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Abstract

Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to
meditation. However, this research has mostly examined power in different frequency bands. Here we
compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity
differences between meditators and non-meditators. Eyes-closed resting-state EEG data from 49 meditators
and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7,381
time-series features from each PC and each participant and used them to train classification algorithms to
identify meditators. Highly differentiating individual features from successful classifiers were analysed in
detail. Only the third PC showed above-chance classification accuracy (67%, pror = 0.007), for which 405
features significantly distinguished meditators (all pror < 0.05). Top-performing features indicated that
meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-
series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast,
classifiers trained with traditional band-power measures did not distinguish the groups (pror > 0.05). Our novel
analysis approach suggests the key signatures of meditators’ brain activity are higher temporal stability and a
distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage
deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this
EEG component might underpin the higher attentional stability associated with meditation. The novel time-
series properties identified here have considerable potential for future exploration in meditation research and

the analysis of neural dynamics more broadly.
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Mindfulness meditation is a practice that involves focusing attention on the present moment while
maintaining non-judgemental awareness of the sensations, thoughts or emotions that arise (Kabat-Zinn, 1994).
The practice has been increasingly integrated into clinical practice and is often used across society to improve
wellbeing (Baer, 2003; Cramer et al., 2016; La Torre et al., 2022). There is also evidence that mindfulness can
improve certain cognitive functions, which suggests a capacity to induce robust changes in brain activity
(Bailey et al., 2020; Chiesa et al., 2011; Chiesa & Serretti, 2010; Gill et al., 2020; Im et al., 2021). The
identification of alterations to brain activity from meditation poses several potential benefits. If specific
patterns of neural activity are altered by meditation practice, then these patterns could be assessed as
potential mechanisms by which mindfulness improves mental health (Holzel et al., 2011). Interventions could
then be designed to specifically target the patterns of neural activity reflecting mechanisms of action, leading
to more effective interventions (Britton et al., 2018; Scangos et al., 2023). The neural activities could also be
measured during interventions to determine if the practice is working for a specific individual (Scangos et al.,
2023). Individuals who show impairments in the specific neural activities that are enhanced by mindfulness
could also be recommended for mindfulness interventions. Finally, the findings related to neural mechanisms
of improved mental health from mindfulness could be extended to other fields. For example, targeted
neuromodulation using brain stimulation or pharmacological interventions could attempt to replicate the
mindfulness-based changes to the neural mechanisms with the aim to improve mental health in individuals

who find mindfulness practice prohibitively difficult.

While much research has reported differences in measures of neural activity associated with meditation,
findings are inconsistent (Boccia et al., 2015; Falcone & Jerram, 2018; Ganesan et al., 2022; Lomas et al., 2015;
Osborn et al., 2022). The inconsistencies relate to both the measures and brain regions in which changes in
activity are detected (Lee et al., 2018; Lomas et al., 2015; Schoenberg & Vago, 2019) and in whether neural
activity is enhanced or reduced (Lehmann et al., 2012; Osborn et al., 2022). Our own research also follows this
pattern, where, depending on the cognitive task or brain regions of neural activity being measured, we have
found larger neural responses in experienced meditators (Bailey et al., 2023a), found reduced activity (Bailey
et al,, 2020), have found altered distributions of activity (Bailey et al., 2020; Bailey et al., 2019a), and also
reported no differences compared to non-meditators (Bailey et al., 2019b; Payne et al., 2020). We suspect

these inconsistencies might be in part because the effect of meditation is to alter attention processes that
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underlie the performance of cognitive activities, rather than providing effects that are specific to a particular
cognitive domain. As such, different cognitive tasks and experimental conditions may produce different
patterns of differences associated with meditation (Wang et al., 2020). However, there may also be deeper
mechanistic commonalities underlying the superficial differences across different tasks and experimental
conditions. Given the attention training aspect of mindfulness, one potential candidate is more stable neural
activity, which could underpin increased attentional stability (Bailey et al., 2023b; Lutz et al., 2009). Many
other candidate mechanisms are also plausible. To detect potentially novel mechanisms of meditation, this
study applied a data-driven approach, using a comprehensive list of over 7000 features extracted from
different types of time-series analysis methods to characterise time-series patterns in electroencephalography
(EEG) data. Many such time-series methods have not previously been used to study neural activity in
meditators. This approach enabled us to determine which features of the data are best for detecting
differences in brain activity between experienced meditators and non-meditators, and whether any time-

series features of the EEG data may have been overlooked by previous research.

We used resting-state EEG activity instead of a cognitive task, as any cognitive task we selected to study might
detect brain activity differences that are only specific to a brain region, network, or function activated to fulfil
a specific cognitive process. In contrast, spontaneous resting-state activity reflects ‘baseline’ neural activity
that would frequently be engaged in daily life and might therefore be expected to be representative of the
neural activity associated with an individual’s daily conscious experience (in contrast to brain activities related
to specific cognitive processes, which might only be activated intermittently). Similarly, we did not use
meditation-state related data, which can only provide information on state differences that cannot be
disentangled from the meditation practice related trait differences of interest, and as such may be less

informative of the intrinsic differences in neural activity in meditators (Cahn & Polich, 2006; Lutz et al., 2007).

Research using resting-state EEG to examine the effects of meditation on brain activity has typically examined
the power in different frequency bands, which is typically assumed to indicate the strength of neural
oscillations. These studies show associations between meditation and altered band power within specific
canonical frequency bands: theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz); with
increases in theta and alpha frequency bands most commonly reported (Berkovich-Ohana et al., 2011;

Braboszcz et al., 2017; Cahn et al., 2010; Kerr et al., 2011; Lagopoulos et al., 2009; Lomas et al., 2015; Lutz et
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al., 2004; Rodriguez-Larios et al., 2021; Wong et al., 2015). Investigations of these frequency bands in healthy
non-meditators during the performance of cognitive tasks have indicated that power in each of these
frequency bands are associated with a range of functions (Cavanagh & Frank, 2014; Cavanagh & Shackman,
2015; Cooper et al., 2003; Foxes & Synder, 2011; Grunwald et al., 1999; Jensen & Mazaheri, 2010; Kaminski et
al., 2012; Kirschfield, 2005; Klimsech et al., 1997; Klimsech et al., 2007; Klimsech et al., 2005). As such, research
into frequency band power in meditators has been informative of the effects of meditation on specific brain
functions. In keeping with research examining neural activity associated with meditation more broadly,
however, findings from studies focused on frequency band power in meditators are also inconsistent (Lee et

al., 2018; Lomas et al., 2015; Schoenberg & Vago, 2019).

