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ABSTRACT

Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural
productivity and sustainability. A crucial step for exploring soil microbiomes with high
ecosystem functions is to perform statistical analyses on potential relationship between
microbiome structure and functions based on comparisons of hundreds or thousands of
environmental samples collected across broad geographic ranges. In this study, we integrated
agricultural field metadata with microbial community analyses by targeting > 2,000 soil samples
collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1—
42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational
taxonomic units detected across the fields of 19 crop plant species allowed us to conduct
statistical analyses (permutational analyses of variance, generalized linear mixed models, and
randomization analyses) on relationship among edaphic factors, microbiome compositions, and
crop disease prevalence. We then examined whether the diverse microbes form species sets
varying in potential ecological impacts on crop plants. A network analysis suggested that the
observed prokaryotes and fungi were actually classified into several species sets (network
modules), which differed substantially in associations with crop disease prevalence. Within the
network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an
ammonium-oxidizing archaeum, an antibiotics-producing bacterium, and a potentially
mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive
and crop-disease-suppressive states of soil microbiomes. The bird’s-eye view of soil microbiome
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structure will provide a basis for designing and managing agroecosystems with high disease-
suppressive functions.

IMPORTANCE

Understanding how microbiome structure and functions are organized in soil ecosystems is one
of the major challenges in both basic ecology and applied microbiology. Given the ongoing
worldwide degradation of agroecosystems, building frameworks for exploring structural diversity
and functional profiles of soil microbiomes is an essential task. Our study provides an overview
of cropland microbiome states in light of potential crop-disease-suppressive functions. The large
dataset allowed us to explore highly functional species sets that may be stably managed in
agroecosystems. Furthermore, an analysis of network architecture highlighted species that are
potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-
suppressive states. By extending the approach of comparative analyses towards broader
geographic ranges and diverse agricultural practices, agroecosystem with maximized biological
functions will be further explored.
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The ongoing global-scale degradation of agroecosystems is threatening food production (1, 2).
Maximizing the functions of microbial communities (microbiomes) is a prerequisite for building
bases of sustainable agriculture (3—7). Archaea, bacteria, and fungi in the soil drive cycles of
carbon, nitrogen, and phosphorus within agroecosystems (8—12). Many of those microbes also
work to promote crop plant’s tolerance to drought and high temperature stresses as well as
resistance to pests and pathogens (13—18). Importantly, those microbes vary greatly in their
physiological impacts on crop plants (19-21). Therefore, gaining insights into soil microbiome
compositions is an essential starting point for managing resource-use efficient and disease-
tolerant agroecosystems.

Since the emergence of high-throughput DNA sequencing, a number of studies have
revealed taxonomic compositions of prokaryotes and/or fungi in agroecosystem soil (22—24).
Those studies have explored microbial species that potentially support crop plant growth and/or
prevent crop plant disease (9, 16, 25, 26). Meanwhile, each of the previous studies has tended to
focus on specific crop plant species in specific farm fields (27), although there are some
exceptionally comprehensive studies comparing multiple research sites (15, 22). Therefore,
generality in relationship between microbiome structure and functions remain to be examined in
broader contexts [cf. global-scale analyses of soil microbiomes in natural ecosystems (28-31)]. In
other words, we still have limited knowledge of general patterns and features common to soil
microbiomes with high crop yield or those with least crop disease risk. Thus, statistical analyses
comparing microbiome structure among diverse crop plants across broad geographic ranges (15,
22) are expected to deepen our understanding of microbial functions in agroecosystems. In
particular, comparative studies of thousands of soil samples covering a wide range of latitudes
will provide opportunities for finding general properties common to microbial communities with
plant-growth-promoting or crop-disease-suppressive functions across diverse climatic conditions.

Large datasets of soil microbiomes will also allow us to estimate interspecific interactions
between microbial species (3, 32, 33). Archaea, bacteria, and fungi in soil ecosystems potentially
form entangled webs of facilitative or competitive interactions, collectively determining
ecosystem-level functions such as the efficiency of nutrient cycles and the prevalence of plant
pathogens (34, 35). In fact, ecological network studies have inferred how sets of microbial
species could respond to the outbreaks or experimental introductions of crop plant pathogens
(36-38). Although various statistical platforms for deciphering the architecture of such microbial
interaction networks have been proposed (32, 39), hundreds or more of microbial community
samples are required to gain reliable inferences on interactions that reproducibly occur in real
ecosystems (40). Thus, datasets consisting of thousands of soil samples collected across a number
of local ecosystems will provide fundamental insights into how soil ecological processes are
driven by cross-kingdom interactions involving archaea, bacteria, and fungi.

In this study, we conducted a comparative analysis of agroecosystem soil microbiomes
based on > 2,000 soil samples collected from subtropical to cool-temperate regions across the
Japan Archipelago. Based on the amplicon sequencing dataset representing farm fields of 19 crop
plant species, we profiled prokaryotic and fungal community compositions in conventional
agricultural fields in Japan. By compiling the metadata of the soil samples, we then examined
biotic and abiotic factors explaining diversity in the prevalence of crop disease. The soil
microbiome dataset was further used to infer the structure of a microbe-to-microbe coexistence
network consisting of diverse archaea, bacteria, and fungi. Specifically, we examined whether the
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network architecture was partitioned into compartments (modules) of closely interacting
microbial species. In addition, we tested the hypothesis that such network modules could differ in
their positive/negative associations with crop plant disease/health status. To explore prokaryotic
and fungal species keys to manage agroecosystem structure and functions, we further explored
“core” or “hub” species that were placed at the central positions within the inferred microbial
interaction network. Overall, this study provides an overview of soil microbial diversity of
cropland soil across a latitudinal gradient, setting a basis for diagnosing soil ecosystem status and
identifying sets of microbes to be controlled in sustainable crop production.

RESULTS

Diversity of agroecosystem microbiomes

We compiled the field metadata of 2,903 soil samples collected in the research projects of
National Agricultural and Food Research Organization (NARO), Japan. The bulk soil of
farmlands was sampled from subtropical to cool-temperate regions (26.1-42.8 °N) across the
Japan Archipelago from 2006 to 2014, targeting 19 crop plant species (Fig. 1A; Data S1). Most
of the croplands were managed with conventional agricultural practices (characterized by
intensive tillage and chemical fertilizer/pesticide application), while some were experimentally
controlled as organic agricultural fields. The metadata (Data S1) included the information of
chemical [e.g., pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available
phosphorous concentration], physical (e.g., soil taxonomy), and biological (e.g., crop disease
level) properties, providing a platform for profiling ecosystem states of cropland soil.

To integrate the metadata with the information of microbial community structure, we
performed DNA metabarcoding analyses of both prokaryotes (archaea and bacteria) and fungi.
After a series of quality filtering, prokaryotic and fungal community data were obtained from
2,676 and 2,477 samples, respectively. In total, 632 archaeal operational taxonomic units (OTUs)
representing 22 genera (24 families), 26,868 bacterial OTUs representing 1,120 genera (447
families), and 4,889 fungal OTUs representing 1,190 genera (495 families) were detected (Fig.
1B; Fig. S1).

