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ABSTRACT 19 

Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural 20 
productivity and sustainability. A crucial step for exploring soil microbiomes with high 21 
ecosystem functions is to perform statistical analyses on potential relationship between 22 
microbiome structure and functions based on comparisons of hundreds or thousands of 23 
environmental samples collected across broad geographic ranges. In this study, we integrated 24 
agricultural field metadata with microbial community analyses by targeting > 2,000 soil samples 25 
collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1–26 
42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational 27 
taxonomic units detected across the fields of 19 crop plant species allowed us to conduct 28 
statistical analyses (permutational analyses of variance, generalized linear mixed models, and 29 
randomization analyses) on relationship among edaphic factors, microbiome compositions, and 30 
crop disease prevalence. We then examined whether the diverse microbes form species sets 31 
varying in potential ecological impacts on crop plants. A network analysis suggested that the 32 
observed prokaryotes and fungi were actually classified into several species sets (network 33 
modules), which differed substantially in associations with crop disease prevalence. Within the 34 
network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an 35 
ammonium-oxidizing archaeum, an antibiotics-producing bacterium, and a potentially 36 
mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive 37 
and crop-disease-suppressive states of soil microbiomes. The bird’s-eye view of soil microbiome 38 
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structure will provide a basis for designing and managing agroecosystems with high disease-39 
suppressive functions. 40 

 41 

IMPORTANCE 42 

Understanding how microbiome structure and functions are organized in soil ecosystems is one 43 
of the major challenges in both basic ecology and applied microbiology. Given the ongoing 44 
worldwide degradation of agroecosystems, building frameworks for exploring structural diversity 45 
and functional profiles of soil microbiomes is an essential task. Our study provides an overview 46 
of cropland microbiome states in light of potential crop-disease-suppressive functions. The large 47 
dataset allowed us to explore highly functional species sets that may be stably managed in 48 
agroecosystems. Furthermore, an analysis of network architecture highlighted species that are 49 
potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-50 
suppressive states. By extending the approach of comparative analyses towards broader 51 
geographic ranges and diverse agricultural practices, agroecosystem with maximized biological 52 
functions will be further explored. 53 
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The ongoing global-scale degradation of agroecosystems is threatening food production (1, 2). 63 
Maximizing the functions of microbial communities (microbiomes) is a prerequisite for building 64 
bases of sustainable agriculture (3–7). Archaea, bacteria, and fungi in the soil drive cycles of 65 
carbon, nitrogen, and phosphorus within agroecosystems (8–12). Many of those microbes also 66 
work to promote crop plant’s tolerance to drought and high temperature stresses as well as 67 
resistance to pests and pathogens (13–18). Importantly, those microbes vary greatly in their 68 
physiological impacts on crop plants (19–21). Therefore, gaining insights into soil microbiome 69 
compositions is an essential starting point for managing resource-use efficient and disease-70 
tolerant agroecosystems.  71 

 Since the emergence of high-throughput DNA sequencing, a number of studies have 72 
revealed taxonomic compositions of prokaryotes and/or fungi in agroecosystem soil (22–24). 73 
Those studies have explored microbial species that potentially support crop plant growth and/or 74 
prevent crop plant disease (9, 16, 25, 26). Meanwhile, each of the previous studies has tended to 75 
focus on specific crop plant species in specific farm fields (27), although there are some 76 
exceptionally comprehensive studies comparing multiple research sites (15, 22). Therefore, 77 
generality in relationship between microbiome structure and functions remain to be examined in 78 
broader contexts [cf. global-scale analyses of soil microbiomes in natural ecosystems (28–31)]. In 79 
other words, we still have limited knowledge of general patterns and features common to soil 80 
microbiomes with high crop yield or those with least crop disease risk. Thus, statistical analyses 81 
comparing microbiome structure among diverse crop plants across broad geographic ranges (15, 82 
22) are expected to deepen our understanding of microbial functions in agroecosystems. In 83 
particular, comparative studies of thousands of soil samples covering a wide range of latitudes 84 
will provide opportunities for finding general properties common to microbial communities with 85 
plant-growth-promoting or crop-disease-suppressive functions across diverse climatic conditions.  86 

 Large datasets of soil microbiomes will also allow us to estimate interspecific interactions 87 
between microbial species (3, 32, 33). Archaea, bacteria, and fungi in soil ecosystems potentially 88 
form entangled webs of facilitative or competitive interactions, collectively determining 89 
ecosystem-level functions such as the efficiency of nutrient cycles and the prevalence of plant 90 
pathogens (34, 35). In fact, ecological network studies have inferred how sets of microbial 91 
species could respond to the outbreaks or experimental introductions of crop plant pathogens 92 
(36–38). Although various statistical platforms for deciphering the architecture of such microbial 93 
interaction networks have been proposed (32, 39), hundreds or more of microbial community 94 
samples are required to gain reliable inferences on interactions that reproducibly occur in real 95 
ecosystems (40). Thus, datasets consisting of thousands of soil samples collected across a number 96 
of local ecosystems will provide fundamental insights into how soil ecological processes are 97 
driven by cross-kingdom interactions involving archaea, bacteria, and fungi.  98 

 In this study, we conducted a comparative analysis of agroecosystem soil microbiomes 99 
based on > 2,000 soil samples collected from subtropical to cool-temperate regions across the 100 
Japan Archipelago. Based on the amplicon sequencing dataset representing farm fields of 19 crop 101 
plant species, we profiled prokaryotic and fungal community compositions in conventional 102 
agricultural fields in Japan. By compiling the metadata of the soil samples, we then examined 103 
biotic and abiotic factors explaining diversity in the prevalence of crop disease. The soil 104 
microbiome dataset was further used to infer the structure of a microbe-to-microbe coexistence 105 
network consisting of diverse archaea, bacteria, and fungi. Specifically, we examined whether the 106 
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network architecture was partitioned into compartments (modules) of closely interacting 107 
microbial species. In addition, we tested the hypothesis that such network modules could differ in 108 
their positive/negative associations with crop plant disease/health status. To explore prokaryotic 109 
and fungal species keys to manage agroecosystem structure and functions, we further explored 110 
“core” or “hub” species that were placed at the central positions within the inferred microbial 111 
interaction network. Overall, this study provides an overview of soil microbial diversity of 112 
cropland soil across a latitudinal gradient, setting a basis for diagnosing soil ecosystem status and 113 
identifying sets of microbes to be controlled in sustainable crop production.  114 

 115 
RESULTS 116 
Diversity of agroecosystem microbiomes 117 

We compiled the field metadata of 2,903 soil samples collected in the research projects of 118 
National Agricultural and Food Research Organization (NARO), Japan. The bulk soil of 119 
farmlands was sampled from subtropical to cool-temperate regions (26.1–42.8 °N) across the 120 
Japan Archipelago from 2006 to 2014, targeting 19 crop plant species (Fig. 1A; Data S1). Most 121 
of the croplands were managed with conventional agricultural practices (characterized by 122 
intensive tillage and chemical fertilizer/pesticide application), while some were experimentally 123 
controlled as organic agricultural fields. The metadata (Data S1) included the information of 124 
chemical [e.g., pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available 125 
phosphorous concentration], physical (e.g., soil taxonomy), and biological (e.g., crop disease 126 
level) properties, providing a platform for profiling ecosystem states of cropland soil.  127 

