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Abstract 

Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to 

meditation. However, this research has mostly examined power in different frequency bands. Here we 

compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity 

differences between meditators and non-meditators. Eyes-closed resting-state EEG data from 49 meditators 

and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7,381 

time-series features from each PC and each participant and used them to train classification algorithms to 

identify meditators. Highly differentiating individual features from successful classifiers were analysed in 

detail. Only the third PC showed above-chance classification accuracy (67%, pFDR = 0.007), for which 405 

features significantly distinguished meditators (all pFDR < 0.05). Top-performing features indicated that 

meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-

series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast, 

classifiers trained with traditional band-power measures did not distinguish the groups (pFDR > 0.05). Our novel 

analysis approach suggests the key signatures of meditators’ brain activity are higher temporal stability and a 

distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage 

deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this 

EEG component might underpin the higher attentional stability associated with meditation. The novel time-

series properties identified here have considerable potential for future exploration in meditation research and 

the analysis of neural dynamics more broadly. 
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Mindfulness meditation is a practice that involves focusing attention on the present moment while 

maintaining non-judgemental awareness of the sensations, thoughts or emotions that arise (Kabat-Zinn, 1994). 

The practice has been increasingly integrated into clinical practice and is often used across society to improve 

wellbeing (Baer, 2003; Cramer et al., 2016; La Torre et al., 2022). There is also evidence that mindfulness can 

improve certain cognitive functions, which suggests a capacity to induce robust changes in brain activity 

(Bailey et al., 2020; Chiesa et al., 2011; Chiesa & Serretti, 2010; Gill et al., 2020; Im et al., 2021). The 

identification of alterations to brain activity from meditation poses several potential benefits. If specific 

patterns of neural activity are altered by meditation practice, then these patterns could be assessed as 

potential mechanisms by which mindfulness improves mental health (Holzel et al., 2011). Interventions could 

then be designed to specifically target the patterns of neural activity reflecting mechanisms of action, leading 

to more effective interventions (Britton et al., 2018; Scangos et al., 2023). The neural activities could also be 

measured during interventions to determine if the practice is working for a specific individual (Scangos et al., 

2023). Individuals who show impairments in the specific neural activities that are enhanced by mindfulness 

could also be recommended for mindfulness interventions. Finally, the findings related to neural mechanisms 

of improved mental health from mindfulness could be extended to other fields. For example, targeted 

neuromodulation using brain stimulation or pharmacological interventions could attempt to replicate the 

mindfulness-based changes to the neural mechanisms with the aim to improve mental health in individuals 

who find mindfulness practice prohibitively difficult.  

While much research has reported differences in measures of neural activity associated with meditation, 

findings are inconsistent (Boccia et al., 2015; Falcone & Jerram, 2018; Ganesan et al., 2022; Lomas et al., 2015; 

Osborn et al., 2022). The inconsistencies relate to both the measures and brain regions in which changes in 

activity are detected (Lee et al., 2018; Lomas et al., 2015; Schoenberg & Vago, 2019) and in whether neural 

activity is enhanced or reduced (Lehmann et al., 2012; Osborn et al., 2022). Our own research also follows this 

pattern, where, depending on the cognitive task or brain regions of neural activity being measured, we have 

found larger neural responses in experienced meditators (Bailey et al., 2023a), found reduced activity (Bailey 

et al., 2020), have found altered distributions of activity (Bailey et al., 2020; Bailey et al., 2019a), and also 

reported no differences compared to non-meditators (Bailey et al., 2019b; Payne et al., 2020). We suspect 

these inconsistencies might be in part because the effect of meditation is to alter attention processes that 
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underlie the performance of cognitive activities, rather than providing effects that are specific to a particular 

cognitive domain. As such, different cognitive tasks and experimental conditions may produce different 

patterns of differences associated with meditation (Wang et al., 2020). However, there may also be deeper 

mechanistic commonalities underlying the superficial differences across different tasks and experimental 

conditions. Given the attention training aspect of mindfulness, one potential candidate is more stable neural 

activity, which could underpin increased attentional stability (Bailey et al., 2023b; Lutz et al., 2009). Many 

other candidate mechanisms are also plausible. To detect potentially novel mechanisms of meditation, this 

study applied a data-driven approach, using a comprehensive list of over 7000 features extracted from 

different types of time-series analysis methods to characterise time-series patterns in electroencephalography 

(EEG) data. Many such time-series methods have not previously been used to study neural activity in 

meditators. This approach enabled us to determine which features of the data are best for detecting 

differences in brain activity between experienced meditators and non-meditators, and whether any time-

series features of the EEG data may have been overlooked by previous research. 

We used resting-state EEG activity instead of a cognitive task, as any cognitive task we selected to study might 

detect brain activity differences that are only specific to a brain region, network, or function activated to fulfil 

a specific cognitive process. In contrast, spontaneous resting-state activity reflects ‘baseline’ neural activity 

that would frequently be engaged in daily life and might therefore be expected to be representative of the 

neural activity associated with an individual’s daily conscious experience (in contrast to brain activities related 

to specific cognitive processes, which might only be activated intermittently). Similarly, we did not use 

meditation-state related data, which can only provide information on state differences that cannot be 

disentangled from the meditation practice related trait differences of interest, and as such may be less 

informative of the intrinsic differences in neural activity in meditators (Cahn & Polich, 2006; Lutz et al., 2007). 

Research using resting-state EEG to examine the effects of meditation on brain activity has typically examined 

the power in different frequency bands, which is typically assumed to indicate the strength of neural 

oscillations. These studies show associations between meditation and altered band power within specific 

canonical frequency bands: theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz); with 

increases in theta and alpha frequency bands most commonly reported (Berkovich-Ohana et al., 2011; 

Braboszcz et al., 2017; Cahn et al., 2010; Kerr et al., 2011; Lagopoulos et al., 2009; Lomas et al., 2015; Lutz et 
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al., 2004; Rodriguez-Larios et al., 2021; Wong et al., 2015). Investigations of these frequency bands in healthy 

non-meditators during the performance of cognitive tasks have indicated that power in each of these 

frequency bands are associated with a range of functions (Cavanagh & Frank, 2014; Cavanagh & Shackman, 

2015; Cooper et al., 2003; Foxes & Synder, 2011; Grunwald et al., 1999; Jensen & Mazaheri, 2010; Kamiński et 

al., 2012; Kirschfield, 2005; Klimsech et al., 1997; Klimsech et al., 2007; Klimsech et al., 2005). As such, research 

into frequency band power in meditators has been informative of the effects of meditation on specific brain 

functions. In keeping with research examining neural activity associated with meditation more broadly, 

however, findings from studies focused on frequency band power in meditators are also inconsistent (Lee et 

al., 2018; Lomas et al., 2015; Schoenberg & Vago, 2019).  

