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Abstract27

Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behav-28

ior. However, it remains unclear how to optimally target stimulation to modulate brain activity in29

particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis30

that stimulation’s behavioral and physiological effects depend on the stimulation target’s anatom-31

ical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical32

patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary33

lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the34

study phase of the task. We found that LTC stimulation specifically improved memory when35

delivered to targets near white matter pathways. Memory improvement was largest for targets36

near white matter that also showed high functional connectivity to the brain’s memory network.37

These targets also reduced low-frequency activity in this network, an established marker of suc-38

cessful memory encoding. These data reveal how anatomical and functional networks mediate39

stimulation’s behavioral and physiological effects, provide further evidence that closed-loop LTC40

stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation41

through improved stimulation targeting.42
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Introduction43

Direct electrical stimulation of the human brain can manipulate circuits underlying perception,44

cognition, and action (Siddiqi et al., 2022; Scangos et al., 2021b). Such stimulation has been used45

to treat network syndromes of brain dysfunction, suggesting that stimulation influences a broader46

network of brain regions beyond the stimulated location (Mayberg et al., 2005; Scangos et al., 2021a;47

Limousin et al., 1998; Bouthour et al., 2019; Deuschl et al., 2006; Geller et al., 2017; Jobst et al., 2017;48

Lozano and Lipsman, 2013). Stimulation can also modulate behaviors, such as learning and49

memory, that depend on the coordinated activity of a network of brain regions (Mankin and Fried,50

2020; Das and Menon, 2021; Voytek and Knight, 2015; Keerativittayayut et al., 2018; Staresina and51

Wimber, 2019).52

Although increasingly used as a therapeutic and experimental tool, variability in outcomes53

poses a critical challenge, in part because stimulation’s mechanisms of action remain poorly54

understood. Theoretical accounts evolved from models of local disruption of pathological activity55

(Benabid et al., 2004) to modulation of the broader network of areas connected to the stimulated56

location (Ashkan et al., 2017; McIntyre and Hahn, 2010). If stimulation’s effects are best understood57

at the network level, perhaps variability in individual network structure can explain the variability58

in physiological and behavioral outcomes.59

In support of this idea, applying stimulation to gray matter, the gray-white matter boundary,60

or specific white matter fibers determines the spread of physiological effects through the network61

(Paulk et al., 2022; Solomon et al., 2018). Compared to gray matter stimulation, white matter62

stimulation leads to more broadly distributed excitation in downstream areas (Crocker et al., 2021;63

Paulk et al., 2022; Mohan et al., 2020). White matter pathways also constrain stimulation’s down-64

stream functional effects (Lujan et al., 2013; Khambhati et al., 2019; Stiso et al., 2019). Behaviorally,65

stimulation of white matter has led to remission in depression (Mayberg et al., 2005), slowed66

cognitive decline in Alzheimer’s (Lozano et al., 2016; Hamani et al., 2008), and enhanced memory67

in epilepsy (Suthana et al., 2012; Mankin et al., 2021; Titiz et al., 2017).68

In addition to the brain’s anatomical architecture, research shows that functional architecture69

also mediates the spread and persistence of stimulation’s physiological effects (Keller et al., 2011;70

Fox et al., 2020; Fox et al., 2014; Keller et al., 2018). Previous work further suggests this relation71
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to be frequency-specific. For example, stimulating targets in the medial temporal lobe leads to72

greater downstream changes in low-frequency (5-13 Hz) activity in brain regions that are strongly73

connected, at low-frequencies, to the stimulated site (Solomon et al., 2018). There are a variety74

of cognitive functions, including episodic memory, that have been linked to modulation of low-75

frequency activity (Colgin, 2013; Burke et al., 2013; Solomon et al., 2017; Donoghue et al., 2020;76

Koster and Gruber, 2022; Griffiths et al., 2021). Therefore, these physiological findings suggest that77

stimulating targets with strong low-frequency network connectivity could reliably modulate such78

behaviors, although this idea has yet to be tested.79

We hypothesized that anatomical and functional characteristics of the stimulation target rep-80

resent key variables that control the effect of stimulation on the brain’s memory network. We81

applied stimulation in closed-loop in 47 patients while they participated in an episodic memory82

task (free recall). We stimulated 57 targets located in the lateral temporal cortex (LTC), with the83

timing of stimulation determined by multivariate classification of neural activity during the en-84

coding phase of the memory task. Using patient-specific data, we characterized each stimulation85

target based on its proximity to the nearest white matter pathway, as well as its low-frequency86

resting-state functional connectivity with the the brain’s memory-encoding network. We found87

that closed-loop LTC stimulation improves memory performance relative to random stimulation,88

extending prior evidence that LTC stimulation modulates episodic memory (Ezzyat et al., 2018;89

Kucewicz et al., 2018). Further, we reveal that stimulation target proximity to white matter and90

functional connectivity predict both stimulation’s effects on memory performance and changes in91

rhythmic low-frequency activity involved in successful memory encoding.92

Experimental Procedures93

Participants94

Forty-seven patients undergoing intracranial electroencephalographic monitoring as part of clini-95

cal treatment for drug-resistant epilepsy were recruited to participate in this study. In total, N = 5796

brain locations were stimulated: 38 patients were stimulated in one location, 8 patients were stim-97

ulated in two separate locations, and 1 patient was stimulated in three separate locations. Only one98

location was stimulated per session. Of the current dataset, data from 14 patients were included99
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in an earlier publication (Ezzyat et al., 2018). All of the presently reported analyses and results are100

novel.101

Data were collected as part of a multi-center project designed to assess the effects of electri-102

cal stimulation on memory-related brain function. Data were collected at the following centers:103