The prokaryotic communities lacked apparently dominant taxa at the genus and family
levels (Fig. 1B). In contrast, the fungal communities were dominated by fungi in the families
Mortierellaceae, Chetomiaceae, and Nectriaceae, depending on localities (Fig. 1B). A reference
database profiling of fungal functional groups suggested that the fungal communities were
dominated by soil saprotrophic and plant pathogenic fungi (Fig. 1C) as characterized by the
dominance of Mortierella and Fusarium at the genus level (Fig. S1). Meanwhile, mycoparasitic
fungi had exceptionally high proportions at some research sites, as represented by the dominance
of Trichoderma (Hypocreaceae) at those sites (Fig. 1B; Fig. S1).

Microbiome structure and crop disease prevalence

Compiling the metadata of edaphic factors, we found that variation in the community structure of
prokaryotes and fungi was significantly explained by crop plant identity and soil taxonomy as
well as by soil chemical properties such as pH, electrical conductivity, and C/N ratio, (Fig. 2A-B;
Figs. S2-3; Table 1). In addition, the ratio of prokaryotic abundance to fungal abundance (see
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Materials and Methods for details) was associated with both prokaryotic and fungal community
structure (Table 1). Nonetheless, the explanatory powers of these variable were all small as
indicated by the low R? values (Table 1).

Both prokaryotic and fungal community structure was significantly associated with the
severity of crop disease (Fig. 2C; Table 2). Specifically, the crop plants’ disease/health status
(disease level 1 vs. disease levels 2-5; see Materials and Methods) was explained by some of the
principal components (PCs) defined based on prokaryotic/fungal community structure (Fig. 2B).

Microbes associated with crop disease/health status

We explored microbial OTUs whose prevalence are associated with crop plant disease/health
status. Based on a randomization analysis, prokaryotic/fungal OTUs whose distribution is biased
in samples representing the minimal crop disease level (disease level 1) were screened (Fig. S4).

To examine whether the OTUs highlighted in the across-Japan spatial scale could actually
show tight associations with crop disease status at local scales, the randomization analysis was
performed as well in each of the six sub-datasets representing unique combinations of research
sites, crop plant species, and experimental/research purposes (Data S2). Statistically significant
specificity for crop disease level (FDR < 0.025; two-tailed test) was observed for at least one
OTU in five of the six sub-datasets (Data S2). Among them, exceptionally strong specificity to
the minimal crop disease level (standardized specificity score > 6.0; FDR < 0.0001) was detected
in two sub-datasets (Table 3). The relative abundance of these OTUs tightly associated with crop
disease level across samples within each sub-dataset (Fig. 3).

Microbe-to-microbe network

We then examined the network architecture of potential microbe-to-microbe interactions within
the soil microbiomes. The inferred network of coexistence was subdivided into several modules,
in which archaeal, bacterial, and fungal OTUs sharing environmental preferences and/or those in
positive interactions were linked with each other (Figs. 3A and S5-8). The network modules
differed considerably in their associations with crop-plant disease level (Fig. 4B; Fig. S5; Data
S3). Modules 2, 6, and 8, for example, were characterized by microbes associated with least
disease level. Module 6, which showed the highest mean specificity to the minimal crop disease
level (Fig. 4B), included a bacterium allied to the genus Gemmatimonas (Bac_00025), that allied
to the genus Thermanaerothrix (Bac _00258), and a Plectosphaerella fungus (Fun_4447) (Table
4). In contrast to these modules, Modules 1 and 7 were constituted by microbes negatively
associated with crop plant health (Fig. 4B). Module 1 included a bacterium distantly allied to the
genus Ureibacillus (Bac _00165), a Nonomuraea bacterium (Bac_00004), and a Streptomyces
bacterium (Bac_00010), while Module 7 involved a Fusarium fungus (Fun_4028) and a
Nitrososphaera archaeum (Arc_006) (Table 4).

Core species within the microbial network

We next explored microbial OTUs that potentially have great impacts on community- or
ecosystem-scale processes based on an analysis of the microbe-to-microbe network architecture
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(Data S3). Among the microbes disproportionately found from the samples with the minimal crop
disease level, a Pyrinomonadaceae bacterium allied to the genus Brevitalea (Bac 00182 in
Module 6; Table 4), for example, showed a high betweenness centrality score (Fig. 5).
Meanwhile, among the microbes negatively associated with crop health status, a bacterium
distantly allied to the genus Ureibacillus (Bac 00165 in Module 1; Table 4) was inferred to be
located at a central position within the network (Fig. 5).

We further ranked microbial OTUs in terms of their topological roles in interlinking
multiple network modules. We then found that OTUs linked with many other OTUs within
modules were not necessarily placed at the topological positions interconnecting different
modules (Fig. 6). In Module 6, which showed high specificity to the minimal crop disease level
(Fig. 4), a bacterium distantly allied to the genus Thermanaerothrix (Bac_00258) was designated
as a “within-module hub”, while a Plectosphaerella fungus (Fun_4447) showed a high “among-
module connectivity” score (Table 4). Likewise, in Module 1, which consisted of many OTUs
with negative associations with crop plant health (Fig. 4), a bacterium allied to the genus
Gemmatimonas (Bac_00258) had the highest numbers of within-module links, while a
Curvularia tungus (Fun_0043) was inferred to be an among-module hub (Table 5). The list of
microbial OTUs placed at the interface of modules (OTUs with high among-module connectivity
scores) involved a Nitrosotenuis archaeum, Arenimonas, Arthrobacter, and Streptomyces
bacteria, and Mortierella, Curvularia, and Trichoderma fungi (Table 5).

DISCUSSION

We here profiled the diversity of agroecosystem microbiome structure across a latitudinal
gradient from cool-temperate to subtropical regions based on the analysis of > 2,000 soil samples.
As partially reported in previous studies comparing microbiome compositions across broad
geographic ranges (15, 22), prokaryotic and fungal community structure varied depending on
season, crop plant species, former crop identity, and background soil categories (Fig. 2A; Table
1). In addition, soil chemical properties such as pH, electrical conductivity, and C/N ratio as well
as the prokaryote/fungus abundance ratio significantly explained variation in microbiome
structure (Table 1). In contrast, available phosphorus concentrations had significant effects on
neither prokaryotic nor fungal communities in the multivariate model (Table 1), suggesting that
nitrogen cycles rather than phosphorous ones are more tightly linked with microbiome structure.
The integration of the microbiome datasets with agricultural field metadata allowed us to perform
statistical tests of potential relationship between microbiome structure and agroecosystem
performance (Fig. 2B; Table 2). A series of OTU-level analyses further highlighted
taxonomically diverse prokaryotes and fungi showing strong positive or negative associations
with crop health status (Figs. 3 and S4; Table 3).

