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Abstract Accurate tracking of the same neurons across multiple days is crucial for studying12

changes in neuronal activity during learning and adaptation. Advances in high density13

extracellular electrophysiology recording probes, such as Neuropixels, provide a promising14

avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however,15

complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of16

signal from some neurons. Here we propose a neuron tracking method that can identify the17

same cells independent of firing statistics, that are used by most existing methods. Our method18

is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell19

identity in mice using measured visual receptive fields. This method succeeds on datasets20

separated from one to 47 days, with an 84% average recovery rate.21

22

1 Introduction23

The ability to longitudinally track neural activity is crucial to understanding central capabilities and24

changes of neural circuits that operate on long time-scales, such as learning and plasticity,1–4 mo-25

tor stability,1,5,6 etc. We seek to develop a method capable of tracking single units regardless of26

changes in functional responses for the duration of an experiment spanning one to two months.27

High-density multi-channel extracellular electrophysiology (ephys) recording devices enable28

chronic recordings over large areas for days-to-months.7 Such chronic recordings make possi-29

ble experiments targeted at improving our understanding of neural computation and underly-30

ing mechanisms. Examples include perceptual decision making, exploration and navigation.8–1331

Electrode arrays with hundreds to thousands of sites, for example Neuropixels, are now used ex-32

tensively to record the neural activity of large populations stably and with high spatio-temporal33

resolution, capturing hundreds of neurons with single neuron resolution.9,10 Moreover, ephys re-34

tains the higher time resolution needed for single spike identification, as compared with calcium35

imaging that provides more spatial cues with which to track neurons over days.36

The first step in analyzing ephys data is is to extract single neuron signals from the recorded37

voltage traces, i.e., spike sorting. Spike sorting identifies individual neurons by grouping detected38

action potentials using waveform profiles and amplitudes. Specific algorithms include principal39
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components based methods,14,15 and template matching methods, for example, Kilosort.9,11,16,1740

Due to the high dimensional nature of the data, spike sorting is often computationally intensive41

on large data sets (10’s to 100’s of GB) and optimized to run on single sessions. Thus processing42

multiple sessions has received minimal attention, and the challenges therein remain largely unad-43

dressed.44

One major challenge in reliably tracking neurons is the potential for changes in the neuron45

population recorded (Figure 1a and Figure 1b). In particular, since the probe is attached to the46

skull, brain tissue can move relative to the probe, e.g. during licking, and drift can accumulate over47

time.18 Kilosort 2.5 corrects drift within a single recording by inferring tissue motion from con-48

tinuous changes in spiking activity and interpolating the data to account for that motion.7 Larger49

between-recording drift occurs for sessions on different days, and can 1) change the size and loca-50

tion of spike waveforms along the probe,19 2) lose neurons that move out of range, and 3) gain new51

neurons that move into recording range. Thus clusters can change firing pattern characteristics or52

completely appear/disappear. As a result the specific firing patterns classified as unit clusters may53

appear and disappear in different recordings.9,20–22 Another challenge is that popular template-54

matching-based spike sorting methods usually involve some randomness in template initializa-55

tion.16,23,24 As a result, action potentials can be assigned into clusters differently, and clusters can56

be merged or separated differently across runs.57
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Fig. 1: Schematic depiction of drift: a. Mice were implanted with a 4-shank Neuropixels 2.0 probe in visual cortex area V1. b.
Each colored star represents the location of a unit recorded on the probe. In this hypothetical case, the same color indicates unit
correspondence across days. The black unit is missing on day 48, while the turquoise star is an example of a new unit. Tracking
aims to correctly match the red and blue units across all datasets and determine that the black unit is undetected on day 48. c. Two
example spatial-temporal waveforms of units recorded in two datasets that likely represent the same neuron, based on similar
visual responses. Each trace is the average waveform on one channel across 2.7 milliseconds. The blue traces are waveforms on
the peak channel and 9 nearby channels (two rows above, two rows below, and one in the same row) from the first dataset (Day
1). The red traces, similarly selected, are from the second dataset. Waveforms are aligned at the electrodes with peak amplitude,
different on the two days.

Previous neuron tracking methods are frequently based on waveform and firing statistics, e.g.,58

firing rate similarity,25 action potential shape correlation and inter-spike interval histogram(ISI)59

shape.26 Whenneuronal representations change, e.g., during learning1–3 or representational drift,2760

neural activity statistics became less reliable. In this work, we take advantage of the rich spatial-61

temporal information in themulti-channel recordings, matching units based on the estimated neu-62

ron locations and unit waveforms,28 instead of firing patterns.63

As an alternative method, Steinmetz et al.7 concatenated pairs of datasets after low resolution64

alignment, awkward for more than 2 datasets. We report here a more flexible, expandable and65

robust tracking method that can track neurons effectively and efficiently across any number of66

sessions.67
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2 Results68

2.1 Procedure69

Our datasets consist of multiple recordings taken from three mice (Figure 7a) over 2 months. The70

time gap between two recordings ranges from two to 25 days. Each dataset is spike-sorted individu-71

ally with a standard Kilosort 2.5 pipeline. The sorting results, including unit assignment, spike times,72

etc. are used as input for our method (post-processed using ecephys spike sorting pipeline29) (Sec.73

4.3). To ensure the sorting results are unbiased, we performed nomanual curation. As the clusters74

returned by Kilosort can vary in quality, we only considered the subset of units labeled as ’good’ by75

Kilosort, here referred to as KSgood units (Sec. 4.4). KSgood units are mainly determined by the76

amount of inter-spike-interval violations and are believed to represent a single unit.1677

Our overall strategy is to run spike-sorting once per session, and then to generate a unit-by-unit78

assignment between pairs of datasets. When tracking units across more than two sessions, two79

strategies are possible: match all ensuing sessions to a single session (e.g., the first session) (Sec.80

2.2 and Sec. 4.2), or match consecutive pairs of sessions and then trace matched units through all81

sessions (Sec. 2.4).82

We refer to the subset of KSgood units with strong and distinguishable visual responses in both83

datasets of a comparison as reference units (See Sec. 4.4 for details). Similar to Steinmetz et al.784

we validated our unit matching of reference units using visual receptive field similarity. Finally, we85

showed that trackable units with strong visual responses are qualitatively similar to those without86

(Figure 5-supplement Figure 1 to Figure 5).87

Toprovide registration betweenpairs of recordings, weused the EarthMover’s Distance (EMD).30,3188

We use a feature space consisting of a geometric distance space and a waveform similarity space,89

to address both rigid and non-rigid neuron motion. The EMD finds matches between objects in90

the two distributions by minimizing the overall distances between the established matches (Sec.91

