

1 Soil Prokaryotic and Fungal Biome Structures Associated with 2 Crop Disease Status across the Japan Archipelago

3
4 Hiroaki Fujita¹, Shigenobu Yoshida², Kenta Suzuki³ and Hirokazu Toju^{1,4,5†}
5

6 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
7

8 ²Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba,
Ibaraki 305-8666, Japan

9 ³Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba,
10 Ibaraki 305-0074, Japan

11 ⁴Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies,
12 Kyoto University, Kyoto 606-8501, Japan

13 ⁵Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University,
14 Kyoto 606-8501, Japan

15
16 [†]**Correspondence:** Hirokazu Toju (toju.hirokazu.4c@kyoto-u.ac.jp).
17
18

19 ABSTRACT

20 Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural
21 productivity and sustainability. A crucial step for exploring soil microbiomes with high
22 ecosystem functions is to perform statistical analyses on potential relationship between
23 microbiome structure and functions based on comparisons of hundreds or thousands of
24 environmental samples collected across broad geographic ranges. In this study, we integrated
25 agricultural field metadata with microbial community analyses by targeting > 2,000 soil samples
26 collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1–
27 42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational
28 taxonomic units detected across the fields of 19 crop plant species allowed us to conduct
29 statistical analyses (permutational analyses of variance, generalized linear mixed models, and
30 randomization analyses) on relationship among edaphic factors, microbiome compositions, and
31 crop disease prevalence. We then examined whether the diverse microbes form species sets
32 varying in potential ecological impacts on crop plants. A network analysis suggested that the
33 observed prokaryotes and fungi were actually classified into several species sets (network
34 modules), which differed substantially in associations with crop disease prevalence. Within the
35 network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an
36 ammonium-oxidizing archaeum, an antibiotics-producing bacterium, and a potentially
37 mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive
38 and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome

39 structure will provide a basis for designing and managing agroecosystems with high disease-
40 suppressive functions.

41

42 **IMPORTANCE**

43 Understanding how microbiome structure and functions are organized in soil ecosystems is one
44 of the major challenges in both basic ecology and applied microbiology. Given the ongoing
45 worldwide degradation of agroecosystems, building frameworks for exploring structural diversity
46 and functional profiles of soil microbiomes is an essential task. Our study provides an overview
47 of cropland microbiome states in light of potential crop-disease-suppressive functions. The large
48 dataset allowed us to explore highly functional species sets that may be stably managed in
49 agroecosystems. Furthermore, an analysis of network architecture highlighted species that are
50 potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-
51 suppressive states. By extending the approach of comparative analyses towards broader
52 geographic ranges and diverse agricultural practices, agroecosystem with maximized biological
53 functions will be further explored.

54

55 **KEYWORDS**

56 alternative stable states, community stability, ecosystem functions, keystone species, meta-
57 analysis, microbial interactions, network hubs, plant pathogens

58

59 **RUNNING TITLE**

60 Soil microbiome structure and crop disease prevalence

61

62

63 The ongoing global-scale degradation of agroecosystems is threatening food production (1, 2).
64 Maximizing the functions of microbial communities (microbiomes) is a prerequisite for building
65 bases of sustainable agriculture (3–7). Archaea, bacteria, and fungi in the soil drive cycles of
66 carbon, nitrogen, and phosphorus within agroecosystems (8–12). Many of those microbes also
67 work to promote crop plant's tolerance to drought and high temperature stresses as well as
68 resistance to pests and pathogens (13–18). Importantly, those microbes vary greatly in their
69 physiological impacts on crop plants (19–21). Therefore, gaining insights into soil microbiome
70 compositions is an essential starting point for managing resource-use efficient and disease-
71 tolerant agroecosystems.

72 Since the emergence of high-throughput DNA sequencing, a number of studies have
73 revealed taxonomic compositions of prokaryotes and/or fungi in agroecosystem soil (22–24).
74 Those studies have explored microbial species that potentially support crop plant growth and/or
75 prevent crop plant disease (9, 16, 25, 26). Meanwhile, each of the previous studies has tended to
76 focus on specific crop plant species in specific farm fields (27), although there are some
77 exceptionally comprehensive studies comparing multiple research sites (15, 22). Therefore,
78 generality in relationship between microbiome structure and functions remain to be examined in
79 broader contexts [cf. global-scale analyses of soil microbiomes in natural ecosystems (28–31)]. In
80 other words, we still have limited knowledge of general patterns and features common to soil
81 microbiomes with high crop yield or those with least crop disease risk. Thus, statistical analyses
82 comparing microbiome structure among diverse crop plants across broad geographic ranges (15,
83 22) are expected to deepen our understanding of microbial functions in agroecosystems. In
84 particular, comparative studies of thousands of soil samples covering a wide range of latitudes
85 will provide opportunities for finding general properties common to microbial communities with
86 plant-growth-promoting or crop-disease-suppressive functions across diverse climatic conditions.

87 Large datasets of soil microbiomes will also allow us to estimate interspecific interactions
88 between microbial species (3, 32, 33). Archaea, bacteria, and fungi in soil ecosystems potentially
89 form entangled webs of facilitative or competitive interactions, collectively determining
90 ecosystem-level functions such as the efficiency of nutrient cycles and the prevalence of plant
91 pathogens (34, 35). In fact, ecological network studies have inferred how sets of microbial
92 species could respond to the outbreaks or experimental introductions of crop plant pathogens
93 (36–38). Although various statistical platforms for deciphering the architecture of such microbial
94 interaction networks have been proposed (32, 39), hundreds or more of microbial community
95 samples are required to gain reliable inferences on interactions that reproducibly occur in real
96 ecosystems (40). Thus, datasets consisting of thousands of soil samples collected across a number
97 of local ecosystems will provide fundamental insights into how soil ecological processes are
98 driven by cross-kingdom interactions involving archaea, bacteria, and fungi.

99 In this study, we conducted a comparative analysis of agroecosystem soil microbiomes
100 based on > 2,000 soil samples collected from subtropical to cool-temperate regions across the
101 Japan Archipelago. Based on the amplicon sequencing dataset representing farm fields of 19 crop
102 plant species, we profiled prokaryotic and fungal community compositions in conventional
103 agricultural fields in Japan. By compiling the metadata of the soil samples, we then examined
104 biotic and abiotic factors explaining diversity in the prevalence of crop disease. The soil
105 microbiome dataset was further used to infer the structure of a microbe-to-microbe coexistence
106 network consisting of diverse archaea, bacteria, and fungi. Specifically, we examined whether the

107 network architecture was partitioned into compartments (modules) of closely interacting
108 microbial species. In addition, we tested the hypothesis that such network modules could differ in
109 their positive/negative associations with crop plant disease/health status. To explore prokaryotic
110 and fungal species keys to manage agroecosystem structure and functions, we further explored
111 “core” or “hub” species that were placed at the central positions within the inferred microbial
112 interaction network. Overall, this study provides an overview of soil microbial diversity of
113 cropland soil across a latitudinal gradient, setting a basis for diagnosing soil ecosystem status and
114 identifying sets of microbes to be controlled in sustainable crop production.

115

116 RESULTS

117 Diversity of agroecosystem microbiomes

118 We compiled the field metadata of 2,903 soil samples collected in the research projects of
119 National Agricultural and Food Research Organization (NARO), Japan. The bulk soil of
120 farmlands was sampled from subtropical to cool-temperate regions (26.1–42.8 °N) across the
121 Japan Archipelago from 2006 to 2014, targeting 19 crop plant species (Fig. 1A; Data S1). Most
122 of the croplands were managed with conventional agricultural practices (characterized by
123 intensive tillage and chemical fertilizer/pesticide application), while some were experimentally
124 controlled as organic agricultural fields. The metadata (Data S1) included the information of
125 chemical [e.g., pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available
126 phosphorous concentration], physical (e.g., soil taxonomy), and biological (e.g., crop disease
127 level) properties, providing a platform for profiling ecosystem states of cropland soil.

128 To integrate the metadata with the information of microbial community structure, we
129 performed DNA metabarcoding analyses of both prokaryotes (archaea and bacteria) and fungi.
130 After a series of quality filtering, prokaryotic and fungal community data were obtained from
131 2,676 and 2,477 samples, respectively. In total, 632 archaeal operational taxonomic units (OTUs)
132 representing 22 genera (24 families), 26,868 bacterial OTUs representing 1,120 genera (447
133 families), and 4,889 fungal OTUs representing 1,190 genera (495 families) were detected (Fig.
134 1B; Fig. S1).

135 The prokaryotic communities lacked apparently dominant taxa at the genus and family
136 levels (Fig. 1B). In contrast, the fungal communities were dominated by fungi in the families
137 Mortierellaceae, Chetomiaceae, and Nectriaceae, depending on localities (Fig. 1B). A reference
138 database profiling of fungal functional groups suggested that the fungal communities were
139 dominated by soil saprotrophic and plant pathogenic fungi (Fig. 1C) as characterized by the
140 dominance of *Mortierella* and *Fusarium* at the genus level (Fig. S1). Meanwhile, mycoparasitic
141 fungi had exceptionally high proportions at some research sites, as represented by the dominance
142 of *Trichoderma* (Hypocreaceae) at those sites (Fig. 1B; Fig. S1).

143

144 Microbiome structure and crop disease prevalence

145 Compiling the metadata of edaphic factors, we found that variation in the community structure of
146 prokaryotes and fungi was significantly explained by crop plant identity and soil taxonomy as
147 well as by soil chemical properties such as pH, electrical conductivity, and C/N ratio, (Fig. 2A-B;
148 Figs. S2-3; Table 1). In addition, the ratio of prokaryotic abundance to fungal abundance (see

149 Materials and Methods for details) was associated with both prokaryotic and fungal community
150 structure (Table 1). Nonetheless, the explanatory powers of these variable were all small as
151 indicated by the low R^2 values (Table 1).

152 Both prokaryotic and fungal community structure was significantly associated with the
153 severity of crop disease (Fig. 2C; Table 2). Specifically, the crop plants' disease/health status
154 (disease level 1 vs. disease levels 2-5; see Materials and Methods) was explained by some of the
155 principal components (PCs) defined based on prokaryotic/fungal community structure (Fig. 2B).

156

157 **Microbes associated with crop disease/health status**

158 We explored microbial OTUs whose prevalence are associated with crop plant disease/health
159 status. Based on a randomization analysis, prokaryotic/fungal OTUs whose distribution is biased
160 in samples representing the minimal crop disease level (disease level 1) were screened (Fig. S4).

161 To examine whether the OTUs highlighted in the across-Japan spatial scale could actually
162 show tight associations with crop disease status at local scales, the randomization analysis was
163 performed as well in each of the six sub-datasets representing unique combinations of research
164 sites, crop plant species, and experimental/research purposes (Data S2). Statistically significant
165 specificity for crop disease level (FDR < 0.025; two-tailed test) was observed for at least one
166 OTU in five of the six sub-datasets (Data S2). Among them, exceptionally strong specificity to
167 the minimal crop disease level (standardized specificity score ≥ 6.0 ; FDR < 0.0001) was detected
168 in two sub-datasets (Table 3). The relative abundance of these OTUs tightly associated with crop
169 disease level across samples within each sub-dataset (Fig. 3).
170

171 **Microbe-to-microbe network**

172 We then examined the network architecture of potential microbe-to-microbe interactions within
173 the soil microbiomes. The inferred network of coexistence was subdivided into several modules,
174 in which archaeal, bacterial, and fungal OTUs sharing environmental preferences and/or those in
175 positive interactions were linked with each other (Figs. 3A and S5-8). The network modules
176 differed considerably in their associations with crop-plant disease level (Fig. 4B; Fig. S5; Data
177 S3). Modules 2, 6, and 8, for example, were characterized by microbes associated with least
178 disease level. Module 6, which showed the highest mean specificity to the minimal crop disease
179 level (Fig. 4B), included a bacterium allied to the genus *Gemmatimonas* (Bac_00025), that allied
180 to the genus *Thermaanaerothrix* (Bac_00258), and a *Plectosphaerella* fungus (Fun_4447) (Table
181 4). In contrast to these modules, Modules 1 and 7 were constituted by microbes negatively
182 associated with crop plant health (Fig. 4B). Module 1 included a bacterium distantly allied to the
183 genus *Ureibacillus* (Bac_00165), a *Nonomuraea* bacterium (Bac_00004), and a *Streptomyces*
184 bacterium (Bac_00010), while Module 7 involved a *Fusarium* fungus (Fun_4028) and a
185 *Nitrososphaera* archaeum (Arc_006) (Table 4).

