

Microbiome transfer from native to invasive species may increase invasion risk and shorten invasion lag

Maria M. Martignoni^{*1} and Oren Kolodny^{†1}

¹Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Israel

December 17, 2023

Statements and declarations

- The authors have no competing interests to declare that are relevant to the content of this article.
- All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
- The authors have no financial or proprietary interests in any material discussed in this article.
- All authors agree with the present manuscript
- Data availability statement: The manuscript has no associated data. All the codes developed for the manuscript are available on GitHub. The code has been developed by Maria M. Martignoni, 2023, Microbiome transfer code, GitHub repository, at <https://github.com/nanomaria/microbiotransfer>.

^{*}Corresponding author email: maria.martignonimseya@mail.huji.ac.il.

[†]Email: orenkolodny@gmail.com.

Abstract

In a fast-changing world, understanding how organisms adapt to their environment is a pressing necessity. Research has focused on genetic adaptation, while our understanding of non-genetic modes is still in its infancy. Particularly, the host-associated microbiome may strongly influence an organism's ability to cope with its environment. The presence of certain microbes in the gut, for example, can facilitate the utilization of dietary resources, provide protection from pathogens, and increase resilience to diverse abiotic conditions. However, the role that the microbiome may play in species' adaptation to novel challenges is largely unexplored, experimentally as well as theoretically. Here, we study the possibility of such adaptation in invasive species. We present and explore a new hypothesis: Invasive species may rapidly adapt to local conditions by adopting beneficial microbes of similar co-occurring native species. Ironically, due to competition, these native species are also those most likely to suffer from the invaders' spread. We formulate a mathematical framework to investigate how the transfer of beneficial microbes between a native and an introduced species can alter their competitive dynamics. We suggest that, non-intuitively, the presence of a related native species may *facilitate* the success of an invasive species' establishment. This occurs when the invader's fitness is strongly influenced by adaptation to local conditions that is provided by microbes acquired from the natives' microbiomes. Further, we show that in such cases a delayed acquisition of native microbes may explain the occurrence of an invasion lag, and we discuss biological systems that could lend themselves for the testing of our hypotheses. Overall, our results contribute to broadening the conceptualization of rapid adaptation via microbiome transfer and offer possible insights for designing early intervention strategies for invasive species management during their lag phase.

Keywords : Microbiome, microbiome-mediated dynamics, rapid adaptation, non-genetic adaptation, mutualistic microbes, invasion, host-microbial interactions, mathematical model, theoretical framework

1 Introduction

2 Invasive species cause annual damages of billions of dollars (Haubrock et al., 2021; Pimentel
3 et al., 2005; Paini et al., 2016), and understanding the factors facilitating their adaptation is
4 paramount for mitigating their impact. Early detection and eradication of potential invaders
5 has been regarded as the cheapest and most effective control strategy (Epanchin-Niell, 2017),
6 where an interesting phenomenon in particular may offer opportunities for early intervention:
7 the occurrence of invasion-related lags (Crooks, 2005; Simberloff, 2003). An *invasion lag* is
8 a prolonged period of time which is sometimes observed between the establishment of an
9 alien species and the time point at which it becomes invasive, rapidly increasing in numbers
10 and spreading geographically. This phenomenon has been documented for a large number
11 of invasive plants (Aikio et al., 2010; Leung et al., 2012), invertebrates (Yanygina, 2017),
12 birds (Aagaard and Lockwood, 2014), fishes (Azzurro et al., 2016), amphibians (Toledo and
13 Measey, 2018), and reptiles (Guerrero et al., 2013), with invasion lag times lasting for years or
14 even decades in some cases. To date, the underpinnings of invasion lags are little understood,
15 and accordingly they are not predictable, rendering innocuous species and species that will
16 become invasive indistinguishable (Coutts et al., 2018).

17 Several theories have been proposed to explain the occurrence of invasion lags (Simberloff,
18 2013). For instance, changes in the biotic or abiotic environment can affect the invasion dy-
19 namics (Crooks, 2005). Thus, a herbivore might keep an alien species under control, and its
20 removal might allow it to rapidly spread unchecked (Strauss, 2014). Changes in climate might
21 also affect invaders' activity and community structure (Stachowicz et al., 2002; Wallingford
22 et al., 2020), and human activity might at some point create conditions which are more favor-
23 able for invasion, allowing a seemingly-benign established alien species to suddenly become
24 invasive (Fausch et al., 2001; Lee et al., 2021).

25 A perhaps more intriguing type of dynamics that can determine the length of an invasion
26 lag, facilitating a switch from a low-frequency alien species with a limited spread to an invasive
27 species with significant impact on the ecosystem, may stem from changes in the invasive
28 population itself. One such possibility is via introduction of a new variant of the established
29 species, which is coincidentally better adapted to local conditions or adds to the founder
30 population the genetic diversity necessary to overcoming inbreeding depression (Dlugosch
31 and Parker, 2008; Kolbe et al., 2004; Frankham, 2005). However, we now have evidence
32 that variation can also emerge within the founder population itself, which becomes more
33 successful over time as it evolves in the new environment (Prentis et al., 2008). Thus, genetic or
34 phenotypic adaptation may provide the necessary fitness advantage to the introduced species,
35 increasing its invasion success (Whitney and Gabler, 2008). This phenomenon has mostly
36 been documented in plants (Matesanz et al., 2010; Ayres et al., 2004; Colautti et al., 2009),
37 but it has also been observed in animals (Colautti and Lau, 2015), e.g. cane toads in Australia
38 have evolved increasingly longer legs, accelerating their invasive spread (Phillips et al., 2006),
39 and phenotypic plasticity has been found to contribute to invasion success in social insects
40 (Manfredini et al., 2013, 2019).

41 Here, we propose an alternative explanation for the occurrence of invasion-related lags.
42 Namely, we consider the possibility that adaptation in invasive species can be conferred by
43 the acquisition of beneficial microbes. Beneficial microbes may in principle be acquired from
44 the new environment that the invasive species reach. We suggest that this is unlikely, because
45 environmental microbes would rarely be able to survive within a healthy host, and even if
46 they do, these facultative associations are likely to be of secondary importance for fitness
47 compared to co-evolved relationships.

48 Instead, we suggest that a likely source of beneficial microbes are native hosts. We analyze
49 the case in which invaders become better adapted to local conditions through the acquisition

50 of mutualistic microbes from the microbiome of phylogenetically and ecologically similar co-
51 occurring native species. Phylogenetic closeness increases the likelihood that microbes that
52 may have co-evolved locally with native hosts are pre-adapted to establishing a similar mutual-
53 istic relationships with introduced hosts. Ecological similarities reflect in similar basic needs
54 of the native and invasive species, and thus in native microbes having a similar adaptive
55 potential for invasive species.

56 It is increasingly recognized that host-microbiome interactions can shape host fitness and
57 evolutionary potential, e.g., by increasing host tolerance to abiotic stress, by allowing the
58 breakdown of local food sources, or by protecting the host from pathogens (Kolodny et al.,
59 2020; Fontaine et al., 2022; Kikuchi et al., 2012; Kohl et al., 2014; Townsend et al., 2019;
60 Fontaine and Kohl, 2020; Chiu et al., 2017; Kolodny and Schulenburg, 2020). Importantly,
61 this response can be extremely rapid. For example, a reduction in microbiome diversity in
62 the gut of tadpoles can decrease host fitness and its tolerance to thermal stress within days
63 (Fontaine et al., 2022), and the acquisition of a pesticide degrading bacteria can confer on
64 bean bugs immediate resistance to pesticides (Kikuchi et al., 2012). We also know that
65 microbiome transmission is rarely strictly vertical, but can occur horizontally from a host to
66 another through different pathways, such as direct contact between individuals, coprophagy
67 (i.e. eating other individual's feces), predation of younger individuals, or pickup of microbes
68 that survive an intermediate phase in the environment outside the host (Robinson et al., 2019;
69 Kolodny et al., 2019). Thus, the horizontal transfer of beneficial microbes from natives to
70 invaders may facilitate their rapid adaptation, providing them with a fitness advantage and
71 increasing their competitive ability.

72 Although the field of microbial ecology is growing rapidly, the current literature has fo-
73 cused on understanding how the presence or absence of certain microbes may affect host fitness
74 (Fontaine et al., 2022; Kikuchi et al., 2012; Kohl et al., 2014; Fontaine and Kohl, 2020), with-
75 out explicitly considering the ecological consequences of this fitness advantage. Only few
76 studies have explored the influence of microbiome-related dynamics on multi-species commu-
77 nities (Martignoni et al., 2023, 2020; Daybog and Kolodny, 2022), where studies considering
78 how variations in microbial communities may affect invasion have primarily dealt with the
79 transmission of pathogens, rather than with the exchange of mutualistic microbes (Gruber
80 et al., 2019; Faillace et al., 2017). Here we present a theoretical framework to investigate the
81 possibility that microbiome sharing, between and within species, would alter the dynamics
82 of invasion by conferring rapid ecological adaptation to invaders. In particular, we analyse
83 how different characteristics of the native and invasive populations, such as their growth rate,
84 carrying capacity and competitiveness, interplay with the probability of acquiring beneficial
85 microbes to determine invasion success. We will discuss the role of microbiome transfer in
86 determining lag times in biological invasion, and we will provide concrete directives on how
87 our hypotheses may be tested in simple experimental settings.

88 In this study we focus on the transmission of beneficial microbes, however if invasive hosts
89 can acquire beneficial microbes from natives, we hould expect that native hosts would also
90 be able to acquire microbes from invasive hosts. Additionally, the transferred microbes may
91 not be necessarily beneficial, and could be neutral or harmful to their new host (Dickie et al.,
92 2017; Bahrndorff et al., 2016; Henry et al., 2021; Goss et al., 2020). Full treatment of these
93 dynamics is beyond the scope of the current paper and are treated in a separate manuscript
94 (Martignoni et al., in preparation).

95 Model and Methods

96 We formulate an ordinary differential equation model to study the coupled dynamics of a
 97 native population N competing with an introduced population I , whereby interactions are
 98 modelled according to the competitive Lotka-Volterra equations (Gilad, 2008). The popula-
 99 tions experience logistic growth until reaching a certain carrying capacity, where competition
 100 between species can reduce or even reverse the growth (see supplementary information, section
 101 A for a complete mathematical analysis of the Lotka-Volterra equations).

102 We consider that a beneficial microbiome can be transferred from native to introduced
 103 individuals and we explore the system's dynamics under a range of parameters that govern this
 104 process. We consider that horizontal transmission can occur directly, through contact among
 105 individuals, or indirectly, with transmission mediated by the environment. This may include,
 106 for example, cases in which individuals of the invasive species utilize roosts or shelters that
 107 were previously occupied by native hosts, cases of coprophagy, or situations where birds of the
 108 different species share sites of sand or water bathing. We also posit that, once acquired, the
 109 microbiome may be vertically and horizontally transferred within the introduced population.
 110 In our study we do not differentiate between microbes, nor between their locations within
 111 the host. Rather with 'microbiome' we mean any collection of symbiotic microorganisms that
 112 increases fitness in its host. For simplicity we treat the transmission of the microbiome as a
 113 single event which may or may not occur, although in reality we expect transmission of only
 114 few microbial species - but with potentially large effects on fitness.

115 We model this scenario of interest by splitting the introduced population I into two sub-
 116 groups: the subpopulation that has not acquired microbes from native hosts (I_0) and the
 117 subpopulation that has acquired microbes from native hosts (I_m). Individuals can move
 118 from I_0 to I_m by acquiring native microbes through interaction with natives (N), or through
 119 interaction with introduced individuals that have already acquired native microbes (I_m). Sub-
 120 populations I_0 and I_m compete for space, as the overall size of the introduced population is
 121 limited by a fixed carrying capacity. Mathematically, we write:

$$122 \quad \frac{dN}{dt} = \underbrace{r_n N \left(1 - \frac{N}{K_n}\right)}_{\text{logistic growth}} - \underbrace{\alpha_{in} N I_0 - \alpha_{mn} N I_m}_{\text{competition with } I}, \quad (1a)$$

$$123 \quad \frac{dI_0}{dt} = \underbrace{r_i I_0 \left(1 - \frac{I_0 + I_m}{K_i}\right)}_{\text{logistic growth}} - \underbrace{\alpha_{ni} I_0 N}_{\text{competition with } N} - \underbrace{\Lambda_n}_{\substack{\text{microbial transfer} \\ (N \rightarrow I_0)}} - \underbrace{\Lambda_m}_{\substack{\text{microbial transfer} \\ (I_m \rightarrow I_0)}}, \quad (1b)$$

$$124 \quad \frac{dI_m}{dt} = \underbrace{r_m I_m \left(1 - \frac{I_m + I_0}{K_m}\right)}_{\text{logistic growth}} - \underbrace{\alpha_{nm} I_m N}_{\text{competition with } N} + \underbrace{\Lambda_n + \Lambda_m}_{\text{microbial acquisition}}, \quad (1c)$$

125 The ability of a population j to outcompete population w depends on its growth rate (r_j),
 126 on its carrying capacity (K_j), and on the competitive effect of population w on j (α_{wj}). With
 127 'competitive ability' we refer therefore to the set of traits of a population (in our model, the
 128 set of parameters r_j , K_j and α_{wj}) that characterize the growth of population j in the presence
 129 of population w , with populations j and w being the native and introduced populations. The
 130 population that outcompetes the other is referred to as the 'superior competitor'.