Furthermore, while neural oscillations are a prominent feature commonly detected in ongoing brain activity,
their analysis is only a ‘narrow lens’ through which to characterize the rich variety of temporal patterns that
can be observed in general time-varying systems such as the brain (Schoenberg & Vago, 2019). As such, the
focus on frequency band power analyses in meditation research has led to an understanding of the effects of
meditation on brain activity that is related to changes in neural oscillations, an understanding which may be
both over-generalised and incomplete (Schoenberg & Vago, 2019). As such, previous research may have
excluded the detection of alternative features of neural activity that may be common across paradigms and
may relate more directly to the putative mechanisms of action of mindfulness. For example, quantifying total
power within canonical frequency bands commonly involves representing the time-series in terms of a Fourier
power spectrum, a representation that captures linear structure in the data. This type of analysis cannot
detect nonlinear structure and assumes stationarity (i.e., that statistical properties of the process do not vary
over time). As a result, the Fourier power spectrum analysis approach cannot capture non-stationarity
(Walker, 1997). However, many other analysis techniques can assess the stationarity of the data (Horvath et
al., 2014; Manuca & Savit, 1996; Witt & Kurths, 2002). These analysis techniques may be good candidates to
assess neural stability, which we noted earlier may be a mechanism underlying the increased attentional

stability reported to be associated with meditation (Bailey et al., 2023b; Lutz et al., 2009).

It is worth noting that there have been a relatively small number of studies of meditation-related brain activity
that have explored characteristics of EEG data beyond measures of power in specific frequency bands. These

include assessment of the slope of the power-frequency spectrum of aperiodic (non-oscillatory) activity (Bailey
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et al., 2020) and the nonlinear dynamic complexity and entropy of EEG time series (Aftanas & Golocheikine,
2002; Armbuster-Genc et al., 2016; Vivot et al., 2020; Vy3ata et al., 2014). However, all meditation studies we
are aware of have still used hypotheses-driven approaches, which examine a small number of manually
selected time-series statistics and require subjective and non-systematic choices made by the researcher.
Comprehensive analysis methods that include new (previously untested) types of analysis methods might

reveal new insights that are unlikely to be derived purely from conceptual and theoretical perspectives.

To investigate this possibility, we used a comprehensive time-series analysis approach, comparing over 7000
statistical features from the EEG time-series data of experienced meditators and non-meditators. This ‘highly
comparative’ approach overcomes the limitations of subjectively selected, small-scale, hypothesis-driven
comparisons by systematically searching a comprehensive range of time-series features for the features that
best differentiate two labelled groups. Within our study, this ‘highly comparative’ approach was implemented
using the highly comparative time-series analysis (hctsa) software (Fulcher & Jones, 2017). hctsa computes
time-series features that assess the linear correlation-based statistics commonly used in EEG research, as well
as many other types of features, with a non-exhaustive list including measures of the predictability,
stationarity, and self-similarity of the data using entropy, autocorrelation, and fractal scaling developed in
fields ranging from seismology to economics, as well as many other features that are not typically assessed
within neuroscience (Fulcher & Jones, 2017; Fulcher et al., 2013). This highly comparative approach has
previously been used to address a range of questions using EEG data. For example, the approach has been
used to extract a data-driven categorization of sleep stages from EEG data and detect the higher order
features that separate them (Decat et al., 2022). The approach has also been used to predict individual
response to transcranial magnetic stimulation treatment of depression (Bailey et al., 2023e), and to distinguish

electrographic seizures from resting brain activity (Fulcher et al., 2013).

Given this background, our aim was to determine whether the EEG data of experienced meditators contains
different time-series properties to non-meditators, such that meditators could be accurately identified from
their resting-state EEG data. This was achieved by applying a simple classification model using the hctsa time-
series feature set. If meditators could be accurately identified from the EEG data, our aim was to then

characterise the types of time-series properties that best differentiated meditators from non-meditators.
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Methods

Participants

Eyes-closed resting-state EEG data were obtained from two separate studies of experienced meditators, which
included a total of 98 participants. After exclusions for low EEG data quality (described in the procedures
section), the analysed sample included 95 participants (46 healthy non-meditators and 49 experienced
meditators, ranging in age from 19 to 64 years). The results of analyses of the task-based EEG data from these
studies have already been published in Bailey et al. (2020); Bailey et al. (2019a); Bailey et al. (2019b); Wang et
al. (2020). Participants in these studies were recruited through community advertisements and via meditation
centres. Participants in the meditation group were required to have a meditation practice that typically
included at least two hours a week of practice, and to have at least six months of meditation experience. Their
practice was required to be mindfulness-based with a focus on the breath or body, and for their practice to
meet Kabat—Zinn’s definition of “paying attention in a particular way, on purpose, in the present moment, and
non-judgmentally” (Kabat-Zinn, 1994). Non-meditators were required to have less than two hours of total
lifetime experience with any kind of meditation. All participants were interviewed with the MINI International
Neuropsychiatric Interview (MINI) DSM-IV (Sheehan et al., 1998). Potential participants from either group
were excluded if they reported any current or previous psychiatric or neurological illness, or current
psychoactive medication or recreational drug use. Data from one meditator was excluded due to a history of
mental iliness. Data from one non-meditator was excluded due to a previous history of meditation practice,
and from another non-meditator due to poor data quality (details provided in the procedures section). Trait
mindfulness was assessed using the Five Facet Mindfulness Questionnaire (FFMQ) (Baer et al., 2006). The
groups did not statistically differ in age, gender, handedness, or years of education (p > 0.10, see Table 1), but
meditators showed higher FFMQ scores (p < 0.001). The study was approved by the ethics committees of the

Alfred Hospital and Monash University, and all participants gave written informed consent.

Table 1. Self-report data means and standard deviations from each group.

Meditator Group Non-meditator Group Statistics

Mean (SD) Mean (SD)

Age 37.37 (12.08) 33.13 (13.00) t(93) = 1.647, p = 0.103


https://doi.org/10.1101/2023.06.23.546355
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546355; this version posted June 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Years of education 17.04 (2.47) 16.68 (2.85) t(93) =0.661, p =0.510
Handedness (R/L/Mixed) 45/4 44/1/1 X?=1.644, p =0.200
Gender (F/ M) 28/21 26/20 X?=0.004, p =0.951
FFMQ 154.63 (15.48) 134.11 (13.96) t(93) = 6.772, p < 0.001

R: right-handed, L: left-handed, Mixed: ambidextrous, F: female, M: male, FFMQ: five-facet mindfulness

questionnaire.

Procedure

To aid in understanding our overall procedure, a high-level overview is provided in Figure 1. EEG data were
acquired via NeuroScan Acquire software and a SynAmps 2 amplifier, using a Neuroscan 64-channel Ag/AgCl
Quick-Cap (Compumedics, Melbourne, Australia). Data were referenced online to an electrode between Cz and
CPz. Electrode impedances were kept below 5 kQ. The EEG was recorded from 60 electrodes (excluding CB1,
CB2, M1, and M2) using the standardized 10/20 system at a sampling rate of 1000 Hz, with an online bandpass
filter of 0.05 to 200 Hz. Data were collected across three minutes where participants were instructed to “rest,
not meditate” with their eyes closed, and to let their mind do whatever it wanted, with no deliberate control
exerted. All participants also completed five cognitive tasks within their EEG session (listed in the
supplementary materials), which typically lasted between 2.5 and 3.5 hours in total. In the first study, resting-
state data were recorded after the second cognitive task. In the second study, resting-state data was taken

after the first task.