We then examined how these microbes differing in associations with crop disease/health
status form a network of coexistence. The architecture of the network involving diverse archaeal,
bacterial, and fungal OTUs was highly structured, being partitioned into 11 modules (Fig. 4A).
Intriguingly, the network modules varied considerably in constituent microbes’ associations with
crop disease levels (Fig. 4B). This result suggests that sets of microbes can be used to design soil
microbiomes with crop-disease-suppressive functions. Among the detected modules, Modules 2,
6, and 8 were of particular interest with regard to the assembly of microbial OTUs positively
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associated with crop health status (Figs. 4 and 5). In contrast, Modules 1 and 7 were constituted
mainly by microbial OTUs negatively associated with plant health (Fig. 4B). In particular,
Module 7 was characterized by the presence of a notorious plant pathogenic fungus, Fusarium
oxysporum [(41, 42); but see (43) for diversity of their impacts on plants]. All these modules
included both prokaryotes and fungi (Fig. S8; Data S3), illuminating the importance of inter-
kingdom interactions (3, 33). The presence of microbial species sets differing in plant-associated
ecological properties suggests that keeping specific sets of compatible prokaryotes and fungi is
essential for maximizing the stability of agricultural production (3).

The analysis of network architecture further allowed us to explore core or hub species
within the microbial network (Fig. 6). Because the microbes highlighted with the examined
network indices occupy key positions interconnecting many other microbes (44), their
increase/decrease is expected to have profound impacts on whole community processes (3, 32,
33). In particular, control or manipulation of microbes located at the central positions interlinking
different network modules (40) (i.e., microbes with high among-module connectivity; Fig. 6B)
may trigger drastic shifts in microbial community structure between disease-promotive and
disease-suppressive states (3). The candidate list of such core species involved an ammonium-
oxidizing archaeum (Nitrosotenuis) (45), an antibiotics-producing bacterium (Streptomyces) (46),
a prevalent soil fungus (Mortierella) (47, 48), a potentially mycoparasitic fungus (7richoderma)
(49, 50), and fungi allied to plant pathogenic clades [Curvularia and Plectosphaerella (anamorph
= Fusarium)] (51, 52) (Table 5). Given that many of the bacterial and fungal taxa listed above are
culturable, experimental studies examining their ecological roles are awaited. Specifically, it
would be intriguing to test whether substantial shifts in soil microbiome structure and functions
can be caused by the introduction of those among-module hub microbes.

Although the dataset across a latitudinal gradient provided an opportunity for gaining
bird’s-eye insights into the structure and potential functions of soil microbiomes, the results
should be interpreted carefully with the recognition of potential methodological shortcomings and
pitfalls. First, the approach of geographic comparison per se does not give a firm basis for
deciphering microbial community dynamics. To gain fundamental insights into microbiome
dynamics, we need to perform time-series monitoring (53—55) of soil prokaryotic and fungal
community compositions. Second, information of microbial communities alone does not provide
comprehensive insights into agroecosystem soil states. Given that soil ecosystem processes are
driven not only by microbes but also by nematodes, arthropods, earthworms, and protists (56—
59), simultaneous analyses of all prokaryotic and eukaryotic taxa (60, 61) will help us infer whole
webs of biological processes. Third, meta-analyses of agroecosystem performance across diverse
crop fields require utmost care because there is no firm criterion commonly applicable to
different crop plant species or different pest/pathogen species. As implemented in this study,
effects of such difference may be partially controlled by including them as random variables in
GLMMs (Table 2). Nonetheless, local-scale analyses targeting specific crop plant species and
disease symptoms (Fig. 3; Table 3; Data S2) are necessary to gain reliable inferences of potential
microbial functions. Fourth, along with the potential pitfall discussed above, network modules
can differ not only in properties related to crop disease/health status but also in those associated
with crop plant identity or cropland management (Figs. S6-7). Again, findings in broad-
geographic-scale analyses need to be supplemented by insights from local-scale observations
(Fig. 3). Fifth, amplicon sequencing approaches provide only indirect inference of biological
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functions. With the current capacity of sequencing and bioinformatic technologies, it is hard to
assemble tens of thousands of microbial genomes based on the analysis of thousands of
environmental samples. Furthermore, due to the paucity of the information of fungal ecology and
physiology, it remains difficult to annotate high proportions of genes within fungal genomic data.
Nonetheless, with the accumulation of methodological breakthroughs, shotgun sequencing of soil
microbiomes will deepen our understanding of agroecosystem processes (62—64). Sixth, in this
study, full sets of metadata were not available for all the sequenced samples, inevitably
decreasing the number of samples examined in some statistical modeling. Although substantial
efforts had been made to profile cropland soils in the national projects in which the soil samples
were collected, continuous efforts are required to gain further comprehensive insights into
agroecosystem structure and functions.

Expanding the comparative microbiome analysis to different geographic regions and
agroecosystem management practices will contribute to a more comprehensive understanding of
microbiome structure and function. For example, comparison with soil agroecosystems in lower-
latitudinal or higher-latitudinal regions or meta-analyses covering multiple continents will
provide further comprehensive knowledge of the diversity of microbiome structure. In addition to
extensions towards broader geographic ranges, those towards diverse agroecosystem
management are of particular importance. Given that our samples were collected mainly from
croplands managed with conventional agricultural practices, involvement of soil samples from
regenerative or conservation agricultural fields (65—68) will reorganize our understanding of
relationship between microbiome compositions and functions. In conclusion, this data-driven
research lays the groundwork for understanding fundamental mechanisms in soil ecosystems,
offering innovative strategies for the design of sustainable agriculture.

MATERIALS AND METHODS

Soil samples and metadata

Over research projects of National Agricultural and Food Research Organization (NARO), which
were carried out through five national research programs funded by Ministry of Agriculture,
Forestry and Fisheries, 2,903 rhizosphere/bulk soil samples were collected from conventional
agricultural fields across the Japan Archipelago from January 23, 2006, to July 28, 2014 (Data
S1). When the latitude and longitude of the sampling positions were round to one decimal place,
42 research sites were distinguished. Across the metadata of the 2,903 samples, the information
of 19 crop plants, 34 former crop plants (including “no crop”), 13 soil taxonomic groups (e.g.,
“Andosol”), 60 experimental/research purposes (e.g., “soil comparison between organic and
conventional management”) was described. Likewise, the metadata included the information of
dry soil pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available phosphorous
concentration from, 2,830, 2,610, 2,346, and 2,249 samples, respectively. In addition, the
information of the severity of crop plant disease was available for 1,472 samples (tomato, 637
samples; Chinese cabbage, 336 samples; eggplant, 202 samples; celery, 97 samples; Broccoli, 96
samples, etc.). The values of the proportion of diseased plants or disease severity index (69) was
normalized within the ranges from 0 to 100, and they were then categorized into five levels (level
1, 0-20; level 2, 20-40; level3; 40-60; level 4, 60-80; level 5, 80-100). The plant pathogens
examined in the disease-level evaluation were Colletotrichum gloeosporioides on the strawberry,
Fusarium oxysporum on the celery, the lettuce, the strawberry, and the tomato, Phytophthora
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sojae on the soybean, Plasmodiophora brassicae on Cruciferae plants, Pyrenochaeta lycopersici
on the tomato, Pythium myriotylum on the ginger, Ralstonia solanacearum on the eggplant and
the tomato, and Verticillium spp. on Chinese cabbage. For continuous variables within the
metadata, emergent outliers (mean + 5 SD) were converted into “NA” in the data matrix used in
the following statistical analyses as potential measurement/recording errors. Unrealistic electrical
conductivity records (> 20) were converted into “NA” as well.

