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»» Abstract

28 Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behav-
20 ior. However, it remains unclear how to optimally target stimulation to modulate brain activity in
s0 particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis
st that stimulation’s behavioral and physiological effects depend on the stimulation target’s anatom-
s2 ical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical
s patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary
s lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the
s study phase of the task. We found that LTC stimulation specifically improved memory when
s delivered to targets near white matter pathways. Memory improvement was largest for targets
57 near white matter that also showed high functional connectivity to the brain’s memory network.
ss These targets also reduced low-frequency activity in this network, an established marker of suc-
3o cessful memory encoding. These data reveal how anatomical and functional networks mediate
s stimulation’s behavioral and physiological effects, provide further evidence that closed-loop LTC
41 stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation

«2 through improved stimulation targeting.


https://doi.org/10.1101/2023.07.27.550851
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.27.550851; this version posted August 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

» Introduction

as  Direct electrical stimulation of the human brain can manipulate circuits underlying perception,
45 cognition, and action (Siddiqi et al., 2022; Scangos et al., 2021b). Such stimulation has been used
s to treat network syndromes of brain dysfunction, suggesting that stimulation influences a broader
47 network of brain regions beyond the stimulated location (Mayberg et al., 2005; Scangos et al., 2021a;
4 Limousin et al., 1998; Bouthour et al., 2019; Deuschl et al., 2006; Geller et al., 2017; Jobst et al., 2017;
s Lozano and Lipsman, 2013). Stimulation can also modulate behaviors, such as learning and
so memory, that depend on the coordinated activity of a network of brain regions (Mankin and Fried,
st 2020; Das and Menon, 2021; Voytek and Knight, 2015; Keerativittayayut et al., 2018; Staresina and
52 Wimber, 2019).

53 Although increasingly used as a therapeutic and experimental tool, variability in outcomes
s+ poses a critical challenge, in part because stimulation’s mechanisms of action remain poorly
55 understood. Theoretical accounts evolved from models of local disruption of pathological activity
ss (Benabid et al., 2004) to modulation of the broader network of areas connected to the stimulated
57 location (Ashkan et al., 2017; McIntyre and Hahn, 2010). If stimulation’s effects are best understood
ss at the network level, perhaps variability in individual network structure can explain the variability
so in physiological and behavioral outcomes.

60 In support of this idea, applying stimulation to gray matter, the gray-white matter boundary,
st or specific white matter fibers determines the spread of physiological effects through the network
&2 (Paulk et al., 2022; Solomon et al., 2018). Compared to gray matter stimulation, white matter
es stimulation leads to more broadly distributed excitation in downstream areas (Crocker et al., 2021;
e« Paulk et al., 2022; Mohan et al., 2020). White matter pathways also constrain stimulation’s down-
s stream functional effects (Lujan et al., 2013; Khambhati et al., 2019; Stiso et al., 2019). Behaviorally,
s stimulation of white matter has led to remission in depression (Mayberg et al., 2005), slowed
67 cognitive decline in Alzheimer’s (Lozano et al., 2016; Hamani et al., 2008), and enhanced memory
s in epilepsy (Suthana et al., 2012; Mankin et al., 2021; Titiz et al., 2017).

69 In addition to the brain’s anatomical architecture, research shows that functional architecture
70 also mediates the spread and persistence of stimulation’s physiological effects (Keller et al., 2011;

71 Fox et al., 2020; Fox et al., 2014; Keller et al., 2018). Previous work further suggests this relation
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72 to be frequency-specific. For example, stimulating targets in the medial temporal lobe leads to
73 greater downstream changes in low-frequency (5-13 Hz) activity in brain regions that are strongly
7+ connected, at low-frequencies, to the stimulated site (Solomon et al., 2018). There are a variety
75 of cognitive functions, including episodic memory, that have been linked to modulation of low-
76 frequency activity (Colgin, 2013; Burke et al., 2013; Solomon et al., 2017; Donoghue et al., 2020;
77 Koster and Gruber, 2022; Griffiths et al., 2021). Therefore, these physiological findings suggest that
76 stimulating targets with strong low-frequency network connectivity could reliably modulate such
70 behaviors, although this idea has yet to be tested.

80 We hypothesized that anatomical and functional characteristics of the stimulation target rep-
st resent key variables that control the effect of stimulation on the brain’s memory network. We
g2 applied stimulation in closed-loop in 47 patients while they participated in an episodic memory
s task (free recall). We stimulated 57 targets located in the lateral temporal cortex (LTC), with the
g« timing of stimulation determined by multivariate classification of neural activity during the en-
&5 coding phase of the memory task. Using patient-specific data, we characterized each stimulation
ss target based on its proximity to the nearest white matter pathway, as well as its low-frequency
&7 resting-state functional connectivity with the the brain’s memory-encoding network. We found
s that closed-loop LTC stimulation improves memory performance relative to random stimulation,
s extending prior evidence that LTC stimulation modulates episodic memory (Ezzyat et al., 2018;
o0 Kucewicz et al., 2018). Further, we reveal that stimulation target proximity to white matter and
ot functional connectivity predict both stimulation’s effects on memory performance and changes in

o2 rhythmic low-frequency activity involved in successful memory encoding.

» Experimental Procedures

« Participants

o5 Forty-seven patients undergoing intracranial electroencephalographic monitoring as part of clini-
% cal treatment for drug-resistant epilepsy were recruited to participate in this study. In total, N = 57
o7 brain locations were stimulated: 38 patients were stimulated in one location, 8 patients were stim-
s ulated in two separate locations, and 1 patient was stimulated in three separate locations. Only one

9 location was stimulated per session. Of the current dataset, data from 14 patients were included

4
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100 in an earlier publication (Ezzyat et al., 2018). All of the presently reported analyses and results are
101 novel.

