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 2 

Abstract 24 

High-throughput proteomics approaches have revolutionised the identification of RNA-25 

binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet 26 

the extent of noise, including false-positives, associated with these methodologies, is difficult 27 

to quantify as experimental approaches for validating the results are generally low throughput. 28 

To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome 29 

data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from 30 

distinct machine learning tools and integrates high-resolution structural data when available. 31 

Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-32 

binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have 33 

enhanced the sensitivity and specificity of RBS detection through training new ensemble 34 

machine learning models. pyRBDome analysis of a human RBDome dataset, compared with 35 

known structural data, revealed that while UV cross-linked amino acids were more likely to 36 

contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This 37 

discrepancy underscores the limitations of structural data as benchmarks, positioning 38 

pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.  39 
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Introduction 40 

RNA-binding proteins (RBPs) play diverse and crucial roles in gene expression by 41 

influencing the structure, function and stability of RNA, both co- and post-transcriptionally. 42 

(Holmqvist & Vogel, 2018; Glisovic et al, 2008). RBPs have been associated with many human 43 

diseases, including neurological disorders, muscular atrophies and cancer (Castello et al, 44 

2013). In bacteria, RBPs make key contributions to rapid adaptation to challenging 45 

environments, and in pathogens, they control virulence and the capacity for host infections 46 

(Christopoulou & Granneman, 2022; Holmqvist & Vogel, 2018). Due to their key functions, 47 

considerable efforts are being made to identify RBPs in diverse organisms and to characterise 48 

these proteins functionally and structurally. This has inspired the development of several high-49 

throughput methods that capture all proteins interacting with RNA (RBPome). These methods 50 

usually involve UV or chemical treatment of cells to create covalent bonds between proteins 51 

and direct RNA substrates. This is followed by enrichment of the cross-linked RNA-protein 52 

complexes and identification of proteins by quantitative mass spectrometry (MS) (reviewed in 53 

(Esteban-Serna et al, 2023)). Common approaches for enriching RNA-protein complexes 54 

include using oligo(dT) beads to capture proteins cross-linked to polyadenylated RNAs 55 

(Castello et al, 2012, 2016; Baltz et al, 2012; Stenum et al, 2023), silica beads that capture all 56 

RNAs and cross-linked proteins (Asencio et al, 2018; Chu et al, 2022; Shchepachev et al, 57 

2019; Trendel et al, 2019; Beckmann et al, 2015; Bae et al, 2020) or organic–aqueous phase 58 

separation methods that rely on the fact that cross-linked RNAs alter the physiochemical 59 

properties of proteins (Queiroz et al, 2019; Smith et al, 2020; Trendel et al, 2019; Urdaneta et 60 

al, 2019). To identify the cross-linked proteins, purified complexes are treated with 61 

ribonucleases and analysed by MS.  62 

These ground-breaking studies have uncovered a plethora of novel RBPs in diverse 63 

organisms, many of which contain domains that have never been associated with RNA-binding 64 

before. While having a comprehensive list of all RBPs in your favourite organism is 65 

tremendously valuable, the next most informative piece of information would be the location 66 

of the RNA-binding domains (RBDs) within these proteins (RBDome), as this would allow 67 

mechanistic insights into RNA recognition and the design of mutations to dissect the 68 

physiological significance of RNA-binding. Although protocols for the global identification of 69 

putative RBPs have been optimised for diverse organisms, identifying the amino acid 70 

sequences UV cross-linked to RNA (and therefore likely directly bind RNA in vivo) in RBPome 71 

data is both experimentally and computationally challenging. To identify amino acid-RNA 72 

adducts, the cross-linked RNA is chemically or enzymatically digested to make detection of 73 

the cross-linking site by MS feasible. However, this digestion is often incomplete, and the 74 

heterogeneity in the length and sequence of nucleotide adducts generates variable mass shifts. 75 
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This dramatically increases the MS/MS search space, making detection of the cross-linking 76 

sites using conventional MS data analysis programs unfeasible. To overcome this problem, 77 

several experimental computational MS workflows have been developed that either directly 78 

detect peptide-RNA conjugates (Kong et al, 2017; Kramer et al, 2014; Schmidt et al, 2012; 79 

Trendel et al, 2019; Yu et al, 2020; Götze et al, 2021; Knörlein et al, 2022) or identify putative 80 

RNA-binding sites (RBSs) by relying on the fact that sequences neighbouring the cross-linked 81 

peptides can be identified by conventional MS (RBDmap; (Castello et al, 2016)), allowing 82 

extrapolation of sequences most likely cross-linked to RNA. Recent RBDome methods (RBS-83 

ID and pRBS-ID) utilise hydrofluoride to chemically digest RNAs cross-linked to peptides to a 84 

single nucleotide (Bae et al, 2020, 2021). This greatly reduces the computational workload, 85 

increasing the sensitivity of cross-linking site detection at single amino acid resolution (Bae et 86 

al, 2020, 2021).  87 

While RBDome and RBPome methods have generated a wealth of valuable data, each 88 

has its own caveats and noise levels. Thus, there is a possibility of recovering many false 89 

positive hits (Bogdanow et al, 2016; Nesvizhskii et al, 2006; Bae et al, 2020). For example, 90 

although RBDome methods promise single amino acid resolution of binding site identification, 91 

there is a degree of uncertainty when it comes to mapping the cross-linked amino acid (Bae 92 

et al, 2020; Kim & Pevzner, 2014; Edwards, 2013). Moreover, a recent study has shown that 93 

UV cross-linked amino acids detected by these methods can also be indirectly cross-linked to 94 

RNA (Knörlein et al, 2022). Evidently, experimental validation of the findings is critical; 95 

however, the available methodologies are generally low throughput, making it challenging to 96 

quantify what fraction of RBDome data are biologically meaningful. An alternative approach 97 

would be to enhance the reliability of the experimental results using computional approaches. 98 

For example, one could calculate what fraction of cross-linked amino acids in RBDome data 99 

are in known RBDs (Queiroz et al, 2019; Bae et al, 2021, 2020) or interact with RNA in 100 

available crystal structures (Knörlein et al, 2022). To conduct a meaningful statistical analysis, 101 

however, a ground truth dataset is required that (ideally) consists of a large collection of high-102 

resolution structures of protein-RNA complexes. However, such datasets are not readily 103 

available, especially for model organisms for which few protein-RNA complexes have been 104 

structurally characterised. This includes one of our favourite model organisms: 105 

Staphylococcus aureus. Furthermore, although extremely informative, ground truth datasets 106 

are not exhaustive, as they generally only contain relatively stable interactions that can be 107 

structurally characterised. 108 

As an alternative, but also complementary, approach for assessing and enhancing the 109 

quality of experimental RBPome and RBDome data, we developed a Python computational 110 

pipeline (pyRBDome). This pipeline compares results from these high-throughput analyses 111 

against a large database of predicted RNA-binding residues. The pipeline generates this 112 
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database for proteins of interest using a wide variety of different prediction tools that utilise 113 

distinct approaches for predicting RNA-binding sequences. Subsequently, the pipeline 114 

aggregates the results and putative RBSs are superimposed on (model) structures and other 115 

human-readable formats. When provided with RBPome data, the pipeline enables users to 116 

extract the most likely RNA-binders and identify amino acids most likely to bind RNA. When 117 

provided with a list of cross-linked peptides (RBD-Map, RBDome data), and amino acids 118 

(RBDome data), pyRBDome identifies the most common peptide motifs associated with RNA-119 

binding and determines whether the data are significantly enriched for predicted RBSs by 120 

calculating 3D distances between experimental and predicted RBSs. By displaying Pfam 121 

domains (Mistry et al, 2021) identified in 3D structures, the user can easily determine the 122 

domains involved in the interactions. By clustering the cross-linking sites/peptides in domain 123 

structures, pyRBDome can identify interfaces within domains involved in RNA-binding. In 124 

conclusion, pyRBDome can reveal important mechanistic insights into RNA recognition, 125 

greatly facilitating further experimental validation of RNA-binding.  126 

A second and equally important motivation for developing this pipeline was to make 127 

the analysis of RBP/RBDome datasets more accessible to groups that do not routinely perform 128 

such experiments or wish to analyse existing datasets. Moreover, because the pyRBDome 129 

code was written as Python Classes with associated test Jupyter notebooks, these can also 130 

be readily incorporated into new software tools. 131 

Here we demonstrate how pyRBDome can effectively identify putative RNA-binding 132 

sequences in human and bacterial proteins and enhance RBDome datasets computationally. 133 

Moreover, using machine learning (ML), we show that combining prediction results from 134 

distinct computational tools employed in pyRBDome can enhance the sensitivity and 135 

specificity of computational prediction of RNA-binding amino acids in RBPs. We provide a 136 

detailed comparison with human structures of protein-RNA complexes, which revealed that 137 

UV cross-linking sites in proteins often correlate with the proximity to RNA in structurally 138 

characterised protein-RNA complexes, but not necessarily with direct RNA interaction. 139 

 140 

Results 141 

The pyRBDome pipeline. 142 

The main goal of this project was to develop a pipeline that would enable us to evaluate 143 

and enhance the quality of RBPome and RBDome datasets. The pyRBDome pipeline is 144 

written in Python, and the various analysis steps are provided in a series of Jupyter notebooks 145 

to facilitate the process of following, controlling and adjusting the analysis steps. The pipeline 146 

consists of two parts: pyRBDome-Core and pyRBDome-Notebooks. The former contains the 147 