4.1.1).92

We use EMD in two stages: rigid drift correction and unit assignment. Importantly, the EMD93

distance incorporates two parameters crucial for matching units: location-based physical distance94

and a waveform distance metric that characterizes similarity of waveforms (Sec. 4.1.2). The EMD95

distance matrix is constructed with a weighted combination of the two (details in Sec. 4), i.e. a96

distance between two units 𝑑𝑖𝑘 is given by 𝑑𝑖𝑘 = 𝑑𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑘 + 𝜔 ∗ 𝑑𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚𝑖𝑘
(Figure 2a). The first EMD97

stage estimates the homogeneous vertical movement of the entire population of KSgood units98

(Figure 2b). This movement estimate is used to correct the between-session rigid drift in unit loca-99

tions. The rigid drift estimation procedure is illustrated in figure 2b. Post drift correction, a unit’s100

true match will be close in both physical distance and waveform distance. Drift-corrected units101

were then matched at the second EMD stage. The EMD distance between assigned units can be102

thought of as the local non-rigid drift combined with the waveform distortion resulting from drift.103

We test the accuracy of the matching by comparing with reference unit assignments based on104

visual receptive fields (Sec. 4.4).105

For each unit, the location is determined by fitting the peak to peak amplitudes on the 10 sites106

nearest the site with peak signal, based on the triangulation method in Boussard, et al.32 (Sec.107

4.1.2). The waveform distance is an L2 norm between two spatial-temporal waveforms that spans108

22 channels and 2.7msec (Sec. 4.1.2). Physical unit distances provide away tomaintain the internal109

structure and relations between units in the EMD.Waveform similaritymetrics will distinguish units110

in the local neighborhood and likely reduce the effect of new and missing units.111

We analyzed the match assignment results in two ways. First, we compared all subsequent112

datatsets to dataset 1 using recovery rate and accuracy. We define recovery rate𝑅𝑟𝑒𝑐 as the fraction113

of unit assignments by our method that are the same as reference unit assignments established114

using visual responses (Sec. 4.4).115
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𝑃 (𝐸𝑀𝐷 ∣ 𝑟𝑒𝑓 ) =
𝑃 (𝐸𝑀𝐷 ∩ 𝑟𝑒𝑓 )

𝑃 (𝑟𝑒𝑓 )
=

𝑁𝐸𝑀𝐷∩𝑟𝑒𝑓

𝑁𝑟𝑒𝑓
(1)

Since the EMD forces all units from the dataset with fewer neurons to have an assigned match,116

we use vertical z-distance to threshold out the biologically-impossible unit assignments. We then117

calculated the accuracy 𝑅𝑎𝑐𝑐 , i.e. the fraction of EMD unit assignments within the z-distance thresh-118

old which agree with the reference assignments.119

𝑃 ((𝐸𝑀𝐷 ∣ 𝑟𝑒𝑓 ) ∩ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =
𝑃 ((𝐸𝑀𝐷 ∩ 𝑟𝑒𝑓 ) ∣ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝑃 (𝑟𝑒𝑓 ∣ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
(2)

We also retrieved non-reference units, i.e. matched units without receptive field information120

but whose z-distance is smaller than the threshold.121

Second, we tracked units between consecutive datasets and summarized and analyzed the122

waveforms, unit locations, firing rates and visual responses (see Figure 5-supplement Figure 1 to123

Figure 5 for details) of all tracked chains, i.e. units which can be tracked across at least three124

consecutive datasets.125

2.2 Measuring rigid drift using the EMD126

Drift happens mostly along the direction of probe insertion (vertical or z direction). We want to127

estimate the amount of vertical drift under the assumption that part of the drift is rigid; this is128

likely a good assumption given the small (≈ 720𝜇𝑚) z-range of these recordings. The EMD allows129

us to extract the homogeneous (rigid) movement of matched units. For ideal datasets with a few130

units consistently detected across days, this problem is relatively simple (Figure 2a). In the real data131

analyzed here, we find that only≈ 60% of units are detected across pairs of days, so the rigidmotion132

of the real pairs must be detected against a background of units with no true match. These units133

with no real match will have z-shifts far from the consensus z-shift of the paired units (Figure 2c).134

In Figure 2 the EMDmatch of units from the first dataset (Figure 2b, open circles) to the dataset135

recorded the next day (Figure 2b, closed circles) is indicated by the arrows between them. To136

demonstrate detection of significant drift, we added a 12 micron upward drift to the z-coordinate137

of the units from the second day. The first stage of the EMD is used to find matches using the138

combined distance metric as described in section 4.1.2. We used a kernel fit to the distribution of139

z-distances of all matched units to find the mode (Mode = 15.65𝜇𝑚); this most probable distance is140

the estimate of the drift (Figure 2c). It is close to the actual imposed drift (𝑑𝑖 = 12𝜇𝑚).141

As the EMD is an optimization algorithm with no biological constraints, it assigns matches to all142

units in the smaller dataset regardless of biophysical plausibility. As a result, some of the assigned143

matches may have unrealistically long distances. A distance threshold is therefore required to144

select correct pairs. For the illustration in Figure 2, the threshold is set to 15𝜇𝑚, which is chosen to145

be larger than most of the z-shifts observed in our experimental data. The threshold value will be146

refined later by distribution fitting (Figure 4). In Figure 2 all of the sub-threshold (short) distances147

belong to upward pairs (Figure 2b and c, red solid arrows), showing that the EMD can detect the148

homogeneous movement direction and the amount of imposed drift.149

When determiningmatched reference units from visual response data, we require that units be150

spatially nearby (within 30𝜇𝑚) as well as having similar visual responses. After correcting for drift,151

we find that we recover more reference units (Figure 2-supplement Figure 1), indicating improved152

spatial match of the two ensembles. This improved recovery provides further evidence of the153

success of the drift correction.154

5 of 39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2023.08.03.551724doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2: The EMD can detect the displacement of single units: a. Schematic of EMD unit matching. Each blue unit in day 1 is
matched to a red unit in day 2. Dashed lines indicate the matches to be found by minimizing the weighted sum of physical and
waveform distances. b. Open and filled circles show positions of units in days 1 and 2, respectively. Arrows indicate matching using
EMD. The arrow color represents thematch direction; upwardmatches foundwith the EMD are in red and downward in black. Solid
lines indicate a z-match distance within 15𝜇𝑚, while a dashed line indicates a z distance > 15𝜇𝑚. Expanded view shows probe area
from 3120 to 3220 𝜇𝑚. c. Histogram of z-distances of matches (black and red bars) and kernel fit (light blue solid curve). The light
blue dashed line shows the mode (𝑑𝑚 = 15.65𝜇𝑚). The dark blue dashed line shows the imposed drift (𝑑𝑖 = 12𝜇𝑚). The red region
shows the matches within 15𝜇𝑚 of the mode. The EMD needs to detect the homogeneous movement against the background, i.e.
units in the black region that are unlikely to be the real matches due to biological constraints.

