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Abstract

Aging is associated with changes in the oscillatory -periodic- brain activity in the alpha band (8-12
Hz), as measured with resting-state EEG (rsEEQ)); it is characterized by a significantly lower alpha
frequency and power. Aging influences the aperiodic component of the power spectrum: at a higher
age the slope flattens, which is related with lower cognitive efficiency. It is not known whether
education, a cognitive reserve proxy recognized for its modulatory role on cognition, influences
such relationship.

N=179 healthy participants of the LEMON dataset (Babayan et al., 2019) were grouped based on
age and education: young adults with high education and older adults with high and low education.
Eyes-closed rsEEG power spectrum was parametrized at the occipital level.

Lower IAPF, exponent, and offset in older adults were shown, compared to younger adults. Visual
attention and working memory were differently predicted by the aperiodic component across
education: in older adults with high education, higher exponent predicted slower processing speed
and less working memory capacity, with an opposite trend in those with lower education.

Further investigation is needed; the study shows the potential modulatory role of education in the

relationship between the aperiodic component of the EEG power spectrum and aging cognition.
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1. INTRODUCTION

As we age, many changes occur in individuals’ behavior and cognition, worsening in memory !,

2 3

attention span 2, executive functions 3, and processing speed 4, reflecting just a few of the
consequences of the natural aging process. These behavioral changes are accompanied by (and
associated with) changes in the brain's structural anatomy >, metabolism 7 and functionality ® which
produce a significant effect on its neurophysiological activity °. Electroencephalogram (EEG)
studies on aging have shown changes in neural oscillatory activity, especially in the alpha band (8-
12 Hz) 1912, Researchers have reported that older adults display slower alpha oscillatory activity
and lower alpha power than their younger counterparts '3-'°. Moreover, individual alpha peak
frequency (IAPF), i.e., the frequency where EEG activity exhibits the maximum power in the alpha
range, tends to decrease from adulthood to midlife !''2. In most studies, EEG activity in specific
frequency bands has been traditionally measured as the average of the power in the frequency bands
of interest as calculated from the power spectrum '®. However, this approach (and subsequent
interpretation of the results) has been challenged by a renewed interest in the non-oscillatory,
aperiodic component of the EEG signal.

The aperiodic component does not necessarily entail specific frequency bands; it exhibits a 1/f-like
distribution in the log-log space of a Power Spectrum Density (PSD), meaning its power
exponentially decreases as frequency increases.

Aperiodic activity can be parametrized by values of the exponent, which describe the negativity of
the power spectrum slope and the offset, the broadband shift of power across frequencies .
Importantly, change in the spectrum's aperiodic component may occur without changes in the
oscillatory components and may affect the power values calculated for each frequency. For example,

a change in aperiodic slope may influence the power values in the alpha band as calculated from the

power spectrum, when no change in alpha's oscillatory component occurred. This may lead to
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spurious results and wrong interpretations and highlight the importance of taking into account the
aperiodic component when interpreting power spectrum data %17,

For a long time, researchers ignored the aperiodic component of brain activity, considering it to be
merely background noise; however, recently, this component has gained attention not only for its
methodological impact but also because of its potential role as a marker of neurophysiological
mechanisms underlying cognition. For instance, the aperiodic offset has been associated with

neuronal population spiking 81

and blood-oxygen-level-dependent (BOLD) signal of functional
magnetic resonance (fMRI) 2°. Meanwhile, the exponent has been linked to changes in cortical
excitation/inhibition balance 2!, which means that increased power in higher frequency (associated
with increased excitation at the cerebral level) produced a flattening of the PSD; thus a diminished
exponent; the exponent has also been related to local neural tissue properties 2223, In light of the
investigations mentioned above, narrowly associating 1/f characteristics with specific cerebral
function, alternative explanations should be acknowledged. A possible interpretation of the
functional meaning of the aperiodic component posits that this variable indicates an underlying self-
organized critical system 2*. Within this theoretical framework, the critical system is considered as

the optimal state of brain’s functionality 2°

where large-scale reorganization occurs quickly in
response to stimuli, reflecting the brain's adaptation to changes in the endogenous and exogenous
environment 2°. Aperiodic activity may arise from spatial integration of asynchronous spiking of
neural populations ?’. Therefore, a reduction of the spectral exponent suggests functional neural
decoupling.

