated across natural
273  odor sources. For each odor, we computed molecular and physicochemical descriptors using
274  Mordred, an open-source molecular descriptor calculation software*!. Since many descriptors
275  are highly correlated across odors, we identified a reduced set of 570 molecular descriptors that
276  captured the chemical relationships between odors equivalently to the full set of descriptors
277  (Supplemental Table S3).

278

279  D. melanogasteris an ecological generalist and human commensal*?; as a starting point for
280  understanding the structure of natural odor space for Drosophila, we used a database of the
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Figure 4: Reorganization of odor representations in the fly MB reflects odor relationships in natural

sources.

A) Distribution of odors (monomolecular compounds, rows) in a literature-based database of the volatile
headspace composition of many natural food odor sources (columns). The pie chart shows the distribution of odor
sources in each food category.

B) Schematic summary of datasets for comparing the properties of odors (top) with their different neural
representations (bottom).

C) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their distances in
chemical descriptor space.

D) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their embedded
distances in a hyperbolic model of natural source space.

E) Summary of correlation (lower triangle) and p-values (upper triangle) for comparisons between observed OR,
observed KC, or modeled KC (uniform or hemibrain) odor relationships and odor-odor relationships in chemical or
natural source space.
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281  headspace volatile profiles for many food odor sources, compiled from 4407 published chemical
282  datasets primarily from the food and flavor science literature (Figure 4A). The odor sources are
283  biased towards fruits, plants, and vegetables, but also includes other common human foods
284  such as alcoholic beverages, meat, and dairy products. The database comprises thousands of
285  samples measured from 887 types of natural sources (apple, tomato, wine, etc.) and contains
286  over 8,000 monomolecular volatiles. Like other datasets profiling the chemical volatiles emitted
287  from natural sources*3, the majority of odorants occur sparsely in a small number of sources,
288  though a significant minority of odors are present broadly across many sources (Figure 4A).

289

290  Recently, we showed that the use of hyperbolic coordinates to embed the concentrations of

291 individual monomolecular odorants as they occur in natural odor sources better captures odor
292 relationships in the space of natural sources, compared to embeddings that use Euclidean

293  metrics'?45, Thus, to describe the similarity in distribution across natural odor sources for a

294  given pair of odors, we started with a normalized correlation coefficient computed between odor
295  abundances across different natural sources. Based on these distances, we performed

296  nonlinear dimensionality reduction using different curved and flat metrics®*. The method

297  automatically adjusts the curvature of the embedding space and selects the best fitting

298  dimension based on the Bayesian Information Criterion*4. We found that the natural odor

299  abundance data was best described by a three-dimensional hyperbolic space with a negative
300  curvature of -5.12. This observation mirrors previous results using a more limited dataset of

301  natural fruit or flower odor sources in which hyperbolic geometry also provided a significantly
302 Dbetter fit of the natural source space than the standard Euclidean geometry'245 . The intuitive
303 explanation for these results is that hyperbolic spaces provide good descriptions of the structure
304  of natural odor spaces because they arise as continuous approximations to tree-like hierarchical
305 networks. In the case of natural source data, the hierarchical relationships are hypothesized to
306 reflect dependencies produced by biochemical and metabolic pathways acting in plants and
307 other food sources, including in associated microbes like bacteria and fungi. In contrast,

308 nonlinear dimensionality reduction of odor distances computed from chemical descriptors

309 resulted in a hyperbolic embedding with higher dimension (dim=6) and much reduced curvature
310  (0.05) that did not provide a better fit of the dataset than a Euclidean model. Since odor

311  distances in the hyperbolic embedding better captured the correlational structure of abundances
312  of odors across natural sources compared to equivalent distances computed from a Euclidean
313  embedding, we used hyperbolic distances as a metric of odor relationships in natural source
314  space.

315

316  For each pair of odors in the dataset, we compared their representational distance in OR or KC
317  coding space with their relationship in chemical descriptor space or natural source space

318  (Figure 4B). We found that pairwise odor distances in OR coding space were better correlated
319  with their distances in chemical descriptor space (rho=0.27, p=2.4e-53) as compared with their
320 distances in natural source space (rho =0.087, p =4.8e-6) (Figure 4C-D). The converse was true
321  for odor distances in KC coding space: pairwise distances in KC coding space were better

322  correlated with their distances in natural source space (rho =0.23, p =7.1e-4) compared to their
323  distances in chemical descriptor space (rho =0.07, p=0.06) (Figure 4C-D). The correlation to
324  distances in KC coding space was observed only for natural source odor relationships quantified
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325 by the hyperbolic embedding of natural source space, but not by Euclidean distance (Figure
326  4E), suggesting that capturing hierarchical relationships in the dataset is important and that the
327 low-dimensional embedding helps to de-noise the data. We also evaluated the relationship of
328  odor properties to odor distances in the modeled KC coding space under assumptions of

329  unstructured PN-KC connectivity. In contrast to the observed KC distances between odors,

330 modeled KC distances were better correlated with odor distances in chemical descriptor space
331  (rho=0.23, p=1.4e-38) compared to hyperbolic odor distances in natural source space

332  (rho=0.061, p=8.4e-3) (Figure 4E). This result is expected since, under assumptions of

333 unstructured connectivity in the olfactory circuit, the relationship of odors in KC coding space
334  stems from their relationships in OR input space. Similar results were observed for odor

335  relationships computed from KC responses predicted using the hemibrain circuit model,

336 indicating that the observed degree of glomerular input bias to KCs in the hemibrain does not
337  explain the reformatting of odor relationships in the MB. Overall, these data indicate that the
338 realignment of odor representation with natural source relationships that we observed in KCs
339  cannot be derived simply by random resampling of OR responses.

340

341  To determine if the relationships between odor representations and odor properties were driven
342 by only a small number of odor pairs in the dataset, we recomputed the correlations between
343  OR or KC representational distance and chemical descriptor or natural source distance using
344 100 subsamples comprising 75% of the odor pairs, dropping out a random 25% of the odor

345  pairs in each resampling. This analysis confirmed that odor distances in OR space were more
346  correlated with distances in chemical descriptor space as compared to in natural source space,
347  and vice versa for odor distances in KC space. These findings are consistent with a

348  reorganization of the fly olfactory code between the periphery and the MB from encoding the
349  chemical or structural relationships between odors to reflecting the odor relationships in

350  complex mixtures arising from natural sources.