Python classes and functions that are required for running the pyRBDome-Notebooks code. 148 
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Each class in pyRBDome-Core has associated test Jupyter notebooks, making it easy to learn 149 

how to run the code. This should facilitate incorporation of the code into new bioinformatics 150 

tools. All the notebooks can be run either in Jupyter, or in the terminal using papermill 151 

(https://papermill.readthedocs.io/en/latest/). A schematic representation of the entire pipeline 152 

is shown in Fig. EV1. A minimum requirement for running the pipeline is a CSV file with a list 153 

of UniProt IDs for their proteins of interest. The pipeline will then enable users to identify 154 

putative RNA-binding amino acids within these proteins. If a list of putative RNA-binding 155 

peptides or amino acids for these UniProt IDs was provided, such as data from RBDMap 156 

(Castello et al, 2016), or RBS-ID (Bae et al, 2020, 2021), the pipeline will enable the user to 157 

identify which among the provided sequences/amino acids contains predicted RNA-binding 158 

residues, enabling effective selection of sequences that are likely to bind RNA. An example of 159 

such a CSV input file is provided in Dataset EV1. To facilitate these analyses, pyRBDome 160 

relies on multiple distinct RBS prediction tools. Considering the large size of RBS-ID and 161 

RBDMap data, and therefore the need to process a substantial number of proteins within a 162 

reasonable timeframe, the selection of these tools was based not only on their performance, 163 

but also on their runtime, and the ability to submit many proteins to webservers (also see 164 

Discussion). 165 

RBS predictions are generally based on a wide range of features, such as amino acid 166 

sequence, structural data, and physicochemical properties of the studied proteins. Two of the 167 

computational programs used were specifically designed to identify potential RBSs using 168 

protein structure (aaRNA (Li et al, 2014)) and/or sequence information (aaRNA and 169 

RNABindRPlus (Walia et al, 2014)). However, a potential limitation of using these programs 170 

is that they were trained on data from known RNA-binding proteins (RBPs), which might make 171 

them less effective in identifying RNA-binding residues in unconventional RBPs. Therefore, 172 

we also analysed our data using BindUP, which predicts RBSs based on the electrostatic 173 

features on the protein surface and can more reliably detect non-canonical RBPs (Paz et al, 174 

2016). RBSs can sometimes overlap with small molecule binding sites of enzymes, such as 175 

in the case of GAPDH, aconitase (Walden et al, 2006), and thymidine synthase (Chu et al, 176 

1991). Hence, we used FTMap (Brenke et al, 2009) to find putative small molecule binding 177 

sites in structures. FTMap identifies possible ligand-binding pockets by globally docking a 178 

series of small organic probes onto the input structures to identify protein regions that 179 

represent binding hotspots. Incorporating FTMap data also offers the additional benefit of 180 

enabling the selection of RNA-binding proteins (RBPs) with a higher likelihood of being 181 

druggable. Additionally, many RBPs contain flexible and/or disordered domains, which are 182 

common in eukaryotic species. Therefore, we also included DisoRDPbind (Peng & Kurgan, 183 

2015), which predicts RBSs in intrinsically disordered regions.  184 
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Consequently, pyRBDome integrates five independent yet complementary 185 

computational methodologies to compare against biochemically derived RNA-interacting 186 

protein sequences. While each approach has its own degree of uncertainty, our rationale lies 187 

in the consistency across these methods to identify amino acids more likely to be bona fide 188 

RBSs.  189 

Several of the aforementioned tools rely on structural data to make their predictions. If 190 

available, the pipeline automatically downloads these structures from rcsb.org. In cases where 191 

such information is unavailable, pyRBDome retrieves structural estimates generated by 192 

AlphaFold2 (Jumper et al, 2021) or the homology modelling server SWISS-MODEL (Holm & 193 

Rosenström, 2010). This facilitates the analysis of RBPome and RBDome data from less well 194 

characterised model organisms. 195 

To compare the experimental data to the predictions, for each peptide sequence 196 

provided, the pipeline calculates the minimal distance (in Å) to RBSs predicted by the 197 

individual tools. It stores its progress, such as whether files have been downloaded from 198 

webservers or specific tasks have been completed, as well as the analysis results in an SQLite 199 

database. The final results can subsequently be exported to CSV files where for each cross-200 

linked peptide (Dataset EV2) or amino acid (Dataset EV3) provided, the pipeline reports where 201 

in the PDB file the peptide was mapped to and how frequently a predicted RNA-binding amino 202 

acid was detected. Manual inspection of the data in PyMOL revealed that cross-linked 203 

peptides and amino acids were often found near known RBSs. Therefore, we consider cross-204 

linked sequences (peptides or amino acids) that are in close proximity of predicted sites (within 205 

hydrogen bonding distance (4.2Å) as a starting point) as promising hits. Thus, for each amino 206 

acid in each protein, the pipeline also reports its distance to predicted RBSs and distance to 207 

RNA molecules in known structures, if this information is available (Dataset EV5). Finally, 208 

using Interproscan (Quevillon et al, 2005), locations of domains within the protein sequences 209 

are determined, making it possible to identify domains involved in RNA-binding. The tables 210 

that are generated by the pipeline make it straightforward to statistically identify sequences 211 

obtained from RBDome experiments that are more likely to be bona fide RNA-binders.  212 

 213 

UV cross-linking data infrequently agrees with structural data 214 

To showcase the feasibility of pyRBDome, we applied the pipeline to a recent human 215 

RBS-ID RBDome dataset (Bae et al, 2020). This dataset was chosen because, at the start of 216 

this project, it was the richest cross-linking dataset available: It includes data for almost 600 217 

human RBPs and predicted RNA cross-linked amino acids for each protein. To facilitate the 218 

comparison of experimental data with predictions, pyRBDome requires peptide sequences 219 

that are at least 4 amino acids long as it needs to locate these sequences in 3D (model) 220 

structures. However, because the published RBS-ID data only provided the locations of cross-221 
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linked amino acids, we artificially extended these sequences on both ends with varying lengths 222 

(up to 27 amino acids; arbitrary number) to generate a dataset that we refer to as the “cross-223 

linked peptide” dataset. The results of the pyRBDome analyses of this dataset is organised in 224 

tabular form in Dataset EV4. 225 

If the user provides amino acid cross-linking data, the pipeline determines the 226 

preferentially cross-linked amino acids. Consistent with previous analyses (Bae et al, 2020), 227 

pyRBDome identified cysteines and the aromatic amino acids tyrosine, tryptophan, and 228 

phenylalanine as the most cross-linked amino acids (Fig. EV2A). Therefore, the user should 229 

expect to see a similar enrichment in their data. The pipeline performs the same analysis by 230 

grouping the amino acids into bins based on their physicochemical properties (Fig. EV2B), 231 

which identified sulphur-containing and aromatic amino acids as preferentially cross-linked. 232 

pyRBDome also enables the user to determine if sequences from specific domains were 233 

preferentially cross-linked. Using the InterProScan package (Jones et al, 2014; Blum et al, 234 

2021) pyRBDome searches for domains within the proteins identified in the experimental data 235 

and it then counts how frequently cross-linked peptides and amino acids were mapped to 236 

these domains. Consistent with previous work (Bae et al, 2020), the canonical RNA 237 

recognition motif (RRM) and hnRNP K homology (KH) RBDs were the most enriched domains 238 

in the cross-linking data, followed by zinc finger (ZnF: C2H2, CCCH, and CCHC), WD40 239 

repeats, and Helicase/DEAD domains (Fig. EV2C). 240 

 241 

A second reason for choosing this human RBS-ID dataset was that high-resolution 242 

protein-RNA structures were available for 155 of the approximately 600 proteins. 243 

Consequently, we were able to compare the RBS-ID results with both RBS predictions collated 244 

by the pyRBDome pipeline and known protein-RNA interactions (ground truth dataset). Having 245 

ground truth datasets also allowed us to benchmark the different prediction tools employed in 246 

pyRBDome and to directly compare their performances (detailed below). To establish such 247 

human ground truth datasets, we downloaded hundreds of PDB files containing human 248 

protein-RNA complexes from rcsb.org. This yielded 371 protein-RNA structures (including the 249 

155) that met our criteria for downstream analyses (see Methods for details). Using these 250 

structures, we generated two distinct ground truth datasets. Firstly, we used Protein-Ligand 251 

Interaction Profiler (PLIP; Adasme et al, 2021) to identify amino acids directly interacting with 252 

RNA in these structures. This ground truth dataset is referred to as GT-PLIP. The PLIP 253 

software package also enabled us to identify specific types of protein-RNA interactions, such 254 

as hydrogen-bonding, p-stacking, hydrophobic and salt-bridge interactions. However, due to 255 

limitations in resolution, not all structures generated PLIP results, yielding a relatively small 256 

dataset comprising of 192 proteins. To address this (potential) limitation, we established a 257 

second ground truth dataset, categorising amino acids that are within hydrogen-bonding 258 
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distance (4.2Å) of RNA as RNA-binding (0 for non-interacting and 1 for interacting amino 259 

acids). We refer to this ground truth dataset as GT-Distance. This generated a richer and 260 

larger dataset (n=347), with ~10% of the amino acids assigned as RNA-interacting. To capture 261 

all experimentally determined protein-RNA interactions for each protein, PLIP and distance-262 

based detection of RNA-binding amino acids were performed using all available protein-RNA 263 

structures associated with individual UniProt IDs. Subsequently, the analysis results from 264 

multiple PDB files for a protein were merged into a single PDB file that stored for each amino 265 

acid the minimal distance to RNA and how frequently binding to RNA was detected.  266 

