

1 [Title]

2 **Genome-wide assays to characterize rAAV integration into human genomic DNA in vivo**

3

4 [Authors]

5 **Jaime Prout\*, Jessica Von Stetina\*, Gustavo Cerqueira, Madison Chasse, Huei-Mei Chen,**  
6 **Andrew Pla, Rachel Resendes, Danielle Sookiasian, Cagdas Tazearslan, Jason Wright#, John F.**  
7 **Thompson**

8 \*Co-first authors

9 # Corresponding Author

10

11 [Abstract]

12 Adeno-associated viral (AAV) vectors are used to treat genetic diseases, expressing therapeutic  
13 genes from both extrachromosomal episomes and payloads that integrate into the host  
14 genome. Assays were developed to evaluate HR-mediated on-target integration and the  
15 potential occurrence of off-target integration. While many studies have addressed elements of  
16 these processes, proper characterization requires long-read sequencing to ensure that  
17 integrated viral DNA is examined and not the more prevalent episomes. We used Oxford  
18 Nanopore to characterize integrated DNA and scan the whole genome for off-target  
19 integrations. These assays were applied to cell-based and *in vivo* models to study vectors that  
20 correct phenylketonuria (PKU), caused by loss of phenylalanine hydroxylase (*PAH*).  
21 Administration of the human-specific vector in a humanized-liver mouse xenograft model  
22 resulted in stable, nuclease-free integration into *PAH*. Because detection of rare integration  
23 events in a much larger pool of episomal DNA is subject to artifacts, careful assay validation was  
24 required. A long-read, genome-wide assay capable of detecting on- and off-target vector  
25 integrations showed no evidence of off-target integration. Artifactual false positive events were  
26 below the limit of blank. These data support rAAV as an investigational therapeutic for genetic  
27 diseases and reinforce the need for characterization of integration assays to avoid artifacts.

28

29 [Introduction]

30 rAAV DNA has been shown to exist in cells both chromosomally after genome integration and  
31 extra-chromosomally as an episome.<sup>1-4</sup> Upon entry into the cell's nucleus, the single-stranded  
32 rAAV vector genomes can either integrate into the genome via homologous recombination (HR)  
33 or be processed into extra-chromosomal episomes. If recombining, the two homology arms  
34 containing the homologous sequences integrate into the target genomic DNA, resulting in the  
35 insertion of the vector payload DNA located between the two homology arms. Non-homology-  
36 driven integration of AAV has been extensively studied at locations such as the AAVS1 site on  
37 chromosome 19.<sup>3,5</sup> In contrast, HR-dependent rAAV integration can occur when there is  
38 homologous sequence shared between the rAAV vector and the genome, resulting in HR-

39 driven, site-specific integration. For example, recent work using rAAV-mediated HR integration  
40 into the albumin locus took advantage of both the fidelity of HR integration and the high  
41 expression of albumin to drive transcription of the desired gene.<sup>6-8</sup>

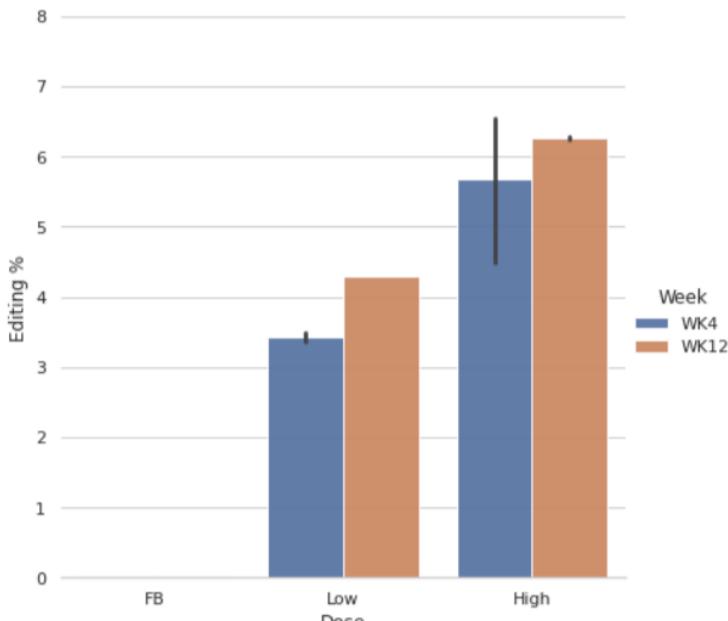
42 Evidence for the integration of AAV and other viruses into the human genome has been  
43 demonstrated using a succession of increasingly robust methodologies. Wild-type AAV was  
44 found to integrate specifically into chr19 using *in situ* hybridization.<sup>3,4</sup> This finding was followed  
45 by the detection of AAV and other viral integrations by FISH,<sup>9</sup> plasmid rescue,<sup>10</sup> LAM-PCR,<sup>11,12</sup>  
46 nrLAM-PCR,<sup>13</sup> brute force NGS,<sup>14</sup> targeted capture,<sup>15,16</sup> single-cell approaches,<sup>17,18</sup> and a  
47 comparison of NGS-based approaches.<sup>19</sup> Some methods can be used across a broad range of  
48 viruses while others have significant limitations in particular situations. Methods that work well  
49 with efficiently recombining systems like retroviruses may not be feasible with less efficient  
50 systems like AAV where the high background of non-integrated viral genomes can lead to many  
51 artifacts. In addition, information gathered from each assay varies. No sequence information is  
52 generated with qPCR,<sup>20</sup> while other methods can produce integration junction sequence<sup>21</sup> or  
53 full-length integrated viral sequence data.

54 Cells transduced with rAAV can have hundreds to thousands of copies of episomal DNA per cell.  
55 The episomal and integrated DNA contain long stretches that are identical to each other in both  
56 the homology arms and payload. Because of the significant mismatch in copy number, episomal  
57 DNA can contaminate reads purportedly from integrated DNA. To ensure that homology arms  
58 from integrated viruses are evaluated rather than the more common episomal DNA, each  
59 sequence read should span the viral payload through the homology arm and into the unique  
60 genomic sequence adjacent to the integration event. Previous reports using short-read  
61 sequencing technology showed no additional changes to the genome,<sup>22</sup> but this finding requires  
62 confirmation via long-read sequencing. Additionally, multiple classes of other artifacts  
63 potentially arise during sample processing and NGS library preparation and these must be  
64 addressed when determining assay sensitivity.<sup>23</sup> Appropriate controls need to be included for  
65 an assay to be meaningful.

66 Accurate assessment of on- and off-target integration is essential because rAAV integration has  
67 been proposed as a means of achieving stable correction of genetic defects. Episomal  
68 expression of a vector containing a codon-optimized human PAH (CO-hPAH) DNA driven by a  
69 liver-specific promoter results in episomal expression and correction of phenylketonuria (PKU)  
70 in treated mice.<sup>24</sup> Subsequent studies showed that CO-hPAH with homology arms packaged in  
71 AAVHSC15 could induce nuclease-free, HR-mediated integration into the human *PAH* locus.  
72 These ~900 bp homology arms are locus- and species-specific and were designed to minimize  
73 potential off-target HR integration. To better characterize HR-driven rAAV integration, we have  
74 developed long-read sequencing assays to characterize all integration sites, independent of  
75 genomic location. These methods use techniques that have not been previously applied to  
76 rAAV integration.

78 **[Results]**

79 **rAAV vectors and on-target integration**


80 Assays to assess on-target integration via ddPCR and sequencing short PCR amplicons have  
81 been described previously.<sup>22</sup> ddPCR is useful when the number of episomes is low, but it  
82 becomes impractical when high doses of rAAV are administered and the ratio of episomal to  
83 integrated DNA becomes excessive. The large number of episome-only droplets leads to an  
84 episomal copy number that overwhelms the integration signal. When ddPCR could not be used,  
85 amplicon sequencing was carried out using short-read sequencing across the integration  
86 junctions. Because the sequences of both the integrated vector DNA and adjacent genomic  
87 DNA are known, it is straightforward to design PCR primers that allow selective amplification of  
88 the wild-type genomic DNA or the integrated DNA. However, the large excess of episomal DNA  
89 and the potential presence of concatemers of variable structure<sup>25</sup> can introduce artifacts during  
90 sample preparation and amplification. To minimize this, the amplicons must be sufficiently long  
91 that there is payload DNA sequenced on one end of the homology arm and a non-viral genomic  
92 DNA sequence on the other end. When quantitation is desired, amplification conditions also  
93 need to be chosen such that a high level of episomal DNAs present does not differentially affect  
94 the integrated/non-integrated DNA ratio. This is most easily done by making the primer  
95 required to amplify both these DNAs product-limiting. With these requirements, primers have  
96 been created that allow selective amplification and quantitation of both wild-type and  
97 integrated DNAs.

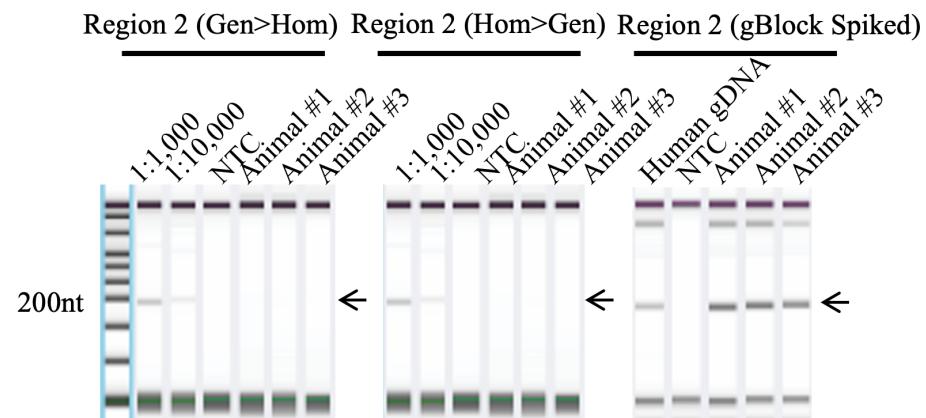
98 Because rAAV integration is homology-dependent, different vectors must be used for  
99 integration into mouse or human genomic DNA. Integration is more efficient *in vivo* than *in*  
100 *vitro* so special models must be used to examine integration into human DNA. A relevant  
101 system for assessing rAAV integration behavior is human hepatocytes that are engrafted into  
102 FRG® mouse livers.<sup>26</sup> These mice have defective immune systems that allow the engraftment  
103 and growth of human cells. The mouse hepatocytes are engineered to be sensitive to a  
104 chemical challenge. In the appropriate conditions, most mouse hepatocytes die and are  
105 replaced by human donor hepatocytes. While this model provides an *in vivo* setting, the mice  
106 are not robust due to their defective immune system and do not survive as long as normal  
107 mice. This makes them much more difficult to maintain. The challenges in working with this  
108 model limit the experiments that can be done; but, despite the limitations, the model provides  
109 insight into how the vector is likely to behave when administered to humans.