 To integrate the metadata with the information of microbial community structure, we 128 
performed DNA metabarcoding analyses of both prokaryotes (archaea and bacteria) and fungi. 129 
After a series of quality filtering, prokaryotic and fungal community data were obtained from 130 
2,676 and 2,477 samples, respectively. In total, 632 archaeal operational taxonomic units (OTUs) 131 
representing 22 genera (24 families), 26,868 bacterial OTUs representing 1,120 genera (447 132 
families), and 4,889 fungal OTUs representing 1,190 genera (495 families) were detected (Fig. 133 
1B; Fig. S1). 134 

 The prokaryotic communities lacked apparently dominant taxa at the genus and family 135 
levels (Fig. 1B). In contrast, the fungal communities were dominated by fungi in the families 136 
Mortierellaceae, Chetomiaceae, and Nectriaceae, depending on localities (Fig. 1B). A reference 137 
database profiling of fungal functional groups suggested that the fungal communities were 138 
dominated by soil saprotrophic and plant pathogenic fungi (Fig. 1C) as characterized by the 139 
dominance of Mortierella and Fusarium at the genus level (Fig. S1). Meanwhile, mycoparasitic 140 
fungi had exceptionally high proportions at some research sites, as represented by the dominance 141 
of Trichoderma (Hypocreaceae) at those sites (Fig. 1B; Fig. S1).  142 

 143 

Microbiome structure and crop disease prevalence 144 

Compiling the metadata of edaphic factors, we found that variation in the community structure of 145 
prokaryotes and fungi was significantly explained by crop plant identity and soil taxonomy as 146 
well as by soil chemical properties such as pH, electrical conductivity, and C/N ratio, (Fig. 2A-B; 147 
Figs. S2-3; Table 1). In addition, the ratio of prokaryotic abundance to fungal abundance (see 148 
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Materials and Methods for details) was associated with both prokaryotic and fungal community 149 
structure (Table 1). Nonetheless, the explanatory powers of these variable were all small as 150 
indicated by the low R2 values (Table 1).  151 

 Both prokaryotic and fungal community structure was significantly associated with the 152 
severity of crop disease (Fig. 2C; Table 2). Specifically, the crop plants’ disease/health status 153 
(disease level 1 vs. disease levels 2-5; see Materials and Methods) was explained by some of the 154 
principal components (PCs) defined based on prokaryotic/fungal community structure (Fig. 2B).  155 

 156 

Microbes associated with crop disease/health status 157 

We explored microbial OTUs whose prevalence are associated with crop plant disease/health 158 
status. Based on a randomization analysis, prokaryotic/fungal OTUs whose distribution is biased 159 
in samples representing the minimal crop disease level (disease level 1) were screened (Fig. S4).  160 

 To examine whether the OTUs highlighted in the across-Japan spatial scale could actually 161 
show tight associations with crop disease status at local scales, the randomization analysis was 162 
performed as well in each of the six sub-datasets representing unique combinations of research 163 
sites, crop plant species, and experimental/research purposes (Data S2). Statistically significant 164 
specificity for crop disease level (FDR < 0.025; two-tailed test) was observed for at least one 165 
OTU in five of the six sub-datasets (Data S2). Among them, exceptionally strong specificity to 166 
the minimal crop disease level (standardized specificity score ³ 6.0; FDR < 0.0001) was detected 167 
in two sub-datasets (Table 3). The relative abundance of these OTUs tightly associated with crop 168 
disease level across samples within each sub-dataset (Fig. 3).  169 
 170 

Microbe-to-microbe network 171 

We then examined the network architecture of potential microbe-to-microbe interactions within 172 
the soil microbiomes. The inferred network of coexistence was subdivided into several modules, 173 
in which archaeal, bacterial, and fungal OTUs sharing environmental preferences and/or those in 174 
positive interactions were linked with each other (Figs. 3A and S5-8). The network modules 175 
differed considerably in their associations with crop-plant disease level (Fig. 4B; Fig. S5; Data 176 
S3). Modules 2, 6, and 8, for example, were characterized by microbes associated with least 177 
disease level. Module 6, which showed the highest mean specificity to the minimal crop disease 178 
level (Fig. 4B), included a bacterium allied to the genus Gemmatimonas (Bac_00025), that allied 179 
to the genus Thermanaerothrix (Bac_00258), and a Plectosphaerella fungus (Fun_4447) (Table 180 
4). In contrast to these modules, Modules 1 and 7 were constituted by microbes negatively 181 
associated with crop plant health (Fig. 4B). Module 1 included a bacterium distantly allied to the 182 
genus Ureibacillus (Bac_00165), a Nonomuraea bacterium (Bac_00004), and a Streptomyces 183 
bacterium (Bac_00010), while Module 7 involved a Fusarium fungus (Fun_4028) and a 184 
Nitrososphaera archaeum (Arc_006) (Table 4).  185 

 186 

Core species within the microbial network 187 

We next explored microbial OTUs that potentially have great impacts on community- or 188 
ecosystem-scale processes based on an analysis of the microbe-to-microbe network architecture 189 
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(Data S3). Among the microbes disproportionately found from the samples with the minimal crop 190 
disease level, a Pyrinomonadaceae bacterium allied to the genus Brevitalea (Bac_00182 in 191 
Module 6; Table 4), for example, showed a high betweenness centrality score (Fig. 5). 192 
Meanwhile, among the microbes negatively associated with crop health status, a bacterium 193 
distantly allied to the genus Ureibacillus (Bac_00165 in Module 1; Table 4) was inferred to be 194 
located at a central position within the network (Fig. 5).  195 

  We further ranked microbial OTUs in terms of their topological roles in interlinking 196 
multiple network modules. We then found that OTUs linked with many other OTUs within 197 
modules were not necessarily placed at the topological positions interconnecting different 198 
modules (Fig. 6). In Module 6, which showed high specificity to the minimal crop disease level 199 
(Fig. 4), a bacterium distantly allied to the genus Thermanaerothrix (Bac_00258) was designated 200 
as a “within-module hub”, while a Plectosphaerella fungus (Fun_4447) showed a high “among-201 
module connectivity” score (Table 4). Likewise, in Module 1, which consisted of many OTUs 202 
with negative associations with crop plant health (Fig. 4), a bacterium allied to the genus 203 
Gemmatimonas (Bac_00258) had the highest numbers of within-module links, while a 204 
Curvularia fungus (Fun_0043) was inferred to be an among-module hub (Table 5). The list of 205 
microbial OTUs placed at the interface of modules (OTUs with high among-module connectivity 206 
scores) involved a Nitrosotenuis archaeum, Arenimonas, Arthrobacter, and Streptomyces 207 
bacteria, and Mortierella, Curvularia, and Trichoderma fungi (Table 5).  208 

 209 

DISCUSSION 210 

We here profiled the diversity of agroecosystem microbiome structure across a latitudinal 211 
gradient from cool-temperate to subtropical regions based on the analysis of > 2,000 soil samples. 212 
As partially reported in previous studies comparing microbiome compositions across broad 213 
geographic ranges (15, 22), prokaryotic and fungal community structure varied depending on 214 
season, crop plant species, former crop identity, and background soil categories (Fig. 2A; Table 215 
1). In addition, soil chemical properties such as pH, electrical conductivity, and C/N ratio as well 216 
as the prokaryote/fungus abundance ratio significantly explained variation in microbiome 217 
structure (Table 1). In contrast, available phosphorus concentrations had significant effects on 218 
neither prokaryotic nor fungal communities in the multivariate model (Table 1), suggesting that 219 
nitrogen cycles rather than phosphorous ones are more tightly linked with microbiome structure. 220 
The integration of the microbiome datasets with agricultural field metadata allowed us to perform 221 
statistical tests of potential relationship between microbiome structure and agroecosystem 222 
performance (Fig. 2B; Table 2). A series of OTU-level analyses further highlighted 223 
taxonomically diverse prokaryotes and fungi showing strong positive or negative associations 224 
with crop health status (Figs. 3 and S4; Table 3).  225 