186

187 **Core species within the microbial network**

188 We next explored microbial OTUs that potentially have great impacts on community- or
189 ecosystem-scale processes based on an analysis of the microbe-to-microbe network architecture

190 (Data S3). Among the microbes disproportionately found from the samples with the minimal crop
191 disease level, a Pyrinomonadaceae bacterium allied to the genus *Brevitalea* (Bac_00182 in
192 Module 6; Table 4), for example, showed a high betweenness centrality score (Fig. 5).
193 Meanwhile, among the microbes negatively associated with crop health status, a bacterium
194 distantly allied to the genus *Ureibacillus* (Bac_00165 in Module 1; Table 4) was inferred to be
195 located at a central position within the network (Fig. 5).

196 We further ranked microbial OTUs in terms of their topological roles in interlinking
197 multiple network modules. We then found that OTUs linked with many other OTUs within
198 modules were not necessarily placed at the topological positions interconnecting different
199 modules (Fig. 6). In Module 6, which showed high specificity to the minimal crop disease level
200 (Fig. 4), a bacterium distantly allied to the genus *Thermanaerothrix* (Bac_00258) was designated
201 as a “within-module hub”, while a *Plectosphaerella* fungus (Fun_4447) showed a high “among-
202 module connectivity” score (Table 4). Likewise, in Module 1, which consisted of many OTUs
203 with negative associations with crop plant health (Fig. 4), a bacterium allied to the genus
204 *Gemmimonas* (Bac_00258) had the highest numbers of within-module links, while a
205 *Curvularia* fungus (Fun_0043) was inferred to be an among-module hub (Table 5). The list of
206 microbial OTUs placed at the interface of modules (OTUs with high among-module connectivity
207 scores) involved a *Nitrosotenuis* archaeum, *Arenimonas*, *Arthrobacter*, and *Streptomyces*
208 bacteria, and *Mortierella*, *Curvularia*, and *Trichoderma* fungi (Table 5).

209

210 DISCUSSION

211 We here profiled the diversity of agroecosystem microbiome structure across a latitudinal
212 gradient from cool-temperate to subtropical regions based on the analysis of > 2,000 soil samples.
213 As partially reported in previous studies comparing microbiome compositions across broad
214 geographic ranges (15, 22), prokaryotic and fungal community structure varied depending on
215 season, crop plant species, former crop identity, and background soil categories (Fig. 2A; Table
216 1). In addition, soil chemical properties such as pH, electrical conductivity, and C/N ratio as well
217 as the prokaryote/fungus abundance ratio significantly explained variation in microbiome
218 structure (Table 1). In contrast, available phosphorus concentrations had significant effects on
219 neither prokaryotic nor fungal communities in the multivariate model (Table 1), suggesting that
220 nitrogen cycles rather than phosphorous ones are more tightly linked with microbiome structure.
221 The integration of the microbiome datasets with agricultural field metadata allowed us to perform
222 statistical tests of potential relationship between microbiome structure and agroecosystem
223 performance (Fig. 2B; Table 2). A series of OTU-level analyses further highlighted
224 taxonomically diverse prokaryotes and fungi showing strong positive or negative associations
225 with crop health status (Figs. 3 and S4; Table 3).

226 We then examined how these microbes differing in associations with crop disease/health
227 status form a network of coexistence. The architecture of the network involving diverse archaeal,
228 bacterial, and fungal OTUs was highly structured, being partitioned into 11 modules (Fig. 4A).
229 Intriguingly, the network modules varied considerably in constituent microbes’ associations with
230 crop disease levels (Fig. 4B). This result suggests that sets of microbes can be used to design soil
231 microbiomes with crop-disease-suppressive functions. Among the detected modules, Modules 2,
232 6, and 8 were of particular interest with regard to the assembly of microbial OTUs positively

233 associated with crop health status (Figs. 4 and 5). In contrast, Modules 1 and 7 were constituted
234 mainly by microbial OTUs negatively associated with plant health (Fig. 4B). In particular,
235 Module 7 was characterized by the presence of a notorious plant pathogenic fungus, *Fusarium*
236 *oxysporum* [(41, 42); but see (43) for diversity of their impacts on plants]. All these modules
237 included both prokaryotes and fungi (Fig. S8; Data S3), illuminating the importance of inter-
238 kingdom interactions (3, 33). The presence of microbial species sets differing in plant-associated
239 ecological properties suggests that keeping specific sets of compatible prokaryotes and fungi is
240 essential for maximizing the stability of agricultural production (3).

241 The analysis of network architecture further allowed us to explore core or hub species
242 within the microbial network (Fig. 6). Because the microbes highlighted with the examined
243 network indices occupy key positions interconnecting many other microbes (44), their
244 increase/decrease is expected to have profound impacts on whole community processes (3, 32,
245 33). In particular, control or manipulation of microbes located at the central positions interlinking
246 different network modules (40) (i.e., microbes with high among-module connectivity; Fig. 6B)
247 may trigger drastic shifts in microbial community structure between disease-promotive and
248 disease-suppressive states (3). The candidate list of such core species involved an ammonium-
249 oxidizing archaeum (*Nitrosotenuis*) (45), an antibiotics-producing bacterium (*Streptomyces*) (46),
250 a prevalent soil fungus (*Mortierella*) (47, 48), a potentially mycoparasitic fungus (*Trichoderma*)
251 (49, 50), and fungi allied to plant pathogenic clades [*Curvularia* and *Plectosphaerella* (anamorph
252 = *Fusarium*)] (51, 52) (Table 5). Given that many of the bacterial and fungal taxa listed above are
253 culturable, experimental studies examining their ecological roles are awaited. Specifically, it
254 would be intriguing to test whether substantial shifts in soil microbiome structure and functions
255 can be caused by the introduction of those among-module hub microbes.

256 Although the dataset across a latitudinal gradient provided an opportunity for gaining
257 bird's-eye insights into the structure and potential functions of soil microbiomes, the results
258 should be interpreted carefully with the recognition of potential methodological shortcomings and
259 pitfalls. First, the approach of geographic comparison *per se* does not give a firm basis for
260 deciphering microbial community dynamics. To gain fundamental insights into microbiome
261 dynamics, we need to perform time-series monitoring (53–55) of soil prokaryotic and fungal
262 community compositions. Second, information of microbial communities alone does not provide
263 comprehensive insights into agroecosystem soil states. Given that soil ecosystem processes are
264 driven not only by microbes but also by nematodes, arthropods, earthworms, and protists (56–
265 59), simultaneous analyses of all prokaryotic and eukaryotic taxa (60, 61) will help us infer whole
266 webs of biological processes. Third, meta-analyses of agroecosystem performance across diverse
267 crop fields require utmost care because there is no firm criterion commonly applicable to
268 different crop plant species or different pest/pathogen species. As implemented in this study,
269 effects of such difference may be partially controlled by including them as random variables in
270 GLMMs (Table 2). Nonetheless, local-scale analyses targeting specific crop plant species and
271 disease symptoms (Fig. 3; Table 3; Data S2) are necessary to gain reliable inferences of potential
272 microbial functions. Fourth, along with the potential pitfall discussed above, network modules
273 can differ not only in properties related to crop disease/health status but also in those associated
274 with crop plant identity or cropland management (Figs. S6-7). Again, findings in broad-
275 geographic-scale analyses need to be supplemented by insights from local-scale observations
276 (Fig. 3). Fifth, amplicon sequencing approaches provide only indirect inference of biological

277 functions. With the current capacity of sequencing and bioinformatic technologies, it is hard to
278 assemble tens of thousands of microbial genomes based on the analysis of thousands of
279 environmental samples. Furthermore, due to the paucity of the information of fungal ecology and
280 physiology, it remains difficult to annotate high proportions of genes within fungal genomic data.
281 Nonetheless, with the accumulation of methodological breakthroughs, shotgun sequencing of soil
282 microbiomes will deepen our understanding of agroecosystem processes (62–64). Sixth, in this
283 study, full sets of metadata were not available for all the sequenced samples, inevitably
284 decreasing the number of samples examined in some statistical modeling. Although substantial
285 efforts had been made to profile cropland soils in the national projects in which the soil samples
286 were collected, continuous efforts are required to gain further comprehensive insights into
287 agroecosystem structure and functions.

288 Expanding the comparative microbiome analysis to different geographic regions and
289 agroecosystem management practices will contribute to a more comprehensive understanding of
290 microbiome structure and function. For example, comparison with soil agroecosystems in lower-
291 latitudinal or higher-latitudinal regions or meta-analyses covering multiple continents will
292 provide further comprehensive knowledge of the diversity of microbiome structure. In addition to
293 extensions towards broader geographic ranges, those towards diverse agroecosystem
294 management are of particular importance. Given that our samples were collected mainly from
295 croplands managed with conventional agricultural practices, involvement of soil samples from
296 regenerative or conservation agricultural fields (65–68) will reorganize our understanding of
297 relationship between microbiome compositions and functions. In conclusion, this data-driven
298 research lays the groundwork for understanding fundamental mechanisms in soil ecosystems,
299 offering innovative strategies for the design of sustainable agriculture.

300
301 **MATERIALS AND METHODS**

302 **Soil samples and metadata**

303 Over research projects of National Agricultural and Food Research Organization (NARO), which
304 were carried out through five national research programs funded by Ministry of Agriculture,
305 Forestry and Fisheries, 2,903 rhizosphere/bulk soil samples were collected from conventional
306 agricultural fields across the Japan Archipelago from January 23, 2006, to July 28, 2014 (Data
307 S1). When the latitude and longitude of the sampling positions were round to one decimal place,
308 42 research sites were distinguished. Across the metadata of the 2,903 samples, the information
309 of 19 crop plants, 34 former crop plants (including “no crop”), 13 soil taxonomic groups (e.g.,
310 “Andosol”), 60 experimental/research purposes (e.g., “soil comparison between organic and
311 conventional management”) was described. Likewise, the metadata included the information of
312 dry soil pH, electrical conductivity, carbon/nitrogen (C/N) ratio, and available phosphorous
313 concentration from, 2,830, 2,610, 2,346, and 2,249 samples, respectively. In addition, the
314 information of the severity of crop plant disease was available for 1,472 samples (tomato, 637
315 samples; Chinese cabbage, 336 samples; eggplant, 202 samples; celery, 97 samples; Broccoli, 96
316 samples, etc.). The values of the proportion of diseased plants or disease severity index (69) was
317 normalized within the ranges from 0 to 100, and they were then categorized into five levels (level
318 1, 0-20; level 2, 20-40; level3; 40-60; level 4, 60-80; level 5, 80-100). The plant pathogens
319 examined in the disease-level evaluation were *Colletotrichum gloeosporioides* on the strawberry,
320 *Fusarium oxysporum* on the celery, the lettuce, the strawberry, and the tomato, *Phytophthora*

321 *sojae* on the soybean, *Plasmoidiophora brassicae* on Cruciferae plants, *Pyrenopeziza lycopersici*
322 on the tomato, *Pythium myriotylum* on the ginger, *Ralstonia solanacearum* on the eggplant and
323 the tomato, and *Verticillium* spp. on Chinese cabbage. For continuous variables within the
324 metadata, emergent outliers (mean + 5 SD) were converted into “NA” in the data matrix used in
325 the following statistical analyses as potential measurement/recording errors. Unrealistic electrical
326 conductivity records (> 20) were converted into “NA” as well.

327 At each sampling position, five soil sub-samples collected from the upper layer (0-10 cm in
328 depth) at five points (ca. 100 g each) were mixed. The mixed soil sample (ca. 500 g) was then
329 sieved with 2-mm mesh in the field. The samples were stored at -20 °C until DNA extraction. In
330 laboratory conditions, 0.4 g of soil (fresh weight) was subjected to DNA extraction with
331 FastDNA SPIN Kit for Soil (Q-BioGene).