110 Three different vectors have been used for the integration experiments described here, two  
111 with human homology arms but different payloads, and one with no homology arms. Vectors  
112 are named by the species/presence of homology arms (hHA), whether a promoter is present  
113 (LP1), and the protein product (hPAH). Some of these vectors have been described previously<sup>22</sup>  
114 and are illustrated in Supplemental Figure 1. Mice are injected with either Formulation Buffer  
115 (FB) as a control or differing concentrations of species-specific vectors at varying  
116 concentrations. Figure 1 shows 3-7% integration can be achieved in human hepatocytes with

117 human homology arms as measured using the long-read PCR amplicon method previously  
118 described.<sup>22</sup> A common genomic primer is amplified with either a payload or genomic primer  
119 located beyond the homology arms and the ~1.4 kb amplicons are long-read sequenced using  
120 Oxford Nanopore Technologies (ONT). The read counts of integrated DNA versus wildtype DNA  
121 are then compared. The amount of integration is dose dependent. The high level of episomal  
122 vector genomes (VGs) in the vector-treated samples prevents the ddPCR method from being  
123 used.

124 **Figure 1: Integration of hPAH into human PAH locus**




125  
126 **Figure 1:** FRG mice were treated with formulation buffer (FB), 7E+13 VG/kg (Low), or 2E+14 VG/kg (High)  
127 of hHA-LP1-hPAH. After either 4 (blue) or 12 weeks (brown), mice were sacrificed, and livers removed  
128 for isolation of human hepatocytes and DNA analysis.

129  
130 **Predicted Off-target integrations**  
131 If rAAV vectors were to integrate at genomic sites other than their intended targets, it is most  
132 likely that such off-target integrations would be directed toward homologous sequences.  
133 During vector design, homology arms were chosen to have minimal sequence identity with the  
134 rest of the genome. As a result, all sequences elsewhere in the genome are poor matches for  
135 the hHA-LP1-hPAH homology arms. To test the most likely of the poor matches, predicted off-  
136 target integration sites were selected based on two criteria, a minimum sequence length of 35  
137 bp and a minimum sequence identity of 60% relative to any sequence in the homology arms.  
138 Only six genomic regions could be identified that met both these criteria. The six identified  
139 regions had 38-52 bp homology with 60-85% identity relative to the hHA-LP1-hPAH homology  
140 arms. Because the sequence of both the homology arms and the predicted integration site is

141 known, it is straightforward to design primers that allow specific amplification for putative off-  
142 target integration sites at 5 of these 6 regions (Supplemental Table 1).

143 To generate positive control DNAs for the potential integration sites, gBlock DNA was  
144 synthesized that contained a sequence corresponding to what the putative integration sites  
145 would have if the junctions were present in the genome. These were used to spike into control  
146 human genomic DNA at molar ratios starting at 1:10 and serially diluting 10x down to 1:10,000.  
147 Each spiked, positive-control integration site could be detected at all ratios when amplified with  
148 the integration-specific primers. This established the limit of detection as 1 in 10,000. When  
149 genomic DNA from the FRG mice treated with hHA-LP1-hPAH was tested, no signal at any of the  
150 predicted off-target sites could be detected (Figure 2), indicating that the five tested sites were  
151 not subject to off-target integration at rates above the Limit of Detection (LoD).

152 **Figure 2: Analysis of Predicted Off-Target Integration**



153

154 **Figure 2:** Human genomic DNA was amplified for five predicted off-target sites (Supplemental Table 1).  
155 TapeStation profiles for Region 2 are shown. Positive control gBlock DNAs are shown for spikes of  
156 1:1000 and 1:10,000 with PCRs from the genomic region (Gen) to the right of the potential integration  
157 towards the homologous region (Hom) and from the homologous region to the genomic region to the  
158 left side of the possible integration. Genomic DNA from three animals treated with vector is shown for  
159 these amplifications and for a No Template Control (NTC). In the right panel, human genomic DNA and  
160 DNA from the same three animals are amplified in the presence of the positive control gBlock DNA to  
161 demonstrate that amplification would be possible if the off-target integration had occurred.

162

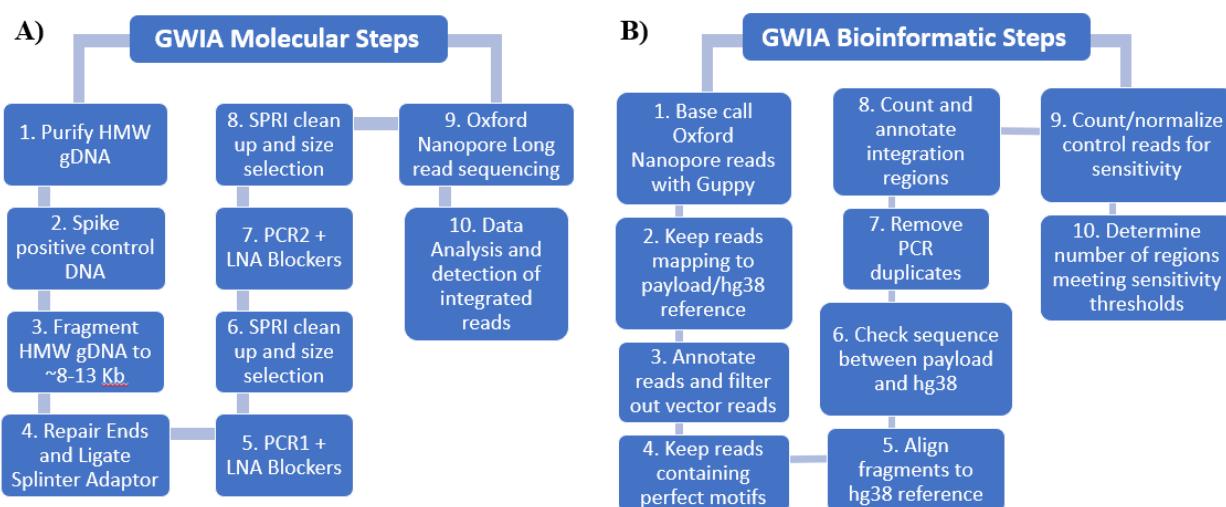
163 **Genome-wide Integration Assay (GWIA)**

164 *Amplification specificity*

165 Examination of predicted editing sites is the only measurement done when some editing  
166 technologies are evaluated.<sup>27</sup> However, it is preferable to examine all potential integration sites  
167 more broadly to characterize the editing/integration process fully. When scanning the entire  
168 genome for any potential integration sites, selectivity can be achieved by using a specific primer

169 for the vector payload, but the same degree of selectivity is not possible for the unknown  
170 genomic sequence adjacent to uncharacterized off-target integrations. Furthermore, the  
171 payload-specific primers provide specificity relative to genomic DNA, but episomal DNA  
172 contains the identical sequences as the integrated DNA so that primer provides no specificity  
173 relative to the problematic contaminating episomes. These can be present at up to thousands  
174 of fold excess relative to integrated DNA, creating a serious signal to noise issue. There are  
175 many methods to select for or against specific sequences (such as affinity tags), but we have  
176 not found these to be robust when used to select for or against AAV episomal DNA containing  
177 ITRs. Two techniques were found to aid specificity in this situation, the use of splinter adaptors  
178 attached to the genomic end of the DNA and use of chimeric Locked Nucleic Acid (LNA)  
179 oligonucleotides to selectively block episomal amplification at episome-specific regions. Both  
180 methods have been used previously during the characterization of other viral integrations.<sup>28</sup>

181 While the payload primer on one end of the amplified integration junction provides specificity  
182 for that DNA end, the primer on the other end must be sequence-agnostic to allow the  
183 detection of any region in the genome. This specificity limitation can be partially ameliorated  
184 via the use of splinter adaptors.<sup>28</sup> Splinter adaptors are a pair of oligonucleotides that are  
185 partially complementary to each other. They consist of a longer DNA with an extended 5' end  
186 and a shorter DNA that is blocked at its 3' end to prevent extension even in the presence of the  
187 longer sequence. These adaptors are ligated to the repaired ends of all free DNAs. Amplification  
188 starting from the splinter end of the DNA can only be achieved if the 5' extension is initially  
189 replicated from another priming site located nearby (schematic in Supplemental Figure 2).  
190 Ideally, activating replication occurs only when the payload-specific primer is extended, but  
191 other artifactual sources of copying could also happen and replicate the longer splinter adaptor,  
192 making it available for artifactual priming. Nonetheless, the payload-primer specificity at the  
193 vector DNA end is assisted by some degree of specificity at the genomic end of the amplicon  
194 using splinter adaptors.


195 Another method for further improving specificity is using LNA oligonucleotides to block the  
196 amplification of unwanted episomal DNA.<sup>29</sup> Because LNAs bind tightly to DNA, they can prevent  
197 DNA amplification when 3' blocked and bound to specific sequences. In each of our rAAV  
198 vectors, short sequences are located between the homology arms and the ITRs that are present  
199 in the episomal DNA but not in the HR-integrated DNA. Binding LNAs to this region does not  
200 affect amplification of HR-integrated DNA but significantly inhibits amplification of the episomal  
201 DNA. LNAs of 20-24 nt were found to be specific and effective for this purpose.<sup>29</sup> Various other  
202 methods to improve selectivity were tested, but the challenging nature of rAAV was found to  
203 limit their usefulness for either positive or negative selection.

204 Using nested PCR with splinter primers and LNA blocking, the GWIA method (Figure 3) was  
205 developed. DNA containing the codon-optimized vector payload (CO-hPAH) fused to human  
206 genomic sequences irrespective of where those human genomic sequences are located is  
207 amplified preferentially and independently of location, so it is possible to simultaneously detect

208 low levels of both on- and off-target integration. Unfortunately, like other integration assays,  
209 GWIA is subject to artifacts so appropriate controls need to be included to avoid problem  
210 sequences like telomeric DNA that may self-prime, mitochondrial DNA that is present at  
211 thousands of copies per hepatocyte<sup>30</sup> and repeat sequences that may misprime off each other.  
212 Additionally, unintegrated episomal VGs can significantly disrupt amplification due to their  
213 appetite for vector-specific primers. The excess vector DNA also contributes to two primary  
214 sources of artifactual signals that interfere with the detection of integration events. First, the  
215 episomal DNA can ligate to fragmented genomic DNA during sample processing, generating a  
216 false positive integration signal. Second, cells containing high levels of VGs can create a  
217 multitude of concatemers and other recombinants in which VG DNA may be rearranged into  
218 configurations that allow efficient amplification with one or two primers, increasing noise,  
219 reducing primer availability, and making true positive signals hard to distinguish. The degree to  
220 which these artifacts obscure the detection of true signals depends on the nature and  
221 concentrations of VGs and must be evaluated in multiple conditions so that the effective  
222 detection range of GWIA can be determined.

