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Abstract

High-throughput proteomics approaches have revolutionised the identification of RNA-
binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet
the extent of noise, including false-positives, associated with these methodologies, is difficult
to quantify as experimental approaches for validating the results are generally low throughput.
To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome
data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from
distinct machine learning tools and integrates high-resolution structural data when available.
Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-
binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have
enhanced the sensitivity and specificity of RBS detection through training new ensemble
machine learning models. pyRBDome analysis of a human RBDome dataset, compared with
known structural data, revealed that while UV cross-linked amino acids were more likely to
contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This
discrepancy underscores the limitations of structural data as benchmarks, positioning

pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.


https://doi.org/10.1101/2023.12.08.570608
http://creativecommons.org/licenses/by/4.0/

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.08.570608; this version posted December 20, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Introduction

RNA-binding proteins (RBPs) play diverse and crucial roles in gene expression by
influencing the structure, function and stability of RNA, both co- and post-transcriptionally.
(Holmqvist & Vogel, 2018; Glisovic et al, 2008). RBPs have been associated with many human
diseases, including neurological disorders, muscular atrophies and cancer (Castello et al,
2013). In bacteria, RBPs make key contributions to rapid adaptation to challenging
environments, and in pathogens, they control virulence and the capacity for host infections
(Christopoulou & Granneman, 2022; Holmqvist & Vogel, 2018). Due to their key functions,
considerable efforts are being made to identify RBPs in diverse organisms and to characterise
these proteins functionally and structurally. This has inspired the development of several high-
throughput methods that capture all proteins interacting with RNA (RBPome). These methods
usually involve UV or chemical treatment of cells to create covalent bonds between proteins
and direct RNA substrates. This is followed by enrichment of the cross-linked RNA-protein
complexes and identification of proteins by quantitative mass spectrometry (MS) (reviewed in
(Esteban-Serna et al, 2023)). Common approaches for enriching RNA-protein complexes
include using oligo(dT) beads to capture proteins cross-linked to polyadenylated RNAs
(Castello et al, 2012, 2016; Baltz et al, 2012; Stenum et al, 2023), silica beads that capture all
RNAs and cross-linked proteins (Asencio et al, 2018; Chu et al, 2022; Shchepachev et al,
2019; Trendel et al, 2019; Beckmann et al, 2015; Bae et al, 2020) or organic—aqueous phase
separation methods that rely on the fact that cross-linked RNAs alter the physiochemical
properties of proteins (Queiroz et al, 2019; Smith et al, 2020; Trendel et al, 2019; Urdaneta et
al, 2019). To identify the cross-linked proteins, purified complexes are treated with
ribonucleases and analysed by MS.

These ground-breaking studies have uncovered a plethora of novel RBPs in diverse
organisms, many of which contain domains that have never been associated with RNA-binding
before. While having a comprehensive list of all RBPs in your favourite organism is
tremendously valuable, the next most informative piece of information would be the location
of the RNA-binding domains (RBDs) within these proteins (RBDome), as this would allow
mechanistic insights into RNA recognition and the design of mutations to dissect the
physiological significance of RNA-binding. Although protocols for the global identification of
putative RBPs have been optimised for diverse organisms, identifying the amino acid
sequences UV cross-linked to RNA (and therefore likely directly bind RNA in vivo) in RBPome
data is both experimentally and computationally challenging. To identify amino acid-RNA
adducts, the cross-linked RNA is chemically or enzymatically digested to make detection of
the cross-linking site by MS feasible. However, this digestion is often incomplete, and the

heterogeneity in the length and sequence of nucleotide adducts generates variable mass shifts.
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76  This dramatically increases the MS/MS search space, making detection of the cross-linking
77  sites using conventional MS data analysis programs unfeasible. To overcome this problem,
78  several experimental computational MS workflows have been developed that either directly
79  detect peptide-RNA conjugates (Kong et al, 2017; Kramer et al, 2014; Schmidt et al, 2012;
80 Trendel et al, 2019; Yu et al, 2020; Gotze et al, 2021; Knérlein et al, 2022) or identify putative
81  RNA-binding sites (RBSs) by relying on the fact that sequences neighbouring the cross-linked
82  peptides can be identified by conventional MS (RBDmap; (Castello et al, 2016)), allowing
83  extrapolation of sequences most likely cross-linked to RNA. Recent RBDome methods (RBS-
84  ID and pRBS-ID) utilise hydrofluoride to chemically digest RNAs cross-linked to peptides to a
85 single nucleotide (Bae et al, 2020, 2021). This greatly reduces the computational workload,
86 increasing the sensitivity of cross-linking site detection at single amino acid resolution (Bae et
87 al, 2020, 2021).
88 While RBDome and RBPome methods have generated a wealth of valuable data, each
89 has its own caveats and noise levels. Thus, there is a possibility of recovering many false
90 positive hits (Bogdanow et al, 2016; Nesvizhskii et al, 2006; Bae et al, 2020). For example,
91 although RBDome methods promise single amino acid resolution of binding site identification,
92 there is a degree of uncertainty when it comes to mapping the cross-linked amino acid (Bae
93 et al, 2020; Kim & Pevzner, 2014; Edwards, 2013). Moreover, a recent study has shown that
94 UV cross-linked amino acids detected by these methods can also be indirectly cross-linked to
95 RNA (Kndrlein et al, 2022). Evidently, experimental validation of the findings is critical;
96 however, the available methodologies are generally low throughput, making it challenging to
97 quantify what fraction of RBDome data are biologically meaningful. An alternative approach
98  would be to enhance the reliability of the experimental results using computional approaches.
99  For example, one could calculate what fraction of cross-linked amino acids in RBDome data
100 are in known RBDs (Queiroz et al, 2019; Bae et al, 2021, 2020) or interact with RNA in
101  available crystal structures (Knérlein et al, 2022). To conduct a meaningful statistical analysis,
102  however, a ground truth dataset is required that (ideally) consists of a large collection of high-
103  resolution structures of protein-RNA complexes. However, such datasets are not readily
104  available, especially for model organisms for which few protein-RNA complexes have been
105  structurally characterised. This includes one of our favourite model organisms:
106  Staphylococcus aureus. Furthermore, although extremely informative, ground truth datasets
107  are not exhaustive, as they generally only contain relatively stable interactions that can be
108  structurally characterised.
109 As an alternative, but also complementary, approach for assessing and enhancing the
110  quality of experimental RBPome and RBDome data, we developed a Python computational
111 pipeline (pyRBDome). This pipeline compares results from these high-throughput analyses

112  against a large database of predicted RNA-binding residues. The pipeline generates this
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113  database for proteins of interest using a wide variety of different prediction tools that utilise
114  distinct approaches for predicting RNA-binding sequences. Subsequently, the pipeline
115  aggregates the results and putative RBSs are superimposed on (model) structures and other
116  human-readable formats. When provided with RBPome data, the pipeline enables users to
117  extract the most likely RNA-binders and identify amino acids most likely to bind RNA. When
118  provided with a list of cross-linked peptides (RBD-Map, RBDome data), and amino acids
119 (RBDome data), pyRBDome identifies the most common peptide motifs associated with RNA-
120 binding and determines whether the data are significantly enriched for predicted RBSs by
121 calculating 3D distances between experimental and predicted RBSs. By displaying Pfam
122 domains (Mistry et al, 2021) identified in 3D structures, the user can easily determine the
123 domains involved in the interactions. By clustering the cross-linking sites/peptides in domain
124  structures, pyRBDome can identify interfaces within domains involved in RNA-binding. In
125 conclusion, pyRBDome can reveal important mechanistic insights into RNA recognition,
126  greatly facilitating further experimental validation of RNA-binding.

127 A second and equally important motivation for developing this pipeline was to make
128  the analysis of RBP/RBDome datasets more accessible to groups that do not routinely perform
129  such experiments or wish to analyse existing datasets. Moreover, because the pyRBDome
130 code was written as Python Classes with associated test Jupyter notebooks, these can also
131  be readily incorporated into new software tools.

132 Here we demonstrate how pyRBDome can effectively identify putative RNA-binding
133  sequences in human and bacterial proteins and enhance RBDome datasets computationally.
134  Moreover, using machine learning (ML), we show that combining prediction results from
135  distinct computational tools employed in pyRBDome can enhance the sensitivity and
136  specificity of computational prediction of RNA-binding amino acids in RBPs. We provide a
137  detailed comparison with human structures of protein-RNA complexes, which revealed that
138 UV cross-linking sites in proteins often correlate with the proximity to RNA in structurally
139  characterised protein-RNA complexes, but not necessarily with direct RNA interaction.