351

352  Odor relationships are restructured across successive stages of olfactory processing
353  To better understand how representations of odor are reformatted from the periphery to the MB,
354  we used functional imaging to measure odor-evoked patterns of activity at each successive
355  stage of processing in the olfactory circuit. While delivering odors to the antennae of the fly, we
356  volumetrically imaged from all ORN axon terminals (labeled by the pebbled-Gal4 driver) or from
357  ~70% of PN dendrites (labeled by the GH146-Gal4 driver) in the antennal lobe*é, where the
358 neurites from these cell populations are stereotypically organized into glomerular compartments
359  with characteristic size and position (Figure 5A-B). Population imaging from the terminals of all
360 ORN classes allowed odor relationships to be assessed in the complete OR input space to the
361 olfactory system, whereas the Hallem dataset measures the tuning of only approximately half of
362  all fly ORs (Supplemental Figure S4B). ROls corresponding to individual glomeruli were

363 manually segmented from movies of odor responses in ORN axon or PN dendrites and their
364  odor response profiles extracted. To evaluate patterns of odor-evoked PN output, we

365  volumetrically imaged from the axonal boutons of ~70% of PNs (labeled by the GH146-Gal4
366  driver) in the calyx of the MB, where they synapse onto the sites of KC input (claws) (Figure 5A-
367 B). ROls corresponding to PN boutons were automatically segmented using Suite2P; visual
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Figure 5: Reformatting of odor representations across four stages of olfactory processing.

A) Anatomical schematic of fly olfactory circuit. ORN axon terminals are organized in a stereotyped glomerular
map in the AL. Each uniglomerular PN has dendrites in a single AL glomerulus and projects to the calyx of the MB,
where its axonal arbor terminates in multiple boutons that each synapse with KC input claws.

B) Representative baseline fluorescence and peak AF/F heatmaps of odor-evoked calcium signals in ORN axon
terminals, PN dendrites, PN boutons, and KC somata to 1-pentanol, 1-hexanol, and ethyl propionate. KC data are
reproduced from Figure 1. Scale bar, 10 um. Genotypes: ORN axons are imaged in pebbled-Gal4, UAS-GCaMPéf,

14


https://doi.org/10.1101/2023.02.15.528627
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.15.528627; this version posted February 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

+; GH146-QF, QUAS-tdTomato. PN dendrites and PN boutons are imaged in GH146-Gal4/20xUAS-IVS-
jGCaMP8m (11).

C) Matrix of mean pairwise correlation distances (averaged across flies) of trial-averaged odor representations in
ORN axons (n = 4 flies), PN dendrites (n = 6 flies), PN boutons (n = 6 flies), and KC somata (n = 4 flies) to a panel
of 17 odors. Odors are displayed in the same order in each matrix according to the clustering of their
representations in KC representational space.

D) Spearman’s correlations measuring the similarity of rank ordering of odor response strengths at each stage of
processing.

E) Hierarchical clustering of distance matrices in C showing best odor groupings in each representational space.
F) Pairwise adjusted mutual information (MI) score evaluating the similarity of clustering of odor representations in
each representational space. The adjusted Ml has a value of 1 when two clusterings are identical, and a value of 0
when the MI between two clustering is the value expected due to chance.

368 inspection confirmed that > 95% of ROlIs reliably corresponded to single PN boutons. Odor
369 relationships were invariant across the brains of different individuals at each of these earlier
370  stages of olfactory processing (Figure S4A), consistent with the stereotyped connectivity of the
371  antennal lobe.

372

373  Comparing the pairwise correlation distances between odor representations in each layer of the
374  olfactory circuit, odor representations were progressively decorrelated at each feedforward

375  stage of processing (Figure 5C), with the mean and median odor-odor correlation becoming
376  systematically lower in each successive layer (Figure S4D). The largest decorrelation occurred
377  between PN boutons and KC somata, consistent with the divergent expansion of the circuit at
378  this synaptic step. However, the rank order of odor-odor distances was not maintained across
379 layers (ORN terminals versus KC somata, Spearman’s rho=0.48), indicating that odor

380 relationships are transformed beyond a simple linear scaling between layers. For comparison, in
381 amodel that assumes unstructured PN input to KCs and uniform inhibition in the AL and MB
382  (“uniform”), the Spearman’s correlation between odor relationships in the input OR layer and in
383  modeled KCs is rho=0.83. Furthermore, whereas the relative levels of odor-evoked activity in
384  PNs dendrites or boutons was well-predicted by levels of overall ORN input to the circuit, odor-
385  evoked KC response rates (and mean activity) were comparatively less well-predicted (Figure
386 5D, S4Ci-iv, and data not shown). These observations all point towards a non-linear

387  reformatting of odors in the MB representational space that alters the rank ordering of odor

388  relationships compared to earlier stages of coding.

389

390 We examined odor relationships at each step of processing using hierarchical clustering of odor
391 representations in each neural population, in order to better understand the origins of odor

392  relationships in MB coding space. For instance, one of the strongest odor clutsers at the level of
393  input representations — 2-heptanone, isoamyl acetate, and pentyl acetate — was maintained in
394  each subsequent stage of processing through to the KCs (Figure 5C, E). These odors share a
395  high degree of chemical similarity as well as co-occurrence in natural sources, which may

396  explain their robust grouping. However, other odor representations that were similarly well-

397 correlated and clustered in OR space (e.g., 1-pentanol and 2-butanone) were selectively

398  decorrelated in KC coding space, with each odor becoming reassigned to distinct, non-

399  overlapping groups of odors in KC coding space (Figure 5C, E). Additionally, the

400 representations for some odor pairs were observed to become reliably more similar at later

401  stages of olfactory processing. For instance, the pairwise correlation distances between 1-
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pentanol and 1-hexanol was actually shorter in KC coding space as compared to in ORN axon,
PN dendrite, or PN bouton coding space.