223 **Figure 3: GWIA Schematic**

224



226 **Figure 3:** Schematic flows for laboratory and informatics steps in the GWIA methods are listed. A more  
227 complete listing of details is provided in methods.

228

229 **Positive control DNAs**

230 On-target integration occurs at up to ~6%, but off-target integration, if it occurs at all, is much  
231 less common, making it more challenging to detect. Thus, generating a positive control for  
232 determining the LoD is imperative. There are multiple literature examples of purported viral  
233 integration findings that were later challenged by others as being caused by artifacts rather  
234 than real integrations,<sup>15,31,32</sup> and it would not be surprising to find additional examples with

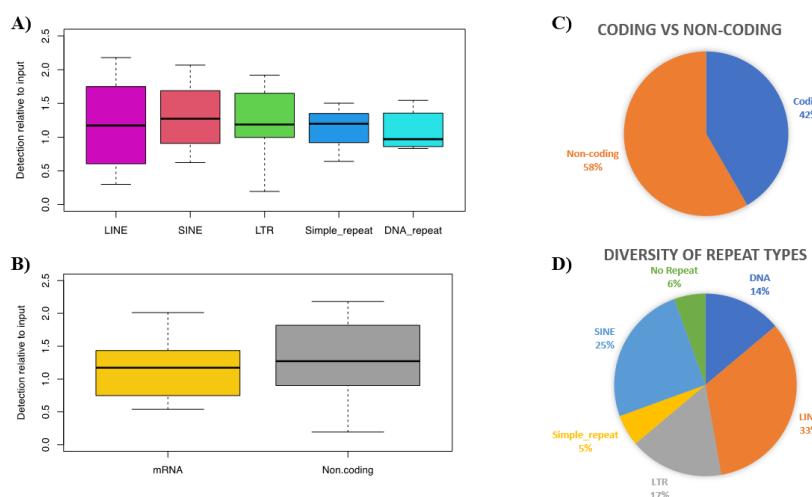
235 AAV, especially with samples rich in vector episomes. Sample and library processing can  
236 generate various artifacts that share some properties with integration events but are not  
237 authentic integrations. To address this, we have developed two types of positive control DNAs  
238 for assessing LoD: a series of plasmids containing pseudo-off-target integration junctions and a  
239 cell line with an on-target integration that includes SNVs to distinguish it from authentic on-  
240 target integrations. For the plasmid positive control off-target DNAs, 36 random fragments of  
241 human genomic DNA were cloned adjacent to the right homology arm. These plasmids were  
242 sequenced to identify the origin of their genomic DNA, and they were found to arise from  
243 diverse genomic regions (Supplementary Table 2).

244 While the control plasmids allow us to query many different sequence contexts, independently  
245 prepared, high quality plasmid DNA may behave differently than the longer genomic DNA. To  
246 assess sensitivity and specificity using genomic DNA, a cell line was generated to provide an  
247 additional positive control for on-target, genomically integrated vector. A plasmid containing  
248 the payload region with variants to distinguish it from the standard gene therapy vector was co-  
249 transfected with CRISPR-Cas9 molecules containing sgRNAs targeting two sites in the chr12  
250 region at which integration was intended. In a fraction of the cells, CRISPR-Cas9 cleaves the  
251 targeted locations which can then be repaired using the plasmid with the slightly variant  
252 homology arms. Because this repair could occur via Non-Homologous End Joining (NHEJ) and  
253 may not be HR-directed, this recombination may be different than what would occur with the  
254 virus and errors might be introduced in or near the integration site. Other off-target, CRISPR-  
255 dependent sites might also generate integration events.

256 After transfection of the plasmid and CRISPR-Cas9, cells were single-cell cloned and expanded.  
257 The resulting individual clones were screened by PCR for the desired chr12 integration event.  
258 Clones that appeared to contain the correct junction DNA by PCR were sequenced using Oxford  
259 Nanopore. One cell line with an appropriate integration (A11) was found which also contained  
260 normal genomic DNA in the same region, indicating the integration event had occurred in only a  
261 single chr12 allele. In addition to this planned integration event, another complex event was  
262 detected via GWIA that included a segment of chr17 and multiple vector payloads. Whole-  
263 genome sequencing of A11 with PacBio was performed to characterize the integration pattern  
264 better. In addition to the expected CRISPR-driven integration event on chr12, the second,  
265 unexpected integration event included >2 kb from chr17 and multiple payloads and vector  
266 cloning sites but only a small segment of ITR. The complexity and length of this integration  
267 region prevented complete assembly. DNA prepared from this cell line has been used as a  
268 positive control by spiking into assays of test genomic DNA at known amounts to evaluate the  
269 sensitivity of the GWIA method for detecting integration.

270 To confirm the blocking ability of LNAs in this system, genomic DNA from A11 was amplified  
271 using three primers. One primer is in the PAH payload sequence and is present in both the on-  
272 and off-target integrated DNA. The other primers were designed to match adjacent genomic  
273 DNA from the intended on-target site in chr12 and the observed off-target site in chr17. The

274 chr17 off-target site includes a vector sequence not present in the HR-like integration event on  
275 chr 12 and the blocking LNAs target this vector sequence. When no LNAs are present, these  
276 DNA fragments are amplified equally efficiently whether alone or together (Supplemental  
277 Figure 3, lanes 1-3). When the vector-specific blocker is added (lanes 4-6), chr17 amplification is  
278 blocked whether alone (lane 4) or in combination with the chr12 primer (lane 6), confirming  
279 that LNA can specifically block vector sequence amplification.


280

### 281 **Limit of Detection (LoD)**

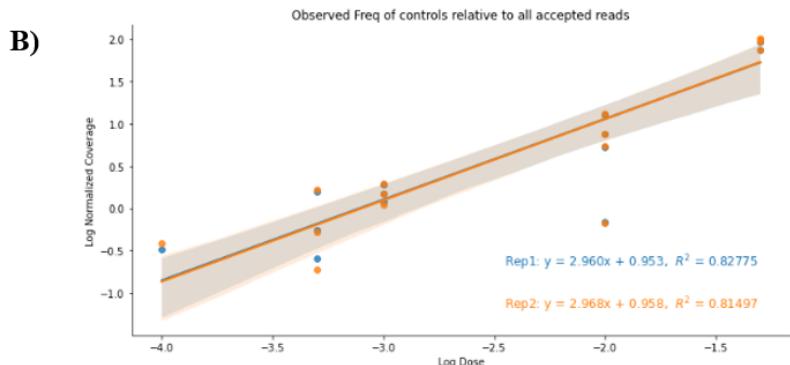
282 The 36 different plasmid control DNAs with artificial integration junctions were spiked into A11  
283 genomic DNA at varying relative concentrations and subjected to GWIA to assess both on-  
284 target integration provided by the A11 DNA and off-target integration provided by the 36  
285 different plasmids. GWIA is described in detail in Materials and Methods with a schematic of  
286 the laboratory and analysis workflow shown in Figure 3. Briefly, genomic DNA is spiked with  
287 appropriate controls, sheared to ~8 kb, repaired, ligated to splinter adaptors, amplified with  
288 one pair of payload/splinter primers in the presence of LNA blockers, size selected, amplified a  
289 second time with a different, nested pair of payload/splinter primers in the presence of LNA  
290 blockers, size selected, and sequenced using Oxford Nanopore flow cells. The resulting data is  
291 then base-called, aligned to vector and hg38 references, and filtered based on multiple  
292 sequence motifs.

293 When plasmids are spiked into A11 positive control genomic DNA and analyzed relative to on-  
294 target reads from A11, the recovery of plasmid “integration” reads is consistent across all  
295 sequence types (Figure 4). This shows that it is possible to detect off-target integration events  
296 mimicked by the plasmids across a wide variety of sequence contexts when those integration  
297 junctions are present. To further assess the assay’s sensitivity for low levels of integration  
298 junctions, varying concentrations of the different plasmids were spiked into genomic DNA over  
299 a 1000-fold range starting at a 1% molar ratio relative to genomic DNA and going down to  
300 0.001%. Detection over a 100-fold range was reasonably linear (Figure 5), but the lowest  
301 concentration was not readily detectable in these conditions. Thus, when the DNAs are of good  
302 quality and unencumbered by contaminating VGs, detection of integration junctions down to  
303 0.01% can be readily achieved.

304 **Figure 4: Read Frequency for Positive Control Plasmids using GWIA**



305


306 **Figure 4:** Sequences cloned adjacent to RHA were classified as their repeat content and whether they  
 307 contained coding or non-coding sequence. Relative read counts for each junction were made and  
 308 averaged by class.

309

310 **Figure 5 Detection of Control Plasmid DNAs**

**A)**

| Dilution | Plasmid 1 | Plasmid 2 | Plasmid 3 | Plasmid 4 | On Target | Off Target | On Copies | Off Copies |
|----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------------|
| 1        | hOT-5     | hOT-6     | hOT-7     | hOT-13    | 1X        | 0.01X      | 200,000   | 2000       |
| 2        | hOT-14    | hOT-15    | hOT-18    | hOT-21    | 1X        | 0.001X     | 200,000   | 200        |
| 3        | hOT-24    | hOT-28    | hOT-30    | hOT-31    | 1X        | 0.0005X    | 200,000   | 100        |
| 4        | hOT-36    | hOT-37    | hOT-40    | hOT-12    | 1X        | 0.0001X    | 200,000   | 20         |
| 5        | hOT-17    | hOT-23    | hOT-20    | hOT35     | 1X        | 0.00001X   | 200,000   | 2          |



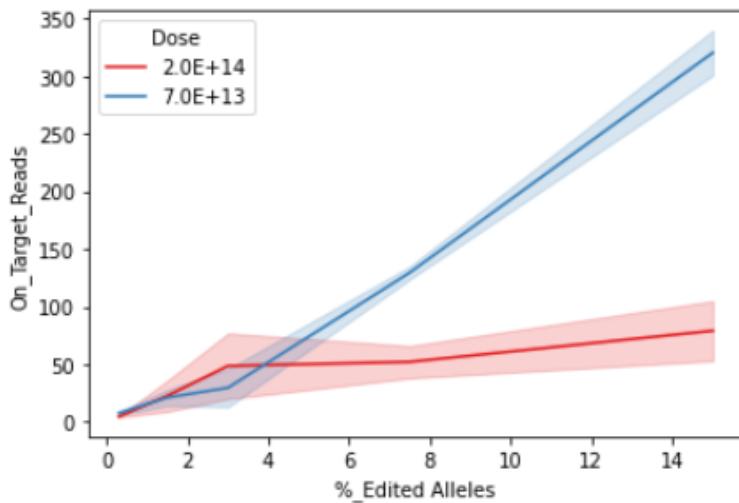
311

312 **Figure 5:** Twenty plasmids with RHA-genomic fusions were split into four groups and diluted as listed in  
 313 A. Each mix was sequenced and reads were assigned to the different plasmids. The correlation of  
 314 dilution and read count is shown (B).