In the context of aging, a first study from 28 showed that the aperiodic slope of EEG and
electrocorticography (ECoQG) spectra flattened in a group of older people compared with a younger

one, with decreased power between 8 to 14 Hz and increased power between 14 and 25 Hz. The

changes in EEG spectral slope were also associated with age differences in working memory
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performance. Interestingly, the aperiodic exponent appeared to mediate this relationship, suggesting
that the slope effect alone could account for behavioral differences between older and young adults.
Voytek and colleagues explained these results with the “Neural Noise Hypothesis”. Initially
proposed by 28, this theory suggests that as people age, there is an increase in spontaneous
desynchronized neural activity, resulting in a decreased fidelity of neural communication and a
flatter power spectrum. Recent studies have replicated Voytek findings and added new insights to
the relationship between aging and aperiodic spectral components, highlighting their impact on
cognitive performance. Flatter slopes in older adults were linked to poorer performance during

2939 and short-term memory tasks 3!. Recent work from 3 has associated the

spatial attention tasks
flattening of the aperiodic slope in frontal regions with worse performance on tasks involving
processing speed and executive functions. Moreover, 2 measured changes of the aperiodic spectra
at the baseline period in younger and older adults. They examined to what extent 1/f like exponent
was related to alpha trial-by-trial consistency, during a spatial discrimination task. The authors
considered these signal properties as measures of "neural noise". Interestingly, they found that older
adults with the highest baseline noise levels also had the worse alpha trial-by-trial consistency,
suggesting that age-related increases in baseline noise might diminish sensory processing and
cognitive performance.

Understanding the impact of neural noise could unveil new perspectives in capturing the effects of
aging on neurophysiological functioning. Critically, studies on the aperiodic component of the
spectrum and its functional role have neglected the possible modulatory role of "cognitive reserve"
in modulating the effects on cognition in aging. Cognitive reserve is a concept proposed by Stern
3334 and it describes the capacity of the brain to actively cope with age-related or pathological
changes by employing pre-existing resources. Such reserve accumulates since early life through

exposure to cognitively stimulating life >>-7. One of the most widely recognized variables associated

with the level of cognitive reserve is education, typically operationalized as a numerical variable,
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indicating years of successful education or as an educational level operationalized as an ordered
factor (e.g., high school, University etc.). Education has been largely used to examine the aging

population's potential compensatory processes %%

While education modulates cognitive
performance (i.e., the higher the education, the better cognitive performance), its impact on the
intricate relationship between neural activity in the aging brain and cognitive capacity remains
uncertain. Aperiodic activity, conceived as a possible pattern of neural communication impairment,
is associated with a decline in cognitive performance in older adults. Critically, although education
can be expected to favor the preservation/maintenance of neurobehavioral functionality in aging %°,
how this is reflected at the level of aperiodic brain activity is not clear yet.

With reference to the most recently updated framework targeting aging compensatory mechanisms,
a specific set of variables are combined in this work, to investigate: 1) the possible age-related neural
patterns (i.e., aperiodic values), ii) age-related cognitive differences (test scores), iii) and education
as a variable expected to moderate the association between i) and ii) **. Older adults with higher

education were expected to preserve a more youth-like profile as compared to older adults with

lower education.

3. RESULTS

3.1. Descriptive Analyses

Young adults performed significantly better on all cognitive tasks than older adults (Table S1 and
Figure S1). IAPF, exponent, and offset values were shown in young adults compared to older adults
(Figure 3 and S1). Older adults with different education did not differ on most cognitive tasks except
for the working memory one, where older adults with high education performed better than older

adults with lower education and more similarly to the younger adults (Table 1).
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Low Edu Low Edu
Range M(SD) Range| M (SD)| Range| M (SD)| 2 p x2 p x2 p
(-1.47 - -0.43 ((-0.99- 0.69 |(-0.66- 0.77

PS_Allertness 1.50) | (0.56)| 3.35) | (1.07)  5.29) (1.07) 23.15 <0.001| 30.44 <0.001| <0.01 ~ 0.92

PS_Visual | (-147- | -043 (-0.71- 094 |(-0.84- 0.97
Attention | 1.50) | (0.56) 3.62) (1.07) 3.59) (1.07)| 42.84| <0.001 42.11 <0.001 0.08  0.77

(-2.83- | 024 [(-327- -0.04 (-3.72- -0.92
MEM_WM | 0.80) | (0.71) 0.80) (1.28) 0.80) (1.28)| 0.64  0.42 2630 <0.001 8.13  <0.01

(-246- | 030 [(-3.51- -0.85 (-2.46- -0.54
MEM Del = 127) | (0.84) 0.79)  (0.97) | 1.08) | (0.97) 24.16 <0.001 23.20 <0.001 0.98 | 0.32

(042- | 046 | (0.36-] 041 | (0.38- 042
GM _Volume 0.50) | (0.01) 0.44) | (0.01)  0.45) (0.01) 56.63 <0.001 6530 <0.001 2.07 | 0.14

(8.95- | 1038 (8.81- 10.04 | (8.69- 10.00
IAPF 11.98) | (0.68) 11.85) (0.67) | 11.44) (0.67) 3.96 0.04 & 546 001 0.17 | 0.67

(059- | 200 (L.11- 1.67 | (0.61- 1.61
Exponent | 2.71) | (0.36) 2.07)  (0.38)  2.48) | (0.38)| 22.19 <0.001 20.77 <0.001 021  0.64

