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Abstract 
 
Aging is associated with changes in the oscillatory -periodic- brain activity in the alpha band (8-12 

Hz), as measured with resting-state EEG (rsEEG); it is characterized by a significantly lower alpha 

frequency and power. Aging influences the aperiodic component of the power spectrum: at a higher 

age the slope flattens, which is related with lower cognitive efficiency. It is not known whether 

education, a cognitive reserve proxy recognized for its modulatory role on cognition, influences 

such relationship. 

N=179 healthy participants of the LEMON dataset (Babayan et al., 2019) were grouped based on 

age and education: young adults with high education and older adults with high and low education. 

Eyes-closed rsEEG power spectrum was parametrized at the occipital level. 

Lower IAPF, exponent, and offset in older adults were shown, compared to younger adults. Visual 

attention and working memory were differently predicted by the aperiodic component across 

education: in older adults with high education, higher exponent predicted slower processing speed 

and less working memory capacity, with an opposite trend in those with lower education. 

Further investigation is needed; the study shows the potential modulatory role of education in the 

relationship between the aperiodic component of the EEG power spectrum and aging cognition. 
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1. INTRODUCTION 

As we age, many changes occur in individuals’ behavior and cognition, worsening in memory 1, 

attention span 2, executive functions 3, and processing speed 4, reflecting just a few of the 

consequences of the natural aging process. These behavioral changes are accompanied by (and 

associated with) changes in the brain's structural anatomy 5,6, metabolism 7 and functionality 8 which 

produce a significant effect on its neurophysiological activity 9. Electroencephalogram (EEG) 

studies on aging have shown changes in neural oscillatory activity, especially in the alpha band (8-

12 Hz) 10–12. Researchers have reported that older adults display slower alpha oscillatory activity 

and lower alpha power than their younger counterparts 13–15. Moreover, individual alpha peak 

frequency (IAPF), i.e., the frequency where EEG activity exhibits the maximum power in the alpha 

range, tends to decrease from adulthood to midlife 11,12. In most studies, EEG activity in specific 

frequency bands has been traditionally measured as the average of the power in the frequency bands 

of interest as calculated from the power spectrum 16. However, this approach (and subsequent 

interpretation of the results) has been challenged by a renewed interest in the non-oscillatory, 

aperiodic component of the EEG signal. 

The aperiodic component does not necessarily entail specific frequency bands; it exhibits a 1/f-like 

distribution in the log-log space of a Power Spectrum Density (PSD), meaning its power 

exponentially decreases as frequency increases.  

Aperiodic activity can be parametrized by values of the exponent, which describe the negativity of 

the power spectrum slope and the offset, the broadband shift of power across frequencies 16. 

Importantly, change in the spectrum's aperiodic component may occur without changes in the 

oscillatory components and may affect the power values calculated for each frequency. For example, 

a change in aperiodic slope may influence the power values in the alpha band as calculated from the 

power spectrum, when no change in alpha's oscillatory component occurred. This may lead to 
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spurious results and wrong interpretations and highlight the importance of taking into account the 

aperiodic component when interpreting power spectrum data  16,17.  

For a long time, researchers ignored the aperiodic component of brain activity, considering it to be 

merely background noise; however, recently, this component has gained attention not only for its 

methodological impact but also because of its potential role as a marker of neurophysiological 

mechanisms underlying cognition. For instance, the aperiodic offset has been associated with 

neuronal population spiking 18,19 and blood-oxygen-level-dependent (BOLD) signal of functional 

magnetic resonance (fMRI) 20. Meanwhile, the exponent has been linked to changes in cortical 

excitation/inhibition balance 21, which means that increased power in higher frequency (associated 

with increased excitation at the cerebral level) produced a flattening of the PSD; thus a diminished 

exponent; the exponent has also been related to local neural tissue properties 22,23. In light of the 

investigations mentioned above, narrowly associating 1/f characteristics with specific cerebral 

function, alternative explanations should be acknowledged. A possible interpretation of the 

functional meaning of the aperiodic component posits that this variable indicates an underlying self-

organized critical system 24. Within this theoretical framework, the critical system is considered as 

the optimal state of brain’s functionality 25 where large-scale reorganization occurs quickly in 

response to stimuli, reflecting the brain's adaptation to changes in the endogenous and exogenous 

environment 26. Aperiodic activity may arise from spatial integration of asynchronous spiking of 

neural populations 27. Therefore, a reduction of the spectral exponent suggests functional neural 

decoupling. 