Furthermore, while neural oscillations are a prominent feature commonly detected in ongoing brain activity, 

their analysis is only a ‘narrow lens’ through which to characterize the rich variety of temporal patterns that 

can be observed in general time-varying systems such as the brain (Schoenberg & Vago, 2019). As such, the 

focus on frequency band power analyses in meditation research has led to an understanding of the effects of 

meditation on brain activity that is related to changes in neural oscillations, an understanding which may be 

both over-generalised and incomplete (Schoenberg & Vago, 2019). As such, previous research may have 

excluded the detection of alternative features of neural activity that may be common across paradigms and 

may relate more directly to the putative mechanisms of action of mindfulness. For example, quantifying total 

power within canonical frequency bands commonly involves representing the time-series in terms of a Fourier 

power spectrum, a representation that captures linear structure in the data. This type of analysis cannot 

detect nonlinear structure and assumes stationarity (i.e., that statistical properties of the process do not vary 

over time). As a result, the Fourier power spectrum analysis approach cannot capture non-stationarity 

(Walker, 1997). However, many other analysis techniques can assess the stationarity of the data (Horváth et 

al., 2014; Manuca & Savit, 1996; Witt & Kurths, 2002). These analysis techniques may be good candidates to 

assess neural stability, which we noted earlier may be a mechanism underlying the increased attentional 

stability reported to be associated with meditation (Bailey et al., 2023b; Lutz et al., 2009). 

It is worth noting that there have been a relatively small number of studies of meditation-related brain activity 

that have explored characteristics of EEG data beyond measures of power in specific frequency bands. These 

include assessment of the slope of the power-frequency spectrum of aperiodic (non-oscillatory) activity (Bailey 
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et al., 2020) and the nonlinear dynamic complexity and entropy of EEG time series (Aftanas & Golocheikine, 

2002; Armbuster-Genc et al., 2016; Vivot et al., 2020; Vyšata et al., 2014). However, all meditation studies we 

are aware of have still used hypotheses-driven approaches, which examine a small number of manually 

selected time-series statistics and require subjective and non-systematic choices made by the researcher. 

Comprehensive analysis methods that include new (previously untested) types of analysis methods might 

reveal new insights that are unlikely to be derived purely from conceptual and theoretical perspectives. 

To investigate this possibility, we used a comprehensive time-series analysis approach, comparing over 7000 

statistical features from the EEG time-series data of experienced meditators and non-meditators. This ‘highly 

comparative’ approach overcomes the limitations of subjectively selected, small-scale, hypothesis-driven 

comparisons by systematically searching a comprehensive range of time-series features for the features that 

best differentiate two labelled groups. Within our study, this ‘highly comparative’ approach was implemented 

using the highly comparative time-series analysis (hctsa) software (Fulcher & Jones, 2017). hctsa computes 

time-series features that assess the linear correlation-based statistics commonly used in EEG research, as well 

as many other types of features, with a non-exhaustive list including measures of the predictability, 

stationarity, and self-similarity of the data using entropy, autocorrelation, and fractal scaling developed in 

fields ranging from seismology to economics, as well as many other features that are not typically assessed 

within neuroscience (Fulcher & Jones, 2017; Fulcher et al., 2013). This highly comparative approach has 

previously been used to address a range of questions using EEG data. For example, the approach has been 

used to extract a data-driven categorization of sleep stages from EEG data and detect the higher order 

features that separate them (Decat et al., 2022). The approach has also been used to predict individual 

response to transcranial magnetic stimulation treatment of depression (Bailey et al., 2023e), and to distinguish 

electrographic seizures from resting brain activity (Fulcher et al., 2013).  

Given this background, our aim was to determine whether the EEG data of experienced meditators contains 

different time-series properties to non-meditators, such that meditators could be accurately identified from 

their resting-state EEG data. This was achieved by applying a simple classification model using the hctsa time-

series feature set. If meditators could be accurately identified from the EEG data, our aim was to then 

characterise the types of time-series properties that best differentiated meditators from non-meditators.  
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Methods 

Participants 

Eyes-closed resting-state EEG data were obtained from two separate studies of experienced meditators, which 

included a total of 98 participants. After exclusions for low EEG data quality (described in the procedures 

section), the analysed sample included 95 participants (46 healthy non-meditators and 49 experienced 

meditators, ranging in age from 19 to 64 years). The results of analyses of the task-based EEG data from these 

studies have already been published in Bailey et al. (2020); Bailey et al. (2019a); Bailey et al. (2019b); Wang et 

al. (2020). Participants in these studies were recruited through community advertisements and via meditation 

centres. Participants in the meditation group were required to have a meditation practice that typically 

included at least two hours a week of practice, and to have at least six months of meditation experience. Their 

practice was required to be mindfulness-based with a focus on the breath or body, and for their practice to 

meet Kabat–Zinn’s definition of “paying attention in a particular way, on purpose, in the present moment, and 

non-judgmentally” (Kabat-Zinn, 1994). Non-meditators were required to have less than two hours of total 

lifetime experience with any kind of meditation. All participants were interviewed with the MINI International 

Neuropsychiatric Interview (MINI) DSM-IV (Sheehan et al., 1998). Potential participants from either group 

were excluded if they reported any current or previous psychiatric or neurological illness, or current 

psychoactive medication or recreational drug use. Data from one meditator was excluded due to a history of 

mental illness. Data from one non-meditator was excluded due to a previous history of meditation practice, 

and from another non-meditator due to poor data quality (details provided in the procedures section). Trait 

mindfulness was assessed using the Five Facet Mindfulness Questionnaire (FFMQ) (Baer et al., 2006). The 

groups did not statistically differ in age, gender, handedness, or years of education (p > 0.10, see Table 1), but 

meditators showed higher FFMQ scores (p < 0.001). The study was approved by the ethics committees of the 

Alfred Hospital and Monash University, and all participants gave written informed consent. 

Table 1. Self-report data means and standard deviations from each group. 

 Meditator Group 

Mean (SD) 

Non-meditator Group 

Mean (SD) 

Statistics 

Age 37.37 (12.08) 33.13 (13.00) t(93) = 1.647, p = 0.103 
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Years of education 17.04 (2.47) 16.68 (2.85) t(93) = 0.661, p = 0.510 

Handedness (R / L / Mixed) 45 / 4 44 / 1 / 1 X2 = 1.644, p = 0.200 

Gender (F / M) 28 / 21 26 / 20 X2 = 0.004, p = 0.951  

FFMQ 154.63 (15.48) 134.11 (13.96) t(93) = 6.772, p < 0.001 

R: right-handed, L: left-handed, Mixed: ambidextrous, F: female, M: male, FFMQ: five-facet mindfulness 

questionnaire. 

Procedure 

To aid in understanding our overall procedure, a high-level overview is provided in Figure 1. EEG data were 

acquired via NeuroScan Acquire software and a SynAmps 2 amplifier, using a Neuroscan 64-channel Ag/AgCl 

Quick-Cap (Compumedics, Melbourne, Australia). Data were referenced online to an electrode between Cz and 

CPz. Electrode impedances were kept below 5 kΩ. The EEG was recorded from 60 electrodes (excluding CB1, 

CB2, M1, and M2) using the standardized 10/20 system at a sampling rate of 1000 Hz, with an online bandpass 

filter of 0.05 to 200 Hz. Data were collected across three minutes where participants were instructed to “rest, 

not meditate” with their eyes closed, and to let their mind do whatever it wanted, with no deliberate control 

exerted. All participants also completed five cognitive tasks within their EEG session (listed in the 

supplementary materials), which typically lasted between 2.5 and 3.5 hours in total. In the first study, resting-

state data were recorded after the second cognitive task. In the second study, resting-state data was taken 

after the first task.  