University of Texas Southwestern Medical Center (Dallas, TX), Dartmouth-Hitchcock Medical Cen-104

ter (Lebanon, NH), Thomas Jefferson University Hospital (Philadelphia, PA), Emory University105

Hospital (Atlanta, GA), Mayo Clinic (Rochester, MN), Hospital of the University of Pennsylva-106

nia (Philadelphia, PA), and Columbia University Medical Center (New York, NY). The research107

protocol was approved by the IRB at each hospital and informed consent was obtained from108

each participant. Electrophysiological data were collected from electrodes implanted subdurally109

(grid/strip configurations) on the cortical surface and/or electrodes within the brain parenchyma110

(depth electrodes). The clinical team determined the placement of the electrodes based on the111

epileptogenic monitoring needs of the patient.112

Anatomical localization113

Cortical surface regions were delineated on pre-implant whole brain volumetric T1-weighted MRI114

scans using Freesurfer (Fischl et al., 2004) according to the Desikan-Kiliany atlas (Desikan et al.,115

2006). Whole brain and high resolution medial temporal lobe volumetric segmentation was also116

performed using the T1-weighted scan and a dedicated hippocampal coronal T2-weighted scan117

with Advanced Normalization Tools (ANTS) (Avants et al., 2008) and Automatic Segmentation118

of Hippocampal Subfields (ASHS) multi-atlas segmentation methods (Yushkevich et al., 2015).119

Coordinates of the radiodense electrode contacts were derived from a post-implant CT and then120

registered with the MRI scans using ANTS. Subdural electrode coordinates were further mapped121

to the cortical surfaces using an energy minimization algorithm (Dykstra et al., 2012). Two neuro-122

radiologists reviewed cross-sectional images and surface renderings to confirm the output of the123

automated localization pipeline. Stimulation targets that were localized to the left inferior, middle,124

and superior temporal gyri were classified as LTC. For region of interest analyses, electrodes were125

assigned to regions using Freesurfer atlas labels (IFG: inferior frontal gyrus; MFG: middle frontal126

gyrus; SFG: superior frontal gyrus; MTLC: medial temporal lobe cortex; HIPP: hippocampus; ITG:127
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inferior temporal gyrus; MTG: middle temporal gyrus; STG: superior temporal gyrus; IPC: inferior128

parietal cortex; SPC: superior parietal cortex; OC: occipital lobe).129

Verbal memory task130

Across participants, data were collected from two behavioral tasks: standard delayed free recall131

and categorized delayed free recall. In both tasks, participants were instructed to study lists of132

words for a later memory test; no explicit encoding task was used. Lists were composed of 12133

words presented in either English or Spanish, depending on the participant’s native language.134

In the standard free recall task, words were selected randomly from a pool of common nouns135

(https://memory.psych.upenn.edu/Word_Pools). In the categorized free recall task, the word136

pool was constructed from 25 semantic categories (e.g. fruit, furniture, office supplies). Each list137

of 12 items in the categorized version of the task consisted of four words drawn from each of138

three categories. Overall, N = 19 participated in standard free recall only; N = 26 participated in139

categorized free recall only; and N = 2 participated in both free and categorized recall (in separate140

sessions).141

142

Immediately following the final word in each list, participants performed a distractor task (to143

attenuate the recency effect in memory, length = 20 seconds) consisting of a series of arithmetic144

problems of the form A+B+C=??, where A, B and C were randomly chosen integers ranging from145

1-9. Following the distractor task participants were given 30 seconds to verbally recall as many146

words as possible from the list in any order; vocal responses were digitally recorded and later147

manually scored for analysis. Each session consisted of 25 lists of this encoding-distractor-recall148

procedure.149

EEG recording and analysis150

Electrophysiological recording and stimulation was conducted using a variety of systems across the151

sites over which the project was conducted. Recording and stimulation equipment included clinical152

EEG systems (Nihon Kohden EEG-1200, Natus XLTek EMU 128 or Grass Aura-LTM64), equipment153

from Blackrock Microsystems, as well as the External Neural Stimulator (ENS) (Medtronic, Inc.).154
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Data were sampled at 500, 1000, or 1600 Hz (depending on the clinical site). During the sessions,155

a laptop recorded behavioral responses (vocalizations, key presses), synchronized to the recorded156

EEG via transmitted network packets.157

Intracranial electrophysiological data were filtered to attenuate line noise (5 Hz band-stop158

fourth order Butterworth, centered on 60 Hz). We referenced the data using a bipolar montage159

(Burke et al., 2013) by identifying all pairs of immediately adjacent contacts on every depth, strip160

and grid and taking the difference between the signals recorded in each pair. The resulting bipolar161

timeseries was treated as a virtual electrode and used in all subsequent analysis. For the purposes162

of anatomical localization, we used the midpoint of the bipolar pair as the location for this virtual163

electrode. We used the same midpoint approach to localize stimulation targets and to measure164

stimulation target distance to white matter (see below).165

Multivariate classification of memory166

We performed spectral decomposition (8 frequencies from 6-175 Hz, logarithmically-spaced; Mor-167

let wavelets; wave number = 5) for 1366 ms epochs from 0 to to 1366 ms relative to word onset.168