140

141  Results
142  The pyRBDome pipeline.

143 The main goal of this project was to develop a pipeline that would enable us to evaluate
144  and enhance the quality of RBPome and RBDome datasets. The pyRBDome pipeline is
145  written in Python, and the various analysis steps are provided in a series of Jupyter notebooks
146  to facilitate the process of following, controlling and adjusting the analysis steps. The pipeline
147  consists of two parts: pyRBDome-Core and pyRBDome-Notebooks. The former contains the

148  Python classes and functions that are required for running the pyRBDome-Notebooks code.
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149  Each class in pyRBDome-Core has associated test Jupyter notebooks, making it easy to learn
150 how to run the code. This should facilitate incorporation of the code into new bioinformatics
151  tools. All the notebooks can be run either in Jupyter, or in the terminal using papermill
152 (https://papermill.readthedocs.io/en/latest/). A schematic representation of the entire pipeline
153  is shown in Fig. EV1. A minimum requirement for running the pipeline is a CSV file with a list
154  of UniProt IDs for their proteins of interest. The pipeline will then enable users to identify
155  putative RNA-binding amino acids within these proteins. If a list of putative RNA-binding
156  peptides or amino acids for these UniProt IDs was provided, such as data from RBDMap
157  (Castello et al, 2016), or RBS-ID (Bae et al, 2020, 2021), the pipeline will enable the user to
158 identify which among the provided sequences/amino acids contains predicted RNA-binding
159  residues, enabling effective selection of sequences that are likely to bind RNA. An example of
160 such a CSV input file is provided in Dataset EV1. To facilitate these analyses, pyRBDome
161 relies on multiple distinct RBS prediction tools. Considering the large size of RBS-ID and
162 RBDMap data, and therefore the need to process a substantial number of proteins within a
163  reasonable timeframe, the selection of these tools was based not only on their performance,
164  but also on their runtime, and the ability to submit many proteins to webservers (also see
165  Discussion).

166 RBS predictions are generally based on a wide range of features, such as amino acid
167  sequence, structural data, and physicochemical properties of the studied proteins. Two of the
168  computational programs used were specifically designed to identify potential RBSs using
169 protein structure (aaRNA (Li et al, 2014)) and/or sequence information (aaRNA and
170 RNABIndRPlus (Walia et al, 2014)). However, a potential limitation of using these programs
171 s that they were trained on data from known RNA-binding proteins (RBPs), which might make
172 them less effective in identifying RNA-binding residues in unconventional RBPs. Therefore,
173  we also analysed our data using BindUP, which predicts RBSs based on the electrostatic
174  features on the protein surface and can more reliably detect non-canonical RBPs (Paz et al,
175 2016). RBSs can sometimes overlap with small molecule binding sites of enzymes, such as
176  in the case of GAPDH, aconitase (Walden et al, 2006), and thymidine synthase (Chu et al,
177  1991). Hence, we used FTMap (Brenke et al, 2009) to find putative small molecule binding
178  sites in structures. FTMap identifies possible ligand-binding pockets by globally docking a
179  series of small organic probes onto the input structures to identify protein regions that
180 represent binding hotspots. Incorporating FTMap data also offers the additional benefit of
181 enabling the selection of RNA-binding proteins (RBPs) with a higher likelihood of being
182  druggable. Additionally, many RBPs contain flexible and/or disordered domains, which are
183  common in eukaryotic species. Therefore, we also included DisoRDPbind (Peng & Kurgan,

184  2015), which predicts RBSs in intrinsically disordered regions.
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185 Consequently, pyRBDome integrates five independent yet complementary
186  computational methodologies to compare against biochemically derived RNA-interacting
187  protein sequences. While each approach has its own degree of uncertainty, our rationale lies
188 in the consistency across these methods to identify amino acids more likely to be bona fide
189 RBSs.

190 Several of the aforementioned tools rely on structural data to make their predictions. If
191 available, the pipeline automatically downloads these structures from rcsb.org. In cases where
192  such information is unavailable, pyRBDome retrieves structural estimates generated by
193  AlphaFold2 (Jumper et al, 2021) or the homology modelling server SWISS-MODEL (Holm &
194  Rosenstrédm, 2010). This facilitates the analysis of RBPome and RBDome data from less well
195 characterised model organisms.

196 To compare the experimental data to the predictions, for each peptide sequence
197  provided, the pipeline calculates the minimal distance (in A) to RBSs predicted by the
198 individual tools. It stores its progress, such as whether files have been downloaded from
199  webservers or specific tasks have been completed, as well as the analysis results in an SQLite
200 database. The final results can subsequently be exported to CSV files where for each cross-
201 linked peptide (Dataset EV2) or amino acid (Dataset EV3) provided, the pipeline reports where
202  inthe PDB file the peptide was mapped to and how frequently a predicted RNA-binding amino
203 acid was detected. Manual inspection of the data in PyMOL revealed that cross-linked
204  peptides and amino acids were often found near known RBSs. Therefore, we consider cross-
205 linked sequences (peptides or amino acids) that are in close proximity of predicted sites (within
206  hydrogen bonding distance (4.2A) as a starting point) as promising hits. Thus, for each amino
207 acid in each protein, the pipeline also reports its distance to predicted RBSs and distance to
208  RNA molecules in known structures, if this information is available (Dataset EV5). Finally,
209  using Interproscan (Quevillon et al, 2005), locations of domains within the protein sequences
210 are determined, making it possible to identify domains involved in RNA-binding. The tables
211  that are generated by the pipeline make it straightforward to statistically identify sequences
212 obtained from RBDome experiments that are more likely to be bona fide RNA-binders.

213

214 UV cross-linking data infrequently agrees with structural data

215 To showcase the feasibility of pyRBDome, we applied the pipeline to a recent human
216  RBS-ID RBDome dataset (Bae et al, 2020). This dataset was chosen because, at the start of
217  this project, it was the richest cross-linking dataset available: It includes data for almost 600
218  human RBPs and predicted RNA cross-linked amino acids for each protein. To facilitate the
219  comparison of experimental data with predictions, pyRBDome requires peptide sequences
220 that are at least 4 amino acids long as it needs to locate these sequences in 3D (model)

221  structures. However, because the published RBS-ID data only provided the locations of cross-
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222  linked amino acids, we artificially extended these sequences on both ends with varying lengths
223 (up to 27 amino acids; arbitrary number) to generate a dataset that we refer to as the “cross-
224  linked peptide” dataset. The results of the pyRBDome analyses of this dataset is organised in
225  tabular form in Dataset EV4.

226 If the user provides amino acid cross-linking data, the pipeline determines the
227  preferentially cross-linked amino acids. Consistent with previous analyses (Bae et al, 2020),
228 pyRBDome identified cysteines and the aromatic amino acids tyrosine, tryptophan, and
229  phenylalanine as the most cross-linked amino acids (Fig. EV2A). Therefore, the user should
230  expect to see a similar enrichment in their data. The pipeline performs the same analysis by
231  grouping the amino acids into bins based on their physicochemical properties (Fig. EV2B),
232 which identified sulphur-containing and aromatic amino acids as preferentially cross-linked.
233 pyRBDome also enables the user to determine if sequences from specific domains were
234 preferentially cross-linked. Using the InterProScan package (Jones et al, 2014; Blum et al,
235  2021) pyRBDome searches for domains within the proteins identified in the experimental data
236 and it then counts how frequently cross-linked peptides and amino acids were mapped to
237 these domains. Consistent with previous work (Bae et al, 2020), the canonical RNA
238  recognition motif (RRM) and hnRNP K homology (KH) RBDs were the most enriched domains
239 in the cross-linking data, followed by zinc finger (ZnF: C2H2, CCCH, and CCHC), WD40
240  repeats, and Helicase/DEAD domains (Fig. EV2C).

241

242 A second reason for choosing this human RBS-ID dataset was that high-resolution
243  protein-RNA structures were available for 155 of the approximately 600 proteins.
244  Consequently, we were able to compare the RBS-ID results with both RBS predictions collated
245 by the pyRBDome pipeline and known protein-RNA interactions (ground truth dataset). Having
246 ground truth datasets also allowed us to benchmark the different prediction tools employed in
247 pyRBDome and to directly compare their performances (detailed below). To establish such
248  human ground truth datasets, we downloaded hundreds of PDB files containing human
249  protein-RNA complexes from rcsb.org. This yielded 371 protein-RNA structures (including the
250  155) that met our criteria for downstream analyses (see Methods for details). Using these
251  structures, we generated two distinct ground truth datasets. Firstly, we used Protein-Ligand
252  Interaction Profiler (PLIP; Adasme et al, 2021) to identify amino acids directly interacting with
253  RNA in these structures. This ground truth dataset is referred to as GT-PLIP. The PLIP
254  software package also enabled us to identify specific types of protein-RNA interactions, such
255  as hydrogen-bonding, n-stacking, hydrophobic and salt-bridge interactions. However, due to
256 limitations in resolution, not all structures generated PLIP results, yielding a relatively small
257  dataset comprising of 192 proteins. To address this (potential) limitation, we established a

258 second ground truth dataset, categorising amino acids that are within hydrogen-bonding
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259  distance (4.2A) of RNA as RNA-binding (0 for non-interacting and 1 for interacting amino
260 acids). We refer to this ground truth dataset as GT-Distance. This generated a richer and
261  larger dataset (n=347), with ~10% of the amino acids assigned as RNA-interacting. To capture
262  all experimentally determined protein-RNA interactions for each protein, PLIP and distance-
263  based detection of RNA-binding amino acids were performed using all available protein-RNA
264  structures associated with individual UniProt IDs. Subsequently, the analysis results from
265  multiple PDB files for a protein were merged into a single PDB file that stored for each amino
266  acid the minimal distance to RNA and how frequently binding to RNA was detected.