After the EEG was recorded, a series of evidence-based steps was undertaken to optimally process the data 

based on previous research (Bailey et al., 2023c; Bailey et al., 2023f; Bailey et al., 2023d), which are reported in 

full in the supplementary materials. These pre-processing steps constituted: 1) automatic removal of all 

artifacts from the data while preserving the neural signal (Bailey et al., 2022a; Bailey et al., 2022b); 2) 

segmenting the data into 30 second epochs and automatically rejecting epochs showing any remaining 

artifacts (one non-meditator participant’s data was excluded at this stage as no artifact free 30s epoch could 

be obtained) (Bailey et al., 2023f; Decat et al., 2022); 3) baseline correcting the data (so the mean of the 

epoched data for each individual was zero); 4) downsampling the data to 160 Hz (which ensured the time-

series features were calculated on the frequencies containing the majority of meaningful EEG variance); and 5) 
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z-score transforming the data across all values within each epoch (which preserved the relationships between 

electrodes while normalising the amplitudes of the data so variations in amplitude did not bias the next steps).  

While the feature-based classification approach requires a single (univariate) time-series from each participant 

to extract features, EEG data are typically recorded from many electrodes simultaneously (our EEG data were 

recorded from 60 electrodes). To address this, we followed a procedure established in our previous research 

where we used the dimensionality-reduction technique of principal component analysis (PCA) to extract highly 

explanatory time-series from spatially weighted principal components (PCs) (Bailey et al., 2023e). Within our 

dataset the top eight PCs explained 95% of the variance. Using PCA as a dimension reduction technique 

allowed us to conduct separate statistical tests of classification accuracy on each of these eight PCs, striking a 

balance between capturing as much variance as possible in the data, while minimizing the number of statistical 

comparisons performed. Following pre-processing, we performed hctsa feature extraction, then fitted and 

evaluated the classification models. 

 

Figure 1. Depiction of the steps undertaken to pre-process the EEG data with the Reduction of 

Electrophysiological Artifacts (RELAX) toolbox, compute the highly comparative time-series analysis (hctsa) 

features, run the support vector machine (SVM) classification algorithm and test which features showed 

significant differences between the meditators and non-meditators. Note that hctsa feature extraction and 

classification was performed only on the top eight principal components. 
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hctsa feature extraction and normalisation 

Version 1.07 of hctsa, which includes implementations of 7729 time-series features, was used with Matlab 

2022b to extract features, then fit and evaluate classification models. hctsa includes implementations of 

statistical learning algorithms (including correction for multiple hypothesis testing) that can highlight the types 

of analysis methods that are best suited to classifying labelled classes of time-series data like EEG (Fulcher & 

Jones, 2017; Fulcher et al., 2013). Each feature was evaluated for each participant within each of the eight PCs 

to produce a single value for each feature within each PC and participant. A single value for each participant 

within each of the eight PCs was produced for each feature. Any non-real values or errors that were returned 

from the feature extraction were excluded from further analyses so that only valid data were included in our 

analyses. A feature was entirely excluded if it produced non-real or erroneous outputs across all participants. 

For example, within PC3, this resulted in the removal of 348 features, with 7381 features remaining for 

subsequent analysis (represented as a 95 x 7381 feature matrix). A similar number of features were removed 

within the other PCs. The hctsa feature matrix for each PC was normalized across all participants for each 

feature separately using a mixed sigmoid transform to enable more straightforward comparison of features 

measured on different scales and with different distributions (see supplementary materials for full details) 

(Fulcher et al., 2013). 

After normalization, we used a linear support-vector machine (SVM) to classify meditators and non-meditators 

based on the time-series features for a given PC of the EEG data. To ensure that optimistic results could not be 

obtained from over-fitting, we used 10-fold cross-validation to calculate a mean balanced accuracy score. To 

control for class imbalance (our sample contains 49 meditators and 46 non-meditators) we used inverse 

probability class reweighting when training the SVM. To determine whether our classification accuracy was 

statistically significant, we used a permutation test with 1000 null samples. Each null sample involved shuffling 

the meditator/non-meditator labels across participants and obtaining a null balanced accuracy score from the 

same cross-validation procedure as used for the real labels (Henderson & Fulcher, 2022). The resulting null 

distribution allowed us to estimate a p-value as the proportion of null prediction accuracies that exceeded the 

real prediction accuracy. We used the false discovery rate (FDR) to control for multiple comparisons across the 

models obtained from the eight PCA components (Benjamini & Hochberg, 1995), and report FDR-corrected p-

values as pFDR. 
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Individual Feature Analysis and Feature Interpretation 

After we determined which (if any) PCs were able to accurately classify the two groups, we next aimed to 

understand the types of dynamics that distinguish the meditators from non-meditators. While the multivariate 

classifier described above used normalized data from each feature as the input, we analysed raw (non-

normalised) individual feature values to interpret which individual features differentiated the two groups. This 

enabled clearer interpretation of the characteristics of each group for these features. To assess between group 

differences in individual features, we calculated Mann–Whitney U test statistics (Mann & Whitney, 1947) 

separately for each time-series feature from principal components that showed statistically significant 

classification accuracy. This allowed us to interpret which types of dynamical changes contained within the 

PCA component provided the strongest differentiation of the meditator and non-meditator groups. We 

controlled the FDR to control for multiple comparisons within any significant PC across all 7381 features using 

the method of Benjamini and Hochberg (1995). Given the large correlation between many features (Fulcher et 

al., 2013), we note that this approach (which assumes independence) is expected to yield conservative 

significance estimates. 

Finally, to compare the performance of the hctsa features at distinguishing between the meditator and non-

meditator groups to the performance of traditional canonical frequency band-power features, we tested the 

10-fold cross-validation classification accuracy of each frequency band (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-

13 Hz, beta: 14-25 Hz and gamma: 25-45 Hz). To do this, we repeated the classification analysis described 

above, but instead of using the hctsa feature set, we used the averaged power within the 5 canonical 

frequencies as features. Firstly, we computed spectral power from each of the eight PCs separately using a 

Welch’s method, then averaged the power within each frequency band for each PC separately. We then 

included the averaged power from all five bands and all eight PCs in the classifier, which was represented in a 

95 participant x 40 PC band-power matrix. Note that due to the smaller number of features in the band-power 

analysis, we included frequency measures from all eight PCs in the single classifier (in contrast to our primary 

tests of all hctsa features, in which we tested each PC separately to avoid potential overfitting issues caused by 

the inclusion of so many features in the classifier). Additionally, to match the analyses we conducted using the 

hctsa feature set, we also tested classifiers from the canonical frequency bands from each PC separately. 

Finally, we tested the exact Mann–Whitney U test on each individual PC band power and used the false 
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discovery rate (FDR) to control for multiple comparisons across these 40 features using the method of 

Benjamini and Hochberg (1995). 

