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Abstract Accurate tracking of the same neurons across multiple days is crucial for studying
changes in neuronal activity during learning and adaptation. Advances in high density
extracellular electrophysiology recording probes, such as Neuropixels, provide a promising
avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however,
complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of
signal from some neurons. Here we propose a neuron tracking method that can identify the
same cells independent of firing statistics, that are used by most existing methods. Our method
is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell
identity in mice using measured visual receptive fields. This method succeeds on datasets
separated from one to 47 days, with an 84% average recovery rate.

1 Introduction

The ability to longitudinally track neural activity is crucial to understanding central capabilities and
changes of neural circuits that operate on long time-scales, such as learning and plasticity,"* mo-
tor stability,”>° etc. We seek to develop a method capable of tracking single units regardless of
changes in functional responses for the duration of an experiment spanning one to two months.

High-density multi-channel extracellular electrophysiology (ephys) recording devices enable
chronic recordings over large areas for days-to-months.” Such chronic recordings make possi-
ble experiments targeted at improving our understanding of neural computation and underly-
ing mechanisms. Examples include perceptual decision making, exploration and navigation.®'
Electrode arrays with hundreds to thousands of sites, for example Neuropixels, are now used ex-
tensively to record the neural activity of large populations stably and with high spatio-temporal
resolution, capturing hundreds of neurons with single neuron resolution.”'® Moreover, ephys re-
tains the higher time resolution needed for single spike identification, as compared with calcium
imaging that provides more spatial cues with which to track neurons over days.

The first step in analyzing ephys data is is to extract single neuron signals from the recorded
voltage traces, i.e., spike sorting. Spike sorting identifies individual neurons by grouping detected
action potentials using waveform profiles and amplitudes. Specific algorithms include principal

1 0f 39


adamsc@jhu.edu
harrist@janelia.hhmi.org
https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551724; this version posted April 28, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

available under aCC-BY-NC-ND 4.0 International license.

components based methods,'4,'> and template matching methods, for example, Kilosort.>'" 117
Due to the high dimensional nature of the data, spike sorting is often computationally intensive
on large data sets (10's to 100's of GB) and optimized to run on single sessions. Thus processing
multiple sessions has received minimal attention, and the challenges therein remain largely unad-
dressed.

One major challenge in reliably tracking neurons is the potential for changes in the neuron
population recorded (Figure 1a and Figure 1b). In particular, since the probe is attached to the
skull, brain tissue can move relative to the probe, e.g. during licking, and drift can accumulate over
time."® Kilosort 2.5 corrects drift within a single recording by inferring tissue motion from con-
tinuous changes in spiking activity and interpolating the data to account for that motion.” Larger
between-recording drift occurs for sessions on different days, and can 1) change the size and loca-
tion of spike waveforms along the probe,’® 2) lose neurons that move out of range, and 3) gain new
neurons that move into recording range. Thus clusters can change firing pattern characteristics or
completely appear/disappear. As a result the specific firing patterns classified as unit clusters may
appear and disappear in different recordings.”?%-?? Another challenge is that popular template-
matching-based spike sorting methods usually involve some randomness in template initializa-
tion.'®2324 As a result, action potentials can be assigned into clusters differently, and clusters can
be merged or separated differently across runs.
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Fig. 1: Schematic depiction of drift: a. Mice were implanted with a 4-shank Neuropixels 2.0 probe in visual cortex area V1. b.
Each colored star represents the location of a unit recorded on the probe. In this hypothetical case, the same color indicates unit
correspondence across days. The black unit is missing on day 48, while the turquoise star is an example of a new unit. Tracking
aims to correctly match the red and blue units across all datasets and determine that the black unit is undetected on day 48. c. Two
example spatial-temporal waveforms of units recorded in two datasets that likely represent the same neuron, based on similar
visual responses. Each trace is the average waveform on one channel across 2.7 milliseconds. The blue traces are waveforms on
the peak channel and 9 nearby channels (two rows above, two rows below, and one in the same row) from the first dataset (Day
1). The red traces, similarly selected, are from the second dataset. Waveforms are aligned at the electrodes with peak amplitude,

different on the two days.

58
59
60
61
62
63
64
65
66

67

Previous neuron tracking methods are frequently based on waveform and firing statistics, e.g.,
firing rate similarity,”> action potential shape correlation and inter-spike interval histogram(ISI)
shape.?® When neuronal representations change, e.g., during learning'-3 or representational drift,?’
neural activity statistics became less reliable. In this work, we take advantage of the rich spatial-
temporal information in the multi-channel recordings, matching units based on the estimated neu-
ron locations and unit waveforms,?® instead of firing patterns.

As an alternative method, Steinmetz et al.” concatenated pairs of datasets after low resolution
alignment, awkward for more than 2 datasets. We report here a more flexible, expandable and
robust tracking method that can track neurons effectively and efficiently across any number of
sessions.
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& 2 Results

o 2.1 Procedure

70 Our datasets consist of multiple recordings taken from three mice (Figure 7a) over 2 months. The
n  time gap between two recordings ranges from two to 25 days. Each dataset is spike-sorted individu-
72 ally with a standard Kilosort 2.5 pipeline. The sorting results, including unit assignment, spike times,
7 etc. are used as input for our method (post-processed using ecephys spike sorting pipeline?®) (Sec.
7 4.3). To ensure the sorting results are unbiased, we performed no manual curation. As the clusters
75 returned by Kilosort can vary in quality, we only considered the subset of units labeled as 'good’ by
7 Kilosort, here referred to as KSgood units (Sec. 4.4). KSgood units are mainly determined by the
7 amount of inter-spike-interval violations and are believed to represent a single unit.'®

78 Our overall strategy is to run spike-sorting once per session, and then to generate a unit-by-unit
7 assignment between pairs of datasets. When tracking units across more than two sessions, two
s Strategies are possible: match all ensuing sessions to a single session (e.g., the first session) (Sec.
a1 2.2 and Sec. 4.2), or match consecutive pairs of sessions and then trace matched units through all
s2 sessions (Sec. 2.4).

8 We refer to the subset of KSgood units with strong and distinguishable visual responses in both
s datasets of a comparison as reference units (See Sec. 4.4 for details). Similar to Steinmetz et al.”
s we validated our unit matching of reference units using visual receptive field similarity. Finally, we
s Sshowed that trackable units with strong visual responses are qualitatively similar to those without
s7  (Figure 5-supplement Figure 1 to Figure 5).