To compare the performance of the prediction tools employed by pyRBDome, we used 267 

our ground truth datasets and recommended probability/scoring thresholds for identifying an 268 

amino acid as RNA-binding (Brenke et al, 2009; Li et al, 2014; Walia et al, 2014; Peng & 269 

Kurgan, 2015; Paz et al, 2016). The key performance metrics for each predictor (Fig. EV3). 270 

show that RNABindRPlus is one of the better performing tool on both the GT-PLIP and GT-271 

Distance datasets, achieving the highest accuracy and precision. Notably, the performance of 272 

aaRNA on our GT-Distance dataset was comparable to its performance on a smaller ground 273 

truth dataset consisting of 67 RBPs (RB67; (Li et al, 2014)). 274 

To simplify and automate the generation of ground truth datasets, we have included 275 

scripts in pyRBDome-Core that contain code needed for automated downloading of protein 276 

(FindUniProtPDBStructures.py) and protein-RNA complexes (FindUniProtRNPStructures.py) 277 

associated with specific UniProt IDs from rcsb.org, as well as code to calculate the distances 278 

of each amino acid to RNA (ProteinNAdistanceAnalyses.py).  279 

Figure 1. Ground truth analysis results for the human SRP19 protein. Shown is a surface 
representation of the structure of the human SRP19 protein in complex with a variety of co-
crystallised RNA structures (wheat colour), obtained from available SRP19 protein-RNA complexes 
and superimposed on the protein structure.  
(A) Colouring amino acids in SRP19 by distance to RNA. Blue colours indicate amino acid residues 
more than 4.2Å away from RNA. The more the colour of the red spectrum, the closer the amino acid 
is to co-crystallised RNA in 3D.  
(B) As in (A) but colouring by how frequent an amino acid was detected to interact with RNA by PLIP 
in available structures.  
 

PLIP
π-cation

>4.2Å<=2Å

PLIP
h-bond

A B

SRP19 (P09132) NoneHighRNA contacts:

GT-Distance GT-PLIP
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We also wrote code to automate the PLIP analysis and the processing of the analysis 280 

results (https://git.ecdf.ed.ac.uk/sgrannem/pyDRBPNA). All the results generated by our 281 

ground truth analysis code is summarised in Dataset EV5. Illustrative examples of the ground 282 

truth datasets are showcased in Fig. 1A and 1B, presenting the outcomes within the crystal 283 

structures of the human SRP19 protein complexed with SRP RNA fragments. 284 

To streamline the interpretation of the results, after the completion of the analyses, the 285 

pipeline generates PDB files that visually represent the prediction outcomes on the structural 286 

data, alongside PDF files containing the aligned prediction results within the protein sequence. 287 

It also generates convenient PyMOL session files making it easy for the user to visualise all 288 

the relevant PDB files simultaneously. The results for the SRP19 protein are shown in Fig. 2. 289 

Data for all the analysed proteins are available from our GitLab repository 290 

(https://git.ecdf.ed.ac.uk/sgrannem/). We have also included code in the pipeline that uses the 291 

InterProScan package (Jones et al, 2014; Blum et al, 2021) to search for domains within the 292 

proteins. If detected, the domains are highlighted in PDB and prediction outcome PDF files 293 

(Fig. 2B). The residue highlighted in yellow in Fig. 2B indicates the SRP19 amino acid cross-294 

linked to RNA in the RBS-ID data. 295 

 296 

Aggregating data from multiple predictors increases confidence in RBS identification. 297 

The pyRBDome data analysis pipeline was founded on the principle that integrating 298 

outcomes from various distinct predictors not only enhances the quality of RBDome data but 299 

also enables more reliable identification of RBSs in proteins for which cross-linking data is 300 

absent. These assumptions were tested using machine learning (ML). Using the ground truth 301 

datasets outlined above, we developed eXtreme Gradient Boosting (XGBoost) ensemble 302 

classification models (Chen & Guestrin, 2016) that utilise the prediction results from the 303 

diverse tools used by pyRBDome as features to predict how likely an amino acid is to bind 304 

RNA (detailed in Fig. EV4). The XGBoost probability scores for SRP19, derived from all the 305 

pyRBDome results for this protein, are shown in the model prediction structure Fig. 2A and 306 

the score bar in Fig. 2B.  307 

 308 
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Developing a robust ML model for predicting RBSs is challenging, requiring extensive 310 

benchmarking against existing tools and deeply curated ground truth datasets, which is 311 

beyond the scope of this manuscript. However, precision-recall analyses (Fig. 3B and E) 312 

indicated that the XGBoost classifiers trained on the combined prediction results of the human 313 

ground truth datasets exhibited lower false positive and false negative rates compared to 314 

classifiers trained solely on data from individual tools. Furthermore, XGBoost models trained 315 

with more RBS prediction data displayed improved Area Under the Curve (AUC) values (Fig. 316 

3C and F), implying they better distinguish between amino acids that bind RNA and those that 317 

do not. We note that models trained on GT-PLIP generally performed poorer than might be 318 

expected. This is likely because not all available structures could be analysed by PLIP due to 319 

limited resolution, reducing the size of the training dataset. Additionally, the unbalanced nature 320 

of GT-PLIP dataset, with only approximately 5% of all amino acids interacting with RNA, likely 321 

also significantly contributed to the lower precision of the XGBoost models trained on the PLIP 322 

data, despite artificially balancing the datasets (see Materials and Methods).  323 

It is important to note that the individual prediction tools (i.e., the model features) do 324 

not contribute equally to the predictions made by the XGBoost models, but the significance of 325 

each model is evaluated during the training. Analysis of the feature reliance in the performance 326 

of the XGBoost model (Fig. EV5A) revealed that BindUP, RNABindRPlus and aaRNA 327 

exhibited the highest importance among the RBS prediction tools, enabling the model to 328 

approximate the ground truth more accurately. Training XGBoost models using various 329 

combinations of RBS prediction data revealed that models trained with a more extensive 330 

collection of RBS prediction data showed increased precision (Fig. 3G; Average Precision 331 

(AP)). Notably, the AUC scores displayed less reliance on the number and type of RBS 332 

prediction datasets used.  333 

Figure 2. A representative example of pyRBDome analysis results.  
(A) Surface representations of the structure of the human SRP19 protein. Colours on the amino 
acids of SRP19 correspond to the scores/probabilities reported by different prediction algorithms. 
Blue colours denote amino acid residues with low scores, and the more the colour of the amino acid 
moves towards the red spectrum, the higher the RNA-binding probability/score. In the case of the 
FTMap results, the red-coloured amino acids are those less than 4.2Å away from docked small 
molecules, while blue colours indicate residues >4.2Å away from docked ligands. 
(B) An example of a pyRBDome PDF output file displaying the results along the linear sequence. 
Domains identified in the protein are outlined with ovals. Cross-linked amino acid residues are 
highlighted in yellow. The score bar represents the RNA-binding probabilities for the amino acid 
residues as determined by our XGBoost model using all the prediction results. The additional rows 
show results from various predictors (aaRNA, BindUP, FTMap, RNABindRPlus, and DisoRDPbind). 
Here, the blue amino acid residues indicate those with values at or above the recommended 
probability/score threshold (aaRNA: ≥0.18, BindUP: ≥10, RNABindRPlus: ≥0.5, DisoRDPbind: ≥
0.16; FTMap <=4.2Å). The ground truth analyses results for SRP19 are also presented. GT-PLIP: 
red-coloured residues bind RNA in the SRP19-RNA structures. GT-Distance: red-coloured residues 
are amino acids positioned within 4.2Å of RNA in available structures. 
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 334 

Figure 3. Assessment of XGBoost models trained on prediction models.  
(A) GT-Distance ground truth analysis results for the human SRP19 protein illustrating the distance 
in Å for each amino acid relative to RNA molecules. Shown is a surface representation of the structure 
of the human SRP19 protein in complex with a variety of co-crystallised RNA structures (wheat 
colour), obtained from available SRP19 protein-RNA complexes and superimposed on the protein 
structure. (colour gradient: red indicates a distance ≤2Å, yellow to green indicates a distance >= 2Å 
but < 4.2Å).  
(B) Precision-recall curves for the various XGBoost prediction models trained on the GT-Distance 
ground truth data using the predictions from either the individual tools or all predictions combined. 
The Average Precision (AP) score for each model is indicated in the legend (e.g., aaRNA AP = 0.46).  
(C) Receiver operating characteristic (ROC) curves for the same prediction models, with Area Under 
Curve (AUC) scores provided in the legend.  
(D) Visualisation of protein-RNA interaction predictions using an example from the GT-PLIP ground 
truth dataset, with the number of interactions identified by PLIP in available structures indicated in 
different colours (blue: none; green; at least 1, yellow, intermediate; red highest number).  
(E-F) Precision-recall (E) and ROC (F) curves for XGBoost models trained on the GT-PLIP ground 
truth data using predictions from the individual tools or all combined, with AP and AUC scores for 
each model shown in the legend.  
(G-H) Bar graph comparing the AP (G) and AUC (H) scores across different XGBoost models for the 
GT-Distance training dataset. The XGBoost models were trained using a combination of results from 
different predictors. The heat map below the bar plot indicates what predictions were used for training 
and testing the model.  
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These results validate our premise that combining results from multiple tools can 335 

improve prediction of RNA-binding amino acids in proteins and establish a strong foundation 336 

for the development of more enhanced ML models (see Discussion). These results also 337 

highlight the flexibility of our XGBoost model: even if the user is unable to provide results from 338 

some of the tools, the model will still be able to generate predictions with a reasonable average 339 

precision (Fig. 3G). We subsequently used the XGBoost model trained on the GT-Distance 340 

data to predict RBSs in proteins from the RBD-ID data. All the results from these analyses are 341 

provided together with the cross-linking information for each protein in Dataset EV4. On our 342 