131 If the waiting time for a microbiome transfer event to happen is exponential, as commonly
 132 assumed in modelling, microbiome transfer can be simulated as a Poisson process with a rate
 133 which depends on the density-dependent microbiome transfer rate from natives to introduced
 134 individuals (λ_n), and on the size of the native and introduced populations ($N(t)$ and $I_0(t)$
 135 respectively). This implies that the number of introduced individuals that acquire native

136 microbes in the time interval $(t, t + dt]$ through interspecific contact is a Poisson random
 137 variable $\Lambda_n(t)$, with rate $\gamma_n(t) = \lambda_n N(t) I_0(t)$, such that:

138
$$\Lambda_n \sim \text{Pois}(\lambda_n N(t) I_0(t) dt). \quad (2)$$

139 The density-dependent microbiome transfer rate λ_n may depend on the factors which underlie
 140 the biology of transmission and host-microbe interactions. For instance, ecological similarity
 141 or phylogenetic relatedness between native and invasive hosts may increase the likelihood that
 142 native microbes may establish in an invasive host (Rojas et al., 2021; Parker et al., 2015).
 143 Parameter λ_n may also depend on the mode of transmission: Direct contact between hosts,
 144 e.g., through predation, may increase the likelihood of microbial acquisition by a new host,
 145 while indirect contact, e.g. through the use of the same sand or water for bathing or digging,
 146 may lead to a lower rate of microbial acquisition. Finally, λ_n may depend on the microbes
 147 themselves, as not all microbes are equally likely to be transmitted or acquired (Moeller et al.,
 148 2018).

149 Once acquired, the microbiome can be transferred horizontally from I_m to I_0 through the
 150 same modalities described above, at a rate which depends on the density-dependent micro-
 151 biome transfer rate among introduced individuals (λ_m) and on the size of subpopulations I_0
 152 and I_m . Again, as for λ_n the value of parameter λ_m should also depend on the mode of
 153 transmission and on the characteristics of the transferred microbes. The number of individu-
 154 als that acquire native microbes through intraspecific contact can be described by a Poisson
 155 random variable $\Lambda_m(t)$, with rate $\gamma_m(t) = \lambda_m I_m(t) I_0(t)$ such that

156
$$\Lambda_m \sim \text{Pois}(\lambda_m I_m(t) I_0(t) dt). \quad (3)$$

Table 1: Brief description of the variables and parameters of the system of equations in (1).

Symbol	Description
N	Native population
I_0	Introduced population (without native microbes)
I_m	Introduced population (with native microbes)
r_j , with $j = n, i, m$	Growth rate of population j
K_j , with $j = n, i, m$	Carrying capacity of population j
α_{wj} with $wj = ni, in, mn, nm$	Competitive effect of population w on population j
λ_j , with $j = n, m$	Density-dependent microbiome transfer rate from population j
* Subindex n refers to the native population N , subindex i refers to introduced population without native microbes (subpopulation I_0) and subindex m refers to the introduced population with native microbes (subpopulation I_m).	

157 We will look at the situation in which a small number of introduced individuals are released
 158 into the environment while the native population is at its carrying capacity, and we will discuss
 159 scenarios in which the introduced population is poorly adapted to local conditions before
 160 acquiring native microbes, and better adapted after. Mutualistic microbes can increase host
 161 access to new food resources, increase host growth, or decrease its mortality, e.g., by protecting
 162 the host from pathogens (Qu et al., 2020; Raymann and Moran, 2018). We characterize
 163 therefore the subpopulation that has acquired native microbes (I_m) by a higher carrying
 164 capacity and/or a higher growth rate with respect to the subpopulation that has not acquired
 165 native microbes (I_0), and consider all the possible emerging dynamics. The mathematical

166 analysis of scenarios A-C is presented in the supplementary information, sections B and C.
167 Simulations are run in MATLAB2022b using the Euler's Method, and the code is publicly
168 available at <https://github.com/nanomaria/microbiometransfer>.

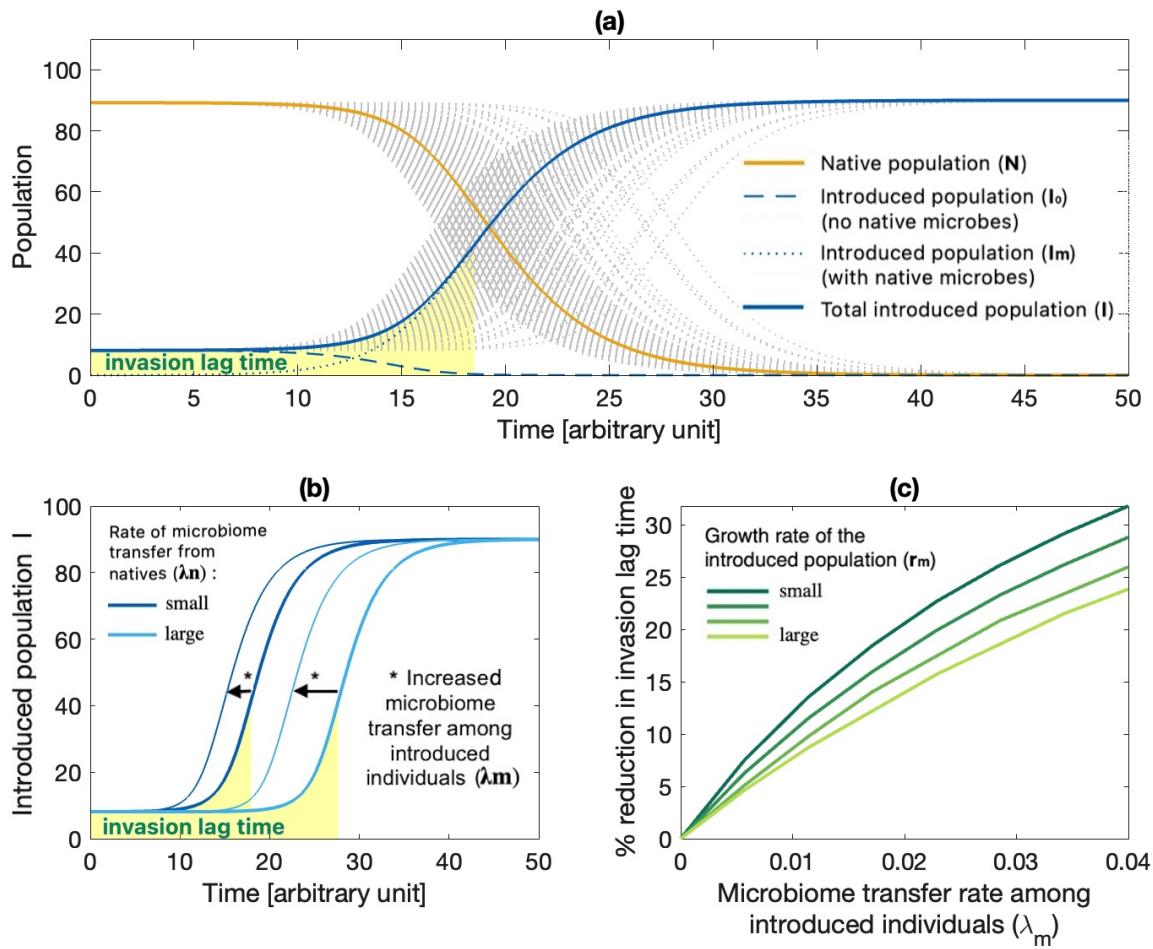
169 **Scenario A: The timing of microbiome acquisition affects invasion lag times**

170 Prior to microbiome transfer, the native and the introduced population have reached an
171 equilibrium of stable coexistence (i.e., $K_n < r_i/\alpha_{ni}$ and $K_i < r_n/\alpha_{in}$), whereby introduced
172 individuals are few with respect to natives (Fig. S2, scenario A). This scenario is realized
173 in the model when the introduced population has a lower carrying capacity than the native
174 population, but a higher growth rate or a strong competitive effect on natives (i.e., $r_i > r_n$ or
175 $\alpha_{in} > \alpha_{ni}$). The acquisition of a native microbes leads to an increase in the carrying capacity of
176 the introduced population, which becomes competitively superior and grows larger, displacing
177 (or reducing the size of) the native population. If we consider that invaders and natives can
178 coexist for a long time before microbiome is transferred from a species to the other, analysis
179 of this scenario provides insights into the possible role of microbiome-mediated adaptation
180 in driving a lag in biological invasion, and into the impact of horizontal microbiome transfer
181 between and within species on the invasion lag time.

182 **Scenario B: The establishment of an introduced species is made possible by transfer 183 of microbes from native species**

184 The introduced population cannot stably establish in the new environment and experiences
185 a population decline after introduction, due to not being able to attain positive population
186 growth (modelled as considering $r_i < 0$ and $dI_0/dt = r_i I_0$, see supplementary information, sec-
187 tion D), or due to competition with well-adapted natives (i.e., $K_n > r_i/\alpha_{ni}$ and $K_i < r_n/\alpha_{in}$).
188 We consider that the adoption of native microbes leads to an increase in the growth rate
189 and/or carrying capacity of the introduced population, rescuing it from extinction. Analysis
190 of this scenario provides insights into the probability that an introduced population will adapt
191 and stably establish in a new environment thank to the transfer of microbes from natives.
192 Ironically, after having acquired native microbes, the now adapted introduced population in-
193 creases in size, causing the native population to decline, or even go extinct (Fig. S2, scenario
194 B).

195 **Scenario C: The presence of natives facilitates adaptation**


196 Introduced individuals are superior competitors, and in the presence of an introduced pop-
197 ulation natives are driven to extinction (i.e., $K_i > r_n/\alpha_{in}$ and $K_n < r_i/\alpha_{ni}$). However, the
198 introduced population also has a low carrying capacity (Fig. S2, scenario C), due to being
199 poorly adapted to the local conditions. Adaptation can occur through the acquisition of native
200 microbes, which in our simulations causes an increase in the carrying capacity of the intro-
201 duced population. This means that if introduced individuals acquire the microbiome from
202 natives before displacing them through competition, the introduced population will thrive,
203 otherwise their population size will remain small. Analysis of this scenario provides insights
204 into the interplay of competitive ability, patch size, and population densities in determining
205 the circumstances under which microbiome-mediated adaptation is most likely to occur.

206 Results

207 Scenario A: The timing of microbiome acquisition affects invasion lag times

208 If competition between natives and introduced individuals is weak, stable coexistence is ob-
209 served, whereby the size of the introduced population is small due to being poorly adapted
210 to local conditions. A situation of stable coexistence is maintained until the first microbiome
211 transfer event between species occurs, and a new subpopulation I_m is created, which is better
212 adapted and has a higher competitive ability than the introduced subpopulation I_0 (Fig. 1a).
213 In this simulation we consider vertical transmission of microbes to occur faithfully between
214 parent and offspring, and we set horizontal transmission to zero. Thus, growth in the compet-
215 itively superior I_m population through reproduction leads to the exclusion of natives. Given
216 that the overall size of the invasive population is limited by a fix carrying capacity, the better
217 adapted subpopulation I_m will eventually also displace subpopulation I_0 through competition
218 for space.

219 We call ‘invasion lag time’ the time interval occurring between species introduction and
220 the inflection point in the population growth of the introduced species, which depends on
221 the time of the first microbiome transfer event. The lower the rate of microbiome transfer
222 from natives to introduced individuals, the longer the invasion lag time, where horizontal
223 microbiome transmission among introduced individuals can speed up the spread of beneficial
224 microbes within a population, and decrease the invasion lag time (Fig. 1b). This effect is
225 particularly prominent when the growth rate of the introduced population is low compared to
226 the rate of horizontal transmission (Fig. 1c). In this case it will take longer for the subpopu-
227 lation with native microbes (I_m) to competitively displace the subpopulation without native
228 microbes (I_0). Thus, subpopulation I_0 will still be largely represented in the total introduced
229 population, slowing down the population growth of the introduced population as a whole,
230 unless horizontal microbiome transfer among introduced individuals leads to a quick spread
231 of native microbes, and to a direct conversion of I_0 into I_m .

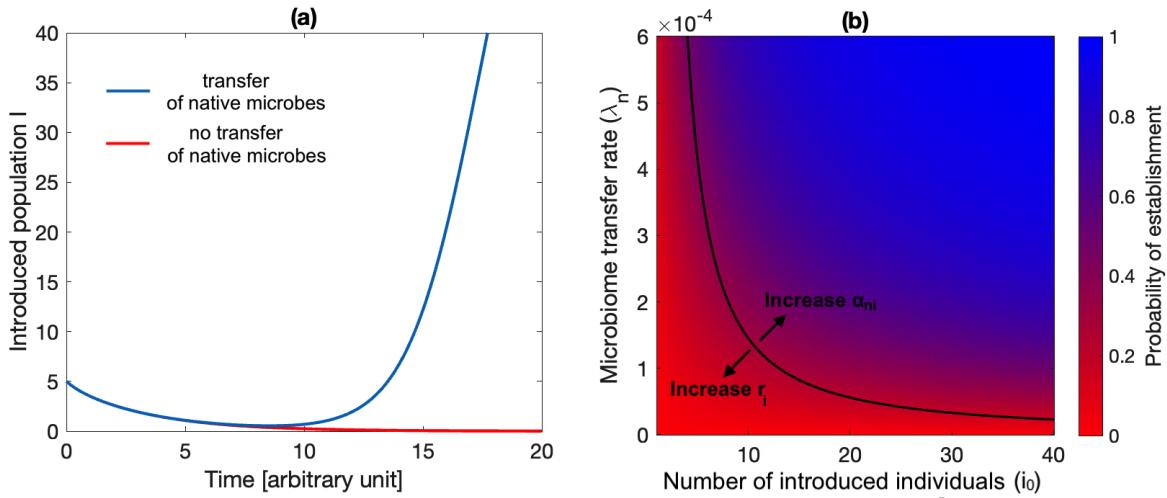
Fig. 1: (a) A native population N (orange curve) coexists with a much smaller introduced population I_0 (blue curve). Microbiome transfer from native to introduced individuals leads to adaptation of the introduced population (formulated in the model as the creation of a new subpopulation I_m , where $I_m + I_0$ represents the total introduced population I), which becomes competitively superior and invasive, and displaces the native population. The invasion lag time is shaded in yellow, and it is defined as the time interval from species introduction to when the population growth of the introduced species reaches its inflection point. Grey dotted lines correspond to the results of 500 stochastic realizations of Eq. (1), while the orange and blue solid curves correspond to their mean average. (b) The invasion lag time increases when microbiome transfer events from natives to introduced individuals are rare (i.e., when the density-dependent microbiome transfer rate λ_n is small, light blue curve) and decreases when events are more frequent (i.e., when λ_n is large, dark blue curve). The occurrence of horizontal microbiome transfer among introduced individuals (i.e., between the subpopulations I_0 and I_m , parameter λ_m) can decrease the invasion lag time. (c) Percent reduction in invasion lag time as a function of the horizontal microbiome transfer rate among introduced individuals (λ_m), for different growth rates of the subpopulation I_m (r_m). The contribution of horizontal microbiome transfer in reducing the invasion lag time is larger when the growth rate r_m is small. Note that figures (b)-(c) consider the solutions corresponding to the mean average of a large number of stochastic realizations of Eq. (1).

