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ABSTRACT 14 
A core challenge of olfactory neuroscience is to understand how neural representations of odor 15 
are generated and progressively transformed across different layers of the olfactory circuit into 16 
formats that support perception and behavior. The encoding of odor by odorant receptors in the 17 
input layer of the olfactory system reflects, at least in part, the chemical relationships between 18 
odor compounds. Neural representations of odor in higher order associative olfactory areas, 19 
generated by random feedforward networks, are expected to largely preserve these input odor 20 
relationships1–3. We evaluated these ideas by examining how odors are represented at different 21 
stages of processing in the olfactory circuit of the vinegar fly D. melanogaster. We found that 22 
representations of odor in the mushroom body (MB), a third-order associative olfactory area in 23 
the fly brain, are indeed structured and invariant across flies. However, the structure of MB 24 
representational space diverged significantly from what is expected in a randomly connected 25 
network. In addition, odor relationships encoded in the MB were better correlated with a metric 26 
of the similarity of their distribution across natural sources compared to their similarity with 27 
respect to chemical features, and the converse was true for odor relationships encoded in 28 
primary olfactory receptor neurons (ORNs). Comparison of odor coding at primary, secondary, 29 
and tertiary layers of the circuit revealed that odors were significantly regrouped with respect to 30 
their representational similarity across successive stages of olfactory processing, with the 31 
largest changes occurring in the MB. The non-linear reorganization of odor relationships in the 32 
MB indicates that unappreciated structure exists in the fly olfactory circuit, and this structure 33 
may facilitate the generalization of odors with respect to their co-occurence in natural sources. 34 
 35 
 36 
INTRODUCTION 37 
The search for organizing principles of olfaction has often focused on relating the chemical 38 
structure or physicochemical properties of odorants to their percept4. This approach is principled 39 
since odors are detected by their molecular interactions with large families of structurally diverse 40 
odorant receptor (OR) proteins expressed in ORNs5. Recently, significant inroads have been 41 
made in predicting a molecule’s odor from its structure6,7 but developing a generalized 42 
relationship between odorant structure and perception across the space of all possible odor 43 
stimuli remains challenging because of discontinuities in this relationship: small changes in 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528627doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528627
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

structure often result in dramatic changes in a molecule’s odor8,9. This gap in understanding 45 
motivates a search for additional organizational axes of odor space to complement structure-46 
based approaches towards gaining a better understanding of what determines a molecule’s 47 
smell. 48 
 49 
Another important property of odorants is how they are organized relative to one another in 50 
natural environments. Odors from natural sources are typically complex mixtures of dozens to 51 
hundreds of monomolecular odorants, the composition of which is controlled by the conserved 52 
biochemical and metabolic processes in the source10,11. The relative abundance or ratios of 53 
volatiles in natural odor profiles can provide information about the value or state of the odor 54 
source12,13, for instance, if microbes that promote fermentation or spoilage are dominant. Thus, 55 
the odor space of the natural world is highly structured, and this structure often contains 56 
information about the identity or ethological value of the odor source. 57 
 58 
We investigated how representations of odor at different stages of processing in the brain of the 59 
vinegar fly Drosophila melanogaster relate to different odor properties, focusing on their 60 
chemical properties or their relative abundances in behaviorally significant natural odor sources 61 
like food. The fly has a compact olfactory system with a similar overall circuit architecture to its 62 
vertebrate counterpart14. All ORNs that express the same OR project to a common synaptic 63 
compartment, called a glomerulus, in the antennal lobe (AL), and the dendrites of uniglomerular 64 
second-order projections neurons (PNs) extend into a single glomerulus15. Thus, each 65 
glomerulus, corresponding to a specific OR, represents a fundamental unit of olfactory 66 
processing. A major target of PN output from the AL is the mushroom body (MB), a cerebellum-67 
like associative center in the fly brain that encodes representations of odor identity16. Wiring of 68 
PN inputs to Kenyon cells (KCs), the principal neurons of the MB, is probabilistic: each of the 69 
~2000 KCs integrates input from a subset of PNs comprising ~10% of the ~50 olfactory 70 
glomeruli in the system17–19. KCs have high spiking thresholds and act as coincidence detectors 71 
that fire only when multiple input PNs are co-active20,21, and local feedback inhibition between 72 
KCs is provided from the arborizations of an unusual single, large GABAergic neuron called the 73 
APL22.  74 
 75 
This circuit architecture recodes dense, distributed representations of odor in the ~50 glomeruli 76 
of the PN layer into a sparse, high-dimensional representation in the MB layer3,23–25 that 77 
facilitates pattern separation and linear decoding by a smaller number of MB output neurons. 78 
Theoretical studies of cerebellum-like circuits, characterized by expansion (PN input onto KCs) 79 
and reconvergence (KC output onto MB output neurons), emphasize the role of random, 80 
unstructured input for decorrelating activity patterns and maximizing the dimensionality of 81 
representations26,27. Such features would promote efficient memory storage and reduced 82 
synaptic inference during stimulus-specific associative learning and recall.  83 
 84 
Feedforward random network models of the MB predict that odor relationships encoded in the 85 
MB should be strongly decorrelated, invariant across individual brains, and should preserve 86 
stimulus relationships encoded at the level of ORN input 1,28–30. However, recent large-scale EM 87 
reconstructions of MB synaptic connectivity demonstrated that some PN inputs are structured. 88 
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In particular, inputs from glomeruli tuned to odors common in food are more likely to converge 89 
onto the same KC targets19, though the functional impact on MB representations of odor 90 
remains to be determined. Whereas random networks maximize coding capacity and promote 91 
the separability of odor representations throughout odor space, structured networks can 92 
correlate specific odor representations to promote generalization between odors sharing 93 
particular ethological meaning. We investigated how odor coding in the fly olfactory circuit 94 
balances these competing needs. 95 
 96 
 97 
RESULTS 98 
 99 
Population imaging of odor representations in the MB at cellular resolution 100 
In the arc of sensorimotor transformation, representations of odor identity encoded in KC activity 101 
patterns represent the output from the sensory arm of the pathway, which is flexibly coupled to 102 
distinct downstream outputs and behaviors31. Thus, we began by investigating representations 103 
of odor in the MB. The Drosophila olfactory circuit is the most comprehensively mapped 104 
metazoan olfactory system, with the tuning of approximately half of the odorant receptors to a 105 
large panel of 109 odors described by the Hallem dataset32. We selected 24 monomolecular 106 
odors that spanned OR input space (Figure 1A) and investigated the extent to which those 107 
relationships at the periphery are maintained in the MB.  108 
 109 
We used in vivo volumetric two-photon microscopy to image odor-evoked calcium signals in the 110 
MB of flies expressing nuclear-localized GCaMP6s selectively in KCs (directed by the OK107-111 
Gal4 driver33) (Figure 1B-C). In pilot experiments using cytoplasmic GCaMP6f as the calcium 112 
reporter, the small size (~2-3 µm) and tight, regular packing of KC somata (Figure 1E) 113 
presented challenges for motion correction, good cellular segmentation, and reliable pixel 114 
assignment to individual KCs over the course of an imaging session, with poor trial-to-trial 115 
reliability in odor panels larger than 8 odors. To expand the size of odor panels that could be 116 
evaluated in a single brain, we turned to measuring nuclear calcium, which has slower response 117 
dynamics, but strongly correlated response amplitudes compared to cytoplasmic calcium34,35. 118 
Localization of the calcium indicator to nuclei resulted in a several pixel gap between KCs that 119 
facilitated reliable cellular segmentation (Figure 1E, H) and enabled recording of the 120 
representations of between 8 to 17 odors in the same MB.  121 
 122 
Flies were presented odors in pseudo-random sequences while rapidly z-scanning through the 123 
KC cell body layer. Following volumetric motion correction, odor-evoked KC signals were 124 
extracted using the Suite2P software package36. In brief, after correcting for motion in each 125 
plane, regions of interests (ROIs) representing each KC were extracted (Figure 1H). Although 126 
cell detection in Suite2P is usually neural activity-based, we extracted the spatial footprint of 127 
each cell by performing anatomical segmentation on time-averaged images, resulting in 128 
detection of between ~85-95% of the expected number of KCs. Since KC odor responses are 129 
sparse and many KCs do not respond to any odor in even a relatively large panel, this 130 
adjustment enabled reliable estimates of KC response rates. For a subset of experiments, odor 131 
responses were registered to KCs across  132 
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Figure 1: Population representations of odor in the fly MB at cellular resolution.  
A) t-SNE embedding of 109 odors based on the patterns of activity they elicit across 24 fly ORs in the Hallem 
dataset. A subset (open grey symbols) spanning the odor space was selected for measurement in the MB. 
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B) Odors were delivered to the antennae of immobilized flies expressing nuclear-localized GCaMP6s in all KCs, 
while imaging from KC somata with a two-photon microscope. 
C) Imaging volumes comprising ~11 planes through the KC layer capture the activity of >85% KCs in an MB.  
D) Configuration of volumetric imaging trial (3 Hz sweep rate). 
E) Reconstruction of 3D ROIs corresponding to each KC from interleaved high-resolution anatomical imaging 
stacks. Scale bar, 10 µm. 
F) Example odor-evoked calcium signals in an imaging block from a single KC. 
G) Population representations in ~1800 KCs to 17 odors in the MB from a representative fly. Each row is a cell and 
each column is a trial. Cells are sorted by odor tuning. 
H) Top: baseline fluorescence (left), weighted ROI masks of KCs (middle), and ROI lablels corresponding to 
individual KCs (right) from a single imaging plane in an MB. Bottom: odor-evoked patterns of KC activity in 
response to 1-pentanol, 1-hexanol, and ethyl propionate. Scale bar, 10 µm. 
I) Matrix of pairwise correlation between KC population responses in individual odor trials, where trials are shown 
in presentation order (left) or grouped by odor (right). KC responses elicited by 1-hexanol were more similar to 
those elicited by 1-pentanol (green) than by ethyl propionate (orange). 
Flies had genotype 20xUAS-nls-OpGCaMP6s-p10 (III)/+; OK107-Gal4 (IV)/+. Odors are pentyl acetate (pa), 
isoamyl acetate (iaa), methyl octanoate (mo), ethyl butyrate (eb), ethyl propionate (ep), 1-pentanol (1-5ol), 1-
hexanol (1-6ol), 1-penten-3-ol (1-p3ol), 1-octanol (1-8ol), 2-heptanone (2-hep), 2-butanone (2-but), hexanal (6al), 
E2-hexenal (e2-h), benzaldehyde (bnz), methyl salicylate (msl), eugenol (eug), ethyl cinnamate (ec), linalool (lin), b-
citronellol (b-cit), acetic acid (aac), propionic acid (pac), valeric acid (vac), g-hexalactone (g-6lac), d-decalactone 
(d-10lac).  
 