At each sampling position, five soil sub-samples collected from the upper layer (0-10 cm in
depth) at five points (ca. 100 g each) were mixed. The mixed soil sample (ca. 500 g) was then
sieved with 2-mm mesh in the field. The samples were stored at -20 °C until DNA extraction. In
laboratory conditions, 0.4 g of soil (fresh weight) was subjected to DNA extraction with
FastDNA SPIN Kit for Soil (Q-BioGene).

DNA amplification and sequencing

Profiling of soil microbial biodiversity was performed by targeting archaea, bacteria, and fungi.
For the amplification of the 16S rRNA V4 region of archaea and bacteria (prokaryotes), the set of
the forward primer 515f (5’- GTG YCA GCM GCC GCG GTA A -3’) and the reverse primer
806rB (5’- GGA CTA CNV GGG TWT CTA AT -3’) were used as described elsewhere (54).
The primers were fused with 3—6-mer Ns for improved Illumina sequencing quality and Illumina
sequencing primers. PCR was performed using KOD ONE PCR Master Mix (TOYOBO, Osaka)
with the temperature profile of 35 cycles at 98 °C for 10 seconds (denaturation), 55 °C for 5
seconds (annealing of primers), and 68 °C for 30 seconds (extension), and a final extension at 68
°C for 2 minutes. The ramp rate through the thermal cycles was set to 1 °C/sec to prevent the
generation of chimeric sequences. In the PCR, we added five artificial DNA sequence variants
with different concentrations (i.e., standard DNA gradients; 1.0 X104, 5.0 x10-, 2.0 X107, 1.0
x107, and 5.0 x10% nM; Table S1) to the PCR master mix solution as detailed elsewhere (54). By
comparing the number of sequencing reads between the artificial standard DNA and real
prokaryotic DNA, the concentration of prokaryotic 16S rRNA genes in template DNA samples
were calibrated (54).

In addition to the prokaryotic 16S rRNA region, the internal transcribed spacer 1 (ITS1)
region of fungi was amplified using the set of the forward primer ITSIF_KYOI (5’- CTH GGT
CAT TTA GAG GAA STA A -3’) and the reverse primer ITS2 KYO2 (5 - TTY RCT RCG
TTC TTC ATC - 3°) (70). PCR was performed using the Illumina-sequencing fusion primer
design mentioned above with the temperature profile of 35 cycles at 98 °C for 10 seconds, 53 °C
for 5 s seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2 minutes (ramp rate =
1 °C/sec). Newly designed artificial sequence variants (1.0 X107, 7.0 x1076, 5.0 x10, 2.0 x10°,
and 1.0 x10% nM; Table S1) were added to the PCR master mix as standard DNA gradients for
the calibration of the ITS sequence concentrations in the template DNA samples.

The PCR products of the prokaryotic 16S rRNA and fungal ITS1 regions were respectively
subjected to the additional PCR step for linking Illumina sequencing adaptors and 8-mer sample
identifier indexes with the amplicons. The temperature profile in the PCR was 8 cycles at 98 °C
for 10 seconds, 55 °C for 5 seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2
minutes. The PCR products were then pooled for each of the 16S rRNA and fungal ITS1 regions


https://doi.org/10.1101/2023.08.31.555816
http://creativecommons.org/licenses/by/4.0/

363
364
365
366
367
368
369
370
371
372

373
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555816; this version posted December 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

after a purification/equalization process with the AMPureXP Kit (Beckman Coulter, Inc., Brea).
Primer dimers, which were shorter than 200 bp, were removed from the pooled library by
supplemental purification with AMpureXP: the ratio of AMPureXP reagent to the pooled library
was set to 0.8 (v/v) in this process. The sequencing libraries of the two regions were processed in
an [llumina MiSeq sequencer (10% PhiX spike-in). Because the quality of forward sequences is
generally higher than that of reverse sequences in Illumina sequencing, we optimized the MiSeq
run setting in order to use only forward sequences. Specifically, the run length was set 271
forward (R1) and 31 reverse (R4) cycles to enhance forward sequencing data: the reverse
sequences were used only for discriminating between prokaryotic 16S and fungal ITS1 sequences
in the following bioinformatic pipeline.

Bioinformatics

In total, 23,573,405 sequencing reads were obtained in the [llumina sequencing (16S rRNA,
11,647,166 sequencing reads; ITS, 11,926,239 sequencing reads). The raw sequencing data were
converted into FASTQ files using the program bcl2fastq 1.8.4 distributed by [llumina. For each
of the 16S rRNA and fungal ITS1 regions, the output FASTQ files were demultiplexed using
Claident v0.9.2022.01.26 (71). The sequencing data were deposited to DNA Data Bank of Japan
(DDBJ) (Bioproject accession no.: PSUB018361). The removal of low-quality sequences and
OTU inferences were done using DADA?2 (72) v1.17.5 of R v3.6.3. The mean number of filtered
sequencing reads obtained per sample was 3,949 and 4,075 for the prokaryotic and fungal
datasets, respectively. The amplicon sequence variants (ASVs) obtained from the DADA2
pipeline were clustered using the vsearch v2.21.1 program (73) with the 98% and 97% cutoff
sequence similarity for prokaryotes and fungi, respectively. Taxonomic annotation of the
obtained prokaryotic and fungal OTUs were conducted based on the SILVA 138 SSU (74) and
the UNITE all 25.07.2023 (75) databases, respectively, with the assignTaxonomy function of
DADAZ2. The OTUs that were not assigned to the domain Archaea/Bacteria and the kingdom
Fungi were removed from the 16S rRNA and ITS1 datasets, respectively. For each target
organismal group (prokaryotes and fungi), we then obtained a sample x OTU matrix, in which a
cell entry depicted the number of sequencing reads of an OTU in a sample. The samples with less
than 1,000 reads were discarded from the matrices. The number of reads was insufficient for
comprehensively profiling rare microbial species, which are often targets of soil microbiome
studies. However, because data matrices including numerous rare OTUs could not be subjected to
the computationally intensive ecological analyses detailed below even if we used
supercomputers, we focused on major components of soil prokaryotic and fungal biomes. In other
words, our purpose here was to extract major components of agroecosystem soil microbiomes
across the Japan Archipelago, thereby finding core microbiome properties associated with
disease-suppressive and disease-susceptible agroecosystems. For the sample X OTU matrix,
centered log-ratio (CLR) transformation (76—78) was performed using the ALDEx2 v1.35.0
package (79) of R.