315 **Limit of Blank (LoB) in the presence of VGs**

316 AAV capsids lysed via heat treatment release both plus and minus strand ssDNA and the  
317 complementary strands rapidly anneal to generate dsDNA from the +/- ssDNAs. This dsDNA can  
318 be spiked into reactions to assess VG-dependent artifacts. However, because the VG DNA was  
319 never in cells after packaging, the spiked DNA does not contain any integrated or concatemeric  
320 DNA like that potentially generated inside cells. Control genomic DNAs from either human or  
321 mouse were spiked with varying concentrations of lysed vectors and A11 genomic DNA (Table  
322 1) to mimic the composition of DNA in transduced cells with no non-control integrated DNAs  
323 present. The lysed vectors were spiked before fragmentation, but their smaller starting size  
324 relative to genomic DNA makes it likely they are minimally affected by the shearing.<sup>33</sup> In these  
325 samples, the starting molar ratio of vector to human DNA ranges from 100:1 to 10,000:1.  
326 Depending on the injected vector dose, the actual ratio in hepatocytes treated with high doses  
327 of rAAV can be up to 1000:1. With the highest ratios of vector DNA, very little human DNA is  
328 detected because most of the reads are episomal DNA that likely undergoes linear or inefficient  
329 amplification. As the amount of lysed vector is decreased, the number of RHA reads increases  
330 as well as the number of reads with both RHA and hg38 sequence. The amount of linearly  
331 amplified vector decreases while the human DNA is amplified better. However, even with the  
332 lowest amount of lysed vector, nearly 90% of reads contain neither RHA nor other human  
333 sequences, showing the preponderance of artifactual vector sequences that are amplified  
334 despite efforts to minimize their impact.

335 When A11 genomic DNA is also added along with the lysed vector, the number of total reads  
336 drops substantially, but, depending on the amount of A11 added, the number of reads  
337 corresponding to RHA and hg38 increases. The number of reads with CO-PAH, RHA, and hg38  
338 sequences in the correct locations for integration is much higher with the A11 spike. However,  
339 amplification of the A11 integration site is clearly non-linear as very few A11 reads are seen  
340 with 1% A11 DNA added while more than 10x as many reads are seen with 2.5% and 5% A11  
341 DNA. Some sequences also correspond to off-target sites, but almost all of them are singletons  
342 that are not conserved across samples. Because no integrated DNA can be present, these must  
343 all be false positives arising from artifactual processes. The presence of false positive  
344 integration signals in DNA controls where no integration could have occurred highlights the  
345 need to determine the LoB in different conditions. Furthermore, any suspected off-target  
346 integration event should be confirmed in tested samples via PCR with custom designed primers.


347

348 **GWIA in Engrafted Human Hepatocytes**

349 The use of control plasmid and genomic DNAs to model the behavior of DNA from treated cells  
350 could be incomplete because the rAAV DNA from capsids transduced into cells can undergo  
351 complex rearrangements that are not readily mimicked by the control DNAs prepared in vitro.  
352 To better understand the impact of in vivo VGs, A11 control genomic DNA was spiked into

353 genomic DNA isolated from human hepatocytes from engrafted FRG mice treated with varying  
354 amounts of vector for different times post-injection. These samples contain the full range of  
355 DNA species including episomal vectors, concatemers, and other vector rearrangements that  
356 may arise over time in cells. The various DNAs may behave unexpectedly during library  
357 preparation, leading to artifacts including non-specific ligation to other DNA fragments and  
358 primer-independent (via ITRs) or single primer amplifications. As shown in Figure 6, increasing  
359 concentrations of A11 control DNA spiked into the samples from mice dosed at 7E+13/kg yields  
360 a reasonably linear response. The episomal VG load in these cells was determined using qPCR  
361 measurements. This assay does not distinguish between monomeric episomes and more  
362 complex concatemeric structures. The low-dose samples average 47 CO-PAH copies /allele. At  
363 the higher dose, 2E+14/kg (average of 79 CO-PAH copies/allele), the response is no longer  
364 linear and flattens above 3% A11 DNA. Thus, it is possible to detect the integration junctions  
365 but not accurately estimate their frequency using GWIA in high VG conditions.

366 **Figure 6: Limit of Detection in FRG Mice with A11 Spike**

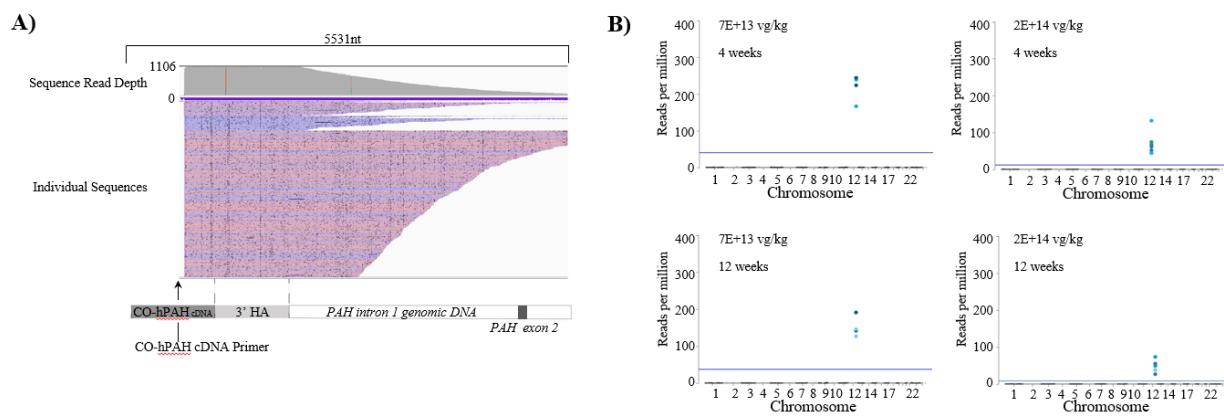


367

368 **Figure 6:** On-target integration reads from A11 were counted for all FRG mice treated with hHA-LP1-  
369 hPAH. The number of A11 reads as a function of spiked DNA fraction is shown for the low- and high-  
370 dose animals.

371 It is also instructive to examine reads that are filtered out during informatic analyses. By far, the  
372 two filters that eliminate most of the reads require that the resulting sequences have regions  
373 that map to the RHA and a separate region that maps elsewhere in hg38. This eliminates over  
374 99% of reads in all cases and highlights the rarity of events sought. Other filters that have a  
375 lower impact include those eliminating reads with vector sequence beyond RHA and those  
376 where the RHA and other hg38 sequences are separated by more than 30 bp. When the  
377 intervening sequence is longer than 3 bp, it is usually random and cannot be aligned. Authentic  
378 junction sites tend to have 0-3 bp between the RHA and hg38 regions with that variable  
379 segment generally caused by sequencing errors. PCR duplicates, which are assigned based on

380 the positions of the RHA and gDNA breakpoints, are also removed, but these are infrequent  
381 given the low number of junctions found.


382

383 **Off-target integration in engrafted hepatocytes**

384 Based on the findings that 2.5% A11 DNA spiked into genomic DNA from engrafted human  
385 hepatocytes would provide the best sensitivity in the treatment range we performed, we  
386 examined genomic DNA purified from human hepatocytes from mice four or twelve weeks  
387 after injection. FB-treated mice had no episomal VGs and thus could not generate concatemers  
388 that could amplify and compete with the integration signal. FB-treated mice had ~100x more  
389 positive control reads than hHA-LP1-hPAH treated mice. Additionally, the low-dose hHA-LP1-  
390 hPAH treated mice had more positive control reads than the high-dose hHA-LP1-hPAH treated  
391 mice due to lower interfering VG levels. All replicate samples had on-target reads that were  
392 within 2x of each other. Only the on-target integration site on chr12 generated more reads than  
393 the positive control cell line genomic DNA used to establish LoD. No genomic regions had reads  
394 higher than the 0.5% LoD based on the number of reads from the spiked genomic DNA. The  
395 location of integration junction reads is shown in Figure 7. While the intended site is easily  
396 observed, all other reads were sporadic and likely due to library artifacts. If any significant off-  
397 target sites had been identified, PCR primers would have been designed to determine whether  
398 the purported events were real.

399 The diversity of sequence ends is shown in a representative Integrative Genomics Viewer (IGV)  
400 file displaying ONT sequencing reads from one low-dose hHA-LP1-hPAH sample (Figure 7). Each  
401 single molecule read contained sequence starting with the CO-hPCR primer located on the left  
402 end and going through the RHA region into adjacent genomic DNA (up to thousands of bases  
403 depending on the position of the shearing site) and ending with the adaptor ligated to the end  
404 of the randomly fragmented genomic DNA. The range in length distributions observed on the  
405 right end of the reads is caused by the reverse primer binding to the adaptor ligated to the  
406 randomly sheared ends of different molecules.

407 **Figure 7: GWIA in Transduced Engrafted Human Hepatocytes**



435 after birth, a gene editing-based therapy with durability through liver growth and hepatocyte  
436 turnover may benefit adults as well as younger individuals.

437 Several approaches aiming to correct the underlying mutation in PKU have been reported.  
438 Villiger et al<sup>36</sup> showed that using two AAV vectors, delivery of a Crispr-Cas9-base editor  
439 targeting the PAH<sup>enu2</sup> mutation could correct the mutation in the liver resulting in a reduction of  
440 serum Phe to normal levels. Richards et al<sup>37</sup> showed that using a dual vector approach  
441 delivering two doses (at 1 and 5 weeks of age) of a Crispr-Cas9 nuclease specific to exon 7  
442 downstream of the PAH<sup>enu2</sup> mutation and a 2.7 kb repair template encoding the corrected  
443 variant resulted in serum Phe lowering that was sustained for 65 weeks. This approach relied on  
444 the homology-directed repair (HDR) mechanism to correct the PAH<sup>enu2</sup> mutation. In this case,  
445 the percentage of HDR-modified alleles averaged 13%, with 7% showing functional correction  
446 at the cDNA level, and resulted in Phe reduction, but not to normal levels. More recently, Bock  
447 et al<sup>38</sup> showed that using AAV8 and AdV to deliver a size-reduced *SpCas9* prime editor could  
448 achieve 11% editing in the PKU model, resulting in serum Phe concentrations below the  
449 therapeutic threshold of 360 μM.

