

1 **Article title:** Intra and interspecific diversity in a tropical plant clade alter herbivory and
2 ecosystem resilience

3 **Authors^{*}:**

4 Ari J. Grele¹, Tara J. Massad², Kathryn A. Uckele¹, Lee A. Dyer^{1,3}, Yasmine Antonini⁴, Laura
5 Braga⁴, Matthew L. Forister^{1,3}, Lidia Sulca⁵, Massuo J. Kato⁶, Humberto G. Lopez¹, Andre R.
6 Nascimento⁷, Thomas L. Parchman^{1,8}, Wilmer R. Simbaña⁹, Angela M. Smilanich¹, John O.
7 Stireman¹⁰, Eric J. Tepe¹¹, Thomas R. Walla¹², Lora A. Richards^{1,3}

8 **Affiliations**

9 ¹Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University
10 of Nevada, Reno, NV 89557, USA.

11 ²Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique.

12 ³Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA.

13 ⁴Lab. de Biodiversidade, Departamento de Biodiversidade, Evolução e Meio Ambiente. Instituto
14 de Ciências Exatas e Biológicas. Universidade Federal de Ouro Preto (UFOP). Ouro Preto, MG,
15 Brazil

16 ⁵Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San
17 Marcos, Av. Arenales 1256 Jesús María, Lima 14, Peru.

18 ⁶Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São
19 Paulo, Brazil.

20 ⁷Department of Ecology, Universidade Federal de Goiás, Goiânia, GO, Brazil.

21 ⁸Department of Biology, University of Nevada, Reno, NV 89557, USA

22 ⁹Yanayacu Biological Station, Cosanga, Napo Province, Ecuador.

23 ¹⁰Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
24 ¹¹Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
25 ¹²Department of Biology, Mesa State College, Grand Junction, Colorado 81501, USA
26
27 *Emails for authors are as follows: **A.J.G.**: arijg21@gmail.com, **T.J.M.**: tmassad77@gmail.com,
28 **K.A.U.**: katuckele@gmail.com, **L.A.D.**: ldyer@unr.edu, **Y.A.**: antonini.y@gmail.com, **L.B.**:
29 lblepidoptera@gmail.com, **M.L.F.**: forister@gmail.com, **L.S.G.**: lidia.sulca@gmail.com,
30 **M.J.K.**: massuojorge@gmail.com, **H.G.L.**: humgar@hotmail.com, **A.R.N.**:
31 andre110479@gmail.com, **T.L.P.**: tparchman@unr.edu, **W.R.S.**: rosendocat@yahoo.com,
32 **A.M.S.**: smilanich@gmail.com, **J.O.S.**: john.stireman@wright.edu, **E.J.T.**:
33 tepeej@ucmail.uc.edu, **T.R.W.**: metawalla@gmail.com, **L.A.R.**: lorar@unr.edu
34
35 **Correspondence and requests for materials** should be addressed to Lora Richards,
36 lorar@unr.edu. Dept of Biology, UNR, MS:314, 1664 N. Virginia St. Reno, NV 89523
37
38 **Data accessibility statement:**
39 Data and code used for all analyses and figures can be accessed via the Dryad repository at
40 <https://doi.org/10.5061/dryad.8w9ghx3rf>
41
42
43
44

45 **Abstract**

46 Declines in biodiversity generated by anthropogenic stressors at both species and
47 population levels can alter emergent processes instrumental to ecosystem function and resilience.
48 As such, understanding the role of biodiversity in ecosystem function and its response to climate
49 perturbation is increasingly important, especially in tropical systems where responses to changes
50 in biodiversity are less predictable and more challenging to assess experimentally. Using large
51 scale transplant experiments conducted at five neotropical sites, we documented the impacts of
52 changes in intraspecific and interspecific plant richness in the genus *Piper* on insect herbivory,
53 insect richness, and ecosystem resilience to perturbations in water availability. We found that
54 reductions of both intraspecific and interspecific *Piper* diversity had measurable and site specific
55 effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these
56 ecosystem-relevant processes to reduced intraspecific *Piper* richness were often similar in
57 magnitude to the effects of reduced interspecific richness. Increased water availability reduced
58 herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to
59 water availability were altered by both intra and interspecific richness in a site dependent manner.
60 Our results underscore the role of intraspecific and interspecific richness as foundations of
61 ecosystem function and the importance of community and location specific contingencies in
62 controlling function in complex tropical systems.