2.3 A vertical distance threshold is necessary for accurate tracking155

To detect the homogeneous z-shift of correct matches against the background of units without156

true matches, it is necessary to apply a threshold on the z-shift. When tracking units after shift cor-157
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rection, a vertical distance threshold is again required to determine whichmatches are reasonable158

in consideration of biological plausibility. The Receiver Operator Characteristic (ROC) curve in Fig-159

ure 3 shows the fraction of reference units matched correctly and the number of reference pairs160

retained as a function of z-distance threshold. Wewant to determine the threshold thatmaximizes161

the overall accuracy in the reference units (Figure 3, blue curve) while including as many reference162

units as possible (Figure 3, red curve).163

Fig. 3: The ROC curve of matching accuracy vs. distance. The blue curve shows the accuracy for reference units. The red line
indicates the number of reference units included. The solid vertical line indicates the average z distance across all reference pairs
in all animals (𝑧 = 6.96𝜇𝑚). The dashed vertical black line indicates a z-distance threshold at z = 10𝜇𝑚.

Since reference units only account for 29% of KSgood units (units with few inter-spike-interval164

violations that are believed to represent a single unit), and the majority of KSgood units did not165

show a distinguishable visual response, we need to understand how representative the reference166

units are of all KSgood units.167

We found the distribution of z-distances of reference pairs is different from the distribution168

of all KSgood units (Figure 4a, top and middle panel). While both distributions may be fit to an169

exponential decay, the best fit decay constant is significantly different (Kolmogorov-Smirnov test,170

reject H0, p = 5.5×10−31). Therefore, the accuracy predicted by the ROC of reference pairs in Figure171

3 will not apply to the set of all KSgood pairs. The difference in distribution is likely due to the172

reference units being a special subset of KSgood units in which units are guaranteed to be found173

in both datasets, whereas the remaining units may not have a real match in the second dataset. To174

estimate the ROC curve for the set of all KSgood units, wemust estimate the z-distance distribution175
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for a mixture of correct and incorrect pairs.176

We assume that the distribution of z-distances 𝑃 (Δ) for reference units is the conditional prob-177

ability 𝑃 (Δ ∣ 𝐻); that is, we assume all reference units are true hits. The distribution of z-distances178

for all KSgood units 𝑃 (Δ) includes both hits and false positives. The distance distribution of false179

positives is the difference between the two.180

A Monte Carlo simulation determined that the best model for fitting the z-distance distribution181

of reference units 𝑃 (Δ ∣ 𝐻) is a folded Gaussian distribution (Figure 4a, middle panel) and an182

exponential distribution for false positive units (see Figure 4-supplement Figure 1). The KSgood183

distribution is a weighted combination of the folded Gaussian and an exponential:184

𝑃 (𝐴𝑙𝑙𝑈𝑛𝑖𝑡𝑠) = 𝑓 ∗ 𝑃 (𝐹𝑜𝑙𝑑𝑒𝑑𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) + (1 − 𝑓 ) ∗ 𝑃 (𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙) (3)
We fit the KSgood distribution to Equation 3 to extract the individual distribution parameters and185

the fraction of true hits (f). The full distribution can then be integrated up to any given z-threshold186

value to calculate the false positive rate. (Figure 4a, bottompanel, see Figure 4-supplement Figure 2187

for details).188

Based on the the estimated false positive rate (Figure 4a, bottom panel), we used a threshold189

of 10𝜇𝑚 (Figure 3, black dotted line) to obtain at least 70% accuracy in the KSgood units. We used190

the same threshold to calculate the number of matched reference units and the corresponding191

reference unit accuracy (Figure 4b, green bars).192

Note that this threshold eliminates most of the known false positive matches of reference pairs193

(Figure 4b, red fraction) at the cost of recovering fewer correct pairs (Figure 4b, green bars). The re-194

covery rate varies from day to day; datasets separated by longer times tend to have higher tracking195

uncertainty (Figure 4-supplement Figure 3).196

In addition to the units with visual response data, we can track units which have no significant197

visual response (Figure 4b, purple bars). All comparisons are between subsequent datasets and198

the day 1 dataset.199
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Fig. 4: Recovery rate, accuracy and putative pairs: a. The histogram distribution fit for all KS-
good units (top) and reference units alone (middle). False positives for reference units are defined
as units matched by EMD but not matched when using receptive fields. The false positive fraction
for the set of all KSgood units is obtained by integration. z = 10𝜇𝑚 threshold has a false positive rate
= 27% for KSgood units. b. Light blue bars represent the number of reference units successfully re-
covered using only unit location and waveform. The numbers on the bars are the recovery rate of
each datatset, and the red portion indicates incorrect matches. Incorrect matches are cases where
units with a knownmatch from receptive field data are pairedwith a different unit by EMD; these er-
rors are false positives. The green bars showmatching accuracy for the set of pairs with z-distance
less than the 10𝜇𝑚 threshold. The orange portion indicates incorrect matches after thresholding.
The false positives are mostly eliminated by adding the threshold. Purple bars are the number of
putative units (unit with no reference information) inferred with z-threshold = 10𝜇𝑚.

200

2.4 Units can be tracked in discontinuous recordings for 48 days201

To assess long-term tracking capabilities, we tracked neurons across all datasets for each mouse.202

Figure 5 shows a survival plot of the number of unit chains successfully tracked over all durations.203

All units in the plot can be tracked across at least three consecutive datasets, a chain as the term204

is used here. We categorized all trackable unit chains into three types: reference chains, mixed205

chains and putative chains. Reference chains have receptive field information in all datasets. Pu-206

tative chains have no reference information in any of the datasets. Mixed units have at least one207

dataset with no receptive field information. There are 133 reference chains, 135 mixed chains and208

84 putative chains across all the subjects. Among them, 46 reference, 51 mixed, and 9 putative209

units can be followed across all datasets. We refer to them as fully trackable units. One example210

trackable unit in each group is shown in Figure 6, Figure 6-supplement Figure 1, and Figure 6-211

supplement Figure 2.212
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Fig. 5: Number of reference units (deep blue, dark orange and green for different subjects), putative (medium green, medium
orange and blue) units, and mixed units (light green, yellow, and light blue) tracked for different durations. The loss rate is similar
for different chain types in the same subject. Note that chains can start on any day in the full set of recordings, so the different sets
of neurons have chains with different spans between measurements.