After the EEG was recorded, a series of evidence-based steps was undertaken to optimally process the data
based on previous research (Bailey et al., 2023c; Bailey et al., 2023f; Bailey et al., 2023d), which are reported in
full in the supplementary materials. These pre-processing steps constituted: 1) automatic removal of all
artifacts from the data while preserving the neural signal (Bailey et al., 2022a; Bailey et al., 2022b); 2)
segmenting the data into 30 second epochs and automatically rejecting epochs showing any remaining
artifacts (one non-meditator participant’s data was excluded at this stage as no artifact free 30s epoch could
be obtained) (Bailey et al., 2023f; Decat et al., 2022); 3) baseline correcting the data (so the mean of the
epoched data for each individual was zero); 4) downsampling the data to 160 Hz (which ensured the time-

series features were calculated on the frequencies containing the majority of meaningful EEG variance); and 5)
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z-score transforming the data across all values within each epoch (which preserved the relationships between

electrodes while normalising the amplitudes of the data so variations in amplitude did not bias the next steps).

While the feature-based classification approach requires a single (univariate) time-series from each participant
to extract features, EEG data are typically recorded from many electrodes simultaneously (our EEG data were
recorded from 60 electrodes). To address this, we followed a procedure established in our previous research
where we used the dimensionality-reduction technique of principal component analysis (PCA) to extract highly
explanatory time-series from spatially weighted principal components (PCs) (Bailey et al., 2023e). Within our
dataset the top eight PCs explained 95% of the variance. Using PCA as a dimension reduction technique
allowed us to conduct separate statistical tests of classification accuracy on each of these eight PCs, striking a
balance between capturing as much variance as possible in the data, while minimizing the number of statistical
comparisons performed. Following pre-processing, we performed hctsa feature extraction, then fitted and

evaluated the classification models.

EEG recording Data cleaned with RELAX z-score transform and PCA
- -p
|
L 2
7729 features calculated Data normalisation SVM classification
highly Il
comparative | mp . - - RN IN
time-series ™
analysis , - \ ‘ ’ ./
|
¥

Statistical tests of individual features

7o\
SN

Figure 1. Depiction of the steps undertaken to pre-process the EEG data with the Reduction of
Electrophysiological Artifacts (RELAX) toolbox, compute the highly comparative time-series analysis (hctsa)
features, run the support vector machine (SVM) classification algorithm and test which features showed
significant differences between the meditators and non-meditators. Note that hctsa feature extraction and

classification was performed only on the top eight principal components.
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hctsa feature extraction and normalisation

Version 1.07 of hctsa, which includes implementations of 7729 time-series features, was used with Matlab
2022b to extract features, then fit and evaluate classification models. hctsa includes implementations of
statistical learning algorithms (including correction for multiple hypothesis testing) that can highlight the types
of analysis methods that are best suited to classifying labelled classes of time-series data like EEG (Fulcher &
Jones, 2017; Fulcher et al., 2013). Each feature was evaluated for each participant within each of the eight PCs
to produce a single value for each feature within each PC and participant. A single value for each participant
within each of the eight PCs was produced for each feature. Any non-real values or errors that were returned
from the feature extraction were excluded from further analyses so that only valid data were included in our
analyses. A feature was entirely excluded if it produced non-real or erroneous outputs across all participants.
For example, within PC3, this resulted in the removal of 348 features, with 7381 features remaining for
subsequent analysis (represented as a 95 x 7381 feature matrix). A similar number of features were removed
within the other PCs. The hctsa feature matrix for each PC was normalized across all participants for each
feature separately using a mixed sigmoid transform to enable more straightforward comparison of features
measured on different scales and with different distributions (see supplementary materials for full details)

(Fulcher et al., 2013).

After normalization, we used a linear support-vector machine (SVM) to classify meditators and non-meditators
based on the time-series features for a given PC of the EEG data. To ensure that optimistic results could not be
obtained from over-fitting, we used 10-fold cross-validation to calculate a mean balanced accuracy score. To
control for class imbalance (our sample contains 49 meditators and 46 non-meditators) we used inverse
probability class reweighting when training the SVM. To determine whether our classification accuracy was
statistically significant, we used a permutation test with 1000 null samples. Each null sample involved shuffling
the meditator/non-meditator labels across participants and obtaining a null balanced accuracy score from the
same cross-validation procedure as used for the real labels (Henderson & Fulcher, 2022). The resulting null
distribution allowed us to estimate a p-value as the proportion of null prediction accuracies that exceeded the
real prediction accuracy. We used the false discovery rate (FDR) to control for multiple comparisons across the
models obtained from the eight PCA components (Benjamini & Hochberg, 1995), and report FDR-corrected p-

values as pror.

10
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Individual Feature Analysis and Feature Interpretation

After we determined which (if any) PCs were able to accurately classify the two groups, we next aimed to
understand the types of dynamics that distinguish the meditators from non-meditators. While the multivariate
classifier described above used normalized data from each feature as the input, we analysed raw (non-
normalised) individual feature values to interpret which individual features differentiated the two groups. This
enabled clearer interpretation of the characteristics of each group for these features. To assess between group
differences in individual features, we calculated Mann—Whitney U test statistics (Mann & Whitney, 1947)
separately for each time-series feature from principal components that showed statistically significant
classification accuracy. This allowed us to interpret which types of dynamical changes contained within the
PCA component provided the strongest differentiation of the meditator and non-meditator groups. We
controlled the FDR to control for multiple comparisons within any significant PC across all 7381 features using
the method of Benjamini and Hochberg (1995). Given the large correlation between many features (Fulcher et
al., 2013), we note that this approach (which assumes independence) is expected to yield conservative

significance estimates.

Finally, to compare the performance of the hctsa features at distinguishing between the meditator and non-
meditator groups to the performance of traditional canonical frequency band-power features, we tested the
10-fold cross-validation classification accuracy of each frequency band (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-
13 Hz, beta: 14-25 Hz and gamma: 25-45 Hz). To do this, we repeated the classification analysis described
above, but instead of using the hctsa feature set, we used the averaged power within the 5 canonical
frequencies as features. Firstly, we computed spectral power from each of the eight PCs separately using a
Welch’s method, then averaged the power within each frequency band for each PC separately. We then
included the averaged power from all five bands and all eight PCs in the classifier, which was represented in a
95 participant x 40 PC band-power matrix. Note that due to the smaller number of features in the band-power
analysis, we included frequency measures from all eight PCs in the single classifier (in contrast to our primary
tests of all hctsa features, in which we tested each PC separately to avoid potential overfitting issues caused by
the inclusion of so many features in the classifier). Additionally, to match the analyses we conducted using the
hctsa feature set, we also tested classifiers from the canonical frequency bands from each PC separately.

Finally, we tested the exact Mann—Whitney U test on each individual PC band power and used the false

11
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discovery rate (FDR) to control for multiple comparisons across these 40 features using the method of

Benjamini and Hochberg (1995).