Typically, these transformations in the representational geometry among odors occur
progressively at each successive stage of processing, with the largest change occurring
between PN boutons and KC somata (Figure 5C). However, we observed significant
reorganization of odor representations even between the inputs and outputs of the same cell
population, PNs; odor relationships encoded in PNs boutons better reflect odor relationships in
KC coding space compared to PN dendrites (Figure 5C, E). The nonlinear reformatting of odor
relationships across successive stages of olfactory coding indicates that prevailing models of
olfactory networks that assume global or uniform processing across neurons are incomplete,
and additional sources of structure exist in the fly olfactory circuit that mediate non-uniform
interactions between olfactory coding units (e.g., neurons or glomeruli).

DISCUSSION

We show that representations of odor are structured and invariant across MBs in individual flies,
and that the structure of MB odor coding space is only partially predicted by models that
assume random sampling of olfactory glomerular inputs by KCs. The latter is true even after
adjusting the MB model to account for the over- or under-representation of PN boutons from
specific glomeruli (“hemidraw” model) or the amount of over- and under-convergence of PN
inputs from specific sets of glomeruli onto KCs (“hemibrain” model). Thus, certain assumptions
of olfactory system architecture — for instance, of uniform strengths of unitary feedforward
synapses, uniform spiking thresholds, or nonselective, global inhibition in the AL or MB — are
likely oversimplifications, motivating a search for source(s) of structured interactions between
glomeruli or neurons in the olfactory circuit.

We demonstrate a significant transformation of the fly olfactory code between the periphery and
the MB, in which the encoding of odors by ORs better reflects the chemical relationships
between odors and the encoding of odors in the MB better reflects the distributions of odors
across behaviorally relevant natural sources. That representations at the olfactory periphery
better capture odor relationships in terms of their chemical or molecular properties is perhaps
unsurprising, since odor-OR interactions are governed by the structural features of the odor.
The reorganization of MB odor representations to better correlate with the relationships of these
odors in natural source space may reflect the progressive transformation of odor
representations in the olfactory network to encode latent variables that relate more directly to
behavioral value or perception.

Odor distances in the hyperbolic embedding of natural odor mixtures reflect correlations
between volatiles in the headspace profiles across natural sources that arise from conserved
metabolic pathways*. The transformation of odor representations in the MB is predicted to
facilitate the perceptual compression of odors that have shorter metabolic tree distances in the
hierarchical organization of natural odor mixtures relative to their chemical similarity. Consistent
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446  with this idea, a recent preprint reports that distances between odors in a neural network

447  embedding trained on human olfactory perceptual labels are correlated with the metabolic

448  distance between odors in experimentally elucidated biochemical pathways*’.

449

450  The specific structure of odor relationships was largely invariant across individual brains at each
451  stage of olfactory processing (Figure 2), even in the MB where PN boutons connect

452  probabilistically with KCs. An important open question is the extent to which the invariance of
453  MB representational space may arise from genetically specified developmental processes

454  (sculpted by evolution) or from activity-dependent processes that reflect shared olfactory

455  experience?. Unlike their mammalian analogues in piriform cortex, KCs are not strongly

456  connected through recurrent excitation, although the degree to which PN-KC synapses or APL-
457  KC synapses may be regulated by experience is not well understood. We note that the structure
458  of PN overconvergence onto KCs bears significant similarity to the structure of PN input to third-
459  order olfactory neurons in the lateral horn (LH) (Figure S3E). LH neurons are stereotyped in
460  their anatomical connectivity and odor tuning and are believed to mediate innate olfactory

461  behaviors. The similarity in PN input structure between the MB and LH points to the likely

462  ethological significance of these over-represented glomerular combinations. It also raises the
463  possibility that the LH may have additional roles in shaping odor representations in the MB. For
464  instance, neurons downstream of the LH send centrifugal input to the MB calyx*® which could
465  contribute to the remapping of odor representations in PN boutons. Other possible sources of
466  structure in the circuit are selective inhibition from the APL or MB-C1 neurons in the calyx, or
467  non-uniform PN-KC synaptic weights. Understanding the specific circuit mechanisms that shape
468  the reorganization of odor representations in the MB will be important for understanding how
469  odor relationships in natural sources become reflected in the olfactory code.

470

471  Theoretical studies of divergent expansive cerebellum-like circuits such as the MB emphasize
472  the computational benefits of random networks for maximizing coding capacity and promoting
473  the separability and discriminability of representations. However, structured networks can

474  correlate odor representations and promote generalization of odors along important directions of
475  odor space, for instance, related to the relationships of odorant molecules in behaviorally salient
476  natural odor sources. Our results suggest a revision of classic formulations of cerebellar-like
477  network architectures is warranted at least in some systems: the MB may trade-off the capacity
478  to maximally decorrelate activity patterns in parts of representational space for an increase in
479  coding capacity and robustness in a part of representational space of particular ethological

480  significance*. The recoding of odors in the MB to reflect relationships in natural sources would
481  predict greater generalization to odors with similar distributions in the environment, facilitating
482  the decoding of natural source identity in noisy or ambiguous situations.