 different functional movies collected from the same MB by alignment of ROIs to 3D anatomical 133 
models of KC somata constructed from high-resolution structural images through the MB (Figure 134 
1E; Figure S1A). 135 
 136 
Reproducible odor-specific response dynamics were observed in some cells (Figure 1F), but, 137 
given the overall slow kinetics of nuclear-localized GCaMP6s, we focused our analysis in this 138 
study on the peak amplitude of odor-evoked responses. KC population responses were stable, 139 
odor-specific, and reliable across repeated trials of the same stimulus (Figure 1F-1G, Figure 140 
S1A). The pairwise relationship between odor representations in MB coding space was 141 
quantified using the correlation distance 1-r, where r is Pearson’s correlation between the 142 
vectors of KC responses to each pair of odor. Quantifying odor relationships using other metrics 143 
such as cosine distance yielded similar results (e.g., Figure S3H). When we computed the 144 
correlation distance between the KC response vector for every pairwise combination of trials in 145 
an experiment (Figure 1I, left) and reordered the distance matrix to group together trials by odor, 146 
we observed that KC responses to repeated presentations of the same odor were very strongly 147 
correlated (on-diagonal blocks, Figure 1I, right). These results demonstrate the reliability of KC 148 
odor responses across multiple presentations spanning the time course of an experiment. As 149 
expected, the pairwise correlation distance between odors reflected the qualitative similarity of 150 
their respective KC response patterns (Figure 1H-I), with visually similar activity patterns 151 
corresponding to short odor distances. 152 
 153 
The percentage of KCs responding to each odor was similar in each MB, ranging from ~5-13% 154 
depending on the odor (Figure S1B). When compared against mean OR activity for each odor, 155 
estimated by averaging the firing rates evoked by each odor across all ORs in the Hallem 156 
dataset, KC response rate was not significantly correlated with mean ORN response strength 157 
(Figure S1B, Spearman’s rho=0.48, p=0.05). However, we note that the Hallem dataset  158 
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Figure 2: MB representational space is structured and invariant across individuals. 
A) Correlation distance matrices for four different flies showing pairwise relationships between KC population 
responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower triangle).  
B) Correlation distance between trial-averaged KC responses for every odor pair for the four flies in A. Odor pairs 
are in the same order in each row, arranged by the rank of their mean correlation distance across the four flies. 
Odors that evoke similar KC response patterns in one fly tend to also elicit similar response patterns in other flies. 
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C) Spearman’s rank correlation between the rows of B (i.e., between flies), evaluating the similarity of the rank 
ordering of odor pairs between flies according to their representational distance in KCs. 
D) Left: same as C, but for shuffled data in which the odor labels were randomly permuted for the responses of 
individual flies. The matrix shows the mean Spearman’s correlation across 10,000 shuffles. Right: observed 
Spearman’s correlation (black) and the mean and 95% CI of the Spearman’s correlation across 10,000 shuffles 
(grey) for each fly pair. Red dotted line marks the mean observed Spearman’s correlation (rho=0.76). 
E) Correlation distance (mean and 95% CI) between KC responses for each odor pair, averaged across all flies in 
which the odor pair was sampled (n=3-22, see Supplemental Table 1). Each unique odor pair was assigned a 
reference ID (see Supplemental Table 1). A one-way ANOVA showed there was a significant difference in the 
odor-odor correlation distance between different odor pairs (F statistic=12.6, p=10-180), consistent with odor-odor 
relationships being reliable across MBs in different flies. The correlation distance (mean and 95% CI across 100 
model MBs) between predicted KC responses for odor pairs in the uniform, hemidraw, and hemibrain models are 
plotted for reference (see Figure 3).   
F) Matrix of pairwise correlation distances between odor response profiles of every KC in the four flies in A that 
responded to at least one odor. The distance matrix was ordered by spectral clustering on the mean odor 
response vector of each cell. Each response cluster contained KCs from every fly. 
G) Mean KC tuning profiles of each cluster, computed across KCs in each cluster in each fly. KCs with conserved 
odor tuning profiles are found in every MB. 
 

underestimates ORN population responses to acids and amines since it does not include 159 
odorant receptors from the ionotropic receptor (IR) family37.  160 
 161 
Overall, KCs were narrowly tuned, with most cells responding to two or fewer odors, and a 162 
significant fraction (~34%) responding to no odor in a diverse 17-odor panel (Figure S2B). 163 
However, compared against modeled KC responses (see below), observed odor responses in 164 
KCs were more broadly tuned. This result is consistent with observations that existing MB 165 
models poorly predict KC response rates to narrowly activating odors that selectively excite only 166 
one or very few ORN classes (e.g., CO2 or methyl salicylate, Figure S1D-E). These results 167 
confirm that KC responses are sparse and selective. They also indicate that current 168 
assumptions about MB circuit properties do not fully account for observed KC response rates to 169 
all odors, particularly for narrowly activating odors. 170 
 171 
Representations of odor in the MB are structured and invariant across individuals 172 
In most circuits of the fly brain, neuronal connectivity is invariant across individuals, but the MB 173 
is distinct in that the wiring of PN inputs is probabilistic: each of the ~2000 KCs, the principal 174 
neurons of the MB, integrates input from a quasi-random subset of PNs comprising ~10% of the 175 
~50 olfactory glomeruli in the system. As the number of possible glomerular combinations far 176 
exceeds the number of KCs in any given MB, stereotyped KC connectivity, defined by a specific 177 
set of synaptic inputs, does not exist across individual MBs. Indeed, a small set of genetically 178 
defined KCs labeled by a sparse Gal4 driver did not exhibit stereotyped odor tuning38. However, 179 
feedforward network models that assume random divergent connectivity between second- and 180 
third-order olfactory layers predict that, while third-order olfactory responses will be 181 
comparatively decorrelated, they will otherwise maintain relative pairwise odor relationships 182 
present in the prior layer. Thus, these models predict that the geometry of third-order olfactory 183 
representations will be invariant across different instantiations of the network (i.e., MBs), with 184 
preserved odor relationships that are predictable from the stereotyped tuning of OR inputs. 185 
 186 
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To evaluate these ideas, we compared the correlational structure of odor representations 187 
encoded in KC activity patterns in multiple flies. We found that the relationships between odors 188 
in MB representational space were indeed structured and highly invariant across individual 189 
brains (Figure 2A, S2A), consistent with prior work3. We evaluated the similarity of the 190 
correlational structure across MBs by comparing the rank order of odor-odor correlation 191 
distances in each MB (Figure 2B-C). The observed distribution of MB-MB correlations 192 
(Spearman’s rho=0.76 +/- 0.06) was significantly different from shuffled controls (Figure 2D, p 193 
<10-4). Also, the correlation distance between specific pairs of odors was consistent across 194 
individual MBs: odors that evoked similar KC response patterns in one fly tended to also have 195 
similar KC responses in other flies, and the same was observed for odors that evoked dissimilar 196 
representations (Figure 2E, S2B; p=10-186, one-way ANOVA). Finally, we combined all KCs that 197 
respond to one or more odors from four different flies and clustered the KCs based on each 198 
cell’s odor response profile. This analysis identified reliable response types with specific odor 199 
tuning profiles, and each response type was found in each of the four flies (Figure 2F). For 200 
instance, KCs that are strongly co-tuned to 2-heptanone, isoamyl acetate, and pentyl acetate 201 
were reliably observed in every MB (Figure 2G). These results demonstrate that the structure of 202 
the representational space of odors is highly conserved across individual MBs in the fly. 203 
 204 
Odor distances in MB coding space diverge from odor relationships predicted by a 205 
random feedforward network model 206 
To compare the observed structure of MB representational space to what is predicted by a 207 
feedforward random network, we modeled KC population responses by adapting a previously 208 
described, biologically plausible spiking model of the fly olfactory circuit30 (Figure 3A). PN 209 
responses, modeled from OR firing rates in the Hallem dataset32, were used as input to a 210 
population of 2000 spiking KCs. KCs were modeled as leaky integrate-and-fire units with a small 211 
number of input sites, typically ~5-7 dendritic claws, that each receive input from a single PN 212 
bouton. Under assumptions of random feedforward connectivity, the matrix of PN-KC 213 
connections in each model instantiation was created by assigning each KC claw a single 214 
glomerular input, with all glomeruli having an equal likelihood of being drawn (“uniform” model). 215 
The inputs to the model were the firing rates of approximately half of fly ORs to 109 odors from 216 
the Hallem dataset. KC activity was normalized by global feedback inhibition from the 217 
GABAergic APL. KC spiking thresholds and APL-KC inhibitory weights were tuned to achieve a 218 
mean KC response rate of ~10% across odors (see Methods), which matches experimental 219 
observations. 220 
 221 
The correlation between modeled KC responses for specific odor pairs was indeed consistent 222 
across 100 simulated MBs with different, independently drawn random PN-KC connectivity 223 
matrices (Figure 3B, error bars are 95% CI across simulations). However, the observed 224 
structure of odor representations in KC coding space was only partially predicted by the 225 
feedforward random model, with the observed relationship between odors deviating significantly 226 
from model predictions for many odor pairs (Figure 2E, 3C, Di, S3H). In particular, observed 227 
pairwise odor relationships were overall more decorrelated than those predicted from modeled 228 
KC populations (Figure 3Di). Adjusting fit parameters to yield a lower mean KC response rate of 229 
5% across odors did not appreciably  230 
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Figure 3: Odor relationships in MB representational space deviate from predicted relationships in a 
random feedforward network 
A) Schematic of the fly olfactory network. Not depicted is a single GABAergic neuron (APL) in the MB that 
mediates feedback inhibition among KCs. 
B) Comparison of relationships between predicted KC representations (uniform model) and observed OR tuning 
profiles for each odor pair (grey symbols). Error bars are 95% CI of KC correlation for each odor pair across 100 
model MBs; each simulated MB has an independently generated PN-KC connectivity matrix drawn under 
assumptions of uniform input (each glomerulus drawn with equal probability). 
C) Matrix of pairwise correlation distances between OR tuning profiles from the Hallem dataset (Ci); predicted KC 
responses in the uniform model (Cii, left) or hemibrain model (Cii, right); or observed KC responses (Ciii) for 17 
odors.   
D) Comparison of correlation distances for each odor pair between observed KC responses for each odor pair and 
predicted KC responses in the uniform (Di) and hemibrain (Dii) models. Each symbol is an odor pair. 
 