In total, prokaryotic and fungal community data were obtained for 2,676 and 2,477
samples, respectively. For fungal OTUs, putative functional groups (e.g., “plant pathogen”) were
inferred using the program FungalTraits (80). The estimation of DNA concentrations of the
prokaryotic 16S rRNA and fungal ITS regions was performed, respectively, based on the
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calibration with the standard DNA gradients (artificial DNA variants introduced to the PCR
master mix solutions) using the bioinformatic pipeline detailed elsewhere (54).

Calculation of prokaryote/fungus ratio

Based on the estimated concentrations of prokaryotic 16S rRNA and fungal ITS sequences in
template DNA solutions, we calculated the ratio of prokaryotic DNA concentrations to fungal
DNA concentrations in respective samples (prokaryote/fungus ratio) as follows:

lo (prokaryotic 16S rRNA gene concentration(DNA copies/uL))
g fungal ITS gene concentration (DNA copies/uL)

Although potential variation in DNA extraction skills of researchers might affect absolute DNA
concentrations in the template DNA solutions, balance between prokaryotic and fungal DNA in
each template DNA sample could be used as a reliable measure. The DNA-metabarcoding-based
approach of estimating prokaryote/fungus ratio has methodological advantage over quantitative-
PCR-based approaches. Specifically, the former approach allows us to eliminate effects of
nonspecific PCR amplification based on DNA sequencing data, while the latter is affected by
“contamination” of nontarget amplicons (e.g., plastid DNA in 16S rRNA sequencing and plant
DNA in ITS sequencing).

Microbiome structure and crop disease prevalence

For each of the prokaryotic and fungal datasets, permutational analyses of variance
(PERMANOVA) (81) were performed to examine associations between family-level community
compositions and variables in the metadata. Two types of PERMANOVA models were
constructed based on the Euclid distance (f-diversity) calculated for the CLR-transformed
datasets (1,000 iterations). Specifically, one is constituted by categorical explanatory variables
(crop plant, former crop plant, soil taxonomy, research site, and sampling month), while the other
included continuous explanatory variables (soil pH, electrical conductivity, C/N ratio, and
available phosphorous concentration, prokaryote/fungus ratio, latitude, and longitude).

To reduce the dimensions of the community compositional data, a principal component
analysis (PCA) was performed based on the Euclid distance data mentioned above. For each PCA
axis (axes 1 to 5) in each of the prokaryotic and fungal analyses, Pearson’s correlation with each
chemical environmental factor (soil pH, electrical conductivity, C/N ratio, and available
phosphorous concentration) was calculated.

We then evaluated how community structure of prokaryotes and fungi were associated with
crop disease. For each of the prokaryotic and fungal datasets, a generalized linear mixed model
(GLMM) of crop-disease level (disease level 1 vs. disease levels 2-5) was constructed by
including the PCoA axes 1 to 5 as fixed effects. Sampling month and the identity of crop plant
species and experimental/research purposes in the metadata were set as random effects. A logit-
link function and binomial errors was assumed in the GLMM after converting the response
variable into a binary format [disease level 1 (= 1) vs. disease levels 2—5 (= 0)]. The analysis was
performed with the “glmer” function of the R Ime4 package (82).
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Microbes associated with crop disease/health status

For each microbial OTU constituting the modules, we evaluated specificity of occurrences in
samples differing in crop disease levels based on a randomization analysis. For the calculation,
the original sample x OTU matrices of prokaryotes and fungi were respectively rarefied to 1,000
reads per sample, being merged into an input data matrix. Within the combined sample x OTU
matrix, samples were categorized into the two crop disease levels (disease level 1 vs. disease
levels 2-5). Mean read counts across samples displaying each of the two disease levels were then
calculated for each OTU. Meanwhile, mean read counts for respective disease levels were
calculated as well for randomized matrices, in which disease labels of the samples were shuffled
(10,000 permutations). For i-th OTU, standardized specificity to disease level j (s;;) was obtained
as follows:

0;j—Mean(R;j)

S:: =
Y SD(Ry)

where O;; and R;; is the mean read counts of i-th OTU across disease-level-j samples in the
observed and randomized matrices, respectively, and Mean(R;;) and SD(R;;) indicate mean and
standard deviation across the randomized matrices. The P values obtained based on the
randomization analysis were adjusted with the Benjamini-Hochberg method [i.e., false discovery
rate (FDR)]. The relationship between the standardized specificity index and FDR is shown in
Figure S4. This randomization approach was also applied to the analyses of each OTU’s
specificity to crop plant identity and that to experimental/research purpose identity (Figs. S6-7).

The specificity of microbial OTUs to crop disease levels was performed as well at the local
scale. Specifically, in each of the six sub-datasets representing unique combinations of research
sites, crop plant species, and experimental/research purposes, the abovementioned randomization
analysis was performed: each sub-dataset included 69 to 198 soil samples (Data S2). For the
OTUs showing exceptionally strong specificity to the minimal crop disease level (standardized
specificity score > 6.0; FDR < 0.0001), supplemental analyses of generalized linear models
(GLMs) were conducted. In each GLM of crop disease/health status (disease level 1 vs. disease
levels 2-5) with a logit-link function with binomial errors, the relative abundance of a target OTU
was included as an explanatory variable.

Microbe-to-microbe network

To infer potential interactions between microbial OTUs, the algorithm of sparse inverse
covariance estimation for ecological association inference (SPIEC-EASI) was applied based on
the Meinshausen-Bithlmann (MB) method as implemented in the SpiecEasi package (39) of R. In
total, 2,305 soil samples from which both prokaryotic and fungal community data were available
were subjected to the analysis. Note that CLR-transformation was performed internally with the
“spiec.easi” function. The network inference based on co-occurrence patterns allowed us to
detect pairs of microbial OTUs that potentially interact with each other in facilitative ways and/or
those that might share ecological niches (e.g., preference for edaphic factors). Because estimation
of co-occurrence patterns was not feasible for rare nodes, the prokaryotic and fungal OTUs that
appeared in more than 10 % of the sequenced samples were included in the input matrix of the
network analysis. Network modules, within which closely associated OTUs were interlinked with

12


https://doi.org/10.1101/2023.08.31.555816
http://creativecommons.org/licenses/by/4.0/

487
488
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503

504

505

506
507
508

509

510

511
512

513
514

515
516
517
518
519

520
521
522

523
524
525
526

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555816; this version posted December 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

each other, were identified with the algorithm based on edge betweenness (83) using the igraph
package (84) of R. For each module in the inferred co-occurrence network, mean standardized
specificity to disease level 1 were calculated across constituent OTUs.