In the context of aging, a first study from 28 showed that the aperiodic slope of EEG and 

electrocorticography (ECoG) spectra flattened in a group of older people compared with a younger 

one, with decreased power between 8 to 14 Hz and increased power between 14 and 25 Hz. The 

changes in EEG spectral slope were also associated with age differences in working memory 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.10.05.560988doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.560988
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

performance. Interestingly, the aperiodic exponent appeared to mediate this relationship, suggesting 

that the slope effect alone could account for behavioral differences between older and young adults.  

Voytek and colleagues explained these results with the “Neural Noise Hypothesis”.  Initially 

proposed by 28, this theory suggests that as people age, there is an increase in spontaneous 

desynchronized neural activity, resulting in a decreased fidelity of neural communication and a 

flatter power spectrum. Recent studies have replicated Voytek findings and added new insights to 

the relationship between aging and aperiodic spectral components, highlighting their impact on 

cognitive performance. Flatter slopes in older adults were linked to poorer performance during 

spatial attention tasks 29,30 and short-term memory tasks 31. Recent work from 32 has associated the 

flattening of the aperiodic slope in frontal regions with worse performance on tasks involving 

processing speed and executive functions. Moreover, 29 measured changes of the aperiodic spectra 

at the baseline period in younger and older adults. They examined to what extent 1/f like exponent 

was related to alpha trial-by-trial consistency, during a spatial discrimination task. The authors 

considered these signal properties as measures of "neural noise". Interestingly, they found that older 

adults with the highest baseline noise levels also had the worse alpha trial-by-trial consistency, 

suggesting that age-related increases in baseline noise might diminish sensory processing and 

cognitive performance. 

Understanding the impact of neural noise could unveil new perspectives in capturing the effects of 

aging on neurophysiological functioning. Critically, studies on the aperiodic component of the 

spectrum and its functional role have neglected the possible modulatory role of "cognitive reserve" 

in modulating the effects on cognition in aging. Cognitive reserve is a concept proposed by Stern 

33,34, and it describes the capacity of the brain to actively cope with age-related or pathological 

changes by employing pre-existing resources. Such reserve accumulates since early life through 

exposure to cognitively stimulating life 35–37. One of the most widely recognized variables associated 

with the level of cognitive reserve is education, typically operationalized as a numerical variable, 
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indicating years of successful education or as an educational level operationalized as an ordered 

factor (e.g., high school, University etc.). Education has been largely used to examine the aging 

population's potential compensatory processes 38,39. While education modulates cognitive 

performance (i.e., the higher the education, the better cognitive performance), its impact on the 

intricate relationship between neural activity in the aging brain and cognitive capacity remains 

uncertain. Aperiodic activity, conceived as a possible pattern of neural communication impairment, 

is associated with a decline in cognitive performance in older adults. Critically, although education 

can be expected to favor the preservation/maintenance of neurobehavioral functionality in aging 40, 

how this is reflected at the level of aperiodic brain activity is not clear yet.  

With reference to the most recently updated framework targeting aging compensatory mechanisms, 

a specific set of variables are combined in this work, to investigate: i) the possible age-related neural 

patterns (i.e., aperiodic values), ii)  age-related cognitive differences (test scores), iii) and education 

as a variable expected to moderate the association between i) and ii) 34. Older adults with higher 

education were expected to preserve a more youth-like profile as compared to older adults with 

lower education. 

 
3. RESULTS 
 
3.1. Descriptive Analyses 

Young adults performed significantly better on all cognitive tasks than older adults (Table S1 and 

Figure S1). IAPF, exponent, and offset values were shown in young adults compared to older adults 

(Figure 3 and S1). Older adults with different education did not differ on most cognitive tasks except 

for the working memory one, where older adults with high education performed better than older 

adults with lower education and more similarly to the younger adults (Table 1). 
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 Young Adults 
Older Adults 

with high 
education 

Older 
Adults  with 

low 
education 

Group 
comparison 

Young – High 
Edu vs Old – 

Low Edu 

Group 
comparison 

Young – High 
Edu vs Old – 

Low Edu 

Group 
comparison 

Old – Low Edu vs 
Old – Low Edu 

 Range M(SD) Range M (SD) Range M (SD) χ2 p χ2 p χ2 p 

 