332

333 **DNA amplification and sequencing**

334 Profiling of soil microbial biodiversity was performed by targeting archaea, bacteria, and fungi.
335 For the amplification of the 16S rRNA V4 region of archaea and bacteria (prokaryotes), the set of
336 the forward primer 515f (5'- GTG YCA GCM GCC GCG GTA A -3') and the reverse primer
337 806rB (5'- GGA CTA CNV GGG TWT CTA AT -3') were used as described elsewhere (54).
338 The primers were fused with 3-6-mer Ns for improved Illumina sequencing quality and Illumina
339 sequencing primers. PCR was performed using KOD ONE PCR Master Mix (TOYOBO, Osaka)
340 with the temperature profile of 35 cycles at 98 °C for 10 seconds (denaturation), 55 °C for 5
341 seconds (annealing of primers), and 68 °C for 30 seconds (extension), and a final extension at 68
342 °C for 2 minutes. The ramp rate through the thermal cycles was set to 1 °C/sec to prevent the
343 generation of chimeric sequences. In the PCR, we added five artificial DNA sequence variants
344 with different concentrations (i.e., standard DNA gradients; 1.0×10^{-4} , 5.0×10^{-5} , 2.0×10^{-5} , 1.0
345 $\times 10^{-5}$, and 5.0×10^{-6} nM; Table S1) to the PCR master mix solution as detailed elsewhere (54). By
346 comparing the number of sequencing reads between the artificial standard DNA and real
347 prokaryotic DNA, the concentration of prokaryotic 16S rRNA genes in template DNA samples
348 were calibrated (54).

349 In addition to the prokaryotic 16S rRNA region, the internal transcribed spacer 1 (ITS1)
350 region of fungi was amplified using the set of the forward primer ITS1F_KYO1 (5'- CTH GGT
351 CAT TTA GAG GAA STA A -3') and the reverse primer ITS2_KYO2 (5' – TTY RCT RCG
352 TTC TTC ATC - 3') (70). PCR was performed using the Illumina-sequencing fusion primer
353 design mentioned above with the temperature profile of 35 cycles at 98 °C for 10 seconds, 53 °C
354 for 5 s seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2 minutes (ramp rate =
355 1 °C/sec). Newly designed artificial sequence variants (1.0×10^{-5} , 7.0×10^{-6} , 5.0×10^{-6} , 2.0×10^{-6} ,
356 and 1.0×10^{-6} nM; Table S1) were added to the PCR master mix as standard DNA gradients for
357 the calibration of the ITS sequence concentrations in the template DNA samples.

358 The PCR products of the prokaryotic 16S rRNA and fungal ITS1 regions were respectively
359 subjected to the additional PCR step for linking Illumina sequencing adaptors and 8-mer sample
360 identifier indexes with the amplicons. The temperature profile in the PCR was 8 cycles at 98 °C
361 for 10 seconds, 55 °C for 5 seconds, and 68 °C for 5 seconds, and a final extension at 68 °C for 2
362 minutes. The PCR products were then pooled for each of the 16S rRNA and fungal ITS1 regions

363 after a purification/equalization process with the AMPureXP Kit (Beckman Coulter, Inc., Brea).
364 Primer dimers, which were shorter than 200 bp, were removed from the pooled library by
365 supplemental purification with AMPureXP: the ratio of AMPureXP reagent to the pooled library
366 was set to 0.8 (v/v) in this process. The sequencing libraries of the two regions were processed in
367 an Illumina MiSeq sequencer (10% PhiX spike-in). Because the quality of forward sequences is
368 generally higher than that of reverse sequences in Illumina sequencing, we optimized the MiSeq
369 run setting in order to use only forward sequences. Specifically, the run length was set 271
370 forward (R1) and 31 reverse (R4) cycles to enhance forward sequencing data: the reverse
371 sequences were used only for discriminating between prokaryotic 16S and fungal ITS1 sequences
372 in the following bioinformatic pipeline.

373

374 **Bioinformatics**

375 In total, 23,573,405 sequencing reads were obtained in the Illumina sequencing (16S rRNA,
376 11,647,166 sequencing reads; ITS, 11,926,239 sequencing reads). The raw sequencing data were
377 converted into FASTQ files using the program *bcl2fastq* 1.8.4 distributed by Illumina. For each
378 of the 16S rRNA and fungal ITS1 regions, the output FASTQ files were demultiplexed using
379 *Claident* v0.9.2022.01.26 (71). The sequencing data were deposited to DNA Data Bank of Japan
380 (DDBJ) (Bioproject accession no.: PSUB018361). The removal of low-quality sequences and
381 OTU inferences were done using *DADA2* (72) v1.17.5 of R v3.6.3. The mean number of filtered
382 sequencing reads obtained per sample was 3,949 and 4,075 for the prokaryotic and fungal
383 datasets, respectively. The amplicon sequence variants (ASVs) obtained from the *DADA2*
384 pipeline were clustered using the *vsearch* v2.21.1 program (73) with the 98% and 97% cutoff
385 sequence similarity for prokaryotes and fungi, respectively. Taxonomic annotation of the
386 obtained prokaryotic and fungal OTUs were conducted based on the SILVA 138 SSU (74) and
387 the UNITE all_25.07.2023 (75) databases, respectively, with the *assignTaxonomy* function of
388 *DADA2*. The OTUs that were not assigned to the domain Archaea/Bacteria and the kingdom
389 Fungi were removed from the 16S rRNA and ITS1 datasets, respectively. For each target
390 organismal group (prokaryotes and fungi), we then obtained a sample × OTU matrix, in which a
391 cell entry depicted the number of sequencing reads of an OTU in a sample. The samples with less
392 than 1,000 reads were discarded from the matrices. The number of reads was insufficient for
393 comprehensively profiling rare microbial species, which are often targets of soil microbiome
394 studies. However, because data matrices including numerous rare OTUs could not be subjected to
395 the computationally intensive ecological analyses detailed below even if we used
396 supercomputers, we focused on major components of soil prokaryotic and fungal biomes. In other
397 words, our purpose here was to extract major components of agroecosystem soil microbiomes
398 across the Japan Archipelago, thereby finding core microbiome properties associated with
399 disease-suppressive and disease-susceptible agroecosystems. For the sample × OTU matrix,
400 centered log-ratio (CLR) transformation (76–78) was performed using the *ALDEx2* v1.35.0
401 package (79) of R.

402 In total, prokaryotic and fungal community data were obtained for 2,676 and 2,477
403 samples, respectively. For fungal OTUs, putative functional groups (e.g., “plant pathogen”) were
404 inferred using the program *FungalTraits* (80). The estimation of DNA concentrations of the
405 prokaryotic 16S rRNA and fungal ITS regions was performed, respectively, based on the

406 calibration with the standard DNA gradients (artificial DNA variants introduced to the PCR
407 master mix solutions) using the bioinformatic pipeline detailed elsewhere (54).

408

409 **Calculation of prokaryote/fungus ratio**

410 Based on the estimated concentrations of prokaryotic 16S rRNA and fungal ITS sequences in
411 template DNA solutions, we calculated the ratio of prokaryotic DNA concentrations to fungal
412 DNA concentrations in respective samples (prokaryote/fungus ratio) as follows:

413
$$\log \left(\frac{\text{prokaryotic 16S rRNA gene concentration(DNA copies}/\mu\text{L})}{\text{fungal ITS gene concentration (DNA copies}/\mu\text{L})} \right).$$

414 Although potential variation in DNA extraction skills of researchers might affect absolute DNA
415 concentrations in the template DNA solutions, balance between prokaryotic and fungal DNA in
416 each template DNA sample could be used as a reliable measure. The DNA-metabarcoding-based
417 approach of estimating prokaryote/fungus ratio has methodological advantage over quantitative-
418 PCR-based approaches. Specifically, the former approach allows us to eliminate effects of
419 nonspecific PCR amplification based on DNA sequencing data, while the latter is affected by
420 “contamination” of nontarget amplicons (e.g., plastid DNA in 16S rRNA sequencing and plant
421 DNA in ITS sequencing).

422

423 **Microbiome structure and crop disease prevalence**

424 For each of the prokaryotic and fungal datasets, permutational analyses of variance
425 (PERMANOVA) (81) were performed to examine associations between family-level community
426 compositions and variables in the metadata. Two types of PERMANOVA models were
427 constructed based on the Euclid distance (β -diversity) calculated for the CLR-transformed
428 datasets (1,000 iterations). Specifically, one is constituted by categorical explanatory variables
429 (crop plant, former crop plant, soil taxonomy, research site, and sampling month), while the other
430 included continuous explanatory variables (soil pH, electrical conductivity, C/N ratio, and
431 available phosphorous concentration, prokaryote/fungus ratio, latitude, and longitude).

432 To reduce the dimensions of the community compositional data, a principal component
433 analysis (PCA) was performed based on the Euclid distance data mentioned above. For each PCA
434 axis (axes 1 to 5) in each of the prokaryotic and fungal analyses, Pearson’s correlation with each
435 chemical environmental factor (soil pH, electrical conductivity, C/N ratio, and available
436 phosphorous concentration) was calculated.

437 We then evaluated how community structure of prokaryotes and fungi were associated with
438 crop disease. For each of the prokaryotic and fungal datasets, a generalized linear mixed model
439 (GLMM) of crop-disease level (disease level 1 vs. disease levels 2-5) was constructed by
440 including the PCoA axes 1 to 5 as fixed effects. Sampling month and the identity of crop plant
441 species and experimental/research purposes in the metadata were set as random effects. A logit-
442 link function and binomial errors was assumed in the GLMM after converting the response
443 variable into a binary format [disease level 1 (= 1) vs. disease levels 2–5 (= 0)]. The analysis was
444 performed with the “glmer” function of the R lme4 package (82).

445

446 **Microbes associated with crop disease/health status**

447 For each microbial OTU constituting the modules, we evaluated specificity of occurrences in
448 samples differing in crop disease levels based on a randomization analysis. For the calculation,
449 the original sample \times OTU matrices of prokaryotes and fungi were respectively rarefied to 1,000
450 reads per sample, being merged into an input data matrix. Within the combined sample \times OTU
451 matrix, samples were categorized into the two crop disease levels (disease level 1 vs. disease
452 levels 2-5). Mean read counts across samples displaying each of the two disease levels were then
453 calculated for each OTU. Meanwhile, mean read counts for respective disease levels were
454 calculated as well for randomized matrices, in which disease labels of the samples were shuffled
455 (10,000 permutations). For i -th OTU, standardized specificity to disease level j (s_{ij}) was obtained
456 as follows:

457
$$s_{ij} = \frac{O_{ij} - \text{Mean}(R_{ij})}{\text{SD}(R_{ij})},$$

458 where O_{ij} and R_{ij} is the mean read counts of i -th OTU across disease-level- j samples in the
459 observed and randomized matrices, respectively, and $\text{Mean}(R_{ij})$ and $\text{SD}(R_{ij})$ indicate mean and
460 standard deviation across the randomized matrices. The P values obtained based on the
461 randomization analysis were adjusted with the Benjamini-Hochberg method [i.e., false discovery
462 rate (FDR)]. The relationship between the standardized specificity index and FDR is shown in
463 Figure S4. This randomization approach was also applied to the analyses of each OTU's
464 specificity to crop plant identity and that to experimental/research purpose identity (Figs. S6-7).

465 The specificity of microbial OTUs to crop disease levels was performed as well at the local
466 scale. Specifically, in each of the six sub-datasets representing unique combinations of research
467 sites, crop plant species, and experimental/research purposes, the abovementioned randomization
468 analysis was performed: each sub-dataset included 69 to 198 soil samples (Data S2). For the
469 OTUs showing exceptionally strong specificity to the minimal crop disease level (standardized
470 specificity score ≥ 6.0 ; FDR < 0.0001), supplemental analyses of generalized linear models
471 (GLMs) were conducted. In each GLM of crop disease/health status (disease level 1 vs. disease
472 levels 2-5) with a logit-link function with binomial errors, the relative abundance of a target OTU
473 was included as an explanatory variable.

474

475 **Microbe-to-microbe network**

476 To infer potential interactions between microbial OTUs, the algorithm of sparse inverse
477 covariance estimation for ecological association inference (SPIEC-EASI) was applied based on
478 the Meinshausen-Bühlmann (MB) method as implemented in the SpiecEasi package (39) of R. In
479 total, 2,305 soil samples from which both prokaryotic and fungal community data were available
480 were subjected to the analysis. Note that CLR-transformation was performed internally with the
481 "spiec.easi" function. The network inference based on co-occurrence patterns allowed us to
482 detect pairs of microbial OTUs that potentially interact with each other in facilitative ways and/or
483 those that might share ecological niches (e.g., preference for edaphic factors). Because estimation
484 of co-occurrence patterns was not feasible for rare nodes, the prokaryotic and fungal OTUs that
485 appeared in more than 10 % of the sequenced samples were included in the input matrix of the
486 network analysis. Network modules, within which closely associated OTUs were interlinked with

487 each other, were identified with the algorithm based on edge betweenness (83) using the igraph
488 package (84) of R. For each module in the inferred co-occurrence network, mean standardized
489 specificity to disease level 1 were calculated across constituent OTUs.