 We then examined how these microbes differing in associations with crop disease/health 226 
status form a network of coexistence. The architecture of the network involving diverse archaeal, 227 
bacterial, and fungal OTUs was highly structured, being partitioned into 11 modules (Fig. 4A). 228 
Intriguingly, the network modules varied considerably in constituent microbes’ associations with 229 
crop disease levels (Fig. 4B). This result suggests that sets of microbes can be used to design soil 230 
microbiomes with crop-disease-suppressive functions. Among the detected modules, Modules 2, 231 
6, and 8 were of particular interest with regard to the assembly of microbial OTUs positively 232 
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associated with crop health status (Figs. 4 and 5). In contrast, Modules 1 and 7 were constituted 233 
mainly by microbial OTUs negatively associated with plant health (Fig. 4B). In particular, 234 
Module 7 was characterized by the presence of a notorious plant pathogenic fungus, Fusarium 235 
oxysporum [(41, 42); but see (43) for diversity of their impacts on plants]. All these modules 236 
included both prokaryotes and fungi (Fig. S8; Data S3), illuminating the importance of inter-237 
kingdom interactions (3, 33). The presence of microbial species sets differing in plant-associated 238 
ecological properties suggests that keeping specific sets of compatible prokaryotes and fungi is 239 
essential for maximizing the stability of agricultural production (3).  240 

 The analysis of network architecture further allowed us to explore core or hub species 241 
within the microbial network (Fig. 6). Because the microbes highlighted with the examined 242 
network indices occupy key positions interconnecting many other microbes (44), their 243 
increase/decrease is expected to have profound impacts on whole community processes (3, 32, 244 
33). In particular, control or manipulation of microbes located at the central positions interlinking 245 
different network modules (40) (i.e., microbes with high among-module connectivity; Fig. 6B) 246 
may trigger drastic shifts in microbial community structure between disease-promotive and 247 
disease-suppressive states (3). The candidate list of such core species involved an ammonium-248 
oxidizing archaeum (Nitrosotenuis) (45), an antibiotics-producing bacterium (Streptomyces) (46), 249 
a prevalent soil fungus (Mortierella) (47, 48), a potentially mycoparasitic fungus (Trichoderma) 250 
(49, 50), and fungi allied to plant pathogenic clades [Curvularia and Plectosphaerella (anamorph 251 
= Fusarium)] (51, 52) (Table 5). Given that many of the bacterial and fungal taxa listed above are 252 
culturable, experimental studies examining their ecological roles are awaited. Specifically, it 253 
would be intriguing to test whether substantial shifts in soil microbiome structure and functions 254 
can be caused by the introduction of those among-module hub microbes.  255 

 Although the dataset across a latitudinal gradient provided an opportunity for gaining 256 
bird’s-eye insights into the structure and potential functions of soil microbiomes, the results 257 
should be interpreted carefully with the recognition of potential methodological shortcomings and 258 
pitfalls. First, the approach of geographic comparison per se does not give a firm basis for 259 
deciphering microbial community dynamics. To gain fundamental insights into microbiome 260 
dynamics, we need to perform time-series monitoring (53–55) of soil prokaryotic and fungal 261 
community compositions. Second, information of microbial communities alone does not provide 262 
comprehensive insights into agroecosystem soil states. Given that soil ecosystem processes are 263 
driven not only by microbes but also by nematodes, arthropods, earthworms, and protists (56–264 
59), simultaneous analyses of all prokaryotic and eukaryotic taxa (60, 61) will help us infer whole 265 
webs of biological processes. Third, meta-analyses of agroecosystem performance across diverse 266 
crop fields require utmost care because there is no firm criterion commonly applicable to 267 
different crop plant species or different pest/pathogen species. As implemented in this study, 268 
effects of such difference may be partially controlled by including them as random variables in 269 
GLMMs (Table 2). Nonetheless, local-scale analyses targeting specific crop plant species and 270 
disease symptoms (Fig. 3; Table 3; Data S2) are necessary to gain reliable inferences of potential 271 
microbial functions. Fourth, along with the potential pitfall discussed above, network modules 272 
can differ not only in properties related to crop disease/health status but also in those associated 273 
with crop plant identity or cropland management (Figs. S6-7). Again, findings in broad-274 
geographic-scale analyses need to be supplemented by insights from local-scale observations 275 
(Fig. 3). Fifth, amplicon sequencing approaches provide only indirect inference of biological 276 
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functions. With the current capacity of sequencing and bioinformatic technologies, it is hard to 277 
assemble tens of thousands of microbial genomes based on the analysis of thousands of 278 
environmental samples. Furthermore, due to the paucity of the information of fungal ecology and 279 
physiology, it remains difficult to annotate high proportions of genes within fungal genomic data. 280 
Nonetheless, with the accumulation of methodological breakthroughs, shotgun sequencing of soil 281 
microbiomes will deepen our understanding of agroecosystem processes (62–64). Sixth, in this 282 
study, full sets of metadata were not available for all the sequenced samples, inevitably 283 
decreasing the number of samples examined in some statistical modeling. Although substantial 284 
efforts had been made to profile cropland soils in the national projects in which the soil samples 285 
were collected, continuous efforts are required to gain further comprehensive insights into 286 
agroecosystem structure and functions.  287 

 Expanding the comparative microbiome analysis to different geographic regions and 288 
agroecosystem management practices will contribute to a more comprehensive understanding of 289 
microbiome structure and function. For example, comparison with soil agroecosystems in lower-290 
latitudinal or higher-latitudinal regions or meta-analyses covering multiple continents will 291 
provide further comprehensive knowledge of the diversity of microbiome structure. In addition to 292 
extensions towards broader geographic ranges, those towards diverse agroecosystem 293 
management are of particular importance. Given that our samples were collected mainly from 294 
croplands managed with conventional agricultural practices, involvement of soil samples from 295 
regenerative or conservation agricultural fields (65–68) will reorganize our understanding of 296 
relationship between microbiome compositions and functions. In conclusion, this data-driven 297 
research lays the groundwork for understanding fundamental mechanisms in soil ecosystems, 298 
offering innovative strategies for the design of sustainable agriculture. 299 