To explore potential keystone microbes within the network, we scored respective OTUs on
the basis of their topological positions. Among the indices used for evaluating OTUs,
betweenness centrality (85), which measures the extent to which a given nodes (OTU) is located
within the shortest paths connecting pairs of other nodes in a network, is commonly used to find
hubs mediating flow of effects in a network. The network centrality scores were normalized as
implemented in the igraph packages of R. In addition, by focusing on the above-mentioned
network modules, we ranked OTUs based on their within-module degree and among-module
connectivity (86). The former index is obtained as the number of nodes linked with a target node
within a target network module, suggesting the topological importance of a node within the
module it belongs to. The latter index represents the extent to which a node is linked with other
nodes belonging to different network modules. Within-module degree was z-standardized (i.e.,
zero-mean and unit-variance) within each module, while among-module connectivity was defined
to vary between 0 to 1. In addition to those indices for evaluating topological roles within a
network, eigenvector centrality (87) was calculated for respective nodes.

Data availability

The 16S rRNA and ITS sequencing data are available from the DNA Data Bank of Japan (DDBJ
accession: DRA015491 and DRA015506). The microbial community data are deposited at our
GitHub repository (https://github.com/hiro-toju/Soil_Microbiome NARO3000).

Code availability

All the R scripts used to analyze the data are available at the GitHub repository
(https://github.com/hiro-toju/Soil_Microbiome NARO3000).
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783  Table 1 | Effects of environmental variables on prokaryotic/fungal community structure. For each
784  set of categorical/continuous environmental variables, a PERMANOVA was performed for each
785  of the prokaryotic and fungal community datasets.

786
Model Dataset Variable df R? F P
Categorical variables  Prokaryotes  Research site 34 0.051 5.13 <0.001
Month 11 0.014 4.36 < 0.001
Crop 16 0.006 1.21 0.030
Former crop 22 0.024 3.78 < 0.001
Soil category 10 0.006 212 <0.001
Residual 2301 0.673
Total 2400 1.000
Fungi Research site 33 0.064 6.91 <0.001
Month 11 0.012 3.96 < 0.001
Crop 15 0.006 1.54 < 0.001
Former crop 20 0.023 4.14 <0.001
Soil category 10 0.005 1.75 <0.001
Residual 2109 0.591
Total 2206 1.000
Continuous variables  Prokaryotes  pH 1 0.011 16.52 <0.001
Electrical conductivity 1 0.009 14.09 < 0.001
Available P 1 0.009 13.81 0.626
CIN ratio 1 0.004 6.19 < 0.001
Latitude 1 0.006 9.00 < 0.001
Longitude 1 0.008 11.41 < 0.001
Prokaryote/fungus ratio 1 0.004 5.98 <0.001
Residual 1408 0.936
Total 1415 1.000
Fungi
pH 1 0.013 19.64 < 0.001
Electrical conductivity 1 0.011 17.49 <0.001
Available P 1 0.009 13.38 0.477
CIN ratio 1 0.008 12.74 < 0.001
Latitude 1 0.016 25.58 < 0.001
Longitude 1 0.017 26.37 0.230
Prokaryote/fungus ratio 1 0.009 13.61 <0.001
Residual 1408 0.904
Total 1415 1
787
788

21


https://doi.org/10.1101/2023.08.31.555816
http://creativecommons.org/licenses/by/4.0/

789
790
791
792
793
794

795

796

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555816; this version posted December 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 2 | Relationship between prokaryotic/fungal community structure on the disease level of
crop plants. A GLMM of crop plants’ disease level (disease level 1 vs. disease levels 2-5) with a
logit-link function and binomial errors was constructed by setting principal components of
prokaryotic/fungal community structure (Fig. 2) as explanatory variables (fixed effects). The
identity of experimental/research purposes, sampling month, and crop plant species were
included as random effects in the GLMM.

Dataset Variable z P
Prokaryotes PC1 1.59 0.1111
(N=1,379) PC2 -1.65 0.1000
PC3 1.82 0.0684
PC4 -2.32 0.0205
PC5 3.98 0.0001
Fungi PC1 1.52 0.1281
(N =1,320) PC2 1.39 0.1656
PC3 -2.11 0.0348
PC4 2.62 0.0089
PC5 -0.84 0.4002
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Table 3 | Prokaryotic and fungal OTUs showing highest associations with crop health status within local croplands. Among the six sub-datasets

representing unique combinations of research sites, crop plant species, and research experimental/research purposes, OTUs showing strongest

specificity to the minimal crop disease level (z-standardized specificity to disease level 1 > 6.0) were observed in two sub-datasets (“eggplant in

Kuki City” and “tomato in Kashihara City”’). The OTUs are shown with the NCBI BLAST top-hit results. See Data S2 for the full results.

dlsszzz'gclgéf ; BLAST top-hit results

Site Crop iI(E;;;::irt;nent/research ID Score FDR Scientific Name co?/gregﬁ) E value Identity (%) Accession

Kuki Eggplant Control of bacterial wilt Bac_00034 6.53 < 0.0001 Denitratisoma oestradiolicum 100 9.0E-103 95.1 KF810120.1
Bac_00044 6.67 < 0.0001 Nocardioides cynanchi 100 4.0E-121 99.6 CP044344 .1
Bac_00061 712 < 0.0001 Piscinibacter aquaticus 100 4.0E-121 99.6 KY284087.1
Bac_00224 7.52 < 0.0001 Dongia sp. 100 9.0E-123 100.0 AB835804.1
Bac_00237 8.76 < 0.0001 Chondromyces robustus 100 2.0E-89 91.8 AJ233942.2
Fun_0059 6.83 < 0.0001 Moesziomyces aphidis 100 9.0E-123 100.0 MH777069.1
Fun_1871 6.27 < 0.0001 Pseudeurotium bakeri 100 3.0E-122 100.0 MK911621.1
Fun_3676 7.72 < 0.0001 Cladosporium proteacearum 100 8.0E-118 100.0 OR857360.1
Fun_3688 6.38 < 0.0001 Nigrospora sphaerica 100 8.0E-118 100.0 OP113684.1
Fun_3993 7.01 < 0.0001 Fusarium equiseti 100 3.0E-112 99.6 MT588081.1
Fun_4311 8.75 < 0.0001 Gibellulopsis nigrescens 100 5.0E-110 100.0 0OP498056.1