PS_Allertness 
(-1.47 - 
1.50) 

-0.43 
(0.56) 

(-0.99 - 
3.35) 

0.69 
(1.07) 

(-0.66 - 
5.29) 

0.77 
(1.07) 23.15 <0.001 30.44 <0.001 <0.01 0.92 

 

PS_Visual 
Attention 

(-1.47 - 
1.50) 

-0.43 
(0.56) 

(-0.71 - 
3.62) 

0.94 
(1.07) 

(-0.84 - 
3.59) 

0.97 
(1.07) 42.84 <0.001 42.11 <0.001 0.08 0.77 

 

MEM_WM 
(-2.83 - 
0.80) 

0.24 
(0.71) 

(-3.27 - 
0.80) 

-0.04 
(1.28) 

(-3.72 - 
0.80) 

-0.92 
(1.28) 0.64 0.42 26.30 <0.001 8.13 <0.01 

 

MEM_Del 
(-2.46 - 
1.27) 

0.30 
(0.84) 

(-3.51 - 
0.79) 

-0.85 
(0.97) 

(-2.46 - 
1.08) 

-0.54 
(0.97) 24.16 <0.001 23.20 <0.001 0.98 0.32 

 

GM_Volume 
(0.42 - 
0.50) 

0.46 
(0.01) 

(0.36 - 
0.44) 

0.41 
(0.01) 

(0.38 - 
0.45) 

0.42 
(0.01) 56.63 <0.001 65.30 <0.001 2.07 0.14 

 

IAPF 
(8.95 - 
11.98) 

10.38 
(0.68) 

(8.81 - 
11.85) 

10.04 
(0.67) 

(8.69 - 
11.44) 

10.00 
(0.67) 3.96 0.04 5.46 0.01 0.17 0.67 

 

Exponent 
(0.59 - 
2.71) 

2.00 
(0.36) 

(1.11 - 
2.07) 

1.67 
(0.38) 

(0.61 - 
2.48) 

1.61 
(0.38) 22.19 <0.001 20.77 <0.001 0.21 0.64 

 

Offset 
(-17.21 - 
14.55) 

-15.72 
(0.54) 

(-16.89 
- 15.28) 

-16.23 
(0.51) 

(-17.52 
- 15.22) 

-16.24 
(0.51) 18.33 <0.001 18.61 <0.001 0.02 0.88 

 

Table 1. Descriptive information about the sample and group comparisons based on 
participants’ age and education. Table depicts: Processing Speed alertness (PS_Allertness), 
Processing Speed Visual Attention (PS_Attention), Working Memory accuracy 
(MEM_WM) and Delayed Memory accuracy (MEM_Del); gray matter volume normalized 
(GM_Volume), Individual Alpha Peak Frequency (IAPF), Exponent, and Offset). 
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Figure 3. Age- and Education-related differences of the EEG components. The Individual Alpha 
Peak Frequency, the exponent, and the offset of each group (Young – High Edu = younger adults 
with high education, Old – High Edu = older adults with high education; Old – Low Edu = older 
adults with low education) are shown on the y-axis. 
 

3.2. EEG spectral parameters and cognitive performance 

In the whole sample (179) a higher exponent and offset significantly predicted a better performance 

on the visual attention task (exp: B = -0.44, p < 0.01; offset: B = -0.32, p < 0.01). The exponent and 

the offset values predicted working memory capacity (exp: B = 0.37, p = 0.04; offset: B = 0.31, p = 

0.01); see Section C of Supplementary Materials. Significant results emerged when considering the 

three groups for both the exponent and the offset, in the visual attention and working memory tasks. 

More specifically, compared to the group of young adults, where exponent and offset did not predict 

any variation in cognitive performance, older adults showed significant associations, different 

across educational levels. In the visual attention task, low educated older adults had a better (faster) 

performance at the higher aperiodic values (exp: B = -0.67, p = 0.04; offset: B = -0.56, p=0.03) while 

highly educated ones had a worse performance (slower) at the higher values of the exponent (exp: 
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B = 1.41, p=0.02), a result confirmed post-hoc through slope comparisons, which confirmed a 

general age-related effect and also a significant difference between older adults with different 

education, at the third quartile of the exponent values (t=2.45; p = 0.03), see Figure 4. 