232 **Scenario B: The establishment of an introduced species is made possible by transfer**
 233 **of microbes from native species**

234 If the introduced population is poorly adapted to the local conditions, it may experience a
 235 decline in its population size after introduction, due to its own inability to sustain a positive
 236 population growth or due to competition with better adapted natives. Microbiome transfer

237 from natives can facilitate the adaptation of the introduced species (by increasing its growth
238 rate and/or carrying capacity) and ease its establishment. Thus, under this scenario, the
239 stably establishment of an introduced population is made possible by transfer of microbes
240 from native species (Fig. 2a).

241 Interestingly, the same native population that facilitates the establishment of an intro-
242 duced species is subsequently likely to suffer from its spread. Indeed, after establishing the
243 now adapted introduced population experiences a rapid population growth, which may co-
244 incide with a reduction in the population size of natives (Fig. S2, scenario B). If population
245 growth occurs only after a long lag time, the resulting dynamics of invasion is similar to the
246 lagged invasion discussed in scenario A (cfr. Fig. 1a and Fig. S4a).


247 Increasing the number of introduced individuals increases the probability that a timely
248 microbiome transfer event will occur and facilitate the establishment of the introduced pop-
249 ulation (Fig. 2b). There are two reasons for this increase: (i) if the number of introduced
250 individuals is large, it will take longer to the poorly adapted introduced population to die
251 out, which increases the probability that a microbiome transfer event will occur in time to
252 confer adaptation to local conditions to the introduced population before its extinction; and
253 (ii) a large introduced population increases the rate of possible encounters between natives
254 and introduced individuals, making a microbiome transfer event more likely to occur.

255 In the supplementary information (section D), we derive a condition to determine under
256 which circumstances microbiome exchange can facilitate the establishment of a poorly adapted
257 introduced population. We obtain:

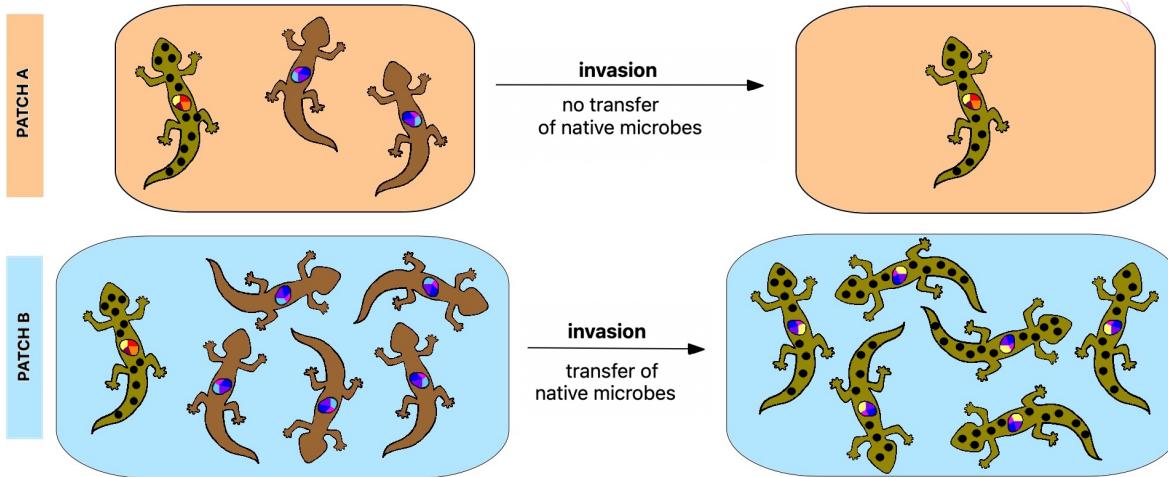
$$258 \quad \lambda_n > \frac{\alpha_{ni} K_n - r_i}{K_n i_0 \ln(i_0)}, \quad \text{for } K_n > r_i / \alpha_{ni}, \quad (4)$$

259 where λ_n represents an approximation for the minimal density-dependent microbiome transfer
260 rate required, on average, for the establishment of the introduced population. Note that
261 if the introduced population experiences a negative population growth even in the absence
262 of competition with natives, Eq. 4 can be rewritten considering $\alpha_{ni} = 0$ and $r_i < 0$ (see
263 supplementary information, section D).

264 Eq. (4) tells us that increasing the number of introduced individuals i_0 or the growth
265 rate of the introduced population r_i increases the probability that the introduced species
266 will establish, while increasing the competitive effect of natives on introduced individuals α_{ni}
267 will decrease it (Fig. 2b). Increasing the carrying capacity K_n may increase or decrease the
268 probability of establishment, depending on the strength of competitive interactions between
269 natives and invaders and on the microbiome transfer rate. On the one hand, a large native
270 population increases the probability that native microbes will be transfer to the introduced
271 species in time to confer adaptation; on the other hand a large highly competitive native
272 population may cause the extinction of the introduced population before microbial acquisition
273 (cfr. Figs. S5b and S6).

Fig. 2: (a) A poorly adapted introduced population fails to establish if it does not timely acquire beneficial microbes from co-occurring natives (red curve). The transfer of beneficial microbes from natives to introduced individuals can confer adaptation to local conditions to the introduced population and rescue it from extinction (blue curve). (b) The probability of establishment of an introduced population (computed as the mean of 500 realizations) increases with increasing number of introduced individuals i_0 , and with increasing density-dependent rate of microbiome transfer between the native and introduced population λ_n . The black curve represents the deterministic approximation derived in Eq. (4). Increasing the competitive effect of natives on introduced individuals α_{in} reduces their probability of establishment, while a larger growth rate of the introduced population r_i increases it.

274 Scenario C: The presence of natives facilitates adaptation


275 Let us consider a certain patch in which a native population is present. Consider then that
 276 some highly competitive individuals of an invasive population are introduced to the patch. If
 277 introduced individuals have a higher competitive ability than natives, but are poorly adapted
 278 to local conditions, they may outcompete natives but remain present at low density after
 279 the invasion. If, however, invaders are conferred local adaptations through the acquisition of
 280 native microbes, their population may reach higher densities after the invasion. Thus, if the
 281 native population is displaced by the invaders before microbiome transfer can occur, invaders
 282 will remain in low numbers, otherwise their final population size will be larger (Fig. 3). Note
 283 that if the microbiome transfer rate is low, the increase in size of the invasive population is
 284 expected to be observed only after a lag time (Fig. S4b).

285 The probability of acquiring microbes from natives will depend on the population densities
 286 of natives and invaders within a patch, on the nature of their interactions, and on the
 287 patch size. In the supplementary information (section E), we show that microbiome-mediated
 288 adaptation may occur when the minimal average density-dependent microbiome transfer rate
 289 λ_n satisfies

$$290 \quad \lambda_n > \frac{2\sqrt{D_i(r_i - \alpha_{ni}K_n)}}{\Delta x \tilde{n} \tilde{j}} \quad \text{for } K_n < r_i/\alpha_{ni}. \quad (5)$$

291 Eq. (5) tells us that the transfer of native microbes is more likely to occur when the average
 292 densities of natives \tilde{n} and invaders \tilde{j} in a patch are large, when patch size Δx is large, and
 293 when natives can slow down the growth of the invasive population through competition (i.e.,
 294 α_{ni} is large enough, with $\alpha_{ni} < r_i/K_n$). Under these circumstances, it will take longer for
 295 the invaders to outcompete natives, increasing their chance of acquiring native microbes and
 296 becoming locally adapted. Assuming that invaders disperse randomly within the patch, an

297 increase in their intrinsic dispersal ability D_i will also lead to a faster displacement of natives,
298 and thus to a lower probability of acquiring their microbiome.

Fig. 3: Conceptual representation of scenario C, of the mathematical results presented in Fig. S7. A native population (brown lizards) is competitively excluded by the introduction of a similar invasive species (green dotted lizards). Patch A is smaller and presents a low density of natives, and the invaders displace the native population before the transfer of beneficial microbes from native to invaders can occur. In patch A, the invasive population remains therefore poorly adapted to the new environment, and in low density. Patch B presents a larger patch size and a higher density of natives, which increase the likelihood that native microbes will be transferred to the invaders before natives are driven to extinction. The acquisition of native microbes confers local adaptation to the invaders, and their population in patch B grows larger than in patch A. The findings represented in this figure are based on Eq. (5). The lizards here illustrate the possibility of such dynamics in species of animals or plants among which microbial sharing may occur. A conceptual representation of this figure is presented in Fig. 3.

299 Discussion

300 Scenario A: The timing of microbiome acquisition affects invasion lag 301 times

302 It is increasingly recognized that rapid evolution can alter invasion dynamics, where lags in
303 biological invasion can emerge as a result of the time needed for evolutionary adaptation to
304 take place in a new environment (Crooks, 2005; Whitney and Gabler, 2008). So far research
305 has focused on genetic adaptation, while the evolutionary potential of non-genetic modes has
306 begun to be explored only recently (Moran et al., 2021; Marin et al., 2020). The microbiome
307 has been proposed as a non-genetic mode of conferring adaptability to host species (Kolodny
308 et al., 2020; Henry et al., 2021), however the consequences of this adaptation for community
309 dynamics have remained largely unexplored.

310 We propose that the adaptation of an introduced population to local conditions can be
311 mediated by the acquisition of beneficial microbes which may have co-evolved locally with
312 phylogenetically close natives. We also suggest that if the acquisition of microbes from the
313 microbiome of native hosts increases the competitive ability of the introduced species, invasion
314 can follow as a result. Thus, a lag in biological invasion may be observed because of the time
315 required for an introduced species to acquire native microbes, where the duration of the lag
316 time is determined by the rates of microbiome transfer between natives and invaders, and

317 within the invasive population itself.

318 The idea that invaders may benefit from established mutualistic associations between
319 native hosts and their microbes has already been formulated in plant ecology, where the
320 establishment of an introduced plant and its expansion in a new range can be facilitated by
321 the presence of pre-existing mycorrhizal networks (Dickie et al., 2017; Shipunov et al., 2008;
322 Dawkins and Esiobu, 2016; Parepa et al., 2013). However, this concept is new to animal
323 ecology, where inter-species horizontal transmission of mutualist microbes remains largely
324 unexplored (Robinson et al., 2019; Bahrndorff et al., 2016). Research that links microbiome
325 acquisition and host adaptation in animals is promising (Rennison et al., 2019; Fontaine et al.,
326 2022; Kikuchi et al., 2012), but still in its infancy, and the problem of what is cause and what
327 is consequence in host-microbiome relationships is unresolved in most cases. Going forward,
328 it will be important to consider the intricate details of the mechanisms of host-symbiont
329 interactions, both to better understand microbe's role in fitness determination and in order
330 to understand how specific these relations are.

331 There is no doubt that there are ample opportunities for microbial exchange to take
332 place. Exchange of microbes can be brought about, for example, through predation of native
333 individuals or through eating of their feces, a behaviour documented in invasive lizards (Norval
334 et al., 2012a,b). Alternatively, environmentally mediated exchange could occur at sites of
335 bathing in sand or water that are shared, e.g. between the invasive Indian myna (*Acridotheres*
336 *tristis*) and many native species in the mynas' sites of sunning, feeding grounds, and shelter.
337 Our understanding of microbiome sharing among animal host species is currently limited
338 (Bahrndorff et al., 2016), and the extent to which such exchange may result in the successful
339 establishment of the natives' microbes in the invasive species is unknown. Exploration of
340 this topic is accordingly paramount to understanding the proposed scenario of microbiome-
341 mediated adaptation.

342 The complementary tenet of this scenario is that inter-species sharing may provide signif-
343 icant adaptive value to the invasive species. As explained earlier, it seems highly likely that
344 some microbial species that co-evolved over thousands of generations with a native host pro-
345 vide an adaptive value that may carry over to another host species that is related to it, such
346 as a scenario in which a microbe that facilitates a certain carbohydrate's breakdown in the
347 gut of a native detritivore is picked up by a host species that belongs to the same ecological
348 guild. These observations highlight multiple paths of empirical exploration that may provide
349 major insights regarding microbiome-mediated adaptation in invasive species.

350 It is expected that if invaders can form novel mutualistic associations with microbes from
351 the microbiome of natives, then hosts may also share pathogen strains (Dickie et al., 2017;
352 Bahrndorff et al., 2016). In our work we choose to specifically focus on the case in which
353 microbiome transfer has a positive impact on fitness, given that this scenario has received sig-
354 nificantly less attention than the sharing of parasites or pathogens. The exchange of pathogens
355 may also affect invasion dynamics, by reducing competitiveness in natives or in invaders. One
356 prominent such example is in the case of the invasive grey squirrel, whose spread in Europe has
357 been facilitated by infection of the native population of red squirrels with squirrelpox: a highly
358 pathogenic disease carried by grey squirrels, which appear to be immune to it (Schuchert et al.,
359 2014). We have recently outlined another interesting scenario along these lines as possibly
360 having played a role in the spread of modern humans and the replacement of Neanderthals
361 (Greenbaum et al., 2019). Future work may further consider how different combinations of
362 mutualistic and parasitic/pathogenic interactions between microbes and a newly introduced
363 host may affect species' competitive dynamics and invasion success (Martignoni et al.).