affect the systematic overprediction of the degree of correlation between odor representations, 231 
nor did it affect the rank order of predicted odor-odor correlation distances (data not shown). 232 
  233 
Recent analysis of the global structure of glomerular input sampling by third-order olfactory 234 
neurons (Figure S3A) using large-scale EM-level reconstructions of part of the Drosophila brain 235 
at synaptic resolution revealed that the wiring of PN inputs to KCs is not fully random18,19, as 236 
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was previously believed. Indeed, analysis of the complete matrix of PN-KC connectivity from 237 
two independently reconstructed fly brains confirmed that KCs sample particular combinations 238 
of PN inputs at a higher rate than is expected based on their numerical frequency, and the 239 
structure of this biased input onto KCs is similar between two MBs from different flies19 (Figure 240 
S3B-E). We also observed that the glomerular input structure to KCs bears significant similarity 241 
to the structure of glomerular input to third-order olfactory neurons in the lateral horn (Figure 242 
S3E), a brain region dedicated to innate odor processing in which neurons have stereotyped 243 
connectivity and tuning39,40.  244 
 245 
To assess the possible impact of structured input on MB odor representations, we predicted KC 246 
odor responses in the model under conditions in which the PN-KC connectivity matrix was 247 
drawn according to the observed frequency of PN boutons corresponding to each glomerulus in 248 
the hemibrain dataset (“hemidraw”) or in which the experimentally reconstructed hemibrain PN-249 
KC connectivity matrix was directly implemented (“hemibrain”) (see Methods). Neither 250 
adjustment to PN-KC connectivity improved predictions of observed KC odor relationships 251 
(Figure 3C, 3Dii, S3F-H); in fact, predicted responses for most odor pairs tended towards being 252 
more correlated compared to the uniform model. These results indicate that observed biases in 253 
PN-KC connectivity are unlikely to account for the differences between observed and predicted 254 
KC odor responses; they suggest additional sources of structure are present in the olfactory 255 
circuit that mediate the observed transformation of odor representations from the periphery to 256 
the MB. 257 
 258 
Reorganization of representations of odor in the MB around odor relationships in natural 259 
sources 260 
Comparisons of odor representations in the OR input layer and in the MB showed that, although 261 
the representations of most pairs of odors were substantially decorrelated, as expected, some 262 
odor pairs were comparatively less decorrelated between the OR and MB layers. This 263 
transformation resulted in a significant regrouping of odor relationships in OR versus MB coding 264 
space. For instance, the odors 2-heptanone, isoamyl acetate, and pentyl acetate emerged as a 265 
cluster with similar KC representations, distinct from other odors in the panel, whereas the 266 
representation of each of these odors is similar to many others at the level of its OR 267 
representation (Figure 3Ci, iii).  268 
 269 
To better understand the functional implications of this reorganization, we asked how odor 270 
representations at different stages of olfactory processing relate to the properties of the odors, 271 
focusing in particular on their chemical properties and on how they are correlated across natural 272 
odor sources. For each odor, we computed molecular and physicochemical descriptors using 273 
Mordred, an open-source molecular descriptor calculation software41. Since many descriptors 274 
are highly correlated across odors, we identified a reduced set of 570 molecular descriptors that 275 
captured the chemical relationships between odors equivalently to the full set of descriptors 276 
(Supplemental Table S3).  277 
 278 
D. melanogaster is an ecological generalist and human commensal42; as a starting point for 279 
understanding the structure of natural odor space for Drosophila, we used a database of the  280 
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Figure 4: Reorganization of odor representations in the fly MB reflects odor relationships in natural 
sources. 
A) Distribution of odors (monomolecular compounds, rows) in a literature-based database of the volatile 
headspace composition of many natural food odor sources (columns). The pie chart shows the distribution of odor 
sources in each food category. 
B) Schematic summary of datasets for comparing the properties of odors (top) with their different neural 
representations (bottom). 
C) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their distances in 
chemical descriptor space.   
D) Comparisons of odor-odor correlation distances in OR (left) or KC (right) coding space with their embedded 
distances in a hyperbolic model of natural source space.   
E) Summary of correlation (lower triangle) and p-values (upper triangle) for comparisons between observed OR, 
observed KC, or modeled KC (uniform or hemibrain) odor relationships and odor-odor relationships in chemical or 
natural source space. 
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headspace volatile profiles for many food odor sources, compiled from 4407 published chemical 281 
datasets primarily from the food and flavor science literature (Figure 4A). The odor sources are 282 
biased towards fruits, plants, and vegetables, but also includes other common human foods 283 
such as alcoholic beverages, meat, and dairy products. The database comprises thousands of 284 
samples measured from 887 types of natural sources (apple, tomato, wine, etc.) and contains 285 
over 8,000 monomolecular volatiles. Like other datasets profiling the chemical volatiles emitted 286 
from natural sources43, the majority of odorants occur sparsely in a small number of sources, 287 
though a significant minority of odors are present broadly across many sources (Figure 4A).  288 
 289 
Recently, we showed that the use of hyperbolic coordinates to embed the concentrations of 290 
individual monomolecular odorants as they occur in natural odor sources better captures odor 291 
relationships in the space of natural sources, compared to embeddings that use Euclidean 292 
metrics12,45. Thus, to describe the similarity in distribution across natural odor sources for a 293 
given pair of odors, we started with a normalized correlation coefficient computed between odor 294 
abundances across different natural sources. Based on these distances, we performed 295 
nonlinear dimensionality reduction using different curved and flat metrics64. The method 296 
automatically adjusts the curvature of the embedding space and selects the best fitting 297 
dimension based on the Bayesian Information Criterion44. We found that the natural odor 298 
abundance data was best described by a three-dimensional hyperbolic space with a negative 299 
curvature of -5.12. This observation mirrors previous results using a more limited dataset of 300 
natural fruit or flower odor sources in which hyperbolic geometry also provided a significantly 301 
better fit of the natural source space than the standard Euclidean geometry12,45 . The intuitive 302 
explanation for these results is that hyperbolic spaces provide good descriptions of the structure 303 
of natural odor spaces because they arise as continuous approximations to tree-like hierarchical 304 
networks. In the case of natural source data, the hierarchical relationships are hypothesized to 305 
reflect dependencies produced by biochemical and metabolic pathways acting in plants and 306 
other food sources, including in associated microbes like bacteria and fungi. In contrast, 307 
nonlinear dimensionality reduction of odor distances computed from chemical descriptors 308 
resulted in a hyperbolic embedding with higher dimension (dim=6) and much reduced curvature 309 
(0.05) that did not provide a better fit of the dataset than a Euclidean model. Since odor 310 
distances in the hyperbolic embedding better captured the correlational structure of abundances 311 
of odors across natural sources compared to equivalent distances computed from a Euclidean 312 
embedding, we used hyperbolic distances as a metric of odor relationships in natural source 313 
space. 314 
 315 
For each pair of odors in the dataset, we compared their representational distance in OR or KC 316 
coding space with their relationship in chemical descriptor space or natural source space 317 
(Figure 4B). We found that pairwise odor distances in OR coding space were better correlated 318 
with their distances in chemical descriptor space (rho=0.27, p=2.4e-53) as compared with their 319 
distances in natural source space (rho =0.087, p =4.8e-6) (Figure 4C-D). The converse was true 320 
for odor distances in KC coding space: pairwise distances in KC coding space were better 321 
correlated with their distances in natural source space (rho =0.23, p =7.1e-4) compared to their 322 
distances in chemical descriptor space (rho =0.07, p=0.06) (Figure 4C-D). The correlation to 323 
distances in KC coding space was observed only for natural source odor relationships quantified 324 
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by the hyperbolic embedding of natural source space, but not by Euclidean distance (Figure 325 
4E), suggesting that capturing hierarchical relationships in the dataset is important and that the 326 
low-dimensional embedding helps to de-noise the data. We also evaluated the relationship of 327 
odor properties to odor distances in the modeled KC coding space under assumptions of 328 
unstructured PN-KC connectivity. In contrast to the observed KC distances between odors, 329 
modeled KC distances were better correlated with odor distances in chemical descriptor space 330 
(rho=0.23, p=1.4e-38) compared to hyperbolic odor distances in natural source space 331 
(rho=0.061, p=8.4e-3) (Figure 4E). This result is expected since, under assumptions of 332 
unstructured connectivity in the olfactory circuit, the relationship of odors in KC coding space 333 
stems from their relationships in OR input space. Similar results were observed for odor 334 
relationships computed from KC responses predicted using the hemibrain circuit model, 335 
indicating that the observed degree of glomerular input bias to KCs in the hemibrain does not 336 
explain the reformatting of odor relationships in the MB. Overall, these data indicate that the 337 
realignment of odor representation with natural source relationships that we observed in KCs 338 
cannot be derived simply by random resampling of OR responses. 339 
 340 
To determine if the relationships between odor representations and odor properties were driven 341 
by only a small number of odor pairs in the dataset, we recomputed the correlations between 342 
OR or KC representational distance and chemical descriptor or natural source distance using 343 
100 subsamples comprising 75% of the odor pairs, dropping out a random 25% of the odor 344 
pairs in each resampling. This analysis confirmed that odor distances in OR space were more 345 
correlated with distances in chemical descriptor space as compared to in natural source space, 346 
and vice versa for odor distances in KC space. These findings are consistent with a 347 
reorganization of the fly olfactory code between the periphery and the MB from encoding the 348 
chemical or structural relationships between odors to reflecting the odor relationships in 349 
complex mixtures arising from natural sources.   350 
 351 
Odor relationships are restructured across successive stages of olfactory processing 352 
To better understand how representations of odor are reformatted from the periphery to the MB, 353 
we used functional imaging to measure odor-evoked patterns of activity at each successive 354 
stage of processing in the olfactory circuit. While delivering odors to the antennae of the fly, we 355 
volumetrically imaged from all ORN axon terminals (labeled by the pebbled-Gal4 driver) or from 356 
~70% of PN dendrites (labeled by the GH146-Gal4 driver) in the antennal lobe46, where the 357 
neurites from these cell populations are stereotypically organized into glomerular compartments 358 
with characteristic size and position (Figure 5A-B). Population imaging from the terminals of all 359 
ORN classes allowed odor relationships to be assessed in the complete OR input space to the 360 
olfactory system, whereas the Hallem dataset measures the tuning of only approximately half of 361 
all fly ORs (Supplemental Figure S4B). ROIs corresponding to individual glomeruli were 362 
manually segmented from movies of odor responses in ORN axon or PN dendrites and their 363 
odor response profiles extracted. To evaluate patterns of odor-evoked PN output, we 364 
volumetrically imaged from the axonal boutons of ~70% of PNs (labeled by the GH146-Gal4 365 
driver) in the calyx of the MB, where they synapse onto the sites of KC input (claws) (Figure 5A-366 
B). ROIs corresponding to PN boutons were automatically segmented using Suite2P; visual  367 
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Figure 5: Reformatting of odor representations across four stages of olfactory processing. 
A) Anatomical schematic of fly olfactory circuit. ORN axon terminals are organized in a stereotyped glomerular 
map in the AL. Each uniglomerular PN has dendrites in a single AL glomerulus and projects to the calyx of the MB, 
where its axonal arbor terminates in multiple boutons that each synapse with KC input claws.  
B) Representative baseline fluorescence and peak DF/F heatmaps of odor-evoked calcium signals in ORN axon 
terminals, PN dendrites, PN boutons, and KC somata to 1-pentanol, 1-hexanol, and ethyl propionate. KC data are 
reproduced from Figure 1. Scale bar, 10 µm. Genotypes: ORN axons are imaged in pebbled-Gal4, UAS-GCaMP6f; 
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 inspection confirmed that > 95% of ROIs reliably corresponded to single PN boutons. Odor 368 
relationships were invariant across the brains of different individuals at each of these earlier 369 
stages of olfactory processing (Figure S4A), consistent with the stereotyped connectivity of the 370 
antennal lobe. 371 
 372 
Comparing the pairwise correlation distances between odor representations in each layer of the 373 
olfactory circuit, odor representations were progressively decorrelated at each feedforward 374 
stage of processing (Figure 5C), with the mean and median odor-odor correlation becoming 375 
systematically lower in each successive layer (Figure S4D).  The largest decorrelation occurred 376 
between PN boutons and KC somata, consistent with the divergent expansion of the circuit at 377 
this synaptic step. However, the rank order of odor-odor distances was not maintained across 378 
layers (ORN terminals versus KC somata, Spearman’s rho=0.48), indicating that odor 379 
relationships are transformed beyond a simple linear scaling between layers. For comparison, in 380 
a model that assumes unstructured PN input to KCs and uniform inhibition in the AL and MB 381 
(“uniform”), the Spearman’s correlation between odor relationships in the input OR layer and in 382 
modeled KCs is rho=0.83. Furthermore, whereas the relative levels of odor-evoked activity in 383 
PNs dendrites or boutons was well-predicted by levels of overall ORN input to the circuit, odor-384 
evoked KC response rates (and mean activity) were comparatively less well-predicted (Figure 385 
5D, S4Ci-iv, and data not shown). These observations all point towards a non-linear 386 
reformatting of odors in the MB representational space that alters the rank ordering of odor 387 
relationships compared to earlier stages of coding. 388 
 389 
We examined odor relationships at each step of processing using hierarchical clustering of odor 390 
representations in each neural population, in order to better understand the origins of odor 391 
relationships in MB coding space. For instance, one of the strongest odor clutsers at the level of 392 
input representations – 2-heptanone, isoamyl acetate, and pentyl acetate – was maintained in 393 
each subsequent stage of processing through to the KCs (Figure 5C, E). These odors share a 394 
high degree of chemical similarity as well as co-occurrence in natural sources, which may 395 
explain their robust grouping. However, other odor representations that were similarly well-396 
correlated and clustered in OR space (e.g., 1-pentanol and 2-butanone) were selectively 397 
decorrelated in KC coding space, with each odor becoming reassigned to distinct, non-398 
overlapping groups of odors in KC coding space (Figure 5C, E). Additionally, the 399 
representations for some odor pairs were observed to become reliably more similar at later 400 
stages of olfactory processing. For instance, the pairwise correlation distances between 1-401 