450 While these approaches are promising, they target a specific mutation in the *PAH* gene and are  
451 not directly applicable to the thousands of other *PAH* mutations. Furthermore, like many other  
452 CRISPR-based approaches, potential off-target events were not examined in a whole-genome  
453 manner. Others have easily identified large structural effects induced by CRISPR.<sup>39</sup> However,  
454 potential single base changes cannot be readily evaluated across the whole genome because  
455 the background level of single base changes that occur with every round of replication can  
456 obscure the signal from such potentially deleterious modifications.<sup>40</sup> Targeted assessment of  
457 the most likely hot spots for editing can be carried out, but most of the genome remains  
458 unevaluated for mutations. HR-driven AAV integration events are easier to detect and  
459 distinguish from any background activity because of their larger size and unique sequence  
460 characteristics.

461 Two particularly important artifacts must be addressed when attempting to identify real AAV or  
462 other viral integration events: 1) Processing-dependent ligation of AAV fragments to other  
463 DNAs that may appear to be fusion events but are simply in vitro ligation artifacts; and 2) use of  
464 short read sequencing technologies to assemble long molecules that may not actually be  
465 present when examined as long reads. Indeed, a study comparing NGS methods that included  
466 controls showed that ligation was a significant driver of false positives in control samples.<sup>19</sup> Use  
467 of transposase instead of ligase reduced artifacts.

468 Because of the high background of AAV genomes and their propensity for generating  
469 concatemers, amplification of minor components can lead to unexpected fragments whose  
470 source could be attributed to integration rather than be correctly identified as artifacts. Some  
471 artifacts, like PCR mispriming, can be readily detected by appropriately examining the  
472 sequenced DNA<sup>23</sup> while others can be more challenging. Because our nested PCR primers do  
473 not extend to the end of the splinter adaptors, we can eliminate mispriming as a significant  
474 cause of artifacts in our system because those sequences are not present in our products. We  
475 have included relevant positive controls and long-read sequencing in our methods to ensure  
476 that we can distinguish real integration events from artifacts at our stated sensitivity.

477 Awareness of artifacts in the study of viral integration is recognized as an issue in the literature.  
478 Kaeppele *et al.* (2013)<sup>41</sup> reported a significant number of mitochondrial-AAV integrations, but  
479 this result was challenged by Cogne *et al* (2014),<sup>15</sup> who used an alternative approach to  
480 minimize artifacts. The response to this challenge cited new experiments with controls  
481 intended to address the issues raised, but the new controls either contained no AAV DNAs or  
482 no primers that would allow their amplification. Thus, the original issues raised remain relevant  
483 and it is possible that the insertion events identified could be simply processing artifacts and  
484 not actual integration events. Similar integration artifacts have been observed and challenged  
485 when looking at other putative viral “integrations”.<sup>31,32</sup> Any potential off-target integration  
486 events need to be confirmed using an orthogonal method, like directed PCR, before citing their  
487 occurrence.

488 While it would be desirable to achieve much greater sensitivity when examining off-target  
489 integration, it is not generally possible to do so with the limitations of sample availability and  
490 the sequence similarity with episomes. While efforts to improve sensitivity will continue, it is  
491 worth noting the safety record of rAAV across systems. After 10 years post-administration of  
492 AAV8 or AAV9 vectors expressing canine factor VIII, none of the dogs showed evidence of  
493 tumors, altered liver function, or any liver pathology features that could be attributed to  
494 treatment with AAV.<sup>42</sup> George *et al.* published a follow-up study in humans treated with AAV  
495 expressing Factor 9 and also found no evidence of liver toxicity or other major safety concerns  
496 out to 15 years post-dose.<sup>35</sup> An earlier study concluded the same lack of hepatic genotoxicity in  
497 nonhuman primates and humans.<sup>43</sup>

498 A hallmark of AAV-mediated HR is the precision of integration and avoidance of unwanted  
499 mutations. HR is the preferred DNA repair pathway for the gain-of-function insertion of DNA  
500 given the precision and lack of insertions/deletions that could disrupt expression as seen with  
501 nucleases and base editors. Previous work using short-read NGS showed that AAVHSC15-  
502 mediated integration did not introduce indels or ITR sequences at the target integration site.<sup>22</sup>  
503 The use of long-read sequencing is critical in these studies to ensure that genomic DNA is being  
504 analyzed and not the much higher copy number episomal DNA. Confirming the desired  
505 integration is a crucial safety assessment for integrating vectors. When evaluating across the  
506 genome using long-read NGS, the only site of DNA integration detected above the LoD was at  
507 the desired human *PAH* locus.

508

## 509 **[Methods]**

### 510 **Animal Procedures for Mice.**

511 Housing, breeding, and all procedures performed on *PAH*<sup>enu2</sup> mice were in accordance with the  
512 Institutional Animal Care and Use Committee (IACUC) at Homology Medicines, Inc.

513 The FRG mice were housed in an IACUC accredited facility. General animal care and housing  
514 procedures are described in Guide for the Care and Use of Laboratory Animals, National  
515 Research Council, 2011, Yecuris™ IACUC Policy, and Yecuris™ General Mouse Handling Care and

516 Euthanasia. Cage changes occurred every 2 weeks and the testing facility was sanitized weekly.  
517 Animals were provided irradiated mouse chow with a low Tyr content (0.53%, PicoLab® High  
518 Energy Mouse Diet, 5LJ5 chow) and drinking water ad libitum. Animals were administered the  
519 prophylactic antibiotic sulfamethoxazole and trimethoprim (SMX/TMP, 80 mg/mL/16mg/mL)  
520 every other week in their drinking water. They were administered 2-(2-Nitro-4-  
521 trifluoromethylbenzoyl)-1, 3-cyclohexanedione (Nitisinone, NTBC) for 3 days once every month.

522 **Fah<sup>-/-</sup>/Rag2<sup>-/-</sup>/Il2rg<sup>-/-</sup> (FRG®) Humanized-Liver Xenograft Mouse Model.**

523 The Fah<sup>-/-</sup>/Rag2<sup>-/-</sup>/Il2rg<sup>-/-</sup> (FRG®) mouse model has been characterized by Azuma et al.<sup>26</sup> In brief,  
524 engrafted human hepatocytes integrate completely into the structure of the recipient mouse  
525 liver and occupy greater than 80% of the parenchyma without disturbing the recipient liver  
526 organization. Human hepatocytes can be distinguished morphologically from mouse  
527 hepatocytes. From a functional perspective, engrafted human hepatocytes retain the functional  
528 properties of mature, differentiated hepatocytes as demonstrated by the expression of mature  
529 hepatocyte-specific genes and albumin secretion. Typically, 75% of the transplanted mice  
530 achieve and maintain high levels of long-term engraftment, demonstrated by histology, DNA  
531 analysis and enzyme assays. The majority of the mice that survive the procedure have high  
532 levels of engraftment based on circulating human albumin levels and post-mortem histology.<sup>44</sup>

533 To generate humanized livers in FRG mice, human primary hepatocytes are implanted  
534 concurrently with the withdrawal of 2-(2-Nitro-4- trifluoromethylbenzoyl)-1, 3-  
535 cyclohexanedione (Nitisinone, (NTBC) that is required for survival by mouse hepatocytes in this  
536 strain. Since the human hepatocytes have an intact fumarylacetoacetate hydrolase (FAH) gene,  
537 only mouse hepatocytes are affected by the loss of NTBC, resulting in the gradual repopulation  
538 of the mouse liver compartment with human hepatocytes.<sup>26</sup>

539 FRG mice achieve high levels of repopulation 5-6 months post-transplant and are typically used  
540 within 6-8 weeks to avoid natural loss of engraftment or tumor development as they age.  
541 Compared to wild-type mice, the FRG mouse model lacks B-cells, T-cells and NK-cells due to the  
542 absence of the IL2rg and Rag2 genes. In addition, the remaining mouse hepatocytes do not  
543 metabolize Tyr due to the lack of the *Fahah* gene. Despite these changes, this mouse model has  
544 proven valuable in many research areas including infectious diseases, NASH, gene therapy,  
545 metabolism and toxicology.<sup>45-48</sup>

546 The in-life and hepatocyte isolation portion of this study was conducted by Yecuris (Tualatin,  
547 Oregon) who generated this model and have specialized technical expertise in handling this  
548 mouse. Due to the complexity of the generation and handling of this model, the number of FRG  
549 mice that can be utilized in a single experiment is limited.

550 **Injections:** 4- and 10-week-old PAH<sup>enu2</sup> mice were weighed prior to injection, and a single I.V.  
551 injection of the test article was administered retro-orbitally for all studies. Mice were  
552 anesthetized using isoflurane for the injection. Proparacaine was applied to the eye before

553 injection. The needle was inserted into the retro-orbital sinus via the medial canthus and the  
554 test article was injected slowly into the sinus. All doses were administered at 10 mL/kg.  
555 FRG mice were removed from NTBC for  $\geq$  25 days and SMX/TMP for  $\geq$  3 days before dosing to  
556 reduce the number of mouse hepatocytes. Mice were weighed before dosing and a single I.V.  
557 injection of the test article was administered retro-orbitally using an insulin syringe (VWR,  
558 Radnor, PA). One day post-dosing, the mice were put on NTBC and continued with the standard  
559 NTBC water cycle for the duration of the study.

#### 560 **Design and construction of AAV vectors**

561 The same AAV backbone plasmid, which included 5' and 3' AAV ITRs and flanking PAH-targeted  
562 integration sequences, was used for all vectors. These vectors include a CO-hPAH DNA flanked  
563 by locus-specific arms identical to human genomic sequences. The human 5' homology arm  
564 aligns to human genome build hg38, chr12: 102916857-102917816 and the 3' homology arm  
565 aligns to hg38 chr12: 102915806-102916716. The homology arms were selected to be unique in  
566 the genome with no sequences of 40 nt or longer having homology to other locations. A late  
567 SV40 polyadenylation sequence was included as a transcription termination sequence.  
568 Promoter-containing vectors include the liver-specific promoter LP-1 as previously described,<sup>49</sup>  
569 positioned between the 5' homology arm and the CO-hPAH DNA. The LP-1 promoter,  
570 polyadenylation cassette and CO-hPAH DNAs were synthesized as gBlocks by IDT. The ITR  
571 containing plasmid backbone, the CO-hPAH DNA, homology arms and regulatory sequences  
572 were assembled by standard restriction digestion and ligation techniques.

#### 573 **Test articles**

574 All vectors used were manufactured at Homology Medicines via a transient transfection process  
575 using a HEK293 cell line. The vectors were packaged in AAVHSC15 capsid and are comprised of  
576 an expression cassette as described above with or without the LP-1 liver-specific promoter,  
577 human homology arms, and AAV2 ITRs on both ends of the construct. Vectors were diluted in a  
578 pH-neutral buffer for I.V. administration. Vectors were tested for endotoxin (<10 EU/mL) and  
579 titered by Droplet Digital™ polymerase chain reaction (ddPCR) using primers targeting the CO-  
580 hPAH DNA. Vectors were analyzed for VP1, 2, and 3 ratios by silver- and Coomassie Blue-  
581 stained SDS-PAGE and capsid titer by ELISA.