 300 
MATERIALS AND METHODS 301 
Soil samples and metadata 302 

Over research projects of National Agricultural and Food Research Organization (NARO), which 303 
were carried out through five national research programs funded by Ministry of Agriculture, 304 
Forestry and Fisheries, 2,903 rhizosphere/bulk soil samples were collected from conventional 305 
agricultural fields across the Japan Archipelago from January 23, 2006, to July 28, 2014 (Data 306 
S1). When the latitude and longitude of the sampling positions were round to one decimal place, 307 
42 research sites were distinguished. Across the metadata of the 2,903 samples, the information 308 
of 19 crop plants, 34 former crop plants (including “no crop”), 13 soil taxonomic groups (e.g., 309 
“Andosol”), 60 experimental/research purposes (e.g., “soil comparison between organic and 310 
conventional management”) was described. Likewise, the metadata included the information of 311 
dry soil pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available phosphorous 312 
concentration from, 2,830, 2,610, 2,346, and 2,249 samples, respectively. In addition, the 313 
information of the severity of crop plant disease was available for 1,472 samples (tomato, 637 314 
samples; Chinese cabbage, 336 samples; eggplant, 202 samples; celery, 97 samples; Broccoli, 96 315 
samples, etc.). The values of the proportion of diseased plants or disease severity index (69) was 316 
normalized within the ranges from 0 to 100, and they were then categorized into five levels (level 317 
1, 0-20; level 2, 20-40; level3; 40-60; level 4, 60-80; level 5, 80-100). The plant pathogens 318 
examined in the disease-level evaluation were Colletotrichum gloeosporioides on the strawberry, 319 
Fusarium oxysporum on the celery, the lettuce, the strawberry, and the tomato, Phytophthora 320 
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sojae on the soybean, Plasmodiophora brassicae on Cruciferae plants, Pyrenochaeta lycopersici 321 
on the tomato, Pythium myriotylum on the ginger, Ralstonia solanacearum on the eggplant and 322 
the tomato, and Verticillium spp. on Chinese cabbage. For continuous variables within the 323 
metadata, emergent outliers (mean + 5 SD) were converted into “NA” in the data matrix used in 324 
the following statistical analyses as potential measurement/recording errors. Unrealistic electrical 325 
conductivity records (> 20) were converted into “NA” as well.  326 

 At each sampling position, five soil sub-samples collected from the upper layer (0-10 cm in 327 
depth) at five points (ca. 100 g each) were mixed. The mixed soil sample (ca. 500 g) was then 328 
sieved with 2-mm mesh in the field. The samples were stored at -20 °C until DNA extraction. In 329 
laboratory conditions, 0.4 g of soil (fresh weight) was subjected to DNA extraction with 330 
FastDNA SPIN Kit for Soil (Q-BioGene).  331 

 332 

DNA amplification and sequencing 333 

Profiling of soil microbial biodiversity was performed by targeting archaea, bacteria, and fungi. 334 
For the amplification of the 16S rRNA V4 region of archaea and bacteria (prokaryotes), the set of 335 
the forward primer 515f (5’- GTG YCA GCM GCC GCG GTA A -3’) and the reverse primer 336 
806rB (5’- GGA CTA CNV GGG TWT CTA AT -3’) were used as described elsewhere (54). 337 
The primers were fused with 3–6-mer Ns for improved Illumina sequencing quality and Illumina 338 
sequencing primers. PCR was performed using KOD ONE PCR Master Mix (TOYOBO, Osaka) 339 
with the temperature profile of 35 cycles at 98 °C for 10 seconds (denaturation), 55 °C for 5 340 
seconds (annealing of primers), and 68 °C for 30 seconds (extension), and a final extension at 68 341 
°C for 2 minutes. The ramp rate through the thermal cycles was set to 1 °C/sec to prevent the 342 
generation of chimeric sequences. In the PCR, we added five artificial DNA sequence variants 343 
with different concentrations (i.e., standard DNA gradients; 1.0 ×10-4, 5.0 ×10-5, 2.0 ×10-5, 1.0 344 
×10-5, and 5.0 ×10-6 nM; Table S1) to the PCR master mix solution as detailed elsewhere (54). By 345 
comparing the number of sequencing reads between the artificial standard DNA and real 346 
prokaryotic DNA, the concentration of prokaryotic 16S rRNA genes in template DNA samples 347 
were calibrated (54). 348 

 In addition to the prokaryotic 16S rRNA region, the internal transcribed spacer 1 (ITS1) 349 
region of fungi was amplified using the set of the forward primer ITS1F_KYO1 (5’- CTH GGT 350 
CAT TTA GAG GAA STA A -3’) and the reverse primer ITS2_KYO2 (5’ – TTY RCT RCG 351 
TTC TTC ATC - 3’) (70). PCR was performed using the Illumina-sequencing fusion primer 352 
design mentioned above with the temperature profile of 35 cycles at 98 °C for 10 seconds, 53 °C 353 
for 5 s seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2 minutes (ramp rate = 354 
1 °C/sec). Newly designed artificial sequence variants (1.0 ×10-5, 7.0 ×10-6, 5.0 ×10-6, 2.0 ×10-6, 355 
and 1.0 ×10-6 nM; Table S1) were added to the PCR master mix as standard DNA gradients for 356 
the calibration of the ITS sequence concentrations in the template DNA samples.  357 

         The PCR products of the prokaryotic 16S rRNA and fungal ITS1 regions were respectively 358 
subjected to the additional PCR step for linking Illumina sequencing adaptors and 8-mer sample 359 
identifier indexes with the amplicons. The temperature profile in the PCR was 8 cycles at 98 °C 360 
for 10 seconds, 55 °C for 5 seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2 361 
minutes. The PCR products were then pooled for each of the 16S rRNA and fungal ITS1 regions 362 
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after a purification/equalization process with the AMPureXP Kit (Beckman Coulter, Inc., Brea). 363 
Primer dimers, which were shorter than 200 bp, were removed from the pooled library by 364 
supplemental purification with AMpureXP: the ratio of AMPureXP reagent to the pooled library 365 
was set to 0.8 (v/v) in this process. The sequencing libraries of the two regions were processed in 366 
an Illumina MiSeq sequencer (10% PhiX spike-in). Because the quality of forward sequences is 367 
generally higher than that of reverse sequences in Illumina sequencing, we optimized the MiSeq 368 
run setting in order to use only forward sequences. Specifically, the run length was set 271 369 
forward (R1) and 31 reverse (R4) cycles to enhance forward sequencing data: the reverse 370 
sequences were used only for discriminating between prokaryotic 16S and fungal ITS1 sequences 371 
in the following bioinformatic pipeline.   372 

  373 

Bioinformatics 374 

In total, 23,573,405 sequencing reads were obtained in the Illumina sequencing (16S rRNA, 375 
11,647,166 sequencing reads; ITS, 11,926,239 sequencing reads). The raw sequencing data were 376 
converted into FASTQ files using the program bcl2fastq 1.8.4 distributed by Illumina. For each 377 
of the 16S rRNA and fungal ITS1 regions, the output FASTQ files were demultiplexed using 378 
Claident v0.9.2022.01.26 (71). The sequencing data were deposited to DNA Data Bank of Japan 379 
(DDBJ) (Bioproject accession no.: PSUB018361). The removal of low-quality sequences and 380 
OTU inferences were done using DADA2 (72) v1.17.5 of R v3.6.3. The mean number of filtered 381 
sequencing reads obtained per sample was 3,949 and 4,075 for the prokaryotic and fungal 382 
datasets, respectively. The amplicon sequence variants (ASVs) obtained from the DADA2 383 
pipeline were clustered using the vsearch v2.21.1 program (73) with the 98% and 97% cutoff 384 
sequence similarity for prokaryotes and fungi, respectively. Taxonomic annotation of the 385 
obtained prokaryotic and fungal OTUs were conducted based on the SILVA 138 SSU (74) and 386 
the UNITE all_ 25.07.2023 (75) databases, respectively, with the assignTaxonomy function of 387 
DADA2. The OTUs that were not assigned to the domain Archaea/Bacteria and the kingdom 388 
Fungi were removed from the 16S rRNA and ITS1 datasets, respectively. For each target 389 
organismal group (prokaryotes and fungi), we then obtained a sample × OTU matrix, in which a 390 
cell entry depicted the number of sequencing reads of an OTU in a sample. The samples with less 391 
than 1,000 reads were discarded from the matrices. The number of reads was insufficient for 392 
comprehensively profiling rare microbial species, which are often targets of soil microbiome 393 
studies. However, because data matrices including numerous rare OTUs could not be subjected to 394 
the computationally intensive ecological analyses detailed below even if we used 395 
supercomputers, we focused on major components of soil prokaryotic and fungal biomes. In other 396 
words, our purpose here was to extract major components of agroecosystem soil microbiomes 397 
across the Japan Archipelago, thereby finding core microbiome properties associated with 398 
disease-suppressive and disease-susceptible agroecosystems. For the sample × OTU matrix, 399 
centered log-ratio (CLR) transformation (76–78) was performed using the ALDEx2 v1.35.0 400 
package (79) of R.  401 