267 To compare the performance of the prediction tools employed by pyRBDome, we used
268  our ground truth datasets and recommended probability/scoring thresholds for identifying an
269 amino acid as RNA-binding (Brenke et al, 2009; Li et al, 2014; Walia et al, 2014; Peng &
270  Kurgan, 2015; Paz et al, 2016). The key performance metrics for each predictor (Fig. EV3).
271  show that RNABIndRPIus is one of the better performing tool on both the GT-PLIP and GT-
272  Distance datasets, achieving the highest accuracy and precision. Notably, the performance of
273  aaRNA on our GT-Distance dataset was comparable to its performance on a smaller ground
274  truth dataset consisting of 67 RBPs (RB67; (Li et al, 2014)).

275 To simplify and automate the generation of ground truth datasets, we have included
276 scripts in pyRBDome-Core that contain code needed for automated downloading of protein
277  (FindUniProtPDBStructures.py) and protein-RNA complexes (FindUniProtRNPStructures.py)
278  associated with specific UniProt IDs from rcsb.org, as well as code to calculate the distances

279  of each amino acid to RNA (ProteinNAdistanceAnalyses.py).
. PLIP PLIP
GT-Distance GT-PLIP h-bond m-cation

RNA contacts: High  None

<=2A  >42A SRP19 (P09132)

Figure 1. Ground truth analysis results for the human SRP19 protein. Shown is a surface
representation of the structure of the human SRP19 protein in complex with a variety of co-
crystallised RNA structures (wheat colour), obtained from available SRP19 protein-RNA complexes
and superimposed on the protein structure.

(A) Colouring amino acids in SRP19 by distance to RNA. Blue colours indicate amino acid residues
more than 4.2A away from RNA. The more the colour of the red spectrum, the closer the amino acid
is to co-crystallised RNA in 3D.

(B) As in (A) but colouring by how frequent an amino acid was detected to interact with RNA by PLIP
in available structures.
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280 We also wrote code to automate the PLIP analysis and the processing of the analysis
281  results (https://git.ecdf.ed.ac.uk/sgrannem/pyDRBPNA). All the results generated by our
282  ground truth analysis code is summarised in Dataset EV5. lllustrative examples of the ground
283  truth datasets are showcased in Fig. 1A and 1B, presenting the outcomes within the crystal
284  structures of the human SRP19 protein complexed with SRP RNA fragments.

285 To streamline the interpretation of the results, after the completion of the analyses, the
286  pipeline generates PDB files that visually represent the prediction outcomes on the structural
287  data, alongside PDF files containing the aligned prediction results within the protein sequence.
288 It also generates convenient PyMOL session files making it easy for the user to visualise all
289  the relevant PDB files simultaneously. The results for the SRP19 protein are shown in Fig. 2.
290 Data for all the analysed proteins are available from our GitLab repository
291  (https://git.ecdf.ed.ac.uk/sgrannem/). We have also included code in the pipeline that uses the
292  InterProScan package (Jones et al, 2014; Blum et al, 2021) to search for domains within the
293  proteins. If detected, the domains are highlighted in PDB and prediction outcome PDF files
294  (Fig. 2B). The residue highlighted in yellow in Fig. 2B indicates the SRP19 amino acid cross-
295  linked to RNA in the RBS-ID data.

296

297  Aggregating data from multiple predictors increases confidence in RBS identification.
298 The pyRBDome data analysis pipeline was founded on the principle that integrating
299  outcomes from various distinct predictors not only enhances the quality of RBDome data but
300 also enables more reliable identification of RBSs in proteins for which cross-linking data is
301 absent. These assumptions were tested using machine learning (ML). Using the ground truth
302 datasets outlined above, we developed eXtreme Gradient Boosting (XGBoost) ensemble
303 classification models (Chen & Guestrin, 2016) that utilise the prediction results from the
304 diverse tools used by pyRBDome as features to predict how likely an amino acid is to bind
305 RNA (detailed in Fig. EV4). The XGBoost probability scores for SRP19, derived from all the
306 pyRBDome results for this protein, are shown in the model prediction structure Fig. 2A and
307 the score barin Fig. 2B.

308

10
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Figure 2. A representative example of pyRBDome analysis results.

(A) Surface representations of the structure of the human SRP19 protein. Colours on the amino
acids of SRP19 correspond to the scores/probabilities reported by different prediction algorithms.
Blue colours denote amino acid residues with low scores, and the more the colour of the amino acid
moves towards the red spectrum, the higher the RNA-binding probability/score. In the case of the
FTMap results, the red-coloured amino acids are those less than 4.2A away from docked small
molecules, while blue colours indicate residues >4.2A away from docked ligands.

(B) An example of a pyRBDome PDF output file displaying the results along the linear sequence.
Domains identified in the protein are outlined with ovals. Cross-linked amino acid residues are
highlighted in yellow. The score bar represents the RNA-binding probabilities for the amino acid
residues as determined by our XGBoost model using all the prediction results. The additional rows
show results from various predictors (aaRNA, BindUP, FTMap, RNABindRPlus, and DisoRDPbind).
Here, the blue amino acid residues indicate those with values at or above the recommended
probability/score threshold (aaRNA: =0.18, BindUP: =10, RNABIindRPIlus: =0.5, DisoRDPbind: =
0.16; FTMap <=4.2A). The ground truth analyses results for SRP19 are also presented. GT-PLIP:
red-coloured residues bind RNA in the SRP19-RNA structures. GT-Distance: red-coloured residues
are amino acids positioned within 4.2A of RNA in available structures.

310 Developing a robust ML model for predicting RBSs is challenging, requiring extensive
311  benchmarking against existing tools and deeply curated ground truth datasets, which is
312  beyond the scope of this manuscript. However, precision-recall analyses (Fig. 3B and E)
313 indicated that the XGBoost classifiers trained on the combined prediction results of the human
314 ground truth datasets exhibited lower false positive and false negative rates compared to
315 classifiers trained solely on data from individual tools. Furthermore, XGBoost models trained
316  with more RBS prediction data displayed improved Area Under the Curve (AUC) values (Fig.
317  3C and F), implying they better distinguish between amino acids that bind RNA and those that
318 do not. We note that models trained on GT-PLIP generally performed poorer than might be
319 expected. This is likely because not all available structures could be analysed by PLIP due to
320 limited resolution, reducing the size of the training dataset. Additionally, the unbalanced nature
321  of GT-PLIP dataset, with only approximately 5% of all amino acids interacting with RNA, likely
322  also significantly contributed to the lower precision of the XGBoost models trained on the PLIP
323  data, despite artificially balancing the datasets (see Materials and Methods).

324 It is important to note that the individual prediction tools (i.e., the model features) do
325  not contribute equally to the predictions made by the XGBoost models, but the significance of
326  each model is evaluated during the training. Analysis of the feature reliance in the performance
327 of the XGBoost model (Fig. EV5A) revealed that BindUP, RNABindRPlus and aaRNA
328 exhibited the highest importance among the RBS prediction tools, enabling the model to
329 approximate the ground truth more accurately. Training XGBoost models using various
330 combinations of RBS prediction data revealed that models trained with a more extensive
331 collection of RBS prediction data showed increased precision (Fig. 3G; Average Precision
332  (AP)). Notably, the AUC scores displayed less reliance on the number and type of RBS

333  prediction datasets used.
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Figure 3. Assessment of XGBoost models trained on prediction models.

(A) GT-Distance ground truth analysis results for the human SRP19 protein illustrating the distance
in A for each amino acid relative to RNA molecules. Shown is a surface representation of the structure
of the human SRP19 protein in complex with a variety of co-crystallised RNA structures (wheat
colour), obtained from available SRP19 protein-RNA complexes and superimposed on the protein
structure}_\(colour gradient: red indicates a distance <2A, yellow to green indicates a distance >= 2A
but < 4.2A).

(B) Precision-recall curves for the various XGBoost prediction models trained on the GT-Distance
ground truth data using the predictions from either the individual tools or all predictions combined.
The Average Precision (AP) score for each model is indicated in the legend (e.g., aaRNA AP = 0.46).
(C) Receiver operating characteristic (ROC) curves for the same prediction models, with Area Under
Curve (AUC) scores provided in the legend.

(D) Visualisation of protein-RNA interaction predictions using an example from the GT-PLIP ground
truth dataset, with the number of interactions identified by PLIP in available structures indicated in
different colours (blue: none; green; at least 1, yellow, intermediate; red highest number).

(E-F) Precision-recall (E) and ROC (F) curves for XGBoost models trained on the GT-PLIP ground
truth data using predictions from the individual tools or all combined, with AP and AUC scores for
each model shown in the legend.