490 To explore potential keystone microbes within the network, we scored respective OTUs on
491 the basis of their topological positions. Among the indices used for evaluating OTUs,
492 betweenness centrality (85), which measures the extent to which a given nodes (OTU) is located
493 within the shortest paths connecting pairs of other nodes in a network, is commonly used to find
494 hubs mediating flow of effects in a network. The network centrality scores were normalized as
495 implemented in the igraph packages of R. In addition, by focusing on the above-mentioned
496 network modules, we ranked OTUs based on their within-module degree and among-module
497 connectivity (86). The former index is obtained as the number of nodes linked with a target node
498 within a target network module, suggesting the topological importance of a node within the
499 module it belongs to. The latter index represents the extent to which a node is linked with other
500 nodes belonging to different network modules. Within-module degree was z-standardized (i.e.,
501 zero-mean and unit-variance) within each module, while among-module connectivity was defined
502 to vary between 0 to 1. In addition to those indices for evaluating topological roles within a
503 network, eigenvector centrality (87) was calculated for respective nodes.

504

505 **Data availability**

506 The 16S rRNA and ITS sequencing data are available from the DNA Data Bank of Japan (DDBJ
507 accession: DRA015491 and DRA015506). The microbial community data are deposited at our
508 GitHub repository (https://github.com/hiro-toju/Soil_Microbiome_NARO3000).

509

510 **Code availability**

511 All the R scripts used to analyze the data are available at the GitHub repository
512 (https://github.com/hiro-toju/Soil_Microbiome_NARO3000).

513

514 **REFERENCES**

- 515 1. Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries
516 W, Vermeulen SJ, Herrero M, Carlson KM, Jonell M, Troell M, DeClerck F, Gordon LJ,
517 Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray HCJ, Tilman D,
518 Rockström J, Willett W. 2018. Options for keeping the food system within environmental
519 limits. *Nature* 562:519–525.
- 520 2. Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable
521 intensification of agriculture. *Proceedings of the National Academy of Sciences*
522 108:20260–20264.
- 523 3. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M,
524 Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y,
525 Minamisawa K, Kiers ET. 2018. Core microbiomes for sustainable agroecosystems. *Nat
526 Plants* 4:247–257.

527 4. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA,
528 Leach JE, Dangl JL. 2017. Research priorities for harnessing plant microbiomes in
529 sustainable agriculture. *PLoS Biol* 15:e2001793.

530 5. Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and
531 plant health. *Trends Plant Sci* 17:478–486.

532 6. Bommarco R, Kleijn D, Potts SG. 2013. Ecological intensification: Harnessing ecosystem
533 services for food security. *Trends Ecol Evol* 28:230–238.

534 7. French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. 2021. Emerging strategies for
535 precision microbiome management in diverse agroecosystems. *Nat Plants* 7:256–267.

536 8. Busby PE, Ridout M, Newcombe G. 2016. Fungal endophytes: modifiers of plant disease.
537 *Plant Mol Biol* 90:645–655.

538 9. Santoyo G, Moreno-hagelsieb G, Orozco-mosqueda C, Glick BR. 2016. Plant growth-
539 promoting bacterial endophytes. *Microbiol Res* 183:92–99.

540 10. Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL. 2016. Meta-analysis reveals
541 ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-
542 oxidizing archaea. *Soil Biol Biochem* 99:158–166.

543 11. Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke
544 BM, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M,
545 Schleper C. 2009. Dynamics and functional relevance of ammonia-oxidizing archaea in
546 two agricultural soils. *Environ Microbiol* 11:446–456.

547 12. Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular
548 mycorrhizal fungi – from ecology to application. *Front Plant Sci* 9:1270.

549 13. Baker BJ, de Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. 2020. Diversity,
550 ecology and evolution of Archaea. *Nat Microbiol* 5:887–900.

551 14. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller
552 T, Sanders IR, Wiemken A. 1998. Mycorrhizal fungal diversity determines plant
553 biodiversity, ecosystem variability and productivity. *Nature* 396:69–72.

554 15. Yuan J, Wen T, Zhang H, Zhao M, Penton CR, Thomashow LS, Shen Q. 2020. Predicting
555 disease occurrence with high accuracy based on soil macroecological patterns of *Fusarium*
556 wilt. *ISME Journal* 14:2936–2950.

557 16. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno
558 YM, DeSantis TZ, Andersen GL, Bakker P a HM, Raaijmakers JM. 2011. Deciphering the
559 rhizosphere microbiome for disease-suppressive bacteria. *Science* 332:1097–100.

560 17. Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017. Disease suppressive
561 soils: New insights from the soil microbiome. *Phytopathology* 107:1284–1297.

562 18. Wei Z, Gu Y, Friman V-PP, Kowalchuk GA, Xu Y, Shen Q, Jousset A. 2019. Initial soil
563 microbiome composition and functioning predetermine future plant health. *Sci Adv* 5:1–
564 11.

565 19. Hori Y, Fujita H, Hiruma K, Narisawa K, Toju H. 2021. Synergistic and Offset Effects of
566 Fungal Species Combinations on Plant Performance. *Front Microbiol* 12:713180.

567 20. Hardoim PR, van Overbeek LS, Elsas JD van. 2008. Properties of bacterial endophytes and
568 their proposed role in plant growth. *Trends Microbiol* 16:463–471.

569 21. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR,
570 Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J,

571 Bücking H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science (1979) 333:880–882.

572

573 22. Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. 2020. Balance between community assembly
574 processes mediates species coexistence in agricultural soil microbiomes across eastern
575 China. *ISME Journal* 14:202–216.

576 23. Ray P, Lakshmanan V, Labbé JL, Craven KD. 2020. Microbe to Microbiome: A Paradigm
577 Shift in the Application of Microorganisms for Sustainable Agriculture. *Front Microbiol*
578 11:622926.

579 24. Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaepi K.
580 2018. Cropping practices manipulate abundance patterns of root and soil microbiome
581 members paving the way to smart farming. *Microbiome* 6:14.

582 25. Shen Z, Xue C, Penton CR, Thomashow LS, Zhang N, Wang B, Ruan Y, Li R, Shen Q.
583 2019. Suppression of banana Panama disease induced by soil microbiome reconstruction
584 through an integrated agricultural strategy. *Soil Biol Biochem* 128:164–174.

585 26. Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz-Buck D,
586 Mendes LW, van Ijcken WFJ, Gomez-Exposito R, Elsayed SS, Mohanraju P, Arifah A,
587 van der Oost J, Paulson JN, Mendes R, van Wezel GP, Medema MH, Raaijmakers JM.
588 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root
589 microbiome. *Science* (1979) 366:606–612.

590 27. Santos LF, Olivares FL. 2021. Plant microbiome structure and benefits for sustainable
591 agriculture. *Curr Plant Biol* 26:100198.

592 28. Tedersoo L, Bahram M, Põlme S, Kõlalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-
593 Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T,
594 Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K,
595 Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May
596 TW, Majuakim L, Lodge DJ, Lee S, Larsson KH, Kohout P, Hosaka K, Hiiresalu I, Henkel
597 TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C,
598 Drenkhan R, Dearnaley J, de Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito
599 G, Anslan S, Abell S, Abarenkov K. 2014. Global diversity and geography of soil fungi.
600 *Science* (1979) 346:1256688.

601 29. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ,
602 Bardgett RD, Maestre FT, Singh BK, Fierer N. 2018. A global atlas of the dominant
603 bacteria found in soil. *Science* (1979) 359:320–325.

604 30. Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT,
605 Singh BK. 2019. A few Ascomycota taxa dominate soil fungal communities worldwide.
606 *Nat Commun* 10:2369.

607 31. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM,
608 Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz
609 MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork
610 P. 2018. Structure and function of the global topsoil microbiome. *Nature* 560:233–237.

611 32. Faust K, Raes J. 2012. Microbial interactions: From networks to models. *Nat Rev
612 Microbiol* 10:538–550.

613 33. van der Heijden MGA, Hartmann M. 2016. Networking in the plant microbiome. *PLoS
614 Biol* 14:1–9.

615 34. Saleem M, Hu J, Jousset A. 2019. More than the sum of its parts: microbiome biodiversity
616 as a driver of plant growth and soil health. *Annu Rev Ecol Evol Syst* 50:145–168.

617 35. Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S.
618 2018. Microbial Interkingdom Interactions in Roots Promote *Arabidopsis* Survival. *Cell*
619 175:973-983.e14.

620 36. Toju H, Tanaka Y. 2019. Consortia of anti-nematode fungi and bacteria in the rhizosphere
621 of soybean plants attacked by root-knot nematodes. *R Soc Open Sci* 6:181693.

622 37. Legrand F, Chen W, Cobo-Díaz JF, Picot A, Le Floch G. 2019. Co-occurrence analysis
623 reveal that biotic and abiotic factors influence soil fungistasis against *Fusarium*
624 *graminearum*. *FEMS Microbiol Ecol* 95:fiz056.

625 38. Kerdraon L, Barret M, Laval V, Suffert F. 2019. Differential dynamics of microbial
626 community networks help identify microorganisms interacting with residue-borne
627 pathogens: The case of *Zymoseptoria tritici* in wheat. *Microbiome* 7:125.

628 39. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse
629 and compositionally robust inference of microbial ecological networks. *PLoS Comput Biol*
630 11:e1004226.

631 40. Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. 2016. Network modules and
632 hubs in plant-root fungal biomes. *J R Soc Interface* 13:20151097–20151097.

633 41. Summerell BA. 2019. Resolving *Fusarium*: Current Status of the Genus. *Annu Rev*
634 *Phytopathol* 57:323–339.

635 42. Gordon TR. 2017. *Fusarium oxysporum* and the *Fusarium* wilt syndrome. *Annu Rev*
636 *Phytopathol* 55:23–39.

637 43. de Lambo FJ, Takken FLW. 2020. Biocontrol by *Fusarium oxysporum* Using Endophyte-
638 Mediated Resistance. *Front Plant Sci* 11:37.

639 44. Toju H, Yamamichi M, Jr PRG, Olesen JM, Mougi A, Yoshida T, Thompson JN. 2017.
640 Species-rich networks and eco-evolutionary synthesis at the metacommunity level. *Nat*
641 *Ecol Evol* 1:0024.

642 45. Lebedeva E V., Hatzenpichler R, Pelletier E, Schuster N, Hauzmayr S, Bulaev A,
643 Grigor'eva N V., Galushko A, Schmid M, Palatinszky M, Le Paslier D, Daims H, Wagner
644 M. 2013. Enrichment and genome sequence of the group I.1a ammonia-oxidizing archaeon
645 “*Ca. Nitrosotenuis uzonensis*” representing a clade globally distributed in thermal habitats.
646 *PLoS One* 8:e80835.

647 46. Olanrewaju OS, Babalola OO. 2019. *Streptomyces*: implications and interactions in plant
648 growth promotion. *Appl Microbiol Biotechnol* <https://doi.org/10.1007/s00253-018-09577-y>.

649 47. Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, Ning Q, Li W. 2018. *Mortierella*
650 *elongata*’s roles in organic agriculture and crop growth promotion in a mineral soil. *Land*
651 *Degrad Dev* 29:1642–1651.

652 48. Ozimek E, Hanaka A. 2021. *Mortierella* species as the plant growth-promoting fungi
653 present in the agricultural soils. *Agriculture (Switzerland)*
654 <https://doi.org/10.3390/agriculture11010007>.

655 49. Poveda J. 2021. *Trichoderma* as biocontrol agent against pests: New uses for a
656 mycoparasite. *Biological Control* 159:104634.

657 50. Sood M, Kapoor D, Kumar V, Sheteiw MS, Ramakrishnan M, Landi M, Araniti F,
658 Sharma A. 2020. *Trichoderma*: The “secrets” of a multitalented biocontrol agent. *Plants*
659 9:762.

660

661 51. AbdElfatah HAS, Sallam NMA, Mohamed MS, Bagy HMMK. 2021. *Curvularia lunata* as
662 new causal pathogen of tomato early blight disease in Egypt. *Mol Biol Rep* 48:3001–3006.