364 Scenario B: The establishment of an introduced species is made possible 365 by transfer of microbes from native species

366 In the previous section, we have already discussed how the presence of native mycorrhizal
367 fungi in the soil may facilitate the establishment of newly introduced plants (Dickie et al.,
368 2017; Becknell et al., 2021; Parepa et al., 2013). Experimental work is in progress to explore
369 how specific microbiome can contribute not only to soil health and plant fitness, but also
370 to animal reproductive success and in increasing their resilience against environmental stress
371 (Peixoto et al., 2021; Comizzoli and Power, 2019), uncovering promising new venues for the
372 successful management of reintroduced populations (Trevelline et al., 2019; Redford et al.,
373 2012; Bahrndorff et al., 2016). Here we propose that in cases where the establishment of
374 an introduced population is desired, such as the reintroduction of wildlife populations, the
375 transfer of beneficial microbes from similar native species may increase establishment success
376 by helping the introduced species to become better adapted to local conditions.

377 Founder populations have been often found to suffer from a lack of diversity that makes
378 them more susceptible to demographic and environmental stochasticity (Drake and Lodge,
379 2006; Simberloff, 2009), and more likely to suffer from inbreeding depression (Drake and
380 Lodge, 2006). The microbiome can influence the host phenotype in several ways (Fontaine
381 et al., 2022; Kohl et al., 2014; Townsend et al., 2019), and phenotypic plasticity has been found
382 to help founder populations with low genetic diversity to maintain high fitness (Richards et al.,
383 2006; Davidson et al., 2011; Estoup et al., 2016). The extended phenotypic response provided
384 by the acquisition of native microbes may therefore compensate for this lack in diversity and
385 mediate the establishment success of small founder populations, particularly if native microbes
386 are then efficiently transmitted among introduced individuals.

387 Scenario C: The presence of natives facilitates adaptation

388 Relatedness between invasive species and the recipient community have been found to be weak
389 predictors of invasion success (Pantel et al., 2017; Leffler et al., 2014; Diez et al., 2008; Divíšek
390 et al., 2018). On the one hand, similarities with natives may increase the likelihood that an
391 invader's traits will match the new environmental conditions. On the other hand, an invader
392 may be more likely to suffer from direct competition with natives in such a case, due to niche
393 overlap. Here we propose that, non-intuitively, invasion may be *facilitated* by the presence
394 of co-occurring native species if the acquisition of beneficial pre-adapted microbes from the
395 microbiome of natives can boost invaders' fitness.

396 Particularly, even when invaders are superior competitors, the acquisition of native mi-
397 crobes may confer local adaptations to an invasive population and facilitate its population
398 growth and spread. On the other hand, if invaders displace natives before being able to
399 acquire their microbiome, invaders may fail to adapt to the new environment and remain
400 localized in certain patches or regions. Eventually, due to being poorly adapted, environmen-
401 tal disturbance may cause their disappearance after what seemed to be a successful invasion,
402 a phenomenon that has been observed in several cases, some of them not fully understood
403 (Simberloff, 2013). Such an example is the spread of Indian palm squirrels (*Funambulus pen-*
404 *nati*) in Israel and their eventual disappearance, perhaps because of a cold spell during winter
405 (Yom-Tov, 2013).

406 Our hypothesis could be tested experimentally in controlled conditions that emulate in-
407 vasion scenarios, comparing the invaders' fitness when faced with local conditions, with and
408 without exposure to native species that may act as potential microbiome sources for local
409 adaptation. Perhaps more interestingly, it may also be explored in invasive species that were
410 introduced independently multiple times to sites which are disconnected. An example of

411 such introduction is that of the marbled crayfish (*Procambarus virginalis*) in different places
412 around the world. This species has been introduced in some cases to multiple wetlands in
413 the same region that are characterized by similar environmental conditions, but that differ in
414 the native crustacean hosts that occur in them and that may function as native microbiome
415 ‘donors’. Comparing the crayfishes’ fitness and invasive success among these sites, and linking
416 them to the microbiome site composition of the native and invasive crustaceans, may thus be
417 highly informative. We have recently detected and have begun to study such a situation in
418 Israel, where the marbled crayfish was recently detected at several sites (a report of this set
419 of invasions and their eradication attempts is in preparation).

420 The number of studies comparing the microbiome of native and invasive species in plants
421 is growing rapidly (Coats and Rumpho, 2014; Aires et al., 2021), but only a few studies have
422 focused on comparing the microbiome of native and invasive animals (Chiarello et al., 2022;
423 Santos et al., 2021). In a recent study, Chiarello et al. (2022) found that native mussels shared
424 a substantial fraction of their microbiome with the co-occurring invasive species *Corbicula*
425 *fluminea*, indicating that invasive mussels may host microbial communities that are obtained
426 locally. Additionally, a few more studies have compared the microbiome of invaders in their
427 native and invasive range (Cardoso et al., 2012; Bansal et al., 2014), or in the population core
428 and at the edges of their expansion range (Dragičević et al., 2021; Wagener et al., 2021). We
429 suggest that such studies are necessary for the understanding of the possible importance of
430 microbiome-mediated adaptation in general, as well as for testing the proposed hypothesis of
431 adaptive microbiome pickup from native hosts as a mode of rapid adaptation. In a rapidly
432 changing world in which connectivity and opportunities for the spread of invasive species are
433 consistently increasing, these may turn out to be key to understanding and predicting species’
434 invasion success, and in turn to considering the mode and timing of mitigation efforts.

435 Conclusion

436 The need for developing theoretical frameworks to predict invasive potential when invaders
437 evolve in their environment has been highlighted in several instances (Coutts et al., 2018;
438 Whitney and Gabler, 2008), however this call has largely remained unanswered. Here we
439 present a mathematical model that sheds light on possible dynamics occurring if invaders
440 evolve after their introduction, and we focus on the situation in which evolution is driven by the
441 transfer of beneficial microbes from the microbiome of similar co-occurring native species. Our
442 work presents a simple framework which sets the basis for broadening the conceptualization
443 of microbiome-mediated dynamics, and opens the door to further theoretical exploration and
444 scientific discoveries.

445 Acknowledgement

446 MM is founded by the Azrieli Foundation. OK and MM are founded by the Israel Science
447 Foundation (ISF) (grant number 1826/20), the Gordon and Betty Moore Foundation, and the
448 United States-Israel Binational Science Foundation (BSF).

449 References

450 Aagaard, K. and Lockwood, J. Exotic birds show lags in population growth. *Diversity and*
451 *Distributions*, 20(5):547–554, 2014.

452 Aikio, S., Duncan, R. P., and Hulme, P. E. Lag-phases in alien plant invasions: separating
453 the facts from the artefacts. *Oikos*, 119(2):370–378, 2010.

454 Aires, T., Stuif, T. M., Muyzer, G., Serrão, E. A., and Engelen, A. H. Characterization
455 and comparison of bacterial communities of an invasive and two native caribbean seagrass
456 species sheds light on the possible influence of the microbiome on invasive mechanisms.
457 *Frontiers in Microbiology*, 12:653998, 2021.

458 Ayres, D. R., Smith, D. L., Zaremba, K., Klohr, S., and Strong, D. R. Spread of exotic
459 cordgrasses and hybrids (spartina sp.) in the tidal marshes of san francisco bay, california,
460 usa. *Biological Invasions*, 6(2):221–231, 2004.

461 Azzurro, E., Maynou, F., Belmaker, J., Golani, D., and Crooks, J. Lag times in lessepsian
462 fish invasion. *Biological Invasions*, 18(10):2761–2772, 2016.

463 Bahrndorff, S., Alemu, T., Alemneh, T., Lund Nielsen, J., et al. The microbiome of animals:
464 implications for conservation biology. *International Journal of Genomics*, 2016.

465 Bansal, R., Mian, M. R., and Michel, A. P. Microbiome diversity of a phis glycines with
466 extensive superinfection in native and invasive populations. *Environmental Microbiology
467 Reports*, 6(1):57–69, 2014.

468 Becknell, R. E., Showalter, K. G., Albrecht, M. A., and Mangan, S. A. Soil mutualisms
469 potentially determine the reintroduction outcome of an endangered legume. *Restoration
470 Ecology*, 29(4):e13355, 2021.

471 Cardoso, A. M., Cavalcante, J. J., Cantao, M. E., Thompson, C. E., Flatschart, R. B.,
472 Glogauer, A., Scapin, S. M., Sade, Y. B., Beltrao, P. J., Gerber, A. L., et al. Metagenomic
473 analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel
474 genes. *PLoS One*, 7(11):e48505, 2012.

475 Chiarello, M., Bucholz, J. R., McCauley, M., Vaughn, S. N., Hopper, G. W., Sánchez González,
476 I., Atkinson, C. L., Lozier, J. D., and Jackson, C. R. Environment and co-occurring native
477 mussel species, but not host genetics, impact the microbiome of a freshwater invasive species
478 (*Corbicula fluminea*). *Frontiers in Microbiology*, 13:800061, 2022.

479 Chiu, L., Bazin, T., Truchetet, M.-E., Schaeverbeke, T., Delhaes, L., and Pradeu, T. Protective
480 microbiota: from localized to long-reaching co-immunity. *Frontiers in immunology*, 8:
481 1678, 2017.

482 Coats, V. C. and Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview
483 of recent advances in the microbiomics of invasive plants. *Frontiers in Microbiology*, 5:368,
484 2014.

485 Colautti, R. I. and Lau, J. A. Contemporary evolution during invasion: evidence for dif-
486 ferentiation, natural selection, and local adaptation. *Molecular Ecology*, 24(9):1999–2017,
487 2015.

488 Colautti, R. I., Maron, J. L., and Barrett, S. C. Common garden comparisons of native
489 and introduced plant populations: latitudinal clines can obscure evolutionary inferences.
490 *Evolutionary Applications*, 2(2):187–199, 2009.

491 Comizzoli, P. and Power, M. Reproductive microbiomes in wild animal species: a new dimension
492 in conservation biology. *Reproductive Sciences in Animal Conservation*, pages 225–240,
493 2019.

494 Coutts, S. R., Helmstedt, K. J., and Bennett, J. R. Invasion lags: The stories we tell ourselves
495 and our inability to infer process from pattern. *Diversity and Distributions*, 24(2):244–251,
496 2018.

497 Crooks, J. A. Lag times and exotic species: The ecology and management of biological
498 invasions in slow-motion1. *Ecoscience*, 12(3):316–329, 2005.

499 Davidson, A. M., Jennions, M., and Nicotra, A. B. Do invasive species show higher phenotypic
500 plasticity than native species and, if so, is it adaptive? a meta-analysis. *Ecology Letters*,
501 14(4):419–431, 2011.

502 Dawkins, K. and Esiobu, N. Emerging insights on brazilian pepper tree (*schinus terebinthifolius*)
503 invasion: the potential role of soil microorganisms. *Frontiers in Plant Science*, page
504 712, 2016.

505 Daybog, I. and Kolodny, O. Explaining the microbial diversity conundrum: can microbiome
506 composition be crucial for host fitness, while highly divergent among healthy individuals?
507 *bioRxiv*, pages 2022–01, 2022.

508 Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez-Loustau, M.-L., Grelet, G., Hulme, P. E.,
509 Klironomos, J., Makiola, A., Nuñez, M. A., Pringle, A., et al. The emerging science of
510 linked plant–fungal invasions. *New Phytologist*, 215(4):1314–1332, 2017.

511 Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G., and Duncan, R. P. Darwin’s natural-
512 ization conundrum: dissecting taxonomic patterns of species invasions. *Ecology Letters*, 11
513 (7):674–681, 2008.

514 Divíšek, J., Chytrý, M., Beckage, B., Gotelli, N. J., Lososová, Z., Pyšek, P., Richardson,
515 D. M., and Molofsky, J. Similarity of introduced plant species to native ones facilitates
516 naturalization, but differences enhance invasion success. *Nature Communications*, 9(1):
517 4631, 2018.

518 Dlugosch, K. M. and Parker, I. M. Founding events in species invasions: genetic variation,
519 adaptive evolution, and the role of multiple introductions. *Molecular Ecology*, 17(1):431–
520 449, 2008.

521 Dragičević, P., Bielen, A., Petrić, I., Vuk, M., Žučko, J., and Hudina, S. Microbiome of the
522 successful freshwater invader, the signal crayfish, and its changes along the invasion range.
523 *Microbiology Spectrum*, 9(2):e00389–21, 2021.

524 Drake, J. M. and Lodge, D. M. Allee effects, propagule pressure and the probability of
525 establishment: risk analysis for biological invasions. *Biological Invasions*, 8:365–375, 2006.

526 Epanchin-Niell, R. S. Economics of invasive species policy and management. *Biological Inva-
527 sions*, 19(11):3333–3354, 2017.

528 Estoup, A., Ravigné, V., Hufbauer, R., Vitalis, R., Gautier, M., and Facon, B. Is there a
529 genetic paradox of biological invasion? *Annual Review of Ecology, Evolution, and System-
530 atics*, 47:51–72, 2016.

531 Faillace, C. A., Lorusso, N. S., and Duffy, S. Overlooking the smallest matter: viruses impact
532 biological invasions. *Ecology Letters*, 20(4):524–538, 2017.

533 Fausch, K. D., Taniguchi, Y., Nakano, S., Grossman, G. D., and Townsend, C. R. Flood
534 disturbance regimes influence rainbow trout invasion success among five holarctic regions.
535 *Ecological Applications*, 11(5):1438–1455, 2001.

536 Fontaine, S. S. and Kohl, K. D. Gut microbiota of invasive bullfrog tadpoles responds more
537 rapidly to temperature than a noninvasive congener. *Molecular Ecology*, 29(13):2449–2462,
538 2020.

539 Fontaine, S. S., Mineo, P. M., and Kohl, K. D. Experimental manipulation of microbiota
540 reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm.
541 *Nature Ecology & Evolution*, 6(4):405–417, 2022.

542 Frankham, R. Resolving the genetic paradox in invasive species. *Heredity*, 94(4):385–385,
543 2005.

544 Gilad, O. Competition and competition models. In Jorgensen, S. E. and Fath, B., editors,
545 *Encyclopedia of Ecology*. Elsevier, 2008.

546 Goss, E. M., Kendig, A. E., Adhikari, A., Lane, B., Kortessis, N., Holt, R. D., Clay, K.,
547 Harmon, P. F., and Flory, S. L. Disease in invasive plant populations. *Annual review of
548 phytopathology*, 58:97–117, 2020.