GitLab repository we also provide PDB and PDF files summarising our XGBoost prediction 343 

results for all the proteins analysed during the course of the project. 344 

 345 

UV irradiation favours cross-linking RNA to positively charged and aromatic amino 346 

acids flanked by aliphatic residues. 347 

The likelihood of an RNA-protein interaction at a specific site is significantly influenced 348 

not only by the chemical properties of amino acids but also by its neighbours, owing to 349 

favourable protein folding or surface electrostatic forces. Recent studies have demonstrated 350 

that RBPs are enriched for tripeptide motifs consisting of positively charged, negatively 351 

charged, and aliphatic amino acids, and these triplets are conserved across evolution 352 

(Beckmann et al, 2015; Bressin et al, 2019). In three organisms that were analysed (Homo 353 

sapiens, Escherichia coli and Salmonella. typhimurium), tripeptides with a combination of 354 

arginines, lysines and glycines were strong predictors for RBPs. The pyRBDome pipeline can 355 

perform tripeptide motif analyses RBDome data, enabling users to identify motifs most likely 356 

to contribute to RNA-binding in their model organism. pyRBDome searches for tripeptide 357 

motifs enriched in the cross-linked peptides relative to randomly selected peptides from the 358 

same protein sequence (Fig. 4A). To enhance these analyses, pyRBDome also performs the 359 

same motif analyses based on the biochemical properties of the amino acids in the tripeptide 360 

motifs (Fig. 4C). Strikingly, the result show that while amino acids with positively charged 361 

residues are highly enriched in the human ground truth data (Fig. 4A, C), tripeptides containing 362 

combinations of aromatic (i.e., Y and F) and aliphatic (i.e., G, V and A) are very highly enriched 363 

in the cross-linked peptides (Fig. 4B, D). This is consistent with the strong bias towards UV 364 

cross-linking to specific amino acids, such as aromatic amino acids, to RNA. 365 

 366 

pyRBDome reveals insights into domain RNA-binding interfaces. 367 

In addition to providing information about enriched domains in RBDome data, the 368 

pipeline can also identify RNA-binding interfaces within individual domains. UV cross-linking 369 

is inefficient and stochastic, so within individual protein domains, only a few of all possible 370 
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RNA-binding interactions will be detected, providing limited mechanistic insights into domain-371 

RNA interactions. 372 

However, it is reasonable to assume that these domains within different proteins will 373 

have defined modes of RNA recognition. Therefore, if peptides/amino acids reported in 374 

RBDome data indeed represent genuine RNA-binding events, aggregating the cross-linking 375 

data from proteins that share the same domains may provide valuable insights into preferred 376 

RNA-binding interfaces.  377 
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Figure 4. Cross-linked peptides are enriched for tripeptides containing aromatic and 
positively charged amino acids flanked by aliphatic residues.  
(A) Tripeptide motifs detected in RNA-binding regions (amino acids within 4.2Å from RNA) from 
known RBPs. 
(B) Tripeptide motifs enriched in the RBD-ID cross-linked peptides.  
(C) Enriched chemical properties of tripeptide sequences detected in the ground truth data described 
in (A).   
(D) as in (B) but now showing the chemical properties. Categories: L: aliphatic; R: aromatic; C: 
acidic; B: basic; H: hydroxilic; S: sulphur-containing; M: amidic. P-values were calculated using the 
Fisher exact test and corrected for multiple testing using the Benjamini-Hochberg procedure. 
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To test this hypothesis, we further analysed the cross-linking data for RRM-containing 378 

proteins. The RRM domains in which cross-linking was detected were structurally aligned 379 

using MM-align (Mukherjee & Zhang, 2009) and superimposed. For those RRM domains for 380 

which crystal structures were not available, AlphaFold2 structure models were used. 381 

Subsequently, the cross-linked peptides and amino acids were highlighted within the 382 

superimposed structures (Fig. 5A-B). Typical RRM domains consist of four anti-parallel b 383 

sheets stacked on top of two a helices (Fig. 5A). Our analyses revealed that many cross-384 

linked amino acids clustered in the same regions of the RRMs and concentrated in the b 385 

Figure 5: Insights into RNA-binding interfaces in protein domains through aggregated 
amino acid UV cross-linking data. 
(A) Superimposed peptide sequences mapped to RRM domains in proteins identified in the RBS-
ID dataset. These sequences were aligned on available structural models of RRM domain-
containing proteins. The various a and b secondary structural elements within the RRM domains 
are also indicated.  
(B) As in (A), but with the side chains of UV cross-linking sites within the domains highlighted as 
yellow sticks. The white cloud represents the surface area of the RRM domains.  
(C) The number of UV cross-links detected in all superimposed RRM domains (y-axis), correlating 
to their specific positions within the domain (x-axis). Below the x-axis, the consensus secondary 
structure for RRM domains is depicted for reference. 
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sheets (Fig. 5B). This finding is consistent with the essential role of the RRM b sheets in RNA-386 

binding (Maris et al, 2005). Moreover, aromatic amino acids from the first and third b sheet 387 

that are important for RNA-binding (Maris et al, 2005) frequently cross-linked to RNA (Fig. 5C, 388 

red bars). However, to obtain meaningful results, many cross-linking events within a specific 389 

domain are required. To illustrate this point, the same analyses on type 1 KH domain proteins 390 

(36 cross-links), which were also enriched in the RBD-ID data, did not reveal a convincing 391 

cross-linking pattern (Fig. EV6). Nevertheless, our work demonstrates the potential of using 392 

high-throughput UV cross-linking studies for studying protein-RNA interfaces. 393 

 394 

UV-induced protein-RNA cross-links frequently occur in proximity to structurally 395 

determined protein-RNA contacts. 396 

We next asked to what extent the RBS-ID data agreed with our ground truth datasets. 397 

For this purpose, we only considered UniProt IDs from the RBS-ID data for which protein-RNA 398 

structures were available. We then compared this selection of RBS-ID data with our PLIP-399 

analysed structures (GT-PLIP dataset). For each cross-linked amino acid reported in the RBS-400 

ID data, we measured the distance (in Å) to the nearest RNA-binding amino acid detected by 401 

PLIP. The results were then aggregated into the cumulative plot shown in Fig 6A. Much to our 402 

surprise, these data showed that only 21.1% (43/204 amino acids) of the reported cross-linking 403 

sites interact with RNA in high-resolution structures (as reported by PLIP; Fig. 6A). Previous 404 

work (Knörlein et al, 2022) demonstrated that UV does not necessarily always cross-link the 405 

amino acids that in available structures bind RNA, but neighbouring amino acids can also be 406 

indirectly covalently attached to RNA. Consistent with this idea, more than half (56.4%) of the 407 

cross-linked amino acids were located within hydrogen-bonding distance (4.2Å) of PLIP sites 408 

and 42% within 4.2Å distance of RNA in these structures (Fig. 6B). Statistical analyses 409 

(Kolmogorov–Smirnov (KS) tests) revealed that RBD-ID data are indeed highly enriched for 410 

amino acid positions that are close to PLIP sites or RNA molecules in 3D structures (relative 411 

to shuffled cross-linked amino acids or all amino acids; Fig. 6A-B). These data therefore 412 

reinforce the idea that, when comparing the experimental data to existing structural data, UV 413 

cross-linking does not always capture amino acids directly binding to RNA, but that they are 414 

generally closer to RNA molecules.  415 

We next focussed specifically on the cross-linked amino acids that overlapped with 416 

RBSs in our GT-PLIP dataset and asked what type of interactions they are involved in. 417 

Consistent with previous work (Knörlein et al, 2022), we find that phenylalanine p-stacking 418 
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interactions with RNA are most abundantly detected (Fig. 6C-D). However, our results also 419 

suggest important contributions for hydrophobic and p-cation interactions (Fig. 6C). 420 
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Figure 6: Limited concordance between UV cross-linking data and protein-RNA structures.  
(A) The cumulative distribution of distances for cross-linked amino acids (yellow), randomly shuffled 
amino acids (blue), and the total pool of amino acids (green), in comparison to established RNA-
binding amino acids determined by PLIP. P-values, calculated using the Kolmogorov-Smirnov (KS) 
test, indicate significant differences between groups. The 4.2Å threshold, indicated by the dashed 
vertical line, is used to determine the proximity required for hydrogen bonding.  
(B) Similar to (A), this analysis plots the cumulative distances of cross-linked, randomly selected, 
and all amino acids within the studied RNA-binding proteins (RBPs), relative to their proximity to 
RNA. The KS test was also employed here to calculate p-values. 
(C) Amino acids that form p-stacking interactions are often cross-linked to RNA. The pie chart 
displays the percentages of each cross-linked amino acid involved in different types of interactions: 
hydrogen bonding (H-bond), p-stacking, p-cation, salt bridge, and hydrophobic interactions, as 
identified by PLIP. These percentages were calculated by dividing the number of a specific type of 
interaction by the total number of such interactions detected in the analysed structures. 
(D) Counts of cross-linked amino acids involved in p-stacking interactions. Y = Tyrosine, H = 
Histidine, F = Phenylalanine and W = Tryptophan.  
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Cross-linked peptides as reliable proxies for RNA-binding regions? 423 