663 52. Pétriacq P, Stassen JHM, Ton J. 2016. Spore density determines infection strategy by the
664 plant pathogenic fungus *Plectosphaerella cucumerina*. *Plant Physiol* 170:2325–2339.

665 53. Ushio M. 2022. Interaction capacity as a potential driver of community diversity.
666 Proceedings of the Royal Society B: Biological Sciences 289:20212690.

667 54. Fujita H, Ushio M, Suzuki K, Abe M, Yamamichi M, Iwayama K, Canarini A, Hayashi I,
668 Fukushima K, Fukuda S, Kiers E, Toju H. 2023. Alternative stable states, nonlinear
669 behavior, and predictability of microbiome dynamics. *Microbiome* 11:63.

670 55. Faust K, Lahti L, Gonze D, de Vos WM, Raes J. 2015. Metagenomics meets time series
671 analysis: Unraveling microbial community dynamics. *Curr Opin Microbiol* 25:56–66.

672 56. Menta C, Remelli S. 2020. Soil health and arthropods: From complex system to
673 worthwhile investigation. *Insects* 11:54.

674 57. Liu T, Chen X, Gong X, Lubbers IM, Jiang Y, Feng W, Li X, Whalen JK, Bonkowski M,
675 Griffiths BS, Hu F, Liu M. 2019. Earthworms Coordinate Soil Biota to Improve Multiple
676 Ecosystem Functions. *Current Biology* 29:3420–3429.

677 58. Neher DA. 2010. Ecology of plant and free-living nematodes in natural and agricultural
678 soil. *Annu Rev Phytopathol* 48:371–394.

679 59. Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD,
680 Jousset A, Krashewska V, Singer D, Spiegel FW, Walochnik J, Lara E. 2018. Soil protists:
681 A fertile frontier in soil biology research. *FEMS Microbiol Rev* 42:293–323.

682 60. Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang
683 LM. 2019. Protist communities are more sensitive to nitrogen fertilization than other
684 microorganisms in diverse agricultural soils. *Microbiome* 7:33.

685 61. Kageyama T, Toju H. 2022. Effects of source sample amount on biodiversity surveys of
686 bacteria, fungi, and nematodes in soil ecosystems. *Front Ecol Evol* 10:959945.

687 62. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics,
688 from sampling to analysis. *Nat Biotechnol* 35:833–844.

689 63. Neal AL, Barrat HA, Bacq-Lebreuil A, Qin Y, Zhang X, Takahashi T, Rubio V, Hughes
690 D, Clark IM, Cárdenas LM, Gardiner LJ, Krishna R, Glendining ML, Ritz K, Mooney SJ,
691 Crawford JW. 2023. Arable soil nitrogen dynamics reflect organic inputs via the extended
692 composite phenotype. *Nat Food* 4:51–60.

693 64. Wu X, Rensing C, Han D, Xiao K-Q, Dai Y, Tang Z, Liesack W, Peng J, Cui Z, Zhang F.
694 2022. Genome-Resolved Metagenomics Reveals Distinct Phosphorus Acquisition
695 Strategies between Soil Microbiomes. *mSystems* 7:e01107-21.

696 65. Luo G, Li L, Friman VP, Guo J, Guo S, Shen Q, Ling N. 2018. Organic amendments
697 increase crop yields by improving microbe-mediated soil functioning of agroecosystems:
698 A meta-analysis. *Soil Biol Biochem* 124:105–115.

699 66. Kassam A, Friedrich T, Derpsch R. 2019. Global spread of conservation agriculture.
700 *International Journal of Environmental Studies* 76:29–51.

701 67. Schreefel L, Schulte RPO, de Boer IJM, Schrijver AP, van Zanten HHE. 2020.
702 Regenerative agriculture – the soil is the base. *Glob Food Sec* 26:100404.

703 68. Li Y, Zhang Q, Cai Y, Yang Q, Chang SX. 2020. Minimum tillage and residue retention
704 increase soil microbial population size and diversity: Implications for conservation tillage.
705 *Science of the Total Environment* 716:137164.

706 69. Chiang KS, Liu HI, Bock CH. 2017. A discussion on disease severity index values. Part I:
707 warning on inherent errors and suggestions to maximise accuracy. *Annals of Applied
708 Biology* 171:139–154.

709 70. Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-
710 based identification of ascomycetes and basidiomycetes in environmental samples. *PLoS
711 One* 7:e40863.

712 71. Tanabe AS, Toju H. 2013. Two new computational methods for universal DNA barcoding:
713 a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.
714 *PLoS One* 8:e76910.

715 72. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016.
716 *DADA2: High-resolution sample inference from Illumina amplicon data*. *Nat Methods*
717 13:581–583.

718 73. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. *VSEARCH: a versatile open*
719 *source tool for metagenomics*. *PeerJ* 4:e2584.

720 74. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO.
721 2013. The SILVA ribosomal RNA gene database project: Improved data processing and
722 web-based tools. *Nucleic Acids Res* 41:D590–D596.

723 75. Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D,
724 Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Köljalg U, Abarenkov K. 2019.
725 *The UNITE database for molecular identification of fungi: Handling dark taxa and parallel*
726 *taxonomic classifications*. *Nucleic Acids Res* 47:D259–D264.

727 76. Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. 2019. A field
728 guide for the compositional analysis of any-omics data. *Gigascience* 8:1–14.

729 77. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egoscue JJ. 2017. Microbiome datasets
730 are compositional: And this is not optional. *Front Microbiol*
731 <https://doi.org/10.3389/fmicb.2017.02224>.

732 78. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V. 2000. Logratio
733 analysis and compositional distance. *Math Geol* 32:271–275.

734 79. Fernandes AD, Reid JNS, Macklaim JM, McMurrrough TA, Edgell DR, Gloor GB. 2014.
735 *Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq,*
736 *16S rRNA gene sequencing and selective growth experiments by compositional data*
737 *analysis*. *Microbiome* 2:15.

738 80. Pöhlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H,
739 Nguyen N, Kjøller R, Bates ST, Baldrian P, Frøslev TG, Adojaan K, Vizzini A, Suija A,
740 Pfister D, Baral HO, Järv H, Madrid H, Nordén J, Liu JK, Pawlowska J, Pöldmaa K, Pärtel
741 K, Runnel K, Hansen K, Larsson KH, Hyde KD, Sandoval-Denis M, Smith ME, Toome-
742 Heller M, Wijayawardene NN, Menolli N, Reynolds NK, Drenkhan R,
743 Maharachchikumbura SSN, Gibertoni TB, Læssøe T, Davis W, Tokarev Y, Corrales A,
744 Soares AM, Agan A, Machado AR, Argüelles-Moyao A, Detheridge A, de Meiras-Ottoni
745 A, Verbeken A, Dutta AK, Cui BK, Pradeep CK, Marín C, Stanton D, Gohar D,
746 Wanasinghe DN, Otsing E, Aslani F, Griffith GW, Lumbsch TH, Grossart HP, Masigol H,
747 Timling I, Hiiesalu I, Oja J, Kupagme JY, Geml J, Alvarez-Manjarrez J, Ilves K, Loit K,
748 Adamson K, Nara K, Küngas K, Rojas-Jimenez K, Bitenieks K, Irinyi L, Nagy LL,

749 Soonvald L, Zhou LW, Wagner L, Aime MC, Öpik M, Mujica MI, Metsoja M, Ryberg M,
750 Vasar M, Murata M, Nelsen MP, Cleary M, Samarakoon MC, Doilom M, Bahram M,
751 Hagh-Doust N, Dulya O, Johnston P, Kohout P, Chen Q, Tian Q, Nandi R, Amiri R,
752 Perera RH, dos Santos Chikowski R, Mendes-Alvarenga RL, Garibay-Orijel R, Gielen R,
753 Phookamsak R, Jayawardena RS, Rahimlou S, Karunaratna SC, Tibpromma S, Brown
754 SP, Sepp SK, Mundra S, Luo ZH, Bose T, Vahter T, Netherway T, Yang T, May T, Varga
755 T, Li W, Coimbra VRM, de Oliveira VRT, de Lima VX, Mikryukov VS, Lu Y, Matsuda
756 Y, Miyamoto Y, Kõljalg U, Tedersoo L. 2020. FungalTraits: a user-friendly traits database
757 of fungi and fungus-like stramenopiles. *Fungal Divers* 105:1–16.

758 81. Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance.
759 *Austral Ecol* 26:32–46.

760 82. Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models
761 using lme4. *J Stat Softw* 67:1–48.

762 83. Newman M, Girvan M. 2004. Finding and evaluating community structure in networks.
763 *Phys Rev E* 69:026113.

764 84. Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
765 *InterJournal Complex Systems* 1695:1–9.

766 85. Freeman LC. 1977. A set of measures of centrality based on betweenness. *Sociometry*
767 40:35–41.

768 86. Olesen JM, Bascompte J, Dupont YL, Jordano P. 2007. The modularity of pollination
769 networks. *Proc Natl Acad Sci U S A* 104:19891–19869.

770 87. Bonacich P. 1972. Factoring and weighting approaches to status scores and clique
771 identification. *J Math Sociol* 2:113–120.

772

773

774 **ACKNOWLEDGEMENTS**

775 We are grateful to the reviewers whose comments improved the manuscript. We thank the
776 SuperComputer System, Institute for Chemical Research, Kyoto University for the use of super
777 computers. This work was financially supported by JST PRESTO (JPMJPR16Q6), JST FOREST
778 (JPMJFR2048), JST PRESTO (JPMJCR23N5), Human Frontier Science Program
779 (RGP0029/2019), JSPS Grant-in-Aid for Scientific Research (20K20586) and NEDO Moonshot
780 Research and Development Program (JPNP18016) to H.T., JSPS Grant-in-Aid for Scientific
781 Research (20K06820 and 20H03010) to K.S., and JSPS Fellowship to H.F.

782

783 **Table 1** | Effects of environmental variables on prokaryotic/fungal community structure. For each
784 set of categorical/continuous environmental variables, a PERMANOVA was performed for each
785 of the prokaryotic and fungal community datasets.

786

Model	Dataset	Variable	df	R ²	F	P
Categorical variables	Prokaryotes	Research site	34	0.051	5.13	< 0.001
		Month	11	0.014	4.36	< 0.001
		Crop	16	0.006	1.21	0.030
		Former crop	22	0.024	3.78	< 0.001
		Soil category	10	0.006	2.12	< 0.001
		Residual	2301	0.673		
		Total	2400	1.000		
	Fungi	Research site	33	0.064	6.91	< 0.001
		Month	11	0.012	3.96	< 0.001
		Crop	15	0.006	1.54	< 0.001
		Former crop	20	0.023	4.14	< 0.001
		Soil category	10	0.005	1.75	< 0.001
		Residual	2109	0.591		
		Total	2206	1.000		
Continuous variables	Prokaryotes	pH	1	0.011	16.52	< 0.001
		Electrical conductivity	1	0.009	14.09	< 0.001
		Available P	1	0.009	13.81	0.626
		C/N ratio	1	0.004	6.19	< 0.001
		Latitude	1	0.006	9.00	< 0.001
		Longitude	1	0.008	11.41	< 0.001
		Prokaryote/fungus ratio	1	0.004	5.98	< 0.001
		Residual	1408	0.936		
		Total	1415	1.000		
	Fungi	pH	1	0.013	19.64	< 0.001
		Electrical conductivity	1	0.011	17.49	< 0.001
		Available P	1	0.009	13.38	0.477
		C/N ratio	1	0.008	12.74	< 0.001
		Latitude	1	0.016	25.58	< 0.001
		Longitude	1	0.017	26.37	0.230
		Prokaryote/fungus ratio	1	0.009	13.61	< 0.001
		Residual	1408	0.904		
		Total	1415	1		

787

788

789 **Table 2** | Relationship between prokaryotic/fungal community structure on the disease level of
790 crop plants. A GLMM of crop plants' disease level (disease level 1 vs. disease levels 2-5) with a
791 logit-link function and binomial errors was constructed by setting principal components of
792 prokaryotic/fungal community structure (Fig. 2) as explanatory variables (fixed effects). The
793 identity of experimental/research purposes, sampling month, and crop plant species were
794 included as random effects in the GLMM.