102 Data were collected as part of a multi-center project designed to assess the effects of electri-
103 cal stimulation on memory-related brain function. Data were collected at the following centers:
14 University of Texas Southwestern Medical Center (Dallas, TX), Dartmouth-Hitchcock Medical Cen-
105 ter (Lebanon, NH), Thomas Jefferson University Hospital (Philadelphia, PA), Emory University
16 Hospital (Atlanta, GA), Mayo Clinic (Rochester, MN), Hospital of the University of Pennsylva-
17 nia (Philadelphia, PA), and Columbia University Medical Center (New York, NY). The research
18 protocol was approved by the IRB at each hospital and informed consent was obtained from
109 each participant. Electrophysiological data were collected from electrodes implanted subdurally
1o (grid/strip configurations) on the cortical surface and/or electrodes within the brain parenchyma
111 (depth electrodes). The clinical team determined the placement of the electrodes based on the

112 epileptogenic monitoring needs of the patient.

113 Anatomical localization

114 Cortical surface regions were delineated on pre-implant whole brain volumetric T1-weighted MRI
115 scans using Freesurfer (Fischl et al., 2004) according to the Desikan-Kiliany atlas (Desikan et al.,
116 2006). Whole brain and high resolution medial temporal lobe volumetric segmentation was also
117 performed using the T1-weighted scan and a dedicated hippocampal coronal T2-weighted scan
11s  with Advanced Normalization Tools (ANTS) (Avants et al., 2008) and Automatic Segmentation
19 of Hippocampal Subfields (ASHS) multi-atlas segmentation methods (Yushkevich et al., 2015).
120 Coordinates of the radiodense electrode contacts were derived from a post-implant CT and then
121 registered with the MRI scans using ANTS. Subdural electrode coordinates were further mapped
122 to the cortical surfaces using an energy minimization algorithm (Dykstra et al., 2012). Two neuro-
123 radiologists reviewed cross-sectional images and surface renderings to confirm the output of the
12« automated localization pipeline. Stimulation targets that were localized to the left inferior, middle,
125 and superior temporal gyri were classified as LTC. For region of interest analyses, electrodes were
126 assigned to regions using Freesurfer atlas labels (IFG: inferior frontal gyrus; MFG: middle frontal

127 gyrus; SFG: superior frontal gyrus; MTLC: medial temporal lobe cortex; HIPP: hippocampus; ITG:
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128 inferior temporal gyrus; MTG: middle temporal gyrus; STG: superior temporal gyrus; IPC: inferior

120 parietal cortex; SPC: superior parietal cortex; OC: occipital lobe).

130 Verbal memory task

131 Across participants, data were collected from two behavioral tasks: standard delayed free recall
1.2 and categorized delayed free recall. In both tasks, participants were instructed to study lists of
133 words for a later memory test; no explicit encoding task was used. Lists were composed of 12
134 words presented in either English or Spanish, depending on the participant’s native language.
135 In the standard free recall task, words were selected randomly from a pool of common nouns
136 (https://memory.psych.upenn.edu/Word_Pools). In the categorized free recall task, the word
137 pool was constructed from 25 semantic categories (e.g. fruit, furniture, office supplies). Each list
138 of 12 items in the categorized version of the task consisted of four words drawn from each of
138 three categories. Overall, N = 19 participated in standard free recall only; N = 26 participated in
140 categorized free recall only; and N = 2 participated in both free and categorized recall (in separate
141 sessions).

142

143 Immediately following the final word in each list, participants performed a distractor task (to
144 attenuate the recency effect in memory, length = 20 seconds) consisting of a series of arithmetic
1s problems of the form A+B+C=??, where A, B and C were randomly chosen integers ranging from
146 1-9. Following the distractor task participants were given 30 seconds to verbally recall as many
147 words as possible from the list in any order; vocal responses were digitally recorded and later
1s manually scored for analysis. Each session consisted of 25 lists of this encoding-distractor-recall

149 procedure.

150 EEG recording and analysis

151 Electrophysiological recording and stimulation was conducted using a variety of systems across the
152 sites over which the project was conducted. Recording and stimulation equipment included clinical
153 EEG systems (Nihon Kohden EEG-1200, Natus XLTek EMU 128 or Grass Aura-LTM64), equipment

s« from Blackrock Microsystems, as well as the External Neural Stimulator (ENS) (Medtronic, Inc.).
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155 Data were sampled at 500, 1000, or 1600 Hz (depending on the clinical site). During the sessions,
156 a laptop recorded behavioral responses (vocalizations, key presses), synchronized to the recorded
157 EEG via transmitted network packets.

158 Intracranial electrophysiological data were filtered to attenuate line noise (5 Hz band-stop
150 fourth order Butterworth, centered on 60 Hz). We referenced the data using a bipolar montage
160 (Burke et al., 2013) by identifying all pairs of immediately adjacent contacts on every depth, strip
161 and grid and taking the difference between the signals recorded in each pair. The resulting bipolar
162 timeseries was treated as a virtual electrode and used in all subsequent analysis. For the purposes
163 of anatomical localization, we used the midpoint of the bipolar pair as the location for this virtual
164 electrode. We used the same midpoint approach to localize stimulation targets and to measure

165 stimulation target distance to white matter (see below).