Kashihara Tomato Control of Fusarium wilt Bac_00031 6.74 <0.0001 Ramlibacter algicola 100 9.0E-123 100.0 NR_175506.1
Bac_00861 6.98 < 0.0001 Rhizomicrobium sp. 100 4.0E-116 98.4 LN876448.1
Fun_0056 6.28 < 0.0001 Corynascus sepedonium 100 9.0E-123 100.0 OW986289.1
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Table 4 | Representative prokaryotic and fungal OTUs in network modules with highly positive/negative associations with crop plant health. In

each of the modules 2, 6, and 8 (Fig. 4), the top-five OTUs with the highest specificity to the minimal crop disease level (specificity to disease

level 1; see Fig. S4 for the relationship between the specificity score and FDR). For each OTU, network degree, betweenness centrality, within-
module degree (z-standardized), and among-module connectivity (Fig. 6) are presented with the NCBI BLAST top-hit results. Likewise, in each
of the modules 1 and 7 (Fig. 4), the top-five OTUs negatively associated with the minimal crop disease level are shown. See Data S3 for the full

results.
disszzzizﬁgéf 1 Network scores BLAST top-hit results
Module OTU ID Score FDR Degree  Betweenness r\j]V(I)tg::e co'r\:lr?ed(lzjt!sny Scientific Name (c:;l(z\?enr/ E value |d'(302t)ity Accession
egree (%)
Module 2 Bac_00147 7.526 < 0.0001 0.001 -0.693 0.625 Botrimarina hoheduenensis 99 2.0E-90 92.2 NR_173585.1
(positive) Bac_00469  6.307  <0.0001 0.001 -1.214 0.720 Luteitalea pratensis 100 9.0E-108 96.3 NR_156918.1
Bac_00061 4.657  <0.0001 3 0.001 -1.214 0.667 Piscinibacter aquaticus 100 4.0E-121 99.6 KY284087.1
Bac_00002 4.652  <0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1
Bac_00463  4.166  <0.0001 5 0.002 0.347 0.320 Flavobacterium sufflavum 100 9.0E-123 100.0 NR_171469.1
Module 6 Bac_00025 9.477 < 0.0001 5 0.001 0.189 0.000 Gemmatimonas aurantiaca 100 4.0E-86 91.0 KF228166.1
(positive) Bac_00258 7.205 <0.0001 14 0.011 2.587 0.357 Thermanaerothrix daxensis 100 4.0E-76 88.6 NR_117865.1
Fun_4447 7.151 < 0.0001 10 0.017 -0.610 0.780 Plectosphaerella cucumerina 100 2.0E-108 100.0 MT529301.1
Fun_0071 7.093 <0.0001 6 0.003 -1.009 0.722 Schizothecium miniglutinans 100 2.0E-104 95.5 MW472119.1
Bac_00182 6.787 <0.0001 21 0.037 1.788 0.649 Brevitalea aridisoli 100 9.0E-93 92.7 NR_151987.1
Module 8 Bac_00294 9.679  <0.0001 7 0.002 0.000 0.571 Luteitalea pratensis 100 4.0E-81 89.8 NR_156918.1
(positive) Bac_00171 9.499  <0.0001 1 0.012 1.063 0.628 Membranihabitans marinus 100 9.0E-88 91.4 0L441066.1
Fun_4070 8.282  <0.0001 10 0.006 -0.532 0.700 Mortierella sp. 80 3.0E-87 99.5 OP799297.1
Bac_00138  7.904 <0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1
Bac_00339  7.297  <0.0001 5 0.003 -1.063 0.480 Vicinamibacter silvestris 100 2.0E-74 88.2 NR_151905.1
Module 1 Bac_00165 -9.211  <0.0001 19 0.035 0.903 0.582 Ureibacillus suwonensis 96 1.0E-76 89.5 JX914499.1
(negative) Bac_00004 -7.370  <0.0001 17 0.021 1.134 0.512 Nonomuraea phyllanthi 100 9.0E-123 100.0 CP045572.1
Bac_00010 -7.370 < 0.0001 4 0.001 -0.714 0.375 Streptomyces ardesiacus 100 9.0E-123 100.0 OR873433.1
Bac_00282  -7.289 <0.0001 9 0.009 0.672 0.000 Hyphomicrobium aestuarii 100 4.0E-111 97.1 NR_104954.1
Bac_00036 -6.531 <0.0001 16 0.011 1.596 0.305 Nitrolancea hollandica 100 9.0E-88 915 MW367426.1
Module 7 Fun_4028 -8.585 < 0.0001 5 0.000 -0.490 0.320 Fusarium oxysporum 100 6.0E-114 100.0 MF281350.2
(negative)  Arc_006 -8.544 < 0.0001 8 0.006 -0.490 0.594 Nitrososphaera viennensis 100 9.0E-123 100.0 NR_134097.1
Bac_00195 -8.079 < 0.0001 14 0.019 1.218 0.449 Chromobacterium amazonense 100 3.0E-88 91.5 0Q061977.1
Bac_00062 -7.281 < 0.0001 13 0.011 1.218 0.379 Sphingomonas segetis 100 4.0E-116 98.4 NR_175421.1
Bac_00098 -6.557 < 0.0001 18 0.026 1.218 0.537 Geodermatophilus normandii 100 9.0E-118 98.8 MT214187.1
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Table S | Within- and among-module hubs in the network. In each of the modules highlighted in Table 4 and Figure 6, the top-three OTUs with

the highest within-module degree (z-standardized) or among-module connectivity are shown. See Data S3 for the full results.