Mirrored buffers (length = 1365 ms) were included before and after the interval of interest to avoid169

convolution edge effects. The resulting time-frequency data were then log-transformed, averaged170

over time, and z-scored within session and frequency band across word presentation events. For a171

subset of participants, we also performed the same spectral decomposition procedure on record-172

only data from the memory recall phase of each list. These data were then used in addition to the173

encoding data to train the classifier (Kragel et al., 2017). To do so, we computed spectral power174

for the 500 ms interval preceding a response vocalization, as well as during unsuccessful periods175

of memory search (the first 500 ms of any 2500 ms interval in which no recall response was made).176

For both trial types (correct vocalizations and unsuccessful search periods), we further stipulated177

that no vocalization onsets occurred in the preceding 2000 ms.178

Our closed-loop stimulation approach was based on using individualized memory classifiers179

to control the timing of stimulation in response to brain activity. Thus, after collecting at least180

three record-only sessions from an individual patient, we then used the data as input to a logistic181

regression classifier that would trigger closed-loop stimulation during the later stimulation ses-182

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2023. ; https://doi.org/10.1101/2023.07.27.550851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550851
http://creativecommons.org/licenses/by-nc-nd/4.0/


sion(s). To build the classifier, we used patterns of brain activity collected during record-only183

sessions and trained the classifier to discriminate words that were recalled vs. not recalled. The184

input features were spectral power at the eight analyzed frequencies × N electrodes (Fig 1A).185

We used L2-penalization to prevent overfitting (Hastie et al., 2001) and set the penalty parameter186

(C) to 2.4 × 10−4 based on the optimal penalty parameter calculated across our large pre-existing187

dataset of free-recall participants (Kragel et al., 2017; Ezzyat et al., 2018). We weighted the penalty188

parameter separately for each participant in inverse proportion to their number of recalled and189

not recalled words; this was done so that the model would learn equally from both classes (Hastie190

et al., 2001). Classification analyses were programmed using either the Matlab implementation of191

the LIBLINEAR library (Fan et al., 2008) or the Python library scikit-learn (Pedregosa et al., 2011).192

For the Closed-loop group (34 participants, N = 40 stimulation targets), classifiers were trained193

using the true mapping of features (spectral power × electrodes) to recall outcomes. In contrast,194

for the Random group (13 participants, N = 17 stimulation targets), a technical error in labeling195

features during classifier training led to classifiers that were trained on permuted data, eliminating196

the true mapping between neural activity on each trial and recall outcomes. This provided a natural197

experiment for testing whether the closed-loop nature of stimulation enhanced the efficacy of LTC198

stimulation.199

To assess the importance of individual features to the classifier’s performance, we calculated a200

forward model (Haufe et al., 2014):201

A =
Σxw
σ2

ŷ

where Σx is the data covariance matrix, w is the vector of feature weights from the trained202

classifier, and σ2
ŷ is the variance of the logit-transformed classifier outputs for all recalled/not203

recalled events ŷ. Positive values in A suggest a positive relation between power for a given feature204

and successful memory recall. We computed A separately for each participant (averaging features205

within anatomical regions of interest based on the Freesurfer labels derived from anatomical206

localization of electrodes) before conducting across-participant statistical tests (Fig 1D).207
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Closed-loop stimulation208

At the start of each stimulation session, we determined the safe amplitude for stimulation using209

a mapping procedure in which stimulation was applied at 0.5 mA while a neurologist monitored210

for afterdischarges. This procedure was repeated, incrementing the amplitude in steps of 0.5 mA,211

up to a maximum of 1.5 mA for depth contacts and 3.5 mA for cortical surface contacts. These212

maximum amplitudes were chosen to be below the afterdischarge threshold and below accepted213

safety limits for charge density (Shannon, 1992). For each stimulation session, we passed electrical214

current through a single pair of adjacent electrode contacts. The locations of implanted electrodes215

were determined strictly by the monitoring needs of the clinicians (recording sites depicted in216

Figure 1B). We therefore used a combination of anatomical and functional information to select217

stimulation sites, prioritizing (if available) targets in the middle temporal gyrus (stimulation218

targets depicted in Figure 2A). This choice was guided by prior work identifying the middle219

temporal gyrus as an effective target for modulating memory with stimulation (Ezzyat et al., 2018;220

Kucewicz et al., 2018). Stimulation was delivered using charge-balanced biphasic rectangular221

pulses (pulse width = 300 µs) at either 50, 100 or 200 Hz frequency (a single frequency was chosen222

for each subject), and was applied for 500 ms in response to classifier-detected poor memory states223

(see below). Participants performed one practice list followed by 25 task lists: lists 1-3 were used224

as a baseline for normalizing the classifier; lists 4-25 consisted of 11 lists each of Stim and NoStim225

conditions, randomly interleaved. NoStim lists were identically structured to Stim lists, except226

that stimulation was never delivered in response to classifier output.227

To determine (in actuality) how well the classifier predicted recalled and forgotten words in a228

given participant’s stimulation session, we again used AUC. We used the true classifier outputs229

and true recall outcomes from the NoStim lists to calculate the classifier generalization AUC for230

the stimulation sessions. To generate the corresponding receiver operating characteristic curves231

for visualization (Figure 1C), we modeled the classifier outputs for recalled and not recalled words232

using signal detection theory (Wixted, 2007). We did this by using the classifier outputs to estimate233

the mean and variance of hypothetical (normal) distributions of memory strength for recalled and234

not recalled words. We then generated a curve relating true and false positive rates by varying the235

assumed decision criterion (Wixted, 2007).236
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Analysis of memory performance237