 In total, prokaryotic and fungal community data were obtained for 2,676 and 2,477 402 
samples, respectively. For fungal OTUs, putative functional groups (e.g., “plant pathogen”) were 403 
inferred using the program FungalTraits (80). The estimation of DNA concentrations of the 404 
prokaryotic 16S rRNA and fungal ITS regions was performed, respectively, based on the 405 
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calibration with the standard DNA gradients (artificial DNA variants introduced to the PCR 406 
master mix solutions) using the bioinformatic pipeline detailed elsewhere (54).  407 

 408 

Calculation of prokaryote/fungus ratio 409 

Based on the estimated concentrations of prokaryotic 16S rRNA and fungal ITS sequences in 410 
template DNA solutions, we calculated the ratio of prokaryotic DNA concentrations to fungal 411 
DNA concentrations in respective samples (prokaryote/fungus ratio) as follows:  412 

log	 %!"#$%"&#'()	+,-	"./0	1232	)#3)23'"%'(#3(5/0	)#!(26/µ8)
:;31%<	=>-	1232	)#3)23'"%'(#3	(5/0	)#!(26/µ8)

&. 413 

Although potential variation in DNA extraction skills of researchers might affect absolute DNA 414 
concentrations in the template DNA solutions, balance between prokaryotic and fungal DNA in 415 
each template DNA sample could be used as a reliable measure. The DNA-metabarcoding-based 416 
approach of estimating prokaryote/fungus ratio has methodological advantage over quantitative-417 
PCR-based approaches. Specifically, the former approach allows us to eliminate effects of 418 
nonspecific PCR amplification based on DNA sequencing data, while the latter is affected by 419 
“contamination” of nontarget amplicons (e.g., plastid DNA in 16S rRNA sequencing and plant 420 
DNA in ITS sequencing).  421 

 422 

Microbiome structure and crop disease prevalence 423 

For each of the prokaryotic and fungal datasets, permutational analyses of variance 424 
(PERMANOVA) (81) were performed to examine associations between family-level community 425 
compositions and variables in the metadata. Two types of PERMANOVA models were 426 
constructed based on the Euclid distance (b-diversity) calculated for the CLR-transformed 427 
datasets (1,000 iterations). Specifically, one is constituted by categorical explanatory variables 428 
(crop plant, former crop plant, soil taxonomy, research site, and sampling month), while the other 429 
included continuous explanatory variables (soil pH, electrical conductivity, C/N ratio, and 430 
available phosphorous concentration, prokaryote/fungus ratio, latitude, and longitude).   431 

 To reduce the dimensions of the community compositional data, a principal component 432 
analysis (PCA) was performed based on the Euclid distance data mentioned above. For each PCA 433 
axis (axes 1 to 5) in each of the prokaryotic and fungal analyses, Pearson’s correlation with each 434 
chemical environmental factor (soil pH, electrical conductivity, C/N ratio, and available 435 
phosphorous concentration) was calculated.  436 

 We then evaluated how community structure of prokaryotes and fungi were associated with 437 
crop disease. For each of the prokaryotic and fungal datasets, a generalized linear mixed model 438 
(GLMM) of crop-disease level (disease level 1 vs. disease levels 2-5) was constructed by 439 
including the PCoA axes 1 to 5 as fixed effects. Sampling month and the identity of crop plant 440 
species and experimental/research purposes in the metadata were set as random effects. A logit-441 
link function and binomial errors was assumed in the GLMM after converting the response 442 
variable into a binary format [disease level 1 (= 1) vs. disease levels 2–5 (= 0)]. The analysis was 443 
performed with the “glmer” function of the R lme4 package (82).   444 

  445 
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Microbes associated with crop disease/health status 446 

For each microbial OTU constituting the modules, we evaluated specificity of occurrences in 447 
samples differing in crop disease levels based on a randomization analysis. For the calculation, 448 
the original sample × OTU matrices of prokaryotes and fungi were respectively rarefied to 1,000 449 
reads per sample, being merged into an input data matrix. Within the combined sample ´ OTU 450 
matrix, samples were categorized into the two crop disease levels (disease level 1 vs. disease 451 
levels 2-5). Mean read counts across samples displaying each of the two disease levels were then 452 
calculated for each OTU. Meanwhile, mean read counts for respective disease levels were 453 
calculated as well for randomized matrices, in which disease labels of the samples were shuffled 454 
(10,000 permutations). For i-th OTU, standardized specificity to disease level j (𝑠?@) was obtained 455 
as follows: 456 

𝑠?@ =	
A!"BCDEF(G!")

HI(G!")
, 457 

where 𝑂?@ and 𝑅?@ is the mean read counts of i-th OTU across disease-level-j samples in the 458 
observed and randomized matrices, respectively, and 𝑀𝑒𝑎𝑛(𝑅?@) and 𝑆𝐷(𝑅?@) indicate mean and 459 
standard deviation across the randomized matrices. The P values obtained based on the 460 
randomization analysis were adjusted with the Benjamini-Hochberg method [i.e., false discovery 461 
rate (FDR)]. The relationship between the standardized specificity index and FDR is shown in 462 
Figure S4. This randomization approach was also applied to the analyses of each OTU’s 463 
specificity to crop plant identity and that to experimental/research purpose identity (Figs. S6-7). 464 

 The specificity of microbial OTUs to crop disease levels was performed as well at the local 465 
scale. Specifically, in each of the six sub-datasets representing unique combinations of research 466 
sites, crop plant species, and experimental/research purposes, the abovementioned randomization 467 
analysis was performed: each sub-dataset included 69 to 198 soil samples (Data S2). For the 468 
OTUs showing exceptionally strong specificity to the minimal crop disease level (standardized 469 
specificity score ³ 6.0; FDR < 0.0001), supplemental analyses of generalized linear models 470 
(GLMs) were conducted. In each GLM of crop disease/health status (disease level 1 vs. disease 471 
levels 2-5) with a logit-link function with binomial errors, the relative abundance of a target OTU 472 
was included as an explanatory variable.   473 

 474 

Microbe-to-microbe network 475 

To infer potential interactions between microbial OTUs, the algorithm of sparse inverse 476 
covariance estimation for ecological association inference (SPIEC-EASI) was applied based on 477 
the Meinshausen-Bühlmann (MB) method as implemented in the SpiecEasi package (39) of R. In 478 
total, 2,305 soil samples from which both prokaryotic and fungal community data were available 479 
were subjected to the analysis. Note that CLR-transformation was performed internally with the 480 
“spiec.easi” function. The network inference based on co-occurrence patterns allowed us to 481 
detect pairs of microbial OTUs that potentially interact with each other in facilitative ways and/or 482 
those that might share ecological niches (e.g., preference for edaphic factors). Because estimation 483 
of co-occurrence patterns was not feasible for rare nodes, the prokaryotic and fungal OTUs that 484 
appeared in more than 10 % of the sequenced samples were included in the input matrix of the 485 
network analysis. Network modules, within which closely associated OTUs were interlinked with 486 
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each other, were identified with the algorithm based on edge betweenness (83) using the igraph 487 
package (84) of R. For each module in the inferred co-occurrence network, mean standardized 488 
specificity to disease level 1 were calculated across constituent OTUs.   489 