1es  Multivariate classification of memory

167 We performed spectral decomposition (8 frequencies from 6-175 Hz, logarithmically-spaced; Mor-
168 let wavelets; wave number = 5) for 1366 ms epochs from 0 to to 1366 ms relative to word onset.
6o Mirrored buffers (length = 1365 ms) were included before and after the interval of interest to avoid
170 convolution edge effects. The resulting time-frequency data were then log-transformed, averaged
171 over time, and z-scored within session and frequency band across word presentation events. For a
172 subset of participants, we also performed the same spectral decomposition procedure on record-
173 only data from the memory recall phase of each list. These data were then used in addition to the
17+ encoding data to train the classifier (Kragel et al., 2017). To do so, we computed spectral power
175 for the 500 ms interval preceding a response vocalization, as well as during unsuccessful periods
176 of memory search (the first 500 ms of any 2500 ms interval in which no recall response was made).
177 For both trial types (correct vocalizations and unsuccessful search periods), we further stipulated
178 that no vocalization onsets occurred in the preceding 2000 ms.

179 Our closed-loop stimulation approach was based on using individualized memory classifiers
180 to control the timing of stimulation in response to brain activity. Thus, after collecting at least
181 three record-only sessions from an individual patient, we then used the data as input to a logistic

182 regression classifier that would trigger closed-loop stimulation during the later stimulation ses-
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13 sion(s). To build the classifier, we used patterns of brain activity collected during record-only
18« sessions and trained the classifier to discriminate words that were recalled vs. not recalled. The
185 input features were spectral power at the eight analyzed frequencies X N electrodes (Fig 1A).
186 We used L2-penalization to prevent overfitting (Hastie et al., 2001) and set the penalty parameter
187 (C) to 2.4 X 10~* based on the optimal penalty parameter calculated across our large pre-existing
188 dataset of free-recall participants (Kragel et al., 2017; Ezzyat et al., 2018). We weighted the penalty
189 parameter separately for each participant in inverse proportion to their number of recalled and
190 not recalled words; this was done so that the model would learn equally from both classes (Hastie
191 et al., 2001). Classification analyses were programmed using either the Matlab implementation of
192 the LIBLINEAR library (Fan et al., 2008) or the Python library scikit-learn (Pedregosa et al., 2011).
193 For the Closed-loop group (34 participants, N = 40 stimulation targets), classifiers were trained
194 using the true mapping of features (spectral power X electrodes) to recall outcomes. In contrast,
195 for the Random group (13 participants, N = 17 stimulation targets), a technical error in labeling
196 features during classifier training led to classifiers that were trained on permuted data, eliminating
197 the true mapping between neural activity on each trial and recall outcomes. This provided a natural
198 experiment for testing whether the closed-loop nature of stimulation enhanced the efficacy of LTC
199 stimulation.

200 To assess the importance of individual features to the classifier’s performance, we calculated a
200 forward model (Haufe et al., 2014):

A:wa

202 where Ly is the data covariance matrix, w is the vector of feature weights from the trained
203 classifier, and a}% is the variance of the logit-transformed classifier outputs for all recalled/not
204 recalled eventsy. Positive values in A suggest a positive relation between power for a given feature
205 and successful memory recall. We computed A separately for each participant (averaging features
206 within anatomical regions of interest based on the Freesurfer labels derived from anatomical

207 localization of electrodes) before conducting across-participant statistical tests (Fig 1D).
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28 Closed-loop stimulation

200 At the start of each stimulation session, we determined the safe amplitude for stimulation using
210 a mapping procedure in which stimulation was applied at 0.5 mA while a neurologist monitored
211 for afterdischarges. This procedure was repeated, incrementing the amplitude in steps of 0.5 mA,
212 up to a maximum of 1.5 mA for depth contacts and 3.5 mA for cortical surface contacts. These
213 maximum amplitudes were chosen to be below the afterdischarge threshold and below accepted
214 safety limits for charge density (Shannon, 1992). For each stimulation session, we passed electrical
215 current through a single pair of adjacent electrode contacts. The locations of implanted electrodes
216 were determined strictly by the monitoring needs of the clinicians (recording sites depicted in
217 Figure 1B). We therefore used a combination of anatomical and functional information to select
218 stimulation sites, prioritizing (if available) targets in the middle temporal gyrus (stimulation
210 targets depicted in Figure 2A). This choice was guided by prior work identifying the middle
220 temporal gyrus as an effective target for modulating memory with stimulation (Ezzyat et al., 2018;
221 Kucewicz et al., 2018). Stimulation was delivered using charge-balanced biphasic rectangular
222 pulses (pulse width = 300 us) at either 50, 100 or 200 Hz frequency (a single frequency was chosen
223 for each subject), and was applied for 500 ms in response to classifier-detected poor memory states
224 (see below). Participants performed one practice list followed by 25 task lists: lists 1-3 were used
225 as a baseline for normalizing the classifier; lists 4-25 consisted of 11 lists each of Stim and NoStim
226 conditions, randomly interleaved. NoStim lists were identically structured to Stim lists, except
227 that stimulation was never delivered in response to classifier output.

228 To determine (in actuality) how well the classifier predicted recalled and forgotten words in a
220 given participant’s stimulation session, we again used AUC. We used the true classifier outputs
230 and true recall outcomes from the NoStim lists to calculate the classifier generalization AUC for
231 the stimulation sessions. To generate the corresponding receiver operating characteristic curves
232 for visualization (Figure 1C), we modeled the classifier outputs for recalled and not recalled words
233 using signal detection theory (Wixted, 2007). We did this by using the classifier outputs to estimate
22« the mean and variance of hypothetical (normal) distributions of memory strength for recalled and
255 not recalled words. We then generated a curve relating true and false positive rates by varying the

236 assumed decision criterion (Wixted, 2007).
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27 Analysis of memory performance

238 All participants completed at least three sessions of the record-only task (for purposes of classi-
230 fier training) and at least one session of the stimulation task. For the stimulation session(s) we

20 calculated stimulation’s effect on recall performance as follows:

Rs — Rns

A=
Rns

x 100

2s1 - where Rs is the average recall for stimulated lists and Rys is the average recall for non-stimulated
242 lists. Because the first three lists of every stimulation session were always non-stimulated (used
23 for normalization of the classifier input features for that session), we excluded these lists from
2e4  the calculation of Rys to avoid introducing a temporal order confound (Ezzyat et al., 2018). All
245 participants were required to demonstrate a minimum Rys = 8.33% (1 out of 12 words per list) for

246 inclusion in the sample.