+; GH146-QF, QUAS-tdTomato. PN dendrites and PN boutons are imaged in GH146-Gal4/20xUAS-IVS-
jGCaMP8m (II).  
C) Matrix of mean pairwise correlation distances (averaged across flies) of trial-averaged odor representations in 
ORN axons (n = 4 flies), PN dendrites (n = 6 flies), PN boutons (n = 6 flies), and KC somata (n = 4 flies) to a panel 
of 17 odors. Odors are displayed in the same order in each matrix according to the clustering of their 
representations in KC representational space.  
D) Spearman’s correlations measuring the similarity of rank ordering of odor response strengths at each stage of 
processing. 
E) Hierarchical clustering of distance matrices in C showing best odor groupings in each representational space. 
F) Pairwise adjusted mutual information (MI) score evaluating the similarity of clustering of odor representations in 
each representational space. The adjusted MI has a value of 1 when two clusterings are identical, and a value of 0 
when the MI between two clustering is the value expected due to chance. 
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pentanol and 1-hexanol was actually shorter in KC coding space as compared to in ORN axon, 402 
PN dendrite, or PN bouton coding space.  403 
 404 
Typically, these transformations in the representational geometry among odors occur 405 
progressively at each successive stage of processing, with the largest change occurring 406 
between PN boutons and KC somata (Figure 5C). However, we observed significant 407 
reorganization of odor representations even between the inputs and outputs of the same cell 408 
population, PNs; odor relationships encoded in PNs boutons better reflect odor relationships in 409 
KC coding space compared to PN dendrites (Figure 5C, E). The nonlinear reformatting of odor 410 
relationships across successive stages of olfactory coding indicates that prevailing models of 411 
olfactory networks that assume global or uniform processing across neurons are incomplete, 412 
and additional sources of structure exist in the fly olfactory circuit that mediate non-uniform 413 
interactions between olfactory coding units (e.g., neurons or glomeruli). 414 
 415 
 416 
DISCUSSION 417 
 418 
We show that representations of odor are structured and invariant across MBs in individual flies, 419 
and that the structure of MB odor coding space is only partially predicted by models that 420 
assume random sampling of olfactory glomerular inputs by KCs. The latter is true even after 421 
adjusting the MB model to account for the over- or under-representation of PN boutons from 422 
specific glomeruli (“hemidraw” model) or the amount of over- and under-convergence of PN 423 
inputs from specific sets of glomeruli onto KCs (“hemibrain” model). Thus, certain assumptions 424 
of olfactory system architecture – for instance, of uniform strengths of unitary feedforward 425 
synapses, uniform spiking thresholds, or nonselective, global inhibition in the AL or MB – are 426 
likely oversimplifications, motivating a search for source(s) of structured interactions between 427 
glomeruli or neurons in the olfactory circuit.  428 
 429 
We demonstrate a significant transformation of the fly olfactory code between the periphery and 430 
the MB, in which the encoding of odors by ORs better reflects the chemical relationships 431 
between odors and the encoding of odors in the MB better reflects the distributions of odors 432 
across behaviorally relevant natural sources. That representations at the olfactory periphery 433 
better capture odor relationships in terms of their chemical or molecular properties is perhaps 434 
unsurprising, since odor-OR interactions are governed by the structural features of the odor. 435 
The reorganization of MB odor representations to better correlate with the relationships of these 436 
odors in natural source space may reflect the progressive transformation of odor 437 
representations in the olfactory network to encode latent variables that relate more directly to 438 
behavioral value or perception.  439 
 440 
Odor distances in the hyperbolic embedding of natural odor mixtures reflect correlations 441 
between volatiles in the headspace profiles across natural sources that arise from conserved 442 
metabolic pathways45. The transformation of odor representations in the MB is predicted to 443 
facilitate the perceptual compression of odors that have shorter metabolic tree distances in the 444 
hierarchical organization of natural odor mixtures relative to their chemical similarity. Consistent 445 
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with this idea, a recent preprint reports that distances between odors in a neural network 446 
embedding trained on human olfactory perceptual labels are correlated with the metabolic 447 
distance between odors in experimentally elucidated biochemical pathways47. 448 
 449 
The specific structure of odor relationships was largely invariant across individual brains at each 450 
stage of olfactory processing (Figure 2), even in the MB where PN boutons connect 451 
probabilistically with KCs. An important open question is the extent to which the invariance of 452 
MB representational space may arise from genetically specified developmental processes 453 
(sculpted by evolution) or from activity-dependent processes that reflect shared olfactory 454 
experience2. Unlike their mammalian analogues in piriform cortex, KCs are not strongly 455 
connected through recurrent excitation, although the degree to which PN-KC synapses or APL-456 
KC synapses may be regulated by experience is not well understood. We note that the structure 457 
of PN overconvergence onto KCs bears significant similarity to the structure of PN input to third-458 
order olfactory neurons in the lateral horn (LH) (Figure S3E). LH neurons are stereotyped in 459 
their anatomical connectivity and odor tuning and are believed to mediate innate olfactory 460 
behaviors. The similarity in PN input structure between the MB and LH points to the likely 461 
ethological significance of these over-represented glomerular combinations. It also raises the 462 
possibility that the LH may have additional roles in shaping odor representations in the MB. For 463 
instance, neurons downstream of the LH send centrifugal input to the MB calyx48 which could 464 
contribute to the remapping of odor representations in PN boutons. Other possible sources of 465 
structure in the circuit are selective inhibition from the APL or MB-C1 neurons in the calyx, or 466 
non-uniform PN-KC synaptic weights. Understanding the specific circuit mechanisms that shape 467 
the reorganization of odor representations in the MB will be important for understanding how 468 
odor relationships in natural sources become reflected in the olfactory code. 469 
 470 
Theoretical studies of divergent expansive cerebellum-like circuits such as the MB emphasize 471 
the computational benefits of random networks for maximizing coding capacity and promoting 472 
the separability and discriminability of representations. However, structured networks can 473 
correlate odor representations and promote generalization of odors along important directions of 474 
odor space, for instance, related to the relationships of odorant molecules in behaviorally salient 475 
natural odor sources. Our results suggest a revision of classic formulations of cerebellar-like 476 
network architectures is warranted at least in some systems: the MB may trade-off the capacity 477 
to maximally decorrelate activity patterns in parts of representational space for an increase in 478 
coding capacity and robustness in a part of representational space of particular ethological 479 
significance49. The recoding of odors in the MB to reflect relationships in natural sources would 480 
predict greater generalization to odors with similar distributions in the environment, facilitating 481 
the decoding of natural source identity in noisy or ambiguous situations. 482 
 483 
METHODS 484 
 485 
Experimental model 486 
Drosophila melanogaster were raised on a 12:12 light:dark cycle at 25°C and 70% relative 487 
humidity on cornmeal/molasses food containing: water (17.8 l), agar (136 g), cornmeal (1335.4 488 
g), yeast (540 g), sucrose (320 g), molasses (1.64 l), CaCl2 (12.5 g), sodium tartrate (150 g), 489 
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tegosept (18.45 g), 95% ethanol (153.3 ml) and propionic acid (91.5 ml). All experiments were 490 
performed in female flies aged 3-10 days post-eclosion. Unless otherwise noted, the 491 
transgenes in this study were acquired from the Bloomington Drosophila Stock Center (BDSC) 492 
and have been previously characterized as follows: pebbled-Gal4 (X) directs expression in all 493 
ORNs50 (RRID:BDSC_80570); GH146-Gal4 (II) directs expression in ~70% of PNs51 494 
(RRID:BDSC_30026); GH146-QF, QUAS-tdTomato (III) expresses the red-fluorescent protein 495 
tdTomato in ~70% of PNs52 (RRID:BDSC_30037); UAS-IVS-jGCaMP8m (II) expresses the 496 
calcium indicator jGCaMP8m53 in a Gal4-dependent manner (RRID:BDSC_92591); OK107-Gal4 497 
(IV) directs expression in all KCs33 (RRID:BDSC_854); UAS-OpGCaMP6f (X) was from B. D. 498 
Pfeiffer and D. J. Anderson (Caltech, Pasadena, CA) and expresses the calcium indicator 499 
codon-optimized GCaMP6f54 in a Gal4-dependent manner; and UAS-nls-OpGCaMP6s-p10 (III) 500 
was from H. Chiu and D. J. Anderson (Caltech, Pasadena, CA) and expresses nuclear-501 
localized, codon-optimized OpGCaMP6s35 in a Gal4-dependent manner. 502 
 503 
Odor stimuli 504 
Odors were delivered essentially as previously described55. A custom-built multi-channel 505 
olfactometer delivered a constant 2 L/min stream of charcoal-filtered air. A 3-way solenoid 506 
valve directed 200 mL/min of this flow either through a 20-ml glass vial containing 2-ml of odor 507 
solution (valve open) or an equivalent vial containing 2-ml of the solvent. Air flow was 508 
controlled using mass flow controllers (MC series, Alicat Scientific, Tucson, AZ). The 200 509 
ml/min control or odor streams were carried by tubing of matched lengths and rejoined the 510 
carrier stream at the same point along the carrier tube, approximately 10 cm from the fly. The 511 
terminal end of the carrier tube had an inner diameter ~8mm and was ~1 cm away from the fly. 512 