8 To provide registration between pairs of recordings, we used the Earth Mover’s Distance (EMD).>%>
s We use a feature space consisting of a geometric distance space and a waveform similarity space,
o to address both rigid and non-rigid neuron motion. The EMD finds matches between objects in
a1 the two distributions by minimizing the overall distances between the established matches (Sec.
o2 4.1.1).

03 We use EMD in two stages: rigid drift correction and unit assignment. Importantly, the EMD
o distance incorporates two parameters crucial for matching units: location-based physical distance
s and a waveform distance metric that characterizes similarity of waveforms (Sec. 4.1.2). The EMD
os distance matrix is constructed with a weighted combination of the two (details in Sec. 4), i.e. a
o distance between two units d, is given by d; = d;,cipn, +@ * d (Figure 2a). The first EMD
s Stage estimates the homogeneous vertical movement of the entire population of KSgood units
o (Figure 2b). This movement estimate is used to correct the between-session rigid drift in unit loca-
wo tions. The rigid drift estimation procedure is illustrated in figure 2b. Post drift correction, a unit's
w1 true match will be close in both physical distance and waveform distance. Drift-corrected units
102 were then matched at the second EMD stage. The EMD distance between assigned units can be
w3 thought of as the local non-rigid drift combined with the waveform distortion resulting from drift.
ws  We test the accuracy of the matching by comparing with reference unit assignments based on
s visual receptive fields (Sec. 4.4).

106 For each unit, the location is determined by fitting the peak to peak amplitudes on the 10 sites
w7 nearest the site with peak signal, based on the triangulation method in Boussard, et al.>? (Sec.
ws  4.1.2). The waveform distance is an L2 norm between two spatial-temporal waveforms that spans
w9 22 channelsand 2.7 msec (Sec. 4.1.2). Physical unit distances provide a way to maintain the internal
uo  structure and relations between units in the EMD. Waveform similarity metrics will distinguish units
w inthe local neighborhood and likely reduce the effect of new and missing units.

112 We analyzed the match assignment results in two ways. First, we compared all subsequent
us  datatsets to dataset 1 using recovery rate and accuracy. We define recovery rate R,,, as the fraction
us  of unit assignments by our method that are the same as reference unit assignments established
us  using visual responses (Sec. 4.4).

wave form
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P(EMDnref)  Nempores

P(EMD | ref) = Poer) 5
ref

(M

Since the EMD forces all units from the dataset with fewer neurons to have an assigned match,
we use vertical z-distance to threshold out the biologically-impossible unit assignments. We then
calculated the accuracy R, i.e. the fraction of EMD unit assignments within the z-distance thresh-
old which agree with the reference assignments.

P((EMDnref) | threshold)
P(ref | threshold)

We also retrieved non-reference units, i.e. matched units without receptive field information
but whose z-distance is smaller than the threshold.

Second, we tracked units between consecutive datasets and summarized and analyzed the
waveforms, unit locations, firing rates and visual responses (see Figure 5-supplement Figure 1 to
Figure 5 for details) of all tracked chains, i.e. units which can be tracked across at least three
consecutive datasets.

P((EMD | ref)nthreshold) = (2)

2.2 Measuring rigid drift using the EMD

Drift happens mostly along the direction of probe insertion (vertical or z direction). We want to
estimate the amount of vertical drift under the assumption that part of the drift is rigid; this is
likely a good assumption given the small (~ 720um) z-range of these recordings. The EMD allows
us to extract the homogeneous (rigid) movement of matched units. For ideal datasets with a few
units consistently detected across days, this problem is relatively simple (Figure 2a). In the real data
analyzed here, we find that only ~ 60% of units are detected across pairs of days, so the rigid motion
of the real pairs must be detected against a background of units with no true match. These units
with no real match will have z-shifts far from the consensus z-shift of the paired units (Figure 2c).

In Figure 2 the EMD match of units from the first dataset (Figure 2b, open circles) to the dataset
recorded the next day (Figure 2b, closed circles) is indicated by the arrows between them. To
demonstrate detection of significant drift, we added a 12 micron upward drift to the z-coordinate
of the units from the second day. The first stage of the EMD is used to find matches using the
combined distance metric as described in section 4.1.2. We used a kernel fit to the distribution of
z-distances of all matched units to find the mode (Mode = 15.65um); this most probable distance is
the estimate of the drift (Figure 2c¢). It is close to the actual imposed drift (d, = 12um).

As the EMD is an optimization algorithm with no biological constraints, it assigns matches to all
units in the smaller dataset regardless of biophysical plausibility. As a result, some of the assigned
matches may have unrealistically long distances. A distance threshold is therefore required to
select correct pairs. For the illustration in Figure 2, the threshold is set to 15um, which is chosen to
be larger than most of the z-shifts observed in our experimental data. The threshold value will be
refined later by distribution fitting (Figure 4). In Figure 2 all of the sub-threshold (short) distances
belong to upward pairs (Figure 2b and ¢, red solid arrows), showing that the EMD can detect the
homogeneous movement direction and the amount of imposed drift.

When determining matched reference units from visual response data, we require that units be
spatially nearby (within 30um) as well as having similar visual responses. After correcting for drift,
we find that we recover more reference units (Figure 2-supplement Figure 1), indicating improved
spatial match of the two ensembles. This improved recovery provides further evidence of the
success of the drift correction.
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Fig. 2: The EMD can detect the displacement of single units: a. Schematic of EMD unit matching. Each blue unit in day 1 is
matched to a red unit in day 2. Dashed lines indicate the matches to be found by minimizing the weighted sum of physical and
waveform distances. b. Open and filled circles show positions of units in days 1 and 2, respectively. Arrows indicate matching using
EMD. The arrow color represents the match direction; upward matches found with the EMD are in red and downward in black. Solid
lines indicate a z-match distance within 15um, while a dashed line indicates a z distance > 15um. Expanded view shows probe area
from 3120 to 3220 um. c. Histogram of z-distances of matches (black and red bars) and kernel fit (light blue solid curve). The light
blue dashed line shows the mode (d,, = 15.65um). The dark blue dashed line shows the imposed drift (d, = 12um). The red region
shows the matches within 15um of the mode. The EMD needs to detect the homogeneous movement against the background, i.e.
units in the black region that are unlikely to be the real matches due to biological constraints.