27 Calculation of stimulation target distance to white matter

a8 Using Freesurfer to segment patients” T1 MRI scan, we identified white-matter vertex locations,
240 then calculated the distance between the stimulation location (midpoint of the bipolar pair) and
250 the nearest white matter vertex. These distances were then split into thirds in order to categorize
251 stimulation sites as Near, Mid, or Far relative to the nearest white matter (Solomon et al., 2018;

252 Mohan et al., 2020).

253 Calculation of stimulation target node strength

25« We adapted a previously reported method for calculating the resting-state functional connectivity
255 between channels using the MNE-Python software package (Gramfort et al., 2014; Solomon et al.,
256 2018). We extracted data from non-task periods of the record-only sessions of each patient and
257 used the data to calculate the coherence between each pair of bipolar channels in the patient’s
258 montage. The coherence (C,,) between two signals is the normalized cross-spectral density. This
250 measure reflects the consistency of phase differences between signals at two electrodes, weighted

260 by the correlated change in spectral power at both sites:

10
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Sxy

ny = Sxxsyy

261 where S, is the cross-spectral density between signals at electrodes x and y; Sy and S, are the
262 auto-spectral densities at each electrode. We used the multitaper method to estimate spectral
263 density (Bronez, 1992). We used a time-bandwidth product of 4 and a maximum of 8 tapers
26« (tapers with spectral energy < 0.9 were removed), computing coherence for frequencies between
265 5 and 13 Hz. We computed inter-electrode coherence within non-overlapping 1-s windows of
266 data collected during a 10-second baseline (countdown) period that occurred at the start of each
267 word list. The resulting coherence values between each pair of electrodes were then regressed
268 on the Euclidean distance between each pair of electrodes, to account for the correlation between
269 inter-electrode coherence and distance (Solomon et al., 2018). This distance-residualized measure
270 of coherence was then used in the node-strength calculation. We repeated this entire procedure

2ar1 for calculating high-frequency functional connectivity in the 45-90 Hz range.

222 Analysis of physiological effects of stimulation

273 To assess the effect of LTC stimulation on neural activity, we analyzed recording channels (i.e.
274 those that were not stimulated) and we compared stimulation-evoked spectral power separately
275 at low and high frequencies. We first excluded electrodes exhibiting non-physiological post-
276 stimulation artifacts (such as amplifier saturation/relaxation) using three different measures of the
277 EEG timeseries before and after stimulation. We compared intervals before and after stimulation
278 for changes in variance using an F-test and for changes in signal amplitude using a t-test. We
270 additionally fit a polynomial function to the timeseries before and after each stimulation event and
250 used a f-test to compare the resulting parameter estimates for the quadratic term. We calculated
281 these three measures using the signal from -400 ms to -100 ms relative to stimulation onset and
2.2 100 ms to 400 ms relative to stimulation offset. In order to select statistical thresholds for each
283 measure, we conducted the same analysis on each participant’s record-only data. We then selected
284 P-value thresholds associated with a 5% detection rate in the record-only data (i.e. false positives).
255 Any channel that was significant on any of the three measures was excluded from analysis.

286 To measure stimulation’s effect on low-frequency power, we extracted spectral power from

11
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287 -600 ms to -100 ms relative to stimulation onset and 100 ms to 600 ms relative to stimulation
288 offset. We used Morlet wavelets (wave number = 5) to estimate spectral power for the same set
280 of frequencies used to train the classifier with buffers to eliminate edge artifacts. The resulting
200 spectral power estimates were then z-scored within each frequency, separately for each session. We
201 then averaged power within each frequency across the time dimension for each pre-stimulation
202 period and for each matched post-stimulation period. We then subtracted the pre-stimulation
203 data from the post-stimulation data to yield a distribution of change in spectral power for each
204 electrode.

205 We compared the distribution of power changes for stimulation events to the power changes
206 from matched intervals on NoStim lists. To do so, we calculated spectral power using identical pa-
207 rameters. However, because there were no actual stimulation events in NoStim lists, we generated
208 a synthetic distribution of stimulation onset times by extracting the lag (in milliseconds) between
200 each word onset and stimulation event in Stim lists, and sampling randomly from that distribution
a0 of onset times to determine when to extract data relative to word onset events in NoStim lists.

301 Finally, we used an independent samples t-test to compare the distribution of Stim list power
sz differences to the distribution of NoStim list power differences within each electrode. The resulting
ss  distribution of t-statistics was then averaged across electrodes to estimate the stimulation-evoked
s+ change in power (Figure 5A). We then averaged these values separately within clusters of low
s5 and high frequencies that significantly predicted memory performance (based on classifier feature

a6 importance, Figure 1D).

sz Statistics

a8 Data are presented as mean + standard error of the mean; scatterplots show the standard error of
a0 the estimate. All statistical comparisons were conducted as two-tailed tests. Non-parametric tests
st (Mann-Whitney; Spearman rank correlation) were used for non-normally distributed variables
st (e.g. white matter distance, Figure 3A); parametric tests (f-tests and Pearson correlation) were
sz used for the remaining analyses. Data distributions were visually inspected or assumed to be

s13 normal for parametric tests.