Results

Cross-Validation Tests

The classifier trained on the hctsa features from the PC3 time-series showed above chance classification
accuracy of meditators and non-meditators, which exhibited a mean balanced accuracy of 67% (SD across the
10 test folds = 6.54%, pror = 0.007). None of the other classifiers trained on data from the other seven PCs
showed statistically significant classification accuracy (all pror > 0.10). The map of the spatial weightings and
averaged power spectrum of the PC3 component across all participants is plotted in Figure 2. The power
spectrum indicates a dominant alpha rhythm (the power spectrum averaged across all participants showed a
peak frequency of 9.61 Hz). This is of interest, as alpha activity has been reported to be altered by meditation
in previous research (Kerr et al., 2011; Wang et al., 2020). However, it is worth noting that the other seven PCs
also showed a peak frequency in the alpha range (see supplementary materials Figure S1). The topographical
map of PC3 showed that the electrodes that contributed the strongest weightings to PC3 were from a broadly
spread array of lateral frontal, central, and left parietal electrodes (see Figure 2). Fronto-polar and temporal
electrodes (where blink and muscle artifacts are respectively most prominent) did not provide strong
contributions to PC3. As such, both the alpha prominence of the frequency spectrum and the topographical
weightings suggest our classification accuracy was not influenced by blink or muscle artifacts, suggesting that
the time-series features differentiating our groups were likely related to brain activity rather than non-neural

artifacts.
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Figure 2. The topography and power spectrum for PC3. Left: The topographical map of weightings from each
electrode that contributed to PC3. Right: the mean power spectrum for PC3 across all participants (computed

using Welch’s method); shading reflects 95% confidence intervals.

Which time-series features differentiate meditators and non-meditators?

A total of 405 individual time-series features from PC3 showed significant differences between the meditators
and non-meditators after controlling for 7381 multiple comparisons (pror < 0.05). For visualisation and
interpretation, we focused on the most discriminative 50 features (with pror < 0.016), as these 50 features
showed the strongest effects and captured the relevant types of methods contained in the full set of 405
significant features. Focusing on the top 50 features in this way allowed us to interpret the clusters of features
that showed the strongest effects at differentiating meditators and non-meditators. To determine which types
of time-series properties these features measured, we organised them using linkage clustering based on
absolute Spearman correlations (| p|) between the values provided for each individual feature, implementing a
cluster threshold of |p| > 0.75, which yielded groups of features that showed similar behaviour within our
dataset. The relationships between these features and their interpretations are summarized in a dendrogram
and cluster plot in Figure 3, which depicts several clusters of highly correlated features. Overall, there was a
high level of correlation between different features, indicating that many features showed similar outputs to
other features across participants within our dataset. The dendrogram (Figure 3) shows three large clusters of
features that strongly distinguished the groups. Since these three clusters contained features that performed
best at distinguishing the groups, and contained seven or more related features providing high performance,
we focused our interpretation on these clusters. However, we note that there were features within the 405
significant features that did not correlate highly with the three clusters we interpret, and these features may
provide further novel insights into differences in brain activity between meditators and non-meditators. We
discuss some of these features briefly in our supplementary materials, and provide a full list of the significant

features and their correlation matrix in our supplementary materials.
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| Global distribution properties
. i - ‘How are the values spread within the time series?’
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Figure 3. Left: the cluster plot of the top 50 features from PC3, clustered using absolute Spearman correlations
and a threshold of |p| = 0.75 for forming clusters, enabling visualisation of how strongly the different clusters
are related to each other. Middle: dendrogram of the top 50 features, clustered using absolute Spearman
correlations and a threshold of |p| = 0.75 for forming clusters. This plot groups features by the strength of the
correlation with other features, such that those with smaller absolute correlation distances are depicted in the
same colour, and these features show a strong linear relationship between the values from each feature.
Right: Annotated brief interpretations are provided for the three largest clusters. The full list of significant

features from PC3 and correlation matrix can be found in the supplementary materials.

The first cluster of features from PC3 (coloured orange in Figure 3) contains features that assess the
stationarity in the dynamic properties of the time series, in particular, the consistency of time-order-
dependent statistical patterns across shorter subsegments of the full 30s recording. These features implement
measurements derived from the concept of ‘stationarity’ in time-series analysis, which can loosely be thought
of as the extent to which the statistical properties of the time series are constant. Practically, for finite-length
real-world time series, this often involves quantifying the consistency of statistical properties measured in local
subsegments of a recording. The 17 features from this cluster indicate that meditators displayed more stable
and consistent dynamical patterns within PC3 across the 30s EEG epoch than non-meditators. An example
feature in this cluster measured the variability in the median-based time-series predictability across five non-
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overlapping (6 s-long) segments of the 30s time series. This feature is named FC_LocalSimple_median7_sws in
hctsa. We refer to it in this article as the ‘stationarity of median-model predictability feature’ for simplicity.
This feature assesses predictability by computing the median of 7 consecutive samples, then using that median
to forecast the next time-series sample. Comparing the standard deviation of the residuals from this prediction
process across five non-overlapping (6s) segments of the time-series, meditators showed a more consistent
level of residual variance across segments than non-meditators (Figure 4A, and a schematic explanation of the
computation of this feature is provide in the Supplementary Materials Figure S2). This feature displayed the
strongest ability out of all hctsa features at distinguishing meditators from non-meditators (pror = 0.012,
Cohen’s d = 0.911, Figure 4A). The full list of significant features is provided in the supplementary materials,
and readers can refer to hctsa for details of how each individual feature was computed (Fulcher & Jones,
2017). Other types of conceptually similar features in this cluster of features (orange in Figure 3) also
measured the consistency of different types of dynamical properties across shorter segments of the time
series and yielded similar insights. Overall, these features indicated that the meditator group showed more
consistent dynamical properties within the PC3 component of their EEG signal than non-meditators across this
30s timescale, where the time-order dependent statistical properties of the time-series were less variable

between the different 6s segments of the data.

The second cluster of features from PC3 that performed well at differentiating meditators and non-meditators
(coloured green in Figure 3) were also related to the consistency of the statistical characteristics of the time-
series across different segments of the data (providing another measure of stationarity). However, the
features in this cluster mostly captured ‘non-dynamic’ properties of the data, which depend on the distribution
of values in a time-series segment, rather than their temporal ordering (where the distribution is the shape
created by plotting each value from the 30s epoch of PC3 on the x-axis and the frequency of the occurrence of
that value on the y-axis). Our results showed that the meditation group had more consistency in their
distribution of time-series values across different segments of PC3 compared to non-meditators, effectively
showing more stationarity in the distributional properties of their time-series. An example feature within this
cluster, with the largest effect size in this cluster, is named SY_SlidingWindow_mom4_ent5_10 in hctsa, and is
referred to as ‘kurtosis stationarity’ for simplicity here. This ‘kurtosis stationarity’ feature measured the

variability in the kurtosis of time-series values across overlapping 6s segments of the epoch (where 90%-
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overlapping sliding windows were used to obtain the data segments, and variability was quantified using
kernel-smoothed entropy). Kurtosis loosely measures the shape of a distribution’s tails and peak (i.e., how
'peaked’ or ‘flat’ it is) relative to a Normal (Gaussian) distribution (DeCarlo, 1997). Positive values for kurtosis
are obtained when distributions are more peaked (with more values centred around the mean) than a Normal
distribution, and negative kurtosis values are obtained when distributions are less peaked (‘flatter’) and have
more values in the tails of the distribution away from the mean. Our results showed that meditators had more
consistent kurtosis estimates within PC3 across local (6s) time-series windows than non-meditators (pror =

0.012, Cohen’s d = 0.956, see Figure 4B).