5 2.3 Avertical distance threshold is necessary for accurate tracking

156 To detect the homogeneous z-shift of correct matches against the background of units without
157 true matches, it is necessary to apply a threshold on the z-shift. When tracking units after shift cor-
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rection, a vertical distance threshold is again required to determine which matches are reasonable
in consideration of biological plausibility. The Receiver Operator Characteristic (ROC) curve in Fig-
ure 3 shows the fraction of reference units matched correctly and the number of reference pairs
retained as a function of z-distance threshold. We want to determine the threshold that maximizes
the overall accuracy in the reference units (Figure 3, blue curve) while including as many reference
units as possible (Figure 3, red curve).

L]
9 All sampled accuracy v.s. threshold 8
T g 1000 O
— =
U —
O
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Fig. 3: The ROC curve of matching accuracy vs. distance. The blue curve shows the accuracy for reference units. The red line
indicates the number of reference units included. The solid vertical line indicates the average z distance across all reference pairs
in all animals (z = 6.96um). The dashed vertical black line indicates a z-distance threshold at z = 10um.
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Since reference units only account for 29% of KSgood units (units with few inter-spike-interval
violations that are believed to represent a single unit), and the majority of KSgood units did not
show a distinguishable visual response, we need to understand how representative the reference
units are of all KSgood units.

We found the distribution of z-distances of reference pairs is different from the distribution
of all KSgood units (Figure 4a, top and middle panel). While both distributions may be fit to an
exponential decay, the best fit decay constant is significantly different (Kolmogorov-Smirnov test,
reject HO, p =5.5x1073!). Therefore, the accuracy predicted by the ROC of reference pairs in Figure
3 will not apply to the set of all KSgood pairs. The difference in distribution is likely due to the
reference units being a special subset of KSgood units in which units are guaranteed to be found
in both datasets, whereas the remaining units may not have a real match in the second dataset. To
estimate the ROC curve for the set of all KSgood units, we must estimate the z-distance distribution
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for a mixture of correct and incorrect pairs.

We assume that the distribution of z-distances P(A) for reference units is the conditional prob-
ability P(A | H); that is, we assume all reference units are true hits. The distribution of z-distances
for all KSgood units P(A) includes both hits and false positives. The distance distribution of false
positives is the difference between the two.

A Monte Carlo simulation determined that the best model for fitting the z-distance distribution
of reference units P(A | H) is a folded Gaussian distribution (Figure 4a, middle panel) and an
exponential distribution for false positive units (see Figure 4-supplement Figure 7). The KSgood
distribution is a weighted combination of the folded Gaussian and an exponential:

P(AllUnits) = f « P(FoldedGaussian) + (1 — f) = P(Exponential) (3)

We fit the KSgood distribution to Equation 3 to extract the individual distribution parameters and
the fraction of true hits (f). The full distribution can then be integrated up to any given z-threshold
value to calculate the false positive rate. (Figure 4a, bottom panel, see Figure 4-supplement Figure 2
for details).

Based on the the estimated false positive rate (Figure 4a, bottom panel), we used a threshold
of 10um (Figure 3, black dotted line) to obtain at least 70% accuracy in the KSgood units. We used
the same threshold to calculate the number of matched reference units and the corresponding
reference unit accuracy (Figure 4b, green bars).

Note that this threshold eliminates most of the known false positive matches of reference pairs
(Figure 4b, red fraction) at the cost of recovering fewer correct pairs (Figure 4b, green bars). The re-
covery rate varies from day to day; datasets separated by longer times tend to have higher tracking
uncertainty (Figure 4-supplement Figure 3).

In addition to the units with visual response data, we can track units which have no significant
visual response (Figure 4b, purple bars). All comparisons are between subsequent datasets and
the day 1 dataset.

8 of 39


https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551724; this version posted April 28, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

a.
All pairs
300 - P
= == Folded Gaussian+Exponential fit
250 = Unit count data
2
g 200 -
e
+ 150 1
]
E
5 100 1
4
50
0 I‘ - ‘- - - ‘ _
0 20 40 60 80
Az (um)
Ref pairs
200

100

== Folded Gaussian fit
= Unit count data

Number of units
) o
o o

[6)]
o

100

0
0 20 40 60 80
Az (pm)
04 False Positive fraction vs. Az threshold

(]
2
=
‘% 0.3
o
o
?
— 0.2 1
S
c
.2
B 0.1
&
L.

0 ‘ ‘ ; ‘

0 5 10 15

Az threshold (pzm)

20

b.

20

15

10

Number of units

[ ref-correct

Il ref-incorrect

B ref-unmatched

Il ref-correct at A z = 10pm

[ ref-incorrect at A z=10um
Il ref-unmatched at A z=10um
I non-ref at A z=10um

ALO31 Accuracy

0.82

day 1 to

160+
140
120+
100
80

60

Number of units

40

20

day 1 to

Number of units
w D [43] (o)}
o o o o

N
o

10

11 36 45

AL032 Accuracy

0.91

13 23

ALO36 Accuracy

Days matched

9 of 39


https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.03.551724; this version posted April 28, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

200

201

202

203

204

205

206

207

208

209

210

211

212

available under aCC-BY-NC-ND 4.0 International license.

Fig. 4: Recovery rate, accuracy and putative pairs: a. The histogram distribution fit for all KS-
good units (top) and reference units alone (middle). False positives for reference units are defined
as units matched by EMD but not matched when using receptive fields. The false positive fraction
for the set of all KSgood units is obtained by integration. z= 10um threshold has a false positive rate
=27% for KSgood units. b. Light blue bars represent the number of reference units successfully re-
covered using only unit location and waveform. The numbers on the bars are the recovery rate of
each datatset, and the red portion indicates incorrect matches. Incorrect matches are cases where
units with a known match from receptive field data are paired with a different unit by EMD; these er-
rors are false positives. The green bars show matching accuracy for the set of pairs with z-distance
less than the 10um threshold. The orange portion indicates incorrect matches after thresholding.
The false positives are mostly eliminated by adding the threshold. Purple bars are the number of
putative units (unit with no reference information) inferred with z-threshold = 10um.