483

484 METHODS

485

486  Experimental model

487  Drosophila melanogaster were raised on a 12:12 light:dark cycle at 25°C and 70% relative

488  humidity on cornmeal/molasses food containing: water (17.8 I), agar (136 g), cornmeal (1335.4
489 ), yeast (540 g), sucrose (320 g), molasses (1.64 I), CaCI2 (12.5 g), sodium tartrate (150 g),
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tegosept (18.45 g), 95% ethanol (153.3 ml) and propionic acid (91.5 ml). All experiments were
performed in female flies aged 3-10 days post-eclosion. Unless otherwise noted, the
transgenes in this study were acquired from the Bloomington Drosophila Stock Center (BDSC)
and have been previously characterized as follows: pebbled-Gal4 (X) directs expression in all
ORNSs*® (RRID:BDSC_80570); GH146-Gal4 (ll) directs expression in ~70% of PNs®'
(RRID:BDSC_30026); GH146-QF, QUAS-tdTomato (lll) expresses the red-fluorescent protein
tdTomato in ~70% of PNs** (RRID:BDSC_30037); UAS-IVS-jGCaMP8m (ll) expresses the
calcium indicator jGCaMP8m® in a Gal4-dependent manner (RRID:BDSC_92591); OK107-Gal4
(IV) directs expression in all KCs* (RRID:BDSC_854); UAS-OpGCaMPé6f (X) was from B. D.
Pfeiffer and D. J. Anderson (Caltech, Pasadena, CA) and expresses the calcium indicator
codon-optimized GCaMP6f** in a Gal4-dependent manner; and UAS-nls-OpGCaMP6s-p10 (Ill)
was from H. Chiu and D. J. Anderson (Caltech, Pasadena, CA) and expresses nuclear-
localized, codon-optimized OpGCaMP6s® in a Gal4-dependent manner.

Odor stimuli
Odors were delivered essentially as previously described®. A custom-built multi-channel
olfactometer delivered a constant 2 L/min stream of charcoal-filtered air. A 3-way solenoid
valve directed 200 mL/min of this flow either through a 20-ml glass vial containing 2-ml of odor
solution (valve open) or an equivalent vial containing 2-ml of the solvent. Air flow was
controlled using mass flow controllers (MC series, Alicat Scientific, Tucson, AZ). The 200
ml/min control or odor streams were carried by tubing of matched lengths and rejoined the
carrier stream at the same point along the carrier tube, approximately 10 cm from the fly. The
terminal end of the carrier tube had an inner diameter ~8mm and was ~1 cm away from the fly.
Odor concentrations refer to the v/v dilution factor of the odor solution in the vial. The
concentration of odor in the headspace is further diluted 10-fold in air prior to reaching the fly.
Unless otherwise indicated, all odors in this study were presented from a 107 (0.1%) dilution in
paraffin oil (J.T. Baker, VWR #JTS894), with the exception of movies collected from one fly, in
which odors were diluted to 102 (1%).

Two-photon calcium imaging

Volumetric, in vivo functional calcium imaging was performed essentially as previously
described*®*°. After a brief period of cold anesthesia (<20 s), the fly was head-fixed, and the
cuticle, fat, and air sacs were removed to expose the brain region of interest. Two-photon
GCaMP6f or GCaMP8m fluorescence was excited with 925 nm light from a Mai Tai DeepSee
laser (Spectra-Physics, Santa Clara, CA). Images were acquired with an Olympus 20X/1.0
numerical aperture objective (XLUMPLFLN20XW) driven by a piezo motor that enabled fast z-
scanning, and the collection filter was centered at 525 nm with a 50 nm bandwidth.
Experiments were conducted at room temperature (~22°C). The brain was constantly perfused
by gravity flow with saline containing (in mM): 103 NaCl, 3 KCI, 5 N-Tris(hydroxymethyl)methyl-
2-aminoethane-sulfonic acid, 8 trehalose, 10 glucose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2,
and 4 MgCI2 (pH 7.3, osmolarity adjusted to 270- 275 mOsm). The saline was bubbled with
95% 0./5% CO. and circulated in the bath at ~2-3 ml min™".
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533 AL imaging. Flies were head-fixed with the dorsal surface of the head approximately parallel to
534  the imaging plane; the dorsal cuticle was removed, and the antennal lobes were exposed. The
535  antennae were snugly secured below the imaging chamber, keeping them dry and responsive
536  to odors. ORN axon terminals and PN dendrites were imaged with a galvo-galvo scanning

537  system (Thorlabs Bergamo). Flies were imaged from the dorsal side, with 5 planes spaced 12
538  pm apart. The depth of the first imaging plane was chosen to maximize the number of

539  glomeruli visible across the 5 planes. Images were acquired at a resolution of 192x192 pixels,
540  with typical fields-of-view of ~90-100um? and volumetric sampling rates of ~1 Hz through the
541  antennal lobe. For ORN axon and PN dendrite experiments, odors were presented in a

542 pseudorandom order, with the three trials of each odor being presented contiguously. Trials
543  consisted of a 7 s baseline recording, the odor pulse (2s for ORN experiments and 3s for PN
544  experiments), and a 20 s post-stimulus period.

545

546  MB imaging. Flies were head fixed with the head tilted acutely downward, rotated ~70° from
547  its normal resting position. The posterior plate of the head was approximately parallel to the
548  imaging plane, and the antennae were dry underneath the imaging platform. The entire

549  perimeter of the head capsule was stabilized to the imaging platform with glue, and the

550  proboscis and legs were immobilized to minimize motion. KC somata and PN boutons were
551 imaged with a galvo/resonance scanning system (Thorlabs Bergamo), with the exception of
552 one fly in which KC somata were imaged on a galvo-galvo scanning system at a volumetric
553  sampling rate of 0.55 Hz. For PN bouton experiments, odors were presented in a

554  pseudorandom order, with the three trials of each odor being presented contiguously. Trials
555 consisted of a 7 s baseline recording, a 3s odor pulse, and a 20 s post-stimulus period, with
556  stimulus onset occurring every 30s. For KC somata experiments, stimulus order was

557  pseudorandomized such that all odors were presented before any were repeated; thus,

558  repetitions of a given odor usually did not occur on consecutive trials. If paraffin was included
559  as an odor stimulus, it was always presented first in each repetition block. Trials consisted of a
560 13 s baseline recording, a 2 s odor pulse, and a 45 s post-stimulus period, with stimulus onset
561  occurring every 60s.