  To explore potential keystone microbes within the network, we scored respective OTUs on 490 
the basis of their topological positions. Among the indices used for evaluating OTUs, 491 
betweenness centrality (85), which measures the extent to which a given nodes (OTU) is located 492 
within the shortest paths connecting pairs of other nodes in a network, is commonly used to find 493 
hubs mediating flow of effects in a network. The network centrality scores were normalized as 494 
implemented in the igraph packages of R. In addition, by focusing on the above-mentioned 495 
network modules, we ranked OTUs based on their within-module degree and among-module 496 
connectivity (86). The former index is obtained as the number of nodes linked with a target node 497 
within a target network module, suggesting the topological importance of a node within the 498 
module it belongs to. The latter index represents the extent to which a node is linked with other 499 
nodes belonging to different network modules. Within-module degree was z-standardized (i.e., 500 
zero-mean and unit-variance) within each module, while among-module connectivity was defined 501 
to vary between 0 to 1. In addition to those indices for evaluating topological roles within a 502 
network, eigenvector centrality (87) was calculated for respective nodes.  503 

 504 

Data availability 505 

The 16S rRNA and ITS sequencing data are available from the DNA Data Bank of Japan (DDBJ 506 
accession: DRA015491 and DRA015506). The microbial community data are deposited at our 507 
GitHub repository (https://github.com/hiro-toju/Soil_Microbiome_NARO3000).  508 

 509 

Code availability 510 

All the R scripts used to analyze the data are available at the GitHub repository 511 
(https://github.com/hiro-toju/Soil_Microbiome_NARO3000). 512 
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Table 1 | Effects of environmental variables on prokaryotic/fungal community structure. For each 783 
set of categorical/continuous environmental variables, a PERMANOVA was performed for each 784 
of the prokaryotic and fungal community datasets.  785 
 786 
Model Dataset Variable df R2 F P 

Categorical variables Prokaryotes Research site 34 0.051 5.13 < 0.001 
  

Month 11 0.014 4.36 < 0.001 
  

Crop 16 0.006 1.21 0.030 
  

Former crop 22 0.024 3.78 < 0.001 
  

Soil category 10 0.006 2.12 < 0.001 
  

   Residual 2301 0.673 
  

  
   Total 2400 1.000 

  
       
 

Fungi Research site 33 0.064 6.91 < 0.001 
  

Month 11 0.012 3.96 < 0.001 
  

Crop 15 0.006 1.54 < 0.001 
  

Former crop 20 0.023 4.14 < 0.001 
  

Soil category 10 0.005 1.75 < 0.001 
  

   Residual 2109 0.591 
  

  
   Total 2206 1.000 

  
       

Continuous variables Prokaryotes pH 1 0.011 16.52 < 0.001 
  

Electrical conductivity 1 0.009 14.09 < 0.001 
  

Available P 1 0.009 13.81 0.626 
  

C/N ratio 1 0.004 6.19 < 0.001 
  

Latitude 1 0.006 9.00 < 0.001 
  

Longitude 1 0.008 11.41 < 0.001 

  Prokaryote/fungus ratio 1 0.004 5.98 < 0.001 
  

   Residual 1408 0.936 
  

  
   Total 1415 1.000 

  

 
Fungi 

     

  
pH 1 0.013 19.64 < 0.001 

  
Electrical conductivity 1 0.011 17.49 < 0.001 

  
Available P 1 0.009 13.38 0.477 

  
C/N ratio 1 0.008 12.74 < 0.001 

  Latitude 1 0.016 25.58 < 0.001 
  

Longitude 1 0.017 26.37 0.230 

  Prokaryote/fungus ratio 1 0.009 13.61 < 0.001 
  

   Residual 1408 0.904 
  

       Total 1415 1 
  

 787 
  788 
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Table 2 | Relationship between prokaryotic/fungal community structure on the disease level of 789 
crop plants. A GLMM of crop plants’ disease level (disease level 1 vs. disease levels 2-5) with a 790 
logit-link function and binomial errors was constructed by setting principal components of 791 
prokaryotic/fungal community structure (Fig. 2) as explanatory variables (fixed effects). The 792 
identity of experimental/research purposes, sampling month, and crop plant species were 793 
included as random effects in the GLMM. 794 
 795 

Dataset Variable z P 

Prokaryotes PC1 1.59 0.1111 

 (N = 1,379) PC2 -1.65 0.1000 
 

PC3 1.82 0.0684 
 

PC4 -2.32 0.0205 
 

PC5 3.98 0.0001 
    

Fungi PC1 1.52 0.1281 

 (N = 1,320) PC2 1.39 0.1656 
 

PC3 -2.11 0.0348 
 

PC4 2.62 0.0089 

  PC5 -0.84 0.4002 

796 
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Table 3 | Prokaryotic and fungal OTUs showing highest associations with crop health status within local croplands. Among the six sub-datasets 797 
representing unique combinations of research sites, crop plant species, and research experimental/research purposes, OTUs showing strongest 798 
specificity to the minimal crop disease level (z-standardized specificity to disease level 1 ³ 6.0) were observed in two sub-datasets (“eggplant in 799 
Kuki City” and “tomato in Kashihara City”). The OTUs are shown with the NCBI BLAST top-hit results. See Data S2 for the full results. 800 

 801 

        Specificity to 
disease level 1 BLAST top-hit results 

Site Crop Experiment/research 
identity ID Score FDR Scientific Name Query 

cover (%) E value Identity (%) Accession   

Kuki Eggplant Control of bacterial wilt Bac_00034 6.53 < 0.0001 Denitratisoma oestradiolicum 100 9.0E-103 95.1 KF810120.1 

   Bac_00044 6.67 < 0.0001 Nocardioides cynanchi 100 4.0E-121 99.6 CP044344.1 

   Bac_00061 7.12 < 0.0001 Piscinibacter aquaticus 100 4.0E-121 99.6 KY284087.1 

   Bac_00224 7.52 < 0.0001 Dongia sp.  100 9.0E-123 100.0 AB835804.1 

   Bac_00237 8.76 < 0.0001 Chondromyces robustus 100 2.0E-89 91.8 AJ233942.2 

   Fun_0059 6.83 < 0.0001 Moesziomyces aphidis 100 9.0E-123 100.0 MH777069.1 

   Fun_1871 6.27 < 0.0001 Pseudeurotium bakeri 100 3.0E-122 100.0 MK911621.1 

   Fun_3676 7.72 < 0.0001 Cladosporium proteacearum 100 8.0E-118 100.0 OR857360.1 

   Fun_3688 6.38 < 0.0001 Nigrospora sphaerica 100 8.0E-118 100.0 OP113684.1 

   Fun_3993 7.01 < 0.0001 Fusarium equiseti 100 3.0E-112 99.6 MT588081.1 

   Fun_4311 8.75 < 0.0001 Gibellulopsis nigrescens 100 5.0E-110 100.0 OP498056.1 

Kashihara Tomato Control of Fusarium wilt Bac_00031 6.74 < 0.0001 Ramlibacter algicola 100 9.0E-123 100.0 NR_175506.1 