549 Greenbaum, G., Getz, W. M., Rosenberg, N. A., Feldman, M. W., Hovers, E., and Kolodny,
550 O. Disease transmission and introgression can explain the long-lasting contact zone of
551 modern humans and neanderthals. *Nature Communications*, 10(1):5003, 2019.

552 Gruber, M. A., Quinn, O., Baty, J. W., Dobelmann, J., Haywood, J., Wenseleers, T., and Lester,
553 P. J. Fitness and microbial networks of the common wasp, *vespula vulgaris* (hy-
554 menoptera: Vespidae), in its native and introduced ranges. *Ecological Entomology*, 44(4):
555 512–523, 2019.

556 Guerrero, P. C., Rosas, M., Arroyo, M. T., and Wiens, J. J. Evolutionary lag times and recent
557 origin of the biota of an ancient desert (atacama–sechura). *Proceedings of the National
558 Academy of Sciences*, 110(28):11469–11474, 2013.

559 Haubrock, P. J., Turbelin, A. J., Cuthbert, R. N., Novoa, A., Taylor, N. G., Angulo, E.,
560 Ballesteros-Mejia, L., Bodey, T. W., Capinha, C., Diagne, C., et al. Economic costs of
561 invasive alien species across Europe. *NeoBiota*, 67:153–190, 2021.

562 Henry, L. P., Bruijning, M., Forsberg, S. K., and Ayroles, J. F. The microbiome extends host
563 evolutionary potential. *Nature Communications*, 12(1):5141, 2021.

564 Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., and Fukatsu, T. Symbiont-
565 mediated insecticide resistance. *Proceedings of the National Academy of Sciences*, 109(22):
566 8618–8622, 2012.

567 Kohl, K. D., Weiss, R. B., Cox, J., Dale, C., and Denise Dearing, M. Gut microbes of
568 mammalian herbivores facilitate intake of plant toxins. *Ecology Letters*, 17(10):1238–1246,
569 2014.

570 Kolbe, J. J., Glor, R. E., Rodríguez Schettino, L., Lara, A. C., Larson, A., and Losos, J. B.
571 Genetic variation increases during biological invasion by a cuban lizard. *Nature*, 431(7005):
572 177–181, 2004.

573 Kolodny, O. and Schulenburg, H. Microbiome-mediated plasticity directs host evolution along
574 several distinct time scales. *Philosophical Transactions of the Royal Society B*, 375(1808):
575 20190589, 2020.

576 Kolodny, O., Weinberg, M., Reshef, L., Harten, L., Hefetz, A., Gophna, U., Feldman, M. W.,
577 and Yovel, Y. Coordinated change at the colony level in fruit bat fur microbiomes through
578 time. *Nature Ecology & Evolution*, 3(1):116–124, 2019.

579 Kolodny, O., Callahan, B. J., and Douglas, A. E. The role of the microbiome in host evolution,
580 2020.

581 Kot, M. *Elements of Mathematical Ecology*. Cambridge University Press, 2001.

582 Lee, C.-C., Chiu, M.-C., Shih, C.-H., Yang, C.-C. S., Liu, H.-C., and Lin, C.-C. The role of
583 anthropogenic disturbance and invasion of yellow crazy ant in a recent decline of land crab
584 population. *Scientific Reports*, 11(1):1–13, 2021.

585 Leffler, A. J., James, J. J., Monaco, T. A., and Sheley, R. L. A new perspective on trait
586 differences between native and invasive exotic plants. *Ecology*, 95(2):298–305, 2014.

587 Leung, B., Roura-Pascual, N., Bacher, S., Heikkilä, J., Brotons, L., Burgman, M. A., Dehnen-
588 Schmutz, K., Essl, F., Hulme, P. E., Richardson, D. M., et al. TEASing apart alien species
589 risk assessments: a framework for best practices. *Ecology Letters*, 15(12):1475–1493, 2012.

590 Manfredini, F., Grozinger, C. M., and Beani, L. Examining the “evolution of increased com-
591 petitive ability” hypothesis in response to parasites and pathogens in the invasive paper
592 wasp *polistes dominula*. *Naturwissenschaften*, 100(3):219–228, 2013.

593 Manfredini, F., Arbetman, M., and Toth, A. L. A potential role for phenotypic plasticity in
594 invasions and declines of social insects. *Frontiers in Ecology and Evolution*, 7:375, 2019.

595 Marin, P., Genitoni, J., Barloy, D., Maury, S., Gibert, P., Ghalambor, C. K., and Vieira,
596 C. Biological invasion: The influence of the hidden side of the (epi) genome. *Functional
597 Ecology*, 34(2):385–400, 2020.

598 Martignoni, M. M., Garnier, J., Tyson, R., and Kolodny, O. Toward a unified theory of
599 microbially mediated invasion. In preparation.

600 Martignoni, M. M., Garnier, J., Hart, M. M., and Tyson, R. C. Investigating the impact of the
601 mycorrhizal inoculum on the resident fungal community and on plant growth. *Ecological
602 Modelling*, 438:109321, 2020.

603 Martignoni, M. M., Tyson, R., Kolodny, O., and Garnier, J. Mutualism at the leading edge:
604 Insights into the eco-evolutionary dynamics of host-symbiont communities during range
605 expansion. *bioRxiv*, pages 2023–04, 2023.

606 Matesanz, S., Gianoli, E., and Valladares, F. Global change and the evolution of phenotypic
607 plasticity in plants. *Annals of the New York Academy of Sciences*, 1206(1):35–55, 2010.

608 Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M., and Nachman, M. W. Transmission modes
609 of the mammalian gut microbiota. *Science*, 362(6413):453–457, 2018.

610 Moran, K. L., Shlyakhtina, Y., and Portal, M. M. The role of non-genetic information in
611 evolutionary frameworks. *Critical Reviews in Biochemistry and Molecular Biology*, 56(3):
612 255–283, 2021.

613 Norval, G., Huang, S.-C., Mao, J.-J., Goldberg, S. R., and Slater, K. Additional notes on
614 the diet of *japalura swinhonis* (agamidae) from southwestern taiwan, with comments about
615 its dietary overlap with the sympatric *anolis sagrei* (polychrotidae). *Basic and Applied
616 Herpetology*, 26:87–97, 2012a.

617 Norval, G., Mao, J. J., and Slater, K. Description of an observed interaction between an
618 elegant skink (*plestiodon elegans*) and a brown anoles (*anolis sagrei*) in southwestern taiwan.
619 *Notes*, 5:189–192, 2012b.

620 Paini, D. R., Sheppard, A. W., Cook, D. C., De Barro, P. J., Worner, S. P., and Thomas, M. B.
621 Global threat to agriculture from invasive species. *Proceedings of the National Academy of
622 Sciences*, 113(27):7575–7579, 2016.

623 Pantel, J. H., Bohan, D. A., Calcagno, V., David, P., Duyck, P.-F., Kamenova, S., Loeuille,
624 N., Mollot, G., Romanuk, T. N., Thébault, E., et al. 14 questions for invasion in ecological
625 networks. In *Advances in Ecological Research*, volume 56, pages 293–340. Elsevier, 2017.

626 Parepa, M., Schaffner, U., and Bossdorf, O. Help from under ground: soil biota facilitate
627 knotweed invasion. *Ecosphere*, 4(2):1–11, 2013.

628 Parker, I. M., Saunders, M., Bontrager, M., Weitz, A. P., Hendricks, R., Magarey, R., Suiter,
629 K., and Gilbert, G. S. Phylogenetic structure and host abundance drive disease pressure in
630 communities. *Nature*, 520(7548):542–544, 2015.

631 Peixoto, R. S., Sweet, M., Villela, H. D., Cardoso, P., Thomas, T., Voolstra, C. R., Høj, L.,
632 and Bourne, D. G. Coral probiotics: premise, promise, prospects. *Annual Review of Animal
633 Biosciences*, 9:265–288, 2021.

634 Phillips, B. L., Brown, G. P., Webb, J. K., and Shine, R. Invasion and the evolution of speed
635 in toads. *Nature*, 439(7078):803–803, 2006.

636 Pimentel, D., Zuniga, R., and Morrison, D. Update on the environmental and economic costs
637 associated with alien-invasive species in the United States. *Ecological Economics*, 52(3):
638 273–288, 2005.

639 Prentis, P. J., Wilson, J. R., Dormontt, E. E., Richardson, D. M., and Lowe, A. J. Adaptive
640 evolution in invasive species. *Trends in Plant Science*, 13(6):288–294, 2008.

641 Qu, Q., Zhang, Z., Peijnenburg, W., Liu, W., Lu, T., Hu, B., Chen, J., Chen, J., Lin, Z., and
642 Qian, H. Rhizosphere microbiome assembly and its impact on plant growth. *Journal of
643 Agricultural and Food Chemistry*, 68(18):5024–5038, 2020.

644 Raymann, K. and Moran, N. A. The role of the gut microbiome in health and disease of adult
645 honey bee workers. *Current Opinion in Insect Science*, 26:97–104, 2018.

646 Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M., and McAloose, D. Conservation
647 and the microbiome. *Conservation Biology: The Journal of the Society for Conservation
648 Biology*, 26(2):195, 2012.

649 Rennison, D. J., Rudman, S. M., and Schluter, D. Parallel changes in gut microbiome com-
650 position and function during colonization, local adaptation and ecological speciation. *Pro-
651 ceedings of the Royal Society B*, 286(1916):20191911, 2019.

652 Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J., and Pigliucci, M. Jack of all trades,
653 master of some? on the role of phenotypic plasticity in plant invasions. *Ecology Letters*, 9
654 (8):981–993, 2006.

655 Robinson, C. D., Bohannan, B. J., and Britton, R. A. Scales of persistence: transmission and
656 the microbiome. *Current Opinion in Microbiology*, 50:42–49, 2019.

657 Rojas, C. A., Ramírez-Barahona, S., Holekamp, K. E., and Theis, K. R. Host phylogeny and
658 host ecology structure the mammalian gut microbiota at different taxonomic scales. *Animal
659 Microbiome*, 3(1):1–18, 2021.

660 Santos, B., Bletz, M. C., Sabino-Pinto, J., Cocca, W., Fidy, J. F. S., Freeman, K. L., Kuenzel,
661 S., Ndriantsoa, S., Noel, J., Rakotonanahary, T., et al. Characterization of the microbiome
662 of the invasive asian toad in madagascar across the expansion range and comparison with
663 a native co-occurring species. *PeerJ*, 9:e11532, 2021.

664 Schuchert, P., Shuttleworth, C. M., McInnes, C. J., Everest, D. J., and Rushton, S. P. Land-
665 scape scale impacts of culling upon a european grey squirrel population: can trapping
666 reduce population size and decrease the threat of squirrelpox virus infection for the native
667 red squirrel? *Biological Invasions*, 16:2381–2391, 2014.

668 Shipunov, A., Newcombe, G., Raghavendra, A. K., and Anderson, C. L. Hidden diversity of
669 endophytic fungi in an invasive plant. *American Journal of Botany*, 95(9):1096–1108, 2008.

670 Simberloff, D. Eradication—preventing invasions at the outset. *Weed Science*, 51(2):247–253,
671 2003.

672 Simberloff, D. The role of propagule pressure in biological invasions. *Annual Review of
673 Ecology, Evolution, and Systematics*, 40:81–102, 2009.

674 Simberloff, D. *Invasive species: what everyone needs to know*. Oxford University Press, 2013.

675 Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., and Osman, R. W. Linking climate
676 change and biological invasions: ocean warming facilitates nonindigenous species invasions.
677 *Proceedings of the National Academy of Sciences*, 99(24):15497–15500, 2002.

678 Strauss, S. Y. Ecological and evolutionary responses in complex communities: implications
679 for invasions and eco-evolutionary feedbacks. *Oikos*, 123(3):257–266, 2014.

680 Toledo, L. F. and Measey, J. Invasive frogs in são paulo display a substantial invasion lag.
681 *BioInvasions Records*, 7(3):325–328, 2018.

682 Townsend, G. E., Han, W., Schwalm III, N. D., Raghavan, V., Barry, N. A., Goodman, A. L.,
683 and Groisman, E. A. Dietary sugar silences a colonization factor in a mammalian gut
684 symbiont. *Proceedings of the National Academy of Sciences*, 116(1):233–238, 2019.

685 Trevelline, B. K., Fontaine, S. S., Hartup, B. K., and Kohl, K. D. Conservation biology needs
686 a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife
687 management practices. *Proceedings of the Royal Society B*, 286(1895):20182448, 2019.

688 Wagener, C., du Plessis, M., and Measey, J. Invasive amphibian gut microbiota and functions
689 shift differentially in an expanding population but remain conserved across established
690 populations. *Microbial ecology*, pages 1–13, 2021.

691 Wallingford, P. D., Morelli, T. L., Allen, J. M., Beaury, E. M., Blumenthal, D. M., Bradley,
692 B. A., Dukes, J. S., Early, R., Fusco, E. J., Goldberg, D. E., et al. Adjusting the lens of
693 invasion biology to focus on the impacts of climate-driven range shifts. *Nature Climate
694 Change*, 10(5):398–405, 2020.

695 Whitney, K. D. and Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and
696 recipient communities: challenges for predicting invasive potential. *Diversity and Distribu-
697 tions*, 14(4):569–580, 2008.

698 Yanygina, L. V. Pathways of macroinvertebrate invasions in the ob river basin (west siberia).
699 *Limnology*, 18(2):243–249, 2017.

700 Yom-Tov, Y. Human impact on wildlife in israel since the nineteenth century. *Between
701 Ruin and Restoration: An Environmental History of Israel*. University of Pittsburgh Press,
702 Pittsburgh, PA, pages 53–81, 2013.

703 Supplementary information

704 A Two-species competition model

705 Consider the competitive Lotka-Volterra equations to describe the competitive dynamics be-
706 tween a native population (N) and an introduced population (I_0):

$$707 \frac{dN}{dt} = r_n N \left(1 - \frac{N}{K_n}\right) - \alpha_{in} N I_0, \quad (6a)$$

$$708 \frac{dI_0}{dt} = r_i I_0 \left(1 - \frac{I_0}{K_i}\right) - \alpha_{ni} I_0 N, \quad (6b)$$

709 where r_n and r_i are the intrinsic growth rates of the native and introduced populations, K_n
710 and K_i are their carrying capacities, and α_{in} and α_{ni} quantify the competitive effect of the
711 introduced species on natives, and viceversa. A description of model parameters is provided
712 in Table 1.