Odor concentrations refer to the v/v dilution factor of the odor solution in the vial. The 513 
concentration of odor in the headspace is further diluted 10-fold in air prior to reaching the fly. 514 
Unless otherwise indicated, all odors in this study were presented from a 10-3 (0.1%) dilution in 515 
paraffin oil (J.T. Baker, VWR #JTS894), with the exception of movies collected from one fly, in 516 
which odors were diluted to 10-2 (1%). 517 
 518 
Two-photon calcium imaging 519 
Volumetric, in vivo functional calcium imaging was performed essentially as previously 520 
described46,55. After a brief period of cold anesthesia (<20 s), the fly was head-fixed, and the 521 
cuticle, fat, and air sacs were removed to expose the brain region of interest. Two-photon 522 
GCaMP6f or GCaMP8m fluorescence was excited with 925 nm light from a Mai Tai DeepSee 523 
laser (Spectra-Physics, Santa Clara, CA). Images were acquired with an Olympus 20X/1.0 524 
numerical aperture objective (XLUMPLFLN20XW) driven by a piezo motor that enabled fast z-525 
scanning, and the collection filter was centered at 525 nm with a 50 nm bandwidth. 526 
Experiments were conducted at room temperature (~22°C). The brain was constantly perfused 527 
by gravity flow with saline containing (in mM): 103 NaCl, 3 KCl, 5 N-Tris(hydroxymethyl)methyl-528 
2-aminoethane-sulfonic acid, 8 trehalose, 10 glucose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2, 529 
and 4 MgCl2 (pH 7.3, osmolarity adjusted to 270– 275 mOsm). The saline was bubbled with 530 
95% O2/5% CO2 and circulated in the bath at ~2-3 ml min-1. 531 
 532 
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AL imaging. Flies were head-fixed with the dorsal surface of the head approximately parallel to 533 
the imaging plane; the dorsal cuticle was removed, and the antennal lobes were exposed. The 534 
antennae were snugly secured below the imaging chamber, keeping them dry and responsive 535 
to odors. ORN axon terminals and PN dendrites were imaged with a galvo-galvo scanning 536 
system (Thorlabs Bergamo). Flies were imaged from the dorsal side, with 5 planes spaced 12 537 
µm apart. The depth of the first imaging plane was chosen to maximize the number of 538 
glomeruli visible across the 5 planes. Images were acquired at a resolution of 192x192 pixels, 539 
with typical fields-of-view of ~90-100µm2 and volumetric sampling rates of ~1 Hz through the 540 
antennal lobe. For ORN axon and PN dendrite experiments, odors were presented in a 541 
pseudorandom order, with the three trials of each odor being presented contiguously. Trials 542 
consisted of a 7 s baseline recording, the odor pulse (2s for ORN experiments and 3s for PN 543 
experiments), and a 20 s post-stimulus period. 544 
 545 
MB imaging. Flies were head fixed with the head tilted acutely downward, rotated ~70° from 546 
its normal resting position. The posterior plate of the head was approximately parallel to the 547 
imaging plane, and the antennae were dry underneath the imaging platform. The entire 548 
perimeter of the head capsule was stabilized to the imaging platform with glue, and the 549 
proboscis and legs were immobilized to minimize motion. KC somata and PN boutons were 550 
imaged with a galvo/resonance scanning system (Thorlabs Bergamo), with the exception of 551 
one fly in which KC somata were imaged on a galvo-galvo scanning system at a volumetric 552 
sampling rate of 0.55 Hz. For PN bouton experiments, odors were presented in a 553 
pseudorandom order, with the three trials of each odor being presented contiguously. Trials 554 
consisted of a 7 s baseline recording, a 3s odor pulse, and a 20 s post-stimulus period, with 555 
stimulus onset occurring every 30s. For KC somata experiments, stimulus order was 556 
pseudorandomized such that all odors were presented before any were repeated; thus, 557 
repetitions of a given odor usually did not occur on consecutive trials. If paraffin was included 558 
as an odor stimulus, it was always presented first in each repetition block. Trials consisted of a 559 
13 s baseline recording, a 2 s odor pulse, and a 45 s post-stimulus period, with stimulus onset 560 
occurring every 60s.  561 