   Bac_00861 6.98 < 0.0001 Rhizomicrobium sp. 100 4.0E-116 98.4 LN876448.1 

     Fun_0056 6.28 < 0.0001 Corynascus sepedonium 100 9.0E-123 100.0 OW986289.1 

 802 

  803 
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Table 4 | Representative prokaryotic and fungal OTUs in network modules with highly positive/negative associations with crop plant health. In 804 
each of the modules 2, 6, and 8 (Fig. 4), the top-five OTUs with the highest specificity to the minimal crop disease level (specificity to disease 805 
level 1; see Fig. S4 for the relationship between the specificity score and FDR). For each OTU, network degree, betweenness centrality, within-806 
module degree (z-standardized), and among-module connectivity (Fig. 6) are presented with the NCBI BLAST top-hit results. Likewise, in each 807 
of the modules 1 and 7 (Fig. 4), the top-five OTUs negatively associated with the minimal crop disease level are shown. See Data S3 for the full 808 
results.  809 

    Specificity to 
disease level 1 Network scores BLAST top-hit results 

Module OTU ID Score FDR Degree Betweenness 
Within-
module 
degree 

Module 
connectivity Scientific Name 

Query 
cover 
(%) 

E value Identity 
(%) Accession   

Module 2 Bac_00147 7.526 < 0.0001 4 0.001 -0.693 0.625 Botrimarina hoheduenensis 99 2.0E-90 92.2 NR_173585.1 

 (positive) Bac_00469 6.307 < 0.0001 5 0.001 -1.214 0.720 Luteitalea pratensis 100 9.0E-108 96.3 NR_156918.1 

 Bac_00061 4.657 < 0.0001 3 0.001 -1.214 0.667 Piscinibacter aquaticus 100 4.0E-121 99.6 KY284087.1 

 Bac_00002 4.652 < 0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1 

 Bac_00463 4.166 < 0.0001 5 0.002 0.347 0.320 Flavobacterium sufflavum 100 9.0E-123 100.0 NR_171469.1 

Module 6 Bac_00025 9.477 < 0.0001 5 0.001 0.189 0.000 Gemmatimonas aurantiaca 100 4.0E-86 91.0 KF228166.1 

 (positive) Bac_00258 7.205 < 0.0001 14 0.011 2.587 0.357 Thermanaerothrix daxensis 100 4.0E-76 88.6 NR_117865.1 

 Fun_4447 7.151 < 0.0001 10 0.017 -0.610 0.780 Plectosphaerella cucumerina 100 2.0E-108 100.0 MT529301.1 

 Fun_0071 7.093 < 0.0001 6 0.003 -1.009 0.722 Schizothecium miniglutinans 100 2.0E-104 95.5 MW472119.1 

 Bac_00182 6.787 < 0.0001 21 0.037 1.788 0.649 Brevitalea aridisoli 100 9.0E-93 92.7 NR_151987.1 

Module 8 Bac_00294 9.679 < 0.0001 7 0.002 0.000 0.571 Luteitalea pratensis 100 4.0E-81 89.8 NR_156918.1 

 (positive) Bac_00171 9.499 < 0.0001 11 0.012 1.063 0.628 Membranihabitans marinus 100 9.0E-88 91.4 OL441066.1 

 Fun_4070 8.282 < 0.0001 10 0.006 -0.532 0.700 Mortierella sp. 80 3.0E-87 99.5 OP799297.1 

 Bac_00138 7.904 < 0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1 

 Bac_00339 7.297 < 0.0001 5 0.003 -1.063 0.480 Vicinamibacter silvestris 100 2.0E-74 88.2 NR_151905.1 

Module 1 Bac_00165 -9.211 < 0.0001 19 0.035 0.903 0.582 Ureibacillus suwonensis 96 1.0E-76 89.5 JX914499.1 

 (negative) Bac_00004 -7.370 < 0.0001 17 0.021 1.134 0.512 Nonomuraea phyllanthi 100 9.0E-123 100.0 CP045572.1 

 Bac_00010 -7.370 < 0.0001 4 0.001 -0.714 0.375 Streptomyces ardesiacus 100 9.0E-123 100.0 OR873433.1 

 Bac_00282 -7.289 < 0.0001 9 0.009 0.672 0.000 Hyphomicrobium aestuarii 100 4.0E-111 97.1 NR_104954.1 

 Bac_00036 -6.531 < 0.0001 16 0.011 1.596 0.305 Nitrolancea hollandica 100 9.0E-88 91.5 MW367426.1 

Module 7 Fun_4028 -8.585 < 0.0001 5 0.000 -0.490 0.320 Fusarium oxysporum 100 6.0E-114 100.0 MF281350.2 

 (negative) Arc_006 -8.544 < 0.0001 8 0.006 -0.490 0.594 Nitrososphaera viennensis 100 9.0E-123 100.0 NR_134097.1 

 Bac_00195 -8.079 < 0.0001 14 0.019 1.218 0.449 Chromobacterium amazonense 100 3.0E-88 91.5 OQ061977.1 

 Bac_00062 -7.281 < 0.0001 13 0.011 1.218 0.379 Sphingomonas segetis 100 4.0E-116 98.4 NR_175421.1 

  Bac_00098 -6.557 < 0.0001 18 0.026 1.218 0.537 Geodermatophilus normandii 100 9.0E-118 98.8 MT214187.1 
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Table 5 | Within- and among-module hubs in the network. In each of the modules highlighted in Table 4 and Figure 6, the top-three OTUs with 811 
the highest within-module degree (z-standardized) or among-module connectivity are shown. See Data S3 for the full results.  812 

 813 

 
Focused 

    Specificity to 
disease level 1 Network scores BLAST top-hit results 

index Module OTU ID Score FDR Degree Betweenness Within-module 
degree 

Module 
connectivity Scientific Name 

Query 
cover 
(%) 

E value Identity (%) Accession   

Within Module 2 Bac_00011 3.104 0.0013 13 0.018 1.907 0.663 Pseudomonas izuensis 100 9.0E-123 100.0 OR841525.1 

  (positive) Bac_00057 2.741 0.0063 6 0.002 1.387 0.000 Massilia violaceinigra 100 9.0E-123 100.0 MT373681.1 

  Bac_00002 4.652 < 0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1 

 Module 6 Bac_00258 7.205 < 0.0001 14 0.011 2.587 0.357 Thermanaerothrix daxensis 100 4.0E-76 88.6 NR_117865.1 

  (positive) Bac_00182 6.787 < 0.0001 21 0.037 1.788 0.649 Brevitalea aridisoli 100 9.0E-93 92.7 NR_151987.1 

  Arc_004 6.089 < 0.0001 19 0.027 1.388 0.742 Nitrosotenuis chungbukensis 100 9.0E-123 100.0 CP130341.1 

 Module 8 Bac_00138 7.904 < 0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1 

  (positive) Bac_00260 5.320 < 0.0001 9 0.006 1.595 0.346 Crenobacter cavernae 100 4.0E-96 93.5 CP031337.1 

  Bac_00171 9.499 < 0.0001 11 0.012 1.063 0.628 Membranihabitans marinus 100 9.0E-88 91.4 OL441066.1 

 Module 1 Bac_00014 -4.481 < 0.0001 22 0.025 3.676 0.000 Gemmatimonas phototrophica 100 2.0E-89 91.8 CP011454.1 