(G-H) Bar graph comparing the AP (G) and AUC (H) scores across different XGBoost models for the
GT-Distance training dataset. The XGBoost models were trained using a combination of results from
different predictors. The heat map below the bar plot indicates what predictions were used for training
and testing the model.
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335 These results validate our premise that combining results from multiple tools can
336  improve prediction of RNA-binding amino acids in proteins and establish a strong foundation
337 for the development of more enhanced ML models (see Discussion). These results also
338  highlight the flexibility of our XGBoost model: even if the user is unable to provide results from
339  some of the tools, the model will still be able to generate predictions with a reasonable average
340 precision (Fig. 3G). We subsequently used the XGBoost model trained on the GT-Distance
341 data to predict RBSs in proteins from the RBD-ID data. All the results from these analyses are
342  provided together with the cross-linking information for each protein in Dataset EV4. On our
343  GitLab repository we also provide PDB and PDF files summarising our XGBoost prediction
344  results for all the proteins analysed during the course of the project.

345

346 UV irradiation favours cross-linking RNA to positively charged and aromatic amino
347 acids flanked by aliphatic residues.

348 The likelihood of an RNA-protein interaction at a specific site is significantly influenced
349 not only by the chemical properties of amino acids but also by its neighbours, owing to
350 favourable protein folding or surface electrostatic forces. Recent studies have demonstrated
351 that RBPs are enriched for tripeptide motifs consisting of positively charged, negatively
352 charged, and aliphatic amino acids, and these triplets are conserved across evolution
353  (Beckmann et al, 2015; Bressin et al, 2019). In three organisms that were analysed (Homo
354  sapiens, Escherichia coli and Salmonella. typhimurium), tripeptides with a combination of
355 arginines, lysines and glycines were strong predictors for RBPs. The pyRBDome pipeline can
356  perform tripeptide motif analyses RBDome data, enabling users to identify motifs most likely
357 to contribute to RNA-binding in their model organism. pyRBDome searches for tripeptide
358  motifs enriched in the cross-linked peptides relative to randomly selected peptides from the
359  same protein sequence (Fig. 4A). To enhance these analyses, pyRBDome also performs the
360 same motif analyses based on the biochemical properties of the amino acids in the tripeptide
361 motifs (Fig. 4C). Strikingly, the result show that while amino acids with positively charged
362 residues are highly enriched in the human ground truth data (Fig. 4A, C), tripeptides containing
363  combinations of aromatic (i.e., Y and F) and aliphatic (i.e., G, V and A) are very highly enriched
364 in the cross-linked peptides (Fig. 4B, D). This is consistent with the strong bias towards UV
365  cross-linking to specific amino acids, such as aromatic amino acids, to RNA.

366

367 pyRBDome reveals insights into domain RNA-binding interfaces.

368 In addition to providing information about enriched domains in RBDome data, the
369 pipeline can also identify RNA-binding interfaces within individual domains. UV cross-linking

370 s inefficient and stochastic, so within individual protein domains, only a few of all possible
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Figure 4. Cross-linked peptides are enriched for tripeptides containing aromatic and

positively charged amino acids flanked by aliphatic residues.

(A) Tripeptide motifs detected in RNA-binding regions (amino acids within 4.2A from RNA) from
known RBPs.

(B) Tripeptide motifs enriched in the RBD-ID cross-linked peptides.

(C) Enriched chemical properties of tripeptide sequences detected in the ground truth data described
in (A).

(D) as in (B) but now showing the chemical properties. Categories: L: aliphatic; R: aromatic; C:
acidic; B: basic; H: hydroxilic; S: sulphur-containing; M: amidic. P-values were calculated using the
Fisher exact test and corrected for multiple testing using the Benjamini-Hochberg procedure.

RNA-binding interactions will be detected, providing limited mechanistic insights into domain-
RNA interactions.

However, it is reasonable to assume that these domains within different proteins will
have defined modes of RNA recognition. Therefore, if peptides/amino acids reported in
RBDome data indeed represent genuine RNA-binding events, aggregating the cross-linking

data from proteins that share the same domains may provide valuable insights into preferred
RNA-binding interfaces.
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Figure 5: Insights into RNA-binding interfaces in protein domains through aggregated
amino acid UV cross-linking data.

(A) Superimposed peptide sequences mapped to RRM domains in proteins identified in the RBS-
ID dataset. These sequences were aligned on available structural models of RRM domain-
containing proteins. The various o and 3 secondary structural elements within the RRM domains
are also indicated.

(B) As in (A), but with the side chains of UV cross-linking sites within the domains highlighted as
yellow sticks. The white cloud represents the surface area of the RRM domains.

(C) The number of UV cross-links detected in all superimposed RRM domains (y-axis), correlating
to their specific positions within the domain (x-axis). Below the x-axis, the consensus secondary
structure for RRM domains is depicted for reference.

378 To test this hypothesis, we further analysed the cross-linking data for RRM-containing

379  proteins. The RRM domains in which cross-linking was detected were structurally aligned
380 using MM-align (Mukherjee & Zhang, 2009) and superimposed. For those RRM domains for
381 which crystal structures were not available, AlphaFold2 structure models were used.
382  Subsequently, the cross-linked peptides and amino acids were highlighted within the
383  superimposed structures (Fig. 5A-B). Typical RRM domains consist of four anti-parallel 8
384  sheets stacked on top of two a helices (Fig. 5A). Our analyses revealed that many cross-

385 linked amino acids clustered in the same regions of the RRMs and concentrated in the
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386  sheets (Fig. 5B). This finding is consistent with the essential role of the RRM (3 sheets in RNA-
387 binding (Maris et al, 2005). Moreover, aromatic amino acids from the first and third  sheet
388 that are important for RNA-binding (Maris et al, 2005) frequently cross-linked to RNA (Fig. 5C,
389 red bars). However, to obtain meaningful results, many cross-linking events within a specific
390 domain are required. To illustrate this point, the same analyses on type 1 KH domain proteins
391 (36 cross-links), which were also enriched in the RBD-ID data, did not reveal a convincing
392  cross-linking pattern (Fig. EV6G). Nevertheless, our work demonstrates the potential of using
393  high-throughput UV cross-linking studies for studying protein-RNA interfaces.

394

395 UV-induced protein-RNA cross-links frequently occur in proximity to structurally
396 determined protein-RNA contacts.

397 We next asked to what extent the RBS-ID data agreed with our ground truth datasets.
398  For this purpose, we only considered UniProt IDs from the RBS-ID data for which protein-RNA
399  structures were available. We then compared this selection of RBS-ID data with our PLIP-
400 analysed structures (GT-PLIP dataset). For each cross-linked amino acid reported in the RBS-
401 ID data, we measured the distance (in A) to the nearest RNA-binding amino acid detected by
402  PLIP. The results were then aggregated into the cumulative plot shown in Fig 6A. Much to our
403  surprise, these data showed that only 21.1% (43/204 amino acids) of the reported cross-linking
404  sites interact with RNA in high-resolution structures (as reported by PLIP; Fig. 6A). Previous
405  work (Knorlein et al, 2022) demonstrated that UV does not necessarily always cross-link the
406  amino acids that in available structures bind RNA, but neighbouring amino acids can also be
407 indirectly covalently attached to RNA. Consistent with this idea, more than half (66.4%) of the
408  cross-linked amino acids were located within hydrogen-bonding distance (4.2A) of PLIP sites
409 and 42% within 4.2A distance of RNA in these structures (Fig. 6B). Statistical analyses
410  (Kolmogorov—Smirnov (KS) tests) revealed that RBD-ID data are indeed highly enriched for
411  amino acid positions that are close to PLIP sites or RNA molecules in 3D structures (relative
412  to shuffled cross-linked amino acids or all amino acids; Fig. 6A-B). These data therefore
413  reinforce the idea that, when comparing the experimental data to existing structural data, UV
414  cross-linking does not always capture amino acids directly binding to RNA, but that they are
415  generally closer to RNA molecules.

416 We next focussed specifically on the cross-linked amino acids that overlapped with
417 RBSs in our GT-PLIP dataset and asked what type of interactions they are involved in.

418  Consistent with previous work (Knérlein et al, 2022), we find that phenylalanine r-stacking
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Figure 6: Limited concordance between UV cross-linking data and protein-RNA structures.
(A) The cumulative distribution of distances for cross-linked amino acids (yellow), randomly shuffled
amino acids (blue), and the total pool of amino acids (green), in comparison to established RNA-
binding amino acids determined by PLIP. P-values, calculated using the Kolmogorov-Smirnov (KS)
test, indicate significant differences between groups. The 4.2A threshold, indicated by the dashed
vertical line, is used to determine the proximity required for hydrogen bonding.

(B) Similar to (A), this analysis plots the cumulative distances of cross-linked, randomly selected,
and all amino acids within the studied RNA-binding proteins (RBPs), relative to their proximity to
RNA. The KS test was also employed here to calculate p-values.

(C) Amino acids that form n-stacking interactions are often cross-linked to RNA. The pie chart
displays the percentages of each cross-linked amino acid involved in different types of interactions:
hydrogen bonding (H-bond), n-stacking, m-cation, salt bridge, and hydrophobic interactions, as
identified by PLIP. These percentages were calculated by dividing the number of a specific type of
interaction by the total number of such interactions detected in the analysed structures.