Results 

Cross-Validation Tests 

The classifier trained on the hctsa features from the PC3 time-series showed above chance classification 

accuracy of meditators and non-meditators, which exhibited a mean balanced accuracy of 67% (SD across the 

10 test folds = 6.54%, pFDR = 0.007). None of the other classifiers trained on data from the other seven PCs 

showed statistically significant classification accuracy (all pFDR > 0.10). The map of the spatial weightings and 

averaged power spectrum of the PC3 component across all participants is plotted in Figure 2. The power 

spectrum indicates a dominant alpha rhythm (the power spectrum averaged across all participants showed a 

peak frequency of 9.61 Hz). This is of interest, as alpha activity has been reported to be altered by meditation 

in previous research (Kerr et al., 2011; Wang et al., 2020). However, it is worth noting that the other seven PCs 

also showed a peak frequency in the alpha range (see supplementary materials Figure S1). The topographical 

map of PC3 showed that the electrodes that contributed the strongest weightings to PC3 were from a broadly 

spread array of lateral frontal, central, and left parietal electrodes (see Figure 2). Fronto-polar and temporal 

electrodes (where blink and muscle artifacts are respectively most prominent) did not provide strong 

contributions to PC3. As such, both the alpha prominence of the frequency spectrum and the topographical 

weightings suggest our classification accuracy was not influenced by blink or muscle artifacts, suggesting that 

the time-series features differentiating our groups were likely related to brain activity rather than non-neural 

artifacts. 
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Figure 2. The topography and power spectrum for PC3. Left: The topographical map of weightings from each 

electrode that contributed to PC3. Right: the mean power spectrum for PC3 across all participants (computed 

using Welch’s method); shading reflects 95% confidence intervals. 

 

Which time-series features differentiate meditators and non-meditators? 

A total of 405 individual time-series features from PC3 showed significant differences between the meditators 

and non-meditators after controlling for 7381 multiple comparisons (pFDR < 0.05). For visualisation and 

interpretation, we focused on the most discriminative 50 features (with pFDR < 0.016), as these 50 features 

showed the strongest effects and captured the relevant types of methods contained in the full set of 405 

significant features. Focusing on the top 50 features in this way allowed us to interpret the clusters of features 

that showed the strongest effects at differentiating meditators and non-meditators. To determine which types 

of time-series properties these features measured, we organised them using linkage clustering based on 

absolute Spearman correlations (||) between the values provided for each individual feature, implementing a 

cluster threshold of || > 0.75, which yielded groups of features that showed similar behaviour within our 

dataset. The relationships between these features and their interpretations are summarized in a dendrogram 

and cluster plot in Figure 3, which depicts several clusters of highly correlated features. Overall, there was a 

high level of correlation between different features, indicating that many features showed similar outputs to 

other features across participants within our dataset. The dendrogram (Figure 3) shows three large clusters of 

features that strongly distinguished the groups. Since these three clusters contained features that performed 

best at distinguishing the groups, and contained seven or more related features providing high performance, 

we focused our interpretation on these clusters. However, we note that there were features within the 405 

significant features that did not correlate highly with the three clusters we interpret, and these features may 

provide further novel insights into differences in brain activity between meditators and non-meditators. We 

discuss some of these features briefly in our supplementary materials, and provide a full list of the significant 

features and their correlation matrix in our supplementary materials. 
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Figure 3. Left: the cluster plot of the top 50 features from PC3, clustered using absolute Spearman correlations 

and a threshold of || = 0.75 for forming clusters, enabling visualisation of how strongly the different clusters 

are related to each other. Middle: dendrogram of the top 50 features, clustered using absolute Spearman 

correlations and a threshold of || = 0.75 for forming clusters. This plot groups features by the strength of the 

correlation with other features, such that those with smaller absolute correlation distances are depicted in the 

same colour, and these features show a strong linear relationship between the values from each feature. 

Right: Annotated brief interpretations are provided for the three largest clusters. The full list of significant 

features from PC3 and correlation matrix can be found in the supplementary materials. 

 

The first cluster of features from PC3 (coloured orange in Figure 3) contains features that assess the 

stationarity in the dynamic properties of the time series, in particular, the consistency of time-order-

dependent statistical patterns across shorter subsegments of the full 30s recording. These features implement 

measurements derived from the concept of ‘stationarity’ in time-series analysis, which can loosely be thought 

of as the extent to which the statistical properties of the time series are constant. Practically, for finite-length 

real-world time series, this often involves quantifying the consistency of statistical properties measured in local 

subsegments of a recording. The 17 features from this cluster indicate that meditators displayed more stable 

and consistent dynamical patterns within PC3 across the 30s EEG epoch than non-meditators. An example 

feature in this cluster measured the variability in the median-based time-series predictability across five non-
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overlapping (6 s-long) segments of the 30s time series. This feature is named FC_LocalSimple_median7_sws in 

hctsa. We refer to it in this article as the ‘stationarity of median-model predictability feature’ for simplicity. 

This feature assesses predictability by computing the median of 7 consecutive samples, then using that median 

to forecast the next time-series sample. Comparing the standard deviation of the residuals from this prediction 

process across five non-overlapping (6s) segments of the time-series, meditators showed a more consistent 

level of residual variance across segments than non-meditators (Figure 4A, and a schematic explanation of the 

computation of this feature is provide in the Supplementary Materials Figure S2). This feature displayed the 

strongest ability out of all hctsa features at distinguishing meditators from non-meditators (pFDR = 0.012, 

Cohen’s d = 0.911, Figure 4A). The full list of significant features is provided in the supplementary materials, 

and readers can refer to hctsa for details of how each individual feature was computed (Fulcher & Jones, 

2017). Other types of conceptually similar features in this cluster of features (orange in Figure 3) also 

measured the consistency of different types of dynamical properties across shorter segments of the time 

series and yielded similar insights. Overall, these features indicated that the meditator group showed more 

consistent dynamical properties within the PC3 component of their EEG signal than non-meditators across this 

30s timescale, where the time-order dependent statistical properties of the time-series were less variable 

between the different 6s segments of the data. 

The second cluster of features from PC3 that performed well at differentiating meditators and non-meditators 

(coloured green in Figure 3) were also related to the consistency of the statistical characteristics of the time-

series across different segments of the data (providing another measure of stationarity). However, the 

features in this cluster mostly captured ‘non-dynamic’ properties of the data, which depend on the distribution 

of values in a time-series segment, rather than their temporal ordering (where the distribution is the shape 

created by plotting each value from the 30s epoch of PC3 on the x-axis and the frequency of the occurrence of 

that value on the y-axis). Our results showed that the meditation group had more consistency in their 

distribution of time-series values across different segments of PC3 compared to non-meditators, effectively 

showing more stationarity in the distributional properties of their time-series. An example feature within this 

cluster, with the largest effect size in this cluster, is named SY_SlidingWindow_mom4_ent5_10 in hctsa, and is 

referred to as ‘kurtosis stationarity’ for simplicity here. This ‘kurtosis stationarity’ feature measured the 

variability in the kurtosis of time-series values across overlapping 6s segments of the epoch (where 90%-
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overlapping sliding windows were used to obtain the data segments, and variability was quantified using 

kernel-smoothed entropy). Kurtosis loosely measures the shape of a distribution’s tails and peak (i.e., how 

'peaked’ or ‘flat’ it is) relative to a Normal (Gaussian) distribution (DeCarlo, 1997). Positive values for kurtosis 

are obtained when distributions are more peaked (with more values centred around the mean) than a Normal 

distribution, and negative kurtosis values are obtained when distributions are less peaked (‘flatter’) and have 

more values in the tails of the distribution away from the mean. Our results showed that meditators had more 

consistent kurtosis estimates within PC3 across local (6s) time-series windows than non-meditators (pFDR = 

0.012, Cohen’s d = 0.956, see Figure 4B). 