63

64 **Keywords:** Biodiversity, Ecosystem function, Herbivores, *Piper*, Plant-Insect interactions,
65 Water availability

66

67 **Introduction**

68 As climate change and anthropogenic activity alter ecosystems at unprecedented rates, it
69 has become critical to understand the consequences of biodiversity loss on ecosystem processes
70 and the maintenance of ecosystem processes through species interactions. A complex mix of
71 anthropogenic forces are eroding multiple dimensions of global biological diversity, including
72 plant intraspecific, interspecific, and functional diversity (1,2). Plant diversity affects herbivore
73 abundance and diversity, thereby influencing biomass allocation and energy fluxes between
74 trophic levels (3). Because losses of plant diversity can destabilize the flow of resources to
75 higher trophic levels (3,4), understanding the connection between biodiversity and trophic
76 interactions is necessary to predict the consequences of the loss of primary producer biodiversity
77 on ecosystem traits such as resilience to environmental perturbation (5,6). While climate change
78 is associated with increased absolute precipitation in some regions and decreased precipitation in
79 others, IPCC models predict mid-century increases in the frequency of extreme precipitation
80 events in Central and South America (7–9), a phenomenon already observable in many
81 ecosystems (10). Measuring how precipitation change will affect the relationship between
82 biodiversity and ecosystem function is therefore increasingly important, particularly in diverse
83 tropical systems.

84 Very few multi-site, manipulative diversity experiments have been reported from tropical
85 areas compared to temperate environments (11), limiting our knowledge of the role of
86 biodiversity in ecosystem function in the most species-rich regions of the planet (12). In the
87 context of several established hypotheses (Table 1) we investigate how multiple dimensions of
88 plant diversity affect ecosystem processes at five neotropical sites and explore how diversity

89 modulates how ecosystems respond to changes in water availability at three of those sites. We
90 focus on ecosystem responses that represent changes in energy fluxes between trophic levels as
91 measured by herbivory, herbivore diversity and plant mortality. By altering plant uptake of
92 nutrients and plant defense production, abnormal levels of precipitation can alter herbivore
93 pressure, affecting the movement of resources into higher trophic levels (13). As such, extreme
94 dry and wet periods of climate are expected to strongly perturb plant-insect interactions and
95 thereby alter ecosystem function (13–15). The insurance hypothesis suggests that greater
96 biodiversity can act to stabilize ecosystems and improve their resilience to environmental change
97 (4,16). While greater interspecific plant richness is expected to lead to increased diversity in
98 higher trophic levels due to the accumulation of specialist herbivores, field studies have
99 demonstrated both positive and neutral effects of interspecific plant richness on ecosystem
100 resilience (17,18). Despite traditional views that interspecific richness has a greater impact on
101 ecosystem processes than intraspecific diversity (19), recent research suggests that plant intra-
102 and interspecific richness can have similar effects on ecosystem productivity and consumer
103 abundance (20,21). As changes to intraspecific richness can alter the diversity of resources
104 available to herbivores (22), it is necessary to consider both inter and intraspecific diversity when
105 investigating the effects of biodiversity loss on ecosystem processes.

106 We conducted common garden experiments at five sites across Central and South
107 America to test the insurance hypothesis by quantifying 1) the relative strength of intra- and
108 interspecific plant richness in driving ecosystem function and 2), the effects of increased water
109 availability on ecosystem function. Using 33 species in the genus *Piper* (Piperaceae) as a model
110 system (23), we manipulated intra- and interspecific plant richness in Costa Rica, Ecuador, Peru,

111 and two sites in Brazil. We additionally manipulated water availability in Costa Rica, Ecuador,
112 and Peru (Figs. 1 & S1 A). We predicted that reduced *Piper* diversity would lead to reduced
113 diversity of higher trophic levels, that water addition would lead to altered herbivore pressure,
114 and that lower *Piper* diversity would be associated with more extreme changes in herbivory and
115 plant mortality in response to water addition. Finally, we predicted that changes in intraspecific
116 and interspecific plant richness would affect ecosystem processes, including herbivory, herbivore
117 diversity, and plant mortality, with similar magnitudes.

118

119 **Methods**

120 *Study sites and focal plant genus*

121 We conducted a large-scale transplant experiment replicated across five sites spanning
122 42° latitude in the Neotropics (Fig. 1 & Table S1) encompassing a range in annual precipitation
123 from 1271 mm to 4495 mm (Table S1). At each site, we studied herbivory on planted individuals
124 in the genus *Piper* (Piperaceae) in response to experimental treatments. Study sites included
125 lowland equatorial humid forest at La Selva Biological Station, Costa Rica; high elevation
126 equatorial humid forest in Yanayacu Biological Station, Ecuador; high elevation equatorial
127 humid forest at El Fundo Génova, Peru; lowland seasonally dry gallery forest in the cerrado
128 within the phytogeographic domain of the Atlantic Forest in Mogi-Guaçu Biological Reserve,
129 Brazil; and lowland seasonally semideciduous forest in the transition between the Atlantic Forest
130 and the cerrado phytogeographic domains in Uaimii State Forest, Brazil. Climate classifications
131 follow the Köppen-Geiger climate model (Table S1; 22).