All participants completed at least three sessions of the record-only task (for purposes of classi-238

fier training) and at least one session of the stimulation task. For the stimulation session(s) we239

calculated stimulation’s effect on recall performance as follows:240

∆ =
RS − RNS

RNS
× 100

where RS is the average recall for stimulated lists and RNS is the average recall for non-stimulated241

lists. Because the first three lists of every stimulation session were always non-stimulated (used242

for normalization of the classifier input features for that session), we excluded these lists from243

the calculation of RNS to avoid introducing a temporal order confound (Ezzyat et al., 2018). All244

participants were required to demonstrate a minimum RNS = 8.33% (1 out of 12 words per list) for245

inclusion in the sample.246

Calculation of stimulation target distance to white matter247

Using Freesurfer to segment patients’ T1 MRI scan, we identified white-matter vertex locations,248

then calculated the distance between the stimulation location (midpoint of the bipolar pair) and249

the nearest white matter vertex. These distances were then split into thirds in order to categorize250

stimulation sites as Near, Mid, or Far relative to the nearest white matter (Solomon et al., 2018;251

Mohan et al., 2020).252

Calculation of stimulation target node strength253

We adapted a previously reported method for calculating the resting-state functional connectivity254

between channels using the MNE-Python software package (Gramfort et al., 2014; Solomon et al.,255

2018). We extracted data from non-task periods of the record-only sessions of each patient and256

used the data to calculate the coherence between each pair of bipolar channels in the patient’s257

montage. The coherence (Cxy) between two signals is the normalized cross-spectral density. This258

measure reflects the consistency of phase differences between signals at two electrodes, weighted259

by the correlated change in spectral power at both sites:260
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Cxy =

∣∣∣∣∣∣ Sxy

SxxSyy

∣∣∣∣∣∣
where Sxy is the cross-spectral density between signals at electrodes x and y; Sxx and Syy are the261

auto-spectral densities at each electrode. We used the multitaper method to estimate spectral262

density (Bronez, 1992). We used a time-bandwidth product of 4 and a maximum of 8 tapers263

(tapers with spectral energy < 0.9 were removed), computing coherence for frequencies between264

5 and 13 Hz. We computed inter-electrode coherence within non-overlapping 1-s windows of265

data collected during a 10-second baseline (countdown) period that occurred at the start of each266

word list. The resulting coherence values between each pair of electrodes were then regressed267

on the Euclidean distance between each pair of electrodes, to account for the correlation between268

inter-electrode coherence and distance (Solomon et al., 2018). This distance-residualized measure269

of coherence was then used in the node-strength calculation. We repeated this entire procedure270

for calculating high-frequency functional connectivity in the 45-90 Hz range.271

Analysis of physiological effects of stimulation272

To assess the effect of LTC stimulation on neural activity, we analyzed recording channels (i.e.273

those that were not stimulated) and we compared stimulation-evoked spectral power separately274

at low and high frequencies. We first excluded electrodes exhibiting non-physiological post-275

stimulation artifacts (such as amplifier saturation/relaxation) using three different measures of the276

EEG timeseries before and after stimulation. We compared intervals before and after stimulation277

for changes in variance using an F-test and for changes in signal amplitude using a t-test. We278

additionally fit a polynomial function to the timeseries before and after each stimulation event and279

used a t-test to compare the resulting parameter estimates for the quadratic term. We calculated280

these three measures using the signal from -400 ms to -100 ms relative to stimulation onset and281

100 ms to 400 ms relative to stimulation offset. In order to select statistical thresholds for each282

measure, we conducted the same analysis on each participant’s record-only data. We then selected283

P-value thresholds associated with a 5% detection rate in the record-only data (i.e. false positives).284

Any channel that was significant on any of the three measures was excluded from analysis.285

To measure stimulation’s effect on low-frequency power, we extracted spectral power from286
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-600 ms to -100 ms relative to stimulation onset and 100 ms to 600 ms relative to stimulation287

offset. We used Morlet wavelets (wave number = 5) to estimate spectral power for the same set288

of frequencies used to train the classifier with buffers to eliminate edge artifacts. The resulting289

spectral power estimates were then z-scored within each frequency, separately for each session. We290

then averaged power within each frequency across the time dimension for each pre-stimulation291

period and for each matched post-stimulation period. We then subtracted the pre-stimulation292

data from the post-stimulation data to yield a distribution of change in spectral power for each293

electrode.294

We compared the distribution of power changes for stimulation events to the power changes295

from matched intervals on NoStim lists. To do so, we calculated spectral power using identical pa-296

rameters. However, because there were no actual stimulation events in NoStim lists, we generated297

a synthetic distribution of stimulation onset times by extracting the lag (in milliseconds) between298

each word onset and stimulation event in Stim lists, and sampling randomly from that distribution299

of onset times to determine when to extract data relative to word onset events in NoStim lists.300

Finally, we used an independent samples t-test to compare the distribution of Stim list power301

differences to the distribution of NoStim list power differences within each electrode. The resulting302

distribution of t-statistics was then averaged across electrodes to estimate the stimulation-evoked303

change in power (Figure 5A). We then averaged these values separately within clusters of low304

and high frequencies that significantly predicted memory performance (based on classifier feature305

importance, Figure 1D).306

Statistics307

Data are presented as mean ± standard error of the mean; scatterplots show the standard error of308

the estimate. All statistical comparisons were conducted as two-tailed tests. Non-parametric tests309