To aid with a practical understanding of this difference, distributions of PC3 values from five non-overlapping
6s segments from four exemplar participants are plotted in Figure 5. Inspection of these distributions shows
that participants with higher values for this ‘kurtosis stationarity’ feature showed more variability in
distribution shape across the 6s segments than those who showed lower values for this feature. Most of the
remaining features in this second cluster (green in Figure 3) yielded qualitatively similar insights, capturing the
consistency of local kurtosis measurements in slightly different ways (including variations in how the segments
of the data were selected, and the use of standard deviation instead of entropy to quantify variability across

windows).

Since PC3 contained a prominent peak of oscillatory power in the alpha band, we conducted a brief
exploratory analysis of both the ‘stationarity of median-model predictability’ and ‘kurtosis stationarity’
features after data were bandpass filtered to remove all frequencies outside of the alpha band. This
demonstrated that both features were highly related to stationarity in alpha oscillations (reported in full in the
supplementary materials). The ‘stationarity of median-model predictability’ feature showing almost identical
results after data were bandpass filtered to only contain alpha activity, while the ‘kurtosis stationarity’ feature
showed a similar effect size but a lower correlation between the alpha-filtered and non-filtered data. This
result suggests that the higher stationarity in the meditator group might be driven by higher stationarity of

their alpha oscillations.

The third cluster of high-performing features from PC3 (coloured blue in Figure 3) measured properties of the
shape of the distribution of z-scored time-series values (from the entire 30s epoch). These features indicated
that the meditator group were more likely to display PC3 time-series values with a distribution where the 20%
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to 3% most extreme values deviate further from the mean than non-meditators. This is consistent with a
pattern of activity from the PC3 component of EEG data that contains larger (or longer) voltage peaks and
troughs. The feature in this cluster with the largest effect size (labelled quantile_80 in hctsa, pror = 0.012,
Cohen’s d = 0.842) measured the 80th percentile value of the z-scored time series (i.e., after ranking all the
values of the z-scored time series by magnitude). As such, quantile_80 is a measure of distribution shape,
capturing (in units of standard deviation) how far the 80th percentile of values from the time series are from
the mean (where the mean is O for the z-scored time series). Meditators also showed significantly lower values
than non-meditators for the 20th percentile (named quantile_20 in hctsa, pror = 0.032, Cohen’s d = 0.658,
Figure 5D), although with a smaller effect size than quantile_80. As shown in Figure 4C and Figure S3, relative
to their mean and standard deviation, the 20th and 80th percentile of deviations in the PC3 signal were further
from the mean for the meditation group than for non-meditator group. However, it is worth noting that the
non-meditator group showed non-significantly higher values for the quantile_1 and quantile_99 features than
the meditator group, indicating that meditators did not show more extreme values in the 1% most extreme
values from the mean. Other features in the third cluster (labelled blue in Figure 3) represented conceptually
similar global measures of distributional shape, including measures of histogram entropy and outliers. As such,
these other features also captured differences in the distribution shape of the overall values in the PC3 time-

series data between meditators than non-meditators.

While these three clusters assessed conceptually different characteristics of the data, it is also worth noting
that the features from the different clusters were often also strongly correlated. This was particularly the case
for the second and third clusters, where the correlation between features in the cluster that included
measures of the stationarity of distributional properties of the data and features in the cluster that included
measures of the distributional properties of the entire time-series was often p > 0.5, for example the

correlation between quantile_80 and ‘kurtosis stationarity’ features was p = 0.632 (p < 0.001).
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Figure 4. The distribution of individual feature values obtained from PC3 for the meditator and non-meditator
groups for top-performing features reflecting the three clusters depicted in Figure 3 shown as violin plots. A:
the FC_LocalSimple_median7_sws feature (or ‘stationarity of median-model predictability’). This feature
reflects the consistency in a simple median-model predictability of participant’s PC3 time-series dynamics, so is
thus a measure of stationarity in the dynamic properties of the time-series, with meditators showing more
stationarity in how predictable their PC3 data were between each six second segment (pror = 0.012, Cohen’s d
=0.911). B: The distribution of values from each group for the SY_SlidingWindow_mom4_ent5_10 feature (or
‘kurtosis stationarity’). This feature assessed how variable the kurtosis of time-series values was across
overlapping 6s segments of the epoch within the PC3 time-series. Meditators showed lower values for this
feature, indicating more consistency (or stability) in the distribution of their data (pror = 0.012, Cohen’s d =
0.956). C. The distribution of values from each group for the quantile_80 feature. This simple feature provided
the value of PC3 at the 80th percentile of the z-scored time-series. Meditators showed higher values for this
feature (pror = 0.012, Cohen’s d = 0.842). D. The distribution of values from each group for the quantile_20
feature. This simple feature provided the value of PC3 at the 20th percentile of the z-scored time-series.

Meditators showed lower values for this feature (pror = 0.032, Cohen’s d = 0.658).
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Figure 5. Distributions of PC3 values from five non-overlapping 6s segments from four exemplar participants
demonstrating high and low ‘kurtosis stationarity’ values, with the ‘kurtosis stationarity’
(SY_SlidingWindow_mom4_ent5_10) values obtained from these four participants provided in the title for
each plot. Note the larger variability in distribution shape from the 6s segments for participants that showed
higher values for this ‘kurtosis stationarity’ feature, providing a visual depiction of how variability in the

distributional shape across different 6s segments affects the ‘kurtosis stationary’ feature.

Comparison to features derived from power in canonical frequency bands

Finally, to determine whether traditional frequency band power could provide a similar differentiation of the
two groups to the top performing features from the hctsa feature list, we tested the performance of five
canonical frequency band-power features (delta, theta, alpha, beta and gamma) computed from PCs 1-8 at
classifying meditators and non-meditators. Our analysis of the canonical frequency band power across all PCs
together in the same classifier provided a balanced accuracy of 56% (SD = 12.20%, p = 0.332). Further, when
classification models were trained on the canonical frequency band power from each of the PCs separately, in
contrast to the results of our analysis with hctsa, none of these classifiers from individual PCs provided
significant balanced classification accuracy (all pror > 0.05). When examining power averaged within individual
canonical frequency bands (i.e., delta, theta, alpha, beta and gamma bands) from individual PCs, only the alpha

band for PC6 passed an uncorrected significance threshold (p = 0.0079, reported uncorrected here to
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demonstrate the replication of previous research). None of the values from any PC within the canonical
frequency bands significantly differentiated the two groups after controlling for multiple comparisons across
the 40 comparisons (all pror> 0.3). It is worth noting that the distribution and stationarity features from hctsa
provided results that were significant above the much higher multiple comparison control threshold across all
hctsa features (which included an order of magnitude more individual features than the number of oscillation
band features). These results indicate that the novel distributional and stationarity-based features of the EEG
data (uncovered by hctsa) provided a stronger differentiation of meditators from non-meditators than the

canonical frequency band power analyses.
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Discussion