As outlined above, a main reason why we established the pyRBDome pipeline was 424 

because for our model organism (Methicillin-resistant Staphylococcus aureus) there was an 425 

insufficient number of high-resolution structures of protein-RNA complexes available to 426 

generate a robust ground truth dataset for validation purposes. When analysing data from less 427 

well characterised organisms, the user can instruct the pipeline to determine whether cross-428 

linked peptides and/or amino acids are highly enriched for RBSs predicted by the various tools 429 

employed by pyRBDome. Additionally, the user can test whether the cross-linking data is 430 

enriched for amino acids that, according to our XGBoost model, have high RNA-binding 431 

probabilities. Examples of such analyses on the human RBS-ID data are shown in Figures 7. 432 

These data indicate that the reported cross-linked amino acids have a significantly higher 433 

likelihood to bind RNA compared to randomly selected amino acids from the same proteins or 434 

the general population of all amino acids from the analysed proteins. However, the variability 435 

in the distribution of the RNA-binding probabilities for cross-linked RNAs, as shown by lower 436 

tail of the distribution, indicates that while cross-linked amino acids are indeed more likely to 437 

be predicted as RNA-binding, they are not a definitive indicator by itself.  438 

Therefore, we next asked whether cross-linked peptides might be a better proxy for 439 

RBS detection. The pyRBDome pipeline allows the user to test this in two ways: Firstly, the 440 
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Figure 7: Cross-linked peptides as reliable proxies for RBSs.  
(A) Violin plots showing the distribution of RNA-binding probabilities as determined by our XGBoost 
model for cross-linked, randomly shuffled amino acids, and all available amino acids within the 
analysed RBPs.  
(B) The distribution of the highest RNA-binding probability score (determined by our XGBoost 
models) detected in cross-linked peptide sequences. Control datasets included randomly generated 
peptides with the same length distribution, and peptide libraries generated in silico by Lys-C or 
Trypsin digestion of the RBPs analysed here.  
(C) As in (B), but now for the average RNA-binding probabilities calculated for each cross-linked 
peptide. P-values, calculated using a two-sided Mann-Whitney-Wilcoxon test with Bonferroni 
correction, indicate significant differences between groups, as shown above each comparison. The 
violins represent density estimations of the distances, with wider sections indicating a higher 
frequency of amino acids at a particular distance. The white dot in the center of each violin plot 
denotes the median distance, and the thick lines within the violins represent the interquartile ranges. 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.12.08.570608doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570608
http://creativecommons.org/licenses/by/4.0/


 

 20 

user can compare the data with results obtained from individual predictors, such as aaRNA or 441 

FTMap, for example, as illustrated in Fig. EV7. These data show that the generated RBS-ID 442 

peptides were both enriched for predicted RBSs and/or more likely to be in closer proximity to 443 

these sites (aaRNA and RNABindRPlus; Fig. EV7A-B). Interestingly, the same was true for 444 

putative small-molecule binding sites predicted by FTMap (Fig. EV7C). The second approach 445 

determines whether the cross-linked peptides are enriched for amino acids with higher RNA-446 

binding probabilities as determined by our XGBoost model. We addressed this by (I) tracking 447 

the highest RNA-binding probability found in a peptide sequence (Fig. 7B) and (II) calculating 448 

the mean RNA-binding probabilities for each peptide (Fig. 7C). Our analyses strongly indicate 449 

that cross-linked peptides typically include at least one amino acid with a significantly higher 450 

RNA-binding propensity compared to control samples (Fig. 7B). Notably, the RNA-binding 451 

probability distribution shown in Fig. 7B for cross-linked peptides is distinctly skewed towards 452 

higher values, suggesting that these peptides have a greater tendency for containing RNA-453 

binding amino acids relative to the randomly selected control group peptides. However, the 454 

randomly generated peptides were not products of Trypsin and/or Lys-C digestion. To address 455 

this, we also compared the cross-linking data to peptides from parent proteins digested in 456 

silico by Trypsin/Lys-C. This comparison showed an even higher presence of predicted RBSs 457 

in cross-linked peptides, affirming the predictive strength of our XGBoost model and the 458 

significant value of cross-linked peptide data for detecting RBSs. 459 

 460 

pyRBDome correctly identifies RBSs in an S. aureus 3’-5’ exonuclease.   461 

Having extensively tested pyRBDome on human data, we next applied the pipeline on 462 

RBPome data from a less well characterised organism. For this purpose, we used our 463 

published RBPome data  (Chu et al, 2022) generated on a clinically relevant S. aureus strain 464 

(USA300). (Model) structures for the top 200 enriched proteins were analysed by the pipeline 465 

and the results are available on our GitLab repository 466 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks_Staphylococcus_aureus_analys467 

es). Given that our current XGBoost model had only been trained on human ground truth data, 468 

these analyses also tested the adaptability of the model to data from a genetically distant 469 

organism. To verify our findings, we focussed our analysis on the S. aureus polynucleotide 470 

phosphorylase (PNPase) 3’-5’ exonuclease, for which crystal structure data was available for 471 

both S. aureus (active site only) and Caulobacter crescentus (Hardwick et al, 2012; Wang et 472 

al, 2017). The latter structure also contained a short piece of RNA, enabling us to verify the 473 

reliability of the predictions.  474 
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To obtain a structure with the complete S. aureus PNPase sequence, we downloaded 475 
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Figure 8: pyRBDome detects known RNA-binding regions in S. aureus Polynucleotide 
Phosphorylase (PNPase). 
(A) Results from prediction algorithms on the surface representation of a PNPase monomer. The 
colours for BindUP, DisoRDPbind, and RNABindRPlus results indicate RNA-binding probabilities, 
with cooler shades (blue) suggesting lower and warmer shades (red) indicating higher RNA-binding 
likelihood. For the FTMap results, warmer red shades signify shorter distances to docked molecules. 
The active site of the nuclease is marked with a square box. The GSGG loop is marked with a red 
square box. Blue colours represent amino acids with low RNA-binding prediction scores (BindUP, 
DisoRDPbind, or RNABindRPlus), whilst red colours indicate amino acids with high RNA-binding 
prediction scores. For the FTMap data, the blue to red colour gradient denotes decreasing distance 
to docked small molecules, with red indicating distances of ≤2Å and blue indicating distances 
of >4.2Å. 
(B) Crystal structure of PNPase from C. crescentus, in complex with RNA, PDB ID 4AM3 (Hardwick 
et al, 2012). The RNase PH-like domains, coloured in dark and light pink, are linked by a helical 
domain, coloured in yellow. The KH domain (green) interacts with the RNA of the structure through 
the GSGG loop (red). The S1 domain is absent from this crystal structure. 
(C) Structural alignment of the RNA from structure 4AM3 on the PNPase AlphaFold2 model with 
results from XGBoost model predictions trained on the prediction results from all algorithms. 
Catalytic residues are displayed as spheres and are highlighted in an enlarged view of the active 
site region. 
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the AlphaFold2 model. This model was in good agreement with the published structures 476 

(RMSD values between 0.6 and 1; Fig. EV8A).  477 

PNPase consists of three subunits that form a ring-like central channel where the RNA 478 

threads through the enzyme (Fig. EV8B). The S1 and KH domains, located at the C-terminus 479 

of each subunit, form the entrance of the channel, and direct single-stranded RNA towards 480 

the catalytic residues of the RNase PH-like domain, which is located at the N-terminal side of 481 

the channel (Hardwick et al, 2012). In the C. crescentus PNPase-RNA crystal structure, a 12-482 

nucleotide RNA fragment interacts with the KH domain, through the conserved RNA-binding 483 

GSGG loop (Fig. EV8A-B, Fig. 8A-C). These amino acids were predicted to bind RNA with 484 

high probabilities by RNABindRPlus and our XGBoost model (Fig. 8A-C). The predictions of 485 

our pipeline largely accumulated on the internal surface of the ring-like structure that interacts 486 

with RNA. This can easily be observed when overlaying the RNA from the C. crescentus 487 

structure on the pyRBDome PNPase structure with the model predictions highlighted Fig. 8B-488 

C. Interestingly, while FTMap highlighted the PNPase active site for its high potential to bind 489 

small molecules (Fig. 8A; red coloured amino acids), this region showed relatively low RNA-490 

binding probabilities, reflecting the nuanced contribution of FTMap results to our XGBoost 491 

model's predictions (Figs. 3 and EV5). The aaRNA analysis on the PNPase model structure 492 

did not yield any results and therefore these data were missing when using our XGBoost 493 

model, which was trained with aaRNA data, for predicting RBSs in this structure. Despite this, 494 

the XGBoost model yielded correct predictions for PNPase RNA-binding regions, again 495 

highlighting the degree of flexibility and robustness in the predictive capabilities of XGBoost 496 

models. 497 

In conclusion, the pyRBDome pipeline and the analysis tools we provide in this 498 

package are versatile and valuable tools for elucidating RNA-protein interactions across varied 499 

datasets and organisms. 500 

 501 

Discussion 502 

Here we present the pyRBDome pipeline for in silico enhancement of RBPome and 503 