(-17.21- | -15.72/(-16.89 -16.23 (-17.52 -16.24
Offset  14.55) (0.54) - 15.28) (0.51) - 15.22) (0.51) 18.33 <0.001 18.61 <0.001 0.02 | 0.8

Table 1. Descriptive information about the sample and group comparisons based on
participants’ age and education. Table depicts: Processing Speed alertness (PS_Allertness),
Processing Speed Visual Attention (PS_Attention), Working Memory accuracy
(MEM_WM) and Delayed Memory accuracy (MEM_Del); gray matter volume normalized
(GM_Volume), Individual Alpha Peak Frequency (IAPF), Exponent, and Offset).
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Figure 3. Age- and Education-related differences of the EEG components. The Individual Alpha
Peak Frequency, the exponent, and the offset of each group (Young — High Edu = younger adults
with high education, Old — High Edu = older adults with high education; Old — Low Edu = older
adults with low education) are shown on the y-axis.

3.2. EEG spectral parameters and cognitive performance

In the whole sample (179) a higher exponent and offset significantly predicted a better performance
on the visual attention task (exp: B =-0.44, p < 0.01; offset: B=-0.32, p <0.01). The exponent and
the offset values predicted working memory capacity (exp: B =0.37, p = 0.04; offset: B=0.31,p =
0.01); see Section C of Supplementary Materials. Significant results emerged when considering the
three groups for both the exponent and the offset, in the visual attention and working memory tasks.
More specifically, compared to the group of young adults, where exponent and offset did not predict
any variation in cognitive performance, older adults showed significant associations, different
across educational levels. In the visual attention task, low educated older adults had a better (faster)
performance at the higher aperiodic values (exp: B =-0.67, p = 0.04; offset: B=-0.56, p=0.03) while

highly educated ones had a worse performance (slower) at the higher values of the exponent (exp:
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B = 1.41, p=0.02), a result confirmed post-hoc through slope comparisons, which confirmed a
general age-related effect and also a significant difference between older adults with different
education, at the third quartile of the exponent values (t=2.45; p = 0.03), see Figure 4.

Results showed that, also in the working memory task, older adults with high education had worse
performance with increasing exponent values, as compared with those with low education (B = -
1.71, p=0.03). Post-hoc slope comparison showed no main education-related difference among older
adults. Young adults and highly educated older adults did not differ between each other at different
quartiles of exponent values (25%: t=1.16, p = 0.47; 50%: t=1.94, p = 0.12; 75%: t=2.12, p = 0.08);

Figure S3 in Supplementary Materials and Tables S2-5 for more details.
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Figure 4. Relationship between exponent and response times in the visual attention task (processing
speed). On the x-axis, the exponent value parameterized at the occipital level and in the Alpha band
(8-12 Hz) is reported. On the y-axis, the z-scores associated with the Processing Speed response
times: visual attention (i.e., “Trail Making Test-B”) is reported. The higher the exponent, the slower
older adults with higher education, the faster the older adults with lower education. A non-
significant relationship was shown between exponent and response times in the group of young
adults.
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4. DISCUSSION

The present study aimed to investigate the relationship between aperiodic activity and cognitive
performance, by accounting for the level of education in older individuals, compared with a control
group of highly educated younger adults (i.e., high neurocognitive efficiency).

The older adults showed less cognitive efficiency compared to young adults, across all tasks, which
aligns with the well-established literature about cognitive decline in healthy aging #'. Upon
stratifying older adults based on their education, the results indicated that those with higher
education exhibited comparable performance to older adults with lower education, except for
working memory performance. Older adults with higher education showed better working memory
performance compared with older adults with lower education, which made the group of older adults
with high education more similar to the young group, suggesting a potential role of education in
mitigating age-related cognitive decline.

Consistent with previous evidence 284243

, the periodic and aperiodic components of EEG
differentiated between young and older adults: older adults exhibited lower values across
components, compared to younger adults. Concerning the periodic component of the EEG signal,
IAPF showed the pattern of an age-related slowing, as confirmed in different studies ***°. Several
interpretations have been advocated to link periodic EEG components with aging. In addition to
slowing with age, structural alterations in the brain have also been associated with the decline in
power and peak frequency of alpha oscillations, particularly in older individuals %4, Additionally,
the stability of IAPF over the life course reflects the preserved functionality of the central nervous
system %, Regarding cognition, IAPF has previously demonstrated a positive relationship with
interference resolution in working memory performance, primarily observed in the temporal lobes

8 This may indicate that IAPF plays a functional role in the ability to disregard and suppress

interfering information. However, our study did not confirm the relationship between IAPF and
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working memory, suggesting that other factors, such as the specific nature of the task may mediate
it.

In relation to the aperiodic EEG components, we found that both exponent and offset values
significantly decreased with age. These results corroborate previous evidence suggesting that the
aperiodic EEG component can serve as a neurophysiological marker of aging. Likewise, recent

studies have revealed that aperiodic activity is influenced by various factors, including drugs 4>

and level of arousal !