We hypothesize that the three groups of units are not qualitatively different from each other,213

that is, all units are equally trackable. In order to check for differences among the three groups,214

we analyzed the locations, firing rates, waveforms, and receptive fields of the fully trackable units215

in the three groups: reference, putative, and mixed.216

The spatial-temporal waveform similarity is measured by the L2 distance between waveforms217

(Sec. 4.1.2). A Kruskal-Wallis test is performed on the magnitude of L2 change between all pairs218

of matched waveforms among the three groups. There is no statistical difference in the waveform219

similarity in reference, putative, andmixed units (H = 0.59, p = 0.75) (Figure 5-supplement Figure 1).220

There is no significant difference in the physical distances of units per dataset (H = 1.31, p = 0.52)221

(Figure 5-supplement Figure 2, bottom panel), nor in the location change of units (H = 0.23, p =222
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0.89) (Figure 5-supplement Figure 2, top panel).223

Firing rate is characterized as the average firing rate fold change of each unit chain, with firing224

rate of each unit in each dataset normalized by the average firing rate of that dataset. There is225

no difference in the firing rate fold change in the three groups of units (H = 1, p = 0.6) (Figure 5-226

supplement Figure 3).227

The receptive field similarity between units in different datasets is described by visual finger-228

print (vfp) correlation and Peristimulus Time Histogram (PSTH) correlation between units, and the229

similarity score, the sum of the two correlations (Sec. 4.4). The change in vfp between matched230

units is similar among the three groups (H = 2.23, p = 0.33). Similarly, the change in PSTH is not231

different among the three groups (H = 1.61, p = 0.45) (Figure 5-supplementFigure 4).232
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Fig. 6: Example mixed chain: a. Above: Firing rates of this neuron on each day (Day 1, 2, 13,
23, 48). Below: Firing rate fractional change compared to the previous day. b. Visual response
similarity (yellow line), PSTH correlation (orange line), and visual fingerprint correlation (blue line).
The similarity score is the sum of vfp and PSTH. The dashed black line shows the threshold to be
considered a reference unit. c. Spatial-temporal waveform of a trackable unit. Each pair of traces
represents the waveform on a single channel. d. Estimated location of this unit on different days.
Each colored dot represents a unit on one day. The orange squares represent the electrodes. e.
The pairwise vfp and PSTH traces of this unit.

233

3 Discussion234

We present here an EMD-based neuron tracking algorithm that provides a new, automated way235

to track neurons over long-term experiments to enable the study of learning and adaptation with236

state-of-the-art high density electrophysiology probes. We demonstrate our method by tracking237

neurons up to 48 days without using receptive field information. Our method achieves 90% recov-238

ery rate on average for neurons separated up to one week apart and 78% on average for neurons239

five to seven weeks apart (Figure 4b, blue bars). We also achieved 99% accuracy up to one week240

apart and 95% five to seven weeks apart, when applying a threshold of 10 𝜇𝑚 (Figure 4b, green241

bars). It also retrieved a total of 552 tracked neurons with partial or no receptive field information,242

12 per pair of datasets on average. All the fully trackable unit chains were evaluated by wave-243

forms and estimated locations. Our method is simple and robust; it only requires spike sorting be244

performed once, independently, per dataset. In order to be more compatible and generalizable245

with existing sorting methods, we chose Kilosort, one of the most widely used spike sorting meth-246

ods.33,34 We show the capability of our method to track neurons with no specific tuning preference247

(Figure 6-supplement Figure 2).248

The method includes means to identify dataset pairs with very large drift. In our data, we can249

detect large drift because such datasets have very few reference units, and significantly different250

EMD cost. For example, datasets 1 and 2 in animal AL036 have very few reference units compared251

to other datasets (see Figure 2-supplement Figure 2, AL036). This observation is consistent with252

the overall relationship between the EMD cost and recovery rate (Figure 2-supplement Figure 3).253

Datasets with higher cost tend to have lower unit recovery rate and higher variation in recovery254

rates. Therefore, these two datasets were excluded in the tracking analysis.255

Our validation relies on identifying reference units. The reference unit definition has limita-256

tions. The similarity score is largely driven by PSTHs (Figure 7-supplement Figure 1), the timing of257

stimulus triggered response, rather than vfp, the response selectivity. As a result, a single neuron258

can be highly correlated, i.e. similarity score greater than 1, with more than 20 other neurons. For259

example, in subject AL032 shank 2, one neuron on day 1 has 22 highly correlated neurons on day260

2, 4 of which are also within the distance of 30𝜇𝑚. Non-reference units may also have very similar261

visual responses: we note that 33 (5 putative neurons and 28 mixed neurons) out of 106 trackable262

neurons have a similarity score greater than 1 even for days with no reference unit assignment.263

Coincidentally similar visual responses could potentially contribute to inaccurate assignment of264

reference units and irregularity in trackable unit analysis. These errors would reduce the mea-265

sured accuracy of the EMDmatching method; since the accuracy is very high (Figure 4), the impact266

of mismatches is low.267

We note that the ratio of reference units over KSgood units decreases as recordings are further268

separated in time (Figure 7-Figure 3). This reduction in fraction of reference unitsmight be partially269

due to representational drift as well as the fact that the set of active neurons are slightly different270

in each recording. The visual fingerprint similarity of matched neurons decreased to 60% after 40271

days (see reference 7 supplement).272

We developed the new tracking algorithm based on an available visual cortex dataset, and used273
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a prominent sorting algorithm (Kilosort 2.5) to spikesort the data. We had reference data to assess274

the success of thematching and tune parameters. Applying our algorithm in other brain areas and275

with other sorters may require parameter adjustment. Evaluation of the results in the absence of276

reference data requires a change to the fitting procedure.277

The algorithm has only two parameters: the weighting factor 𝜔 that sets the relative weight of278

waveform distance vs. physical distance, and the z-distance threshold that selects matches that279

are likely correct. We found that recovery rate, and therefore accuracy, is insensitive to the value280

of 𝜔 for values larger than 1500(Figure 2-supplement(Figure 4), so this parameter does not require281

precise tuning. However, the false positive rate is strongly dependent on the choice of z-distance282

threshold.283

When reference information (unit matches known from receptive fields or other data) is avail-284

able, the procedure outlined in Figure 4 can be followed. In that case, the distribution of z-distances285

of known pairs is fit to find thewidth of the distribution for correctmatches. That parameter is then286

used in the fit of the z-distance distribution of all pairs to Equation 3. Integrating the distributions287

of correct and incorrect pairs yields the false positive rate vs. z-distance, allowing selection of a288

z-distance threshold for a target false positive rate.289

In most cases, reference information is not available. However, the z-distance distributions for290

correct and incorrect pairs can still be estimated by fitting the distribution of all pairs. In Figure 4-291

supplement Figure 2 we show the results of fitting the z-distribution of all pairs without fixing the292

width of the distribution of correct matches. The result slightly underestimates this width, and the293

estimated false positive rate increases. This result is important because it suggests the accuracy294

estimate from this analysis will be conservative. We detail the procedure for fitting the z-distance295

distribution Methods section (Alg. 2).296

As suggested in Dhawale et al.,5 discontinuous recordings will have more false positives. Im-297

proving spike sorting and restricting the analysis to reliably sorted units will help decrease the298

false positive rate. Current spike sorting methods involve fitting many parameters. Due to the299

stochastic nature of template initialization, only around 60% to 70% units are found repeatedly300

in independently executed analysis passes. This leads to unpaired units which decreases EMD301

matching accuracy. Future users may consider limiting their analysis to the most reliably detected302

units for tracking; requiring consensus across analysis passes or sorters is a possible strategy. Fi-303

nally, more frequent data acquisition during experiments will provide more intermediate stages304

for tracking and involves smaller drift between consecutive recordings.305

4 Methods306

Our neuron tracking algorithm uses the Earth Mover’s Distance (EMD) optimization algorithm. The307

minimized distance is a weighted combination of physical distance and ’waveform distance’: the al-308

gorithm seeks to form pairs that are closest in space and have themost similar waveforms. We test309

the performance of the algorithm by comparing EMDmatches to reference pairs determined from310

visual receptive fields (Sec. 4.4). We calculate two performance metrics. The ’recovery rate’ is the311

percentage of reference units that are correctly matched by the EMD procedure. The ’accuracy’ is312

the percentage of correctly matched reference units that pass the z-distance threshold (Figure 4a).313