Our results showed that an individual could be classified as an experienced meditator or non-meditator with
above chance accuracy (67%, pror = 0.007) using one component of a single 30s epoch of EEG activity and a
comprehensive feature-based representation of the time-series. For this component of the EEG data, a total of
405 individual features significantly differentiated the two groups, even after stringently controlling for
multiple comparisons across >7000 candidate features. Our exploration of these individual features showed
that the largest differences between the groups were related to differences in the stationarity of the time-
series (both of dynamical properties and distributional shape) and features related to the global distributional
shape (particularly reflecting how values were concentrated towards the mean compared to how they were
concentrated towards the extremities). These results provide further support for the considerable amount of
research demonstrating that a meditation practice sustained over years is associated with alterations to brain

activity (Cahn & Polich, 2006; Falcone & Jerram, 2018; Ganesan et al., 2022).

However, as far as we are aware, most of the features uncovered by our systematic, data-driven approach
have not previously been used in meditation research. Furthermore, conventional EEG analysis methods based
on the linear correlation structure (using classical frequency-band power features) were not amongst the
significant features, and if we had analysed our data using band-power measures we would have concluded
that the groups did not show different brain activity. Indeed, any features derived from a Fourier transform
assume stationarity, and are thus insensitive to differences like the distinctively higher stationarity that
characterized the PC3 component of the meditation group’s EEG signal. Our results thus demonstrate the
usefulness of characterizing EEG time series using methods that go beyond methods that assume an
underlying stationary process that is well-characterised by its Fourier power spectrum. In contrast to these
conventional EEG methods, our top-performing features captured novel types of time-series properties that
may provide a new lens through which to understand the effects of meditation, as well as suggesting
promising application in understanding brain states in general. As such, our analysis provides important new
insights that could be productively used to explore the mechanisms by which mindfulness practice affects
mental health and cognition. Additionally, we are not aware of any studies within the field of EEG research
that have used measures of within epoch univariate time-series stationarity to classify groups, or test for

differences between groups; therefore, our results highlight a valuable new direction for EEG research more
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generally. In particular, the predominant use of band-power features to represent EEG dynamics may be a
factor in studies presenting null results, with recent examples including null results for the classification of
individuals with Autism from neurotypical individuals using a very large dataset (Dede et al., 2023). In contrast
to these null results, our ability to significantly classify meditators is the result of our use of an expanded
methodological toolbox (provided by hctsa) — other studies may also benefit from leveraging more

comprehensive statistical summaries of neural dynamics.

Our analysis of the individual features from the third principal component of the EEG data that differentiated
meditators and non-meditators showed one high-performing cluster of features which assessed the
stationarity of the dynamical properties of the time-series across shorter local segments of the 30s epoch. This
cluster of features revealed that meditators have more consistently predictable time-series within the PC3
component of an EEG epoch — essentially, within the meditator’s PC3 component, the time-order dependent
patterns within the data were more similar across different 6s segments of the full 30s epoch compared to
non-meditators. Features assessing the consistency of distributional properties of the time-series also strongly
differentiated the two groups, with meditators showing more consistency in the distribution of values during
different segments of the PC3 component. Our ability to contextualise this finding is limited, as we are not
aware of any other research that has directly assessed the temporal stability of EEG data for comparison with
our results. However, one potential implication of the higher level of stationarity may be that meditators
generate more temporally stable neural activity within the brain regions represented by the PC3 component
(e.g., across the 6 second segments of the 30 second EEG recording, as was assessed by many of the features
in our study). This higher degree of temporal stability might be a biological marker of neural activity that
underpins the enhanced stability of attentional focus suggested to arise from meditation practice. Further

research is required to explore this possibility.

Features that measured how the data were globally distributed also significantly differentiated meditators and
non-meditators, with meditators showing a broader distributional shape of PC3 time-series values, or higher
densities of values further away from the mean. This result is consistent with larger voltage peaks and troughs
generated in brain regions that contributed to the third principal component of their EEG activity. While we
are not aware of EEG research that has examined distributional features, research applying hctsa to examine

resting-state functional magnetic resonance imaging (fMRI) time-series has detected effects in distributional
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features similar to those detected in our study (Shafiei et al., 2020). Shafiei et al. (2020) showed that the
variation of fMRI time-series features related to distributional entropy and kurtosis (akin to a group of features
that distinguish the meditation group) explained a large amount of the variability in the anatomical properties
of the brain. The spatial variation of these distributional shape-based properties of the fMRI signal was
correlated to similar spatial variations in cortical thickness, intracortical myelination, and connectivity
hierarchies within brain networks (Shafiei et al., 2020), flagging the distributional shape-based properties as an
underappreciated signature that mirrors underlying anatomical variation. It is worth noting that fMRI data is
typically recorded at a resolution of 1-3 samples every second (in contrast to 160 samples per second as per
our results), and it is not clear how haemodynamic and electrophysiological signals are related (although some
work has shown correspondences between correlation timescales estimated from magnetoencephalography
and fMRI; Watanabe et al. (2019)). Nonetheless, both our study and the study by Shafiei et al. (2020) highlight
the relevance of quantifying the shape of the distribution of fluctuations in resting-state neural activity—a

property that is simple to interpret but remains underexplored.

Given the novelty of our results with regards to the univariate stationarity and distributional properties of the
data, there are no directly comparable studies within the meditation literature to help guide our
interpretation. However, previous research has reported that experienced meditators in the meditation state
show increased stability in the topographical pattern of EEG activity and in the temporal patterns of both EEG
and fMRI based connectivity (Escrichs et al., 2019; Toutain et al., 2020; Vivot et al., 2020). The increased fMRI
connectivity stability finding has also been reported in novice meditators, and for comparisons between
meditator and non-meditator resting-state connectivity (Escrichs et al., 2019). Previous research has also
shown that meditators generate more consistent brain activity in response to stimuli while performing a
cognitive task, enabling their brain activity to time-lock more effectively to the stimuli presented in the task
(Bailey et al., 2023b; Lutz et al., 2009). However, it is important to note that these measures of topographical
or connectivity-based stability may be unrelated to the features that differentiated meditators and non-

meditators in our study.

The aforementioned studies also mostly examined neural stability during the meditation state compared to
the resting state, rather than comparing resting-state activity between meditators to non-meditators. Despite

these differences, the meditation-state related increases in topographical or connectivity related stability that
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they report provides a possible suggestion for the cause of the increased stability in meditator’s neural activity
— it could be that prolonged practice of increased stability of neural activity during meditation leads to higher
levels of stability in neural activity. For example, it may be that meditation increases the engagement of
specific attention related brain regions, which, with repeated practice, might exert a regulatory effect on other
neural processes, leading to a durable increase in neural stability. Alternatively, it may be that the increased
integration of brain networks during meditation practice (van Lutterveld et al., 2017) provides enhanced
regulation of brain activity from moment to moment, enabling increased stability of meditator’s neural
activity. In support of this suggestion, a growing amount of recent research suggests that the short-term
dynamics of neural connectivity are predictive of attention function, both within and across individuals (Liu et

al., 2018; Song & Rosenberg, 2021).