. However, the potential mediation of education, specifically its influence on
the relationship between aperiodic components and cognitive performance, was unexplored in the
literature.

In our study, education might help in interpreting the relationship between aperiodic component and
performance on some tasks of visual attention and working memory, but not on a delayed memory
task. The relation between aperiodic component and cognitive performance varied depending on
education level, with a reversed pattern between exponent and cognitive performance in older adults
across higher vs lower education. Older adults with lower education displayed a positive relationship
between exponent and cognitive performance, while those with higher education exhibited the
opposite trend. In this sense, the neurobiological bases of the aperiodic activity are still uncertain.
However, evidence suggests that a flatter exponent (when the exponent approximates zero) may
reflect an increase of asynchronous background neuronal firing, commonly called neural noise +*.
Moreover, in non-linear systems like the brain, the notion of stochastic resonance proposes that
information at the threshold level can be better processed within an optimal noise range than without
noise *2. If different exponent values represent varying levels of neural noise, it is possible that noise
also has different effects on performance according to the system. In older adults with lower
education levels, higher exponents - corresponding to lower noise values - may contribute to better

performance. On the other hand, older adults with higher education would exhibit the opposite

pattern. In this latter group, higher exponents (lower noise values) would reduce performance

10
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efficiency. These two scenarios may depend on the fact that, according to the framework of
stochastic resonance, there is no ideal level of noise and its effect on performance may not follow a
linear pattern: it can vary based on the specific system and compensatory dynamics. Although such
result may seem counterintuitive, a similar reversed pattern has been observed in a previous study
that examined the relationship between mathematical achievement and glutamate concentrations.
Glutamate has the effect of flattening the power spectrum, leading to exponent values closer to zero
4. A study by > has demonstrated that the concentration of glutamate and the exponent levels could
result in reversed cognitive performance outcomes depending on the participants' age. Specifically,
in their study, the concentration of glutamate (in the intraparietal sulcus) was negatively associated
with mathematical achievement in younger participants, but it was positively associated with
mathematical achievement in older participants. In our study, where the observed effects on
cognitive performance cannot be influenced by age within the group of older adults, they could be
associated with educational levels, which is a distinguishing factor between the two aging groups.
Although tantalizing, this proposed relationship between exponent values, noise levels, and
cognitive performance in older adults at different education level should be interpreted cautiously.
Indeed, education may mediate the relationship between the aperiodic component and cognitive
performance differently. For example, it may impact cognitive strategies, task engagement, and
compensatory mechanisms, leading individuals with higher education to have a high cognitive
performance independently of the specific neural mechanisms reflected by aperiodic EEG
component. We did observe a relationship between the exponent and processing speed, in line with
>4 Moreover, the study partially replicated what it was found in some previous studies where a
relationship between exponent and working memory performance was identified %28,

Overall, our results cannot be interpreted as exhaustive; they should emphasize the importance of
considering the aperiodic component of EEG signal as a marker of neurophysiological mechanisms

that relates with performance, which can be mediated by different aspects. Our study, in particular,

11
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focused on education as one of these aspects. An important limitation is related to the fact that the
LEMON database, despite having many advantages, did not have the optimal characteristics for the
aims of this study. In particular, it included a cohort of participants with different age (whereas a
longitudinal dataset would be more suited) and it included a different number of participants for
each group. Future longitudinal studies with better stratification should explore the ontogenetic
trajectory of the exponent, to further investigate its role in cognitive performance during aging. In
the present study, the availability of age and education variables in a categorical form might have
limited the assessment of neurobehavioral relationships and the potential use of finer analysis
modeling.

Future studies may explore the intricate connection between EEG parameters and cognition, by
encompassing a broader range of variables that could modulate such a relationship. Another relevant
aspect is related to the nature of this study: although it could provide some insights into relationships
among the variables, it cannot establish causation.

In summary, this study may open to future research on the modulatory role of education and other
cognitive reserve proxies, in the complex relationship between aperiodic EEG component and

cognitive efficiency in aging.

2. METHODS

2.1. Participants and Materials

All participants included in this study were taken from the “Leipzig Study for Mind-Body-Emotion
Interactions" (LEMON; 3°. The final sample consisted of N=179 individuals. Socio-demographic
information like age and education was shared in bins >°, not continuous. Participants were grouped
based on age (older vs. younger adults) and education (high vs. lower). Participants included in the
young group (N=123) aged 20-35 years and had high education levels (12 years of

lyceum/gymnasium), whereas the group of older adults (N=56), age range 60-77 years, was divided

12
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in two groups: one with high education (12 years of lyceum/gymnasium, N=24) and the other with
low education (10 years of technical high school/Realschule, N=32). Participants with no
availability of EEG data and those who were indicated as with alcohol abuse or dyslexia problems
were not included in the final data sample. A small subgroup of young adults with low education
was not included in the sample according to the study purpose (N=7); one participant resulted as
outlier on both visual inspection of residuals and Cook's threshold and it was removed. Data
collection was performed upon the Declaration of Helsinki and approved by the local ethics
committee > ; all participants provided written informed consent before data acquisition for the

study.