’Putative units’ are units matched by the procedure which do not have reference receptive field314

information. ’Chains’ are units that can be tracked across at least three consecutive datasets. The315

full procedure is summarized in Algorithm 1.316
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Algorithm 1 Neuron Matching Procedure
Input: channel map, unit cluster label, cluster mean waveforms(with 𝐾𝑙𝑜𝑐 = 2 and 𝐾𝑤𝑓 = 5 rows

and 𝐾𝑐𝑜𝑙 = 2 columns of channels), and spike times
Step 1 Estimate unit locations
Estimate background amplitude for each unit
for all KSgood units 𝑢𝑛 ∈ 𝑈 do

if peak-top-peak voltage 𝑉𝑝𝑡𝑝 > 60𝜇𝑉 thenGet 𝑢𝑛 ’s waveform on channels 𝐶𝑚Get the peak-to-peak amplitudes 𝑉𝑝𝑡𝑝𝑐 of 𝑢𝑛 background-subtracted waveforms on channels
𝐶𝑢𝑛 = {𝑚𝑐𝑢𝑛 − 𝑘𝑙𝑜𝑐 , ..., 𝑚𝑐𝑢𝑛 + 𝑘𝑙𝑜𝑐} where 𝑚𝑐𝑢𝑛 is the peak channelEstimate the neuron’s 3D location as in:32
𝑓 (𝑥, 𝑦, 𝑧) =

∑

𝑐∈𝐶𝑢𝑛
(𝑉𝑝𝑡𝑝𝑐 −

1
√

(𝑥−𝑥𝑐 )2+(𝑧−𝑧𝑐 )2+𝑦2
)2 where x, z, and y are the horizontal location,

vertical location, and distance of the unit from the probe, respectively.
Find an estimate of the global minimizer of 𝑓, 𝑥𝑢𝑛 , 𝑦𝑢𝑛 , 𝑧𝑢𝑛 using least-squares optimization

end
end
Step 2 Compute waveform similarity metrics
forwaveforms 𝑤𝑓𝑥𝑖 ∈ 𝑈𝑁1 and𝑤𝑓𝑦𝑘 ∈ 𝑈𝑁2 where𝑈𝑁1, 𝑈𝑁2 are the set of all units in the two datasets
doCentered at peak channel 𝑚𝑐𝑥𝑖 and 𝑚𝑐𝑦𝑘, respectivelyGet the sets of channels for each unit: 𝐶𝑢𝑛 = {𝑚𝑐𝑢𝑛 − 𝑘𝑤𝑓 , ..., 𝑚𝑐𝑢𝑛 + 𝑘𝑤𝑓}There are 𝐾𝑤𝑓 ∗ 2 ∗ 𝐾𝑐𝑜𝑙 + 2 = 22 channels for each unit
Compute the waveform similarity metric as (1∕22) ∗

∑

𝑐∈𝐶𝑢𝑥𝑖 ,𝐶𝑢𝑦𝑘
𝐿2(𝑤𝑓𝑥𝑖 −

𝑤𝑓𝑦𝑘)∕𝑚𝑎𝑥(𝐿2(𝑤𝑓𝑥𝑖), 𝐿2(𝑤𝑓𝑦𝑘)) for each of the 22 channels
end
Step 3 Between-session drift correction

Run the EMD with distances in physical and waveform space
Estimate z-distance mode of all matched pairs with Gaussian kernel fit
Apply correction on physical distances of all units ∈ 𝑈2 ∶ 𝑧𝑐𝑜𝑟𝑟 = 𝑧 − 𝑧𝑚𝑜𝑑𝑒

Step 4 Unit matching
Run the EMD with corrected physical distance and waveform metrics
Set z-distance threshold to select unit pairs likely to be the same neuron

Output: cost∑ 𝑑𝐸𝑀𝐷, unit assignments

4.1 Algorithm317

4.1.1 Earth Mover’s Distance318

The EMD is an optimization-based metric developed in the context of optimal transport and mea-319

suring distances between probability distributions. It frames the question as moving dirt, in our320

case, units from the first dataset, into holes, which here are the neural units in the second dataset.321

The distance between the "dirt" and the "holes" determines how the optimization program will pri-322

oritize a given match. Specifically, the EMD seeks to minimize the total work needed to move the323

dirt to the holes, i.e., neurons in day 1 to day 2, by solving for a minimum overall effort, the sum of324

distances.30,31325
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min
𝑑𝐹

∑

𝑖 𝑘
𝐷(𝑥𝑖, 𝑦𝑘), 𝑤ℎ𝑒𝑟𝑒 𝐷 = 𝑑𝑙𝑜𝑐 + 𝜔𝑑𝑤𝑓

subject to 𝑓𝑖𝑘 ∈ [0, 1] ∀𝑖, 𝑘
∑

𝑘
(𝑓𝑘) ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑌 )

∑

𝑖
(𝑓𝑖) ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋)

∑

(𝐹 ) = min(
∑

𝑋,
∑

𝑌 )

(4)

in which 𝑑𝑙𝑜𝑐 ∈ 3 is the three-dimensional physical distance between a unit from the first326

dataset 𝑥𝑖, and a unit from the second dataset 𝑦𝑘. 𝑑𝑤𝑓 ∈ 1 is a scalar representing the similar-327

ity between waveforms of units 𝑥𝑖 and 𝑦𝑘. 𝜔 is a weight parameter that was tuned to maximize the328

recovery rate of correctly matched reference units. F is the vector of matched objects between the329

two datasets (See Figure 2-supplement Figure 4 for details about selecting weight).330

The EMD has three benefits:331

• It allows combining different types of information into the ’distance matrix’ to characterize332

the features of units.333

• The EMD can detect homogeneous movement of units (Figure 2c), thus providing a way for334

rigid drift correction, as described in section 4.1.3.335

• By minimizing overall distances, the EMD has tolerance for imperfect drift correction, error336

in the determination of unit positions, and possible non-rigid motion of the units.337