12
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sie Data Availability

a5 Upon publication, all de-identified raw data and analysis code may be downloaded at http:
st //memory.psych.upenn.edu/Electrophysiological_Data.

317

sis Results

si9  Multivariate classifiers identify memory lapses

s20 Our stimulation strategy sought to intercept and rescue periods of poor memory encoding. To
s21 do so, we trained participant-specific multivariate classifiers to discriminate patterns of neural
s22  activity during record-only sessions of free recall (Figure 1A). For the Closed-loop group (N = 40),
223 classifiers were trained using the true mapping of features (spectral power X electrodes) to recall
s« performance; for the Random group (N = 17), due to a technical error in labeling features (see
25 Methods), classifiers were trained on permuted features. The recording electrode locations for the
a6 Closed-loop and Random groups appear as spheres in Figure 1B. After training the classifiers on
s27  record-only data, we used them in later (independent) sessions to identify poor memory states for
s targeting with stimulation.

329 Our first question was how well the classifiers predicted memory outcomes during the stim-
ss0 ulation sessions (i.e. out-of-sample generalization). To answer this question, we used data from
ss1 NoStim lists in which we obtained classifier predictions about the probability of recall for each
sz word, but did not use these predictions to trigger stimulation (see Methods). Using area under
sss  the receiver operating characteristic curve as an index of classification accuracy, we found that
sss classifiers for the Closed-loop reliably exceeded chance performance [Mean AUC = 0.62 (chance
s AUC = 0.50), Wilcoxon signed rank test P = 5.73x107]. Closed-loop classifiers also outperformed
s classifiers for the Random group [Mann-Whitney U = 586.0, P = 1.85 x 10™°]. As expected, Ran-
ss7  dom classifiers did not exceed chance [Mean AUC = 0.49, Wilcoxon signed rank test P = 0.55;
sss  Figure 1C]J.

339 To understand what features the classifier used to discriminate good vs. poor memory encoding

a0 states, we used a forward model for each participant to derive importance estimates for each
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Figure 1: Stimulation strategy and classifier performance. A. Participants performed at least
three sessions of the free recall task while being monitored with intracranial EEG. Multivariate
classifiers trained on whole-brain patterns of spectral activity predicted subsequent recalled vs.
not recalled words. B. Recording electrode locations for all participants in the Closed-loop (blue)
and Random (green) groups, rendered on the Freesurfer average brain. C. Each participant’s
multivariate classifier then served as their personalized model to trigger stimulation. Classifiers
trained on record-only data generalized to the stimulation session(s) for the Closed-loop group
(P = 6.14 x 1077) and outperformed classifiers for the Random group (P = 2.73 x 10™°). D. An
analysis of feature importance for classifiers from the Closed-loop group showed that successful
memory states were associated with decreases in low-frequency activity and increases in high-
frequency activity.

a1 feature (Haufe et al., 2014). We averaged the feature importance values within a set of regions of
sz interest (ROIs) separately for each classifier frequency. Across participants, classifiers predicted
us  successful memory encoding based on increased high-frequency activity (especially in frontal,
us lateral temporal, and medial temporal lobe areas) and decreased low-frequency activity across
as  much of the recorded cortex and subcortex (Figure 1D). This pattern, which we refer to as the

us  spectral tilt, has been observed in previous studies to be a biomarker of successful episodic memory

a7 encoding and retrieval (Ezzyat et al., 2017; Burke et al., 2014; Long et al., 2014).
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as  Closed-loop LTC stimulation improves memory

ue Having established that classifiers in the Closed-loop group reliably discriminate memory encod-
ss0  ing states, we next asked if we could increase memory performance via stimulation of the LTC (Fig-
st ure 2A). Our stimulation strategy was based on detecting poor memory encoding states and inter-
sz cepting them with stimulation (Figure 2B). For the Closed-loop and Random groups, we compared
sss  recall performance for lists in which we delivered stimulation (Stim lists) vs. identically structured
54 lists in which we did not stimulate (NoStim lists, as described above). In the Closed-loop group,
ss5  recall was higher on Stim lists compared to NoStim lists [A = 10.6% + 4.3;+(39) = 2.45,P = 0.02,
ss6  Figure 2C], suggesting that intercepting poor memory encoding states with LTC stimulation en-
ss7 hanced recall. In contrast, there was no difference in memory performance for the Random group
s [A = =32% +5.5;416) = —0.59,P = 0.57]. There was a trend for greater memory enhancement
sse for the Closed-loop compared to the Random group [#(55) = 1.83,P = 0.07]. These findings
s0 are the first to directly compare closed-loop LTC stimulation with a random/open-loop stimula-
st tion control and, in a larger replication sample, demonstrate the robustness of previous studies
s2 showing memory enhancement via LTC stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018;

sss Kahana et al., 2023).

34 White matter proximity mediates stimulation’s effect on memory

s5 Motivated by physiological studies of electrical stimulation’s effects on downstream targets (Mo-
s6 han et al., 2020; Solomon et al., 2018; Keller et al., 2018), we asked whether stimulating close to
s7 white matter tracts would produce greater positive or negative effects on memory. If so, this
s would suggest that the brain’s anatomical network structure plays a key role in determining how
so effectively stimulation can modulate cognitive function (Stiso et al., 2019; Crocker et al., 2021). To
a0 answer this question, we examined how stimulation’s effect on memory performance varied as a
s71 function of the stimulation target’s proximity to white matter (see Figure 3A). For the Closed-loop
sz group, lower distance to white matter predicted greater stimulation-related memory improvement
a3 [Spearman p(38) = —0.42, P = 0.007; Figure 2B]. In the random stimulation group, we neither ex-
a7+ pected nor observed a correlation between white matter distance and the memory effect [Spearman