132 Multiple species of *Piper* are found at all sites, ranging from 11 species in Mogi-Guaçu to
133 50 species in Costa Rica (25). *Piper* is an ideal genus for large-scale comparative studies, as it is
134 found across the Neotropics and subtropics, from ~10° N to about ~32° S. In addition to being
135 widespread, *Piper* is abundant and diverse across its range, encompassing ~1000 species in the
136 Neotropics (26). *Piper* has been the subject of detailed studies of herbivory, and its herbivore
137 fauna has been surveyed across its range (27–38). Members of the genus host both specialist
138 caterpillars and beetles as well as generalist caterpillars and Orthopterans (23,27–30,32). Leaf
139 damage patterns produced by the different classes of herbivores are well documented and allow
140 for the determination of unique taxa of herbivores (32).

141 *Experimental design*

142 Executing experiments across the Americas presents challenges, including nuanced
143 variations in methodologies at each site. Nonetheless, the advantages of this expansive and
144 consistent approach provides a greater understanding in the role of biodiversity in ecosystem
145 function than examining isolated single-site studies. Here we describe the experimental design
146 applied across sites, see Figures 1 & S1, and Tables S1 & S2 for site specific details.

147 At each study site, a factorial experiment was implemented to test the effects of plant
148 interspecific and intraspecific richness on herbivory, variation in herbivory, and insect richness.
149 Experimental plants were propagated from cuttings of naturally occurring *Piper* plants (typically
150 with three nodes and zero to one leaves). At each site a subset of naturally occurring *Piper*
151 species was selected to act as a species pool for each experimental plot (Table S2). These species
152 were selected to constitute a breadth of genetic and functional diversity representative of the
153 *Piper* community present at each site. In all sites except Uaimii, experimental plots measured 4

154 m in diameter and contained 12 *Piper* individuals, planted either in pots with locally derived soil
155 (for experiments manipulating water availability) or directly into the ground (for experiments
156 without water additions in Mogi-Guaçu and Uaimii; Table S1) and cultivated without fertilizer or
157 irrigation. Interspecific richness treatment levels consisted of single species monoculture plots,
158 two species plots, and high richness plots with the maximum number of species available to
159 produce cuttings (Table S1). The minimum number of *Piper* species in a high richness plot was
160 three in Uaimii, and the maximum was 12 in Costa Rica and Ecuador. In plots with more than
161 one species, species were randomly sampled from the species pool for that site.

162 An intraspecific richness treatment was crossed with the interspecific richness treatment.

163 Intraspecific richness was manipulated by clones taken from a single mother plant (low richness)
164 or individual cuttings all taken from unique mother plants (high richness). In the high
165 intraspecific richness treatment, cuttings were from different *Piper* individuals growing at least
166 10 m apart, to eliminate the likelihood of a shared root system thus representing genetically
167 unique individuals. In Costa Rica and Ecuador, the high interspecific richness plots only
168 included individuals from unique mother plants because all cuttings were taken from different
169 species.

170 A water addition treatment was crossed with the inter- and intraspecific richness
171 treatments in Costa Rica, Ecuador, and Peru in order to examine how IPCC predicted regional
172 mid-century increases in precipitation in these regions (9) may affect herbivory and trophic
173 interactions. Plants were cultivated in five to six liter pots with drainage holes. Each potted plant
174 under the water addition treatment was watered with 2 L of water twice per month in Costa Rica
175 and Ecuador. In Peru, 2 L of water were added to plants every three months. Water was rapidly

176 applied as a flooding event to completely saturate the soil. Plant cultivation periods lasted in
177 excess of one year at all sites, and as such water was added in both the wet season and dry season.
178 Experimental plots were randomly located in the study sites; in Mogi-Guaçu and Uaimii they
179 were organized in three replicate blocks. There was a minimum of 20 m between plots in blocks
180 and 100 m between blocks. Randomly located plots were separated by a minimum of 50 m.
181 Experimental periods lasted between 1.4 and 2.8 years, depending on the site (Table S1), and all
182 measurements of herbivory were conducted on leaves that were initiated during these periods.
183 Cuttings were replaced if they died during the first three months of the experiment. One of the
184 authors was present at all of the sites for multiple visits to ensure as much standardization of
185 treatment applications as possible.