However, since the EMD is an optimizationmethod with no assumptions about the biological prop-338

erties of the data, itmakes all possiblematches. We therefore added a threshold on the permissible339

z-distance to select physically plausible matches.340

4.1.2 Calculating the EMD distance metric341

The unit locations are estimated by fitting 10 peak-to-peak (PTP) amplitudes from adjacent elec-342

trodes and the corresponding channel positions with a 1/R distance model.32 Unlike Boussard, et343

al.,32 we operate on the mean waveforms for each unit rather than individual spikes. We found344

using the mean waveform yields comparable results and saves significant computation time. Unit345

locations are three-dimensional coordinates estimated relative to the probe, where the location346

of the first electrode on the left column at the tip is considered the origin. The mean waveform is347

computed by averaging all the spike snippets assigned to the cluster by KS 2.5.348

For 10 channels 𝑐 ∈ 𝐶𝑢𝑛 , find the location coordinates 𝑥𝑢𝑛 , 𝑦𝑢𝑛 , 𝑧𝑢𝑛 that minimizes the difference349

between measured amplitudes 𝑉𝑃𝑇𝑃 and amplitudes estimated with locations 𝛼
√

(𝑥−𝑥𝑐 )2+(𝑧−𝑧𝑐 )2+𝑦2
):350

min
∑

𝑐∈𝐶𝑢𝑛

(

𝑉𝑃𝑇𝑃𝑐 −
1

√

(𝑥 − 𝑥𝑐)2 + (𝑧 − 𝑧𝑐)2 + 𝑦2

)2

(5)
The locations are used to calculate the physical distance portion of the EMD distance.351

For the waveform similarity metric, we want to describe the waveform characteristics of each352

unit with its spatial-temporal waveform at the channels capturing the largest signal. The waveform353

similarity metric between any two waveforms 𝑢𝑛1 and 𝑢𝑛2 in the two datasets is a scalar calculated354

as a normalized L2metric (see Alg.1 Step 2) on the peak channels, namely the channel rowwith the355

highest amplitude and 5 rows above and below (a total of 22 channels). The resulting scalar reflects356

the ’distance’ between the two units in the waveform space and is used to provide information357

about the waveform similarity of the units. It is used for between-session drift correction and358

neuron matching. Figure 1c shows an example waveform of a reference unit.359
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4.1.3 Between-session Drift Correction360

Based on previous understanding of the drift in chronic implants, we assumed that the majority361

of drift occurs along the direction of the probe insertion, i.e. vertical z-direction. This rigid drift362

amount is estimated by the mode of the z-distance distribution of the EMD assigned units using a363

normal kernel density estimation implemented in MATLAB. We only included KSgood units.16 The364

estimated drift is then applied back to correct both the reference units and the EMDdistancematrix365

by adjusting the z coordinates of the units. For validation, the post-drift-correction reference set is366

compared with the post-drift-correction matching results (from step 4 in 1).367

4.2 Determining Z Distance Threshold368

Determining the z-distance threshold to achieve a target false positive rate requires estimating369

the widths of the z-distance distributions of correct and incorrect pairs. If reference data is avail-370

able, the z-distance distribution of the known correct pairs should be fit to a folded Gaussian as371

described in Figure 4. The width of the folded Gaussian, which is the error in determination of the372

z-positions of units, is then fixed in the fit of the z-distribution of all pairs found by the algorithm373

outlined in Algorithm 4.1.1. If no reference data is available, the width of the distribution of correct374

pairs is determined by fitting the z-distance distribution of all pairs to Equation 3 with the folded375

Gaussian width as one of the parameters. This procedure is detailed in Algorithm 2. We show two376

examples of model fitting without reference information in Figure 4-supplement Figure 2.377

Algorithm 2 Determining an appropriate z distance threshold
Input: Z distances of all matched units, target false positive rate, width 𝜎 of the z-distance distribu-

tion of correct pairs, if available
Step 1 Fit z distance distribution of all pairs to decompose into distributions of correct and incor-
rect pairs

Fit the z-distance distribution of all pairs to the sum of a folded Gaussian (for correct pairs) and
an exponential (for incorrect pairs). If the width 𝜎 of the distribution of correct pairs is known
from reference data, fix at that value. Otherwise, include in the fit parameters. The functional
form is: 𝑃 (𝑧) = 𝑑(𝑓𝑁𝑒−

𝑧2

2𝜎2 + 1−𝑓
𝑐
𝑒−

𝑧
𝑐 )

Where: 𝑓 = fraction of correct pairs; 𝜎 = width of the distribution of correct pairs; 𝑐 = decay
constant of distribution of incorrect pairs; 𝑑 = amplitude normalization; and 𝑁 = 2

𝜎
√

2𝜋
, the

normalization factor of the folded Gaussian.
Step 2 Determine z threshold to achieve a target false positive rate

For Neuropixels 1.0 and 2.0 probes, the width of the z-distance distribution of correct matches
(𝜎) should be <10 𝜇m; a larger width, or a very small value of the fraction of correct pairs
suggests few or no correct matches. In this case, the EMD cost is likely to be large as well (See
Figure 2-supplement Figure 2 Animal AL036 first two rows).
For a range of z values, integrate the z-distance distribution of incorrect pairs from 0
to z, and divide by the integral of the distribution of all pairs over that range. This gener-
ates the false positive rate vs. z-distance threshold, as shown in Figure 4-supplement Figure 2.

Output: 𝜎 (uncertainty of position estimation), threshold at the target false positive rate

4.3 Dataset378

The data used in this work are recordings collected from two chronically implanted NP 2.0 four-379

shank probes and one chronically implanted one-shank NP 2.0 probe in the visual cortex of three380

head fixedmice (Figure 7b, see Steinmetz et al.7 for experiment details). The recordingswere taken381

while 112 visual stimuli were shown from three surrounding screens (data from Steinmetz et al.7382
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Supplement Section 1.2). The same bank of stimuli was presented five times, with order shuffled.383

The 4-shank probes had the 384 recording channels mapped to 96 sites on each shank.384

Weanalyzed 65 recordings, each fromone shank, collected in 17 sessions (5 sessions for animal385

AL031, 5 sessions for animal AL032, and 7 sessions for animal AL036). The time gap between386

recordings ranges from one day to 47 days (Figure 7a), with recording duration ranging from 1917387

to 2522 seconds. The sample rate is 30kHz for all recordings. There are a total of 2958 KSgood388

units analyzed across all animals and shanks, with an average of 56 units per dataset (Figure 7d389

and Figure 7-supplement Figure 2).390

Fig. 7: Summary of dataset: a. The recording intervals for each animal. A black dash indicates one recording on that day. b. All
recordings are from visual cortex V1 with a 720 𝜇𝑚 section of the probe containing 96 recording sites. The blue arrow indicates
the main drift direction. c. Examples of visual fingerprint(vfp) and peri-stimulus time histogram(PSTH) from a high correlation (left
column) and a just-above-threshold (right column) correlation unit. Both vfp and PSTH values vary from [-1,1]. d. Kilosort-good and
reference unit counts for animal AL032, including units from all four shanks.
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4.4 Reference set391