2.2. Cognitive Assessment

Processing Speed and Memory capacity were investigated in relationship with periodic and
aperiodic EEG components.

- Processing Speed included alertness and visual attention and it was assessed using two tasks: the
Test of Attentional Performance >® and the Trail Making Test 7. The former estimated alertness:
i.e., participants were asked to respond, as fast as possible, to the appearance of a visual stimulus on
the screen. The TMT estimated visual attention w, i.e., participants were asked to connect as fast as
possible a series of visual stimuli, alternatively with a definition order: numerical and alphabetical
orders.

- Memory included working and delayed memory tasks; it was assessed with a working memory
task (WM_TAP,>® and the California Verbal Learning Task (CVLT, 8. For the working memory
task, participants had to simultaneously provide a response only when a given stimulus was equal
to the second last one perceived in the series, while keeping track of a series of different stimuli. In
the delayed memory task, participants were asked to retain and correctly recall a series of 16 words

belonging to their vocabulary.
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2.3 Neural variables

2.3.1. Gray Matter Volume

A 3 Tesla scanner (MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen, Germany) with a
32-channel head coil was used to conduct Magnetic Resonance Imaging (MRI); 3. The pre-
processing pipeline included a series of steps: a) re-orientating images to the standard (MNI)
template, b) bias field correction, ¢) registration to the MNI template using both linear (FLIRT) and
nonlinear (FNIRT) registration tools, and d) brain extraction. Brain tissues were segmented using
FMRIB's Automated Segmentation Tool (FAST) that allowed extracting measures of total Gray
Matter, White Matter and Cerebrospinal Fluid. Brain tissues were visually inspected by a trained

neuroscientist (NF) to ensure an accurate segmentation.

2.3.2. EEG preprocessing and source reconstruction

A 16-min rs-EEG was recorded with a BrainAmp MR plus amplifier in an electrically shielded and
sound-attenuated EEG booth using 62-channel (61 scalp electrodes plus 1 electrode recording the
VEOG below the right eye) active ActiCAP electrodes (Brain Products GmbH, Gilching, Germany;
international standard 10-20 localization system, and referenced to FCz). EEG was recorded with a
band-pass filter between 0.015 Hz and 1 kHz and digitized with a sampling rate of 2500 Hz. Raw
EEG data were down-sampled from 2500 Hz to 250 Hz and band-pass filtered within 1-45 Hz.
Outlier channels were rejected after visual inspection for frequent jumps/shifts in voltage and poor
signal quality. Data intervals containing extreme peak-to-peak deflections or large bursts of high-
frequency activity were identified by visual inspection and removed. Independent component
analysis (ICA) was performed using the Infomax algorithm (runica function from MATLAB). On
pre-processed files, source reconstruction was run by using a standard head model. A 3-shell

boundary element model was constructed via Brainstorm >°. The default current density maps were
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normalized through Standardized LOw Resolution brain Electromagnetic TomogrAphy approach
(SLORETA, . Welch's method was used to calculate the power spectrum at the level of the
reconstructed sources. Window-overlap was 50%. Due to the small number of EEG channels, we
grouped cortical vertices into major regions (ROIs), aggregated accordingly to Desikan-Killiany

atlas by following a similar approach .

2.3.3. Periodic and aperiodic components of the power spectral density
The specparam algorithm (version 1.0.0 !¢ was used to parametrise power spectra of ROIs. In
specparam algorithm, the power spectrum PSD is modeled as a combination of aperiodic component

AP and a sum of N oscillatory peak modeled with a Gaussian:

N
P=AP +ZGn.
n=0

The component AP (f) for frequency f is expressed by the formula:
AP(f) = b — log(k + ),

where b is the broadband offset, y is the exponent and k is the knee parameter, controlling the
“bend”, When k = 0 this the component AP will be a line fitted in the log-log space (this is later
referred as a fixed mode). in this case, the slope of the line a in log-log space is directly related to
exponent y , ¥ = —a '6. The output of algorithm for estimated peaks are the mean of the Gaussian
G, for the center frequency of the peak, aperiodic-adjusted power (the distance between the peak of
the Gaussian and the aperiodic fit at this frequency) and bandwidth as 2 SD of the fitted Gaussian.
In the current analysis, power spectra were parameterized across the frequency range 3 to 48 Hz
(the maximal frequency range to avoid the line noise frequency) using the “fixed” mode (Figure 1).
Additional algorithm settings were set as: peak width limits: [2.5 8]; max number of peaks: 6;
minimum peak height: 0.5; peak threshold: 2. All the parameters describing identified peaks, offset,

exponent and the parameters describing how well the model was fit were extracted.
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Figure 1. Example plot with fitted parameters (associated with participant 'sub-032302' right
cuneus). The x-axis shows the frequency band in Hz units. The y-axis shows power in arbitrary units
(a.u.) associated with resting-state activity in the eyes-closed condition at the right cuneus ROI
(referred to the Desikan-Killiany atlas) for this participant.