562 For resonance imaging of KC somata, movies were collected at a frame rate of ~60 Hz
563  at 256 x 256 pixels in fast-z mode. The field-of-view was ~150 um x 150 um giving a pixel size
564  of ~0.6 um/pixel. The bulk of the KC somata cluster was captured in 16 planes (and 4 flyback
565  frames) collected 2 um apart, spanning a ~30 um depth through the MB. This resulted in a

566  volumetric sampling rate of ~3 Hz. For a subset of experiments, KCs were sampled using fewer
567 imaging planes (eleven) with a z-step size of 3 um. Since odor response rates and odor-odor
568  relationships were similar with these imaging parameters, KC somata datasets were combined.
569  For imaging of PN boutons in the MB calyx, movies were collected at a frame rate of ~60
570  Hz at a resolution of 256 x 256 pixels in fast-z mode. The field of view was ~75 um x ~75
571  um yielding a pixel size of ~0.3 um/pixel. The full population of labeled PN boutons in the calyx
572  was captured using 8 planes (and 2 flyback frames) spaced ~3 um apart, spanning a ~21 um
573  depth in z, giving a volumetric sampling rate of ~6 Hz.

574

575  Image analysis

576 AL imaging
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577  Image analysis was performed using custom Python scripts

578  (https://github.com/ejhonglab/al analysis). Motion correction was performed separately in each
579  plane using the registration module in Suite2p. ROIls corresponding to individual glomeruli were
580  manually defined in each imaging plane in Fiji*, using a combination of the resting

581  fluorescence and per-trial responses to visualize the glomerular boundaries. Responses (AF/F)
582  were calculated using a 6 s baseline (F) that ended 1 s prior to nominal odor onset in each trial.
583  The odor response was quantified as the mean AF/F during the 2 s after odor onset. Odor

584  tuning of identified glomeruli, assigned using a combination of anatomical position, size,

585  shape, and responses to a diagnostic panel of 10 narrowly activating odor stimuli, matched
586  previous descriptions®°"%8,

587

588  MB imaging

589  Motion correction. For PN bouton and KC somata imaging, an initial round of 3D motion

590  correction was performed with the ‘NormCorre’ algorithm, using either the Matlab

591  implementation®® (https://github.com/flatironinstitute/NoRMCorre) or Python implementation
592  from the calcium imaging analysis library ‘CalmAn’®

593  (https://github.com/flatironinstitute/CalmAn). As necessary, planes were dropped following
594  motion correction due to field-of-view drift; typically the most superficial or deepest planes
595  were dropped if they were not consistently captured through the entire recording.

596

597  Source extraction. For movies of PN boutons and KC somata collected in the MB, source

598  extraction was carried out using either Suite2p® or CalmAn®. For all PN bouton, and for KC
599  somata data collected at a z-step of 2 ym, Suite2p was used to perform source extraction on a
600  plane-by-plane basis. ROIs corresponding to PN boutons and odor-evoked signals were

601  extracted in Suite2p's functional mode, using the activity-based algorithm. KC ROls and

602  signals were extracted in Suite2p's anatomical mode, using the ‘cellpose’ model to perform
603  anatomical segmentation on the mean (time-averaged) image. Extracted fluorescence traces
604  were neuropil-corrected (Feorrected = F = 0.7 *Freuropi) @nd normalized by z-scoring over time. The
605  ‘rastermap’ function® was used to visualize Feorectea fOr all extracted components, with cells
606  sorted to cluster those with similar patterns of activity. Stimulus-responsive clusters were

607  manually selected. For PN bouton movies, this step was used to filter out spurious ROls — only
608  components belonging to stimulus-responsive clusters were included in subsequent analyses.
609  For KC movies, the relatively high level of baseline fluorescence in combination with the use of
610  anuclear-targeted calcium indicator resulted in very high-quality cellular segmentation, with
611  very few (if any) spurious ROlIs. Figure 1G shows the responses of all extracted cells from one
612  representative experiment, with cells (rows) corresponding to stimulus-responsive clusters

613  displayed at the top of the matrix, and non-responder cell clusters shown at the bottom.

614 CalmAn-MATLAB was used to perform 3D source extraction on KC somata data

615 collected at a z-step size of 3 ym. For each KC, a single ROl was extracted, which was roughly
616  spheroid and spanned multiple planes. The fluorescence baseline F; was computed at each
617  timepoint by taking a fixed percentile (ranging from 20-40%) of a rolling 30 s time window.

618  Extracted raw calcium signals were detrended and normalized to baseline fluorescence FO to
619  compute AF/F responses. All components extracted by CalmAn were included in subsequent
620  analyses. Between ~1500-1900 KCs and ~500-800 PN bouton ROls were extracted per movie.
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621

622  Quantification of odor response. For Suite2p extracted signals, ROl response strength in a
623  single trial was computed by averaging the signal over an expected response peak time

624  window (0.25-2s post-stimulus onset for PN boutons, 2-8s post-stimulus for KCs), and

625  subtracting the mean pre-stimulus baseline (initiating 5s pre-stimulus for PN boutons, and 10s
626  pre-stimulus onset for KC soma). For CalmAn-extracted KC signals, the response strength for
627  each trial was calculated by subtracting the median 10s pre-stimulus baseline from the mean
628  15s post-stimulus AF/F signal. For all datasets, mean odor response strength was computed
629 by averaging across all trials in which the odor was presented.

630

631  KC response rate

632  KC response rates (Supplementary Figure S1) were computed from datasets in which source
633  extraction was performed using Suite2p, applying the ‘cellpose’ model to perform anatomical
634  segmentation. All extracted components were used in the analysis of response strength and
635  response breadth, including 'silent' cells that did not respond to any stimulus in the odor panel.
636 A cell was considered a 'responder’ if its trial-averaged response to a given odor exceeded a
637 fixed threshold. The response threshold was determined separately for each dataset using
638  ethyl propionate (a consistently strongly activating odor) as a reference, in order to adjust for
639  small differences in responsiveness of different experimental preparations. The KC response
640 rate to ethyl propionate was computed over a range of thresholds, with a step size of 0.05

641  between threshold values. Threshold values resulting in a 12-15% ethyl propionate response
642  rate were selected. The median of these values was chosen as the final response threshold
643  and was used to compute response rates for the other odors in the dataset.