a5 p(15) = =0.17, P = 0.52]. There was no difference between the distances to white matter for the
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Figure 2: Closed-loop stimulation improves memory performance. A. Stimulation target loca-
tions for the Closed loop (blue) and Random (green) groups. B. Closed-loop stimulation strategy.
C. Closed-loop LTC stimulation improved memory performance (P = 0.02) while Random stimu-
lation did not. Error bars in C reflect s.e.m.
s7s  Closed-loop and Random groups [Mann-Whitney U = 331.0, P = 0.44] and the median distance
s77 - was in fact numerically greater for the Closed loop (1.58 mm) compared to the Random group
a8 (1.39 mm). This suggests that distance to white matter alone does not explain the finding of im-
s79  proved memory in the Closed-loop group. Instead, proximity to white matter appears to enhance
a0 the effectiveness of closed-loop stimulation.
381 To further test this idea, we divided stimulation targets into terciles and asked whether stim-
sz ulation near white matter was particularly effective in modulating memory performance. Indeed,
sss  Closed-loop stimulation targets near white matter enhanced memory performance on Stim lists
sss+ compared to NoStim lists [Near: M = 28.25% + 8.14%,t(13) = 3.23,P = 0.005]. This memory
ses  improvement was larger than for Closed-loop stimulation targets further away from white matter

ss  [Mid: M = 1.55%+4.22%, P = 0.01; Far: M = 0.64%+5.87%P = 0.01]. Closed-loop stimulation near
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Figure 3: Closed-loop stimulation near white matter enhances memory. A. For the Closed-loop
group, stimulation’s effect on memory depended on the target distance from the nearest white
matter [left, P = 0.007]. The correlation was not significant for the Random group [right, P = 0.52].
B. Closed-loop LTC stimulation improved memory performance for targets located nearest to
white matter (P = 0.005). There was no effect for the Random group (P = 0.62). Error regions in A
reflect the standard error of the estimate. Error bars in B reflect s.e.m.
ss7  white matter also significantly outperformed Random stimulation near white matter group [Ran-
sss dom M = —7.89% =+ 8.40%, t(17) = 2.36, P = 0.03, Figure 2C]. As expected, the Random group did
se0  not show improved memory (Stim vs. NoStim within-participant) in any white matter distance bin
s0 (all P > 0.38). These data suggest that stimulating near white matter leads to greater modulation
st of memory, and extend previous work that linked white matter proximity to stimulation’s effect

sz on electrophysiology (Mohan et al., 2020; Solomon et al., 2018; Keller et al., 2018; Stiso et al., 2019;
a3 Crocker et al., 2021).

s+ Stimulation target functional connectivity predicts the change in memory

s We next asked why closed-loop stimulation delivered near white matter reliably modulated mem-
a6 ory function. One possibility is that stimulating near white matter allows more reliable and direct
so7 access to the broader memory network connected to the stimulated location (Khambhati et al., 2019;
s9s Stiso et al., 2019; Solomon et al., 2018; Mohan et al., 2020). We therefore measured functional con-
399 hectivity between the brain’s memory encoding network and the stimulation targets located near
s00 white matter. Critically, we constructed separate measurements of connectivity at low (5-13 Hz)
s01 and high frequencies (45-90 Hz) by calculating coherence using participant-specific resting-state
w02 data (see Methods). Then, to isolate the brain’s memory encoding network, we identified all elec-
403 trodes that were in brain regions that showed a spectral tilt that predicted memory success during

s04  the task, assessed using classifier feature importance Figure 3A. We then compared stimulation tar-
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Figure 4: Stimulation target functional connectivity. A. We assigned each patient’s record-only
electrodes to two ROIs based on whether the electrode was located in a region that showed a
memory-related spectral tilt or not (Other). B. Low-frequency connectivity was higher between
the stimulation target and electrodes in classifier-defined memory regions, compared to electrodes
in Other regions (P = 0.008) and compared to high-frequency network connectivity (P = 0.03). In
contrast, there was no difference in stimulation target high-frequency network connectivity. C. For
closed-loop targets nearest to white matter, there was a significant correlation between stimulation
target low-frequency connectivity and stimulation’s effect on memory [r(12) = 0.648,P = 0.01].
There was no effect for high-frequency connectivity. Errorbars reflect s.e.m. Error regions reflect
the standard error of the estimate.

s05  get connectivity to electrodes In vs. Out of the memory network, for both low and high-frequency
a6 coherence (referred to as Node Strength). Stimulation targets showed stronger low-frequency con-
w07 nectivity to electrodes in the memory network than to electrodes outside of the memory network

w08 [t(13) = 3.14, P = 0.008, Figure 3B]. For memory network electrodes, low-frequency connectivity

w0 was also higher than high-frequency connectivity [t(13) = 2.48, P = 0.03]. In contrast, stimula-
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10 tion targets showed equivalent high-frequency connectivity In vs. Out of the memory network
a1 [interaction: F(1,13) = 10.54, P = 0.006, Figure 3B].