For resonance imaging of KC somata, movies were collected at a frame rate of ~60 Hz 562 
at 256 x 256 pixels in fast-z mode. The field-of-view was ~150 µm x 150 µm giving a pixel size 563 
of ~0.6 µm/pixel.  The bulk of the KC somata cluster was captured in 16 planes (and 4 flyback 564 
frames) collected 2 µm apart, spanning a ~30 µm depth through the MB. This resulted in a 565 
volumetric sampling rate of ~3 Hz. For a subset of experiments, KCs were sampled using fewer 566 
imaging planes (eleven) with a z-step size of 3 µm. Since odor response rates and odor-odor 567 
relationships were similar with these imaging parameters, KC somata datasets were combined. 568 
For imaging of PN boutons in the MB calyx, movies were collected at a frame rate of ~60 569 
Hz at a resolution of 256 x 256 pixels in fast-z mode. The field of view was ~75 µm x ~75 570 
µm yielding a pixel size of ~0.3 µm/pixel. The full population of labeled PN boutons in the calyx 571 
was captured using 8 planes (and 2 flyback frames) spaced ~3 µm apart, spanning a ~21 µm 572 
depth in z, giving a volumetric sampling rate of ~6 Hz.  573 
 574 
Image analysis 575 
AL imaging 576 
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Image analysis was performed using custom Python scripts 577 
(https://github.com/ejhonglab/al_analysis). Motion correction was performed separately in each 578 
plane using the registration module in Suite2p. ROIs corresponding to individual glomeruli were 579 
manually defined in each imaging plane in Fiji56, using a combination of the resting 580 
fluorescence and per-trial responses to visualize the glomerular boundaries. Responses (ΔF/F) 581 
were calculated using a 6 s baseline (F) that ended 1 s prior to nominal odor onset in each trial. 582 
The odor response was quantified as the mean ΔF/F during the 2 s after odor onset. Odor 583 
tuning of identified glomeruli, assigned using a combination of anatomical position, size, 584 
shape, and responses to a diagnostic panel of 10 narrowly activating odor stimuli, matched 585 
previous descriptions32,57,58.  586 

 587 
MB imaging 588 
Motion correction. For PN bouton and KC somata imaging, an initial round of 3D motion 589 
correction was performed with the ‘NormCorre’ algorithm, using either the Matlab 590 
implementation59 (https://github.com/flatironinstitute/NoRMCorre) or Python implementation 591 
from the calcium imaging analysis library ‘CaImAn’60 592 
(https://github.com/flatironinstitute/CaImAn). As necessary, planes were dropped following 593 
motion correction due to field-of-view drift; typically the most superficial or deepest planes 594 
were dropped if they were not consistently captured through the entire recording.  595 
 596 
Source extraction. For movies of PN boutons and KC somata collected in the MB, source 597 
extraction was carried out using either Suite2p36 or CaImAn60. For all PN bouton, and for KC 598 
somata data collected at a z-step of 2 μm, Suite2p was used to perform source extraction on a 599 
plane-by-plane basis. ROIs corresponding to PN boutons and odor-evoked signals were 600 
extracted in Suite2p's functional mode, using the activity-based algorithm. KC ROIs and 601 
signals were extracted in Suite2p's anatomical mode, using the ‘cellpose’ model to perform 602 
anatomical segmentation on the mean (time-averaged) image. Extracted fluorescence traces 603 
were neuropil-corrected (Fcorrected = F – 0.7 *Fneuropil) and normalized by z-scoring over time. The 604 
‘rastermap’ function61 was used to visualize Fcorrected for all extracted components, with cells 605 
sorted to cluster those with similar patterns of activity. Stimulus-responsive clusters were 606 
manually selected. For PN bouton movies, this step was used to filter out spurious ROIs – only 607 
components belonging to stimulus-responsive clusters were included in subsequent analyses. 608 
For KC movies, the relatively high level of baseline fluorescence in combination with the use of 609 
a nuclear-targeted calcium indicator resulted in very high-quality cellular segmentation, with 610 
very few (if any) spurious ROIs. Figure 1G shows the responses of all extracted cells from one 611 
representative experiment, with cells (rows) corresponding to stimulus-responsive clusters 612 
displayed at the top of the matrix, and non-responder cell clusters shown at the bottom.  613 