(Mann-Whitney; Spearman rank correlation) were used for non-normally distributed variables310

(e.g. white matter distance, Figure 3A); parametric tests (t-tests and Pearson correlation) were311

used for the remaining analyses. Data distributions were visually inspected or assumed to be312

normal for parametric tests.313
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Data Availability314

Upon publication, all de-identified raw data and analysis code may be downloaded at http:315

//memory.psych.upenn.edu/Electrophysiological_Data.316

317

Results318

Multivariate classifiers identify memory lapses319

Our stimulation strategy sought to intercept and rescue periods of poor memory encoding. To320

do so, we trained participant-specific multivariate classifiers to discriminate patterns of neural321

activity during record-only sessions of free recall (Figure 1A). For the Closed-loop group (N = 40),322

classifiers were trained using the true mapping of features (spectral power × electrodes) to recall323

performance; for the Random group (N = 17), due to a technical error in labeling features (see324

Methods), classifiers were trained on permuted features. The recording electrode locations for the325

Closed-loop and Random groups appear as spheres in Figure 1B. After training the classifiers on326

record-only data, we used them in later (independent) sessions to identify poor memory states for327

targeting with stimulation.328

Our first question was how well the classifiers predicted memory outcomes during the stim-329

ulation sessions (i.e. out-of-sample generalization). To answer this question, we used data from330

NoStim lists in which we obtained classifier predictions about the probability of recall for each331

word, but did not use these predictions to trigger stimulation (see Methods). Using area under332

the receiver operating characteristic curve as an index of classification accuracy, we found that333

classifiers for the Closed-loop reliably exceeded chance performance [Mean AUC = 0.62 (chance334

AUC= 0.50), Wilcoxon signed rank test P = 5.73×10−7]. Closed-loop classifiers also outperformed335

classifiers for the Random group [Mann-Whitney U = 586.0,P = 1.85 × 10−5]. As expected, Ran-336

dom classifiers did not exceed chance [Mean AUC = 0.49, Wilcoxon signed rank test P = 0.55;337

Figure 1C].338

To understand what features the classifier used to discriminate good vs. poor memory encoding339

states, we used a forward model for each participant to derive importance estimates for each340
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Figure 1: Stimulation strategy and classifier performance. A. Participants performed at least
three sessions of the free recall task while being monitored with intracranial EEG. Multivariate
classifiers trained on whole-brain patterns of spectral activity predicted subsequent recalled vs.
not recalled words. B. Recording electrode locations for all participants in the Closed-loop (blue)
and Random (green) groups, rendered on the Freesurfer average brain. C. Each participant’s
multivariate classifier then served as their personalized model to trigger stimulation. Classifiers
trained on record-only data generalized to the stimulation session(s) for the Closed-loop group
(P = 6.14 × 10−7) and outperformed classifiers for the Random group (P = 2.73 × 10−5). D. An
analysis of feature importance for classifiers from the Closed-loop group showed that successful
memory states were associated with decreases in low-frequency activity and increases in high-
frequency activity.

feature (Haufe et al., 2014). We averaged the feature importance values within a set of regions of341

interest (ROIs) separately for each classifier frequency. Across participants, classifiers predicted342

successful memory encoding based on increased high-frequency activity (especially in frontal,343

lateral temporal, and medial temporal lobe areas) and decreased low-frequency activity across344

much of the recorded cortex and subcortex (Figure 1D). This pattern, which we refer to as the345

spectral tilt, has been observed in previous studies to be a biomarker of successful episodic memory346

encoding and retrieval (Ezzyat et al., 2017; Burke et al., 2014; Long et al., 2014).347
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Closed-loop LTC stimulation improves memory348

Having established that classifiers in the Closed-loop group reliably discriminate memory encod-349

ing states, we next asked if we could increase memory performance via stimulation of the LTC (Fig-350

ure 2A). Our stimulation strategy was based on detecting poor memory encoding states and inter-351

cepting them with stimulation (Figure 2B). For the Closed-loop and Random groups, we compared352

recall performance for lists in which we delivered stimulation (Stim lists) vs. identically structured353

lists in which we did not stimulate (NoStim lists, as described above). In the Closed-loop group,354

recall was higher on Stim lists compared to NoStim lists [∆ = 10.6% ± 4.3; t(39) = 2.45,P = 0.02,355

Figure 2C], suggesting that intercepting poor memory encoding states with LTC stimulation en-356

hanced recall. In contrast, there was no difference in memory performance for the Random group357

[∆ = −3.2% ± 5.5; t(16) = −0.59,P = 0.57]. There was a trend for greater memory enhancement358

for the Closed-loop compared to the Random group [t(55) = 1.83,P = 0.07]. These findings359

are the first to directly compare closed-loop LTC stimulation with a random/open-loop stimula-360

tion control and, in a larger replication sample, demonstrate the robustness of previous studies361

showing memory enhancement via LTC stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018;362

Kahana et al., 2023).363

White matter proximity mediates stimulation’s effect on memory364

Motivated by physiological studies of electrical stimulation’s effects on downstream targets (Mo-365

han et al., 2020; Solomon et al., 2018; Keller et al., 2018), we asked whether stimulating close to366

white matter tracts would produce greater positive or negative effects on memory. If so, this367

would suggest that the brain’s anatomical network structure plays a key role in determining how368

effectively stimulation can modulate cognitive function (Stiso et al., 2019; Crocker et al., 2021). To369

answer this question, we examined how stimulation’s effect on memory performance varied as a370

function of the stimulation target’s proximity to white matter (see Figure 3A). For the Closed-loop371

group, lower distance to white matter predicted greater stimulation-related memory improvement372

[Spearman ρ(38) = −0.42,P = 0.007; Figure 2B]. In the random stimulation group, we neither ex-373

pected nor observed a correlation between white matter distance and the memory effect [Spearman374

ρ(15) = −0.17,P = 0.52]. There was no difference between the distances to white matter for the375
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C. Closed-loop LTC stimulation improved memory performance (P = 0.02) while Random stimu-
lation did not. Error bars in C reflect s.e.m.