412 Although stimulation targets near white matter showed greater overall low-frequency con-
a3 nectivity with memory-predicting brain areas, this finding leaves open the question of whether
a4 variability in connectivity strength with the memory network predicts variability stimulation’s
a5 effect on memory. To answer this question, we correlated low-frequency node strength with
a6 stimulation-related memory change. We found that low-frequency node strength predicted closed-
s17 loop stimulation’s effect on memory [r(12) = 0.648, P = 0.01, Figure 3C] while high-frequency node
ss  strength did not (P = 0.65). The difference in correlation for low vs. high-frequency node strength
419 was also significant (two-tailed permutation test P = 0.03). For all other targets that were further
s20 from white matter, there was no relation between node strength and stimulation-related memory

421 change (all P > 0.21).

s22 Functional connectivity mediates stimulation’s effect on downstream physiology

23 The preceding results indicate that low-frequency functional connectivity to the memory network
424 predicts stimulation effects on memory. Our final question was whether low-frequency connec-
425 tivity also predicts stimulation’s physiological effects across the memory network. To test this
a6 prediction we again examined Closed-loop stimulation targets near white matter and correlated
427 each stimulation target’s connectivity to the memory network with the stimulation-evoked spec-
428 tral power in this network (Figure 5A). Two participants” data were excluded due to excessive
w20 stimulation artifact on the recording channels. In the remaining participants, we found that
s30  stimulation-target functional connectivity predicted stimulation-related changes in low-frequency
s31 power [r(10) = —0.65, P = 0.02, Figure 5B). The correlation was not significant when using high-

12 frequency connectivity and evoked power (P = 0.81, Figure 5C).
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Figure 5: Memory network connectivity predicts physiology. A. Schematic of analysis of
stimulation-evoked physiology. B. For stimulation targets near white matter, low-frequency func-
tional connectivity predicted the stimulation evoked change in low-frequency power (P = 0.02).
C. High-frequency network connectivity did not predict stimulation’s effect on high-frequency

activity.
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s Discussion

a3« Direct electrical stimulation has emerged as a powerful tool for manipulating neural activity. The
s35  present study evaluated the hypothesis that network properties of a stimulated brain location
436 predict stimulation’s effects on both memory and network physiology. Prior studies suggest that
s37  white matter pathways mediate stimulation’s network-level physiological effects (Paulk et al., 2022;
a8 Solomon et al., 2018; Mohan et al., 2020; Khambhati et al., 2019; Stiso et al., 2019). Other studies
30 demonstrate that measures of structural and functional connectivity predict stimulation’s effects on
uo downstream targets (Keller et al., 2011; Fox et al., 2020; Solomon et al., 2018). However, none have
a1 simultaneously linked structural/functional connectivity with both (1) a reliable improvement over
w2 baseline cognitive functioning and (2) concomitant changes in neurophysiology that explain the be-
«s havioral effect. To directly address these questions, we asked whether white-matter proximity and
ss  functional connectivity underlie the degree to which stimulation of LTC produces improvements
w5 or impairments of memory, alongside changes in oscillatory signatures of mnemonic function.

446 We found that closed-loop stimulation of LTC reliably improved memory on stimulated vs.
s7  non-stimulated lists. Consistent with the hypothesis that white-matter pathways convey the
us effects of stimulation to the broader memory network, we found the benefits of closed-loop LTC
we stimulation to arise principally from stimulating in, or near, white matter pathways. For the
ss0 electrodes nearest to white matter, stimulation yielded a 28% increase in recall performance,
ss1 whereas we failed to observe any reliable increase when delivering stimulation far from these
s2  pathways (1%). In a subgroup of subjects who received randomly timed stimulation in LTC
43 targets we failed to observe any improvement in memory performance.

454 To evaluate how stimulation—target functional connectivity mediates stimulation’s behavioral
5 and physiological effects, we analyzed participant-specific large-scale neural recordings obtained
46 during prior record-only sessions. Prior studies have shown that brain networks become coherent
57 at low-frequencies during successful memory encoding and retrieval (Solomon et al., 2017; Kragel
ss et al., 2021a), so we used low-frequency coherence to measure the network node strength of
s each stimulation target. We then asked if greater node strength between LTC stimulation targets
s0 and downstream memory-predicting areas resulted in greater effects of stimulation on memory

st performance. Consistent with this hypothesis, we found a strong positive correlation (r = 0.648, see
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w2 Figure 4C) between low-frequency connectivity and stimulation-related memory improvement.
43 Finally, LTC stimulation engaged low-frequency activity across a broader brain network in a way
s+ that matched the network position of the stimulated location (Figure 5).

465 Our data highlight how precise targeting improves stimulation efficacy by showing that de-
a6 livering stimulation near LTC white-matter leads to greater stimulation-related memory gains
467 (Figure 3C). By linking low-frequency network connectivity with physiological and behavioral
48 outcomes, our study also points to a neural mechanism for modulating memory with stimu-
a0 lation. This result extends earlier work that demonstrated the potential to modulate episodic
s0 memory by targeting LTC with stimulation (Ezzyat et al., 2018; Kucewicz et al., 2018). Di-
471 rectly comparing closed-loop and open-loop stimulation strategies in the same study helps to
a2 establish a causal role for the closed-loop approach (Hampson et al., 2018; Ezzyat and Rizzuto,
473 2018). Finally, our data from 57 stimulation targets (across 47 patients) also represents a sub-
47+ stantial increase compared to sample sizes described in related prior studies (Ezzyat et al., 2018;
475 Hampson et al., 2018).

476 Prior work has linked successful memory function with theta power and coherence (Burke
477 et al., 2013; Solomon et al., 2017; Herweg et al., 2020; Griffiths et al., 2019; Kragel et al., 2021b;
s Ter Wal et al., 2021; Osipova et al., 2006; Guderian and Diizel, 2005; Klimesch et al., 1997;
70 Staudigl and Hanslmayr, 2013). Here, we investigated this physiological correlate of memory
40 function by testing how memory-modulating LTC stimulation affects low-frequency physiology.
s81 We found that stimulation’s effect on low-frequency activity depends on the low-frequency func-
sz tional connectivity of the stimulation target. This suggests that identifying strong functional con-
483 nections can produce stronger modulation of low-frequency activity within the memory network.
sss  Furthermore, we found that stimulation that modulated low-frequency activity also modulated
45 memory performance.