(D) Counts of cross-linked amino acids involved in p-stacking interactions. Y = Tyrosine, H =
Histidine, F = Phenylalanine and W = Tryptophan.

interactions with RNA are most abundantly detected (Fig. 6C-D). However, our results also

suggest important contributions for hydrophobic and r-cation interactions (Fig. 6C).
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423  Cross-linked peptides as reliable proxies for RNA-binding regions?

424 As outlined above, a main reason why we established the pyRBDome pipeline was
425  because for our model organism (Methicillin-resistant Staphylococcus aureus) there was an
426  insufficient number of high-resolution structures of protein-RNA complexes available to
427  generate a robust ground truth dataset for validation purposes. When analysing data from less
428  well characterised organisms, the user can instruct the pipeline to determine whether cross-
429  linked peptides and/or amino acids are highly enriched for RBSs predicted by the various tools
430 employed by pyRBDome. Additionally, the user can test whether the cross-linking data is
431  enriched for amino acids that, according to our XGBoost model, have high RNA-binding
432  probabilities. Examples of such analyses on the human RBS-ID data are shown in Figures 7.
433  These data indicate that the reported cross-linked amino acids have a significantly higher
434  likelihood to bind RNA compared to randomly selected amino acids from the same proteins or
435  the general population of all amino acids from the analysed proteins. However, the variability
436 in the distribution of the RNA-binding probabilities for cross-linked RNAs, as shown by lower
437  tail of the distribution, indicates that while cross-linked amino acids are indeed more likely to
438  be predicted as RNA-binding, they are not a definitive indicator by itself.

439 Therefore, we next asked whether cross-linked peptides might be a better proxy for

440 RBS detection. The pyRBDome pipeline allows the user to test this in two ways: Firstly, the
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Figure 7: Cross-linked peptides as reliable proxies for RBSs.

(A) Violin plots showing the distribution of RNA-binding probabilities as determined by our XGBoost
model for cross-linked, randomly shuffled amino acids, and all available amino acids within the
analysed RBPs.

(B) The distribution of the highest RNA-binding probability score (determined by our XGBoost
models) detected in cross-linked peptide sequences. Control datasets included randomly generated
peptides with the same length distribution, and peptide libraries generated in silico by Lys-C or
Trypsin digestion of the RBPs analysed here.

(C) As in (B), but now for the average RNA-binding probabilities calculated for each cross-linked
peptide. P-values, calculated using a two-sided Mann-Whitney-Wilcoxon test with Bonferroni
correction, indicate significant differences between groups, as shown above each comparison. The
violins represent density estimations of the distances, with wider sections indicating a higher
frequency of amino acids at a particular distance. The white dot in the center of each violin plot
denotes the median distance, and the thick lines within the violins represent the interquartile ranges.
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441  user can compare the data with results obtained from individual predictors, such as aaRNA or
442  FTMap, for example, as illustrated in Fig. EV7. These data show that the generated RBS-ID
443  peptides were both enriched for predicted RBSs and/or more likely to be in closer proximity to
444  these sites (aaRNA and RNABIndRPlus; Fig. EV7A-B). Interestingly, the same was true for
445  putative small-molecule binding sites predicted by FTMap (Fig. EV7C). The second approach
446  determines whether the cross-linked peptides are enriched for amino acids with higher RNA-
447  binding probabilities as determined by our XGBoost model. We addressed this by (l) tracking
448  the highest RNA-binding probability found in a peptide sequence (Fig. 7B) and (ll) calculating
449  the mean RNA-binding probabilities for each peptide (Fig. 7C). Our analyses strongly indicate
450 that cross-linked peptides typically include at least one amino acid with a significantly higher
451  RNA-binding propensity compared to control samples (Fig. 7B). Notably, the RNA-binding
452  probability distribution shown in Fig. 7B for cross-linked peptides is distinctly skewed towards
453  higher values, suggesting that these peptides have a greater tendency for containing RNA-
454  binding amino acids relative to the randomly selected control group peptides. However, the
455  randomly generated peptides were not products of Trypsin and/or Lys-C digestion. To address
456  this, we also compared the cross-linking data to peptides from parent proteins digested in
457  silico by Trypsin/Lys-C. This comparison showed an even higher presence of predicted RBSs
458 in cross-linked peptides, affirming the predictive strength of our XGBoost model and the
459  significant value of cross-linked peptide data for detecting RBSs.

460

461 pyRBDome correctly identifies RBSs in an S. aureus 3’-5’ exonuclease.

462 Having extensively tested pyRBDome on human data, we next applied the pipeline on
463 RBPome data from a less well characterised organism. For this purpose, we used our
464  published RBPome data (Chu et al, 2022) generated on a clinically relevant S. aureus strain
465  (USA300). (Model) structures for the top 200 enriched proteins were analysed by the pipeline
466 and the results are available on our GitLab repository
467  (https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks Staphylococcus_aureus_analys

468  es). Given that our current XGBoost model had only been trained on human ground truth data,
469 these analyses also tested the adaptability of the model to data from a genetically distant
470  organism. To verify our findings, we focussed our analysis on the S. aureus polynucleotide
471  phosphorylase (PNPase) 3’-5" exonuclease, for which crystal structure data was available for
472  both S. aureus (active site only) and Caulobacter crescentus (Hardwick et al, 2012; Wang et
473  al, 2017). The latter structure also contained a short piece of RNA, enabling us to verify the

474  reliability of the predictions.
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C. crescentus PNPase pyRBDome model
PDB ID 4AM3

Figure 8: pyRBDome detects known RNA-binding regions in S. aureus Polynucleotide
Phosphorylase (PNPase).

(A) Results from prediction algorithms on the surface representation of a PNPase monomer. The
colours for BindUP, DisoRDPbind, and RNABIindRPIlus results indicate RNA-binding probabilities,
with cooler shades (blue) suggesting lower and warmer shades (red) indicating higher RNA-binding
likelihood. For the FTMap results, warmer red shades signify shorter distances to docked molecules.
The active site of the nuclease is marked with a square box. The GSGG loop is marked with a red
square box. Blue colours represent amino acids with low RNA-binding prediction scores (BindUP,
DisoRDPbind, or RNABIndRPIus), whilst red colours indicate amino acids with high RNA-binding
prediction scores. For the FTMap data, the blue to red colour gradient denotes decreasing distance
to dockAed small molecules, with red indicating distances of <2A and blue indicating distances
of >4.2A.

(B) Crystal structure of PNPase from C. crescentus, in complex with RNA, PDB ID 4AM3 (Hardwick
et al, 2012). The RNase PH-like domains, coloured in dark and light pink, are linked by a helical
domain, coloured in yellow. The KH domain (green) interacts with the RNA of the structure through
the GSGG loop (red). The S1 domain is absent from this crystal structure.

(C) Structural alignment of the RNA from structure 4AM3 on the PNPase AlphaFold2 model with
results from XGBoost model predictions trained on the prediction results from all algorithms.
Catalytic residues are displayed as spheres and are highlighted in an enlarged view of the active
site region.

To obtain a structure with the complete S. aureus PNPase sequence, we downloaded
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476  the AlphaFold2 model. This model was in good agreement with the published structures
477  (RMSD values between 0.6 and 1; Fig. EV8A).

478 PNPase consists of three subunits that form a ring-like central channel where the RNA
479  threads through the enzyme (Fig. EV8B). The S1 and KH domains, located at the C-terminus
480  of each subunit, form the entrance of the channel, and direct single-stranded RNA towards
481  the catalytic residues of the RNase PH-like domain, which is located at the N-terminal side of
482  the channel (Hardwick et al, 2012). In the C. crescentus PNPase-RNA crystal structure, a 12-
483  nucleotide RNA fragment interacts with the KH domain, through the conserved RNA-binding
484  GSGG loop (Fig. EV8BA-B, Fig. 8A-C). These amino acids were predicted to bind RNA with
485  high probabilities by RNABindRPIlus and our XGBoost model (Fig. 8A-C). The predictions of
486  our pipeline largely accumulated on the internal surface of the ring-like structure that interacts
487  with RNA. This can easily be observed when overlaying the RNA from the C. crescentus
488  structure on the pyRBDome PNPase structure with the model predictions highlighted Fig. 8B-
489  C. Interestingly, while FTMap highlighted the PNPase active site for its high potential to bind
490 small molecules (Fig. 8A; red coloured amino acids), this region showed relatively low RNA-
491  binding probabilities, reflecting the nuanced contribution of FTMap results to our XGBoost
492  model's predictions (Figs. 3 and EV5). The aaRNA analysis on the PNPase model structure
493  did not yield any results and therefore these data were missing when using our XGBoost
494  model, which was trained with aaRNA data, for predicting RBSs in this structure. Despite this,
495 the XGBoost model yielded correct predictions for PNPase RNA-binding regions, again
496  highlighting the degree of flexibility and robustness in the predictive capabilities of XGBoost
497  models.

498 In conclusion, the pyRBDome pipeline and the analysis tools we provide in this
499  package are versatile and valuable tools for elucidating RNA-protein interactions across varied
500 datasets and organisms.