2.4 Units can be tracked in discontinuous recordings for 48 days

To assess long-term tracking capabilities, we tracked neurons across all datasets for each mouse.
Figure 5 shows a survival plot of the number of unit chains successfully tracked over all durations.
All units in the plot can be tracked across at least three consecutive datasets, a chain as the term
is used here. We categorized all trackable unit chains into three types: reference chains, mixed
chains and putative chains. Reference chains have receptive field information in all datasets. Pu-
tative chains have no reference information in any of the datasets. Mixed units have at least one
dataset with no receptive field information. There are 133 reference chains, 135 mixed chains and
84 putative chains across all the subjects. Among them, 46 reference, 51 mixed, and 9 putative
units can be followed across all datasets. We refer to them as fully trackable units. One example
trackable unit in each group is shown in Figure 6, Figure 6-supplement Figure 1, and Figure 6-
supplement Figure 2.
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Fig. 5: Number of reference units (deep blue, dark orange and green for different subjects), putative (medium green, medium
orange and blue) units, and mixed units (light green, yellow, and light blue) tracked for different durations. The loss rate is similar
for different chain types in the same subject. Note that chains can start on any day in the full set of recordings, so the different sets
of neurons have chains with different spans between measurements.
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We hypothesize that the three groups of units are not qualitatively different from each other,
that is, all units are equally trackable. In order to check for differences among the three groups,
we analyzed the locations, firing rates, waveforms, and receptive fields of the fully trackable units
in the three groups: reference, putative, and mixed.

The spatial-temporal waveform similarity is measured by the L2 distance between waveforms
(Sec. 4.1.2). A Kruskal-Wallis test is performed on the magnitude of L2 change between all pairs
of matched waveforms among the three groups. There is no statistical difference in the waveform
similarity in reference, putative, and mixed units (H = 0.59, p = 0.75) (Figure 5-supplement Figure 1).
There is no significant difference in the physical distances of units per dataset (H = 1.31, p = 0.52)
(Figure 5-supplement Figure 2, bottom panel), nor in the location change of units (H = 0.23, p =
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0.89) (Figure 5-supplement Figure 2, top panel).

Firing rate is characterized as the average firing rate fold change of each unit chain, with firing
rate of each unit in each dataset normalized by the average firing rate of that dataset. There is
no difference in the firing rate fold change in the three groups of units (H =1, p = 0.6) (Figure 5-
supplement Figure 3).

The receptive field similarity between units in different datasets is described by visual finger-
print (vfp) correlation and Peristimulus Time Histogram (PSTH) correlation between units, and the
similarity score, the sum of the two correlations (Sec. 4.4). The change in vfp between matched
units is similar among the three groups (H = 2.23, p = 0.33). Similarly, the change in PSTH is not
different among the three groups (H = 1.61, p = 0.45) (Figure 5-supplementFigure 4).
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Fig. 6: Example mixed chain: a. Above: Firing rates of this neuron on each day (Day 1, 2, 13,
23, 48). Below: Firing rate fractional change compared to the previous day. b. Visual response
similarity (yellow line), PSTH correlation (orange line), and visual fingerprint correlation (blue line).
The similarity score is the sum of vfp and PSTH. The dashed black line shows the threshold to be
considered a reference unit. c. Spatial-temporal waveform of a trackable unit. Each pair of traces
represents the waveform on a single channel. d. Estimated location of this unit on different days.
Each colored dot represents a unit on one day. The orange squares represent the electrodes. e.
The pairwise vfp and PSTH traces of this unit.

3 Discussion

We present here an EMD-based neuron tracking algorithm that provides a new, automated way
to track neurons over long-term experiments to enable the study of learning and adaptation with
state-of-the-art high density electrophysiology probes. We demonstrate our method by tracking
neurons up to 48 days without using receptive field information. Our method achieves 90% recov-
ery rate on average for neurons separated up to one week apart and 78% on average for neurons
five to seven weeks apart (Figure 4b, blue bars). We also achieved 99% accuracy up to one week
apart and 95% five to seven weeks apart, when applying a threshold of 10 um (Figure 4b, green
bars). It also retrieved a total of 552 tracked neurons with partial or no receptive field information,
12 per pair of datasets on average. All the fully trackable unit chains were evaluated by wave-
forms and estimated locations. Our method is simple and robust; it only requires spike sorting be
performed once, independently, per dataset. In order to be more compatible and generalizable
with existing sorting methods, we chose Kilosort, one of the most widely used spike sorting meth-
ods.>*3* We show the capability of our method to track neurons with no specific tuning preference
(Figure 6-supplement Figure 2).

The method includes means to identify dataset pairs with very large drift. In our data, we can
detect large drift because such datasets have very few reference units, and significantly different
EMD cost. For example, datasets 1 and 2 in animal AL0O36 have very few reference units compared
to other datasets (see Figure 2-supplement Figure 2, AL036). This observation is consistent with
the overall relationship between the EMD cost and recovery rate (Figure 2-supplement Figure 3).
Datasets with higher cost tend to have lower unit recovery rate and higher variation in recovery
rates. Therefore, these two datasets were excluded in the tracking analysis.

Our validation relies on identifying reference units. The reference unit definition has limita-
tions. The similarity score is largely driven by PSTHs (Figure 7-supplement Figure 1), the timing of
stimulus triggered response, rather than vfp, the response selectivity. As a result, a single neuron
can be highly correlated, i.e. similarity score greater than 1, with more than 20 other neurons. For
example, in subject ALO32 shank 2, one neuron on day 1 has 22 highly correlated neurons on day
2, 4 of which are also within the distance of 30um. Non-reference units may also have very similar
visual responses: we note that 33 (5 putative neurons and 28 mixed neurons) out of 106 trackable
neurons have a similarity score greater than 1 even for days with no reference unit assignment.
Coincidentally similar visual responses could potentially contribute to inaccurate assignment of
reference units and irregularity in trackable unit analysis. These errors would reduce the mea-
sured accuracy of the EMD matching method; since the accuracy is very high (Figure 4), the impact
of mismatches is low.

We note that the ratio of reference units over KSgood units decreases as recordings are further
separated in time (Figure 7-Figure 3). This reduction in fraction of reference units might be partially
due to representational drift as well as the fact that the set of active neurons are slightly different
in each recording. The visual fingerprint similarity of matched neurons decreased to 60% after 40
days (see reference 7 supplement).

We developed the new tracking algorithm based on an available visual cortex dataset, and used
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a prominent sorting algorithm (Kilosort 2.5) to spikesort the data. We had reference data to assess
the success of the matching and tune parameters. Applying our algorithm in other brain areas and
with other sorters may require parameter adjustment. Evaluation of the results in the absence of
reference data requires a change to the fitting procedure.