486 Several prior studies found potential therapeutic benefits of closed-loop stimulation triggered
s87 by decoding of intracranial brain recordings (Ezzyat et al., 2018; Scangos et al., 2021a; Hampson
sss et al., 2018; Kahana et al., 2023). However, with some important exceptions (Hampson et al.,
ago 2018), this work has lacked an open-loop or random stimulation control condition, leaving open
s0 the question of what specific role the closed-loop nature of stimulation played in its therapeutic

w01 effects. Here, we compared the effects of closed-loop stimulation with a random stimulation
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402 condition. Closed-loop participants received stimulation only for those items predicted to be
a3 forgotten. Participants in the random group followed the same protocol, but using classifiers
s4 trained on permuted data, resulting in stimulation being applied without regard to predicted
45 memory success. This led to reliable memory improvement for the closed-loop group and none
a6 for the random group, despite following an otherwise identical protocol (Figure 1C).

497 We found that closed-loop stimulation improved memory the most when it was delivered to
s LTC targets in or near white matter. This finding builds on a growing literature that indicates that
490 stimulation is most effective when it is delivered in or near white matter pathways (Khambhati
soo et al., 2019; Stiso et al., 2019; Mohan et al., 2020; Solomon et al., 2018; Paulk et al., 2022). One
so1 explanation for this phenomenon is that only stimulation of white matter pathways successfully
s02 engages broader brain networks, perhaps via oscillatory synchronization. In contrast, gray matter
sos  stimulation tends to cause more local effects (Mohan et al., 2020; Paulk et al., 2022). Though purely
so+ local effects may sometimes be desirable, the key cognitive and pathophysiological processes of
so5 greatest interest to neuroscientists tend to involve multiple interconnected brain regions.

506 Among its many applications for modulating cognition and behavior (Siddiqi et al., 2022;
so7  Fox et al., 2020; Sreekumar et al., 2017) a number of recent studies have evaluated stimulation’s
sos potential for enhancing episodic memory (Mankin and Fried, 2020; Suthana and Fried, 2014;
soo  Curot et al., 2017; Lee et al., 2013; Sankar et al., 2014). While our study investigated numerous
st0  stimulation targets within the LTC, future work should compare stimulation of this region to other
511 brain areas within the broader episodic memory network. Recent work suggests that stimulating
stz white matter pathways in the medial temporal lobe, for example, can also improve memory (Titiz
s etal, 2017; Mankin et al., 2021; Suthana et al., 2012). However, these previous studies used visual
st4 and/or spatial memoranda, while the present study focused on encoding and retrieval of verbal
si5 material. Thus, future research should compare stimulation to the lateral and medial temporal
st lobes, to determine whether stimulation target location interacts with the modality of the to-be-
57 remembered information. This could contribute to other work that has used stimulation to study
sis the component processes that contribute to successful episodic memory (El-Kalliny et al., 2019).
519 We delivered stimulation using macroelectrodes, consistent with its clinical applications (Krauss
s20 et al., 2021; Morrell, 2011; Sun et al., 2008). Macroelectrode stimulation alters local activity

s21  at the spatial scale of the distance between the anode and cathode (approximately 1 cm), but
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s22 can also alter more distant regions. Because memory relies on a broad network of cortical
s2s and subcortical regions, including the hippocampus (Kim, 2011; Keerativittayayut et al., 2018),
s2+ stimulating a broader network may be necessary to impact cognitive function. On the other
s25 hand, memory also relies on the recapitulation of specific patterns of neuronal activity, espe-
s26 cially within the hippocampus (Foster, 2017; Staresina and Wimber, 2019). Thus, other work
s27 has stimulated through microelectrodes to mimic and reinstate memory-related hippocampal ac-
s28  tivity using a model-based closed loop approach (Hampson et al., 2018; Hampson et al., 2013;
s20  Deadwyler et al.,, 2017). An avenue for future work could use macroelectrode stimulation in a
ss0 similar vein, by triggering stimulation at multiple macroelectrode contacts in order to synchronize
ss1  a particular spatiotemporal pattern of activity across key memory-related regions (Kim et al., 2016;
s32 Kim et al., 2018).

533 In relating low-frequency network connectivity, physiology, and behavior, our study con-
s3  tributes to methodological development for invasive stimulation (Krauss et al., 2021; Cagnan et
s35 al., 2019) that illuminates the critical role of low-frequency networks in cognition (Voytek and
sse  Knight, 2015). In addition, the present study also suggests that other methods that manipulate
ss7 low-frequency activity could be leveraged to modulate neural and cognitive function. Several
ss8  recent studies using non-invasive methods have leveraged low-frequency theta-patterned stimu-
ss9  lation to modulate episodic and working memory (Nilakantan et al., 2017; Hermiller et al., 2020;
ss0 Tambini et al., 2018; Warren et al., 2019; Grover et al., 2022). Such low-frequency stimulation
st modulates electrophysiology perhaps by entraining low-frequency oscillations that are associated
sz with cognitive function (Solomon et al., 2021; Reinhart and Nguyen, 2019; Reinhart et al., 2017;
ses  Hanslmayr et al., 2019).

544 In summary, our demonstration of improved memory with closed-loop stimulation supports
sss  the idea that memory function is dynamic, and that closed-loop algorithms that account for
s46  moment-to-moment variability in the brain’s memory state can selectively deliver stimulation
s¢7  only when it is needed. The present study also links closed-loop stimulation efficacy to white
s¢8 Mmatter targeting, brain-wide evoked physiology, and changes in episodic memory performance.
ss0  The findings suggest future strategies for using the functional and anatomical network profile of

ss0  putative stimulation targets to optimize downstream changes in oscillatory activity and cognition.
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