644

645  Analysis of the representational space of odors

646  Distances between population representations of odor. The correlation distance between the
647  population representation of two odors was computed as 1-r, where r is Pearson’s correlation
648  between the population response vectors of the two odors. The population response vector
649  had length /, where /| was the number of glomeruli, boutons, or cells in each experiment. Each
650 element of this vector was the trial-averaged response of each glomerulus/bouton/cell to the
651  stimulus. Representational dissimilarity matrices (RDM) show the pairwise correlation distances
652  for every pair of odors imaged and aligned in the same experiment (same MB) and were

653  computed using only the set of cells, glomeruli, or boutons in each experiment that responded
654  to one or more odor stimuli. For each stage of processing, we computed a mean RDM by

655  averaging the odor x odor RDMs across individual flies.

656

657  Comparison of representational space across individual MBs. For each MB, we generated an
658  odor-odor distance vector of the correlation distances for every odor pair measured in

659 common across the flies being compared. To evaluate the similarity of MB odor

660 representational space across flies, we computed the Spearman’s rank correlation between
661  the odor-odor distance vectors for every pairwise combination of MBs. As a control, the cell x
662  odor response matrices for each MB were shuffled, and the same series of calculations

663  applied. For each iteration of the shuffle, odor responses were randomized by permuting the
664  columns of the cell x odor response matrix for each MB. The Spearman’s correlation computed
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665 from 10,000 iterations of this shuffle procedure was used to construct a distribution of

666  Spearman’s correlations that would arise from chance for each pair of MBs, to be compared
667  against the observed correlation.

668

669  Cell clustering. KCs were grouped by spectral clustering carried out on KC odor tuning profiles
670  using ‘sklearn.cluster.SpectralClustering’®. Trial-averaged odor response vectors for all KCs
671  that respond to one or more odors were pooled together from individual flies to create a grand
672  cell x odor response matrix. The number of rows in this matrix equaled the sum of the number
673  of responsive KCs across all flies and the number of columns equaled the number of odors
674  that were sampled in common across all flies. A KC x KC affinity matrix was computed by

675  taking the radial-basis transform of the KC x KC correlation distance matrix. Odor response
676  profiles for each cluster were calculated by averaging the responses of all cells assigned to
677  that cluster from each fly.

678

679  Modeling KC responses

680  We adapted a dynamic spiking model of the Drosophila olfactory network®

681  (https://github.com/annkennedy/mushroomBody) that implements the functional and

682  anatomical organization of the circuit. ORN input to the model was derived from a published
683  experimental dataset of the firing rate responses of 23 fly ORs to a panel of 109 odors®. The
684  model implements lateral inhibition in the AL with a divisive inhibition term that normalizes PN
685  firing rates. The model captures the response dynamics of PN and KC firing rates to an odor
686  pulse, where ORN input is estimated by simply convolving a step to the steady-state firing rate
687  with the cell’s synaptic membrane filter. For our analyses in this study, we focused on the

688  mean firing rate of each cell (PN or KC) averaged over the odor pulse.

689 The model was implemented under several different assumptions of PN-KC

690  connectivity. In the ‘uniform’ model, each of 2000 KCs had a mean of six input glomeruli, with
691 each input independently assigned to a glomerulus at random. Each glomerulus had an equal
692 likelihood of being selected at every input. In the ‘hemidraw’ model, each KC in the model

693 (1748 cells) corresponded to a KC in the hemibrain connectome dataset® and was assigned its
694  observed number of claws (between 1 and 12, mean of 5.36 claws). Each claw was then

695  independently assigned to a glomerulus according to the frequency of PN boutons for that
696  glomerulus in the hemibrain MB; thus, glomeruli varied in their likelihood of being drawn as an
697  input to each claw. In the ‘hemibrain’ model, each KC in the model was directly assigned the
698  set of glomerular inputs of its corresponding cell in the hemibrain connectome. However, since
699  glomeruli in the model were limited to the 23 ORs available in the Hallem dataset, modeled
700  ‘hemibrain’ KCs had only an average of ~4 inputs. To evaluate the impact of a reduced number
701 of inputs, versions of the ‘uniform’ and ‘hemidraw’ models were run with the distribution of the
702 number of claws per KC centered on 4. These models predicted very similar odor-odor

703  relationships to the earlier versions (data not shown).

704 The response rate of KCs to odor depends on both KC spiking threshold and the

705  strength of feedback inhibition to KCs from the anterior paired lateral (APL) GABAergic neuron.
706 In all versions of the model, KC spiking thresholds were assumed to be uniform across KCs
707  and were set to achieve an average KC response rate of 20% across odors. Global inhibition
708 by the APL was modeled as divisive inhibition at KC presynaptic terminals, and APL-KC
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709  weights were adjusted to halve the mean response rate across odors to 10%. This procedure
710  was motivated by experimental observations that silencing APL output roughly doubles KC
711  response rates.?? The APL was assumed to uniformly receive equal input from, and send equal
712 output to, all KCs. For modeling of KC responses to CO; (a stimulus not in the Hallem dataset),
713  an additional glomerulus (corresponding to glomerulus V) and odor (CO,) was added into the
714 OR input matrix. To estimate an upper bound for KC response rates to CO., the firing rate of
715  glomerulus V to CO, was set to the maximum ORN firing rate (300 Hz) and set to zero for all
716  other odors®.

717

718  Odor properties

719  Chemical descriptors were computed for each odor using the software Mordred#*'. Clustering
720  over features identified a reduced set of 570 descriptors that captured odor-odor relationships in
721  the full set of ~1800 descriptors; our analysis used this reduced set of descriptors

722 (Supplemental Table S3). Odor relationships in natural odor space were estimated from a large
723  database of headspace volatile profiles of natural food sources compiled from published

724  datasets from the food science literature (Volatile Compounds in Food, VCF16.9 database,

725  BeWiDo BV). The database contains 5564 observations from thousands of references. We

726  focused on 2190 observations for which volatile profiles were quantitatively described in

727  standardized units that could be compared between sources. For our analysis, we filtered

728  compounds to isolate those present in ten or more observations (775 odors) and used the log
729  scale of odor concentration.