Results showed that, also in the working memory task, older adults with high education had worse 

performance with increasing exponent values, as compared with those with low education (B = -

1.71, p=0.03). Post-hoc slope comparison showed no main education-related difference among older 

adults. Young adults and highly educated older adults did not differ between each other at different 

quartiles of exponent values (25%: t=1.16, p = 0.47; 50%: t=1.94, p = 0.12; 75%: t=2.12, p = 0.08); 

Figure S3 in Supplementary Materials and Tables S2-5 for more details. 

 

 

Figure 4. Relationship between exponent and response times in the visual attention task (processing 
speed). On the x-axis, the exponent value parameterized at the occipital level and in the Alpha band 
(8-12 Hz) is reported. On the y-axis, the z-scores associated with the Processing Speed response 
times: visual attention (i.e., “Trail Making Test-B”) is reported. The higher the exponent, the slower 
older adults with higher education, the faster the older adults with lower education. A non-
significant relationship was shown between exponent and response times in the group of young 
adults. 
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4. DISCUSSION 

The present study aimed to investigate the relationship between aperiodic activity and cognitive 

performance, by accounting for the level of education in older individuals, compared with a control 

group of highly educated younger adults (i.e., high neurocognitive efficiency).  

The older adults showed less cognitive efficiency compared to young adults, across all tasks, which 

aligns with the well-established literature about cognitive decline in healthy aging 41. Upon 

stratifying older adults based on their education, the results indicated that those with higher 

education exhibited comparable performance to older adults with lower education, except for 

working memory performance. Older adults with higher education showed better working memory 

performance compared with older adults with lower education, which made the group of older adults 

with high education more similar to the young group, suggesting a potential role of education in 

mitigating age-related cognitive decline. 

Consistent with previous evidence 28,42,43, the periodic and aperiodic components of EEG 

differentiated between young and older adults: older adults exhibited lower values across 

components, compared to younger adults. Concerning the periodic component of the EEG signal, 

IAPF showed the pattern of an age-related slowing, as confirmed in different studies 44,45. Several 

interpretations have been advocated to link periodic EEG components with aging. In addition to 

slowing with age, structural alterations in the brain have also been associated with the decline in 

power and peak frequency of alpha oscillations, particularly in older individuals 10,46. Additionally, 

the stability of IAPF over the life course reflects the preserved functionality of the central nervous 

system 47. Regarding cognition, IAPF has previously demonstrated a positive relationship with 

interference resolution in working memory performance, primarily observed in the temporal lobes 

48. This may indicate that IAPF plays a functional role in the ability to disregard and suppress 

interfering information. However, our study did not confirm the relationship between IAPF and 
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working memory, suggesting that other factors, such as the specific nature of the task may mediate 

it.  

In relation to the aperiodic EEG components, we found that both exponent and offset values 

significantly decreased with age. These results corroborate previous evidence suggesting that the 

aperiodic EEG component can serve as a neurophysiological marker of aging. Likewise, recent 

studies have revealed that aperiodic activity is influenced by various factors, including drugs 49,50 

and level of arousal 51. However, the potential mediation of education, specifically its influence on 

the relationship between aperiodic components and cognitive performance, was unexplored in the 

literature.  

In our study, education might help in interpreting the relationship between aperiodic component and 

performance on some tasks of visual attention and working memory, but not on a delayed memory 

task. The relation between aperiodic component and cognitive performance varied depending on 

education level, with a reversed pattern between exponent and cognitive performance in older adults 

across higher vs lower education. Older adults with lower education displayed a positive relationship 

between exponent and cognitive performance, while those with higher education exhibited the 

opposite trend. In this sense, the neurobiological bases of the aperiodic activity are still uncertain. 

However, evidence suggests that a flatter exponent (when the exponent approximates zero) may 

reflect an increase of asynchronous background neuronal firing, commonly called neural noise 43.  