501

502 Discussion

503 Here we present the pyRBDome pipeline for in silico enhancement of RBPome and
504 RBDome proteomics data. This pipeline, which leverages both protein sequences and
505  structural information, employs a variety of distinct prediction tools for identifying putative RNA
506  Binding Sites (RBSs) within target proteins (Fig. EV1 and EV4). It subsequently highlights the
507 results from each prediction algorithm either within provided peptide/amino acid sequences,
508 or entire protein sequences. The pipeline is capable of processing hundreds of proteins from
509 large proteomics datasets or individual proteins. Significantly, the pipeline simplifies the
510 complex data from these predictions, providing easily interpretable results that facilitate

511 identification of residues involved in RNA-binding. The inclusion of PyMOL sessions allows
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512 users to visualise all the experimental and prediction results in 3D model structures
513  simultaneously. Furthermore, pyRBDome includes statistical analyses to assess whether
514  sequences obtained from RBDome studies show a significant enrichment of predicted RBSs,
515 thus offering a quantitative measure that can improve the quality of the experimental data.
516  Collectively, these findings underscore pyRBDome's utility in streamlining the detection of
517 RBSs in proteins and in effectively enhancing RBDome data.

518

519 Agreement between RBDome UV cross-linking and structural data

520 To demonstrate the utility of pyRBDome we analysed a data rich human RBDome
521 dataset (RBD-ID; (Bae et al, 2020), which provided, besides a list of (putative) RBPs, also an
522  extensive list of RNA cross-linked amino acids. However, it did not contain the peptide
523  sequences to which these cross-linked amino acids belonged. To address this, we artificially
524  extended these amino acid sequences on both ends with varying lengths to create a peptide
525  dataset suitable for analysis with our our pipeline. We found that both cross-linked peptides
526 and amino acid sequences are significantly enriched in RBSs (RNA-binding sites), as
527  predicted by individual tools or our combined XGBoost ensemble model. Surprisingly, when
528 we compared the cross-linked amino acid data with our GT-PLIP dataset, which includes
529  amino acids known to interact with RNA based on structural data, we observed limited overlap.
530 While cross-linked amino acids were statistically more likely to be near RNA compared to
531 randomly selected amino acids, only about 21% of them were actually found to bind RNA
532  according to the available structural data. The limited overlap observed might suggest that UV
533  cross-linking data contain a considerable amount of noise. However, it is important to note
534  that our ground truth datasets, which were constructed solely from high-resolution structures,
535 are also unlikely to include all possible protein-RNA contacts. Many structures contain proteins
536  in complex with short pieces of RNA and therefore provide limited insights into the full RNA-
537  binding capacity of the protein. Not every RNA substrate will also interact identically with an
538 RBP and protein-RNA interactions can be highly dynamic and condition dependent. Though
539 UV cross-linking can often capture such interactions in vivo and in cellulo, many of these might
540 not be represented in static structures (also see (Bae et al, 2021)).

541 Our comparison of the RBS-ID data with our XGBoost model predictions, suggest that
542  sequences of cross-linked peptides are more reliable indicators of RNA-binding sites than
543 individual amino acids. This is because they tend to include amino acids with higher RNA-
544  binding probabilities. Thus, comparing the cross-linking data with results from predictive
545  models may offer a more effective solution for corroborating or supporting RBDome data. This
546 s particularly true for models that are not solely reliant on existing protein-RNA structures for
547  training. Such models are presumably better equipped to identify amino acids interacting with

548 RNA, including those interactions not represented in structural data.
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549 Another potential source of noise could stem from the analysis of mass spectrometry
550 data. The software tools employed for analysing such datasets typically offer localisation
551  scores, which indicate the probability of an amino acid being cross-linked to RNA. If the quality
552  of a dataset is subpar, accurately pinpointing the precise cross-linking site becomes more
553  challenging, leading to lower localisation scores and consequently, increased noise in the data.
554  However, in the RBS-ID dataset that we analysed (Bae et al, 2020), 80% of the reported cross-
555 linking sites (detected using MS-GF+ with a closed search; (Kim & Pevzner, 2014; Bae et al,
556  2020)) had very high localisation scores (between 0.8 and 1). While there is undoubtedly noise
557 in the data, we would argue that the quality of this RBS-ID dataset is not a major contributor.
558

559 A recent study has also revealed that UV cross-linking does not exclusively target
560 amino acids in direct contact with RNA,; it can also affect those in indirect proximity (Knérlein
561 et al, 2022). Furthermore, it was found that n-stacking interactions are key to directing the
562  cross-linking reactions (Knorlein et al, 2022). This may also offer an explanation for our
563  observation that few cross-linked amino acids were found to bind RNA in our GT-PLIP ground
564  truth dataset, and if they did they were mostly involved in n-stacking. However, a significant
565  proportion of the cross-linked amino acids were observed to be in close proximity to RNA
566  within protein-RNA structures. Drawing on these findings and the bioinformatics analyses
567 conducted in this study, when using pyRBDome data to design follow-up mutational analyses,
568 we recommend prioritising aromatic, suphur containing and positively charged amino acids
569 that have high RNA-binding prediction scores, that have undergone cross-linking or are
570 located in cross-linked peptides, and those that are proximal to cross-linking sites, either
571  sequentially or in the three-dimensional (model) structures.

572

573  Developing an ensemble model for enhanced prediction RNA-binding amino acids.
574 The foundational concept behind the creation of the pyRBDome pipeline stemmed
575  from our belief that combining results from multiple predictors would improve the identification
576  of RNA-binding residues in targeted proteins. While this was not the main goal of our project,
577 the comprehensive datasets generated by pyRBDome presented a prime opportunity to
578 validate this hypothesis through machine learning. By leveraging the predictive data from
579 various tools, we developed a eXtreme Gradient Boosting (XGBoost) ensemble models.
580 These models discern patterns within the aggregated predictive results and aligns them with
581  known RNA-binding amino acids in the existing structural data. The main reasons for relying
582  on XGBoost to build these preliminary models include its frequent outperformance of neural
583  networks when presented with tabular data (such as the data used here), its ability to handle

584  missing data points effectively (useful in cases where a protein could not be analysed by one
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585  of the prediction tools), its competence in dealing with unbalanced datasets (our ground truth
586  datasets are unbalanced), and its tolerance to uninformative features (Chen & Guestrin, 2016;
587  Grinsztajn et al, 2022). XGBoost therefore provided an excellent starting point for developing
588 improved models for RBS prediction.

589 The preliminary models we constructed outperformed the individual tools,
590 demonstrating greater accuracy and precision in predictions (Fig. 3). While these results are
591  promising, there are areas where the XGBoost models could be further improved. For instance,
592  ourcurrent models have exclusively been trained on data from human protein-RNA complexes.
593  Therefore, their robustness could be enhanced by training the models on structurally
594  characterised protein-RNA complexes (RNPs) from diverse organisms. It should also be noted
595 that our training sets, in addition to AlphaFold2 models, mainly consists of structurally
596 characterised proteins/domains. As a result RBPs with disordered RNA-binding regions are
597 underrepresented or their disordered regions were excluded from the analyses. This
598 underreprentation likely contributed to the less optimal performance of DisoRDPbind on our
599 test data. However, this can be circumvented by reanalysing the data using only AlphaFold2
600 models, where these sequences will be represented (albeit not accurately folded).
601  Alternatively, including a wider array of RNA-binding domains from disordered regions (Zhang
602 et al, 2023) will undoubtedly enhance DisoRDPbind's predictions and subsequently further
603 improve the accuracy and precision of our XGBoost models. Therefore, the analyses
604  presented here, constrained by the current datasets, do not fully capture the true potential of
605 DisoRDPbind.

606

607 Pipeline performance

608 The pyRBDome pipeline was designed to process a large number of proteins
609  simultaneously, naturally leading to questions about the typical duration of an RBPome or
610 RBDome dataset analysis. While there is no definitive answer, as it varies, performing the
611 pyRBDome analysis on the RBS-ID dataset (consisting of 584 proteins) took approximately 8
612  days. The most time-consuming step involved submitting jobs to various servers, with tools
613  like FTMap and aaRNA typically taking longer to yield results. The analysis duration primarily
614  depends on factors such as the size of the proteins being analysed, the server's computational
615 power, and the server queue lengths. Despite these variables, we consider an 8-day
616  turnaround to be quite reasonable for such a large dataset. Future developments of
617 pyRBDome, as discussed in the next section, will focus on incorporating tools with shorter
618  execution times. However, it's important to note that faster processing does not always equate
619  to more accurate results, presenting a constant trade-off.

620

621  Future pyRBDome pipeline developments
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622 To develop the pyRBDome pipeline, we evaluated a wide array of distinct tools
623  designed to predict RNA-binding amino acids, and that take into consideration various
624  sequence and structural features of ligand-binding proteins. However, integrating these tools
625 into pyRBDome presented several challenges. These included inactive web servers and
626  compatibility issues such as dependency conflicts and lack of comprehensive documentation,
627  which hindered smooth integration with our Linux servers. Moreover, not all the web servers
628  we tested were suitable for high-throughput analysis of protein sequences and structures, and
629 some had run times that made the analysis of hundreds of proteins excessively time-
630 consuming. This presented a notable challenge in integrating tools that could potentially
631  outperform those currently described. However, the pipeline is continually evolving, and our
632  existing Python code allows for relatively straightforward incorporation of new tools and the
633  processing of their results.