582

#### 583 **Vector genome copy number by qPCR**

584 A real-time quantitative polymerase chain reaction (qPCR) method was used to quantify vector  
585 genomes in mouse liver samples or isolated hepatocytes from FRG mice. Samples containing  
586 gDNA and control plasmids were prepared for analysis on the ThermoFisher QuantStudio™ Flex  
587 Real-Time PCR System, which utilizes TaqMan technology. The assay's linear range was 50 to  
588 10E+8 copies per reaction with an LLOQ of 50 copies of vector per 1  $\mu$ g of gDNA. Samples were  
589 quantified against linearized plasmid. Real-time PCRs were performed on 96-well plates, and

590 each plate was run with a standard curve with no template control and study samples. The  
591 standard curve was run with the plasmid in 3 replicates for the standard points at 1E+9, 1E+8,  
592 1E+7, 1E+6, 1E+5, 1E+4, 1E+3, 1E+2, 10 and 1 copy per reaction. Vector-specific sequences were  
593 amplified by real-time TaqMan PCR using the primers and probes for CO-hPAH (extended  
594 methods). The PAH probe consists of the FAM™ fluorescence reporter dye at the 5' end of the  
595 probe, the internal ZEN™ quencher (between the 9th and 10th nucleotides), and the Iowa  
596 Black® fluorescent quencher at the 3' end of the probe.

597 **Analysis of on-target integration frequency by Oxford Nanopore sequencing**

598 On-target integration frequency was determined using a primer competition assay (3-primer).  
599 The relative frequency of integration and non-integration sequences were tallied by long-read  
600 Oxford Nanopore sequencing. The raw integration frequency was calculated as the percentage  
601 of integrated reads divided by the sum of integrated and non-integrated sequences. The raw  
602 frequency was corrected for a length-dependent PCR efficiency adjustment using  
603 independently amplified DNAs and reduced by an additional factor caused by the amplification  
604 of concatemeric sequences that interfered with the amplification of non-integrated sequences..

605 Each reaction included 100 ng of input genomic DNA. The frequency of integration by PCR was  
606 normalized to a PCR efficiency curve. DNAs representing wild-type and integrated DNA were  
607 mixed in known ratios. These templates were diluted and assayed by the PCR reaction as  
608 described.

609 Purified WT and edited control templates were quantified with the Qubit 1X dsDNA HS assay  
610 kit. The linear detection range of this assay kit is 0.1 ng/µL to 100 ng/µL. A stock control dilution  
611 was made for WT and edited control templates in water, 1 ng/µL in 100 µL volume.

612 A concentration of 0.1 pg/µL was used as a working dilution for testing amplicon efficiency. 0.1  
613 pg/µL contains ~70,000 copies of control template molecules. The amplicon efficiency test was  
614 set up with 50% WT and 50% edited control templates with 0.1 pg total (0.05 pg WT and 0.05  
615 pg Edited), so that the molecular number for the WT template is ~35,000 copies.

616 The resulting amplicons were prepared for Oxford Nanopore sequencing in accordance with the  
617 manufacturer's instructions:

618 "Genomic DNA by Ligation (SQK-LSK109)" used for single-plexing:  
619 <https://community.nanoporetech.com/attachments/3041/download>

620 "Native barcoding genomic DNA (with EXP-NBD104, EXP-NBD114, and SQK-LSK109)" used for  
621 multiplexing with up to 24 barcodes:  
622 <https://community.nanoporetech.com/attachments/3186/download>

623 Each amplicon to be sequenced was cleaned using AMPureXP beads and samples were  
624 quantified using a Qubit 1X dsDNA HS kit. 200 fmol of input DNA was end-repaired. Each library  
625 was purified by AMPureXP magnetic bead cleanup per the manufacturer's instructions. Up to

626 200 fmol of DNA was ligated to Nanopore barcoded adapter mix II and T4 DNA ligase followed  
627 by AMPure bead cleanup and quantified by Qubit. DNA was prepared for final loading with 37.5  
628  $\mu$ L of sequencing buffer 25.5  $\mu$ L of loading buffer and 12  $\mu$ L of DNA library per flow cell. Each  
629 library was loaded into the SpotON sample port and sequencing was initiated per the  
630 manufacturer's instructions.

631 Analysis:

632 The resulting Fast5 files were base-called using Guppy basecaller. Only reads of the appropriate  
633 amplicon size range between 1,100nt and 1,400nt were included. Reads which have plasmid or  
634 vector sequences such as ITR were removed. All remaining reads were competitively aligned to  
635 a WT and integrated genome reference sequence using the Minimap aligner. The raw read  
636 frequency of wild-type and integrated sequences were tallied. Calculated "raw observed  
637 integration %" = reads mapped to edited reference / (reads mapped to Edited reference + reads  
638 mapped to WT reference). The standard curve of (0%, 0.5%, 1%, 2%, 5%, and 10%) was used to  
639 generate linear regression formula for normalizing the raw observed % integration levels.

640

#### 641 **Predicted Off Target**

642 Each homology arm was broken into 80bp windows, sliding 10bp per window, for a total of 171  
643 windows. Each 80bp window was queried against the human genome (Database: RefSeq  
644 Genome Database (refseq\_genomes) Organism: Homo sapien (Taxid:9606)) with BLAST ((Expect  
645 threshold: 10, Word Size: 16, Match/Mismatch Scores: 1,-2, Gap Costs: Linear) to identify  
646 genome regions with >35bp match and >60% identity. From this analysis, 16 regions were  
647 chosen as primary hits. Primary hits were then queried again with BLAT (UCSC Genome  
648 Browser) to confirm the location and characterize the alignment. This narrowed the final list to  
649 6 regions (supplemental table 1). One of the identified regions locates in a highly repetitive  
650 genome locus. We dropped this region out of the analysis because we couldn't develop a  
651 reliable PCR based assay (region 3).

652 Off-target analysis was carried out with 10 ng of genomic DNA from three transduced Yucaris human  
653 hepatocyte samples. The amount of DNA available was limited so more could not be used. Each sample  
654 was amplified for 35 rounds with primers specific to the predicted inward and outward integrations for  
655 each identified region. Analysis of PCR products was done on a TapeStation to quantitate the anticipated  
656 bands. For each region, the relevant synthetic DNA positive control was spiked into the human DNA  
657 sample at two concentrations (1:1000 and 1:10,000) to ensure that the off-target band could have been  
658 detected if present.

659

660

661

662 **Genome-wide integration assay (GWIA) by long-read Oxford Nanopore NGS**

663 GWIA experimental steps are summarized in Figure 3. gDNA from a positive control cell line  
664 containing the PAH edited allele with added SNPs was spiked into all samples at a 2.5% molar  
665 ratio. 500-1000 µg of total gDNA including spiked gDNA were randomly fragmented to ~8-  
666 10kbp using COVARIS g-TUBES. Fragmented gDNA was end-repaired and A-tailed using the  
667 NEBNext Ultra II End Repair/dA-Tailing Module, and ligated to splinter adapter  
668 (GCCAACATGAGCTATCGACTAACTCCGCATGGCGTCTCCGCTTAAGGGACT; 5'Phos-  
669 GTCCCTTAAGCGGAG-3'AmMO) with NEBNext Ultra II Ligation Module.<sup>28</sup> Ligated gDNA was first  
670 amplified with a payload-specific, biotinylated forward primer (5'-  
671 AAGACCGCCATCCAGAACTACA-3') and an outer splinter reverse primer (5'-ACTTAAACTCCGCA  
672 TGGCGT-3'). LNA blockers (/5AmMC6/CTGCA+G+G+T+C+T+A+G+ATACGTAG/3AmMO/;  
673 /5AmMC6T/+AGATA+CGTA+GATA+AGTA+GCAT+GGC+G/3AmMO/;  
674 /5AmMC6T/+AGATA+CGTA+GATA+AGTA+GCAT+GGC+G/3AmMO/;  
675 /5AmMC6T/+AACCC+CTAG+TGAT+GGAG+TTGG+C/3AmMO/;  
676 /5AmMC6T/+GGCGT+CGGG+CGAC+CTTT+GG+T/3AmMO/) against non-payload VG sequences  
677 were used in PCR amplifications to limit episomal VG amplification. Biotinylated PCR1 products  
678 were size selected with 0.5X SPRI beads (SPRIselect) twice (to remove unwanted <500bp  
679 amplicons) and enriched by capture with streptavidin beads. Captured PCR1 products diluted at  
680 1:100 were amplified again (nested PCR2) with the inner splinter primer (5'-  
681 CTTAAACTCCGCATGGC GTC TC-3') and an internal payload primer (5'-  
682 AGAGGATCGAGGTGCTGGATAA-3'). Finally, PCR2 products were size selected with 0.5X SPRI  
683 beads twice, and used to generate Oxford Nanopore libraries. Long-range sequencing was used  
684 to provide sufficient sequence coverage to confirm the payload CO-hPAH DNA, the complete  
685 homology arm, and adjacent genomic sequence. Sequencing data were analyzed with in-house  
686 developed computational methods tuned to filter out VGs and artifactual reads. The positive  
687 control cell line DNA spiked at 2.5% was used to estimate a lower limit of detection.

688 **Analysis:**

689 After sequencing, reads were base-called with Guppy and quality filtered with Filtlong.  
690 Additional filtering was based on removal of the control lambda reads and any read that did not  
691 contain the vector payload or DNA matching human genome sequences. Sequences were  
692 annotated for components corresponding to vector. Reads with components that should only  
693 be present in the vector were eliminated. Reads supporting the possibility of being integration  
694 events were then filtered to eliminate sequences that did not meet criteria indicating they  
695 arose from legitimate integration events. Such reads must include all or some of the RHA as  
696 well as >200 nt following the 3' end of the RHA. This non-RHA region is then aligned to hg38  
697 and those with MAPQ<40 or length <100 nt are discarded. Reads with more than 30 nt  
698 separating RHA from hg38 are also discarded. PCR duplicates are collapsed to single reads.  
699 Control reads were identified and counted to determine positive integration read cut offs.

700 Results from replicates were compared and only those appearing in both replicates were  
701 considered real with the others discarded as technical artifacts.