Moreover, in non-linear systems like the brain, the notion of stochastic resonance proposes that 

information at the threshold level can be better processed within an optimal noise range than without 

noise 52. If different exponent values represent varying levels of neural noise, it is possible that noise 

also has different effects on performance according to the system. In older adults with lower 

education levels, higher exponents - corresponding to lower noise values - may contribute to better 

performance. On the other hand, older adults with higher education would exhibit the opposite 

pattern. In this latter group, higher exponents (lower noise values) would reduce performance 
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efficiency. These two scenarios may depend on the fact that, according to the framework of 

stochastic resonance, there is no ideal level of noise and its effect on performance may not follow a 

linear pattern: it can vary based on the specific system and compensatory dynamics. Although such 

result may seem counterintuitive, a similar reversed pattern has been observed in a previous study 

that examined the relationship between mathematical achievement and glutamate concentrations. 

Glutamate has the effect of flattening the power spectrum, leading to exponent values closer to zero 

49. A study by 53 has demonstrated that the concentration of glutamate and the exponent levels could 

result in reversed cognitive performance outcomes depending on the participants' age. Specifically, 

in their study, the concentration of glutamate (in the intraparietal sulcus) was negatively associated 

with mathematical achievement in younger participants, but it was positively associated with 

mathematical achievement in older participants. In our study, where the observed effects on 

cognitive performance cannot be influenced by age within the group of older adults, they could be 

associated with educational levels, which is a distinguishing factor between the two aging groups. 

Although tantalizing, this proposed relationship between exponent values, noise levels, and 

cognitive performance in older adults at different education level should be interpreted cautiously. 

Indeed, education may mediate the relationship between the aperiodic component and cognitive 

performance differently. For example, it may impact cognitive strategies, task engagement, and 

compensatory mechanisms, leading individuals with higher education to have a high cognitive 

performance independently of the specific neural mechanisms reflected by aperiodic EEG 

component. We did observe a relationship between the exponent and processing speed, in line with 

54. Moreover, the study partially replicated what it was found in some previous studies where a 

relationship between exponent and working memory performance was identified 16,28. 

Overall, our results cannot be interpreted as exhaustive; they should emphasize the importance of 

considering the aperiodic component of EEG signal as a marker of neurophysiological mechanisms 

that relates with performance, which can be mediated by different aspects. Our study, in particular, 
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focused on education as one of these aspects. An important limitation is related to the fact that the 

LEMON database, despite having many advantages, did not have the optimal characteristics for the 

aims of this study. In particular, it included a cohort of participants with different age (whereas a 

longitudinal dataset would be more suited) and it included a different number of participants for 

each group. Future longitudinal studies with better stratification should explore the ontogenetic 

trajectory of the exponent, to further investigate its role in cognitive performance during aging. In 

the present study, the availability of age and education variables in a categorical form might have 

limited the assessment of neurobehavioral relationships and the potential use of finer analysis 

modeling.  

Future studies may explore the intricate connection between EEG parameters and cognition, by 

encompassing a broader range of variables that could modulate such a relationship. Another relevant 

aspect is related to the nature of this study: although it could provide some insights into relationships 

among the variables, it cannot establish causation.  

In summary, this study may open to future research on the modulatory role of education and other 

cognitive reserve proxies, in the complex relationship between aperiodic EEG component and 

cognitive efficiency in aging. 

 

2. METHODS 

2.1. Participants and Materials 

All participants included in this study were taken from the “Leipzig Study for Mind-Body-Emotion 

Interactions'' (LEMON; 55. The final sample consisted of N=179 individuals. Socio-demographic 

information like age and education was shared in bins 55, not continuous. Participants were grouped 

based on age (older vs. younger adults) and education (high vs. lower). Participants included in the 

young group (N=123) aged 20-35 years and had high education levels (12 years of 

lyceum/gymnasium), whereas the group of older adults (N=56), age range 60-77 years, was divided 
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in two groups: one with high education  (12 years of lyceum/gymnasium, N=24) and the other with 

low education (10 years of technical high school/Realschule, N=32). Participants with no 

availability of EEG data and those who were indicated as with alcohol abuse or dyslexia problems 

were not included in the final data sample. A small subgroup of young adults with low education 

was not included in the sample according to the study purpose (N=7); one participant resulted as 

outlier on both visual inspection of residuals and Cook's threshold and it was removed. Data 

collection was performed upon the Declaration of Helsinki and approved by the local ethics 

committee 55 ; all participants provided written informed consent before data acquisition for the 

study. 