To track clusters across days, Steinmetz et al.7 concatenated two recording sessions and took392

advantage of the within-recording drift correction feature of Kilosort 2.0 to extract spikes from393

the two days with a common set of templates. They first estimated the between session drift of394

each recording from the pattern of firing rate and amplitude on the probe and applied a position395

correction of an integer number of probe rows (15𝜇𝑚 for the probes used). Then two corrected396

recordings were concatenated and sorted as a single recording. This procedure ensured that the397

same templates are used to extract spikes across both recordings, so that putative matches are398

extracted with the same template. A unit from the first half of the recording is counted as the same399

neuron if its visual response is more similar to that from the same cluster in the second half of the400

recording than to the visual response of the physically nearest neighbor unit. Using this procedure401

and matching criteria, 93% of the matches were correct for recordings < 16 days apart, and 85%402

were correct for recordings from 3-9 weeks (See Steinmetz et al.,7 Fig. 4). In addition, although403

mean fingerprint similarity decreases for recordings separated by more than 16 days, this decline404

is only 40% for the same unit recorded from 40 days apart (see Steinmetz et al.7 Supplement S3).405

This procedure, while successful in their setting, was limited to the use of integral row adjustments406

of the data for between-session drift correction and relied on a customized version of Kilosort 2.0.407

Although up to three recordings can be sorted together, they must come from recording sessions408

close in time. In addition, a separate spike sorting session needs to be performed for every pair of409

recordings to be matched, which is time consuming and introduces extra sorting uncertainty.410

To find units with matched visual responses, we examine the visual response similarity across411

all possible pairs. The visual response similarity score follows Steinmetz et al.,7 and consists of two412

measurements. 1) The peristimulus time histogram (PSTH), which is the histogram of the firing of a413

neuron across all presentations of all images, in a 1800msec timewindow starting 400msec before414

and ending 400 msec after the stimulus presentation. The PSTH is calculated by histrogramming415

spike times relative to stimulus on time for all stimuli, using 1 ms bins. This histogram is then416

smoothedwith aGaussian filter. 2) The visual fingerprint(vfp) is the average response of the neuron417

to each of the 112 images. The vfp is calculated by averaging the spike counts in response to each418

natural image from the stimulus onset to 1 second afterwards across 5 shuffled trials.419

Following Steinmetz et al.,7 the similarity score between two neurons is the sum of the corre-420

lation of the PSTH and the correlation of the vfp across two sessions. The two correlations have421

values in the range (-1,1), and the similarity score ranges from (-2, 2).422

The pool of reference units is established with three criteria: 1) The visual response similar-423

ity score of the pair, as described above, is greater than 1 and their physical distance, both be-424

fore and after drift correction, is smaller than 30𝜇m. A physical distance criterion is necessary,425

because some units have several potential partners with high visual response similarity (Figure 7-426

supplement Figure 1). We impose the 30 𝜇m threshold on both pre- and post-correction data427

because the drift is relatively small in our case, and we can reduce false positives by constraining428

the reference units to be in a smaller region without losing units. In general, one could apply the429

threshold only on corrected data (after drift correction). 2) A Kruskal-Wallis test is applied on all430

trials of the vfps to ensure the triggered response to the stimulus is significantly distinguishable431

from a flat line. 3) Select units from each recording that meet the good criteria in Kilosort. Kilosort432

assigns a label of either single-unit (good) or multi-unit (MUA) to all sorted clusters based on ISI vio-433

lations.16 This step aims to ensure included units are well separated. If there are multiple potential434

partners for a unit, the pair with the highest similarity score is selected as the reference unit. The435

complete pool of reference units includes comparisons of all pairs of recordings for each shank in436

each animal. The portion of units with qualified visual response ranges from 5% to 61%, depending437

on the time gap between datatets (Figure 7-supplement Figure 3). Overall, these reference units438

made up 29% of all KSgood units (Figure 7-supplement Figure 2) across all three animals in our439

dataset. Figure 7c shows examples of visual responses from a high similarity reference unit and a440
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reference unit with similarity just above threshold.441
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All code used can be accessed at: https://github.com/janelia-TDHarrisLab/Yuan-Neuron_Tracking.443

6 Acknowledgments444

NIH grant U01 NS115587 in part supported TDH and AXY. We thank Claudia Böhm and Albert Lee445

for allowing us to use their data in Figure 4-supplement Figure 2.446

7 Declaration of interests447

The authors declare no competing interests.448

21 of 39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2023.08.03.551724doi: bioRxiv preprint 

https://github.com/janelia-TDHarrisLab/Yuan-Neuron_Tracking
https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Figure 2 supplement449

Figure 2 - figure supplement 1: The effect of drift correction on reference units yield for all three
animals. Note that drift correction improves the recovery rate for most cases; the degree of im-
provement is a function of the magnitude of the drift.
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Figure 2 - figure supplement 2: EMD cost can be used to detect discontinuities in the data. In
animal AL036, we noted a large decrease in the number of reference units (units with matched
visual responses, see Sec. 4.4) after the second dataset. This likely indicates a large physical shift in
the tissue relative to the probe. It is important to be able to detect such discontinuities to eliminate
datasets from consideration. We find that the discontinuity can be detected in the EMDmean cost,
location mean cost and waveform mean cost. The four heatmaps on the left, show reference
counts and pairwise costs for units matched on one shank in animal AL036. Note that the days
with few reference units also have higher EMD cost. To show that days 1-2 (first two rows) are
significantly different from days 3-9, we use the Mann-Whitney U Test. All three cost values show
significant differences between the groups (EMD mean cost, reject H0, p = 6 × 10−7; location mean
cost, reject H0, p = 6 × 10−5; waveform mean cost, reject H0, p = 5 × 10−7)). To show that days
3-9 come from the same distribution, we compare odd and and even rows using the same test.
All three cost values show no significant difference between odd and even days (accept H0, p =
0.92). Based on this significant difference between days 1-2 and later days(datasets in the red
rectangles), we infer that the first two datatsets sampled a different population of units than the
later recordings. These first two datasets were eliminated from our analysis. Matrices on the right
show similar information for animal AL032 for reference. To estimate the relative magnitude of
EMD cost in related datasets versus unrelated datasets, we calculated the cost between unrelated
datasets with similar number of units (AL032 shank 1 and AL036 shank 1, EMD cost = 78, location
cost = 67, and waveform cost = 32). The EMD cost is between 70-80, much larger than observed
for related datasets (between 20-30).
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Figure 2 - figure supplement 3: The normalized EMD cost (unitless), z distance (𝜇𝑚), physical
distance (𝜇𝑚), and waveform distance (unitless) and the corresponding recovery rate of reference
unit (units with matched visual responses) in pairwise matches of all to all pairs of recordings, on
each shank. Each triangle represents the recovery rate in a pair of datasets. Animal AL031 has 6
sets of matching, with one outlier removed. Animal AL032 has 24 sets of matching. Animal AL036
has 60 sets of matched units. Overall, most of the datatsets with high recovery rates have per-unit
EMD in the range 20-30, but datasets with lower recovery are in the same range. Therefore, while
very high EMD cost reveals discontinuous data, EMD cost in the normal range is not predictive of
reference unit recovery, which is a metric of match success.
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Figure 2 - figure supplement 4: Recovery rate vs. L2-weight. We varied the weight 𝜔 in Equation 4
used to combine the physical and waveform distances in increments of 500. The vertical line in-
dicates weight = 1500, where the overall recovery rate = 86.29%. The maximum recovery rate =
87.68% occurs at weight = 3000. We chose weight = 1500 for all subsequent analysis.
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9 Figure 4 supplement450