CaImAn-MATLAB was used to perform 3D source extraction on KC somata data 614 
collected at a z-step size of 3 μm. For each KC, a single ROI was extracted, which was roughly 615 
spheroid and spanned multiple planes. The fluorescence baseline F0 was computed at each 616 
timepoint by taking a fixed percentile (ranging from 20-40%) of a rolling 30 s time window. 617 
Extracted raw calcium signals were detrended and normalized to baseline fluorescence F0 to 618 
compute ΔF/F responses. All components extracted by CaImAn were included in subsequent 619 
analyses. Between ~1500-1900 KCs and ~500-800 PN bouton ROIs were extracted per movie. 620 
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 621 
Quantification of odor response. For Suite2p extracted signals, ROI response strength in a 622 
single trial was computed by averaging the signal over an expected response peak time 623 
window (0.25-2s post-stimulus onset for PN boutons, 2-8s post-stimulus for KCs), and 624 
subtracting the mean pre-stimulus baseline (initiating 5s pre-stimulus for PN boutons, and 10s 625 
pre-stimulus onset for KC soma). For CaImAn-extracted KC signals, the response strength for 626 
each trial was calculated by subtracting the median 10s pre-stimulus baseline from the mean 627 
15s post-stimulus ΔF/F signal. For all datasets, mean odor response strength was computed 628 
by averaging across all trials in which the odor was presented.  629 
 630 
KC response rate 631 
KC response rates (Supplementary Figure S1) were computed from datasets in which source 632 
extraction was performed using Suite2p, applying the ‘cellpose’ model to perform anatomical 633 
segmentation. All extracted components were used in the analysis of response strength and 634 
response breadth, including 'silent' cells that did not respond to any stimulus in the odor panel. 635 
A cell was considered a 'responder' if its trial-averaged response to a given odor exceeded a 636 
fixed threshold. The response threshold was determined separately for each dataset using 637 
ethyl propionate (a consistently strongly activating odor) as a reference, in order to adjust for 638 
small differences in responsiveness of different experimental preparations. The KC response 639 
rate to ethyl propionate was computed over a range of thresholds, with a step size of 0.05 640 
between threshold values. Threshold values resulting in a 12-15% ethyl propionate response 641 
rate were selected. The median of these values was chosen as the final response threshold 642 
and was used to compute response rates for the other odors in the dataset. 643 
 644 
Analysis of the representational space of odors 645 
Distances between population representations of odor. The correlation distance between the 646 
population representation of two odors was computed as 1-r, where r is Pearson’s correlation 647 
between the population response vectors of the two odors. The population response vector 648 
had length l, where l was the number of glomeruli, boutons, or cells in each experiment. Each 649 
element of this vector was the trial-averaged response of each glomerulus/bouton/cell to the 650 
stimulus. Representational dissimilarity matrices (RDM) show the pairwise correlation distances 651 
for every pair of odors imaged and aligned in the same experiment (same MB) and were 652 
computed using only the set of cells, glomeruli, or boutons in each experiment that responded 653 
to one or more odor stimuli. For each stage of processing, we computed a mean RDM by 654 
averaging the odor x odor RDMs across individual flies.  655 
 656 
Comparison of representational space across individual MBs. For each MB, we generated an 657 
odor-odor distance vector of the correlation distances for every odor pair measured in 658 
common across the flies being compared. To evaluate the similarity of MB odor 659 
representational space across flies, we computed the Spearman’s rank correlation between 660 
the odor-odor distance vectors for every pairwise combination of MBs. As a control, the cell x 661 
odor response matrices for each MB were shuffled, and the same series of calculations 662 
applied. For each iteration of the shuffle, odor responses were randomized by permuting the 663 
columns of the cell x odor response matrix for each MB. The Spearman’s correlation computed 664 
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from 10,000 iterations of this shuffle procedure was used to construct a distribution of 665 
Spearman’s correlations that would arise from chance for each pair of MBs, to be compared 666 
against the observed correlation. 667 
 668 
Cell clustering. KCs were grouped by spectral clustering carried out on KC odor tuning profiles 669 
using ‘sklearn.cluster.SpectralClustering’62. Trial-averaged odor response vectors for all KCs 670 
that respond to one or more odors were pooled together from individual flies to create a grand 671 
cell x odor response matrix. The number of rows in this matrix equaled the sum of the number 672 
of responsive KCs across all flies and the number of columns equaled the number of odors 673 
that were sampled in common across all flies. A KC x KC affinity matrix was computed by 674 
taking the radial-basis transform of the KC x KC correlation distance matrix. Odor response 675 
profiles for each cluster were calculated by averaging the responses of all cells assigned to 676 
that cluster from each fly. 677 
 678 
Modeling KC responses 679 
We adapted a dynamic spiking model of the Drosophila olfactory network30 680 
(https://github.com/annkennedy/mushroomBody) that implements the functional and 681 
anatomical organization of the circuit. ORN input to the model was derived from a published 682 
experimental dataset of the firing rate responses of 23 fly ORs to a panel of 109 odors32. The 683 
model implements lateral inhibition in the AL with a divisive inhibition term that normalizes PN 684 
firing rates. The model captures the response dynamics of PN and KC firing rates to an odor 685 
pulse, where ORN input is estimated by simply convolving a step to the steady-state firing rate 686 
with the cell’s synaptic membrane filter. For our analyses in this study, we focused on the 687 
mean firing rate of each cell (PN or KC) averaged over the odor pulse.  688 
 The model was implemented under several different assumptions of PN-KC 689 
connectivity. In the ‘uniform’ model, each of 2000 KCs had a mean of six input glomeruli, with 690 
each input independently assigned to a glomerulus at random. Each glomerulus had an equal 691 
likelihood of being selected at every input. In the ‘hemidraw’ model, each KC in the model 692 
(1748 cells) corresponded to a KC in the hemibrain connectome dataset63 and was assigned its 693 
observed number of claws (between 1 and 12, mean of 5.36 claws). Each claw was then 694 
independently assigned to a glomerulus according to the frequency of PN boutons for that 695 
glomerulus in the hemibrain MB; thus, glomeruli varied in their likelihood of being drawn as an 696 
input to each claw. In the ‘hemibrain’ model, each KC in the model was directly assigned the 697 
set of glomerular inputs of its corresponding cell in the hemibrain connectome. However, since 698 
glomeruli in the model were limited to the 23 ORs available in the Hallem dataset, modeled 699 
‘hemibrain’ KCs had only an average of ~4 inputs. To evaluate the impact of a reduced number 700 
of inputs, versions of the ‘uniform’ and ‘hemidraw’ models were run with the distribution of the 701 
number of claws per KC centered on 4. These models predicted very similar odor-odor 702 
relationships to the earlier versions (data not shown). 703 
 The response rate of KCs to odor depends on both KC spiking threshold and the 704 
strength of feedback inhibition to KCs from the anterior paired lateral (APL) GABAergic neuron. 705 
In all versions of the model, KC spiking thresholds were assumed to be uniform across KCs 706 
and were set to achieve an average KC response rate of 20% across odors. Global inhibition 707 
by the APL was modeled as divisive inhibition at KC presynaptic terminals, and APL-KC 708 
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weights were adjusted to halve the mean response rate across odors to 10%. This procedure 709 
was motivated by experimental observations that silencing APL output roughly doubles KC 710 
response rates.22 The APL was assumed to uniformly receive equal input from, and send equal 711 
output to, all KCs. For modeling of KC responses to CO2 (a stimulus not in the Hallem dataset), 712 
an additional glomerulus (corresponding to glomerulus V) and odor (CO2) was added into the 713 
OR input matrix. To estimate an upper bound for KC response rates to CO2, the firing rate of 714 
glomerulus V to CO2 was set to the maximum ORN firing rate (300 Hz) and set to zero for all 715 
other odors57. 716 
  717 
Odor properties 718 
Chemical descriptors were computed for each odor using the software Mordred41. Clustering 719 
over features identified a reduced set of 570 descriptors that captured odor-odor relationships in 720 
the full set of ~1800 descriptors; our analysis used this reduced set of descriptors 721 
(Supplemental Table S3). Odor relationships in natural odor space were estimated from a large 722 
database of headspace volatile profiles of natural food sources compiled from published 723 
datasets from the food science literature (Volatile Compounds in Food, VCF16.9 database, 724 
BeWiDo BV). The database contains 5564 observations from thousands of references. We 725 
focused on 2190 observations for which volatile profiles were quantitatively described in 726 
standardized units that could be compared between sources. For our analysis, we filtered 727 
compounds to isolate those present in ten or more observations (775 odors) and used the log 728 
scale of odor concentration. 729 
  730 
Multidimensional scaling of odors in natural source space 731 
We used hyperbolic non-metric multidimensional scaling (H-MDS)64 to embed odors into a low-732 
dimensional hyperbolic space based on correlation distance, which reconstructs original 733 
distances monotonically (with preserved rank-ordering). The minimum Bayesian information 734 
criteria (BIC) determines the best dimension of the embedding. A hyperbolic metric was then 735 
used to measure distances between odors within the low-dimensional embedding space. To 736 
check that the results generalize across different subsets of natural odor sources, we repeated 737 
the analysis for a separate, albeit smaller secondary dataset that was compiled from another set 738 
of natural source literature references (see Supplemental Table S4). We find that odor pair 739 
distances computed in the VCF and in the secondary natural source dataset were positively 740 
correlated (rho=0.85, p=1.5e-8). The correlation between datasets increased with increasing the 741 
minimum number of odor sources for which a monomolecular odorant was required to be 742 
present in calculating distances between odorants. This result indicates increased stability of 743 
distances between more common odorants, that are ubiquitously present in natural 744 
environment. Furthermore, in both datasets, the hyperbolic space provided the best low-745 
dimensional description.  The curvature and best fitting dimensionality (dim=3) were similar, with 746 
curvature = -5.1 for the VCF dataset and curvature = -4.1 for the secondary natural source 747 
dataset. 748 
 749 
Hierarchical clustering of odor representations  750 
Representational dissimilarity matrices (RDM) show the pairwise correlation distances between 751 
every pairwise combination of odors imaged and aligned in the same experiment. For each 752 
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stage of processing, a mean RDM was computed by averaging the odor x odor RDMs across 753 
individual flies. Dendrograms describing the relationships among odors at each stage of 754 
processing were generated from the mean odor x odor RDM for each stage. Hierarchical 755 
clustering of odors was implemented with ‘sklearn.cluster.AgglomerativeClustering’, using 756 
Pearson’s correlation as the distance metric and average linkage criterion (minimizes the 757 
average of the distances between all observations of pairs of clusters). These odor x odor RDM 758 
matrices were treated as feature matrices with dimensions (samples, features) rather than 759 
distance matrices – each odor was a different sample/row, and that odor’s features were its 760 
distance to the odors.  761 
 762 
Data inclusion criteria. 763 
The number of flies (observations, n) in which each odor was measured is in Supplemental 764 
Table S1. The number of observations of each odor-odor distance (odor pair measured in the 765 
same MB) is in Supplemental Table S2. All flies analyzed in this study satisfied the following 766 
criteria. First, any field-of-view drift and warping of structure could be fully corrected using 767 
posthoc image registration, as evaluated by the ‘crispness’ of time-averaged movies (individual 768 
nuclei distinct and separated). Second, stimulus-evoked responses were reliably observed over 769 
the course of the entire recording in a ‘bulk’ fluorescence signal extracted in each frame from a 770 
global ROI circumscribing the entire imaged structure. Third, trial-trial correlation distances for 771 
repeated presentations of the same odor stimulus were clearly more similar to one another 772 
than for presentations of different odor stimuli. Sample sizes were not predetermined using a 773 
power analysis. We used sample sizes comparable to those used in similar types of studies2,3. 774 
 775 
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SUPPLEMENTAL MATERIALS 980 
 981 

 
Supplementary Figure S1: KC response properties. 
A) Odor-evoked responses in three example KCs from odor trials in different movies (imaging sessions with 
overlapping but distinct panels) collected in the same MB. Tracking and assignment of odor responses to KCs is 
reliable across imaging sessions. 
B) Comparison of KC response rate (mean and 95% CI, n=4 flies) and mean evoked OR firing rate (across 
glomeruli) in the Hallem dataset to each odor. 
C) Observed fraction of KCs (mean and 95% CI, n=4 flies) responding to the indicated number of odors for a panel 
containing 17 odors. The distribution of the fraction of modeled KCs responding to different numbers of odors in 
the uniform, hemidraw, and hemibrain models (see Figure 3) are plotted for comparison. 
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D) Predicted KC response rates to narrowly activating (CO2, methyl salicylate) and broadly activating (ethyl 
butyrate) odors, under assumptions of uniform connectivity. For selective odors, the input firing rate for the 
cognate OR was set to saturating firing rates (300 Hz) to estimate the upper bound for KC response rate. For ethyl 
butyrate, the observed firing rates across ORs in the Hallem dataset was used as input to the model. 
E) Observed KC response rates to varying concentrations of the odors in D. 
 