Focused disszzziztlzgetﬁ Network scores BLAST top-hit results
. Within-module ~ Module — Query . .
index Module OTU ID Score FDR Degree  Betweenness degree connectivity Scientific Name cg)}sr E value Identity (%) Accession
Within Module 2 Bac_00011 3.104 0.0013 13 0.018 1.907 0.663 Pseudomonas izuensis 100 9.0E-123 100.0 OR841525.1
(positive) Bac_00057 2.741 0.0063 6 0.002 1.387 0.000 Massilia violaceinigra 100 9.0E-123 100.0 MT373681.1
Bac_00002 4.652 < 0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1
Module 6 Bac_00258 7.205 < 0.0001 14 0.011 2.587 0.357 Thermanaerothrix daxensis 100 4.0E-76 88.6 NR_117865.1
(positive) Bac_00182 6.787 < 0.0001 21 0.037 1.788 0.649 Brevitalea aridisoli 100 9.0E-93 92.7 NR_151987.1
Arc_004 6.089 < 0.0001 19 0.027 1.388 0.742 Nitrosotenuis chungbukensis 100 9.0E-123 100.0 CP130341.1
Module 8 Bac_00138 7.904 < 0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1
(positive) Bac_00260 5.320 < 0.0001 9 0.006 1.595 0.346 Crenobacter cavernae 100 4.0E-96 93.5 CP031337.1
Bac_00171 9.499 < 0.0001 1 0.012 1.063 0.628 Membranihabitans marinus 100 9.0E-88 91.4 0OL441066.1
Module 1 Bac_00014 -4.481 < 0.0001 22 0.025 3.676 0.000 Gemmatimonas phototrophica 100 2.0E-89 91.8 CP011454.1
(negative) Bac_00055 -5.245 < 0.0001 18 0.015 2.752 0.000 Microbispora rosea 100 9.0E-123 100.0 MN826183.1
Fun_0033 -1.088 0.1752 17 0.026 2.521 0.000 Trichoderma atroviride 100 9.0E-123 100.0 MN429074.1
Module 7 Bac_00045 -1.380 0.1103 17 0.017 2.356 0.304 Pseudolabrys taiwanensis 100 9.0E-113 97.6 CP031417.1
(negative) Bac_00116 -3.636 0.0003 13 0.006 2.071 0.000 Streptomyces spinosirectus 100 9.0E-123 100.0 CP090447.1
Bac_00218 -5.182 < 0.0001 13 0.010 1.502 0.260 Dyella ginsengisoli 100 9.0E-123 100.0 KY228986.1
Among Module 2 Bac_00039 -1.782 0.0537 1 0.027 0.347 0.744 Arenimonas daechungensis 100 4.0E-116 98.4 NR_109442.1
(positive) Bac_00002 4.652 < 0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1
Bac_00469 6.307 < 0.0001 5 0.001 -1.214 0.720 Luteitalea pratensis 100 9.0E-108 96.3 NR_156918.1
Module 6 Fun_4447 7.151 < 0.0001 10 0.017 -0.610 0.780 Plectosphaerella cucumerina 100 2.0E-108 100.0 MT529301.1
(positive) Fun_3979 5.139 < 0.0001 6 0.008 -1.409 0.778 Enterocarpus grenotii 100 8.0E-113 99.6 0U989357.1
Arc_004 6.089 < 0.0001 19 0.027 1.388 0.742 Nitrosotenuis chungbukensis 100 9.0E-123 100.0 CP130341.1
Module 8 Bac_00138 7.904 < 0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1
(positive) Bac_00180 2.213 0.0224 10 0.008 0.000 0.700 Rubrobacter spartanus 100 4.0E-66 86.3 NR_158052.1
Fun_4070 8.282 < 0.0001 10 0.006 -0.532 0.700 Mortierella kuhlmanii 100 9.0E-53 84.5 MH860115.1
Module 1 Fun_0043 0.485 0.3420 7 0.008 -0.714 0.735 Curvularia senegalensis 100 9.0E-123 100.0 MT476857.1
(negative) Fun_3610 1.694 0.0649 12 0.014 -0.714 0.708 Acremonium alternatum 100 2.0E-118 100.0 MT529342.1
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Module 7

(negative)

Bac_00042
Fun_0027

Bac_00032
Bac_00070

1.601
2.861
-1.253
2.191

0.0774
0.0040
0.1331
0.0242

0.020
0.004
0.001
0.005

-0.252
-1.059
-1.059
-1.059

0.625
0.640
0.625
0.625

Fulvivirgaceae bacterium
Trichoderma virens
Streptomyces cyaneus

Luteimonas aestuarii

100
100
100
100

9.0E-108
9.0E-123
9.0E-123
9.0E-123

96.3
100.0
100.0
100.0

0Q733332.1
MT530036.1
OR807486.1
0Q255277.1

814
815
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Fig. 1 | Comparison of soil microbiome structure across the Japan Archipelago. (A) Map of
research sites across the Japan Archipelago. The 2,903 soil samples were grouped into 42
research sits were when their latitude and longitude profiles were round to one decimal place. (B)
Taxonomic compositions of prokaryotes (archaea and bacteria; top) and fungi (bottom) at the
family level. See Fig. S1 for results at the genus, order, and class levels. (C) Compositions of
functional groups of fungi.
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Fig. 2 | Dimensions of soil microbiome structure. (A) Prokaryote and fungal community
structure. Principal co-ordinate analyses (PCA) were performed based on OTU-level
compositional matrices respectively for the prokaryotic and fungal communities. The identify of
crop plants is shown by colors. See Figures S2-3 for relationship between community structure
and environmental factors. (B) Correlation between PCA scores and soil environmental factors.
(C) Crop disease level and microbial community structure. On the PCA surface, crop disease
level (see Materials and Methods) is indicated.

28


https://doi.org/10.1101/2023.08.31.555816
http://creativecommons.org/licenses/by/4.0/

835
836

837
838
839
840
841
842
843
844
845
846
847

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.31.555816; this version posted December 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.
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Site = Kashihara City, NaraPrefecture; Crop = tomato; Experimental/research purposes = Control of Fusarium wilt
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Relative abundance

Fig. 3 | Relationship between OTU abundance and crop plant health. Among the six sub-datasets
representing unique crop plant x site combinations, OTUs showing strongest specificity to the
minimal crop disease level (z-standardized specificity to disease level 1 > 6.0) were observed in
two sub-datasets (“eggplant in Kuki City” and “tomato in Kashihara City”’; Table 4; see Data S2
for full results). For each OTU in each sub-dataset, generalized linear model with a logit function
and binomial errors was constructed to examine relationship between OTU relative abundance
and crop disease level (level 1 vs. levels 2-5). All the regression lines are statistically significant
(FDR < 0.0001). The OTUs exhibiting statistically significant specificity to disease level 1 in the
analysis with the entire dataset (FDR < 0.025; two-tailed test; Fig. S4-5) are highlighted with red
squares.
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Fig. 4 | Architecture of microbe-to-microbe network. (A) Co-occurrence networks of archaea,
bacteria, and fungi. Specificity of occurrences to disease-level-1 (the lowest disease level)
samples (Figs. S4-5) is shown for each OTU within the network. The specificity is shown as node
size separately for positive (left) and negative (right) associations with least-diseased states of
crop plants. Colors indicate network modules, in which microbial OTUs in
commensalistic/mutualistic interactions and/or those sharing environmental preferences are
densely linked with each other. See Figure S8 for taxonomy (archaea, bacteria, or fungi) of
respective nodes. (B) Characteristics of network modules. Mean specificity to the minimal crop
disease level (disease level 1; left in the panel A) is shown for each network module.
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Fig. 5 | Properties of the microbe-to-microbe network modules. For each network module,
specificity to the minimal crop disease level (disease level 1) is shown for each prokaryote/fungal
OTU along the vertical axis. Betweenness centrality, which measures the extent to which an OTU
is located within the shortest paths connecting pairs of other nodes in a network, is shown along
the horizontal axis. The OTUs mentioned in the main text are highlighted with red squares.
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Fig. 6 | Topological roles of OTUs within and across network modules. (A) Position of potential
hubs within the network. In each graph, node size roughly represents within-module degree (left)
or among-module connectivity (right). (B) Network hub indices. For each OTU, within-module
degree represents the number of the OTUs linked with the target OTU within a module (z-
standardized). Among-module connectivity represents the extent to which an OTU interlinks
OTUs belonging to different network modules. The prokaryotic/fungal OTU with the highest
within-module degree or among-module connectivity in each of the modules 1, 2, 6, 7, and 8
(highlighted in the main text and Table 4) is indicated with its OTU ID. See Table 5 for the
taxonomic profiles of the OTUs.

32


https://doi.org/10.1101/2023.08.31.555816
http://creativecommons.org/licenses/by/4.0/