795

Dataset	Variable	z	P
Prokaryotes (N = 1,379)	PC1	1.59	0.1111
	PC2	-1.65	0.1000
	PC3	1.82	0.0684
	PC4	-2.32	0.0205
	PC5	3.98	0.0001
Fungi (N = 1,320)	PC1	1.52	0.1281
	PC2	1.39	0.1656
	PC3	-2.11	0.0348
	PC4	2.62	0.0089
	PC5	-0.84	0.4002

796

797 **Table 3** | Prokaryotic and fungal OTUs showing highest associations with crop health status within local croplands. Among the six sub-datasets
 798 representing unique combinations of research sites, crop plant species, and research experimental/research purposes, OTUs showing strongest
 799 specificity to the minimal crop disease level (z-standardized specificity to disease level 1 ≥ 6.0) were observed in two sub-datasets (“eggplant in
 800 Kuki City” and “tomato in Kashihara City”). The OTUs are shown with the NCBI BLAST top-hit results. See Data S2 for the full results.

801

Site	Crop	Experiment/research identity	ID	Specificity to disease level 1		BLAST top-hit results				
				Score	FDR	Scientific Name	Query cover (%)	E value	Identity (%)	Accession
Kuki	Eggplant	Control of bacterial wilt	Bac_00034	6.53	< 0.0001	<i>Denitratisoma oestradiolicum</i>	100	9.0E-103	95.1	KF810120.1
			Bac_00044	6.67	< 0.0001	<i>Nocardioides cynanchi</i>	100	4.0E-121	99.6	CP044344.1
			Bac_00061	7.12	< 0.0001	<i>Piscinibacter aquaticus</i>	100	4.0E-121	99.6	KY284087.1
			Bac_00224	7.52	< 0.0001	<i>Dongia</i> sp.	100	9.0E-123	100.0	AB835804.1
			Bac_00237	8.76	< 0.0001	<i>Chondromyces robustus</i>	100	2.0E-89	91.8	AJ233942.2
			Fun_0059	6.83	< 0.0001	<i>Moesziomyces aphidis</i>	100	9.0E-123	100.0	MH777069.1
			Fun_1871	6.27	< 0.0001	<i>Pseudeurotium bakeri</i>	100	3.0E-122	100.0	MK911621.1
			Fun_3676	7.72	< 0.0001	<i>Cladosporium proteacearum</i>	100	8.0E-118	100.0	OR857360.1
			Fun_3688	6.38	< 0.0001	<i>Nigrospora sphaerica</i>	100	8.0E-118	100.0	OP113684.1
			Fun_3993	7.01	< 0.0001	<i>Fusarium equiseti</i>	100	3.0E-112	99.6	MT588081.1
			Fun_4311	8.75	< 0.0001	<i>Gibellulopsis nigrescens</i>	100	5.0E-110	100.0	OP498056.1
Kashihara	Tomato	Control of <i>Fusarium</i> wilt	Bac_00031	6.74	< 0.0001	<i>Ramlibacter algicola</i>	100	9.0E-123	100.0	NR_175506.1
			Bac_00861	6.98	< 0.0001	<i>Rhizomicrombium</i> sp.	100	4.0E-116	98.4	LN876448.1
			Fun_0056	6.28	< 0.0001	<i>Corynascus sepedonium</i>	100	9.0E-123	100.0	OW986289.1

802

803

804 **Table 4** | Representative prokaryotic and fungal OTUs in network modules with highly positive/negative associations with crop plant health. In
 805 each of the modules 2, 6, and 8 (Fig. 4), the top-five OTUs with the highest specificity to the minimal crop disease level (specificity to disease
 806 level 1; see Fig. S4 for the relationship between the specificity score and FDR). For each OTU, network degree, betweenness centrality, within-
 807 module degree (z -standardized), and among-module connectivity (Fig. 6) are presented with the NCBI BLAST top-hit results. Likewise, in each
 808 of the modules 1 and 7 (Fig. 4), the top-five OTUs negatively associated with the minimal crop disease level are shown. See Data S3 for the full
 809 results.

Module	OTU ID	Specificity to disease level 1			Network scores			BLAST top-hit results				
		Score	FDR	Degree	Betweenness	Within-module degree	Module connectivity	Scientific Name	Query cover (%)	E value	Identity (%)	Accession
Module 2 (positive)	Bac_00147	7.526	< 0.0001	4	0.001	-0.693	0.625	<i>Botrimarina hoheduenensis</i>	99	2.0E-90	92.2	NR_173585.1
	Bac_00469	6.307	< 0.0001	5	0.001	-1.214	0.720	<i>Luteitalea pratensis</i>	100	9.0E-108	96.3	NR_156918.1
	Bac_00061	4.657	< 0.0001	3	0.001	-1.214	0.667	<i>Piscinibacter aquaticus</i>	100	4.0E-121	99.6	KY284087.1
	Bac_00002	4.652	< 0.0001	10	0.019	0.347	0.720	<i>Arthrobacter globiformis</i>	100	9.0E-123	100.0	OR780585.1
	Bac_00463	4.166	< 0.0001	5	0.002	0.347	0.320	<i>Flavobacterium sulfavum</i>	100	9.0E-123	100.0	NR_171469.1
Module 6 (positive)	Bac_00025	9.477	< 0.0001	5	0.001	0.189	0.000	<i>Gemmamimonas aurantiaca</i>	100	4.0E-86	91.0	KF228166.1
	Bac_00258	7.205	< 0.0001	14	0.011	2.587	0.357	<i>Thermaanaerothrix daxensis</i>	100	4.0E-76	88.6	NR_117865.1
	Fun_4447	7.151	< 0.0001	10	0.017	-0.610	0.780	<i>Plectosphaerella cucumerina</i>	100	2.0E-108	100.0	MT529301.1
	Fun_0071	7.093	< 0.0001	6	0.003	-1.009	0.722	<i>Schizothecium miniglutinans</i>	100	2.0E-104	95.5	MW472119.1
	Bac_00182	6.787	< 0.0001	21	0.037	1.788	0.649	<i>Brevitalea aridisoli</i>	100	9.0E-93	92.7	NR_151987.1
Module 8 (positive)	Bac_00294	9.679	< 0.0001	7	0.002	0.000	0.571	<i>Luteitalea pratensis</i>	100	4.0E-81	89.8	NR_156918.1
	Bac_00171	9.499	< 0.0001	11	0.012	1.063	0.628	<i>Membranihabitans marinus</i>	100	9.0E-88	91.4	OL441066.1
	Fun_4070	8.282	< 0.0001	10	0.006	-0.532	0.700	<i>Mortierella</i> sp.	80	3.0E-87	99.5	OP799297.1
	Bac_00138	7.904	< 0.0001	20	0.023	1.595	0.715	<i>Ectothiorhodospira mobilis</i>	100	4.0E-86	91.0	MG264243.1
	Bac_00339	7.297	< 0.0001	5	0.003	-1.063	0.480	<i>Vicinamibacter silvestris</i>	100	2.0E-74	88.2	NR_151905.1
Module 1 (negative)	Bac_00165	-9.211	< 0.0001	19	0.035	0.903	0.582	<i>Ureibacillus suwonensis</i>	96	1.0E-76	89.5	JX914499.1
	Bac_00004	-7.370	< 0.0001	17	0.021	1.134	0.512	<i>Nonomuraea phyllanthi</i>	100	9.0E-123	100.0	CP045572.1
	Bac_00010	-7.370	< 0.0001	4	0.001	-0.714	0.375	<i>Streptomyces ardesiacus</i>	100	9.0E-123	100.0	OR873433.1
	Bac_00282	-7.289	< 0.0001	9	0.009	0.672	0.000	<i>Hyphomicrobium aestuarii</i>	100	4.0E-111	97.1	NR_104954.1
	Bac_00036	-6.531	< 0.0001	16	0.011	1.596	0.305	<i>Nitrolancea hollandica</i>	100	9.0E-88	91.5	MW367426.1
Module 7 (negative)	Fun_4028	-8.585	< 0.0001	5	0.000	-0.490	0.320	<i>Fusarium oxysporum</i>	100	6.0E-114	100.0	MF281350.2
	Arc_006	-8.544	< 0.0001	8	0.006	-0.490	0.594	<i>Nitrosphaera viennensis</i>	100	9.0E-123	100.0	NR_134097.1
	Bac_00195	-8.079	< 0.0001	14	0.019	1.218	0.449	<i>Chromobacterium amazonense</i>	100	3.0E-88	91.5	OQ061977.1
	Bac_00062	-7.281	< 0.0001	13	0.011	1.218	0.379	<i>Sphingomonas segetis</i>	100	4.0E-116	98.4	NR_175421.1
	Bac_00098	-6.557	< 0.0001	18	0.026	1.218	0.537	<i>Geodermatophilus normandii</i>	100	9.0E-118	98.8	MT214187.1

811 **Table 5** | Within- and among-module hubs in the network. In each of the modules highlighted in Table 4 and Figure 6, the top-three OTUs with
 812 the highest within-module degree (z-standardized) or among-module connectivity are shown. See Data S3 for the full results.