634 Throughout this project, numerous advancements have been made in developing
635 improved methods for predicting RNA-binding sites (RBSs) in proteins. A notable example is
636  DeepDISOBind, an improved model for predicting RNA-binding residues in disordered regions
637 (Zhang et al, 2022). We are in the process of incorporating the stand-alone version of this tool
638 into pyRBDome-Core and pyRBDome-Notebooks. We are also testing PST-PRNA (Li & Liu,
639 2022), a deep learning model that predicts RBSs using protein surface topology. This tool
640 outperforms aaRNA, a structure-based prediction method employed by pyRBDome. PST-
641 PRNA has the added advantage of not relying on sequence identity and conservation for its
642  predictions and may therefore perform better on non-classical RBPs. Preliminary data from
643 these analyses can be found in versin 1.1.2 of our pyRBDome-Notebooks Ground truth
644  analyses GitLab repository that details the development and analysis of our ground truth
645  datasets

646  (https://qit.ecdf.ed.ac.uk/sgrannem/pyRBDome Notebooks Ground truth analyses). Other

647  tools under evaluation are NCBRPred (Zhang et al, 2021), a sequence-based predictor likely
648  to replace RNABIndRPIlus, and HybridRNAbind, a tool trained on both structural information
649  and available RNA-binding regions in disordered domains (Zhang et al, 2023). We also tested
650 HydRA (Jin et al, 2023), a deep learning method designed for detecting RNA-binding proteins
651  and RNA-binding regions. Similar to the XGBoost model described here, HydRA functions as
652  an ensemble classifier, utilising information from diverse prediction tools. It not only predicts a
653  protein’s RNA-binding capacity, but can also detect potential RNA-binding regions in RBPs.
654  Using our human GT-PLIP and GT-Distance ground truth datasets, HydRA's performance in
655  detecting RBSs was not as high compared to the individual tools employed by the pyRBDome
656  pipeline or our XGBoost ensemble model (see 6.1.2_BinaryClassifierAnalysesRBDData.ipynb
657  notebook in the pyRBDome-Notebooks Ground truth analyses repository). This is why we do

658  not discuss the HydRA results here. This may be due to HydRA being optimised for predicting
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659  RNA-binding regions, whereas our ground truth datasets are more specific to individual RNA-
660  binding amino acids. Despite this, we recognise HydRA's value in identifying RNA-binding
661  capacities in proteins and have incorporated code in version 0.2.0 of pyRBDome-Core and
662  version 1.1 of pyRBDome-Notebooks to process and display HydRA predictions in PDF and
663  PDB files. All the raw HydRa analysis results are also available on our pyRBDome-Notebooks
664  GitLab repositories.

665

666 One might argue that constructing a pipeline dependent on multiple web servers, as in
667 the case of pyRBDome, inherently invites reliability issues, as demonstrated by our
668  experiences with inconsistent server availability. While our efforts are increasingly directed
669 towards integrating standalone packages into the pyRBDome pipeline, it is important to
670 acknowledge that running these prediction algorithms demands substantial computational
671  resources. This includes the need for high-specification CPUs (Central Processing Units) and,
672  more critically, GPUs (Graphics Processing Units). Not all research groups may have access
673  to such computational facilities. Moreover, even for groups that do have such resources, the
674  task of establishing and managing a pipeline comprising various stand-alone machine learning
675  tools is very challenging as it involves dealing with numerous dependencies and configurations.
676  Therefore, for future versions of the pyRBDome pipeline, we aim to strike a balance between
677  utilising web servers and integrating standalone packages.

678 A longer-term goal is to make the results from analyses available in public databases

679  with the aim to make the data more easily accessible for the wider public.
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680 Materials and Methods

681 Repository content

682 A description of all the directories and type of files that the pyRBDome pipelines
683  produce can be found in the README.md files in the individual repositories. The analyses
684  described here used code from pyRBDome-Core version 0.2.0, pyRBDome-Notebooks
685  version 1.0 and pyRBDome-Notebooks Ground truth analyses version 1.1.2.

686

687  Generating the human ground truth dataset.

688 We utilised the UniProt IDs from the RBS-ID dataset (Bae et al, 2020) to search
689  rcsb.org for available protein-RNA structures. To expedite this process, we developed the
690  script FindUniProtRNPStructure.py, which is now part of the pyRBDome-Core package. The
691 code used for downloading these PDB files is available in the
692  1.0_FindRNPStructures_using_UniProt_IDs.ipynb notebook, located in the pyRBDome-
693  Notebooks Ground truth analyses repository
694  (https://qgit.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks Ground_truth_analyses). For
695 each UniProt ID, we retrieved protein-RNA structures that met specific criteria: a resolution of
696 less or equal to 5A and the presence of at least one RNA molecule. Owing to compatibility
697 issues with CIF files, we chose to download only PDB files from rcsb.org. Each PDB file
698  corresponding to a UniProt ID was then analysed to determine the minimum distance (in A) of
699  each amino acid to the RNA. We also developed a Python package that utilises the PLIP code
700 (Adasme et al., 2021) to identify amino acids that interact directly with RNA in these structures.
701  The code for conducting these analyses and a description of how to carry out such analyses
702 s provided in the pyDRBPNA package on our repository.
703  (https://git.ecdf.ed.ac.uk/sgrannem/pyDRBPNA).

704 To further refine these ground truth datasets, we merged the distance calculations and
705  PLIP results for all PDB files associated with a single UniProt ID into a composite PDB file.
706  This file records only the shortest distances to RNA for each amino acid in the b-factor column,
707  as indicated in files ending with “distances_merged.pdb”. We also collated the frequency of
708 RNA contacts by amino acids across the structures (as detected by PLIP), storing this
709 information in the b-factor columns of files that end with “plip_merged_all.pdb”.

710

711  pyRBDome package and pipeline description

712 The pipeline introduced in this paper consists of two parts: pyRBDome-Core

713  (https://qit.ecdf.ed.ac.uk/sgrannem/pyRBDome Core) and pyRBDome-Notebooks

714  (https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Notebooks). The former contains all the

715  scripts, functions, and classes that users need to execute the Jupyter notebooks. The code
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716  has been developed and tested extensively on Ubuntu Linux operating systems (OS) and can
717  be adapted to work on Mac OS (12.7 and above). Details on how to install the packages and
718  run the notebooks, and the required computational resources can be found in the README
719  files on our repository. pyRBDome-Notebooks streamline the process of RNA-binding protein
720 and cross-linking data analysis by automatically running predictions either online or locally. It
721  then downloads, renames, and organises the results into specific directories. The pipeline
722  stores any progress it has made as well as result from all the analyses in an SQLite database.
723  This enables the user to keep track for which proteins (model) structures have been
724  downloaded and whether these structures were analysed successfully by each prediction
725  algorithm. Incorporating the SQLite database also enables the user to resume runs that may
726  have failed or timed-out and helps avoid repeated submission of PDB files that have already
727  been analysed. The results tables can also be easily exported to CSV files. All the notebooks

728  can also be run sequentially in the terminal using papermill (https://papermill.readthedocs.io).

729  Papermill is automatically installed when installing the pyRBDome-Core package.

730 The pyRBDome-Notebooks Jupyter notebooks each have their unique number. A
731  detailed description of what analyses each notebook does is outlined below.

732

733 1. Finding all available (model) structures for each UniProt ID.

734  pyRBDome-Notebooks notebook 1.0_FindingPDBs.ipynb was used to download all available
735  PDB files (<= 5A resolution) associated with the UniProt IDs listed in the RBS-ID data (Bae et
736  al, 2020) from rcsb.org (Berman et al, 2000), model structures that were generated by
737  AlphaFold2 (Jumper et al, 2021) or the SWISS-MODEL webserver (Bienert et al, 2017; Guex
738 et al, 2009; Studer et al, 2020; Waterhouse et al, 2018). For generating model structures, this
739  notebook first queries the Alphfold2 database (https://alphafold.ebi.ac.uk) and downloads the
740 latest model associated with that UniProt ID (PDB files ending with “_AF.pdb”). If it is unable

741  to find any models, it submits the protein sequence to SWISS-MODEL. Only models with
742 GMQE score higher than 0.7 were considered and their PDB files downloaded. Note that
743  SWISS-MODELS were not used in this study. For proteins that could not be modelled by
744  SWISS-MODEL or had a model of insufficient quality the protein sequences were blasted
745  against the AlphaFold model organism genome (notebook
746  1.1_FindingPDBsViaSequence.ipynb) to identify the closest homologue (notebook
747  1.2_GetAlphaFoldModels.ipynb). In these cases, we only considered proteins that had a
748  homolog with an identity of >= 99%. The PDB IDs associated with each protein are then saved
749 in the available_PDBs table in an SQLite database (pyrbdome_full.db). The tables in the
750 database have information about whether the PDB file was successfully downloaded and what
751 chainis included in the PDB file.