713 Linear stability analysis and phase plane analysis (Kot, 2001) show that the dynamics of
714 the system of equations in (6) can result in the four different scenarios described below. The
715 phase planes corresponding to each of these scenarios are shown in Fig. S1.

716 (a) Coexistence of natives and introduced species

717 Coexistence of the native and introduced populations is observed when growth rates and
718 competition rates between natives and introduced species are low, and their carrying
719 capacities are high (i.e., when $K_n < r_i/\alpha_{ni}$ and $K_i > r_n/\alpha_{in}$, see Fig. S1a). Under this
720 scenario, the coexistence steady state (N^*, I_0^*) is stable, with

$$721 N^* = \frac{K_n r_i (r_n - \alpha_{in} K_i)}{r_n r_i - \alpha_{ni} \alpha_{in} K_n K_i} \quad (7a)$$

$$722 I_0^* = \frac{K_i r_n (r_i - \alpha_{ni} K_n)}{r_n r_i - \alpha_{in} \alpha_{ni} K_n K_i}. \quad (7b)$$

723 Thus, if competition between native and introduced species is low, species coexists at
724 an equilibrium value that is lower than their respective carrying capacity.

725 (b) Competitive exclusion (bistability)

726 When both natives and introduced species are strong competitors, such that $K_i >$
727 r_n/α_{in} and $K_n > r_i/\alpha_{ni}$, coexistence cannot occur and competitive exclusion of natives
728 or introduced species is observed. In this case, both steady states $(N^*, 0)$ and $(0, I_0^*)$,
729 with $N^* = K_n$ and $I_0^* = K_i$, are stable, and which species will competitively exclude the
730 other will depend on model parameters (determining the size of the basin of attraction
731 of each of the steady states), and on the initial conditions (Fig. S1b).

732 (c) Competitive exclusion of the introduced species

733 If natives are superior competitors, only the steady state $(N^*, 0)$ with $N^* = K_n$ is
734 stable, and natives will competitively exclude the introduced species (Fig. S1c). This
735 scenario may occur if the carrying capacity and growth rate of the introduced species,
736 and if the competitive effect of natives on the introduced population are low, while the
737 carrying capacity and growth rate of natives and the competitive effect of introduced
738 species on natives are high, such that $K_n > r_i/\alpha_{ni}$ and $K_i < r_n/\alpha_{in}$.

739 (d) Competitive exclusion of natives

740 If the introduced species is a superior competitor, only the steady state $(0, I_0^*)$ with
 741 $I_0^* = K_i$ is stable and the introduced population will competitively exclude natives
 742 (Fig. S1d). This scenario may occur if the carrying capacity and growth rate of the
 743 introduced species, and its competitive effect on natives are high, while the carrying
 744 capacity and growth rate of natives, and their competitive effect on invaders are low,
 745 such that $K_i > r_n/\alpha_{in}$ and $K_n > r_i/\alpha_{ni}$.

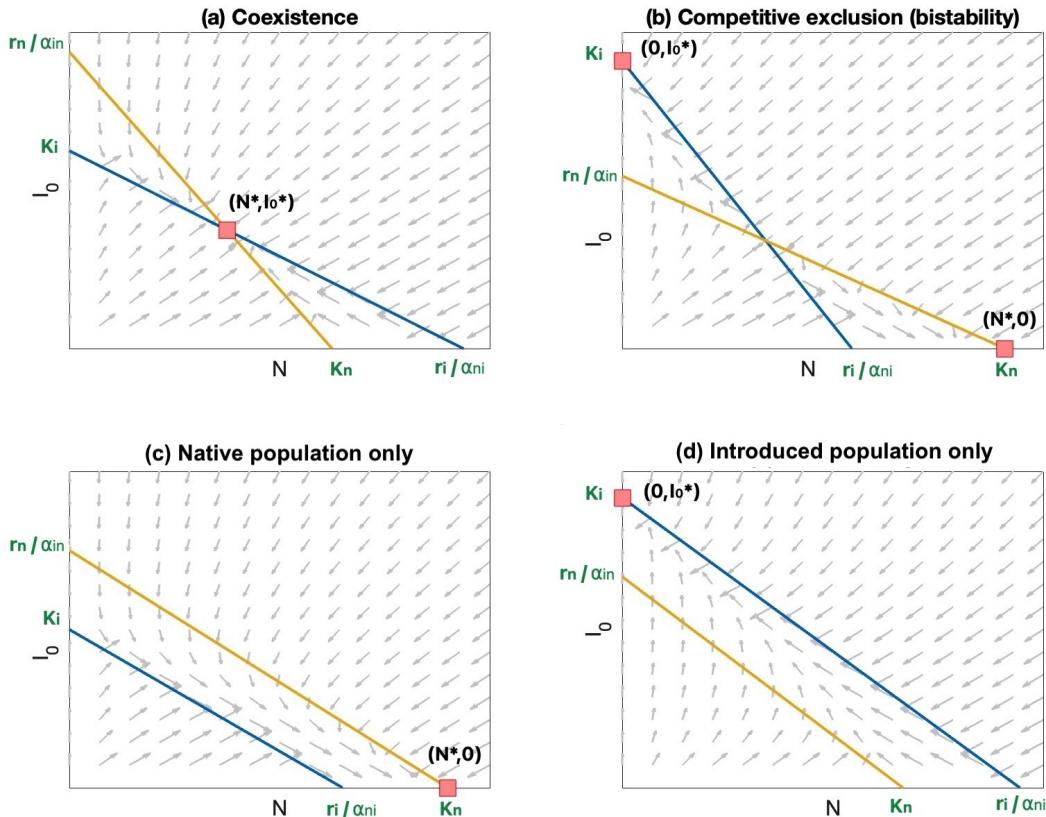


Fig. S1: Phase planes of the system of equations in (6). Nullclines are represented in orange ($dN/dt = 0$) and blue ($dI_0/dt = 0$). The horizontal axis represents the native population, while the vertical axis represents the introduced population. Stable steady states are represented with a red square. We observe that depending on the competitive effect that natives and introduced species have on each other, their carrying capacity, and their growth rates, different scenarios can be observed, namely (a) coexistence between the native and the introduced populations, (b) competitive exclusion of one of the two populations, where which population survives will depend on model parameters and initial conditions, (c) competitive exclusion of the introduced population, and (d) competitive exclusion of natives.

746 **B Dynamics of competition and microbiome transfer**

747 The transfer of beneficial microbes from the native to the introduced population can lead
 748 to an increased competitive ability of the introduced population. We model this scenario by
 749 splitting the introduced population I in two subpopulation, i.e., the subpopulation without
 750 native microbes I_0 and the subpopulation with native microbes I_m (Eq. (1)). Once the first

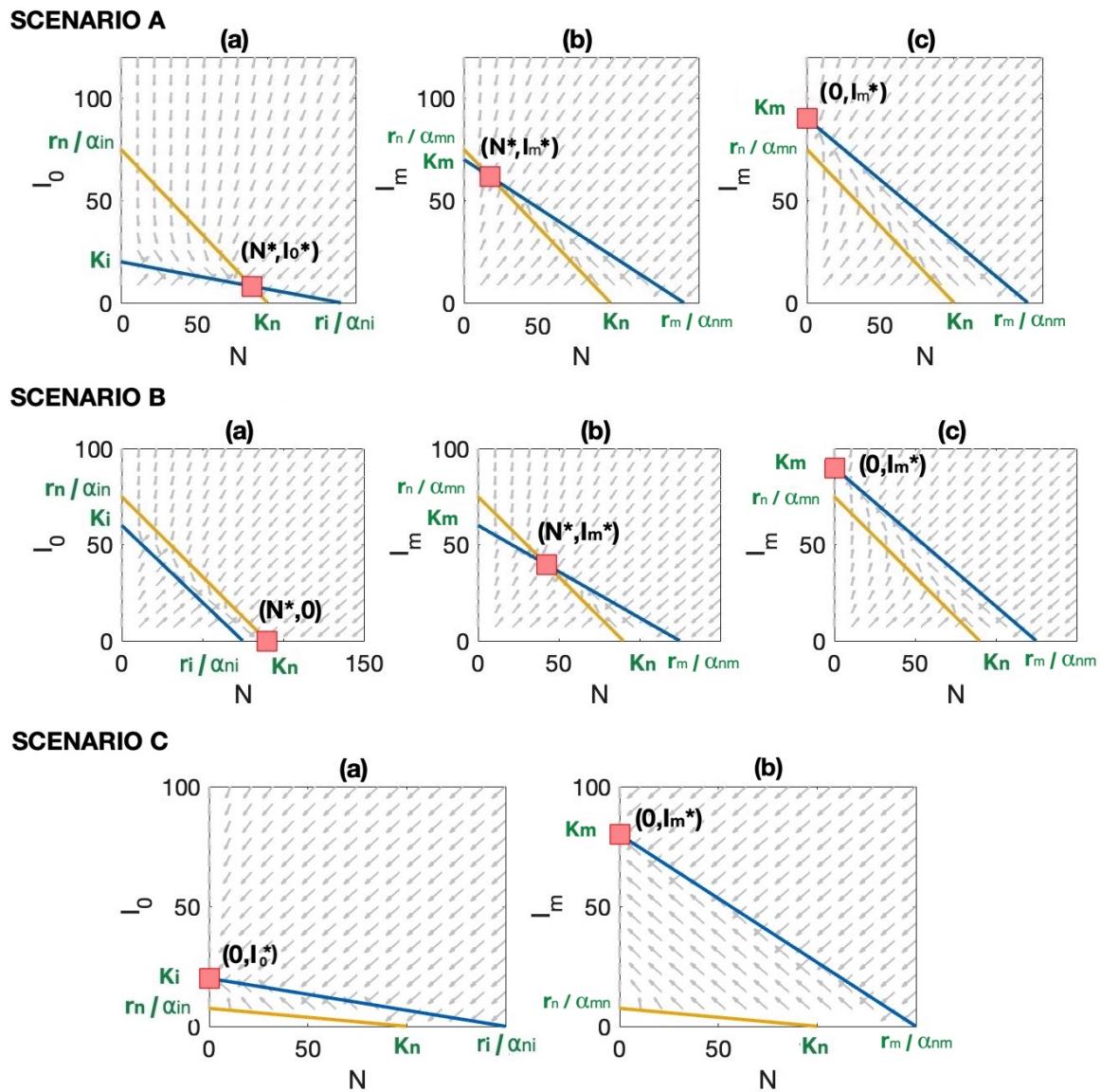
751 microbiome transfer event from natives to introduced individuals occurred, a new subpopula-
752 tion I_m is created. We model the increase in competitive ability due to the presence of native
753 microbes by allowing the I_m subpopulation to have for example a higher carrying capacity
754 than I_0 (i.e., $K_m > K_i$) or a higher growth rate (i.e., $r_m > r_i$). The biological reasons for this
755 choice are explained in the main manuscript.

756 Looking at the phase plane of the two-species competition model (Fig. S1) can help us
757 visualize the impact of creating a new subpopulation with superior competitive ability on the
758 competitive dynamics. We would like to use a phase plane representation to understand the
759 impact that microbiome transfer can have on the competitive dynamics in scenarios A, B and
760 C, described in the main manuscript.

761 **Scenario A: The timing of microbiome acquisition affects invasion lag times**

762 Prior to the transfer of native microbes, the introduced species coexists in low density with
763 a much more abundant native population. Microbiome transfer from native to introduced
764 individuals causes an increase in the carrying capacity of the introduced population. This
765 increase constitutes a competitive advantage for the introduced population, that eventually
766 leads to the competitive exclusion of natives, or to a significantly reduction in their population
767 size (Fig. S2, scenario A).

768 **Scenario B: The establishment of an introduced species is made possible by transfer 769 of microbes from native species**


770 Natives are competitively superior to the introduced species, and if microbiome transfer from
771 natives does not occur the introduced population would fail to establish. If microbiome
772 transfer occurs before the extinction of the introduced population, it may lead to an increase
773 in the carrying capacity, and eventually in the growth rate, of the introduced species, and the
774 consequent competitive exclusion of natives (Fig. S2, scenario B).

775 **Scenario C: The presence of natives facilitates adaptation**

776 The introduced species is competitively superior than natives, however despite its high com-
777 petitive ability, it has a low carrying capacity and growth rate. If microbiome transfer does
778 not occur, the introduced population displaces the native population, but its population size
779 remains small. Microbiome transfer increases the carrying capacity of the introduced popula-
780 tion, and allows it to reach a higher population size after the displacement of natives (Fig. S2,
781 scenario C).

Table S1: Default parameters used to simulate scenarios A, B and C. The corresponding phase planes are provided in Fig. S2.