To aid with a practical understanding of this difference, distributions of PC3 values from five non-overlapping 

6s segments from four exemplar participants are plotted in Figure 5. Inspection of these distributions shows 

that participants with higher values for this ‘kurtosis stationarity’ feature showed more variability in 

distribution shape across the 6s segments than those who showed lower values for this feature. Most of the 

remaining features in this second cluster (green in Figure 3) yielded qualitatively similar insights, capturing the 

consistency of local kurtosis measurements in slightly different ways (including variations in how the segments 

of the data were selected, and the use of standard deviation instead of entropy to quantify variability across 

windows).  

Since PC3 contained a prominent peak of oscillatory power in the alpha band, we conducted a brief 

exploratory analysis of both the ‘stationarity of median-model predictability’ and ‘kurtosis stationarity’ 

features after data were bandpass filtered to remove all frequencies outside of the alpha band. This 

demonstrated that both features were highly related to stationarity in alpha oscillations (reported in full in the 

supplementary materials). The ‘stationarity of median-model predictability’ feature showing almost identical 

results after data were bandpass filtered to only contain alpha activity, while the ‘kurtosis stationarity’ feature 

showed a similar effect size but a lower correlation between the alpha-filtered and non-filtered data. This 

result suggests that the higher stationarity in the meditator group might be driven by higher stationarity of 

their alpha oscillations. 

The third cluster of high-performing features from PC3 (coloured blue in Figure 3) measured properties of the 

shape of the distribution of z-scored time-series values (from the entire 30s epoch). These features indicated 

that the meditator group were more likely to display PC3 time-series values with a distribution where the 20% 
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to 3% most extreme values deviate further from the mean than non-meditators. This is consistent with a 

pattern of activity from the PC3 component of EEG data that contains larger (or longer) voltage peaks and 

troughs. The feature in this cluster with the largest effect size (labelled quantile_80 in hctsa, pFDR = 0.012, 

Cohen’s d = 0.842) measured the 80th percentile value of the z-scored time series (i.e., after ranking all the 

values of the z-scored time series by magnitude). As such, quantile_80 is a measure of distribution shape, 

capturing (in units of standard deviation) how far the 80th percentile of values from the time series are from 

the mean (where the mean is 0 for the z-scored time series). Meditators also showed significantly lower values 

than non-meditators for the 20th percentile (named quantile_20 in hctsa, pFDR = 0.032, Cohen’s d = 0.658, 

Figure 5D), although with a smaller effect size than quantile_80. As shown in Figure 4C and Figure S3, relative 

to their mean and standard deviation, the 20th and 80th percentile of deviations in the PC3 signal were further 

from the mean for the meditation group than for non-meditator group. However, it is worth noting that the 

non-meditator group showed non-significantly higher values for the quantile_1 and quantile_99 features than 

the meditator group, indicating that meditators did not show more extreme values in the 1% most extreme 

values from the mean. Other features in the third cluster (labelled blue in Figure 3) represented conceptually 

similar global measures of distributional shape, including measures of histogram entropy and outliers. As such, 

these other features also captured differences in the distribution shape of the overall values in the PC3 time-

series data between meditators than non-meditators.  

While these three clusters assessed conceptually different characteristics of the data, it is also worth noting 

that the features from the different clusters were often also strongly correlated. This was particularly the case 

for the second and third clusters, where the correlation between features in the cluster that included 

measures of the stationarity of distributional properties of the data and features in the cluster that included 

measures of the distributional properties of the entire time-series was often  > 0.5, for example the 

correlation between quantile_80 and ‘kurtosis stationarity’ features was  = 0.632 (p < 0.001). 
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Figure 4. The distribution of individual feature values obtained from PC3 for the meditator and non-meditator 

groups for top-performing features reflecting the three clusters depicted in Figure 3 shown as violin plots. A: 

the FC_LocalSimple_median7_sws feature (or ‘stationarity of median-model predictability’). This feature 

reflects the consistency in a simple median-model predictability of participant’s PC3 time-series dynamics, so is 

thus a measure of stationarity in the dynamic properties of the time-series, with meditators showing more 

stationarity in how predictable their PC3 data were between each six second segment (pFDR = 0.012, Cohen’s d 

= 0.911). B: The distribution of values from each group for the SY_SlidingWindow_mom4_ent5_10 feature (or 

‘kurtosis stationarity’). This feature assessed how variable the kurtosis of time-series values was across 

overlapping 6s segments of the epoch within the PC3 time-series. Meditators showed lower values for this 

feature, indicating more consistency (or stability) in the distribution of their data (pFDR = 0.012, Cohen’s d = 

0.956). C. The distribution of values from each group for the quantile_80 feature. This simple feature provided 

the value of PC3 at the 80th percentile of the z-scored time-series. Meditators showed higher values for this 

feature (pFDR = 0.012, Cohen’s d = 0.842). D. The distribution of values from each group for the quantile_20 

feature. This simple feature provided the value of PC3 at the 20th percentile of the z-scored time-series. 

Meditators showed lower values for this feature (pFDR = 0.032, Cohen’s d = 0.658). 
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Figure 5. Distributions of PC3 values from five non-overlapping 6s segments from four exemplar participants 

demonstrating high and low ‘kurtosis stationarity’ values, with the ‘kurtosis stationarity’ 

(SY_SlidingWindow_mom4_ent5_10) values obtained from these four participants provided in the title for 

each plot. Note the larger variability in distribution shape from the 6s segments for participants that showed 

higher values for this ‘kurtosis stationarity’ feature, providing a visual depiction of how variability in the 

distributional shape across different 6s segments affects the ‘kurtosis stationary’ feature.  

Comparison to features derived from power in canonical frequency bands 

Finally, to determine whether traditional frequency band power could provide a similar differentiation of the 

two groups to the top performing features from the hctsa feature list, we tested the performance of five 

canonical frequency band-power features (delta, theta, alpha, beta and gamma) computed from PCs 1-8 at 

classifying meditators and non-meditators. Our analysis of the canonical frequency band power across all PCs 

together in the same classifier provided a balanced accuracy of 56% (SD = 12.20%, p = 0.332). Further, when 

classification models were trained on the canonical frequency band power from each of the PCs separately, in 

contrast to the results of our analysis with hctsa, none of these classifiers from individual PCs provided 

significant balanced classification accuracy (all pFDR > 0.05). When examining power averaged within individual 

canonical frequency bands (i.e., delta, theta, alpha, beta and gamma bands) from individual PCs, only the alpha 

band for PC6 passed an uncorrected significance threshold (p = 0.0079, reported uncorrected here to 
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demonstrate the replication of previous research). None of the values from any PC within the canonical 

frequency bands significantly differentiated the two groups after controlling for multiple comparisons across 

the 40 comparisons (all pFDR > 0.3). It is worth noting that the distribution and stationarity features from hctsa 

provided results that were significant above the much higher multiple comparison control threshold across all 

hctsa features (which included an order of magnitude more individual features than the number of oscillation 

band features). These results indicate that the novel distributional and stationarity-based features of the EEG 

data (uncovered by hctsa) provided a stronger differentiation of meditators from non-meditators than the 

canonical frequency band power analyses. 
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Discussion 