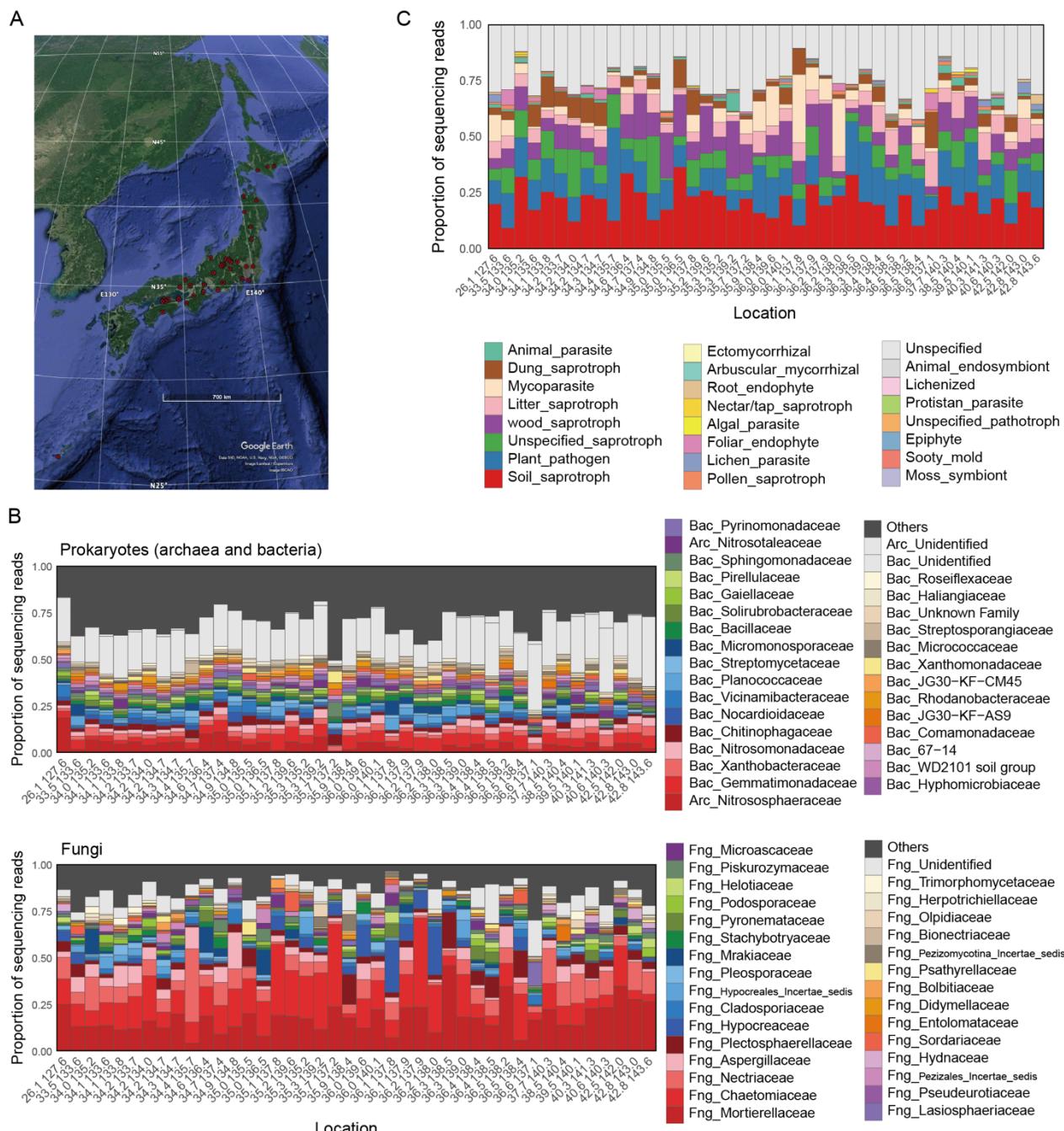
813

Focused		Specificity to disease level 1			Network scores				BLAST top-hit results					
		index	Module	OTU ID	Score	FDR	Degree	Betweenness	Within-module degree	Module connectivity	Scientific Name	Query cover (%)	E value	Identity (%)
Within	Module 2	Bac_00011	3.104	0.0013	13	0.018	1.907	0.663	<i>Pseudomonas izuensis</i>	100	9.0E-123	100.0	OR841525.1	
		(positive)	Bac_00057	2.741	0.0063	6	0.002	1.387	0.000	<i>Massilia violaceinigra</i>	100	9.0E-123	100.0	MT373681.1
		Bac_00002	4.652	< 0.0001	10	0.019	0.347	0.720	<i>Arthrobacter globiformis</i>	100	9.0E-123	100.0	OR780585.1	
	Module 6	Bac_00258	7.205	< 0.0001	14	0.011	2.587	0.357	<i>Thermanaerothrix daxensis</i>	100	4.0E-76	88.6	NR_117865.1	
		(positive)	Bac_00182	6.787	< 0.0001	21	0.037	1.788	0.649	<i>Brevitalea aridisoli</i>	100	9.0E-93	92.7	NR_151987.1
		Arc_004	6.089	< 0.0001	19	0.027	1.388	0.742	<i>Nitrosotenuis chungbukensis</i>	100	9.0E-123	100.0	CP130341.1	
	Module 8	Bac_00138	7.904	< 0.0001	20	0.023	1.595	0.715	<i>Ectothiorhodospira mobilis</i>	100	4.0E-86	91.0	MG264243.1	
		(positive)	Bac_00260	5.320	< 0.0001	9	0.006	1.595	0.346	<i>Crenobacter cavernae</i>	100	4.0E-96	93.5	CP031337.1
		Bac_00171	9.499	< 0.0001	11	0.012	1.063	0.628	<i>Membranihabitans marinus</i>	100	9.0E-88	91.4	OL441066.1	
	Module 1	Bac_00014	-4.481	< 0.0001	22	0.025	3.676	0.000	<i>Gemmimonas phototrophica</i>	100	2.0E-89	91.8	CP011454.1	
		(negative)	Bac_00055	-5.245	< 0.0001	18	0.015	2.752	0.000	<i>Microbispora rosea</i>	100	9.0E-123	100.0	MN826183.1
		Fun_0033	-1.088	0.1752	17	0.026	2.521	0.000	<i>Trichoderma atroviride</i>	100	9.0E-123	100.0	MN429074.1	
Among	Module 2	Bac_00045	-1.380	0.1103	17	0.017	2.356	0.304	<i>Pseudolabrys taiwanensis</i>	100	9.0E-113	97.6	CP031417.1	
		(negative)	Bac_00116	-3.636	0.0003	13	0.006	2.071	0.000	<i>Streptomyces spinosirectus</i>	100	9.0E-123	100.0	CP090447.1
		Bac_00218	-5.182	< 0.0001	13	0.010	1.502	0.260	<i>Dyella ginsengisoli</i>	100	9.0E-123	100.0	KY228986.1	
	Module 6	Bac_00039	-1.782	0.0537	11	0.027	0.347	0.744	<i>Arenimonas daechungensis</i>	100	4.0E-116	98.4	NR_109442.1	
		(positive)	Bac_00002	4.652	< 0.0001	10	0.019	0.347	0.720	<i>Arthrobacter globiformis</i>	100	9.0E-123	100.0	OR780585.1
		Bac_00469	6.307	< 0.0001	5	0.001	-1.214	0.720	<i>Luteitalea pratensis</i>	100	9.0E-108	96.3	NR_156918.1	
	Module 8	Fun_4447	7.151	< 0.0001	10	0.017	-0.610	0.780	<i>Plectosphaerella cucumerina</i>	100	2.0E-108	100.0	MT529301.1	
		(positive)	Fun_3979	5.139	< 0.0001	6	0.008	-1.409	0.778	<i>Enterocarpus grenotii</i>	100	8.0E-113	99.6	OU989357.1
		Arc_004	6.089	< 0.0001	19	0.027	1.388	0.742	<i>Nitrosotenuis chungbukensis</i>	100	9.0E-123	100.0	CP130341.1	
	Module 1	Bac_00138	7.904	< 0.0001	20	0.023	1.595	0.715	<i>Ectothiorhodospira mobilis</i>	100	4.0E-86	91.0	MG264243.1	
		(positive)	Bac_00180	2.213	0.0224	10	0.008	0.000	0.700	<i>Rubrobacter spartanus</i>	100	4.0E-66	86.3	NR_158052.1
		Fun_4070	8.282	< 0.0001	10	0.006	-0.532	0.700	<i>Mortierella kuhlmani</i>	100	9.0E-53	84.5	MH860115.1	
	(negative)	Fun_0043	0.485	0.3420	7	0.008	-0.714	0.735	<i>Curvularia senegalensis</i>	100	9.0E-123	100.0	MT476857.1	
		Fun_3610	1.694	0.0649	12	0.014	-0.714	0.708	<i>Acremonium alternatum</i>	100	2.0E-118	100.0	MT529342.1	

	Bac_00042	1.601	0.0774	12	0.020	-0.252	0.625	<i>Fulvivirgaceae bacterium</i>	100	9.0E-108	96.3	OQ733332.1
Module 7	Fun_0027	2.861	0.0040	5	0.004	-1.059	0.640	<i>Trichoderma virens</i>	100	9.0E-123	100.0	MT530036.1
(negative)	Bac_00032	-1.253	0.1331	4	0.001	-1.059	0.625	<i>Streptomyces cyaneus</i>	100	9.0E-123	100.0	OR807486.1
	Bac_00070	2.191	0.0242	4	0.005	-1.059	0.625	<i>Luteimonas aestuarii</i>	100	9.0E-123	100.0	OQ255277.1