  (negative) Bac_00055 -5.245 < 0.0001 18 0.015 2.752 0.000 Microbispora rosea 100 9.0E-123 100.0 MN826183.1 

  Fun_0033 -1.088 0.1752 17 0.026 2.521 0.000 Trichoderma atroviride 100 9.0E-123 100.0 MN429074.1 

 Module 7 Bac_00045 -1.380 0.1103 17 0.017 2.356 0.304 Pseudolabrys taiwanensis 100 9.0E-113 97.6 CP031417.1 

  (negative) Bac_00116 -3.636 0.0003 13 0.006 2.071 0.000 Streptomyces spinosirectus 100 9.0E-123 100.0 CP090447.1 

  Bac_00218 -5.182 < 0.0001 13 0.010 1.502 0.260 Dyella ginsengisoli 100 9.0E-123 100.0 KY228986.1 

Among Module 2 Bac_00039 -1.782 0.0537 11 0.027 0.347 0.744 Arenimonas daechungensis 100 4.0E-116 98.4 NR_109442.1 

  (positive) Bac_00002 4.652 < 0.0001 10 0.019 0.347 0.720 Arthrobacter globiformis 100 9.0E-123 100.0 OR780585.1 

  Bac_00469 6.307 < 0.0001 5 0.001 -1.214 0.720 Luteitalea pratensis 100 9.0E-108 96.3 NR_156918.1 

 Module 6 Fun_4447 7.151 < 0.0001 10 0.017 -0.610 0.780 Plectosphaerella cucumerina 100 2.0E-108 100.0 MT529301.1 

  (positive) Fun_3979 5.139 < 0.0001 6 0.008 -1.409 0.778 Enterocarpus grenotii 100 8.0E-113 99.6 OU989357.1 

  Arc_004 6.089 < 0.0001 19 0.027 1.388 0.742 Nitrosotenuis chungbukensis 100 9.0E-123 100.0 CP130341.1 

 Module 8 Bac_00138 7.904 < 0.0001 20 0.023 1.595 0.715 Ectothiorhodospira mobilis 100 4.0E-86 91.0 MG264243.1 

  (positive) Bac_00180 2.213 0.0224 10 0.008 0.000 0.700 Rubrobacter spartanus 100 4.0E-66 86.3 NR_158052.1 

  Fun_4070 8.282 < 0.0001 10 0.006 -0.532 0.700 Mortierella kuhlmanii 100 9.0E-53 84.5 MH860115.1 

 Module 1 Fun_0043 0.485 0.3420 7 0.008 -0.714 0.735 Curvularia senegalensis 100 9.0E-123 100.0 MT476857.1 

  (negative) Fun_3610 1.694 0.0649 12 0.014 -0.714 0.708 Acremonium alternatum 100 2.0E-118 100.0 MT529342.1 
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  Bac_00042 1.601 0.0774 12 0.020 -0.252 0.625 Fulvivirgaceae bacterium 100 9.0E-108 96.3 OQ733332.1 

 Module 7 Fun_0027 2.861 0.0040 5 0.004 -1.059 0.640 Trichoderma virens 100 9.0E-123 100.0 MT530036.1 

  (negative) Bac_00032 -1.253 0.1331 4 0.001 -1.059 0.625 Streptomyces cyaneus 100 9.0E-123 100.0 OR807486.1 

    Bac_00070 2.191 0.0242 4 0.005 -1.059 0.625 Luteimonas aestuarii 100 9.0E-123 100.0 OQ255277.1 

 814 
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 816 
 817 

Fig. 1 | Comparison of soil microbiome structure across the Japan Archipelago. (A) Map of 818 
research sites across the Japan Archipelago. The 2,903 soil samples were grouped into 42 819 
research sits were when their latitude and longitude profiles were round to one decimal place. (B) 820 
Taxonomic compositions of prokaryotes (archaea and bacteria; top) and fungi (bottom) at the 821 
family level. See Fig. S1 for results at the genus, order, and class levels. (C) Compositions of 822 
functional groups of fungi.  823 
  824 
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 825 
 826 

Fig. 2 | Dimensions of soil microbiome structure. (A) Prokaryote and fungal community 827 
structure. Principal co-ordinate analyses (PCA) were performed based on OTU-level 828 
compositional matrices respectively for the prokaryotic and fungal communities. The identify of 829 
crop plants is shown by colors. See Figures S2-3 for relationship between community structure 830 
and environmental factors. (B) Correlation between PCA scores and soil environmental factors. 831 
(C) Crop disease level and microbial community structure. On the PCA surface, crop disease 832 
level (see Materials and Methods) is indicated. 833 
  834 
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 835 
 836 

Fig. 3 | Relationship between OTU abundance and crop plant health. Among the six sub-datasets 837 
representing unique crop plant ´ site combinations, OTUs showing strongest specificity to the 838 
minimal crop disease level (z-standardized specificity to disease level 1 ³ 6.0) were observed in 839 
two sub-datasets (“eggplant in Kuki City” and “tomato in Kashihara City”; Table 4; see Data S2 840 
for full results). For each OTU in each sub-dataset, generalized linear model with a logit function 841 
and binomial errors was constructed to examine relationship between OTU relative abundance 842 
and crop disease level (level 1 vs. levels 2-5). All the regression lines are statistically significant 843 
(FDR < 0.0001). The OTUs exhibiting statistically significant specificity to disease level 1 in the 844 
analysis with the entire dataset (FDR < 0.025; two-tailed test; Fig. S4-5) are highlighted with red 845 
squares. 846 
  847 
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 848 
 849 

Fig. 4 | Architecture of microbe-to-microbe network. (A) Co-occurrence networks of archaea, 850 
bacteria, and fungi. Specificity of occurrences to disease-level-1 (the lowest disease level) 851 
samples (Figs. S4-5) is shown for each OTU within the network. The specificity is shown as node 852 
size separately for positive (left) and negative (right) associations with least-diseased states of 853 
crop plants. Colors indicate network modules, in which microbial OTUs in 854 
commensalistic/mutualistic interactions and/or those sharing environmental preferences are 855 
densely linked with each other. See Figure S8 for taxonomy (archaea, bacteria, or fungi) of 856 
respective nodes. (B) Characteristics of network modules. Mean specificity to the minimal crop 857 
disease level (disease level 1; left in the panel A) is shown for each network module.  858 
  859 
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 860 
 861 

Fig. 5 | Properties of the microbe-to-microbe network modules. For each network module, 862 
specificity to the minimal crop disease level (disease level 1) is shown for each prokaryote/fungal 863 
OTU along the vertical axis. Betweenness centrality, which measures the extent to which an OTU 864 
is located within the shortest paths connecting pairs of other nodes in a network, is shown along 865 
the horizontal axis. The OTUs mentioned in the main text are highlighted with red squares.  866 
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 868 
 869 

Fig. 6 | Topological roles of OTUs within and across network modules. (A) Position of potential 870 
hubs within the network. In each graph, node size roughly represents within-module degree (left) 871 
or among-module connectivity (right). (B) Network hub indices. For each OTU, within-module 872 
degree represents the number of the OTUs linked with the target OTU within a module (z-873 
standardized). Among-module connectivity represents the extent to which an OTU interlinks 874 
OTUs belonging to different network modules. The prokaryotic/fungal OTU with the highest 875 
within-module degree or among-module connectivity in each of the modules 1, 2, 6, 7, and 8 876 
(highlighted in the main text and Table 4) is indicated with its OTU ID. See Table 5 for the 877 
taxonomic profiles of the OTUs.  878 
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