 

2.2. Cognitive Assessment 

Processing Speed and Memory capacity were investigated in relationship with periodic and 

aperiodic EEG components.  

- Processing Speed included alertness and visual attention and it was assessed using two tasks: the 

Test of Attentional Performance 56 and the Trail Making Test 57. The former estimated alertness: 

i.e., participants were asked to respond, as fast as possible, to the appearance of a visual stimulus on 

the screen. The TMT estimated visual attention w, i.e., participants were asked to connect as fast as 

possible a series of visual stimuli, alternatively with a definition order: numerical and alphabetical 

orders.  

- Memory included working and delayed memory tasks; it was assessed with a working memory 

task (WM_TAP,56 and the California Verbal Learning Task (CVLT, 58. For the working memory 

task, participants had to simultaneously provide a response only when a given stimulus was equal 

to the second last one perceived in the series, while keeping track of a series of different stimuli. In 

the delayed memory task, participants were asked to retain  and correctly recall a series of 16 words 

belonging to their vocabulary. 
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2.3 Neural variables 

2.3.1. Gray Matter Volume 

A 3 Tesla scanner (MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen, Germany) with a 

32-channel head coil was used to conduct Magnetic Resonance Imaging (MRI); 55. The pre-

processing pipeline included a series of steps: a) re-orientating images to the standard (MNI) 

template, b) bias field correction, c) registration to the MNI template using both linear (FLIRT) and 

nonlinear (FNIRT) registration tools, and d) brain extraction. Brain tissues were segmented using 

FMRIB's Automated Segmentation Tool (FAST) that allowed extracting measures of total Gray 

Matter, White Matter and Cerebrospinal Fluid. Brain tissues were visually inspected by a trained 

neuroscientist (NF) to ensure an accurate segmentation. 

 

2.3.2. EEG preprocessing and source reconstruction 

A 16-min rs-EEG was recorded with a BrainAmp MR plus amplifier in an electrically shielded and 

sound-attenuated EEG booth using 62-channel (61 scalp electrodes plus 1 electrode recording the 

VEOG below the right eye) active ActiCAP electrodes (Brain Products GmbH, Gilching, Germany; 

international standard 10–20 localization system, and referenced to FCz). EEG was recorded with a 

band-pass filter between 0.015 Hz and 1 kHz and digitized with a sampling rate of 2500 Hz. Raw 

EEG data were down-sampled from 2500 Hz to 250 Hz and band-pass filtered within 1-45 Hz. 

Outlier channels were rejected after visual inspection for frequent jumps/shifts in voltage and poor 

signal quality. Data intervals containing extreme peak-to-peak deflections or large bursts of high-

frequency activity were identified by visual inspection and removed. Independent component 

analysis (ICA) was performed using the Infomax algorithm (runica function from MATLAB). On 

pre-processed files, source reconstruction was run by using a standard head model. A 3-shell 

boundary element model was constructed via Brainstorm 59. The default current density maps were 
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normalized through Standardized LOw Resolution brain Electromagnetic TomogrAphy approach 

(sLORETA, 60. Welch's method was used to calculate the power spectrum at the level of the 

reconstructed sources. Window-overlap was 50%. Due to the small number of EEG channels, we 

grouped cortical vertices into major regions (ROIs), aggregated accordingly to Desikan-Killiany 

atlas by following a similar approach 48. 

 
2.3.3. Periodic and aperiodic components of the power spectral density 

The specparam algorithm (version 1.0.0 16 was used to parametrise power spectra of ROIs. In 

specparam algorithm, the power spectrum 𝑃𝑆𝐷 is modeled as a combination of aperiodic component 

𝐴𝑃 and a sum of N oscillatory peak modeled with a Gaussian: 

 

𝑃 = 𝐴𝑃 +'𝐺!

"

!#$

. 