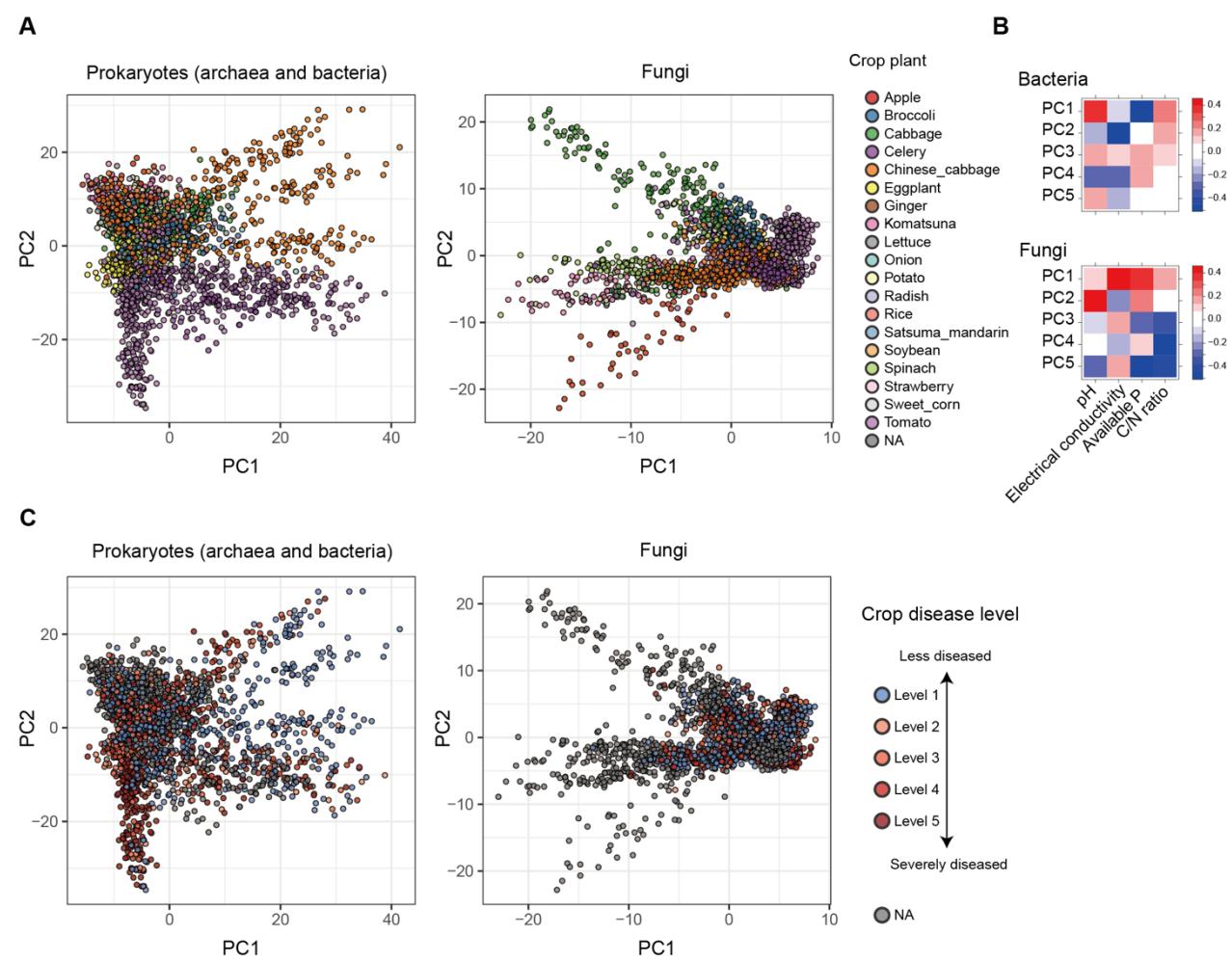
814

815



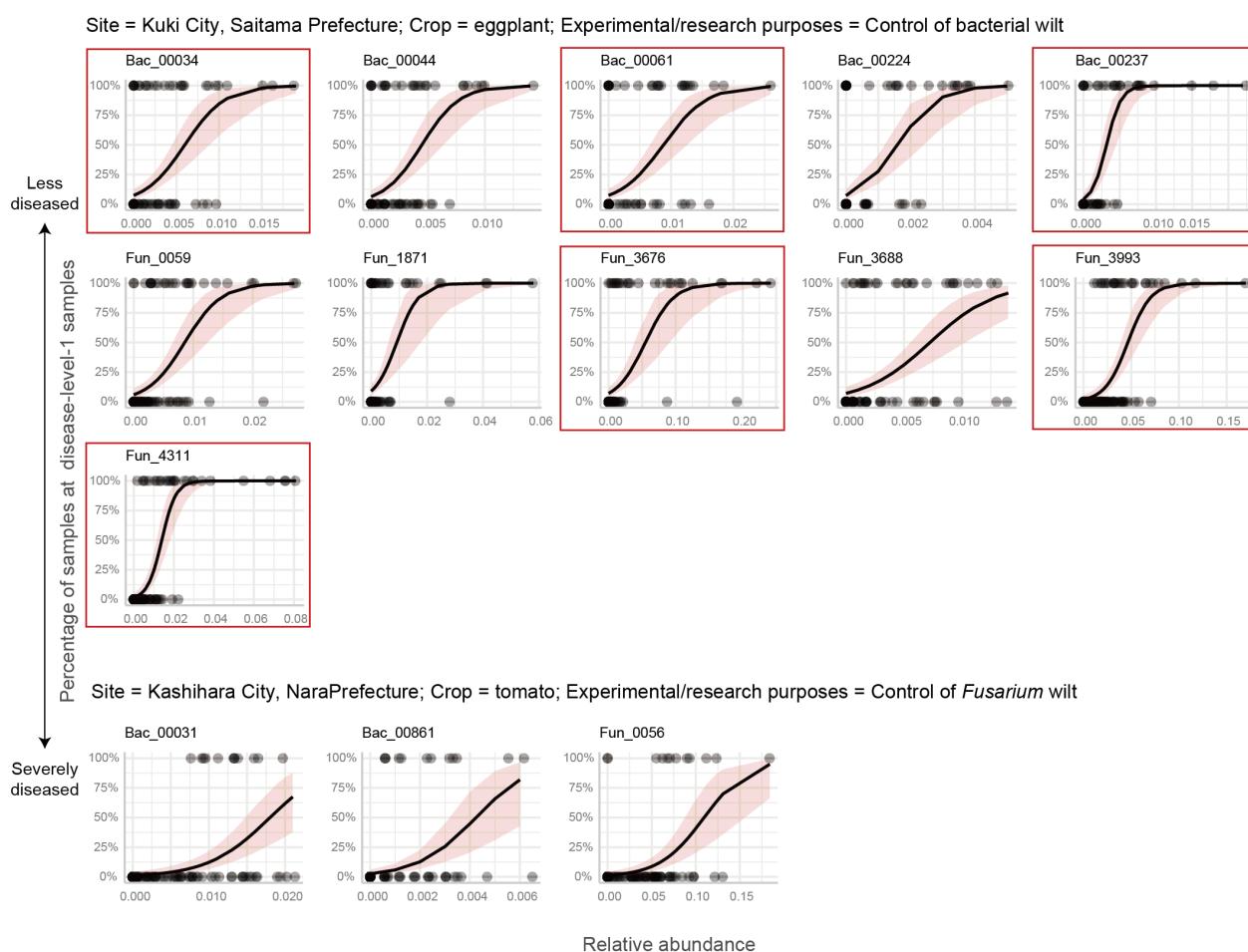
816
817

818 **Fig. 1 |** Comparison of soil microbiome structure across the Japan Archipelago. (A) Map of
819 research sites across the Japan Archipelago. The 2,903 soil samples were grouped into 42
820 research sites when their latitude and longitude profiles were round to one decimal place. (B)
821 Taxonomic compositions of prokaryotes (archaea and bacteria; top) and fungi (bottom) at the
822 family level. See Fig. S1 for results at the genus, order, and class levels. (C) Compositions of
823 functional groups of fungi.
824



827 **Fig. 2 |** Dimensions of soil microbiome structure. (A) Prokaryote and fungal community
828 structure. Principal co-ordinate analyses (PCA) were performed based on OTU-level
829 compositional matrices respectively for the prokaryotic and fungal communities. The identify of
830 crop plants is shown by colors. See Figures S2-3 for relationship between community structure
831 and environmental factors. (B) Correlation between PCA scores and soil environmental factors.
832 (C) Crop disease level and microbial community structure. On the PCA surface, crop disease
833 level (see Materials and Methods) is indicated.

834



835

836

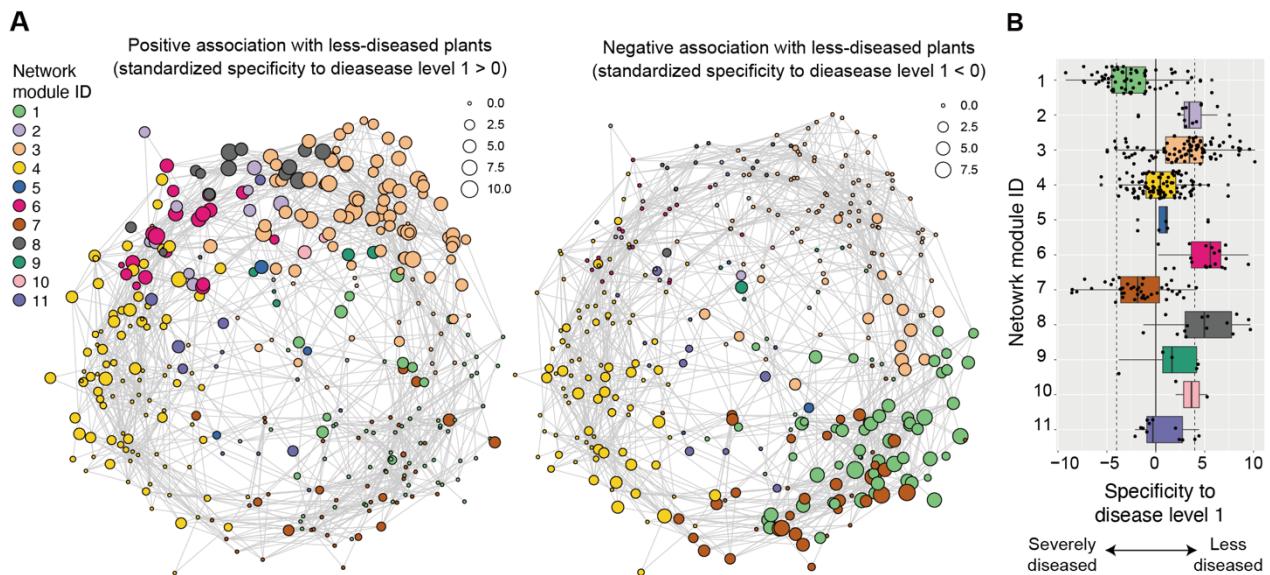
837 **Fig. 3 |** Relationship between OTU abundance and crop plant health. Among the six sub-datasets
 838 representing unique crop plant \times site combinations, OTUs showing strongest specificity to the
 839 minimal crop disease level (z -standardized specificity to disease level 1 ≥ 6.0) were observed in
 840 two sub-datasets (“eggplant in Kuki City” and “tomato in Kashihara City”; Table 4; see Data S2
 841 for full results). For each OTU in each sub-dataset, generalized linear model with a logit function
 842 and binomial errors was constructed to examine relationship between OTU relative abundance
 843 and crop disease level (level 1 vs. levels 2-5). All the regression lines are statistically significant
 844 (FDR < 0.0001). The OTUs exhibiting statistically significant specificity to disease level 1 in the
 845 analysis with the entire dataset (FDR < 0.025 ; two-tailed test; Fig. S4-5) are highlighted with red
 846 squares.

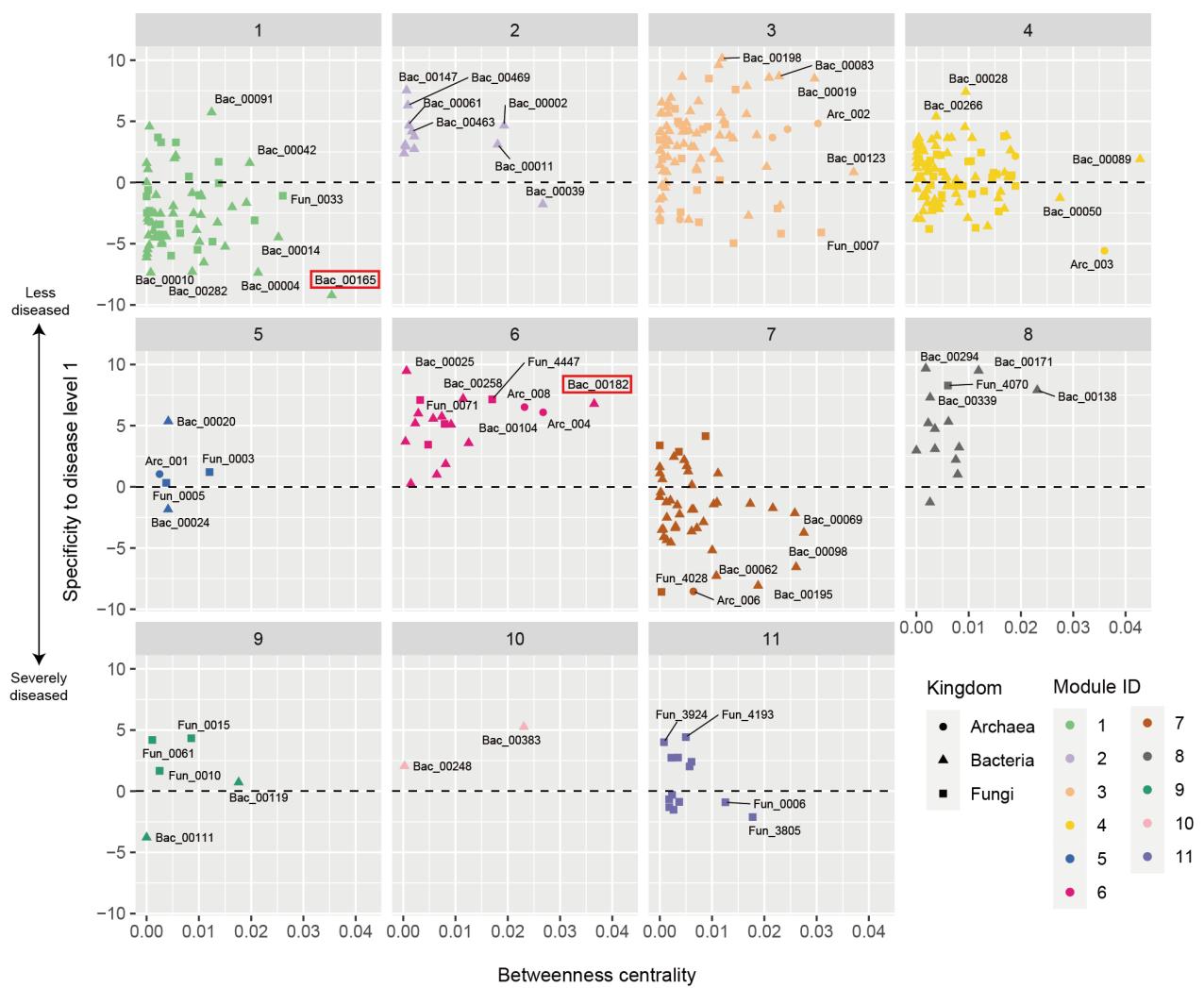
847

848

849

850 **Fig. 4** | Architecture of microbe-to-microbe network. (A) Co-occurrence networks of archaea,
851 bacteria, and fungi. Specificity of occurrences to disease-level-1 (the lowest disease level)
852 samples (Figs. S4-5) is shown for each OTU within the network. The specificity is shown as node
853 size separately for positive (left) and negative (right) associations with least-diseased states of
854 crop plants. Colors indicate network modules, in which microbial OTUs in
855 commensalistic/mutualistic interactions and/or those sharing environmental preferences are
856 densely linked with each other. See Figure S8 for taxonomy (archaea, bacteria, or fungi) of
857 respective nodes. (B) Characteristics of network modules. Mean specificity to the minimal crop
858 disease level (disease level 1; left in the panel A) is shown for each network module.
859



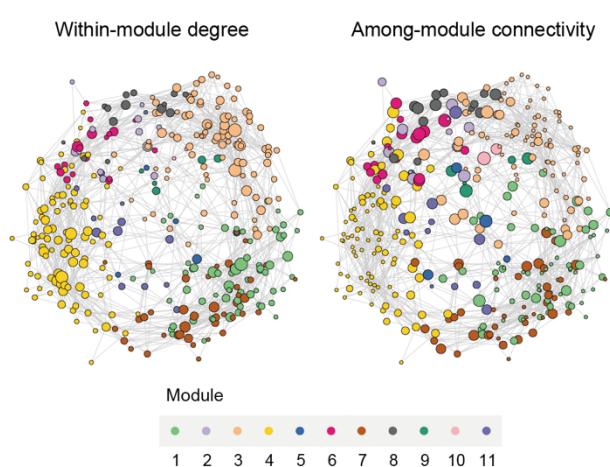


860

861

862 **Fig. 5** | Properties of the microbe-to-microbe network modules. For each network module,
863 specificity to the minimal crop disease level (disease level 1) is shown for each prokaryote/fungal
864 OTU along the vertical axis. Betweenness centrality, which measures the extent to which an OTU
865 is located within the shortest paths connecting pairs of other nodes in a network, is shown along
866 the horizontal axis. The OTUs mentioned in the main text are highlighted with red squares.
867

A



868

869

870 **Fig. 6** | Topological roles of OTUs within and across network modules. (A) Position of potential
871 hubs within the network. In each graph, node size roughly represents within-module degree (left)
872 or among-module connectivity (right). (B) Network hub indices. For each OTU, within-module
873 degree represents the number of the OTUs linked with the target OTU within a module (z -
874 standardized). Among-module connectivity represents the extent to which an OTU interlinks
875 OTUs belonging to different network modules. The prokaryotic/fungal OTU with the highest
876 within-module degree or among-module connectivity in each of the modules 1, 2, 6, 7, and 8
877 (highlighted in the main text and Table 4) is indicated with its OTU ID. See Table 5 for the
878 taxonomic profiles of the OTUs.

879

880

881

B