RBDome proteomics data. This pipeline, which leverages both protein sequences and 504 

structural information, employs a variety of distinct prediction tools for identifying putative RNA 505 

Binding Sites (RBSs) within target proteins (Fig. EV1 and EV4). It subsequently highlights the 506 

results from each prediction algorithm either within provided peptide/amino acid sequences, 507 

or entire protein sequences. The pipeline is capable of processing hundreds of proteins from 508 

large proteomics datasets or individual proteins. Significantly, the pipeline simplifies the 509 

complex data from these predictions, providing easily interpretable results that facilitate 510 

identification of residues involved in RNA-binding. The inclusion of PyMOL sessions allows 511 
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users to visualise all the experimental and prediction results in 3D model structures 512 

simultaneously. Furthermore, pyRBDome includes statistical analyses to assess whether 513 

sequences obtained from RBDome studies show a significant enrichment of predicted RBSs, 514 

thus offering a quantitative measure that can improve the quality of the experimental data. 515 

Collectively, these findings underscore pyRBDome's utility in streamlining the detection of 516 

RBSs in proteins and in effectively enhancing RBDome data. 517 

 518 

Agreement between RBDome UV cross-linking and structural data  519 

To demonstrate the utility of pyRBDome we analysed a data rich human RBDome 520 

dataset (RBD-ID;  (Bae et al, 2020), which provided, besides a list of (putative) RBPs, also an 521 

extensive list of RNA cross-linked amino acids. However, it did not contain the peptide 522 

sequences to which these cross-linked amino acids belonged. To address this, we artificially 523 

extended these amino acid sequences on both ends with varying lengths to create a peptide 524 

dataset suitable for analysis with our our pipeline. We found that both cross-linked peptides 525 

and amino acid sequences are significantly enriched in RBSs (RNA-binding sites), as 526 

predicted by individual tools or our combined XGBoost ensemble model. Surprisingly, when 527 

we compared the cross-linked amino acid data with our GT-PLIP dataset, which includes 528 

amino acids known to interact with RNA based on structural data, we observed limited overlap. 529 

While cross-linked amino acids were statistically more likely to be near RNA compared to 530 

randomly selected amino acids, only about 21% of them were actually found to bind RNA 531 

according to the available structural data. The limited overlap observed might suggest that UV 532 

cross-linking data contain a considerable amount of noise. However, it is important to note 533 

that our ground truth datasets, which were constructed solely from high-resolution structures, 534 

are also unlikely to include all possible protein-RNA contacts. Many structures contain proteins 535 

in complex with short pieces of RNA and therefore provide limited insights into the full RNA-536 

binding capacity of the protein. Not every RNA substrate will also interact identically with an 537 

RBP and protein-RNA interactions can be highly dynamic and condition dependent. Though 538 

UV cross-linking can often capture such interactions in vivo and in cellulo, many of these might 539 

not be represented in static structures (also see (Bae et al, 2021)). 540 

Our comparison of the RBS-ID data with our XGBoost model predictions, suggest that 541 

sequences of cross-linked peptides are more reliable indicators of RNA-binding sites than 542 

individual amino acids. This is because they tend to include amino acids with higher RNA-543 

binding probabilities. Thus, comparing the cross-linking data with results from predictive 544 

models may offer a more effective solution for corroborating or supporting RBDome data. This 545 

is particularly true for models that are not solely reliant on existing protein-RNA structures for 546 

training. Such models are presumably better equipped to identify amino acids interacting with 547 

RNA, including those interactions not represented in structural data. 548 
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Another potential source of noise could stem from the analysis of mass spectrometry 549 

data. The software tools employed for analysing such datasets typically offer localisation 550 

scores, which indicate the probability of an amino acid being cross-linked to RNA. If the quality 551 

of a dataset is subpar, accurately pinpointing the precise cross-linking site becomes more 552 

challenging, leading to lower localisation scores and consequently, increased noise in the data. 553 

However, in the RBS-ID dataset that we analysed (Bae et al, 2020), 80% of the reported cross-554 

linking sites (detected using MS-GF+ with a closed search; (Kim & Pevzner, 2014; Bae et al, 555 

2020)) had very high localisation scores (between 0.8 and 1). While there is undoubtedly noise 556 

in the data, we would argue that the quality of this RBS-ID dataset is not a major contributor. 557 

 558 

A recent study has also revealed that UV cross-linking does not exclusively target 559 

amino acids in direct contact with RNA; it can also affect those in indirect proximity (Knörlein 560 

et al, 2022). Furthermore, it was found that p-stacking interactions are key to directing the 561 

cross-linking reactions (Knörlein et al, 2022). This may also offer an explanation for our 562 

observation that few cross-linked amino acids were found to bind RNA in our GT-PLIP ground 563 

truth dataset, and if they did they were mostly involved in p-stacking. However, a significant 564 

proportion of the cross-linked amino acids were observed to be in close proximity to RNA 565 

within protein-RNA structures. Drawing on these findings and the bioinformatics analyses 566 

conducted in this study, when using pyRBDome data to design follow-up mutational analyses,  567 

we recommend prioritising aromatic, suphur containing and positively charged amino acids 568 

that have high RNA-binding prediction scores, that have undergone cross-linking or are 569 

located in cross-linked peptides, and those that are proximal to cross-linking sites, either 570 

sequentially or in the three-dimensional (model) structures. 571 

 572 

Developing an ensemble model for enhanced prediction RNA-binding amino acids. 573 

The foundational concept behind the creation of the pyRBDome pipeline stemmed 574 

from our belief that combining results from multiple predictors would improve the identification 575 

of RNA-binding residues in targeted proteins. While this was not the main goal of our project, 576 

the comprehensive datasets generated by pyRBDome presented a prime opportunity to 577 

validate this hypothesis through machine learning. By leveraging the predictive data from 578 

various tools, we developed a eXtreme Gradient Boosting (XGBoost) ensemble models. 579 

These models discern patterns within the aggregated predictive results and aligns them with 580 

known RNA-binding amino acids in the existing structural data. The main reasons for relying 581 

on XGBoost to build these preliminary models include its frequent outperformance of neural 582 

networks when presented with tabular data (such as the data used here), its ability to handle 583 

missing data points effectively (useful in cases where a protein could not be analysed by one 584 
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of the prediction tools), its competence in dealing with unbalanced datasets (our ground truth 585 

datasets are unbalanced), and its tolerance to uninformative features (Chen & Guestrin, 2016; 586 

Grinsztajn et al, 2022). XGBoost therefore provided an excellent starting point for developing 587 

improved models for RBS prediction. 588 

The preliminary models we constructed outperformed the individual tools, 589 

demonstrating greater accuracy and precision in predictions (Fig. 3). While these results are 590 

promising, there are areas where the XGBoost models could be further improved. For instance, 591 

our current models have exclusively been trained on data from human protein-RNA complexes. 592 

Therefore, their robustness could be enhanced by training the models on structurally 593 

characterised protein-RNA complexes (RNPs) from diverse organisms. It should also be noted 594 

that our training sets, in addition to AlphaFold2 models, mainly consists of structurally 595 

characterised proteins/domains. As a result RBPs with disordered RNA-binding regions are 596 

underrepresented or their disordered regions were excluded from the analyses. This 597 

underreprentation likely contributed to the less optimal performance of DisoRDPbind on our 598 

test data. However, this can be circumvented by reanalysing the data using only AlphaFold2 599 

models, where these sequences will be represented (albeit not accurately folded). 600 

Alternatively, including a wider array of RNA-binding domains from disordered regions (Zhang 601 

et al, 2023) will undoubtedly enhance DisoRDPbind's predictions and subsequently further 602 

improve the accuracy and precision of our XGBoost models. Therefore, the analyses 603 

presented here, constrained by the current datasets, do not fully capture the true potential of 604 

DisoRDPbind. 605 

 606 

Pipeline performance 607 

The pyRBDome pipeline was designed to process a large number of proteins 608 

simultaneously, naturally leading to questions about the typical duration of an RBPome or 609 

RBDome dataset analysis. While there is no definitive answer, as it varies, performing the 610 

pyRBDome analysis on the RBS-ID dataset (consisting of 584 proteins) took approximately 8 611 

days. The most time-consuming step involved submitting jobs to various servers, with tools 612 

like FTMap and aaRNA typically taking longer to yield results. The analysis duration primarily 613 

depends on factors such as the size of the proteins being analysed, the server's computational 614 

power, and the server queue lengths. Despite these variables, we consider an 8-day 615 

turnaround to be quite reasonable for such a large dataset. Future developments of 616 

pyRBDome, as discussed in the next section, will focus on incorporating tools with shorter 617 

execution times. However, it's important to note that faster processing does not always equate 618 

to more accurate results, presenting a constant trade-off. 619 

 620 

Future pyRBDome pipeline developments 621 
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To develop the pyRBDome pipeline, we evaluated a wide array of distinct tools 622 

designed to predict RNA-binding amino acids, and that take into consideration various 623 

sequence and structural features of ligand-binding proteins. However, integrating these tools 624 

into pyRBDome presented several challenges. These included inactive web servers and 625 

compatibility issues such as dependency conflicts and lack of comprehensive documentation, 626 

which hindered smooth integration with our Linux servers. Moreover, not all the web servers 627 

we tested were suitable for high-throughput analysis of protein sequences and structures, and 628 

some had run times that made the analysis of hundreds of proteins excessively time-629 

consuming. This presented a notable challenge in integrating tools that could potentially 630 

outperform those currently described. However, the pipeline is continually evolving, and our 631 

existing Python code allows for relatively straightforward incorporation of new tools and the 632 

processing of their results.  633 

Throughout this project, numerous advancements have been made in developing 634 

improved methods for predicting RNA-binding sites (RBSs) in proteins. A notable example is 635 