702 Data Availability:

703 All fastq files used in this study have been uploaded to SRA under the accession PRJNA1001866.

704 **References**

- 705 1. Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J.M. (2004). Clades of Adeno-associated viruses are widely disseminated in human tissues. *J Virol* 78, 6381-6388. 10.1128/JVI.78.12.6381-6388.2004.
- 706 2. Gao, G., Alvira, M.R., Somanathan, S., Lu, Y., Vandenberghe, L.H., Rux, J.J., Calcedo, R., Sanmiguel, J., Abbas, Z., and Wilson, J.M. (2003). Adeno-associated viruses undergo substantial evolution in primates during natural infections. *Proc Natl Acad Sci U S A* 100, 6081-6086. 10.1073/pnas.0937739100.
- 707 3. Samulski, R.J., Zhu, X., Xiao, X., Brook, J.D., Housman, D.E., Epstein, N., and Hunter, L.A. (1991). Targeted integration of adeno-associated virus (AAV) into human chromosome 19. *EMBO J* 10, 3941-3950.
- 708 4. Kotin, R.M., Siniscalco, M., Samulski, R.J., Zhu, X.D., Hunter, L., Laughlin, C.A., McLaughlin, S., Muzyczka, N., Rocchi, M., and Berns, K.I. (1990). Site-specific integration by adeno-associated virus. *Proc Natl Acad Sci U S A* 87, 2211-2215. 10.1073/pnas.87.6.2211.
- 709 5. Kotin, R.M., Linden, R.M., and Berns, K.I. (1992). Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. *EMBO J* 11, 5071-5078.
- 710 6. Barzel, A., Paulk, N.K., Shi, Y., Huang, Y., Chu, K., Zhang, F., Valdmanis, P.N., Spector, L.P., Porteus, M.H., Gaensler, K.M., and Kay, M.A. (2015). Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. *Nature* 517, 360-364. 10.1038/nature13864.
- 711 7. Laoharawee, K., DeKelver, R.C., Podetz-Pedersen, K.M., Rohde, M., Sproul, S., Nguyen, H.O., Nguyen, T., St Martin, S.J., Ou, L., Tom, S., et al. (2018). Dose-Dependent Prevention of Metabolic and Neurologic Disease in Murine MPS II by ZFN-Mediated In Vivo Genome Editing. *Mol Ther* 26, 1127-1136. 10.1016/j.ymthe.2018.03.002.
- 712 8. Porro, F., Bortolussi, G., Barzel, A., De Caneva, A., Iaconcig, A., Vodret, S., Zentilin, L., Kay, M.A., and Muro, A.F. (2017). Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. *EMBO Mol Med* 9, 1346-1355. 10.15252/emmm.201707601.
- 713 9. Miao, C.H., Snyder, R.O., Schowalter, D.B., Patijn, G.A., Donahue, B., Winther, B., and Kay, M.A. (1998). The kinetics of rAAV integration in the liver. *Nat Genet* 19, 13-15. 10.1038/ng0598-13.
- 714 10. Miller, D.G., Petek, L.M., and Russell, D.W. (2004). Adeno-associated virus vectors integrate at chromosome breakage sites. *Nat Genet* 36, 767-773. 10.1038/ng1380.
- 715 11. Drew, H.R., Lockett, L.J., and Both, G.W. (2007). Increased complexity of wild-type adeno-associated virus-chromosomal junctions as determined by analysis of unselected cellular genomes. *J Gen Virol* 88, 1722-1732. 10.1099/vir.0.82880-0.
- 716 12. Schmidt, M., Schwarzwaelder, K., Bartholomae, C., Zaoui, K., Ball, C., Pilz, I., Braun, S., Glimm, H., and von Kalle, C. (2007). High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). *Nat Methods* 4, 1051-1057. 10.1038/nmeth1103.
- 717 13. Paruzynski, A., Arens, A., Gabriel, R., Bartholomae, C.C., Scholz, S., Wang, W., Wolf, S., Glimm, H., Schmidt, M., and von Kalle, C. (2010). Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. *Nat Protoc* 5, 1379-1395. 10.1038/nprot.2010.87.

750 14. Zhong, L., Malani, N., Li, M., Brady, T., Xie, J., Bell, P., Li, S., Jones, H., Wilson, J.M.,  
751 Flotte, T.R., et al. (2013). Recombinant adeno-associated virus integration sites in murine  
752 liver after ornithine transcarbamylase gene correction. *Hum Gene Ther* 24, 520-525.  
753 10.1089/hum.2012.112.

754 15. Cogne, B., Snyder, R., Lindenbaum, P., Dupont, J.B., Redon, R., Moullier, P., and Leger,  
755 A. (2014). NGS library preparation may generate artifactual integration sites of AAV  
756 vectors. *Nat Med* 20, 577-578. 10.1038/nm.3578.

757 16. Sunshine, S., Kirchner, R., Amr, S.S., Mansur, L., Shakhbatyan, R., Kim, M., Bosque,  
758 A., Siliciano, R.F., Planelles, V., Hofmann, O., et al. (2016). HIV Integration Site  
759 Analysis of Cellular Models of HIV Latency with a Probe-Enriched Next-Generation  
760 Sequencing Assay. *J Virol* 90, 4511-4519. 10.1128/JVI.01617-15.

761 17. Sun, C., Liu, L., Perez, L., Li, X., Liu, Y., Xu, P., Boritz, E.A., Mullins, J.I., and Abate,  
762 A.R. (2022). Droplet-microfluidics-assisted sequencing of HIV proviruses and their  
763 integration sites in cells from people on antiretroviral therapy. *Nat Biomed Eng*.  
764 10.1038/s41551-022-00864-8.

765 18. Wang, W., Fasolino, M., Cattau, B., Goldman, N., Kong, W., Frederick, M.A., McCright,  
766 S.J., Kiani, K., Fraietta, J.A., and Vahedi, G. (2020). Joint profiling of chromatin  
767 accessibility and CAR-T integration site analysis at population and single-cell levels.  
768 *Proc Natl Acad Sci U S A* 117, 5442-5452. 10.1073/pnas.1919259117.

769 19. Oziolor, E.M., Kumpf, S.W., Qian, J., Gosink, M., Sheehan, M., Rubitski, D.M.,  
770 Newman, L., Whiteley, L.O., and Lanz, T.A. (2023). Comparing molecular and  
771 computational approaches for detecting viral integration of AAV gene therapy constructs.  
772 *Mol Ther Methods Clin Dev* 29, 395-405. 10.1016/j.omtm.2023.04.009.

773 20. Yu, J.J., Wu, T.L., Liszewski, M.K., Dai, J., Swiggard, W.J., Baytop, C., Frank, I.,  
774 Levine, B.L., Yang, W., Theodosopoulos, T., and O'Doherty, U. (2008). A more precise  
775 HIV integration assay designed to detect small differences finds lower levels of  
776 integrated DNA in HAART treated patients. *Virology* 379, 78-86.  
777 10.1016/j.virol.2008.05.030.

778 21. Cesana, D., Calabria, A., Rudilloso, L., Gallina, P., Benedicenti, F., Spinozzi, G.,  
779 Schirolì, G., Magnani, A., Acquati, S., Fumagalli, F., et al. (2021). Retrieval of vector  
780 integration sites from cell-free DNA. *Nat Med* 27, 1458-1470. 10.1038/s41591-021-  
781 01389-4.

782 22. Chen, H.M., Resendes, R., Ghodssi, A., Sookiasian, D., Tian, M., Dollive, S., Adamson-  
783 Small, L., Avila, N., Tazearslan, C., Thompson, J.F., et al. (2020). Molecular  
784 characterization of precise in vivo targeted gene integration in human cells using  
785 AAVHSC15. *PLoS One* 15, e0233373. 10.1371/journal.pone.0233373.

786 23. Wells, D.W., Guo, S., Shao, W., Bale, M.J., Coffin, J.M., Hughes, S.H., and Wu, X.  
787 (2020). An analytical pipeline for identifying and mapping the integration sites of HIV  
788 and other retroviruses. *BMC Genomics* 21, 216. 10.1186/s12864-020-6647-4.

789 24. Ahmed, S.S., Rubin, H., Wang, M., Faulkner, D., Sengooba, A., Dollive, S.N., Avila, N.,  
790 Ellsworth, J.L., Lamppu, D., Lobikin, M., et al. (2020). Sustained Correction of a Murine  
791 Model of Phenylketonuria following a Single Intravenous Administration of  
792 AAVHSC15-PAH. *Mol Ther Methods Clin Dev* 17, 568-580.  
793 10.1016/j.omtm.2020.03.009.

794 25. Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., Fisher, K.J., and  
795 Engelhardt, J.F. (1998). Circular intermediates of recombinant adeno-associated virus

796 have defined structural characteristics responsible for long-term episomal persistence in  
797 muscle tissue. *J Virol* 72, 8568-8577. 10.1128/JVI.72.11.8568-8577.1998.

798 26. Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay,  
799 M.A., Finegold, M., and Grompe, M. (2007). Robust expansion of human hepatocytes in  
800 Fah<sup>-/-</sup>/Rag2<sup>-/-</sup>/Il2rg<sup>-/-</sup> mice. *Nat Biotechnol* 25, 903-910. 10.1038/nbt1326.

801 27. Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y.,  
802 Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided  
803 Cas9 nucleases. *Nat Biotechnol* 31, 827-832. 10.1038/nbt.2647.

804 28. Sherman, E., Nobles, C., Berry, C.C., Six, E., Wu, Y., Dryga, A., Malani, N., Male, F.,  
805 Reddy, S., Bailey, A., et al. (2017). INSPIRED: A Pipeline for Quantitative Analysis of  
806 Sites of New DNA Integration in Cellular Genomes. *Mol Ther Methods Clin Dev* 4, 39-  
807 49. 10.1016/j.omtm.2016.11.002.

808 29. Prout, J., Tian, M., Palladino, A., Wright, J., and Thompson, J.F. (2023). LNA blockers  
809 for improved amplification selectivity. *Sci Rep* 13, 4858. 10.1038/s41598-023-31871-7.

810 30. Yin, P.H., Lee, H.C., Chau, G.Y., Wu, Y.T., Li, S.H., Lui, W.Y., Wei, Y.H., Liu, T.Y.,  
811 and Chi, C.W. (2004). Alteration of the copy number and deletion of mitochondrial DNA  
812 in human hepatocellular carcinoma. *Br J Cancer* 90, 2390-2396. 10.1038/sj.bjc.6601838.

813 31. Chen, Y.S., Lu, S., Zhang, B., Du, T., Li, W.J., Lei, M., Zhou, Y., Zhang, Y., Liu, P.,  
814 Sun, Y.Q., et al. (2022). Comprehensive analysis of RNA-seq and whole genome  
815 sequencing data reveals no evidence for SARS-CoV-2 integrating into host genome.  
816 *Protein Cell* 13, 379-385. 10.1007/s13238-021-00861-8.

817 32. Smits, N., Rasmussen, J., Bodea, G.O., Amarilla, A.A., Gerdes, P., Sanchez-Luque, F.J.,  
818 Ajjikuttira, P., Modhiran, N., Liang, B., Faivre, J., et al. (2021). No evidence of human  
819 genome integration of SARS-CoV-2 found by long-read DNA sequencing. *Cell Rep* 36,  
820 109530. 10.1016/j.celrep.2021.109530.