752
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753 2. Getting protein domains from Pfam.

754  After all the PDB files have been downloaded, notebook 1.3 will use the Interproscan tool
755  (Jones et al, 2014; Blum et al, 2021) to download all the domain information associated with
756  these proteins. Only Pfam domains are considered. A Linux version of Interproscan is provided
757  in pyRBDome-Notebooks programs folder. The user will need to install a different version if
758  Mac OS operating systems are used for the analyses.

759

760 3. Creating peptide control datasets.

761  Notebook 1.3 takes the protein sequence from each PDB file and digests the sequences in
762  silico with Trypsin and Lys-C to generate a library of all possible peptides that could
763  theoretically be detected by the mass-spectrometer for the protein of interest. If cross-linked
764  peptide sequences were provided, notebook 1.4 will generate a library of random peptide
765  sequences that are peptides of the exact same length distribution as the cross-linked peptides,
766  but that were randomly extracted from the protein sequence.

767

768 4. Performing RNA/ligand-binding sites predictions.

769  To predict RNA/ligand-binding sites on the proteins of study, we chose five different prediction
770  algorithms: aaRNA, BindUP, FTMap, RNABindRPIlus and DisoRDPbind (Walia et al, 2014;
771  Peng & Kurgan, 2015; Paz et al, 2016; Mehio et al, 2010). These notebooks will automatically
772  submit all the PDB files to the respective web servers, download the results, and store the
773  progress they have made with the analyses in the SQLite database. To further increase the
774  performance of the pipeline, we are also implementing the PST-PRNA deep learning approach
775  (Li & Liu, 2022) in our notebooks, which predicts putative RNA-binding amino acids entirely
776  using the surface topology of the proteins in the structures. Preliminary results from these
777  analyses are available in pyRBDome-Notebooks version 1.2.

778

779 5. Mapping the cross-linked amino acid and peptide sequences to the PDB files.
780 Notebook 3.0 takes the cross-linked, in silico digested and random peptide sequences and
781 maps them to the PDB files. Once the peptides have been mapped, it will determine the
782  location of cross-linked amino acids, if this information was provided. For example, if the
783  peptide sequence “PSRKDPKYREWHHFL” is analysed by this notebook and it could be
784  mapped to a PDB file sequence, it will record the start and end residue numbers for the peptide
785 and what chain it was mapped to in the PDB file. For this example, the code returned the
786  following result: 74A_ psrkdpkyrewhhfl_88A. This shows that the peptide was mapped
787  between residues 74 to 88 of chain A in the PDB file. Note that not all peptides will be mapped
788  as many structures do not contain the complete protein sequence.

789
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790 6. Processing the results and storing them in PDB files

791  Notebook 4.0 collects all prediction results and any domain and mapped peptide/amino acid
792  information and stores the results in the b-factor columns of the PDB file. This makes it
793  possible to visualise the results in PyMOL or other viewers.

794

795 7. Distance analyses.

796  The series 5 notebooks take all the prediction results, map these to the peptide sequences
797 and calculate the closest distance of the cross-linked peptides or control peptide sequences
798  to amino acids predicted to be involved in RNA-binding. The results are stored in tables in the
799  SQLite database. These tables enable the user to easily extract peptide sequences that
800 contain predicated RNA-binding amino acids. For example, if it found a predicted RNA-binding
801 amino acid in a mapped peptide (e.g. 74A_psrkdpkyrewhhfl _88A), it will indicate the location
802  of this amino acid in upper case (e.g.74A_psrkdpkyRewhhfl_88A).

803

804 8. Sanity check

805  Notebook 6.0 then looks at all the distance analyses and double checks if no errors were made
806 in the calculations. This notebook is tremendously useful for troubleshooting any issues that
807  might appear during the analyses.

808

809 9. Analysis of cross-linked peptide and amino acid sequences

810 The series 7 notebooks search for enriched tripeptide motifs enriched in the cross-linked
811 peptides and enriched amino acids in the cross-linked amino acid data, if available. It returns
812  atable containing the sequences of the enriched amino acid motifs or chemical properties and
813  associated p-values.

814

815 10. Making the final output files

816  The series 8 notebooks gather all the prediction and cross-linking information from the PDB
817 files that were produced by notebook 4 and place the information in a large table where RNA-
818  binding probabilities provided by each algorithm are stored as well as the location of cross-
819 linked peptides and amino acid residues. The notebooks in the pyRBDome-Notebooks
820 analyses of the ground truth dataset also contain extra code that adds the distances to RNA
821 molecules for each amino acid for all protein-RNA structures that were analysed. Notebooks
822 8.0 and 8.1 take all the prediction results available in the large table, feeds that to our XGBoost
823  models, and calculates for each amino acid in each protein a probability for RNA-binding. The
824 8.2 statistical analysis notebook determines whether cross-linked peptides and amino acids
825 (where available) are significantly enriched for predicted RBSs compared to the random

826 peptide datasets and the peptides generated by Trypsin/Lys-C digestion of the protein
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827  sequences. Notebook 8.3 takes all the analysis results and produces a PDF file summarising
828 all the results in the protein sequence for each protein. The scorebars in the PDF files indicate
829 the XGBoost RNA-binding probabilities for each amino acid. Notebook 8.4 generates PyMOL
830 session files that enables the user to conveniently load all PDB files into a single PyMOL

831 session.

832
833 11. Binary classification analyses. Training of XGBoost models.
834 The ground truth pyRBDome-Notebooks ground truth analysis repository contains

835 notebooks 6.1.1 and 6.1.2 outlining how the XGBoost models were trained on the GT-PLIP
836 and GT-Distance ground truth datasets, These notebooks also include details about what
837  parameter optimisation steps were performed and tests for analysing overfitting. The GT-PLIP
838 and GT-Distance ground truth datasets are provided on our repository as a text file

839 (https://qit.ecdf.ed.ac.uk/sgrannem/pyRBDome Notebooks Ground truth analyses/-

840 /blob/main/analysis results/All combined results.txt) and the Datasets EV5 in the

841  Supplementary Data. These files contain the names of the UniProt IDs that were analysed,
842  the PDB files we used, a list of all the amino acids and residue numbers for ech protein in the
843  PDB file, the distance of an amino acid to RNA (if available) and results from the PLIP analyses.
844  Dataset EV4 also contains all the prediction scores from the individual tools for each amino
845  acid.

846 For the training of the XGBoost ensemble model, we normalised the scores or
847  probabilities from each individual predictor (aaRNA, RNAbindRPlus, BindUP, and
848 DisoRDPbind) to a range between 0 and 1, where necessary. These normalised values were
849  then utilised as feature values for training the models (Fig. EV4). In the case of FTMap data,
850 the distances to docked molecules (in A) were normalised to values between 0 and 1, with the
851 highest values assigned to the shortest distances. The XGBoost model subsequently
852  generates output files containing probabilities that indicate the likelihood of each amino acid
853 interacting with RNA. Given that the number of RNA-interacting amino acids in the GT-PLIP
854 and GT-Distance ground truth datasets was approximately 5-10%, we undersampled the
855  majority class (i.e., non-interacting amino acids, labelled as '0’s) in our training data to address
856  the unbalanced nature of the dataset. To build the models, 80% of all structures in the ground
857 truth datasets were used for training and 20% for testing. Utilising Python's Scikit-learn and
858 the Optuna optimisation framework (Akiba et al, 2019), we optimised the hyperparameter for
859 our XGBoost models. This optimisation included 10-fold cross-validation to enhance the
860 robustness and generalisability of the models. All models, including those trained on various
861 combinations of prediction results, are available from our repository (pyRBDome-Notebooks
862  Ground truth analyses; 6.1 series notebooks and folder 'xgboost_models')..

863
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864 12. Analysis of predictions and cross-linking sites onto protein domains.

865 Notebook 9.0 analyses (1) what domains were detected in cross-linked peptides and (2)
866  which ones were enriched in the data. Notebook 9.1 extracts selected domains from the
867 available PDB files, superimposes them and highlights prediction scores, cross-linked
868  peptides, and cross-linked amino acids within the superimposed structures. To be able to run
869  notebook 9.1, we added the Linux version of MMalign (Mukherjee & Zhang, 2009) to the
870  ‘programs’ folder in the pyRBDome-Notebooks repository. This version was compiled on
871  Ubuntu 22.04 and may not be compatible with later versions of Ubuntu and different operating
872  systems. These analyses enable the user to determine whether predicted RBDs show specific
873  cross-linking patterns, making it possible to gain information about domain RNA-binding
874 interfaces.

875

876 Data Availability

877 All the code and data analyses results are available from our GitLab repository

878  (https://git.ecdf.ed.ac.uk/sgrannem) without restrictions. All the prediction and ground truth

879  analysis results can be found on the repositories starting with pyRBDome-Notebooks. The
880 pyRBDome-Core repository contains all the code required to run the pyRBDome-Notebooks
881  Jupyter notebook files. The results of all the analyses are also available as Microsoft excel
882  spreadsheets in the Supplementary information (Datasets EV2-5).
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