730

731 Multidimensional scaling of odors in natural source space

732 We used hyperbolic non-metric multidimensional scaling (H-MDS)%* to embed odors into a low-
733 dimensional hyperbolic space based on correlation distance, which reconstructs original

734  distances monotonically (with preserved rank-ordering). The minimum Bayesian information
735  criteria (BIC) determines the best dimension of the embedding. A hyperbolic metric was then
736  used to measure distances between odors within the low-dimensional embedding space. To
737  check that the results generalize across different subsets of natural odor sources, we repeated
738  the analysis for a separate, albeit smaller secondary dataset that was compiled from another set
739  of natural source literature references (see Supplemental Table S4). We find that odor pair

740  distances computed in the VCF and in the secondary natural source dataset were positively
741  correlated (rho=0.85, p=1.5e-8). The correlation between datasets increased with increasing the
742 minimum number of odor sources for which a monomolecular odorant was required to be

743 present in calculating distances between odorants. This result indicates increased stability of
744  distances between more common odorants, that are ubiquitously present in natural

745  environment. Furthermore, in both datasets, the hyperbolic space provided the best low-

746  dimensional description. The curvature and best fitting dimensionality (dim=3) were similar, with
747  curvature = -5.1 for the VCF dataset and curvature = -4.1 for the secondary natural source

748  dataset.

749

750  Hierarchical clustering of odor representations

751  Representational dissimilarity matrices (RDM) show the pairwise correlation distances between
752  every pairwise combination of odors imaged and aligned in the same experiment. For each
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753  stage of processing, a mean RDM was computed by averaging the odor x odor RDMs across
754  individual flies. Dendrograms describing the relationships among odors at each stage of

755  processing were generated from the mean odor x odor RDM for each stage. Hierarchical

756  clustering of odors was implemented with ‘sklearn.cluster.AgglomerativeClustering’, using

757  Pearson’s correlation as the distance metric and average linkage criterion (minimizes the

758  average of the distances between all observations of pairs of clusters). These odor x odor RDM
759  matrices were treated as feature matrices with dimensions (samples, features) rather than

760  distance matrices — each odor was a different sample/row, and that odor’s features were its
761  distance to the odors.

762

763 Data inclusion criteria.

764  The number of flies (observations, n) in which each odor was measured is in Supplemental

765  Table S1. The number of observations of each odor-odor distance (odor pair measured in the
766  same MB) is in Supplemental Table S2. All flies analyzed in this study satisfied the following
767  criteria. First, any field-of-view drift and warping of structure could be fully corrected using

768  posthoc image registration, as evaluated by the ‘crispness’ of time-averaged movies (individual
769  nuclei distinct and separated). Second, stimulus-evoked responses were reliably observed over
770  the course of the entire recording in a ‘bulk’ fluorescence signal extracted in each frame from a
771  global ROI circumscribing the entire imaged structure. Third, trial-trial correlation distances for
772  repeated presentations of the same odor stimulus were clearly more similar to one another
773  than for presentations of different odor stimuli. Sample sizes were not predetermined using a
774  power analysis. We used sample sizes comparable to those used in similar types of studies®®.
775

776
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980 SUPPLEMENTAL MATERIALS
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Supplementary Figure S1: KC response properties.

A) Odor-evoked responses in three example KCs from odor trials in different movies (imaging sessions with
overlapping but distinct panels) collected in the same MB. Tracking and assignment of odor responses to KCs is
reliable across imaging sessions.

B) Comparison of KC response rate (mean and 95% ClI, n=4 flies) and mean evoked OR firing rate (across
glomeruli) in the Hallem dataset to each odor.

C) Observed fraction of KCs (mean and 95% ClI, n=4 flies) responding to the indicated number of odors for a panel
containing 17 odors. The distribution of the fraction of modeled KCs responding to different numbers of odors in
the uniform, hemidraw, and hemibrain models (see Figure 3) are plotted for comparison.
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D) Predicted KC response rates to narrowly activating (CO2, methyl salicylate) and broadly activating (ethyl
butyrate) odors, under assumptions of uniform connectivity. For selective odors, the input firing rate for the
cognate OR was set to saturating firing rates (300 Hz) to estimate the upper bound for KC response rate. For ethyl
butyrate, the observed firing rates across ORs in the Hallem dataset was used as input to the model.

E) Observed KC response rates to varying concentrations of the odors in D.
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Figure S2: KC population responses to another example odor panel, illustrating the invariance of MB
representational space across individuals.
A) Matrices of correlation distances from three different flies showing pairwise relationships between KC
population responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower
triangle).
B) Correlation distances between KC response vectors from different trials of the same odor. For each odor, the
trial-trial KC response correlation was computed for all pairs of trials of this odor in each fly and averaged. The plot
shows the mean and 95% CI of the fly averages. Compare to Figure 2E. Weaker odors tend to be less reliable
than stronger odors.
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MB representations of odor.

A) Example reconstruction from the hemibrain connectome®? of a uniglomerular DM2 PN and two example
postsynaptic partners, a Kenyon cell (KC) and a lateral horn neuron (LHN). Synaptic connections between
identified neurons contained within the hemibrain volume are fully described.
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B) For each third-order olfactory neuron, the set of glomeruli providing direct presynaptic input via PNs was
extracted from connectome datasets (hemibrain and FAFB). For this analysis, synaptic connections were binarized
(e.g., all glomerular inputs >5 synapses were treated equally regardless of synapse count).

C) The mapping of glomerular inputs to KCs was represented as a binary matrix, where a 1 in cell(i,j) indicates that
neuron j receives input from glomerulus j. The ‘Curveball’ algorithm was used to generate random matrices (null
model) that preserve the row and column totals of the original matrix6s.

D) For each pair of glomeruli, a distribution of the number of KCs receiving co-input from the two glomeruli in each
shuffled matrix was generated. The observed number of KCs receiving co-input from each pair of glomeruli in the
hemibrain was compared to this distribution to generate a z-score. An example distribution and z-score for the
over-convergent glomerular pair DM1 and DM3 are given.