The algorithm has only two parameters: the weighting factor w that sets the relative weight of
waveform distance vs. physical distance, and the z-distance threshold that selects matches that
are likely correct. We found that recovery rate, and therefore accuracy, is insensitive to the value
of w for values larger than 1500(Figure 2-supplement(Figure 4), so this parameter does not require
precise tuning. However, the false positive rate is strongly dependent on the choice of z-distance
threshold.

When reference information (unit matches known from receptive fields or other data) is avail-
able, the procedure outlined in Figure 4 can be followed. In that case, the distribution of z-distances
of known pairs is fit to find the width of the distribution for correct matches. That parameter is then
used in the fit of the z-distance distribution of all pairs to Equation 3. Integrating the distributions
of correct and incorrect pairs yields the false positive rate vs. z-distance, allowing selection of a
z-distance threshold for a target false positive rate.

In most cases, reference information is not available. However, the z-distance distributions for
correct and incorrect pairs can still be estimated by fitting the distribution of all pairs. In Figure 4-
supplement Figure 2 we show the results of fitting the z-distribution of all pairs without fixing the
width of the distribution of correct matches. The result slightly underestimates this width, and the
estimated false positive rate increases. This result is important because it suggests the accuracy
estimate from this analysis will be conservative. We detail the procedure for fitting the z-distance
distribution Methods section (Alg. 2).

As suggested in Dhawale et al.,> discontinuous recordings will have more false positives. Im-
proving spike sorting and restricting the analysis to reliably sorted units will help decrease the
false positive rate. Current spike sorting methods involve fitting many parameters. Due to the
stochastic nature of template initialization, only around 60% to 70% units are found repeatedly
in independently executed analysis passes. This leads to unpaired units which decreases EMD
matching accuracy. Future users may consider limiting their analysis to the most reliably detected
units for tracking; requiring consensus across analysis passes or sorters is a possible strategy. Fi-
nally, more frequent data acquisition during experiments will provide more intermediate stages
for tracking and involves smaller drift between consecutive recordings.

4 Methods

Our neuron tracking algorithm uses the Earth Mover's Distance (EMD) optimization algorithm. The
minimized distance is a weighted combination of physical distance and 'waveform distance’: the al-
gorithm seeks to form pairs that are closest in space and have the most similar waveforms. We test
the performance of the algorithm by comparing EMD matches to reference pairs determined from
visual receptive fields (Sec. 4.4). We calculate two performance metrics. The ‘recovery rate’ is the
percentage of reference units that are correctly matched by the EMD procedure. The 'accuracy’ is
the percentage of correctly matched reference units that pass the z-distance threshold (Figure 4a).
'Putative units’ are units matched by the procedure which do not have reference receptive field
information. ‘Chains’ are units that can be tracked across at least three consecutive datasets. The
full procedure is summarized in Algorithm 1.
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Algorithm 1 Neuron Matching Procedure

Input: channel map, unit cluster label, cluster mean waveforms(with K,,,
and K, = 2 columns of channels), and spike times

Step 1 Estimate unit locations

Estimate background amplitude for each unit

for all KSgood units u, € U do

if peak-top-peak voltage vV, > 60uV then
Get u,’'s waveform on channels C,,

Get the peak-to-peak amplitudes V,,, of u, background-subtracted waveforms on channels
C,, = {me, =k, ....me, +k;,.} where me, is the peak channel

Estimate the neuron’s 3D location as in:3?
61,2 = Teecw Vg, — ———L1 ) where x, z, and y are the horizontal location,

A/ (x=x)2+(z—2,)2+y?

vertical location, and distance of the unit from the probe, respectively.
Find an estimate of the global minimizer of f,x, ,», .z, usingleast-squares optimization
end
end
Step 2 Compute waveform similarity metrics
for waveforms wf,, € Uy, andwf, € Uy, where Uy, Uy, are the set of all units in the two datasets

do
Centered at peak channel mc,, and mc,,, respectively

Get the sets of channels for each unit: C, = {me, —k,;,....me, +k,;}
There are K, * 2 * K, +2 = 22 channels for each unit
Compute the waveform similarity metric as (1/22) s YeeCuy.cuy, L2W S
wfy)/max(L2(wf,), L2(wf,,)) for each of the 22 channels
end
Step 3 Between-session drift correction
Run the EMD with distances in physical and waveform space
Estimate z-distance mode of all matched pairs with Gaussian kernel fit
Apply correction on physical distances of allunits e U, : z,,, = 2 = Z,40
Step 4 Unit matching
Run the EMD with corrected physical distance and waveform metrics
Set z-distance threshold to select unit pairs likely to be the same neuron
Output: cost Y dg,,p, Unit assignments

=2and K,; = 5 rows

4.1 Algorithm
4.1.1 Earth Mover's Distance

The EMD is an optimization-based metric developed in the context of optimal transport and mea-
suring distances between probability distributions. It frames the question as moving dirt, in our
case, units from the first dataset, into holes, which here are the neural units in the second dataset.
The distance between the "dirt" and the "holes" determines how the optimization program will pri-
oritize a given match. Specifically, the EMD seeks to minimize the total work needed to move the
dirt to the holes, i.e., neurons in day 1 to day 2, by solving for a minimum overall effort, the sum of
distances.?%3!
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n}in ; D(x;, y;), where D = d,,. + wd,,;
subjectto  fy € [0,1] Vi, k
Y (f) < length(Y) (4)
k

(/) < length(X)

Z(F) = min(Z X, Z Y)

in which d,,, € D? is the three-dimensional physical distance between a unit from the first
dataset x;, and a unit from the second dataset y,. d,, € D' is a scalar representing the similar-
ity between waveforms of units x; and y,. w is a weight parameter that was tuned to maximize the
recovery rate of correctly matched reference units. Fis the vector of matched objects between the
two datasets (See Figure 2-supplement Figure 4 for details about selecting weight).

The EMD has three benefits:

+ It allows combining different types of information into the ‘distance matrix’ to characterize
the features of units.

* The EMD can detect homogeneous movement of units (Figure 2c), thus providing a way for
rigid drift correction, as described in section 4.1.3.

+ By minimizing overall distances, the EMD has tolerance for imperfect drift correction, error
in the determination of unit positions, and possible non-rigid motion of the units.