The parameters were extracted for every PSDs in the Eyes Closed condition, then ROIs that belong
to the occipital regions were selected (that is where dominant activity in alpha is expected to exhibit
age-related patterns; *+*>47; thus the parameters from all ROIs belonging to this region were
averaged. The choice of parameters gave a median goodness-of-fit measure of 72 = 0.981, IQR=
[0.971,0.978] across all regions within the occipital lobe. Model fits were not statistically different
between the two groups: YA median 12 = 0.983, IQR=[0.974,0.988]; OA median r2 = 0.976, IQR=
[0.962, 0.984]. Thus, although other processing parameters could have been chosen, we achieved
suitable spectral parameterization across participants and regions. Compared to previous studies

using the specparam algorithm, where frequency range varies, many used 40 Hz as the upper
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frequency range 23*86! For sake of clarity, using 48 Hz as upper frequency is also a widely adopted
option %63 and stays within the recommendations of the algorithm’s authors. All participants
showed a discernible alpha peak in the PSD (see an example in Figure 1). Individual alpha peak
frequency values per subject were created from periodic components fitted by algorithm in the alpha
range (8-12 Hz), but instead of averaging several of them per subject per ROI only the one that had
the highest value of PW was taken per ROI and then averaged across ROIs within the occipital
region. Figure 2 offers a qualitative overview of the differences in EEG power spectra among our
groups. The figure visually confirms differences in IAPF (Individual Alpha Peak Frequency) values

between the young and old populations.

1e-16 Spectrum in the occipital region in the EC condition
1.2 Young - High Edu
—— Old - High Edu
—— OId - Low Edu
1.0
0.8
el
s
3 0.6
2
9]
Q
D
s)
-
0.4
0.2
0.0
5 10 15 20 25 30 35 40

Frequency (Hz)

Figure 2. Age- and education-related differences in resting EEG power spectra in the occipital
region, in the eyes closed condition. The plot shows a median for each group (Young — High Edu =
younger adults with high education, Old — High Edu = older adults with high education; Old — Low
Edu = older adults with low education) and a 50% percentile interval, ranging from the 25 to 75
percentiles.
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2.4. Statistical Analyses

Analyses were performed with the R software . Shapiro-Wilk tests on each dependent variable,
inspection of residuals, and Kolmogorov-Smirnov analysis were performed to build up the
regression models. Results indicated General Linear regression Models as suitable; they included
processing speed and accuracy scores on cognitive tests as dependent variables, the variable group
as a factor: older adults with high education vs. older adults with lower education vs. young adults
(all high education). Other continuous predictors of interest were the periodic and the aperiodic EEG
components: IAPF, exponent, and offset values. Sex and normalized gray matter volume were
accounted for in all regression models. A simplified syntax of the R linear models is reported below:

test score ~ EEG parameter x group + sex + Gray Matter volume

Sex and Gray matter volume were added as covariates as they were two relevant variables that could
also be associated with cognitive performance. Power analysis revealed a statistical power > 0.95
indicating the ability of the model to detect a significant effects, based on a significance level (a) of

0.05 and an estimated effect size 2 of 0.35.

18


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560988; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Bibliography

1.

10.

11.

12.

13.

14.

Nyberg, L., Lévdén, M., Riklund, K., Lindenberger, U. & Biackman, L. Memory aging and
brain maintenance. Trends Cogn. Sci. 16, 292-305 (2012).

Gazzaley, A., Cooney, J. W., Rissman, J. & D’Esposito, M. Top-down suppression deficit
underlies working memory impairment in normal aging. Nat. Neurosci. 8, 1298—1300
(2005).

Buckner, R. L. Memory and Executive Function in Aging and AD. Neuron 44, 195-208
(2004).

Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. JINS 16,
754-760 (2010).

Habes, M. ef al. White matter hyperintensities and imaging patterns of brain ageing in the
general population. Brain J. Neurol. 139, 1164-1179 (2016).

Taki, Y. et al. Correlations among brain gray matter volumes, age, gender, and hemisphere
in healthy individuals. PloS One 6, €22734 (2011).

Camandola, S. & Mattson, M. P. Brain metabolism in health, aging,
and neurodegeneration. EMBO J. 36, 1474—-1492 (2017).

Rossini, P. M., Rossi, S., Babiloni, C. & Polich, J. Clinical neurophysiology of aging brain:
from normal aging to neurodegeneration. Prog. Neurobiol. 83, 375-400 (2007).