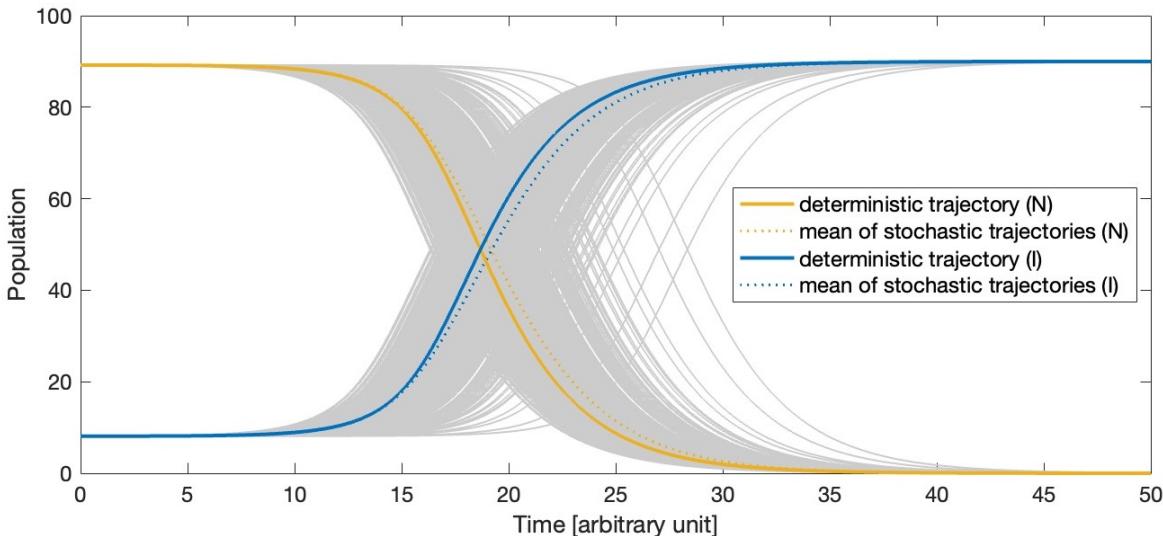
Parameter	Scenario A	Scenario B	Scenario C
K_n	100	90	100
K_i	20	60	20
K_m	(b) 70 (c) 90	(b) 60 (c) 90	80
r_n	1.5	1.5	1.5
r_i	1.5	1.5	1.5
r_m	1.5	2.5	1.5
α_{ni}	0.01	0.02	0.01
α_{in}	0.02	0.02	0.2
α_{nm}	0.01	0.02	0.01
α_{mn}	0.02	0.02	0.2

782 C Stochastic realizations and deterministic approximation

783 The ordinary differential equation system of Eq. (1) includes two Poisson random variables,
 784 namely Λ_n and Λ_m , defined in Eqs. (2) and (3). These two random variables representing
 785 microbiome transfer from natives to introduced individuals (Λ_n) and among introduced indi-
 786 viduals (Λ_m), where the expected population increase of I_m due to microbiome transfer ΔI_m^{ni}
 787 is

$$788 \quad \Delta I_m^{ni} = \Lambda_n + \Lambda_m \quad (8)$$

789 Conditioning on $I_m^{ni}(t)$, we have that:


$$790 \quad E(I_m^{ni}(t + \Delta t) - I_m^{ni}(t) | I_m^{ni}(t)) = \lambda_n N I_0 \Delta t + \lambda_m I_m I_0 \Delta t. \quad (9)$$

791 Dividing Eqs. (9) by Δt and letting $\Delta t \rightarrow 0$, we obtain:

$$792 \quad E \left(\frac{dI_m^{ni}(t)}{dt} \middle| I_m^{ni}(t) \right) = \lambda_n N I_0 + \lambda_m I_m I_0, \quad (10)$$

793 what corresponds to the the deterministic version of the model of Eq. (1). Thus as long
 794 as $E(\Lambda_n)$ and $E(\Lambda_m)$ are large enough, we expect the mean average of a large number of
 795 stochastic realizations of Eq. (1) to approach the deterministic solution.

796 In Fig. S3 we plot 500 stochastic realizations of Eq. (1), and compare the mean average of
 797 these realizations with the corresponding deterministic solution of Eq. (1), for which the
 798 random variables Λ_n and Λ_m are substituted by their expected values. We can see that for
 799 scenario A, for λ_n and λ_m large enough, the mean average of a large number of realizations
 800 approaches the deterministic solution.

Fig. S3: Stochastic realizations of Eq. (1) (grey curves) are computed under the scenario A, in which the introduced species coexists with the native population prior to the transfer of native microbes (cfr. Fig. 1a). The mean of 500 realizations is represented as dotted line and the deterministic solution is represented as a solid line, for the native (orange) as well as for the introduced population (blue). Note that the mean of a large number of stochastic realizations approaches the deterministic solution.

801 D Establishment in the presence of natives

802 Consider the situation in which the native population is competitively superior to the intro-
 803 duced population I_0 (Fig. S2, scenario B). In this case, microbiome transfer can contribute to

804 increase the competitive ability of the introduced population, and rescue it from extinction
 805 (Fig. S4a).

806 We are interested in deriving an approximation for the minimal microbiome transfer rate
 807 needed to avoid the extinction of the introduced population. For this purpose, we look at
 808 the equation describing the growth rate of the introduced population I_0 prior to the first
 809 microbiome transfer event, namely Eq. (1b), for $I_m = 0$:

$$810 \quad \frac{dI_0(t)}{dt} = r_I I_0(t) \left(1 - \frac{I_0(t)}{K_I}\right) - \alpha_{ni} I_0(t) N(t), \quad (11)$$

811 Let us assume that only a small number of individuals i_0 is introduced, such that $I_0 \ll K_I$
 812 and $N(t) = K_n$. We obtain:

$$813 \quad \frac{dI_0(t)}{dt} \simeq r_I I_0(t) - \alpha_{ni} I_0(t) N, \quad (12)$$

814 which has solution

$$815 \quad I_0(t) \simeq i_0 e^{(r_i - \alpha_{ni} K_n)t}. \quad (13)$$

816 We know that for the scenario considered $K_n > r_i/\alpha_{ni}$ (Fig. S2, scenario B(a)), i.e., $r_i -$
 817 $\alpha_{ni} K_n < 0$ and the population $I_0(t)$ declines exponentially. We define t_0 as the time needed
 818 to drive the introduced population to extinction. Note that $I_0(t)$, as approximated in Eq. (13),
 819 never reaches zero, while in the two-species competition model (Eq. (6)) the native population
 820 N competitively exclude I_0 . This is a limitation due to considering $N(t)$ as a constant. We
 821 approximate therefore t_0 as the time needed for the introduced population to reduce to a
 822 single individual:

$$823 \quad t_0 \simeq \frac{\ln(i_0)}{\alpha_{ni} K_n - r_i}, \quad \text{for } K_n > r_i/\alpha_{ni}. \quad (14)$$

824 Eq. (14) can serve as a good approximation to understand how model parameters can affect the
 825 minimal microbiome transfer rate needed to rescue the introduced population from extinction.
 826 Note that if we consider that the introduced population has a negative population growth even
 827 in the absence of competition (i.e., $r_i < 0$, and Eq. (12) becomes $dI_0/dt = r_i I_0$), the introduced
 828 population will decline even in the absence of a native population.

829 The expected value of the microbiome transfer rate between native and introduced indi-
 830 viduals (Eq. (2)) is

$$831 \quad E(\Lambda_n) = \lambda_n N(t) I_0(t). \quad (15)$$

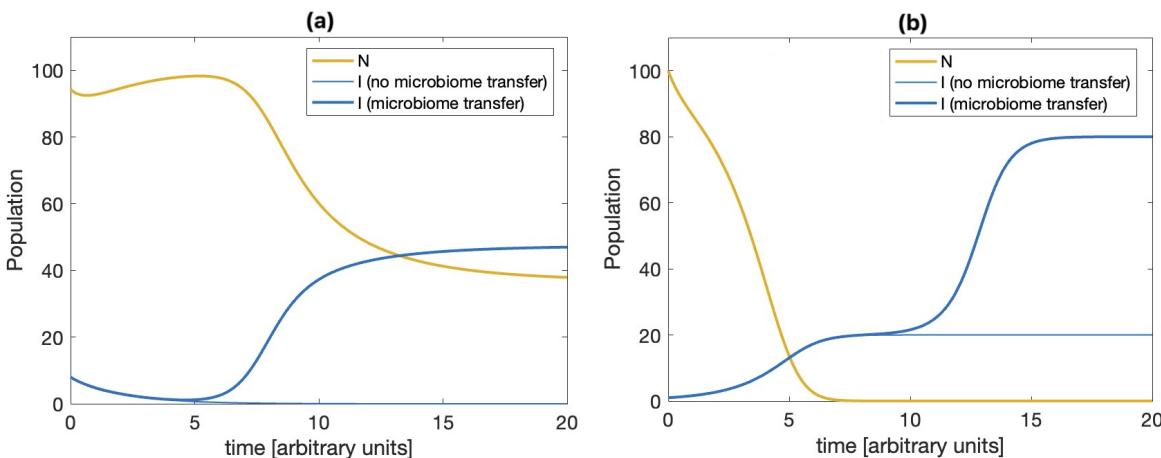
832 We define t_n as the average time needed for the first microbiome transfer event to occur.
 833 Assuming a constant native population K_n and an initial introduced population i_0 , we obtain
 834 a lower and a upper bound for t_n during the exponential decay of population $I_0(t)$ from i_0 to
 835 1, namely:

$$836 \quad \frac{1}{\lambda_n K_n i_0} < t_n < \frac{1}{\lambda_n K_n}. \quad (16)$$

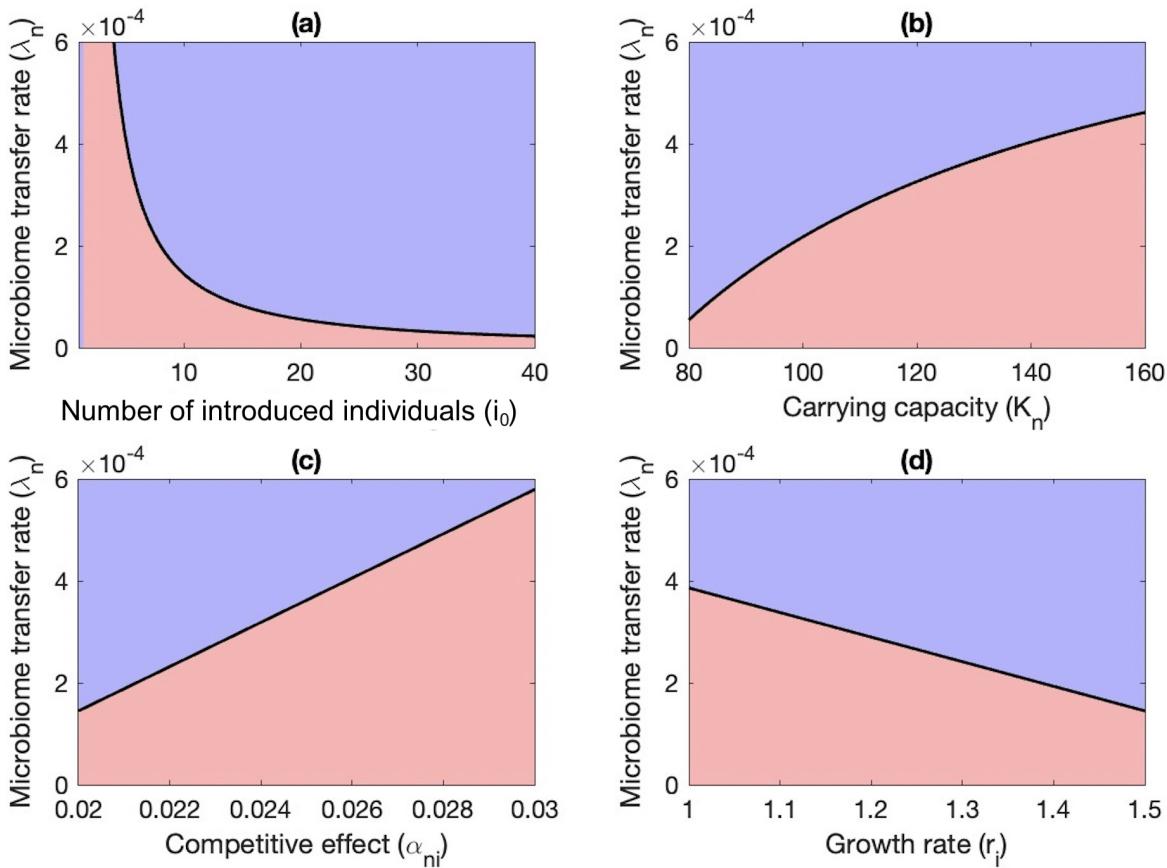
837 Thus, the larger the number of introduced individuals, the shorter the expected time t_n till
 838 the occurrence of the first microbiome transfer event. A reduction in the size of the introduce
 839 population $I_0(t)$ also implies a reduction in the likelihood of transferring native microbes, i.e.,
 840 an increase in t_n .

841 Using Eqs. (14) and (16) we can understand how the minimal density-dependent micro-
 842 biome transfer rate λ_n needed to avoid extinction of the introduced population relates to other
 843 model parameters, i.e., the situation in which $t_n < t_0$. We obtain the following approximation
 844 for the lower and upper bounds for the minimal density-dependent microbiome transfer rate
 845 λ_n :

$$846 \quad \frac{\alpha_{ni} K_n - r_i}{i_0 K_n \ln(i_0)} < \lambda_n < \frac{\alpha_{ni} K_n - r_i}{K_n \ln(i_0)} \quad \text{for } K_n < r_i/\alpha_{ni}. \quad (17)$$


Eq. (17) holds best when $i_0 \ll K_i$ and when the native population is little affected by the presence of an introduced species. Eq. (17) be used to identify key parameters affecting the competition dynamics under scenario B, and determine how their variation affects the establishment success of the introduced population.

Plots of the upper bound of the minimal λ_n as a function of the size of the introduced population i_0 , the growth rate of the introduced population r_i , the competitive effect of the native on the introduced population α_{ni} and the carrying capacity of the native population K_n are shown in Fig. S5. Numerical simulations investigating the probability of establishment as a function of λ_n and i_0 are shown in the main manuscript (Fig. 2b). Note that increasing the initial population of the introduced species (parameter i_0), or increasing its growth rate r_i leads to population establishment for a lower microbiome transfer rate λ_n (Fig. S5 (a) and (d)). A higher microbiome transfer rate λ_n is required for the establishment of the introduced population when the size of the native population is large (higher carrying capacity K_n) or when the competitive effect of the native on the introduced population α_{ni} is high (Fig. S5 (b) and (c)).