Our results showed that an individual could be classified as an experienced meditator or non-meditator with 

above chance accuracy (67%, pFDR = 0.007) using one component of a single 30s epoch of EEG activity and a 

comprehensive feature-based representation of the time-series. For this component of the EEG data, a total of 

405 individual features significantly differentiated the two groups, even after stringently controlling for 

multiple comparisons across >7000 candidate features. Our exploration of these individual features showed 

that the largest differences between the groups were related to differences in the stationarity of the time-

series (both of dynamical properties and distributional shape) and features related to the global distributional 

shape (particularly reflecting how values were concentrated towards the mean compared to how they were 

concentrated towards the extremities). These results provide further support for the considerable amount of 

research demonstrating that a meditation practice sustained over years is associated with alterations to brain 

activity (Cahn & Polich, 2006; Falcone & Jerram, 2018; Ganesan et al., 2022). 

However, as far as we are aware, most of the features uncovered by our systematic, data-driven approach 

have not previously been used in meditation research. Furthermore, conventional EEG analysis methods based 

on the linear correlation structure (using classical frequency-band power features) were not amongst the 

significant features, and if we had analysed our data using band-power measures we would have concluded 

that the groups did not show different brain activity. Indeed, any features derived from a Fourier transform 

assume stationarity, and are thus insensitive to differences like the distinctively higher stationarity that 

characterized the PC3 component of the meditation group’s EEG signal. Our results thus demonstrate the 

usefulness of characterizing EEG time series using methods that go beyond methods that assume an 

underlying stationary process that is well-characterised by its Fourier power spectrum. In contrast to these 

conventional EEG methods, our top-performing features captured novel types of time-series properties that 

may provide a new lens through which to understand the effects of meditation, as well as suggesting 

promising application in understanding brain states in general. As such, our analysis provides important new 

insights that could be productively used to explore the mechanisms by which mindfulness practice affects 

mental health and cognition. Additionally, we are not aware of any studies within the field of EEG research 

that have used measures of within epoch univariate time-series stationarity to classify groups, or test for 

differences between groups; therefore, our results highlight a valuable new direction for EEG research more 
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generally. In particular, the predominant use of band-power features to represent EEG dynamics may be a 

factor in studies presenting null results, with recent examples including null results for the classification of 

individuals with Autism from neurotypical individuals using a very large dataset (Dede et al., 2023). In contrast 

to these null results, our ability to significantly classify meditators is the result of our use of an expanded 

methodological toolbox (provided by hctsa) — other studies may also benefit from leveraging more 

comprehensive statistical summaries of neural dynamics. 

Our analysis of the individual features from the third principal component of the EEG data that differentiated 

meditators and non-meditators showed one high-performing cluster of features which assessed the 

stationarity of the dynamical properties of the time-series across shorter local segments of the 30s epoch. This 

cluster of features revealed that meditators have more consistently predictable time-series within the PC3 

component of an EEG epoch – essentially, within the meditator’s PC3 component, the time-order dependent 

patterns within the data were more similar across different 6s segments of the full 30s epoch compared to 

non-meditators. Features assessing the consistency of distributional properties of the time-series also strongly 

differentiated the two groups, with meditators showing more consistency in the distribution of values during 

different segments of the PC3 component. Our ability to contextualise this finding is limited, as we are not 

aware of any other research that has directly assessed the temporal stability of EEG data for comparison with 

our results. However, one potential implication of the higher level of stationarity may be that meditators 

generate more temporally stable neural activity within the brain regions represented by the PC3 component 

(e.g., across the 6 second segments of the 30 second EEG recording, as was assessed by many of the features 

in our study). This higher degree of temporal stability might be a biological marker of neural activity that 

underpins the enhanced stability of attentional focus suggested to arise from meditation practice. Further 

research is required to explore this possibility. 

Features that measured how the data were globally distributed also significantly differentiated meditators and 

non-meditators, with meditators showing a broader distributional shape of PC3 time-series values, or higher 

densities of values further away from the mean. This result is consistent with larger voltage peaks and troughs 

generated in brain regions that contributed to the third principal component of their EEG activity. While we 

are not aware of EEG research that has examined distributional features, research applying hctsa to examine 

resting-state functional magnetic resonance imaging (fMRI) time-series has detected effects in distributional 
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features similar to those detected in our study (Shafiei et al., 2020). Shafiei et al. (2020) showed that the 

variation of fMRI time-series features related to distributional entropy and kurtosis (akin to a group of features 

that distinguish the meditation group) explained a large amount of the variability in the anatomical properties 

of the brain. The spatial variation of these distributional shape-based properties of the fMRI signal was 

correlated to similar spatial variations in cortical thickness, intracortical myelination, and connectivity 

hierarchies within brain networks (Shafiei et al., 2020), flagging the distributional shape-based properties as an 

underappreciated signature that mirrors underlying anatomical variation. It is worth noting that fMRI data is 

typically recorded at a resolution of 1-3 samples every second (in contrast to 160 samples per second as per 

our results), and it is not clear how haemodynamic and electrophysiological signals are related (although some 

work has shown correspondences between correlation timescales estimated from magnetoencephalography 

and fMRI; Watanabe et al. (2019)). Nonetheless, both our study and the study by Shafiei et al. (2020) highlight 

the relevance of quantifying the shape of the distribution of fluctuations in resting-state neural activity—a 

property that is simple to interpret but remains underexplored. 

Given the novelty of our results with regards to the univariate stationarity and distributional properties of the 

data, there are no directly comparable studies within the meditation literature to help guide our 

interpretation. However, previous research has reported that experienced meditators in the meditation state 

show increased stability in the topographical pattern of EEG activity and in the temporal patterns of both EEG 

and fMRI based connectivity (Escrichs et al., 2019; Toutain et al., 2020; Vivot et al., 2020). The increased fMRI 

connectivity stability finding has also been reported in novice meditators, and for comparisons between 

meditator and non-meditator resting-state connectivity (Escrichs et al., 2019). Previous research has also 

shown that meditators generate more consistent brain activity in response to stimuli while performing a 

cognitive task, enabling their brain activity to time-lock more effectively to the stimuli presented in the task 

(Bailey et al., 2023b; Lutz et al., 2009). However, it is important to note that these measures of topographical 

or connectivity-based stability may be unrelated to the features that differentiated meditators and non-

meditators in our study.  

The aforementioned studies also mostly examined neural stability during the meditation state compared to 

the resting state, rather than comparing resting-state activity between meditators to non-meditators. Despite 

these differences, the meditation-state related increases in topographical or connectivity related stability that 
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they report provides a possible suggestion for the cause of the increased stability in meditator’s neural activity 

— it could be that prolonged practice of increased stability of neural activity during meditation leads to higher 

levels of stability in neural activity. For example, it may be that meditation increases the engagement of 

specific attention related brain regions, which, with repeated practice, might exert a regulatory effect on other 

neural processes, leading to a durable increase in neural stability. Alternatively, it may be that the increased 

integration of brain networks during meditation practice (van Lutterveld et al., 2017) provides enhanced 

regulation of brain activity from moment to moment, enabling increased stability of meditator’s neural 

activity. In support of this suggestion, a growing amount of recent research suggests that the short-term 

dynamics of neural connectivity are predictive of attention function, both within and across individuals (Liu et 

al., 2018; Song & Rosenberg, 2021). 