 982 
 983 
 984 

 
Figure S2: KC population responses to another example odor panel, illustrating the invariance of MB 
representational space across individuals. 
A) Matrices of correlation distances from three different flies showing pairwise relationships between KC 
population responses in individual odor trials (upper triangles) or in trial-averaged responses for each odor (lower 
triangle). 
B) Correlation distances between KC response vectors from different trials of the same odor. For each odor, the 
trial-trial KC response correlation was computed for all pairs of trials of this odor in each fly and averaged. The plot 
shows the mean and 95% CI of the fly averages. Compare to Figure 2E. Weaker odors tend to be less reliable 
than stronger odors. 
 

 985 
  986 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528627doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528627
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 
Figure S3: The structure of olfactory glomerular inputs to third-order olfactory neurons and the impact on 
MB representations of odor. 
A) Example reconstruction from the hemibrain connectome63 of a uniglomerular DM2 PN and two example 
postsynaptic partners, a Kenyon cell (KC) and a lateral horn neuron (LHN). Synaptic connections between 
identified neurons contained within the hemibrain volume are fully described. 
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B) For each third-order olfactory neuron, the set of glomeruli providing direct presynaptic input via PNs was 
extracted from connectome datasets (hemibrain and FAFB). For this analysis, synaptic connections were binarized 
(e.g., all glomerular inputs >5 synapses were treated equally regardless of synapse count).  
C) The mapping of glomerular inputs to KCs was represented as a binary matrix, where a 1 in cell(i,j) indicates that 
neuron i receives input from glomerulus j. The ‘Curveball’ algorithm was used to generate random matrices (null 
model) that preserve the row and column totals of the original matrix65. 
D) For each pair of glomeruli, a distribution of the number of KCs receiving co-input from the two glomeruli in each 
shuffled matrix was generated.  The observed number of KCs receiving co-input from each pair of glomeruli in the 
hemibrain was compared to this distribution to generate a z-score. An example distribution and z-score for the 
over-convergent glomerular pair DM1 and DM3 are given. 
E) Glomerular input structure to KCs in the hemibrain MB63 (left), KCs in the FAFB MB66 (center), and lateral horn 
neurons in the hemibrain LH (right). The z-score for each pair of glomeruli measures the degree to which the 
glomeruli are over- or under-convergent in the observed population, compared to null models. A large positive 
value indicates strong over-convergence, and a large negative value indicates strong under-convergence. The 
ordering of glomeruli is the same in all matrices and was based on k-means clustering of the hemibrain MB matrix.  
F) Matrix of pairwise correlation distances between predicted KC responses to 17 odors in the hemidraw model 
(left). The mean pairwise relationships for observed KC responses are reproduced from Figure 3Ciii (right) for 
ease of comparison.   
G) Comparison of odor-odor correlation distances between observed KC responses and predicted KC responses 
in the hemidraw model. Each symbol is an odor pair.  
H) Matrix of pairwise cosine distances between predicted KC responses (uniform, hemidraw, or hemibrain 
models), or observed KC responses, for 17 odors.   
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Figure S4: Transformation of odor representations in the fly olfactory circuit. 
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A) Mean (top row) and standard deviation (bottom row) across flies of pairwise correlation distances of odor 
representations in ORN axons (n = 4 flies), PN dendrites (n = 6 flies), PN boutons (n = 6 flies), and KC somata (n = 
4 flies) for a panel of 17 odors.  
B) Pairwise correlation distances of OR tuning in the Hallem dataset (left) and ORN axon terminal responses 
measured in this study (right) for a panel of 17 odors. 
C) Comparison of fractional KC response rates with odor-evoked Ci) firing rates across ORs in the Hallem dataset 
(grey); Cii) ORN terminal responses (grey); Ciii) PN dendrite responses (grey); and Civ) PN bouton responses 
(grey) for 17 odors. ORN terminal, PN dendrite, PN bouton, and KC responses are mean and 95% CI across flies 
of the ROI-averaged evoked response to each odor in each fly. 
D) Distribution of odor-odor correlation distances for representations at each stage of olfactory processing.  
 

 989 
Supplemental Table S1: Odor information and number of observations (flies) for each odor in 990 
KC somata datasets.  991 

 992 
 993 
Supplemental Table S2: Mean, 95% CI, SEM, and number of observations (flies) of the 994 
correlation distance for every unique odor pair in KC somata datasets. 995 
 996 
Supplemental Table S3: Reduced list of Mordred molecular descriptors used in this study. 997 
 998 
Supplemental Table S4: References contributing to a secondary natural odor source database. 999 
 1000 

Odor Abbreviation InChI Sigma-Aldrich Cat. No. CAS No. flies sampled (n)
1-hexanol 1-6ol InChI=1S/C6H14O/c1-2-3-4-5-6-7/h7H,2-6H2,1H3 471402 111-27-3 22
1-octanol 1-8ol InChI=1S/C8H18O/c1-2-3-4-5-6-7-8-9/h9H,2-8H2,1H3 297887 111-87-5 16
1-pentanol 1-5ol InChI=1S/C5H12O/c1-2-3-4-5-6/h6H,2-5H2,1H3 138975 71-41-0 10
1-penten-3-ol 1-p3ol InChI=1S/C5H10O/c1-3-5(6)4-2/h3,5-6H,1,4H2,2H3 1984 616-25-1 7
2-butanone 2-but InChI=1S/C4H8O/c1-3-4(2)5/h3H2,1-2H3 360473 78-93-3 21
2-heptanone 2-hep InChI=1S/C7H14O/c1-3-4-5-6-7(2)8/h3-6H2,1-2H3 537683 110-43-0 14
acetic acid aac InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) 695092 64-19-7 5
B-citronellol b-cit InChI=1S/C10H20O/c1-9(2)5-4-6-10(3)7-8-11/h5,10-11H,4,6-8H2,1-3H3 C83201 106-22-9 12
benzaldehyde bnz InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H 418099 100-52-7 20
delta-decalactone d-10lac InChI=1S/C10H18O2/c1-2-3-4-6-9-7-5-8-10(11)12-9/h9H,2-8H2,1H3 74026 705-86-2 5
E2-hexenal e2-h InChI=1S/C6H10O/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+ 158131000 6728-26-3 11
ethyl butyrate eb InChI=1S/C6H12O2/c1-3-5-6(7)8-4-2/h3-5H2,1-2H3 E15701 105-54-4 14
ethyl cinnamate ec InChI=1S/C11H12O2/c1-2-13-11(12)9-8-10-6-4-3-5-7-10/h3-9H,2H2,1H3/b9-8+ 66761 103-36-6 5
ethyl propionate ep InChI=1S/C5H10O2/c1-3-5(6)7-4-2/h3-4H2,1-2H3 112305 105-37-3 16
eugenol eug InChI=1S/C10H12O2/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3,5-7,11H,1,4H2,2H3 E51791 97-53-0 7
gamma-hexalactone g-6lac InChI=1S/C6H10O2/c1-2-5-3-4-6(7)8-5/h5H,2-4H2,1H3 68554 695-06-7 6
hexanal 6al InChI=1S/C6H12O/c1-2-3-4-5-6-7/h6H,2-5H2,1H3 115606 66-25-1 15
isoamyl acetate iaa InChI=1S/C7H14O2/c1-6(2)4-5-9-7(3)8/h6H,4-5H2,1-3H3 W205532 123-92-2 12
linalool lin InChI=1S/C10H18O/c1-5-10(4,11)8-6-7-9(2)3/h5,7,11H,1,6,8H2,2-4H3 L2602 78-70-6 10
methyl octanoate mo InChI=1S/C9H18O2/c1-3-4-5-6-7-8-9(10)11-2/h3-8H2,1-2H3 21719 111-11-5 9
methyl salicylate msl InChI=1S/C8H8O3/c1-11-8(10)6-4-2-3-5-7(6)9/h2-5,9H,1H3 M6752 119-36-8 14
pentyl acetate pa InChI=1S/C7H14O2/c1-3-4-5-6-9-7(2)8/h3-6H2,1-2H3 109584 628-63-7 15
propyl acetate pac InChI=1S/C5H10O2/c1-3-4-7-5(2)6/h3-4H2,1-2H3 40858 109-60-4 7
valeric acid va InChI=1S/C5H10O2/c1-2-3-4-5(6)7/h2-4H2,1H3,(H,6,7) 240370 109-52-4 13
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