Closed-loop and Random groups [Mann-Whitney U = 331.0, P = 0.44] and the median distance376

was in fact numerically greater for the Closed loop (1.58 mm) compared to the Random group377

(1.39 mm). This suggests that distance to white matter alone does not explain the finding of im-378

proved memory in the Closed-loop group. Instead, proximity to white matter appears to enhance379

the effectiveness of closed-loop stimulation.380

To further test this idea, we divided stimulation targets into terciles and asked whether stim-381

ulation near white matter was particularly effective in modulating memory performance. Indeed,382

Closed-loop stimulation targets near white matter enhanced memory performance on Stim lists383

compared to NoStim lists [Near: M = 28.25% ± 8.14%, t(13) = 3.23,P = 0.005]. This memory384

improvement was larger than for Closed-loop stimulation targets further away from white matter385

[Mid: M = 1.55%±4.22%,P = 0.01; Far: M = 0.64%±5.87%P = 0.01]. Closed-loop stimulation near386
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Figure 3: Closed-loop stimulation near white matter enhances memory. A. For the Closed-loop
group, stimulation’s effect on memory depended on the target distance from the nearest white
matter [left, P = 0.007]. The correlation was not significant for the Random group [right, P = 0.52].
B. Closed-loop LTC stimulation improved memory performance for targets located nearest to
white matter (P = 0.005). There was no effect for the Random group (P = 0.62). Error regions in A
reflect the standard error of the estimate. Error bars in B reflect s.e.m.

white matter also significantly outperformed Random stimulation near white matter group [Ran-387

dom M = −7.89% ± 8.40%, t(17) = 2.36,P = 0.03, Figure 2C]. As expected, the Random group did388

not show improved memory (Stim vs. NoStim within-participant) in any white matter distance bin389

(all P > 0.38). These data suggest that stimulating near white matter leads to greater modulation390

of memory, and extend previous work that linked white matter proximity to stimulation’s effect391

on electrophysiology (Mohan et al., 2020; Solomon et al., 2018; Keller et al., 2018; Stiso et al., 2019;392

Crocker et al., 2021).393

Stimulation target functional connectivity predicts the change in memory394

We next asked why closed-loop stimulation delivered near white matter reliably modulated mem-395

ory function. One possibility is that stimulating near white matter allows more reliable and direct396

access to the broader memory network connected to the stimulated location (Khambhati et al., 2019;397

Stiso et al., 2019; Solomon et al., 2018; Mohan et al., 2020). We therefore measured functional con-398

nectivity between the brain’s memory encoding network and the stimulation targets located near399

white matter. Critically, we constructed separate measurements of connectivity at low (5-13 Hz)400

and high frequencies (45-90 Hz) by calculating coherence using participant-specific resting-state401

data (see Methods). Then, to isolate the brain’s memory encoding network, we identified all elec-402

trodes that were in brain regions that showed a spectral tilt that predicted memory success during403

the task, assessed using classifier feature importance Figure 3A. We then compared stimulation tar-404
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Figure 4: Stimulation target functional connectivity. A. We assigned each patient’s record-only
electrodes to two ROIs based on whether the electrode was located in a region that showed a
memory-related spectral tilt or not (Other). B. Low-frequency connectivity was higher between
the stimulation target and electrodes in classifier-defined memory regions, compared to electrodes
in Other regions (P = 0.008) and compared to high-frequency network connectivity (P = 0.03). In
contrast, there was no difference in stimulation target high-frequency network connectivity. C. For
closed-loop targets nearest to white matter, there was a significant correlation between stimulation
target low-frequency connectivity and stimulation’s effect on memory [r(12) = 0.648,P = 0.01].
There was no effect for high-frequency connectivity. Errorbars reflect s.e.m. Error regions reflect
the standard error of the estimate.

get connectivity to electrodes In vs. Out of the memory network, for both low and high-frequency405

coherence (referred to as Node Strength). Stimulation targets showed stronger low-frequency con-406

nectivity to electrodes in the memory network than to electrodes outside of the memory network407

[t(13) = 3.14,P = 0.008, Figure 3B]. For memory network electrodes, low-frequency connectivity408

was also higher than high-frequency connectivity [t(13) = 2.48,P = 0.03]. In contrast, stimula-409
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tion targets showed equivalent high-frequency connectivity In vs. Out of the memory network410