An additional mechanism that may explain the increased stability of meditator’s neural activity has been 

suggested through modelling work reported by Saggar et al. (2015). Their work simulated EEG data based on a 

model of the interaction between cortical, corticothalamic and intrathalamic brain regions. Saggar et al. (2015) 

compared the effects of adjustments to these simulated interactions to the effects detected within real EEG 

data recorded before and after two separate groups undergoing 3-month-long meditation retreats. They 

found that changes in the EEG data from before to after the retreat were partially explained by a model that 

contained a decrease in inhibition of the secondary relay nuclei by the thalamic reticular nucleus. This 

decreased inhibition by the thalamic reticular nucleus provided increased dynamic stability of the modelled 

EEG activity. While modelling approaches are only approximate, can only model a limited resolution and 

limited number of brain regions, and rely on a number of assumptions, the thalamus has been suggested to be 

involved in attention regulation in meditation, acting as a filter for sensory inputs prior to their reaching the 

cortex (Saggar et al., 2015). Future research could explore a comprehensive explanation involving increased 

stability of thalamic gating providing increased focused attention towards sensory sensations and the 

increased stability of neural activity in meditators (within the variance represented by the PC3 component) 

found in the current study. 

It is also worth noting that the stationarity measures from PC3 detected in our study were highly influenced by 

activity within the alpha oscillatory frequency band, with our exploratory analysis (reported in the 

supplementary materials) showing similar effects in the stationarity measures after data were bandpass 
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filtered to exclude frequencies outside of the alpha frequency range. Previous research has suggested that 

alpha activity provides two functions. Firstly, it provides an active top-down inhibitory function, whereby 

higher-order (cognition-related) regions inhibit non-task related lower-order (sensory processing) regions. 

Secondly, alpha activity provides a timing function, whereby the phase of alpha oscillations is timed to enable 

specific neurons to fire (Klimesch, 2012). Both the inhibitory and timing functions modulate the ‘gain’ of neural 

signals from lower order brain regions, enabling attention enhancement (Klimesch, 2012). Recent research 

using intracranial electrodes has also shown that alpha oscillations propagate hierarchically from higher order 

regions to lower order regions across the cortex, propagating from parietal to occipital visual processing 

regions, from associative to primary regions within the somatosensory cortex, and from the cortex to the 

thalamus (Halgren et al., 2019). Within these regions, the combination of alpha activity’s inhibitory and timing 

functions may fulfil a top-down gating role for the propagation of sensory information from lower-order 

sensory regions to higher-order brain regions (Halgren et al., 2019). As such, one potential explanation for our 

results that would be worth testing in future research might be that because of their attention training, 

meditators demonstrate increased stability of the alpha oscillation mediated influence of higher order regions 

of the cortex to lower order regions. It is worth noting that all PCs showed prominent alpha peaks, so the 

putative increase in alpha stability may be spatially specific, only differentiating the groups based on the 

weightings of PC3. However, while only PC3 provided above chance classification of the two groups, our brief 

inspection of the features from the non-significant PCs indicated the stationarity and distributional features 

were amongst the top performing features for all PCs, with the same direction of effects (although no 

individual features from the other PCs passed our stringent multiple comparison control thresholds). This may 

suggest that while PC3 captured the most important variance in stationarity and distributional features of the 

data for differentiating meditators and non-meditators, the stationarity and distributional properties of neural 

activity in brain regions outside of the regions that provided strong weightings to PC3 may also differ in 

meditators (although with smaller effect sizes). Unfortunately, due to the diffuse nature of the neural activity 

measured by EEG recordings, we cannot confidently ascertain the brain regions likely to be generating the 

activity captured by PC3. Source localisation focused on the features we showed differentiated the two groups 

in PC3 may be able to determine whether our results are regionally specific and which regions might be 

responsible for our results. 
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Regardless of how the effects detected in our study arise, our findings related to stationarity suggest that it 

may be fruitful for large-scale mediation analyses to explore meditation’s neural mechanisms of action using 

measures of the stability of neural activity. If increased stability of neural activity does reflect a neural 

mechanism of action, then interventions could be designed to target this characteristic of neural activity, 

potentially leading to more effective interventions. Future research could also determine whether conditions 

that show lower stationarity in their EEG might be recommended to mindfulness practice as a method to 

resolve this potential pathophysiological marker. For example, lower temporal stability of EEG patterns has 

been associated with less self-control and higher risk-tasking behaviour (Kleinert et al., 2022). Future research 

could also explore whether the time-series features that capture different aspects of stability across different 

timescales of neural activity may also offer the potential to detect progression in a meditation practice. 

While measures of distributional shape and stationarity best differentiated meditators and non-meditators, 

our results revealed significant group differences in a range of other time-series properties, and other features 

may be interesting to explore. In particular, we were interested in complexity or signal entropy measures, such 

as Approximate Entropy, Sample Entropy, Permutation Entropy, and Lempel–Ziv complexity. These measures 

have received increased attention in recent neuroscience research as measures of the uncertainty or 

information content within the EEG signal. Such methods have been proposed to relate to the richness of 

conscious awareness, with increases in conscious awareness suggested to be associated with greater signal 

complexity (Carhart-Harris, 2018) and decreases in these measures suggested to reflect a single pointed 

attentional focus (Young et al., 2021). Our analysis did not show significant group differences in these types of 

signal entropy measures (although non-dynamic entropy-related features which were used to quantify 

properties of the distributional shape did show differences between the groups, and entropy-related features 

used to quantify variation in predictability across windows as sliding-window stationarity did show differences 

between the groups). The lack of difference between meditators and non-meditators in these signal entropy 

measures is in contrast with some previous research, which has reported higher Sample Entropy or Lempel–Ziv 

complexity both during the meditation state and in long-term meditators compared to non-meditators or 

novice meditators (Lu & Rodriguez-Larios, 2022; Vivot et al., 2020). There are differences in data pre-

processing between our research and previous research, with previous research examining data from 

electrodes rather than analysing principal components, which may explain this conflict with previous research. 
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However, the entropy-related findings are not consistent in the literature, with some research reporting lower 

Lempel–Ziv complexity during the meditation state compared to the mind wandering state in experienced 

meditators (Young et al., 2021).  

Limitations and future research 

The primary limitation of the current study is that the data were collected using a cross-sectional design. This 

approach provided a benefit in that the meditators were more experienced than is feasible within longitudinal 

research, and thus likely showed more robust and larger differences in brain activity than an 8-week 

mindfulness intervention could elicit. However, the cross-sectional design precludes us from inferring causality 

from our findings. Further, only one EEG recording was analysed from each participant, and only the first 30s 

of artifact free EEG data were analysed, so we did not assess whether the measures we assessed were 

consistent across different days/weeks/months. However, this limitation is also a strength of the current 

study, in that it indicates the potential robustness of differences in neural activity in the meditation group – 

only 30 seconds of EEG data was sufficient to accurately classify meditators and non-meditators. Future 

research might benefit from the inclusion of multiple epochs, potentially across multiple days, to obtain more 

consistent measurement of the relevant features, assess how consistent these features are across time, and 

determine whether variability over time in the features might also differentiate the groups. 