However, since the EMD is an optimization method with no assumptions about the biological prop-
erties of the data, it makes all possible matches. We therefore added a threshold on the permissible
z-distance to select physically plausible matches.

4.1.2 Calculating the EMD distance metric

The unit locations are estimated by fitting 10 peak-to-peak (PTP) amplitudes from adjacent elec-
trodes and the corresponding channel positions with a 1/R distance model.>? Unlike Boussard, et
al.,*> we operate on the mean waveforms for each unit rather than individual spikes. We found
using the mean waveform yields comparable results and saves significant computation time. Unit
locations are three-dimensional coordinates estimated relative to the probe, where the location
of the first electrode on the left column at the tip is considered the origin. The mean waveform is
computed by averaging all the spike snippets assigned to the cluster by KS 2.5.

For 10 channels ¢ € C, , find the location coordinates x, .y, .z, that minimizes the difference
between measured amplitudes V., and amplitudes estimated with locations

o

—):
V=242 24y
2
. 1
min Z (VPTP[ — ) (5)

s Vx=x)r+(z—z)2+ )2

up

The locations are used to calculate the physical distance portion of the EMD distance.

For the waveform similarity metric, we want to describe the waveform characteristics of each
unit with its spatial-temporal waveform at the channels capturing the largest signal. The waveform
similarity metric between any two waveforms u,, and u,, in the two datasets is a scalar calculated
as anormalized L2 metric (see Alg.1 Step 2) on the peak channels, namely the channel row with the
highest amplitude and 5 rows above and below (a total of 22 channels). The resulting scalar reflects
the 'distance’ between the two units in the waveform space and is used to provide information
about the waveform similarity of the units. It is used for between-session drift correction and
neuron matching. Figure 1c shows an example waveform of a reference unit.
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4.1.3 Between-session Drift Correction

Based on previous understanding of the drift in chronic implants, we assumed that the majority
of drift occurs along the direction of the probe insertion, i.e. vertical z-direction. This rigid drift
amount is estimated by the mode of the z-distance distribution of the EMD assigned units using a
normal kernel density estimation implemented in MATLAB. We only included KSgood units.'® The
estimated driftis then applied back to correct both the reference units and the EMD distance matrix
by adjusting the z coordinates of the units. For validation, the post-drift-correction reference set is
compared with the post-drift-correction matching results (from step 4in 1).

4.2 Determining Z Distance Threshold

Determining the z-distance threshold to achieve a target false positive rate requires estimating
the widths of the z-distance distributions of correct and incorrect pairs. If reference data is avail-
able, the z-distance distribution of the known correct pairs should be fit to a folded Gaussian as
described in Figure 4. The width of the folded Gaussian, which is the error in determination of the
z-positions of units, is then fixed in the fit of the z-distribution of all pairs found by the algorithm
outlined in Algorithm 4.1.1. If no reference data is available, the width of the distribution of correct
pairs is determined by fitting the z-distance distribution of all pairs to Equation 3 with the folded
Gaussian width as one of the parameters. This procedure is detailed in Algorithm 2. We show two
examples of model fitting without reference information in Figure 4-supplement Figure 2.

Algorithm 2 Determining an appropriate z distance threshold
Input: Z distances of all matched units, target false positive rate, width ¢ of the z-distance distribu-
tion of correct pairs, if available
Step 1 Fit z distance distribution of all pairs to decompose into distributions of correct and incor-
rect pairs
Fit the z-distance distribution of all pairs to the sum of a folded Gaussian (for correct pairs) and

an exponential (for incorrect pairs). If the width ¢ of the distribution of correct pairs is known
from reference data, fix at that value. Otherwise, include in the fit parameters. The functional
form is: P(z) = d(fNe 3 + Le7F)
Where: f = fraction of correct pairs; ¢ = width of the distribution of correct pairs; ¢ = decay
constant of distribution of incorrect pairs; d = amplitude normalization; and N =
normalization factor of the folded Gaussian.

Step 2 Determine z threshold to achieve a target false positive rate

For Neuropixels 1.0 and 2.0 probes, the width of the z-distance distribution of correct matches

() should be <10 um; a larger width, or a very small value of the fraction of correct pairs
suggests few or no correct matches. In this case, the EMD cost is likely to be large as well (See
Figure 2-supplement Figure 2 Animal ALO36 first two rows).
For a range of z values, integrate the z-distance distribution of incorrect pairs from 0
to z, and divide by the integral of the distribution of all pairs over that range. This gener-
ates the false positive rate vs. z-distance threshold, as shown in Figure 4-supplement Figure 2.

2
el the

Output: ¢ (uncertainty of position estimation), threshold at the target false positive rate

4.3 Dataset

The data used in this work are recordings collected from two chronically implanted NP 2.0 four-
shank probes and one chronically implanted one-shank NP 2.0 probe in the visual cortex of three
head fixed mice (Figure 7b, see Steinmetz et al.” for experiment details). The recordings were taken
while 112 visual stimuli were shown from three surrounding screens (data from Steinmetz et al.’
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Supplement Section 1.2). The same bank of stimuli was presented five times, with order shuffled.
The 4-shank probes had the 384 recording channels mapped to 96 sites on each shank.

We analyzed 65 recordings, each from one shank, collected in 17 sessions (5 sessions for animal
AL031, 5 sessions for animal AL032, and 7 sessions for animal AL036). The time gap between
recordings ranges from one day to 47 days (Figure 7a), with recording duration ranging from 1917
to 2522 seconds. The sample rate is 30kHz for all recordings. There are a total of 2958 KSgood
units analyzed across all animals and shanks, with an average of 56 units per dataset (Figure 7d
and Figure 7-supplement Figure 2).
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Fig. 7. Summary of dataset: a. The recording intervals for each animal. A black dash indicates one recording on that day. b. All
recordings are from visual cortex V1 with a 720 um section of the probe containing 96 recording sites. The blue arrow indicates
the main drift direction. c. Examples of visual fingerprint(vfp) and peri-stimulus time histogram(PSTH) from a high correlation (left
column) and a just-above-threshold (right column) correlation unit. Both vfp and PSTH values vary from [-1,1]. d. Kilosort-good and
reference unit counts for animal AL032, including units from all four shanks.
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4.4 Reference set