821 33. Soares, L.M.M.H., Terrence ; Selby, Donald E. ; Adjei, Samuel; Wang, Wei; Thompson,  
822 John F. (2022). Quantitative DNA estimation using single-molecule, long-read  
823 sequencing. In review.

824 34. Nathwani, A.C. (2019). Gene therapy for hemophilia. *Hematology Am Soc Hematol  
825 Educ Program* 2019, 1-8. 10.1182/hematology.2019000007.

826 35. George, L.A., Monahan, P.E., Eyster, M.E., Sullivan, S.K., Ragni, M.V., Croteau, S.E.,  
827 Rasko, J.E.J., Recht, M., Samelson-Jones, B.J., MacDougall, A., et al. (2021). Multiyear  
828 Factor VIII Expression after AAV Gene Transfer for Hemophilia A. *N Engl J Med* 385,  
829 1961-1973. 10.1056/NEJMoa2104205.

830 36. Villiger, L., Grisch-Chan, H.M., Lindsay, H., Ringnalda, F., Pogliano, C.B., Allegri, G.,  
831 Fingerhut, R., Haberle, J., Matos, J., Robinson, M.D., et al. (2018). Treatment of a  
832 metabolic liver disease by in vivo genome base editing in adult mice. *Nat Med* 24, 1519-  
833 1525. 10.1038/s41591-018-0209-1.

834 37. Richards, D.Y., Winn, S.R., Dudley, S., Nygaard, S., Mighell, T.L., Grompe, M., and  
835 Harding, C.O. (2020). AAV-Mediated CRISPR/Cas9 Gene Editing in Murine  
836 Phenylketonuria. *Mol Ther Methods Clin Dev* 17, 234-245. 10.1016/j.omtm.2019.12.004.

837 38. Bock, D., Rothgangl, T., Villiger, L., Schmidheini, L., Matsushita, M., Mathis, N.,  
838 Ioannidi, E., Rimann, N., Grisch-Chan, H.M., Kreutzer, S., et al. (2022). In vivo prime  
839 editing of a metabolic liver disease in mice. *Sci Transl Med* 14, eabl9238.  
840 10.1126/scitranslmed.abl9238.

841 39. Hoijer, I., Emmanouilidou, A., Ostlund, R., van Schendel, R., Bozorgpana, S.,  
842 Tijsterman, M., Feuk, L., Gyllensten, U., den Hoed, M., and Ameur, A. (2022). CRISPR-  
843 Cas9 induces large structural variants at on-target and off-target sites in vivo that  
844 segregate across generations. *Nat Commun* *13*, 627. 10.1038/s41467-022-28244-5.  
845 40. Aquino-Jarquin, G. (2021). Current advances in overcoming obstacles of CRISPR/Cas9  
846 off-target genome editing. *Mol Genet Metab* *134*, 77-86. 10.1016/j.ymgme.2021.08.002.  
847 41. Kaepel, C., Beattie, S.G., Fronza, R., van Logtenstein, R., Salmon, F., Schmidt, S.,  
848 Wolf, S., Nowrouzi, A., Glimm, H., von Kalle, C., et al. (2013). A largely random AAV  
849 integration profile after LPLD gene therapy. *Nat Med* *19*, 889-891. 10.1038/nm.3230.  
850 42. Nguyen, G.N., Everett, J.K., Kafle, S., Roche, A.M., Raymond, H.E., Leiby, J., Wood,  
851 C., Assenmacher, C.A., Merricks, E.P., Long, C.T., et al. (2021). A long-term study of  
852 AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced  
853 liver cells. *Nat Biotechnol* *39*, 47-55. 10.1038/s41587-020-0741-7.  
854 43. Gil-Farina, I., Fronza, R., Kaepel, C., Lopez-Franco, E., Ferreira, V., D'Avola, D.,  
855 Benito, A., Prieto, J., Petry, H., Gonzalez-Aseguinolaza, G., and Schmidt, M. (2016).  
856 Recombinant AAV Integration Is Not Associated With Hepatic Genotoxicity in  
857 Nonhuman Primates and Patients. *Mol Ther* *24*, 1100-1105. 10.1038/mt.2016.52.  
858 44. Strom, S.C., Davila, J., and Grompe, M. (2010). Chimeric mice with humanized liver:  
859 tools for the study of drug metabolism, excretion, and toxicity. *Methods Mol Biol* *640*,  
860 491-509. 10.1007/978-1-60761-688-7\_27.  
861 45. Gualdron-Lopez, M., Flannery, E.L., Kangwanrangsang, N., Chuenchob, V., Fernandez-  
862 Orth, D., Segui-Barber, J., Royo, F., Falcon-Perez, J.M., Fernandez-Becerra, C., Lacerda,  
863 M.V.G., et al. (2018). Characterization of Plasmodium vivax Proteins in Plasma-Derived  
864 Exosomes From Malaria-Infected Liver-Chimeric Humanized Mice. *Front Microbiol* *9*,  
865 1271. 10.3389/fmicb.2018.01271.  
866 46. Minniti, M.E., Pedrelli, M., Vedin, L.L., Delbes, A.S., Denis, R.G.P., Oorni, K., Sala, C.,  
867 Pirazzini, C., Thiagarajan, D., Nurmi, H.J., et al. (2020). Insights From Liver-Humanized  
868 Mice on Cholesterol Lipoprotein Metabolism and LXR-Agonist Pharmacodynamics in  
869 Humans. *Hepatology* *72*, 656-670. 10.1002/hep.31052.  
870 47. Westhaus, A., Cabanes-Creus, M., Rybicki, A., Baltazar, G., Navarro, R.G., Zhu, E.,  
871 Drouyer, M., Knight, M., Albu, R.F., Ng, B.H., et al. (2020). High-Throughput In Vitro,  
872 Ex Vivo, and In Vivo Screen of Adeno-Associated Virus Vectors Based on Physical and  
873 Functional Transduction. *Hum Gene Ther* *31*, 575-589. 10.1089/hum.2019.264.  
874 48. Naugler, W.E., Tarlow, B.D., Fedorov, L.M., Taylor, M., Pelz, C., Li, B., Darnell, J., and  
875 Grompe, M. (2015). Fibroblast Growth Factor Signaling Controls Liver Size in Mice  
876 With Humanized Livers. *Gastroenterology* *149*, 728-740 e715.  
877 10.1053/j.gastro.2015.05.043.  
878 49. Graham, T., McIntosh, J., Work, L.M., Nathwani, A., and Baker, A.H. (2008).  
879 Performance of AAV8 vectors expressing human factor IX from a hepatic-selective  
880 promoter following intravenous injection into rats. *Genet Vaccines Ther* *6*, 9.  
881 10.1186/1479-0556-6-9.  
882

883 **Table 1: Limit of Blank using control DNA spikes in control genomic DNA**

884 **A)** Samples with non-homologous transduced vector and no spike of lysed vector or A11 positive  
885 control

| Animal                                            | HuLiv     | Mouse   |
|---------------------------------------------------|-----------|---------|
| Vector                                            | ms006     | GT_DnG  |
| A11 Positive control DNA                          | 0         | 0       |
| Total Reads                                       | 4,026,791 | 934,594 |
| Usable Reads                                      | 4,019,615 | 932,035 |
| Reads mapping to RHA                              | 800,530   | 73,215  |
| Reads mapping to both RHA and hg38                | 2,752     | 1,411   |
| Reads after removal of incorrect vector sequences | 2,683     | 63      |
| Reads with coPAH and RHA and additional sequence  | 683       | 10      |
| Reads with coPAH, RHA, and hg38                   | 589       | 6       |
| Reads with coPAH, RHA, with hg38 within 30 bp     | 211       | 3       |
| Reads after removal of PCR duplicates             | 20        | 3       |
| A11 Reads (based on SNPs)                         | 0         | 0       |
| Off Targets Called (read depth 1)                 | 5         | 3       |
| Off Targets Called (read depth 3)                 | 1         | 0       |

886

887 **B)** Samples with lysed vector DNA spike

| Genomic DNA (1 µg)                                | Mouse     | Human     | Human     | Human     | Human   | Human   | Human   | Human   | Human   | Human   | Human |
|---------------------------------------------------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------|-------|
| Lysed Vector                                      | 3E+08     | 3E+08     | 3E+07     | 3E+06     | 3E+06   | 3E+06   | 3E+06   | 3E+06   | 3E+06   | 3E+06   | 3E+06 |
| A11 Positive control DNA                          | 0         | 0         | 0         | 0         | 5%      | 2.5%    | 2.5%    | 1%      | 0.5%    | 0.1%    |       |
| Total Reads                                       | 4,862,671 | 3,666,249 | 3,016,978 | 3,531,039 | 254,365 | 160,075 | 416,798 | 485,866 | 958,306 | 937,532 |       |
| Usable Reads                                      | 4,845,887 | 3,657,311 | 3,012,807 | 3,525,640 | 253,488 | 152,919 | 413,728 | 485,163 | 953,340 | 933,572 |       |
| Reads mapping to RHA                              | 71,111    | 7,201     | 17,365    | 359,507   | 3,705   | 14,442  | 31,448  | 58,157  | 716,577 | 637,402 |       |
| Reads mapping to both RHA and hg38                | 5         | 2         | 15        | 2,175     | 387     | 328     | 1,738   | 1,507   | 3,972   | 3,668   |       |
| Reads after removal of incorrect vector sequences | 4         | 1         | 14        | 587       | 350     | 324     | 1,671   | 1,467   | 3,859   | 3,571   |       |
| Reads with coPAH and RHA and additional sequence  | 1         | 0         | 4         | 94        | 35      | 30      | 189     | 282     | 995     | 686     |       |
| Reads with coPAH, RHA, and hg38                   | 1         | 0         | 4         | 71        | 33      | 21      | 160     | 242     | 871     | 568     |       |
| Reads with coPAH, RHA, with hg38 within 30 bp     | 0         | 0         | 3         | 3         | 13      | 9       | 82      | 60      | 264     | 12      |       |
| Reads after removal of PCR duplicates             | 0         | 0         | 3         | 3         | 10      | 9       | 34      | 23      | 43      | 12      |       |
| A11 Reads (based on SNPs)                         | 0         | 0         | 0         | 0         | 9       | 9       | 31      | 1       | 1       | 0       |       |
| Off Targets Called (read depth 1)                 | 0         | 0         | 1         | 3         | 0       | 0       | 1       | 8       | 14      | 12      |       |
| Off Targets Called (read depth 3)                 | 0         | 0         | 0         | 0         | 0       | 0       | 0       | 1       | 1       | 0       |       |

888

889