Podell, J. E. et al. Neurophysiological correlates of age-related changes in working memory
updating. Neurolmage 62,2151-2160 (2012).

Babiloni, C. ef al. Sources of cortical rthythms in adults during physiological aging: a
multicentric EEG study. Hum. Brain Mapp. 27, 162—172 (2006).

Michels, L. et al. Developmental changes of functional and directed resting-state
connectivities associated with neuronal oscillations in EEG. Neurolmage 81, 231-242
(2013).

Scally, B., Burke, M. R., Bunce, D. & Delvenne, J.-F. Resting-state EEG power and
connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol.
Aging 71, 149-155 (2018).

Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance:
a review and analysis. Brain Res. Brain Res. Rev. 29, 169—195 (1999).

Rossini, P. M., Rossi, S., Babiloni, C. & Polich, J. Clinical neurophysiology of aging brain:
From normal aging to neurodegeneration. Prog. Neurobiol. 83, 375400 (2007).


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560988; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

15. Sghirripa, S. et al. The role of alpha power in the suppression of anticipated distractors
during verbal working memory. 2020.07.16.207738 Preprint at
https://doi.org/10.1101/2020.07.16.207738 (2020).

16. Donoghue, T. ef al. Parameterizing neural power spectra into periodic and aperiodic
components. Nat. Neurosci. 23, 1655-1665 (2020).

17. Schaworonkow, N. & Voytek, B. Longitudinal changes in aperiodic and periodic activity
in electrophysiological recordings in the first seven months of life. Dev. Cogn. Neurosci.
47, 100895 (2021).

18. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential
power spectra are correlated with single-neuron spiking in humans. J. Neurosci. Off. J. Soc.
Neurosci. 29, 13613-13620 (2009).

19. Miller, J. F. et al. Neural activity in human hippocampal formation reveals the spatial
context of retrieved memories. Science 342, 1111-1114 (2013).

20. Winawer, J. ef al. Asynchronous broadband signals are the principal source of the BOLD
response in human visual cortex. Curr. Biol. CB 23, 11451153 (2013).

21. Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from
field potentials. Neurolmage 158, 70-78 (2017).

22. Bédard, C. & Destexhe, A. Macroscopic Models of Local Field Potentials and the Apparent
1/f Noise in Brain Activity. Biophys. J. 96, 2589-2603 (2009).

23. Merkin, A. et al. Age differences in aperiodic neural activity measured with resting EEG.
2021.08.31.458328 Preprint at https://doi.org/10.1101/2021.08.31.458328 (2021).

24. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f
noise. Phys. Rev. Lett. 59, 381-384 (1987).

25. O’Byrne, J. & Jerbi, K. How critical is brain criticality? Trends Neurosci. 45, 820-837
(2022).

26. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nat. Rev. Neurosci. 10, 186—198 (2009).

27. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the
brain surface electric potential. PLoS Comput. Biol. 5, €1000609 (2009).

28. Voytek, B. et al. Age-Related Changes in 1/f Neural Electrophysiological Noise. J.
Neurosci. Off. J. Soc. Neurosci. 35, 13257-13265 (2015).

29. Tran, T. T., Rolle, C. E., Gazzaley, A. & Voytek, B. Linked Sources of Neural Noise
Contribute to Age-related Cognitive Decline. J. Cogn. Neurosci. 32, 1813—1822 (2020).


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560988; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

30. Waschke, L., Wostmann, M. & Obleser, J. States and traits of neural irregularity in the age-
varying human brain. Sci. Rep. 7, 17381 (2017).

31. Thuwal, K., Banerjee, A. & Roy, D. Aperiodic and Periodic Components of Ongoing
Oscillatory Brain Dynamics Link Distinct Functional Aspects of Cognition across Adult
Lifespan. eNeuro 8, ENEURO.0224-21.2021 (2021).

32. Pathania, A., Schreiber, M., Miller, M. W., Euler, M. J. & Lohse, K. R. Exploring the
reliability and sensitivity of the EEG power spectrum as a biomarker. Int. J. Psychophysiol.
160, 18-27 (2021).

33. Stern, Y. What is cognitive reserve? Theory and research application of the reserve
concept. J. Int. Neuropsychol. Soc. JINS 8, 448-460 (2002).

34. Stern, Y. et al. A framework for concepts of reserve and resilience in aging. Neurobiol.
Aging 124, 100-103 (2023).

35. Lojo-Seoane, C., Facal, D., Guardia-Olmos, J., Pereiro, A. X. & Juncos-Rabadan, O.
Effects of Cognitive Reserve on Cognitive Performance in a Follow-Up Study in Older
Adults With Subjective Cognitive Complaints. The Role of Working Memory. Front.
Aging Neurosci. 10, 189 (2018).

36. Mondini, S., Pucci, V., Montemurro, S. & Rumiati, R. I. Protective factors for subjective
cognitive decline individuals: trajectories and changes in a longitudinal study with Italian
elderly. Eur. J. Neurol. 29, 691-697 (2022).