[interaction: F(1, 13) = 10.54,P = 0.006, Figure 3B].411

Although stimulation targets near white matter showed greater overall low-frequency con-412

nectivity with memory-predicting brain areas, this finding leaves open the question of whether413

variability in connectivity strength with the memory network predicts variability stimulation’s414

effect on memory. To answer this question, we correlated low-frequency node strength with415

stimulation-related memory change. We found that low-frequency node strength predicted closed-416

loop stimulation’s effect on memory [r(12) = 0.648,P = 0.01, Figure 3C] while high-frequency node417

strength did not (P = 0.65). The difference in correlation for low vs. high-frequency node strength418

was also significant (two-tailed permutation test P = 0.03). For all other targets that were further419

from white matter, there was no relation between node strength and stimulation-related memory420

change (all P > 0.21).421

Functional connectivity mediates stimulation’s effect on downstream physiology422

The preceding results indicate that low-frequency functional connectivity to the memory network423

predicts stimulation effects on memory. Our final question was whether low-frequency connec-424

tivity also predicts stimulation’s physiological effects across the memory network. To test this425

prediction we again examined Closed-loop stimulation targets near white matter and correlated426

each stimulation target’s connectivity to the memory network with the stimulation-evoked spec-427

tral power in this network (Figure 5A). Two participants’ data were excluded due to excessive428

stimulation artifact on the recording channels. In the remaining participants, we found that429

stimulation-target functional connectivity predicted stimulation-related changes in low-frequency430

power [r(10) = −0.65,P = 0.02, Figure 5B). The correlation was not significant when using high-431

frequency connectivity and evoked power (P = 0.81, Figure 5C).432
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Discussion433

Direct electrical stimulation has emerged as a powerful tool for manipulating neural activity. The434

present study evaluated the hypothesis that network properties of a stimulated brain location435

predict stimulation’s effects on both memory and network physiology. Prior studies suggest that436

white matter pathways mediate stimulation’s network-level physiological effects (Paulk et al., 2022;437

Solomon et al., 2018; Mohan et al., 2020; Khambhati et al., 2019; Stiso et al., 2019). Other studies438

demonstrate that measures of structural and functional connectivity predict stimulation’s effects on439

downstream targets (Keller et al., 2011; Fox et al., 2020; Solomon et al., 2018). However, none have440

simultaneously linked structural/functional connectivity with both (1) a reliable improvement over441

baseline cognitive functioning and (2) concomitant changes in neurophysiology that explain the be-442

havioral effect. To directly address these questions, we asked whether white-matter proximity and443

functional connectivity underlie the degree to which stimulation of LTC produces improvements444

or impairments of memory, alongside changes in oscillatory signatures of mnemonic function.445

We found that closed-loop stimulation of LTC reliably improved memory on stimulated vs.446

non-stimulated lists. Consistent with the hypothesis that white-matter pathways convey the447

effects of stimulation to the broader memory network, we found the benefits of closed-loop LTC448

stimulation to arise principally from stimulating in, or near, white matter pathways. For the449

electrodes nearest to white matter, stimulation yielded a 28% increase in recall performance,450

whereas we failed to observe any reliable increase when delivering stimulation far from these451

pathways (1%). In a subgroup of subjects who received randomly timed stimulation in LTC452

targets we failed to observe any improvement in memory performance.453

To evaluate how stimulation-–target functional connectivity mediates stimulation’s behavioral454

and physiological effects, we analyzed participant-specific large-scale neural recordings obtained455

during prior record-only sessions. Prior studies have shown that brain networks become coherent456

at low-frequencies during successful memory encoding and retrieval (Solomon et al., 2017; Kragel457

et al., 2021a), so we used low-frequency coherence to measure the network node strength of458

each stimulation target. We then asked if greater node strength between LTC stimulation targets459

and downstream memory-predicting areas resulted in greater effects of stimulation on memory460

performance. Consistent with this hypothesis, we found a strong positive correlation (r = 0.648, see461
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Figure 4C) between low-frequency connectivity and stimulation-related memory improvement.462

Finally, LTC stimulation engaged low-frequency activity across a broader brain network in a way463

that matched the network position of the stimulated location (Figure 5).464

Our data highlight how precise targeting improves stimulation efficacy by showing that de-465

livering stimulation near LTC white-matter leads to greater stimulation-related memory gains466

(Figure 3C). By linking low-frequency network connectivity with physiological and behavioral467

outcomes, our study also points to a neural mechanism for modulating memory with stimu-468

lation. This result extends earlier work that demonstrated the potential to modulate episodic469

memory by targeting LTC with stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018). Di-470

rectly comparing closed-loop and open-loop stimulation strategies in the same study helps to471

establish a causal role for the closed-loop approach (Hampson et al., 2018; Ezzyat and Rizzuto,472

2018). Finally, our data from 57 stimulation targets (across 47 patients) also represents a sub-473

stantial increase compared to sample sizes described in related prior studies (Ezzyat et al., 2018;474

Hampson et al., 2018).475

Prior work has linked successful memory function with theta power and coherence (Burke476

et al., 2013; Solomon et al., 2017; Herweg et al., 2020; Griffiths et al., 2019; Kragel et al., 2021b;477

Ter Wal et al., 2021; Osipova et al., 2006; Guderian and Düzel, 2005; Klimesch et al., 1997;478

Staudigl and Hanslmayr, 2013). Here, we investigated this physiological correlate of memory479

function by testing how memory-modulating LTC stimulation affects low-frequency physiology.480

We found that stimulation’s effect on low-frequency activity depends on the low-frequency func-481

tional connectivity of the stimulation target. This suggests that identifying strong functional con-482

nections can produce stronger modulation of low-frequency activity within the memory network.483