To track clusters across days, Steinmetz et al.” concatenated two recording sessions and took
advantage of the within-recording drift correction feature of Kilosort 2.0 to extract spikes from
the two days with a common set of templates. They first estimated the between session drift of
each recording from the pattern of firing rate and amplitude on the probe and applied a position
correction of an integer number of probe rows (15um for the probes used). Then two corrected
recordings were concatenated and sorted as a single recording. This procedure ensured that the
same templates are used to extract spikes across both recordings, so that putative matches are
extracted with the same template. A unit from the first half of the recording is counted as the same
neuron if its visual response is more similar to that from the same cluster in the second half of the
recording than to the visual response of the physically nearest neighbor unit. Using this procedure
and matching criteria, 93% of the matches were correct for recordings < 16 days apart, and 85%
were correct for recordings from 3-9 weeks (See Steinmetz et al.,” Fig. 4). In addition, although
mean fingerprint similarity decreases for recordings separated by more than 16 days, this decline
is only 40% for the same unit recorded from 40 days apart (see Steinmetz et al.” Supplement S3).
This procedure, while successful in their setting, was limited to the use of integral row adjustments
of the data for between-session drift correction and relied on a customized version of Kilosort 2.0.
Although up to three recordings can be sorted together, they must come from recording sessions
close in time. In addition, a separate spike sorting session needs to be performed for every pair of
recordings to be matched, which is time consuming and introduces extra sorting uncertainty.

To find units with matched visual responses, we examine the visual response similarity across
all possible pairs. The visual response similarity score follows Steinmetz et al.,” and consists of two
measurements. 1) The peristimulus time histogram (PSTH), which is the histogram of the firing of a
neuron across all presentations of all images, in a 1800 msec time window starting 400 msec before
and ending 400 msec after the stimulus presentation. The PSTH is calculated by histrogramming
spike times relative to stimulus on time for all stimuli, using 1 ms bins. This histogram is then
smoothed with a Gaussian filter. 2) The visual fingerprint(vfp) is the average response of the neuron
to each of the 112 images. The vfp is calculated by averaging the spike counts in response to each
natural image from the stimulus onset to 1 second afterwards across 5 shuffled trials.

Following Steinmetz et al.,” the similarity score between two neurons is the sum of the corre-
lation of the PSTH and the correlation of the vfp across two sessions. The two correlations have
values in the range (-1,1), and the similarity score ranges from (-2, 2).

The pool of reference units is established with three criteria: 1) The visual response similar-
ity score of the pair, as described above, is greater than 1 and their physical distance, both be-
fore and after drift correction, is smaller than 30um. A physical distance criterion is necessary,
because some units have several potential partners with high visual response similarity (Figure 7-
supplement Figure 1). We impose the 30 um threshold on both pre- and post-correction data
because the drift is relatively small in our case, and we can reduce false positives by constraining
the reference units to be in a smaller region without losing units. In general, one could apply the
threshold only on corrected data (after drift correction). 2) A Kruskal-Wallis test is applied on all
trials of the vfps to ensure the triggered response to the stimulus is significantly distinguishable
from a flat line. 3) Select units from each recording that meet the good criteria in Kilosort. Kilosort
assigns a label of either single-unit (good) or multi-unit (MUA) to all sorted clusters based on IS| vio-
lations.'® This step aims to ensure included units are well separated. If there are multiple potential
partners for a unit, the pair with the highest similarity score is selected as the reference unit. The
complete pool of reference units includes comparisons of all pairs of recordings for each shank in
each animal. The portion of units with qualified visual response ranges from 5% to 61%, depending
on the time gap between datatets (Figure 7-supplement Figure 3). Overall, these reference units
made up 29% of all KSgood units (Figure 7-supplement Figure 2) across all three animals in our
dataset. Figure 7c shows examples of visual responses from a high similarity reference unit and a
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s reference unit with similarity just above threshold.