E) Glomerular input structure to KCs in the hemibrain MB¢3 (left), KCs in the FAFB MBS (center), and lateral horn
neurons in the hemibrain LH (right). The z-score for each pair of glomeruli measures the degree to which the
glomeruli are over- or under-convergent in the observed population, compared to null models. A large positive
value indicates strong over-convergence, and a large negative value indicates strong under-convergence. The
ordering of glomeruli is the same in all matrices and was based on k-means clustering of the hemibrain MB matrix.
F) Matrix of pairwise correlation distances between predicted KC responses to 17 odors in the hemidraw model
(left). The mean pairwise relationships for observed KC responses are reproduced from Figure 3Ciii (right) for
ease of comparison.

G) Comparison of odor-odor correlation distances between observed KC responses and predicted KC responses
in the hemidraw model. Each symbol is an odor pair.

H) Matrix of pairwise cosine distances between predicted KC responses (uniform, hemidraw, or hemibrain
models), or observed KC responses, for 17 odors.
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A) Mean (top row) and standard deviation (bottom row) across flies of pairwise correlation distances of odor
representations in ORN axons (n = 4 flies), PN dendrites (n = 6 flies), PN boutons (n = 6 flies), and KC somata (n =
4 flies) for a panel of 17 odors.

B) Pairwise correlation distances of OR tuning in the Hallem dataset (left) and ORN axon terminal responses
measured in this study (right) for a panel of 17 odors.

C) Comparison of fractional KC response rates with odor-evoked Ci) firing rates across ORs in the Hallem dataset
(grey); Cii) ORN terminal responses (grey); Ciii) PN dendrite responses (grey); and Civ) PN bouton responses
(grey) for 17 odors. ORN terminal, PN dendrite, PN bouton, and KC responses are mean and 95% CI across flies
of the ROI-averaged evoked response to each odor in each fly.

D) Distribution of odor-odor correlation distances for representations at each stage of olfactory processing.

Supplemental Table S1: Odor information and number of observations (flies) for each odor in
KC somata datasets.

|0dor Abbreviation InChl Sigma-Aldrich Cat. No. CAS No. flies led (n)

1-hexanol 1-60l InChI=1S/C6H140/c1-2-3-4-5-6-7/h7H,2-6H2,1H3 471402 111-27-3 22
1-octanol 1-8ol InChI=1S/C8H180/c1-2-3-4-5-6-7-8-9/h9H,2-8H2,1H3 297887 111-87-5 16
1-pentanol 1-50l InChl=1S/C5H120/c1-2-3-4-5-6/h6H,2-5H2,1H3 138975 71-41-0 10
1-penten-3-ol 1-p3ol InChl=1S/C5H100/c1-3-5(6)4-2/h3,5-6H,1,4H2,2H3 1984 616-25-1 7
2-butanone 2-but InChl=1S/C4H80/c1-3-4(2)5/h3H2,1-2H3 360473 78-93-3 21
2-heptanone 2-hep InChI=1S/C7H140/c1-3-4-5-6-7(2)8/h3-6H2,1-2H3 537683 110-43-0 14
acetic acid aac InChi=1S/C2H402/c1-2(3)4/h1H3,(H,3,4) 695092 64-19-7 5
B-citronellol b-cit InChl=1S/C10H200/c1-9(2)5-4-6-10(3)7-8-11/h5,10-11H,4,6-8H2,1-3H3 (83201 106-22-9 12
benzaldehyde bnz InChl=1S/C7H60/c8-6-7-4-2-1-3-5-7/h1-6H 418099 100-52-7 20
delta-decalactone d-10lac InChl=1S/C10H1802/c1-2-3-4-6-9-7-5-8-10(11)12-9/h9H,2-8H2,1H3 74026 705-86-2 5
E2-hexenal e2-h InChI=1S/C6H100/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+ 158131000 6728-26-3 11
ethyl butyrate eb InChI=1S/C6H1202/c1-3-5-6(7)8-4-2/h3-5H2,1-2H3 E15701 105-54-4 14
ethyl cinnamate ec InChl=1S/C11H1202/c1-2-13-11(12)9-8-10-6-4-3-5-7-10/h3-9H,2H2,1H3/b9-8+ 66761 103-36-6 5
ethyl propionate ep InChl=1S/C5H1002/c1-3-5(6)7-4-2/h3-4H2,1-2H3 112305 105-37-3 16
eugenol eug InChl=1S/C10H1202/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3,5-7,11H,1,4H2,2H3 E51791 97-53-0 7
gamma-hexalactone  g-6lac InChl=1S/C6H1002/c1-2-5-3-4-6(7)8-5/h5H,2-4H2,1H3 68554 695-06-7 6
hexanal 6al InChI=1S/C6H120/c1-2-3-4-5-6-7/h6H,2-5H2,1H3 115606 66-25-1 15
isoamyl acetate iaa InChl=1S/C7H1402/c1-6(2)4-5-9-7(3)8/h6H,4-5H2,1-3H3 W205532 123-92-2 12
linalool lin InChl=1S/C10H180/c1-5-10(4,11)8-6-7-9(2)3/h5,7,11H,1,6,8H2,2-4H3 12602 78-70-6 10
methyl octanoate mo InChl=1S/C9H1802/c1-3-4-5-6-7-8-9(10)11-2/h3-8H2,1-2H3 21719 111-11-5 9
methyl salicylate msl InChl=1S/C8H803/c1-11-8(10)6-4-2-3-5-7(6)9/h2-5,9H,1H3 M6752 119-36-8 14
pentyl acetate pa InChl=1S/C7H1402/c1-3-4-5-6-9-7(2)8/h3-6H2,1-2H3 109584 628-63-7 15
propyl acetate pac InChI=1S/C5H1002/c1-3-4-7-5(2)6/h3-4H2,1-2H3 40858 109-60-4 7
valeric acid va InChl=1S/C5H1002/c1-2-3-4-5(6)7/h2-4H2,1H3,(H,6,7) 240370 109-52-4 13

Supplemental Table S2: Mean, 95% CI, SEM, and number of observations (flies) of the
correlation distance for every unique odor pair in KC somata datasets.

Supplemental Table S3: Reduced list of Mordred molecular descriptors used in this study.

Supplemental Table S4: References contributing to a secondary natural odor source database.
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