Additionally, our approach attempted to maximise both generalisability (across different meditation practices) 

and statistical power to detect meaningful effects (including participants from the broader category of 

mindfulness meditation allowed us to obtain a larger sample size). As such, we included all mindfulness 

meditation type practices, and did not separate practitioners by focused attention vs open monitoring 

practices, for example. In this regard, our approach contains both a strength – where we identified strong and 

generalisable differences in brain activity across all mindfulness meditation techniques, and a weakness – we 

could not separate differences in brain activity by the type of practice. However, we note that while it would 

be interesting to examine focused attention and open monitoring practices separately, the differences 

between the two practices are likely to be much smaller than the differences between meditators and non-

meditators, as such, doing so would require much larger sample sizes to detect any effects. Additionally, our 

perspective is that there is considerable conceptual overlap between ‘focused attention’ and ‘open 

monitoring’ practices, as open monitoring requires training in focused attention to be useful, and because 
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open monitoring could be considered as simply a focused attention practice with no specific object of focus. 

Other researchers have similarly noted conceptual ambiguity in delineating these supposedly separate 

meditation practices (Schoenberg & Vago, 2019). Similarly, we did not perform any analyses split by sex or 

gender, as our sample size was not sufficiently powered for this split analysis. As such, our results provide no 

indication of whether the same effects are present across different sexes or genders.  

It is also worth noting that hctsa computes features from a single (univariate) time series. However, EEG data 

were recorded from 60 electrodes. To address this, we performed a PCA to reduce the data to eight 

components explaining over 95% of the variance in the data, drastically reducing the number of multiple 

comparisons relative to examining each electrode separately and allowing us to analyse spatially distributed 

and highly explanatory patterns that may not have been present in any individual electrode. To ensure a 

weighting consensus, the PCA decomposition was performed on a matrix that included data from all 

participants in a single matrix, ensuring that the PC weightings were common to all participants. This allowed 

us to take a comprehensive list of over 7000 features and narrow it down to provide a smaller but novel list of 

conceptually distinctive and informative features from a single principal component that are highly effective at 

detecting differences in brain activity between meditators and non-meditators. This highlights the value of our 

data-driven and hypothesis-free approach (further explanation of this point is provided in the supplementary 

materials). This approach is likely to be valuable to translate to other methodologies within neuroscience, 

where data often consist of many concurrent (multivariate) time-series, for example fMRI. The approach is 

also likely to be useful in addressing other problems, for example, detecting the mechanisms underlying both 

the cause of and treatments of major depression. 

Despite the advantages of our approach, the topographical map for PC3 shows activity at multiple dispersed 

electrodes such that it is not obvious to us which regions might be generating the activity, and the relationship 

between activity at any electrode and the underlying sources of brain activity is not straightforward to 

interpret. While source localisation has limitations, it could be used to estimate which brain regions might 

have been responsible for the differences we detected. Alternatively, magnetoencephalography might be a 

useful tool to obtain better spatial resolution. Additionally, while we examined eight univariate component 

time-series, the brain is an interconnected network, and consciousness, cognition, mental well-being, and the 

effects of meditation are related to these interactions between brain regions (Boly et al., 2012; Ganesan et al., 
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2022; Miljevic et al., 2023; Thivierge & Marcus, 2007). Research has demonstrated that meditation is 

associated with differences in the characteristics of the functional connectivity across the brain (Ganesan et 

al., 2022), and that attention is predicted by the dynamic modulation of connectivity within the brain (Liu et 

al., 2018; Song & Rosenberg, 2021). As such, it is likely to be valuable to implement an analogous highly 

comparative approach to comprehensively assess pairwise connectivity measures in future work (Cliff et al., 

2022), and to assess whether their combination with the univariate component features from the current 

study could yield further improvements in classification performance. 

As with all research, replication of our results is necessary before the insights from our study could be applied 

in practice. To enable replication of our research, we have provided the full list of PC3 features that 

significantly differentiated the two groups after stringent multiple comparison controls in our supplementary 

materials section (along with how well these features correlated to one another). The code we used to clean 

the EEG data are publicly available (Bailey et al., 2022a; Bailey et al., 2022b), and we have provided the 

principal component weightings we used to transform our data in our supplementary materials, so if another 

dataset were collected, the same data transforms could be applied in order to replicate our approach. 

We also note that alternative parameter settings for specific features may provide an even stronger ability to 

detect differences between the neural activity of meditators and non-meditators. Our brief exploration of 

alternative parameter settings (reported in the supplementary materials) suggested that the relevant 

timescale for the higher ‘kurtosis stationarity’ shown by the meditators involves data segments in the 2 to 6 

second range. It may also be interesting to look at data epochs longer than 30 seconds, to determine how 

localised in time the stationarity effects are. More broadly, the detection of between-group differences in 

measures of the stationarity of the EEG signal suggests that it is likely to be promising for future to explore the 

variability of statistical properties of EEG data in other populations, and within other states (cognition-related 

states, different states of consciousness, and in pharmacologically induced states). While many traditional EEG 

analysis methods are derived from a Fourier power spectrum of a full recording, thus assuming stationarity of 

the dynamics on that timescale, our results indicate that meaningful effects can be detected from directly 

measuring stationarity using algorithms that assess the consistency of statistical properties across shorter 

windows of the recording. This is analogous to the trajectory of fMRI research methodology, which 

traditionally computed functional connectivity (examining correlations in activity between brain regions) using 
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the entire recording (assuming that connectivity between regions was approximately stationary). More recent 

approaches have analysed the variability within these connectivity measures across shorter timescales to 

provide measures of ‘dynamic functional connectivity’, the results of which indicate that this timescale of 

stationarity/variability is informative of different states and conditions (Demirtaş et al., 2016; Hindriks et al., 

2016; Jones et al., 2012; Matsui et al., 2022; Zalesky et al., 2014). Our results indicate that a similar conceptual 

framing of variability of statistical properties within windows of individual component time series can be 

similarly valuable. 

Finally, the list of features we have provided could productively be used to explore the mechanisms by which 

mindfulness has beneficial effects on mental health and cognition. If these measures are identified as 

reflective of the mechanisms by which mindfulness meditation has beneficial effects, then these mechanisms 

could be used to test the design of optimally effective mindfulness interventions, as well as potentially assess 

meditation progress. Individuals who show impairments in these mechanisms might also be recommended to 

mindfulness interventions as a treatment to resolve the impairment. Further research into these mechanisms 

might also enhance our understanding of brain function in general. The measures of stationarity we have 

detected might also be promising targets for neurofeedback (an example of how this might be applied is 

provided in the supplementary materials). If this neurofeedback approach is successful, it might be associated 

with similar well-being and attention benefits to those reported by and detected in experienced meditators. 

However, it is also possible that ‘device-oriented’ approaches like this may be a distraction from a meditation 

practice that may already be optimal when taught within certain traditions, so it may be that this proposed 

neurofeedback approach would be more suitable for individuals who find meditation practice prohibitively 

difficult. 
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