37. Stern, Y. et al. Influence of education and occupation on the incidence of Alzheimer’s
disease. JAMA 271, 1004—1010 (1994).

38. Lovdén, M., Fratiglioni, L., Glymour, M. M., Lindenberger, U. & Tucker-Drob, E. M.
Education and Cognitive Functioning Across the Life Span. Psychol. Sci. Public Interest
J. Am. Psychol. Soc. 21, 641 (2020).

39. Montemurro, S., Mondini, S. & Arcara, G. Heterogeneity of effects of cognitive reserve on
performance in probable Alzheimer’s disease and in subjective cognitive decline.
Neuropsychology 35, 876—888 (2021).

40. Cabeza, R. et al. Maintenance, reserve and compensation: the cognitive neuroscience of
healthy ageing. Nat. Rev. Neurosci. 19, 701-710 (2018).

41. Harada, C. N., Natelson Love, M. C. & Triebel, K. L. Normal cognitive aging. Clin.
Geriatr. Med. 29, 737-752 (2013).

42. Dustman, R. E., Shearer, D. E. & Emmerson, R. Y. EEG and event-related potentials in
normal aging. Prog. Neurobiol. 41, 369—401 (1993).


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560988; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

43. Hill, A. T., Clark, G. M., Bigelow, F. J., Lum, J. A. G. & Enticott, P. G. Periodic and
aperiodic neural activity displays age-dependent changes across early-to-middle
childhood. Dev. Cogn. Neurosci. 54, 101076 (2022).

44. Knyazeva, M. G., Barzegaran, E., Vildavski, V. Y. & Demonet, J.-F. Aging of human alpha
rhythm. Neurobiol. Aging 69, 261-273 (2018).

45. Mizukami, K. & Katada, A. EEG frequency characteristics in healthy advanced elderly. J.
Psychophysiol. 32, 131-139 (2018).

46. Kumral, D. ef al. Relationship between regional white matter hyperintensities and alpha
oscillations in older adults. Neurobiol. Aging 112, 1-11 (2022).

47. Grandy, T. H. et al Peak individual alpha frequency qualifies as a stable
neurophysiological trait marker in healthy younger and older adults. Psychophysiology 50,
570-582 (2013).

48. Cesnaite, E. ef al. Alterations in rthythmic and non-rhythmic resting-state EEG activity and
their link to cognition in older age. Neurolmage 268, 119810 (2023).

49. Colombo, M. A. et al. The spectral exponent of the resting EEG indexes the presence of
consciousness during unresponsiveness induced by propofol, xenon, and ketamine.
Neurolmage 189, 631-644 (2019).

50. Waschke, L. et al. Modality-specific tracking of attention and sensory statistics in the
human electrophysiological spectral exponent. eLife 10, €70068 (2021).

51. Lendner, J. D. ef al. An electrophysiological marker of arousal level in humans. eLife 9,
€55092 (2020).

52. Miniussi, C., Harris, J. A. & Ruzzoli, M. Modelling non-invasive brain stimulation in
cognitive neuroscience. Neurosci. Biobehav. Rev. 37, 1702—-1712 (2013).

53. Zacharopoulos, G. ef al. Predicting learning and achievement using GABA and glutamate
concentrations in human development. PLoS Biol. 19, €3001325 (2021).

54. Ouyang, G., Hildebrandt, A., Schmitz, F. & Herrmann, C. S. Decomposing alpha and 1/f
brain activities reveals their differential associations with cognitive processing speed.
Neurolmage 205, 116304 (2020).

55. Babayan, A. et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and
peripheral physiology in young and old adults. Sci. Data 6, 180308 (2019).

56. Zimmermann, P. & Fimm, V. Testbatterie zur Aufmerksamkeitspriifung (TAP). in
(Psytest, 2012).

57. Reitan, R. M. Trail Making Test: Manual for administration and scoring. (Reitan
Neuropsychology Laboratory, 1992).


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.05.560988; this version posted November 30, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

58. Niemann, H., Sturm, W., Thone-Otto, A. I. T. & Willmes, K. CVLT California Verbal
Learning Test. German adaptation. Manual. (2008).

59. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly
application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

60. Pascual-Marqui, R. D. Standardized low-resolution brain electromagnetic tomography
(sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24 Suppl D, 5-12
(2002).

61. Trondle, M. et al. Decomposing age effects in EEG alpha power. Cortex 161, 116-144
(2023).

62. lemi, L. et al. Multiple mechanisms link prestimulus neural oscillations to sensory
responses. eLife 8, 43620 (2019).

63. van Nifterick, A. M. ef al. Resting-state oscillations reveal disturbed excitation—inhibition
ratio in Alzheimer’s disease patients. Sci. Rep. 13, 7419 (2023).

64. R Core Team. R: A language and environment for statistical computing. (2022).


https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/