Figure 4 - figure supplement 1: Determining the functional form for the z-distance distribution
of all pairs. As shown in Figure 4a, the z distance distribution of reference pairs differs significantly
from that of all pairs. The z-distance distribution for all pairs is the sum of z-distance distributions
for true hits (𝑃 (Δ ∣ 𝐻)) and false positives (𝑃 (Δ ∣∼ 𝐻)), weighted by the fraction correct, f: 𝑃 (Δ) =
𝑓 ∗ 𝑃 (Δ ∣ 𝐻) + (1 − 𝑓 ) ∗ 𝑃 (Δ ∣∼ 𝐻). We built a Monte Carlo model, with 150 units (the average
density of subject AL032), normally distributed error 𝜎 = 5𝜇𝑚 for the measured location of the
units in true pairs, and random placement of false positives. For each value of fraction correct,
we ran the model 500 times. The figure shows fits to model distributions with fraction correct =
0.23, 0.5, 0.6 (top row) and f = 0.7, 0.96 (bottom row). The resulting z-distance distributions are
well fit using a folded Gaussian for the distance distribution of true hits and an exponential for the
distance distribution of false positives (see Algorithm 2). We use these functional forms to fit the
experimental z-distance distribution and estimate the false positive rate.
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Figure 4 - figure supplement 2: Fits of experimental z-distance distributions to the model. When
reference data is available, the z-distance distribution of these known true hits can be fit to obtain
the width 𝜎 of the folded Gaussian. 𝜎 can then be fixed in the fit of the distribution of all KSgood
units to Equation 3, which is used to estimate the false positive rate. When no reference data are
available, 𝜎 can be estimated from fitting the distribution of all KSGood units to all four parameters
in Equation 3. Panels a and b show the dataset from Figure 4 fit with and without fixing the folded
Gaussian distribution width. The resulting false positive rate from the no-reference fit at thresh-
old 𝑧 = 10𝜇𝑚 is larger than than that from the fit using reference data, so the procedure gives a
conservative estimate of the accuracy. Panel c. shows the model fit of data from an unrelated
dataset acquired with frommouse prefrontal cortex using Neuropixels 1.0.35 The similar shape of
the distribution and a 29% false positive rate suggests that the method can be generalized.
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Figure 4 - figure supplement 3: The reference unit recovery rate vs. days between matched
recordings. Each triangle represents thematching results of two datasets. Animal AL031 has 6 sets
of matched units, with one outlier removed. Animal AL032 has 24 sets of matched units. Animal
AL036 has 60 sets of matching. The recovery rate is lower for longer durations.
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10 Figure 5 supplement451

Figure 5 - figure supplement 1: Distribution of waveform L2 similarity change per dataset for
each neuron group (reference, putative and mixed) and across all neurons. Box plots indicate 25%
percentile, medians, and 75% percentile. Whiskers at the ends of the box plot showmaximum and
minimum values. n and N are the number of unit comparisons, i.e. (number of units)×(number of
datatsets - 1). A Kruskal-Wallis test indicates no difference among the three groups.

29 of 39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2023.08.03.551724doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551724
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5 - figure supplement 2: Distributions of individual unit location changes overwhole chains
(top) and unit location changes between pairs of datasets (bottom), for each neuron group and
across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile. Whiskers at
the ends of the box plot show maximum and minimum values. In the top plot, n and N are the
number of units. In the bottom plot, n and N are the number of unit comparisons, i.e. (number
of units)×(number of datatsets - 1). A Kruskal-Wallis test indicates no difference among the three
groups.
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Figure 5 - figure supplement 3: Distribution of firing rate fold change per dataset for each neuron
group and across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile.
Whiskers at the ends of the box plot showmaximumandminimum values. n andN are the number
of units. A Kruskal-Wallis test indicates no difference among the three groups.
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Figure 5 - figure supplement 4: The visual fingerprint and PSTH change distributions per dataset
for each neuron group and across all neurons. Box plots indicate 25% percentile, medians, and
75% percentile. Whiskers at the ends of the box plot show maximum and minimum values. n and
N are the number of unit comparisons, i.e. (number of units)×(number of datatsets - 1). A Kruskal-
Wallis test indicates no difference among the three groups.

Figure 5 - figure supplement 5: The similarity score distribution per dataset for each neuron
group and across all neurons. Box plots indicate 25% percentile, medians, and 75% percentile.
Whiskers at the ends of the box plot showmaximumandminimum values. n andN are the number
of observations of the units, i.e. ∑𝑢𝑛𝑖𝑡𝑠(observations of this unit)
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11 Figure 6 supplement452

Figure 6 - figure supplement 1: Example reference chain. a. Above: Firing rates of this neuron on
each day. Below: Firing rate fractional change compared to the previous day. b. Visual response
similarity (yellow line), PSTH correlation (orange line), and visual fingerprint correlation (blue line).
The similarity score is the sum of vfp and PSTH. The dashed black line shows the threshold to be
considered a reference unit. c. Spatial-temporal waveform of a trackable unit. Each pair of traces
represent the waveform on a single channel. d. Estimated location of this unit on different days.
Each colored dot represents a unit on one day. The orange squares represent the electrodes. e.
The pairwise vfp and PSTH traces of this unit.
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Figure 6 - figure supplement 2: Example putative chain. Order is the same as the previous figure.
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12 Figure 7 supplement453

Figure 7 - figure supplement 1: An example similarity score (vfp + PSTH) heatmap from animal
AL032, shank 2, Kilosort-good units between day 1 and 2. Each small square represents the sim-
ilarity score (value range from [-2,2]) between one unit from day 1 and one unit from day 2. A
warm colored square indicates a higher score. The clusters are ordered by their physical locations
on the probe. There is a diagonal line with brightest color blocks, indicating that units with more
similar firing responses across days tend to be physically close. This confirms our assumption that
neurons are physically stable over time. Also notice that, on each column, there might be more
than one bright block in the more distant clusters. We minimize the effect of distant units by con-
straining the feasible region during selection of reference units. There are also columns without
bright yellow blocks. This happens because some units do not respond to the stimulus and those
units are not included in the reference set.
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Figure 7 - figure supplement 2: The Kilosort-good and reference unit counts for the animals AL031
and AL036, as shown for animal AL032 in Figure 7.

Figure 7 - figure supplement 3: The ratio of the count of reference units to KSgoodunits decreases
for pairs of datasets with larger time intervals. However, the variability of the number of reference
units is generally large for all time intervals.
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