An additional mechanism that may explain the increased stability of meditator’s neural activity has been
suggested through modelling work reported by Saggar et al. (2015). Their work simulated EEG data based on a
model of the interaction between cortical, corticothalamic and intrathalamic brain regions. Saggar et al. (2015)
compared the effects of adjustments to these simulated interactions to the effects detected within real EEG
data recorded before and after two separate groups undergoing 3-month-long meditation retreats. They
found that changes in the EEG data from before to after the retreat were partially explained by a model that
contained a decrease in inhibition of the secondary relay nuclei by the thalamic reticular nucleus. This
decreased inhibition by the thalamic reticular nucleus provided increased dynamic stability of the modelled
EEG activity. While modelling approaches are only approximate, can only model a limited resolution and
limited number of brain regions, and rely on a number of assumptions, the thalamus has been suggested to be
involved in attention regulation in meditation, acting as a filter for sensory inputs prior to their reaching the
cortex (Saggar et al., 2015). Future research could explore a comprehensive explanation involving increased
stability of thalamic gating providing increased focused attention towards sensory sensations and the
increased stability of neural activity in meditators (within the variance represented by the PC3 component)

found in the current study.

It is also worth noting that the stationarity measures from PC3 detected in our study were highly influenced by
activity within the alpha oscillatory frequency band, with our exploratory analysis (reported in the

supplementary materials) showing similar effects in the stationarity measures after data were bandpass
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filtered to exclude frequencies outside of the alpha frequency range. Previous research has suggested that
alpha activity provides two functions. Firstly, it provides an active top-down inhibitory function, whereby
higher-order (cognition-related) regions inhibit non-task related lower-order (sensory processing) regions.
Secondly, alpha activity provides a timing function, whereby the phase of alpha oscillations is timed to enable
specific neurons to fire (Klimesch, 2012). Both the inhibitory and timing functions modulate the ‘gain’ of neural
signals from lower order brain regions, enabling attention enhancement (Klimesch, 2012). Recent research
using intracranial electrodes has also shown that alpha oscillations propagate hierarchically from higher order
regions to lower order regions across the cortex, propagating from parietal to occipital visual processing
regions, from associative to primary regions within the somatosensory cortex, and from the cortex to the
thalamus (Halgren et al., 2019). Within these regions, the combination of alpha activity’s inhibitory and timing
functions may fulfil a top-down gating role for the propagation of sensory information from lower-order
sensory regions to higher-order brain regions (Halgren et al., 2019). As such, one potential explanation for our
results that would be worth testing in future research might be that because of their attention training,
meditators demonstrate increased stability of the alpha oscillation mediated influence of higher order regions
of the cortex to lower order regions. It is worth noting that all PCs showed prominent alpha peaks, so the
putative increase in alpha stability may be spatially specific, only differentiating the groups based on the
weightings of PC3. However, while only PC3 provided above chance classification of the two groups, our brief
inspection of the features from the non-significant PCs indicated the stationarity and distributional features
were amongst the top performing features for all PCs, with the same direction of effects (although no
individual features from the other PCs passed our stringent multiple comparison control thresholds). This may
suggest that while PC3 captured the most important variance in stationarity and distributional features of the
data for differentiating meditators and non-meditators, the stationarity and distributional properties of neural
activity in brain regions outside of the regions that provided strong weightings to PC3 may also differ in
meditators (although with smaller effect sizes). Unfortunately, due to the diffuse nature of the neural activity
measured by EEG recordings, we cannot confidently ascertain the brain regions likely to be generating the
activity captured by PC3. Source localisation focused on the features we showed differentiated the two groups
in PC3 may be able to determine whether our results are regionally specific and which regions might be

responsible for our results.
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Regardless of how the effects detected in our study arise, our findings related to stationarity suggest that it
may be fruitful for large-scale mediation analyses to explore meditation’s neural mechanisms of action using
measures of the stability of neural activity. If increased stability of neural activity does reflect a neural
mechanism of action, then interventions could be designed to target this characteristic of neural activity,
potentially leading to more effective interventions. Future research could also determine whether conditions
that show lower stationarity in their EEG might be recommended to mindfulness practice as a method to
resolve this potential pathophysiological marker. For example, lower temporal stability of EEG patterns has
been associated with less self-control and higher risk-tasking behaviour (Kleinert et al., 2022). Future research
could also explore whether the time-series features that capture different aspects of stability across different

timescales of neural activity may also offer the potential to detect progression in a meditation practice.

While measures of distributional shape and stationarity best differentiated meditators and non-meditators,
our results revealed significant group differences in a range of other time-series properties, and other features
may be interesting to explore. In particular, we were interested in complexity or signal entropy measures, such
as Approximate Entropy, Sample Entropy, Permutation Entropy, and Lempel-Ziv complexity. These measures
have received increased attention in recent neuroscience research as measures of the uncertainty or
information content within the EEG signal. Such methods have been proposed to relate to the richness of
conscious awareness, with increases in conscious awareness suggested to be associated with greater signal
complexity (Carhart-Harris, 2018) and decreases in these measures suggested to reflect a single pointed
attentional focus (Young et al., 2021). Our analysis did not show significant group differences in these types of
signal entropy measures (although non-dynamic entropy-related features which were used to quantify
properties of the distributional shape did show differences between the groups, and entropy-related features
used to quantify variation in predictability across windows as sliding-window stationarity did show differences
between the groups). The lack of difference between meditators and non-meditators in these signal entropy
measures is in contrast with some previous research, which has reported higher Sample Entropy or Lempel-Ziv
complexity both during the meditation state and in long-term meditators compared to non-meditators or
novice meditators (Lu & Rodriguez-Larios, 2022; Vivot et al., 2020). There are differences in data pre-
processing between our research and previous research, with previous research examining data from

electrodes rather than analysing principal components, which may explain this conflict with previous research.
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However, the entropy-related findings are not consistent in the literature, with some research reporting lower
Lempel-Ziv complexity during the meditation state compared to the mind wandering state in experienced

meditators (Young et al., 2021).

Limitations and future research

The primary limitation of the current study is that the data were collected using a cross-sectional design. This
approach provided a benefit in that the meditators were more experienced than is feasible within longitudinal
research, and thus likely showed more robust and larger differences in brain activity than an 8-week
mindfulness intervention could elicit. However, the cross-sectional design precludes us from inferring causality
from our findings. Further, only one EEG recording was analysed from each participant, and only the first 30s
of artifact free EEG data were analysed, so we did not assess whether the measures we assessed were
consistent across different days/weeks/months. However, this limitation is also a strength of the current
study, in that it indicates the potential robustness of differences in neural activity in the meditation group —
only 30 seconds of EEG data was sufficient to accurately classify meditators and non-meditators. Future
research might benefit from the inclusion of multiple epochs, potentially across multiple days, to obtain more
consistent measurement of the relevant features, assess how consistent these features are across time, and

determine whether variability over time in the features might also differentiate the groups.