«> 5 Code sharing

w3 All code used can be accessed at: https://github.com/janelia-TDHarrisLab/Yuan-Neuron Tracking.
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« 8 Figure 2 supplement
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Figure 2 - figure supplement 1: The effect of drift correction on reference units yield for all three
animals. Note that drift correction improves the recovery rate for most cases; the degree of im-
provement is a function of the magnitude of the drift.
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Figure 2 - figure supplement 2: EMD cost can be used to detect discontinuities in the data. In
animal ALO36, we noted a large decrease in the number of reference units (units with matched
visual responses, see Sec. 4.4) after the second dataset. This likely indicates a large physical shiftin
the tissue relative to the probe. Itis important to be able to detect such discontinuities to eliminate
datasets from consideration. We find that the discontinuity can be detected in the EMD mean cost,
location mean cost and waveform mean cost. The four heatmaps on the left, show reference
counts and pairwise costs for units matched on one shank in animal AL036. Note that the days
with few reference units also have higher EMD cost. To show that days 1-2 (first two rows) are
significantly different from days 3-9, we use the Mann-Whitney U Test. All three cost values show
significant differences between the groups (EMD mean cost, reject HO, p = 6 x 10~7; location mean
cost, reject HO, p = 6 x 1073; waveform mean cost, reject HO, p = 5 x 1077)). To show that days
3-9 come from the same distribution, we compare odd and and even rows using the same test.
All three cost values show no significant difference between odd and even days (accept HO, p =
0.92). Based on this significant difference between days 1-2 and later days(datasets in the red
rectangles), we infer that the first two datatsets sampled a different population of units than the
later recordings. These first two datasets were eliminated from our analysis. Matrices on the right
show similar information for animal ALO32 for reference. To estimate the relative magnitude of
EMD cost in related datasets versus unrelated datasets, we calculated the cost between unrelated
datasets with similar number of units (AL0O32 shank 1 and AL036 shank 1, EMD cost = 78, location
cost = 67, and waveform cost = 32). The EMD cost is between 70-80, much larger than observed
for related datasets (between 20-30).
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Figure 2 - figure supplement 3: The normalized EMD cost (unitless), z distance (um), physical
distance (um), and waveform distance (unitless) and the corresponding recovery rate of reference
unit (units with matched visual responses) in pairwise matches of all to all pairs of recordings, on
each shank. Each triangle represents the recovery rate in a pair of datasets. Animal ALO31 has 6
sets of matching, with one outlier removed. Animal ALO32 has 24 sets of matching. Animal ALO36
has 60 sets of matched units. Overall, most of the datatsets with high recovery rates have per-unit
EMD in the range 20-30, but datasets with lower recovery are in the same range. Therefore, while
very high EMD cost reveals discontinuous data, EMD cost in the normal range is not predictive of
reference unit recovery, which is a metric of match success.
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Figure 2 - figure supplement 4: Recovery rate vs. L2-weight. We varied the weight w in Equation 4
used to combine the physical and waveform distances in increments of 500. The vertical line in-
dicates weight = 1500, where the overall recovery rate = 86.29%. The maximum recovery rate =
87.68% occurs at weight = 3000. We chose weight = 1500 for all subsequent analysis.
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Figure 4 - figure supplement 1: Determining the functional form for the z-distance distribution
of all pairs. As shown in Figure 4a, the z distance distribution of reference pairs differs significantly
from that of all pairs. The z-distance distribution for all pairs is the sum of z-distance distributions
for true hits (P(A | H)) and false positives (P(A |~ H)), weighted by the fraction correct, f: P(A) =
fxPA| H+(1-f)= PA |~ H). We built a Monte Carlo model, with 150 units (the average
density of subject ALO32), normally distributed error ¢ = 5um for the measured location of the
units in true pairs, and random placement of false positives. For each value of fraction correct,
we ran the model 500 times. The figure shows fits to model distributions with fraction correct =
0.23, 0.5, 0.6 (top row) and f = 0.7, 0.96 (bottom row). The resulting z-distance distributions are
well fit using a folded Gaussian for the distance distribution of true hits and an exponential for the
distance distribution of false positives (see Algorithm 2). We use these functional forms to fit the
experimental z-distance distribution and estimate the false positive rate.
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Figure 4 - figure supplement 2: Fits of experimental z-distance distributions to the model. When
reference data is available, the z-distance distribution of these known true hits can be fit to obtain
the width ¢ of the folded Gaussian. ¢ can then be fixed in the fit of the distribution of all KSgood
units to Equation 3, which is used to estimate the false positive rate. When no reference data are
available, o can be estimated from fitting the distribution of all KSGood units to all four parameters
in Equation 3. Panels a and b show the dataset from Figure 4 fit with and without fixing the folded
Gaussian distribution width. The resulting false positive rate from the no-reference fit at thresh-
old z = 10um is larger than than that from the fit using reference data, so the procedure gives a
conservative estimate of the accuracy. Panel c. shows the model fit of data from an unrelated
dataset acquired with from mouse prefrontal cortex using Neuropixels 1.0.>> The similar shape of
the distribution and a 29% false positive rate suggests that the method can be generalized.
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Figure 4 - figure supplement 3: The reference unit recovery rate vs. days between matched
recordings. Each triangle represents the matching results of two datasets. Animal AL031 has 6 sets
of matched units, with one outlier removed. Animal AL032 has 24 sets of matched units. Animal
ALO036 has 60 sets of matching. The recovery rate is lower for longer durations.
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Figure 5 - figure supplement 1: Distribution of waveform L2 similarity change per dataset for
each neuron group (reference, putative and mixed) and across all neurons. Box plots indicate 25%
percentile, medians, and 75% percentile. Whiskers at the ends of the box plot show maximum and
minimum values. n and N are the number of unit comparisons, i.e. (number of units)x(number of
datatsets - 1). A Kruskal-Wallis test indicates no difference among the three groups.
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Figure 5 - figure supplement 2: Distributions of individual unit location changes over whole chains
(top) and unit location changes between pairs of datasets (bottom), for each neuron group and
across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile. Whiskers at
the ends of the box plot show maximum and minimum values. In the top plot, n and N are the
number of units. In the bottom plot, n and N are the number of unit comparisons, i.e. (humber
of units)x(number of datatsets - 1). A Kruskal-Wallis test indicates no difference among the three
groups.
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Figure 5 - figure supplement 3: Distribution of firing rate fold change per dataset for each neuron
group and across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile.
Whiskers at the ends of the box plot show maximum and minimum values. n and N are the number
of units. A Kruskal-Wallis test indicates no difference among the three groups.
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Figure 5 - figure supplement 4: The visual fingerprint and PSTH change distributions per dataset
for each neuron group and across all neurons. Box plots indicate 25% percentile, medians, and
75% percentile. Whiskers at the ends of the box plot show maximum and minimum values. n and
N are the number of unit comparisons, i.e. (number of units)x(number of datatsets - 1). A Kruskal-
Wallis test indicates no difference among the three groups.
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Figure 5 - figure supplement 5: The similarity score distribution per dataset for each neuron
group and across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile.
Whiskers at the ends of the box plot show maximum and minimum values. nand N are the number
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Figure 6 - figure supplement 1: Example reference chain. a. Above: Firing rates of this neuron on
each day. Below: Firing rate fractional change compared to the previous day. b. Visual response
similarity (yellow line), PSTH correlation (orange line), and visual fingerprint correlation (blue line).
The similarity score is the sum of vfp and PSTH. The dashed black line shows the threshold to be
considered a reference unit. c. Spatial-temporal waveform of a trackable unit. Each pair of traces
represent the waveform on a single channel. d. Estimated location of this unit on different days.
Each colored dot represents a unit on one day. The orange squares represent the electrodes. e.
The pairwise vfp and PSTH traces of this unit.
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Figure 6 - figure supplement 2: Example putative chain. Order is the same as the previous figure.
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12 Figure 7 supplement

ALO32 Shank 2 SimScore

Day 1 Shank 2

Figure 7 - figure supplement 1: An example similarity score (vfp + PSTH) heatmap from animal
ALO032, shank 2, Kilosort-good units between day 1 and 2. Each small square represents the sim-
ilarity score (value range from [-2,2]) between one unit from day 1 and one unit from day 2. A
warm colored square indicates a higher score. The clusters are ordered by their physical locations
on the probe. There is a diagonal line with brightest color blocks, indicating that units with more
similar firing responses across days tend to be physically close. This confirms our assumption that
neurons are physically stable over time. Also notice that, on each column, there might be more
than one bright block in the more distant clusters. We minimize the effect of distant units by con-
straining the feasible region during selection of reference units. There are also columns without
bright yellow blocks. This happens because some units do not respond to the stimulus and those
units are not included in the reference set.
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Figure 7 - figure supplement 2: The Kilosort-good and reference unit counts for the animals ALO31
and AL036, as shown for animal ALO32 in Figure 7.
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Figure 7 - figure supplement 3: The ratio of the count of reference units to KSgood units decreases
for pairs of datasets with larger time intervals. However, the variability of the number of reference
units is generally large for all time intervals.
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