 
The component 𝐴𝑃(𝑓) for frequency 𝑓 is expressed by the formula: 
 

𝐴𝑃(𝑓) = 𝑏 − 𝑙𝑜𝑔(𝑘 + 𝑓%), 
 
where 𝑏 is the broadband offset, 𝜒 is the exponent and 𝑘 is the knee parameter, controlling the 

“bend”, When 𝑘 = 0 this the component 𝐴𝑃 will be a line fitted in the log-log space (this is later 

referred as a fixed mode). in this case, the slope of the line 𝑎 in log-log space is directly related to 

exponent 𝜒 , 𝜒 = −𝑎 16. The output of algorithm for estimated peaks are the mean of the Gaussian 

𝐺! for the center frequency of the peak, aperiodic-adjusted power (the distance between the peak of 

the Gaussian and the aperiodic fit at this frequency) and bandwidth as 2 SD of the fitted Gaussian. 

In the current analysis, power spectra were parameterized across the frequency range 3 to 48 Hz 

(the maximal frequency range to avoid the line noise frequency) using the “fixed” mode (Figure 1). 

Additional algorithm settings were set as: peak width limits: [2.5 8]; max number of peaks: 6; 

minimum peak height: 0.5; peak threshold: 2. All the parameters describing identified peaks, offset, 

exponent and the parameters describing how well the model was fit were extracted.  
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Figure 1.  Example plot with fitted parameters (associated with participant 'sub-032302' right 
cuneus). The x-axis shows the frequency band in Hz units. The y-axis shows power in arbitrary units 
(a.u.) associated with resting-state activity in the eyes-closed condition at the right cuneus ROI 
(referred to the Desikan-Killiany atlas) for this participant. 
 

The parameters were extracted for every PSDs in the Eyes Closed condition, then ROIs that belong 

to the occipital regions were selected (that is where dominant activity in alpha is expected to exhibit 

age-related patterns; 44,45,47; thus the parameters from all ROIs belonging to this region were 

averaged. The choice of parameters gave a median goodness-of-fit measure of  𝑟& = 0.981, IQR= 

[0.971,0.978] across all regions within the occipital lobe. Model fits were not statistically different 

between the two groups: YA median r2 = 0.983, IQR= [0.974,0.988]; OA median r2 = 0.976, IQR= 

[0.962, 0.984]. Thus, although other processing parameters could have been chosen, we achieved 

suitable spectral parameterization across participants and regions. Compared to previous studies 

using the specparam algorithm, where frequency range varies, many used 40 Hz as the upper 
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frequency range 23,48,61. For sake of clarity, using 48 Hz as upper frequency is also a widely adopted 

option 62,63, and stays within the recommendations of the algorithm’s authors. All participants 

showed a discernible alpha peak in the PSD (see an example in Figure 1). Individual alpha peak 

frequency values per subject were created from periodic components fitted by algorithm in the alpha 

range (8-12 Hz), but instead of averaging several of them per subject per ROI only the one that had 

the highest value of PW was taken per ROI and then averaged across ROIs within the occipital 

region. Figure 2 offers a qualitative overview of the differences in EEG power spectra among our 

groups. The figure visually confirms differences in IAPF (Individual Alpha Peak Frequency) values 

between the young and old populations. 

 

Figure 2. Age- and education-related differences in resting EEG power spectra in the occipital 
region, in the eyes closed condition. The plot shows a median for each group (Young – High Edu = 
younger adults with high education, Old – High Edu = older adults with high education; Old – Low 
Edu = older adults with low education) and a 50% percentile interval, ranging from the 25 to 75 
percentiles. 
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2.4. Statistical Analyses 

Analyses were performed with the R software 64. Shapiro-Wilk tests on each dependent variable, 

inspection of residuals, and Kolmogorov-Smirnov analysis were performed to build up the 

regression models. Results indicated General Linear regression Models as suitable; they included 

processing speed and accuracy scores on cognitive tests as dependent variables, the variable group 

as a factor: older adults with high education vs. older adults with lower education vs. young adults 

(all high education). Other continuous predictors of interest were the periodic and the aperiodic EEG 

components: IAPF, exponent, and offset values. Sex and normalized gray matter volume were 

accounted for in all regression models. A simplified syntax of the R linear models is reported below: 

test score ~ EEG parameter x group + sex + Gray Matter volume 

Sex and Gray matter volume were added as covariates as they were two relevant variables that could 

also be associated with cognitive performance. Power analysis revealed a statistical power > 0.95 

indicating the ability of the model to detect a significant effects, based on a significance level (α) of 

0.05 and an estimated effect size f² of 0.35.
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