Note that if the introduced population experiences a population decline even in the absence of competition with natives, the denominator $\alpha_{ni}K_n - r_i$ of Eq. (17) can be substituted by $-r_i$, with $r_i < 0$ representing the rate of decline in the size of the introduced population, and Eq. (17) becomes

$$\frac{-r_i}{i_0 K_n \ln(i_0)} < \lambda_n < \frac{-r_i}{K_n \ln(i_0)}, \quad \text{for } r_i < 0. \quad (18)$$

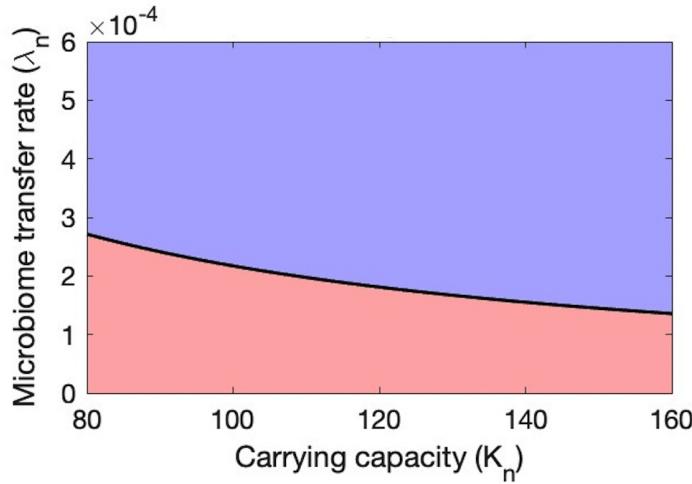

In this case, the upper bound of the minimal λ_n increases as a function of the carrying capacity of the native population K_n (Fig. S6), while the influence of other parameters will remain similar. Indeed, the larger the native population, the higher the probability that introduced individuals will acquire native microbes, and thus in the absence of competition a large native population will only be beneficial for the introduced population.

Fig. S4: Growth of the native (N , orange curve) and introduced population (I , blue curve) over time when microbiome transfer from natives does not occur (thin blue curve), and when it does (thick blue curve). (a) When natives are superior competitors (scenario B) microbiome transfer can facilitate the establishment of an introduced species. If the number of introduced individuals is large enough, and if the rate of microbiome transfer is small, the establishment of the introduced population may occur after a lag time. (b) If the invaders are superior competitors, natives are displaced by their introduction (scenario C). The transfer of beneficial microbes can facilitate the rapid adaptation of invaders and increase their carrying capacity. If the rate of microbiome transfer is low, the increase in carrying capacity may be observed after a lag time.

Fig. S5: Upper bound of the minimal density-dependent microbiome transfer rate (λ_n) needed for the establishment of an introduced population, when the native population is competitively superior (Eq. (17)). Parameter λ_n is plot as a function of (a) the initial size of the introduced population i_0 , (b) the size of the native population, assumed to be at carrying capacity K_n , (c) the competitive effect of natives on introduced species α_{ni} , and (d) the growth rate of the introduced population r_i . In all figures, the blue region represents establishment of the introduced species, while red region represents its extinction.

Fig. S6: Upper bound of the minimal density-dependent microbiome transfer rate (λ_n) needed for the establishment of an introduced population, when the introduced population experienced a population decline even in the absence of competition with natives (Eq. (18)). Parameter λ_n is plot as a function of the carrying capacity K_n . The blue region represents establishment of the introduced species, while red region represents its extinction.

E Speed of invasion

We consider the situation in which introduced individuals are competitively superior, and their introduction leads to the exclusion of natives (Fig. S2, scenario C). In our simulations, microbiome transfer from native to introduced individuals facilitates the adaptation of the introduced population, and we are interested in understanding under which circumstances microbiome transfer can occur before the displacement of natives. Would microbiome transfer not occur in time, the introduced population still displaces native species, but remains poorly adapted in the environment (Fig. 3 and Fig. S4).

For this purpose, we consider a spatially explicit version of the two species competition model presented in A. In this case, the two species represent a population of natives N , and a competitively superior introduced population I_0 that can disperse in a given homogeneous one-dimensional landscape x . We consider that the introduced population disperses randomly, and we quantify its dispersal ability by the diffusion coefficients D_i . Diffusion of I_0 causes the subsequent displacement of natives. We write:

$$\partial_t N(x, t) = F_N(N, I_0), \quad (19a)$$

$$\partial_t I_0(x, t) = D_i \partial_x^2 I_0(x, t) + F_{I_0}(N, I_0), \quad (19b)$$

with

$$F_N(N, I_0) = r_n N \left(1 - \frac{N}{K_n} \right) - \alpha_{in} N I_0, \quad (20a)$$

$$F_{I_0}(N, I_0) = r_i I_0 \left(1 - \frac{I_0}{K_i} \right) - \alpha_{ni} I_0 N, \quad (20b)$$

as defined in Eq. (6), where model parameters are given in Table 1. The population densities of natives and introduced individuals at each time t and location x , i.e., variables $N(x, t)$ and $I_0(x, t)$, are given by the solutions to Eq. (19).

894 E.1 Traveling wave analysis

895 We would like to derive an approximation for the speed at which a competitively superior
 896 introduced population I_0 will displace a native population N (Fig. S2, scenario C). To tackle
 897 this problem, we look at travelling wave solutions of Eq. (19), which are particular solutions
 898 describing the invasion at a constant speed c of the steady state $(N^*, 0)$, for which only natives
 899 are present, by the steady state $(0, I_0^*)$, for which only the introduced species is present. We
 900 assume therefore solutions to Eq. (19) to be of the form $N(x, t) = n(x - ct) = n(z)$ and
 901 $I_0(x, t) = j(x - ct) = j(z)$ for an unknown speed $c \in \mathbb{R}$. By replacing these expressions into
 902 (19) we obtain:

$$903 -c \frac{dn(z)}{dz} = f_n(n, j), \quad (21a)$$

$$904 -c \frac{dj(z)}{dz} = D_i \frac{d^2}{dz^2} j(z) + f_j(n, j). \quad (21b)$$

905
 906 We consider that initially a native population is at its carrying capacity K_n , and that
 907 successively the native population is displaced by the introduced population, which is advanc-
 908 ing at constant speed c from left to right in the z -domain. This situation can be modelled
 909 by assuming that at the right of the domain (i.e., ahead of the wave, for $z \rightarrow +\infty$) a native
 910 population is present at its steady state $(n^*, 0)$, with $n^* = K_n$, while on the left side of the
 911 domain (i.e., behind the wave, for $z \rightarrow -\infty$), only the introduced population j is present at
 912 steady state $(0, j^*)$, with $j^* = K_i$. Thus the boundary conditions can be expressed as:

$$913 \lim_{z \rightarrow +\infty} (n, j) = (n^*, 0), \quad (22a)$$

$$914 \lim_{z \rightarrow -\infty} (n, j) = (0, j^*). \quad (22b)$$

915 Under scenario C, we know that the steady state $(n^*, 0)$ is unstable, while $(0, j^*)$ is stable.
 916 When a stable and an unstable steady states are present, the stable steady state will invade the
 917 unstable one at constant speed c . In this case, there is a monostable traveling wave solution
 918 (mimicking biological invasion) and one may expect an estimate of the minimal speed of
 919 propagation c using the linearized problem around the unstable steady state.

920 To find the minimal speed of propagation c we define the variable $u = j'$, such that the
 921 system of equations in (21) can be rewritten as a system of first order ordinary differential
 922 equations:

$$923 n' = \frac{1}{c} f_n(n, j), \quad (23a)$$

$$924 j' = u, \quad (23b)$$

$$925 u' = \frac{-c}{D_i} u - \frac{f_j(n, j)}{D_i}, \quad (23c)$$

926 with Jacobian

$$927 J = \begin{pmatrix} -\frac{1}{c} \partial_n f_n(n, j) & -\frac{1}{c} \partial_j f_n(n, j) & 0 \\ 0 & 0 & 1 \\ -\frac{1}{D_i} \partial_n f_j(n, j) & -\frac{1}{D_i} \partial_j f_j(n, j) & -\frac{c}{D_i} \end{pmatrix}. \quad (24)$$

928 When computing the Jacobian J around the unstable steady state $(n^*, 0)$ with $n^* = K_n$, and

929 using Eqs. (20a) and (20b), we obtain:

$$930 \quad J \Big|_{(n^*, 0)} = \begin{pmatrix} \frac{r_n}{c} & \frac{\alpha_{in} K_n}{c} & 0 \\ 0 & 0 & 1 \\ 0 & \frac{\alpha_{ni} K_n - r_i}{D_i} & -\frac{c}{D_i} \end{pmatrix}, \quad (25)$$

931 with eigenvalues λ corresponding to the solutions of

$$932 \quad \left(\frac{r_n}{c} - \lambda \right) \left[\lambda \left(\lambda + \frac{c}{D_i} \right) - \frac{\alpha_{ni} K_n - r_i}{D_i} \right]. \quad (26)$$

933 Thus,

$$934 \quad \lambda_1 = \frac{r_n}{c}, \quad \lambda_{2,3} = -\frac{c}{2D_i} \pm \frac{1}{2} \sqrt{\left(\frac{c}{D_i} \right)^2 - \frac{4(r_i - \alpha_{ni} K_n)}{D_i}}. \quad (27)$$

935 We know that, in scenario C, $r_i - \alpha_{ni} K_n > 0$. Additionally, we are only interested in solutions
936 that are bounded below by zero, as $n(x, t), j(x, t) > 0$. For this, we require $(n^*, 0)$ to be a
937 stable focus. In other words, we require

$$938 \quad \left(\frac{c}{D_i} \right)^2 - \frac{4(r_i - \alpha_{ni} K_n)}{D_i} \geq 0. \quad (28)$$

939 Hence, one can conclude that a lower bound for the propagation speed $c^* \leq c$ is given by

$$940 \quad c^* = 2\sqrt{D_i(r_i - \alpha_{ni} K_n)}. \quad (29)$$

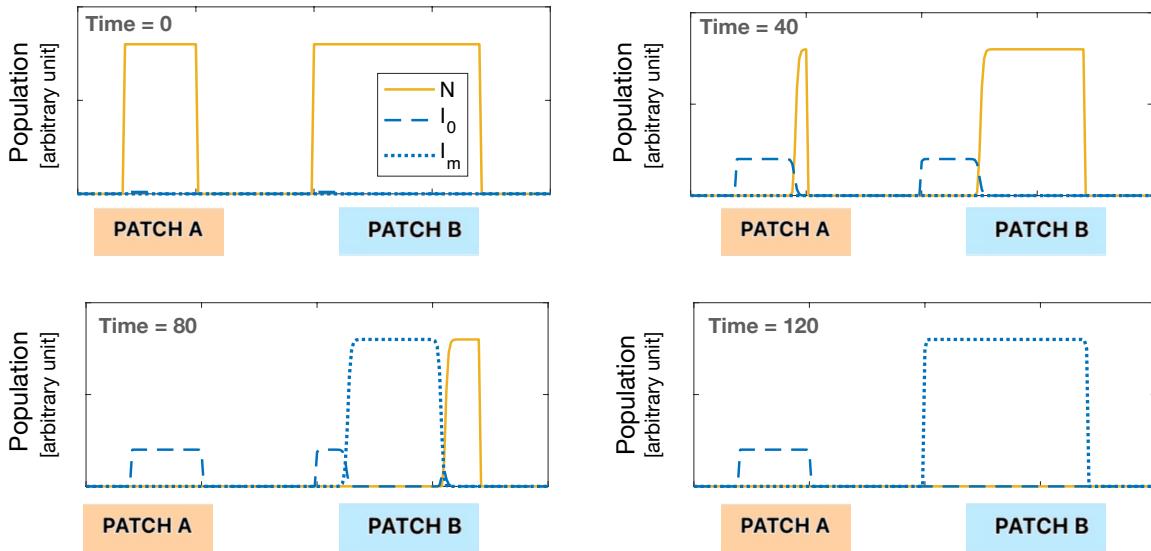
941 The speed of invasion c increases therefore with increasing dispersal ability of the introduced
942 species D_i and with increasing growth rate r_i , while it decreases when the carrying capacity
943 of the native population K_n and its competitive effect α_{ni} on the introduced population are
944 large.

945 E.2 Speed of invasion and microbiome transfer

946 We interested in understanding under which circumstances microbiome transfer from natives
947 to introduced individuals may occur before the displacement of natives. In Eq. (29) we
948 know the speed at which the introduced population displace a native one. We can therefore
949 calculate the time Δt needed for the introduced species to displace natives within a certain
950 one-dimensional patch of length Δx , with invasion speed c^* . Thus, we find that

$$951 \quad \Delta t = \frac{\Delta x}{c^*} = \frac{\Delta x}{2\sqrt{D_i(r_i - \alpha_{ni} K_n)}}. \quad (30)$$

952 We define t_d as the minimal average time needed for the first microbiome transfer event to
953 occur, which depends on the expected value of the microbiome transfer rate between native
954 and introduced individuals (Eq. (2)). Thus we obtain


$$955 \quad t_d = \frac{1}{E(\Lambda_n)} = \frac{1}{\lambda_n \tilde{n} \tilde{j}}, \quad (31)$$

956 where \tilde{n} and \tilde{j} are the averaged population densities of introduced and natives species at
957 the wavefront. As long as $t_d < \Delta t$, microbiome transfer from natives to the introduced

958 population can occur before the displacement of natives. We obtain therefore a lower bound
 959 for the density-dependent microbiome transfer rate λ_n , namely

$$960 \quad \lambda_n > \frac{2\sqrt{D_i(r_i - \alpha_{ni}K_n)}}{\Delta x \tilde{n} \tilde{j}} \quad \text{for } K_n < r_i/\alpha_{ni}. \quad (32)$$

961 Microbiome transfer is therefore more likely to happen when the patch size Δx is large, the
 962 density of natives N and introduced species I_0 are large, and the competitive effect of natives
 963 on introduced individuals (α_{ni}) is large. Microbiome transfer is less likely to occur when the
 964 patch size Δx is small, and when the dispersal ability and growth rate of the introduced
 965 species are low.

Fig. S7: Patch A is smaller and presents a low density of natives, and the invaders displace the native population before the transfer of beneficial microbes from native to invaders can occur. In patch A, the invasive population remains therefore poorly adapted to the new environment, and in low density. Patch B presents a larger patch size and a higher density of natives, which increase the likelihood that native microbes will be transferred to the invaders before natives are driven to extinction. The acquisition of native microbes confers local adaptation to the invaders, and their population in patch B grows larger than in patch A. The findings represented in this figure are based on Eq. (5).