Additionally, our approach attempted to maximise both generalisability (across different meditation practices)
and statistical power to detect meaningful effects (including participants from the broader category of
mindfulness meditation allowed us to obtain a larger sample size). As such, we included all mindfulness
meditation type practices, and did not separate practitioners by focused attention vs open monitoring
practices, for example. In this regard, our approach contains both a strength — where we identified strong and
generalisable differences in brain activity across all mindfulness meditation techniques, and a weakness — we
could not separate differences in brain activity by the type of practice. However, we note that while it would
be interesting to examine focused attention and open monitoring practices separately, the differences
between the two practices are likely to be much smaller than the differences between meditators and non-
meditators, as such, doing so would require much larger sample sizes to detect any effects. Additionally, our
perspective is that there is considerable conceptual overlap between ‘focused attention’ and ‘open
monitoring’ practices, as open monitoring requires training in focused attention to be useful, and because
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open monitoring could be considered as simply a focused attention practice with no specific object of focus.
Other researchers have similarly noted conceptual ambiguity in delineating these supposedly separate
meditation practices (Schoenberg & Vago, 2019). Similarly, we did not perform any analyses split by sex or
gender, as our sample size was not sufficiently powered for this split analysis. As such, our results provide no

indication of whether the same effects are present across different sexes or genders.

It is also worth noting that hctsa computes features from a single (univariate) time series. However, EEG data
were recorded from 60 electrodes. To address this, we performed a PCA to reduce the data to eight
components explaining over 95% of the variance in the data, drastically reducing the number of multiple
comparisons relative to examining each electrode separately and allowing us to analyse spatially distributed
and highly explanatory patterns that may not have been present in any individual electrode. To ensure a
weighting consensus, the PCA decomposition was performed on a matrix that included data from all
participants in a single matrix, ensuring that the PC weightings were common to all participants. This allowed
us to take a comprehensive list of over 7000 features and narrow it down to provide a smaller but novel list of
conceptually distinctive and informative features from a single principal component that are highly effective at
detecting differences in brain activity between meditators and non-meditators. This highlights the value of our
data-driven and hypothesis-free approach (further explanation of this point is provided in the supplementary
materials). This approach is likely to be valuable to translate to other methodologies within neuroscience,
where data often consist of many concurrent (multivariate) time-series, for example fMRI. The approach is
also likely to be useful in addressing other problems, for example, detecting the mechanisms underlying both

the cause of and treatments of major depression.

Despite the advantages of our approach, the topographical map for PC3 shows activity at multiple dispersed
electrodes such that it is not obvious to us which regions might be generating the activity, and the relationship
between activity at any electrode and the underlying sources of brain activity is not straightforward to
interpret. While source localisation has limitations, it could be used to estimate which brain regions might
have been responsible for the differences we detected. Alternatively, magnetoencephalography might be a
useful tool to obtain better spatial resolution. Additionally, while we examined eight univariate component
time-series, the brain is an interconnected network, and consciousness, cognition, mental well-being, and the

effects of meditation are related to these interactions between brain regions (Boly et al., 2012; Ganesan et al.,
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2022; Miljevic et al., 2023; Thivierge & Marcus, 2007). Research has demonstrated that meditation is
associated with differences in the characteristics of the functional connectivity across the brain (Ganesan et
al., 2022), and that attention is predicted by the dynamic modulation of connectivity within the brain (Liu et
al., 2018; Song & Rosenberg, 2021). As such, it is likely to be valuable to implement an analogous highly
comparative approach to comprehensively assess pairwise connectivity measures in future work (Cliff et al.,
2022), and to assess whether their combination with the univariate component features from the current

study could yield further improvements in classification performance.

As with all research, replication of our results is necessary before the insights from our study could be applied
in practice. To enable replication of our research, we have provided the full list of PC3 features that
significantly differentiated the two groups after stringent multiple comparison controls in our supplementary
materials section (along with how well these features correlated to one another). The code we used to clean
the EEG data are publicly available (Bailey et al., 2022a; Bailey et al., 2022b), and we have provided the
principal component weightings we used to transform our data in our supplementary materials, so if another

dataset were collected, the same data transforms could be applied in order to replicate our approach.

We also note that alternative parameter settings for specific features may provide an even stronger ability to
detect differences between the neural activity of meditators and non-meditators. Our brief exploration of
alternative parameter settings (reported in the supplementary materials) suggested that the relevant
timescale for the higher ‘kurtosis stationarity’ shown by the meditators involves data segments in the 2 to 6
second range. It may also be interesting to look at data epochs longer than 30 seconds, to determine how
localised in time the stationarity effects are. More broadly, the detection of between-group differences in
measures of the stationarity of the EEG signal suggests that it is likely to be promising for future to explore the
variability of statistical properties of EEG data in other populations, and within other states (cognition-related
states, different states of consciousness, and in pharmacologically induced states). While many traditional EEG
analysis methods are derived from a Fourier power spectrum of a full recording, thus assuming stationarity of
the dynamics on that timescale, our results indicate that meaningful effects can be detected from directly
measuring stationarity using algorithms that assess the consistency of statistical properties across shorter
windows of the recording. This is analogous to the trajectory of fMRI research methodology, which

traditionally computed functional connectivity (examining correlations in activity between brain regions) using
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the entire recording (assuming that connectivity between regions was approximately stationary). More recent
approaches have analysed the variability within these connectivity measures across shorter timescales to
provide measures of ‘dynamic functional connectivity’, the results of which indicate that this timescale of
stationarity/variability is informative of different states and conditions (Demirtas et al., 2016; Hindriks et al.,
2016; Jones et al., 2012; Matsui et al., 2022; Zalesky et al., 2014). Our results indicate that a similar conceptual
framing of variability of statistical properties within windows of individual component time series can be

similarly valuable.

Finally, the list of features we have provided could productively be used to explore the mechanisms by which
mindfulness has beneficial effects on mental health and cognition. If these measures are identified as
reflective of the mechanisms by which mindfulness meditation has beneficial effects, then these mechanisms
could be used to test the design of optimally effective mindfulness interventions, as well as potentially assess
meditation progress. Individuals who show impairments in these mechanisms might also be recommended to
mindfulness interventions as a treatment to resolve the impairment. Further research into these mechanisms
might also enhance our understanding of brain function in general. The measures of stationarity we have
detected might also be promising targets for neurofeedback (an example of how this might be applied is
provided in the supplementary materials). If this neurofeedback approach is successful, it might be associated
with similar well-being and attention benefits to those reported by and detected in experienced meditators.
However, it is also possible that ‘device-oriented’ approaches like this may be a distraction from a meditation
practice that may already be optimal when taught within certain traditions, so it may be that this proposed
neurofeedback approach would be more suitable for individuals who find meditation practice prohibitively

difficult.
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