DeepDISOBind, an improved model for predicting RNA-binding residues in disordered regions 636 

(Zhang et al, 2022). We are in the process of incorporating the stand-alone version of this tool 637 

into pyRBDome-Core and pyRBDome-Notebooks. We are also testing PST-PRNA (Li & Liu, 638 

2022), a deep learning model that predicts RBSs using protein surface topology. This tool 639 

outperforms aaRNA, a structure-based prediction method employed by pyRBDome. PST-640 

PRNA has the added advantage of not relying on sequence identity and conservation for its 641 

predictions and may therefore perform better on non-classical RBPs. Preliminary data from 642 

these analyses can be found in versin 1.1.2 of our pyRBDome-Notebooks Ground truth 643 

analyses GitLab repository that details the development and analysis of our ground truth 644 

datasets 645 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks_Ground_truth_analyses). Other 646 

tools under evaluation are NCBRPred (Zhang et al, 2021), a sequence-based predictor likely 647 

to replace RNABindRPlus, and HybridRNAbind, a tool trained on both structural information 648 

and available RNA-binding regions in disordered domains (Zhang et al, 2023). We also tested 649 

HydRA (Jin et al, 2023), a deep learning method designed for detecting RNA-binding proteins 650 

and RNA-binding regions. Similar to the XGBoost model described here, HydRA functions as 651 

an ensemble classifier, utilising information from diverse prediction tools. It not only predicts a 652 

protein’s RNA-binding capacity, but can also detect potential RNA-binding regions in RBPs. 653 

Using our human GT-PLIP and GT-Distance ground truth datasets, HydRA's performance in 654 

detecting RBSs was not as high compared to the individual tools employed by the pyRBDome 655 

pipeline or our XGBoost ensemble model (see 6.1.2_BinaryClassifierAnalysesRBDData.ipynb 656 

notebook in the pyRBDome-Notebooks Ground truth analyses repository). This is why we do 657 

not discuss the HydRA results here. This may be due to HydRA being optimised for predicting 658 
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RNA-binding regions, whereas our ground truth datasets are more specific to individual RNA-659 

binding amino acids. Despite this, we recognise HydRA's value in identifying RNA-binding 660 

capacities in proteins and have incorporated code in version 0.2.0 of pyRBDome-Core and 661 

version 1.1 of pyRBDome-Notebooks to process and display HydRA predictions in PDF and 662 

PDB files. All the raw HydRa analysis results are also available on our pyRBDome-Notebooks 663 

GitLab repositories. 664 

 665 

One might argue that constructing a pipeline dependent on multiple web servers, as in 666 

the case of pyRBDome, inherently invites reliability issues, as demonstrated by our 667 

experiences with inconsistent server availability. While our efforts are increasingly directed 668 

towards integrating standalone packages into the pyRBDome pipeline, it is important to 669 

acknowledge that running these prediction algorithms demands substantial computational 670 

resources. This includes the need for high-specification CPUs (Central Processing Units) and, 671 

more critically, GPUs (Graphics Processing Units). Not all research groups may have access 672 

to such computational facilities. Moreover, even for groups that do have such resources, the 673 

task of establishing and managing a pipeline comprising various stand-alone machine learning 674 

tools is very challenging as it involves dealing with numerous dependencies and configurations. 675 

Therefore, for future versions of the pyRBDome pipeline, we aim to strike a balance between 676 

utilising web servers and integrating standalone packages. 677 

A longer-term goal is to make the results from analyses available in public databases 678 

with the aim to make the data more easily accessible for the wider public.   679 
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Materials and Methods  680 

Repository content 681 

A description of all the directories and type of files that the pyRBDome pipelines 682 

produce can be found in the README.md files in the individual repositories. The analyses 683 

described here used code from pyRBDome-Core version 0.2.0, pyRBDome-Notebooks 684 

version 1.0 and pyRBDome-Notebooks Ground truth analyses version 1.1.2. 685 

 686 

Generating the human ground truth dataset. 687 

We utilised the UniProt IDs from the RBS-ID dataset (Bae et al, 2020) to search 688 

rcsb.org for available protein-RNA structures. To expedite this process, we developed the 689 

script FindUniProtRNPStructure.py, which is now part of the pyRBDome-Core package. The 690 

code used for downloading these PDB files is available in the 691 

1.0_FindRNPStructures_using_UniProt_IDs.ipynb notebook, located in the pyRBDome-692 

Notebooks Ground truth analyses repository 693 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks_Ground_truth_analyses). For 694 

each UniProt ID, we retrieved protein-RNA structures that met specific criteria: a resolution of 695 

less or equal to 5Å and the presence of at least one RNA molecule. Owing to compatibility 696 

issues with CIF files, we chose to download only PDB files from rcsb.org. Each PDB file 697 

corresponding to a UniProt ID was then analysed to determine the minimum distance (in Å) of 698 

each amino acid to the RNA. We also developed a Python package that utilises the PLIP code 699 

(Adasme et al., 2021) to identify amino acids that interact directly with RNA in these structures. 700 

The code for conducting these analyses and a description of how to carry out such analyses 701 

is provided in the pyDRBPNA package on our repository. 702 

(https://git.ecdf.ed.ac.uk/sgrannem/pyDRBPNA). 703 

To further refine these ground truth datasets, we merged the distance calculations and 704 

PLIP results for all PDB files associated with a single UniProt ID into a composite PDB file. 705 

This file records only the shortest distances to RNA for each amino acid in the b-factor column, 706 

as indicated in files ending with “distances_merged.pdb”. We also collated the frequency of 707 

RNA contacts by amino acids across the structures (as detected by PLIP), storing this 708 

information in the b-factor columns of files that end with “plip_merged_all.pdb”. 709 

  710 

pyRBDome package and pipeline description 711 

The pipeline introduced in this paper consists of two parts: pyRBDome-Core 712 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Core) and pyRBDome-Notebooks 713 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks). The former contains all the 714 

scripts, functions, and classes that users need to execute the Jupyter notebooks. The code 715 
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has been developed and tested extensively on Ubuntu Linux operating systems (OS) and can 716 

be adapted to work on Mac OS (12.7 and above). Details on how to install the packages and 717 

run the notebooks, and the required computational resources can be found in the README 718 

files on our repository. pyRBDome-Notebooks streamline the process of RNA-binding protein 719 

and cross-linking data analysis by automatically running predictions either online or locally. It 720 

then downloads, renames, and organises the results into specific directories. The pipeline 721 

stores any progress it has made as well as result from all the analyses in an SQLite database. 722 

This enables the user to keep track for which proteins (model) structures have been 723 

downloaded and whether these structures were analysed successfully by each prediction 724 

algorithm. Incorporating the SQLite database also enables the user to resume runs that may 725 

have failed or timed-out and helps avoid repeated submission of PDB files that have already 726 

been analysed. The results tables can also be easily exported to CSV files. All the notebooks 727 

can also be run sequentially in the terminal using papermill (https://papermill.readthedocs.io). 728 

Papermill is automatically installed when installing the pyRBDome-Core package.  729 

The pyRBDome-Notebooks Jupyter notebooks each have their unique number. A 730 

detailed description of what analyses each notebook does is outlined below. 731 

 732 

1. Finding all available (model) structures for each UniProt ID. 733 

pyRBDome-Notebooks notebook 1.0_FindingPDBs.ipynb was used to download all available 734 

PDB files (<= 5Å resolution) associated with the UniProt IDs listed in the RBS-ID data (Bae et 735 

al, 2020) from rcsb.org (Berman et al, 2000), model structures that were generated by 736 

AlphaFold2 (Jumper et al, 2021) or the SWISS-MODEL webserver (Bienert et al, 2017; Guex 737 

et al, 2009; Studer et al, 2020; Waterhouse et al, 2018). For generating model structures, this 738 

notebook first queries the Alphfold2 database (https://alphafold.ebi.ac.uk) and downloads the 739 

latest model associated with that UniProt ID (PDB files ending with “_AF.pdb”). If it is unable 740 

to find any models, it submits the protein sequence to SWISS-MODEL. Only models with 741 

GMQE score higher than 0.7 were considered and their PDB files downloaded. Note that 742 

SWISS-MODELS were not used in this study. For proteins that could not be modelled by 743 

SWISS-MODEL or had a model of insufficient quality the protein sequences were blasted 744 

against the AlphaFold model organism genome (notebook 745 

1.1_FindingPDBsViaSequence.ipynb) to identify the closest homologue (notebook 746 

1.2_GetAlphaFoldModels.ipynb). In these cases, we only considered proteins that had a 747 

homolog with an identity of >= 99%. The PDB IDs associated with each protein are then saved 748 

in the available_PDBs table in an SQLite database (pyrbdome_full.db). The tables in the 749 

database have information about whether the PDB file was successfully downloaded and what 750 

chain is included in the PDB file. 751 

 752 
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2. Getting protein domains from Pfam. 753 