Furthermore, we found that stimulation that modulated low-frequency activity also modulated484

memory performance.485

Several prior studies found potential therapeutic benefits of closed-loop stimulation triggered486

by decoding of intracranial brain recordings (Ezzyat et al., 2018; Scangos et al., 2021a; Hampson487

et al., 2018; Kahana et al., 2023). However, with some important exceptions (Hampson et al.,488

2018), this work has lacked an open-loop or random stimulation control condition, leaving open489

the question of what specific role the closed-loop nature of stimulation played in its therapeutic490

effects. Here, we compared the effects of closed-loop stimulation with a random stimulation491
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condition. Closed-loop participants received stimulation only for those items predicted to be492

forgotten. Participants in the random group followed the same protocol, but using classifiers493

trained on permuted data, resulting in stimulation being applied without regard to predicted494

memory success. This led to reliable memory improvement for the closed-loop group and none495

for the random group, despite following an otherwise identical protocol (Figure 1C).496

We found that closed-loop stimulation improved memory the most when it was delivered to497

LTC targets in or near white matter. This finding builds on a growing literature that indicates that498

stimulation is most effective when it is delivered in or near white matter pathways (Khambhati499

et al., 2019; Stiso et al., 2019; Mohan et al., 2020; Solomon et al., 2018; Paulk et al., 2022). One500

explanation for this phenomenon is that only stimulation of white matter pathways successfully501

engages broader brain networks, perhaps via oscillatory synchronization. In contrast, gray matter502

stimulation tends to cause more local effects (Mohan et al., 2020; Paulk et al., 2022). Though purely503

local effects may sometimes be desirable, the key cognitive and pathophysiological processes of504

greatest interest to neuroscientists tend to involve multiple interconnected brain regions.505

Among its many applications for modulating cognition and behavior (Siddiqi et al., 2022;506

Fox et al., 2020; Sreekumar et al., 2017) a number of recent studies have evaluated stimulation’s507

potential for enhancing episodic memory (Mankin and Fried, 2020; Suthana and Fried, 2014;508

Curot et al., 2017; Lee et al., 2013; Sankar et al., 2014). While our study investigated numerous509

stimulation targets within the LTC, future work should compare stimulation of this region to other510

brain areas within the broader episodic memory network. Recent work suggests that stimulating511

white matter pathways in the medial temporal lobe, for example, can also improve memory (Titiz512

et al., 2017; Mankin et al., 2021; Suthana et al., 2012). However, these previous studies used visual513

and/or spatial memoranda, while the present study focused on encoding and retrieval of verbal514

material. Thus, future research should compare stimulation to the lateral and medial temporal515

lobes, to determine whether stimulation target location interacts with the modality of the to-be-516

remembered information. This could contribute to other work that has used stimulation to study517

the component processes that contribute to successful episodic memory (El-Kalliny et al., 2019).518

We delivered stimulation using macroelectrodes, consistent with its clinical applications (Krauss519

et al., 2021; Morrell, 2011; Sun et al., 2008). Macroelectrode stimulation alters local activity520

at the spatial scale of the distance between the anode and cathode (approximately 1 cm), but521
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can also alter more distant regions. Because memory relies on a broad network of cortical522

and subcortical regions, including the hippocampus (Kim, 2011; Keerativittayayut et al., 2018),523

stimulating a broader network may be necessary to impact cognitive function. On the other524

hand, memory also relies on the recapitulation of specific patterns of neuronal activity, espe-525

cially within the hippocampus (Foster, 2017; Staresina and Wimber, 2019). Thus, other work526

has stimulated through microelectrodes to mimic and reinstate memory-related hippocampal ac-527

tivity using a model-based closed loop approach (Hampson et al., 2018; Hampson et al., 2013;528

Deadwyler et al., 2017). An avenue for future work could use macroelectrode stimulation in a529

similar vein, by triggering stimulation at multiple macroelectrode contacts in order to synchronize530

a particular spatiotemporal pattern of activity across key memory-related regions (Kim et al., 2016;531

Kim et al., 2018).532

In relating low-frequency network connectivity, physiology, and behavior, our study con-533

tributes to methodological development for invasive stimulation (Krauss et al., 2021; Cagnan et534

al., 2019) that illuminates the critical role of low-frequency networks in cognition (Voytek and535

Knight, 2015). In addition, the present study also suggests that other methods that manipulate536

low-frequency activity could be leveraged to modulate neural and cognitive function. Several537

recent studies using non-invasive methods have leveraged low-frequency theta-patterned stimu-538

lation to modulate episodic and working memory (Nilakantan et al., 2017; Hermiller et al., 2020;539

Tambini et al., 2018; Warren et al., 2019; Grover et al., 2022). Such low-frequency stimulation540

modulates electrophysiology perhaps by entraining low-frequency oscillations that are associated541

with cognitive function (Solomon et al., 2021; Reinhart and Nguyen, 2019; Reinhart et al., 2017;542

Hanslmayr et al., 2019).543

In summary, our demonstration of improved memory with closed-loop stimulation supports544

the idea that memory function is dynamic, and that closed-loop algorithms that account for545

moment-to-moment variability in the brain’s memory state can selectively deliver stimulation546

only when it is needed. The present study also links closed-loop stimulation efficacy to white547

matter targeting, brain-wide evoked physiology, and changes in episodic memory performance.548

The findings suggest future strategies for using the functional and anatomical network profile of549

putative stimulation targets to optimize downstream changes in oscillatory activity and cognition.550
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