After all the PDB files have been downloaded, notebook 1.3 will use the Interproscan tool 754 

(Jones et al, 2014; Blum et al, 2021) to download all the domain information associated with 755 

these proteins. Only Pfam domains are considered. A Linux version of Interproscan is provided 756 

in pyRBDome-Notebooks programs folder. The user will need to install a different version if 757 

Mac OS operating systems are used for the analyses. 758 

 759 

3. Creating peptide control datasets. 760 

Notebook 1.3 takes the protein sequence from each PDB file and digests the sequences in 761 

silico with Trypsin and Lys-C to generate a library of all possible peptides that could 762 

theoretically be detected by the mass-spectrometer for the protein of interest. If cross-linked 763 

peptide sequences were provided, notebook 1.4 will generate a library of random peptide 764 

sequences that are peptides of the exact same length distribution as the cross-linked peptides, 765 

but that were randomly extracted from the protein sequence. 766 

 767 

4. Performing RNA/ligand-binding sites predictions. 768 

To predict RNA/ligand-binding sites on the proteins of study, we chose five different prediction 769 

algorithms: aaRNA, BindUP, FTMap, RNABindRPlus and DisoRDPbind (Walia et al, 2014; 770 

Peng & Kurgan, 2015; Paz et al, 2016; Mehio et al, 2010). These notebooks will automatically 771 

submit all the PDB files to the respective web servers, download the results, and store the 772 

progress they have made with the analyses in the SQLite database. To further increase the 773 

performance of the pipeline, we are also implementing the PST-PRNA deep learning approach 774 

(Li & Liu, 2022) in our notebooks, which predicts putative RNA-binding amino acids entirely 775 

using the surface topology of the proteins in the structures. Preliminary results from these 776 

analyses are available in pyRBDome-Notebooks version 1.2. 777 

 778 

5. Mapping the cross-linked amino acid and peptide sequences to the PDB files. 779 

Notebook 3.0 takes the cross-linked, in silico digested and random peptide sequences and 780 

maps them to the PDB files. Once the peptides have been mapped, it will determine the 781 

location of cross-linked amino acids, if this information was provided. For example, if the 782 

peptide sequence “PSRKDPKYREWHHFL” is analysed by this notebook and it could be 783 

mapped to a PDB file sequence, it will record the start and end residue numbers for the peptide 784 

and what chain it was mapped to in the PDB file. For this example, the code returned the 785 

following result: 74A_psrkdpkyrewhhfl_88A. This shows that the peptide was mapped 786 

between residues 74 to 88 of chain A in the PDB file. Note that not all peptides will be mapped 787 

as many structures do not contain the complete protein sequence. 788 

 789 
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6. Processing the results and storing them in PDB files 790 

Notebook 4.0 collects all prediction results and any domain and mapped peptide/amino acid 791 

information and stores the results in the b-factor columns of the PDB file. This makes it 792 

possible to visualise the results in PyMOL or other viewers. 793 

 794 

7. Distance analyses. 795 

The series 5 notebooks take all the prediction results, map these to the peptide sequences 796 

and calculate the closest distance of the cross-linked peptides or control peptide sequences 797 

to amino acids predicted to be involved in RNA-binding. The results are stored in tables in the 798 

SQLite database. These tables enable the user to easily extract peptide sequences that 799 

contain predicated RNA-binding amino acids. For example, if it found a predicted RNA-binding 800 

amino acid in a mapped peptide (e.g. 74A_psrkdpkyrewhhfl_88A), it will indicate the location 801 

of this amino acid in upper case (e.g.74A_psrkdpkyRewhhfl_88A). 802 

 803 

8. Sanity check 804 

Notebook 6.0 then looks at all the distance analyses and double checks if no errors were made 805 

in the calculations. This notebook is tremendously useful for troubleshooting any issues that 806 

might appear during the analyses. 807 

 808 

9. Analysis of cross-linked peptide and amino acid sequences 809 

The series 7 notebooks search for enriched tripeptide motifs enriched in the cross-linked 810 

peptides and enriched amino acids in the cross-linked amino acid data, if available. It returns 811 

a table containing the sequences of the enriched amino acid motifs or chemical properties and 812 

associated p-values. 813 

 814 

10. Making the final output files 815 

The series 8 notebooks gather all the prediction and cross-linking information from the PDB 816 

files that were produced by notebook 4 and place the information in a large table where RNA-817 

binding probabilities provided by each algorithm are stored as well as the location of cross-818 

linked peptides and amino acid residues. The notebooks in the pyRBDome-Notebooks 819 

analyses of the ground truth dataset also contain extra code that adds the distances to RNA 820 

molecules for each amino acid for all protein-RNA structures that were analysed. Notebooks 821 

8.0 and 8.1 take all the prediction results available in the large table, feeds that to our XGBoost 822 

models, and calculates for each amino acid in each protein a probability for RNA-binding. The 823 

8.2 statistical analysis notebook determines whether cross-linked peptides and amino acids 824 

(where available) are significantly enriched for predicted RBSs compared to the random 825 

peptide datasets and the peptides generated by Trypsin/Lys-C digestion of the protein 826 
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sequences. Notebook 8.3 takes all the analysis results and produces a PDF file summarising 827 

all the results in the protein sequence for each protein. The scorebars in the PDF files indicate 828 

the XGBoost RNA-binding probabilities for each amino acid. Notebook 8.4 generates PyMOL 829 

session files that enables the user to conveniently load all PDB files into a single PyMOL 830 

session. 831 

 832 

11. Binary classification analyses. Training of XGBoost models. 833 

The ground truth pyRBDome-Notebooks ground truth analysis repository contains 834 

notebooks 6.1.1 and 6.1.2 outlining how the XGBoost models were trained on the GT-PLIP 835 

and GT-Distance ground truth datasets, These notebooks also include details about what 836 

parameter optimisation steps were performed and tests for analysing overfitting. The GT-PLIP 837 

and GT-Distance ground truth datasets are provided on our repository as a text file 838 

(https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks_Ground_truth_analyses/-839 

/blob/main/analysis_results/All_combined_results.txt) and the Datasets EV5 in the 840 

Supplementary Data. These files contain the names of the UniProt IDs that were analysed, 841 

the PDB files we used, a list of all the amino acids and residue numbers for ech protein in the 842 

PDB file, the distance of an amino acid to RNA (if available) and results from the PLIP analyses. 843 

Dataset EV4 also contains all the prediction scores from the individual tools for each amino 844 

acid.  845 

For the training of the XGBoost ensemble model, we normalised the scores or 846 

probabilities from each individual predictor (aaRNA, RNAbindRPlus, BindUP, and 847 

DisoRDPbind) to a range between 0 and 1, where necessary. These normalised values were 848 

then utilised as feature values for training the models (Fig. EV4). In the case of FTMap data, 849 

the distances to docked molecules (in Å) were normalised to values between 0 and 1, with the 850 

highest values assigned to the shortest distances. The XGBoost model subsequently 851 

generates output files containing probabilities that indicate the likelihood of each amino acid 852 

interacting with RNA. Given that the number of RNA-interacting amino acids in the GT-PLIP 853 

and GT-Distance ground truth datasets was approximately 5-10%, we undersampled the 854 

majority class (i.e., non-interacting amino acids, labelled as '0’s) in our training data to address 855 

the unbalanced nature of the dataset. To build the models, 80% of all structures in the ground 856 

truth datasets were used for training and 20% for testing. Utilising Python's Scikit-learn and 857 

the Optuna optimisation framework (Akiba et al, 2019), we optimised the hyperparameter for 858 

our XGBoost models. This optimisation included 10-fold cross-validation to enhance the 859 

robustness and generalisability of the models. All models, including those trained on various 860 

combinations of prediction results, are available from our repository (pyRBDome-Notebooks 861 

Ground truth analyses; 6.1 series notebooks and folder 'xgboost_models').. 862 

 863 
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12. Analysis of predictions and cross-linking sites onto protein domains. 864 

Notebook 9.0 analyses (1) what domains were detected in cross-linked peptides and (2) 865 

which ones were enriched in the data. Notebook 9.1 extracts selected domains from the 866 

available PDB files, superimposes them and highlights prediction scores, cross-linked 867 

peptides, and cross-linked amino acids within the superimposed structures. To be able to run 868 

notebook 9.1, we added the Linux version of MMalign (Mukherjee & Zhang, 2009) to the 869 

‘programs’ folder in the pyRBDome-Notebooks repository. This version was compiled on 870 

Ubuntu 22.04 and may not be compatible with later versions of Ubuntu and different operating 871 

systems. These analyses enable the user to determine whether predicted RBDs show specific 872 

cross-linking patterns, making it possible to gain information about domain RNA-binding 873 

interfaces. 874 

 875 

Data Availability 876 

All the code and data analyses results are available from our GitLab repository 877 

(https://git.ecdf.ed.ac.uk/sgrannem) without restrictions. All the prediction and ground truth 878 

analysis results can be found on the repositories starting with pyRBDome-Notebooks. The 879 

pyRBDome-Core repository contains all the code required to run the pyRBDome-Notebooks 880 

Jupyter notebook files. The results of all the analyses are also available as Microsoft excel 881 

spreadsheets in the Supplementary information (Datasets EV2-5). 882 
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