186 *Piper* mortality resulted in a reduction in species richness in many plots and the loss of
187 some treatment combinations, notably the loss of all *Piper* in unwatered, low intraspecific
188 richness plots in Peru (Fig. S1B). Plots originally planted as high interspecific richness
189 treatments had a final richness of between 1 and 12 species in Costa Rica, 9 and 11 species in
190 Ecuador, 1 and 3 species in Peru, 2 and 4 species in Mogi, and only 2 species in Uaimii.
191 To determine the effects of site variation in natural levels of precipitation on the outcomes of the
192 water addition treatment, the absolute level of precipitation and precipitation anomalies relative
193 to climate normals were collected for each month of the experimental periods in Costa Rica,
194 Ecuador, and Peru (Fig. S2). Climate data for Costa Rica were obtained from La Selva
195 Biological Station. Data for Ecuador and Peru were obtained using TerraClimate (39), and an
196 interpolation error in the precipitation for Peru in February 2016, was corrected using data from
197 the National Service of Meteorology and Hydrology of Peru (SENAMHI).

198

199 *Measures of herbivory and insect richness*

200 Plots were open to naturally occurring herbivores, and herbivory was recorded by taking
201 photographs of all the experimental leaves at the end of the experimental period. Additional
202 photos were taken every three months in Uaimii and Mogi-Guaçu, and in the first five months of
203 the experiment in Costa Rica. These data were used to measure herbivory and to determine the
204 types of herbivores feeding on leaves based on patterns of damage. When herbivores were
205 observed on plants, they were photographed but were left to continue feeding so as to not
206 interfere with the experiment. Herbivory was quantified by eye for each type of herbivore on
207 each leaf by a single parataxonomist with extensive experience measuring herbivory on *Piper*
208 following established protocols (32). The amount of leaf area consumed was measured in
209 relation to the total leaf area by visually dividing the leaf into equal sized segments to determine
210 the percent area missing. This was measured as a continuous value to the greatest possible
211 accuracy, typically 1-5% of the total leaf area. Insect herbivores were identified to the lowest
212 taxonomic level possible based on their damage patterns (genus for specialist Lepidoptera,
213 family for generalist Lepidoptera, family for Coleoptera, order for Orthoptera). Direct
214 observations of herbivores were rare, so only damage patterns were used in analyses. As insect
215 damage patterns on leaves are tightly correlated with insect richness in tropical forests (40), the
216 different types of damage recorded were used as proxy for the richness of above ground insect
217 herbivores on *Piper*. Hereafter, the term “insect richness” refers to the richness of insect
218 herbivore damage patterns on plants.

219

220 *Data analyses*

221 The percentage of leaf tissue consumed by each insect taxon (based on damage patterns)
222 on individual leaves was summed to determine the total percentage of herbivory on each leaf,
223 and the variance in herbivory was calculated as the variance in leaf damage within each plant in
224 a plot. Due to high mortality rates across sites, *Piper* interspecific richness in each plot was the
225 final number of *Piper* species present in each plot at the end of the experiment (rather than the
226 number of species planted) and was analyzed as a continuous covariate rather than a categorical
227 treatment. Because most plant deaths occurred early in the experiments, final *Piper* interspecific
228 richness more accurately reflects the local plant richness experienced by herbivores. Interspecific
229 diversity for each plot was analyzed as the proportion of the interspecific diversity present in the
230 species pools at each site. This enabled easier comparisons between intra and interspecific
231 richness, as intraspecific richness was only quantified as low and high, where high treatments
232 represent the maximum intraspecific richness available at each site. The effect of intra and
233 interspecific diversity on each response variable is reported as the change in response as diversity
234 changes from the lowest possible value at each site to the highest.

235 The effects of intraspecific richness, interspecific richness, and water addition on percent
236 leaf area consumed, the percentage of damaged leaves, variance in herbivory, and insect richness
237 were analyzed across and within sites using hierarchical Bayesian models (HBM). This
238 framework acts as the Bayesian equivalent of a random-effects model where site is a random
239 effect, allowing for generalized parameter estimates across sites. Analyses testing *Piper*
240 intraspecific richness and interspecific richness were conducted using data from all sites; the
241 effects of water addition and its interactions with richness were conducted using data from

242 Ecuador, Costa Rica, and Peru. Due to high mortality in Peru, interactions between the water
243 addition and intraspecific richness treatments could not be modeled for measures of herbivory or
244 insect richness, and were only tested for survival.

245 We acknowledge that treatment level combinations were not the same across the different
246 sites, but experimental designs of this nature are encompassed within the framework of random-
247 effects models, where different levels of random factors, such as site or year, consist of treatment
248 levels that are unique to that site or year. This type of experimental design goes back to the
249 origins of mixed models (41,42), and the lack of interactions between fixed and random effects
250 increases generality in these models (43). Even at a single site, manipulated variables in
251 ecological experiments do not even consist of the same manipulations across all of the units of
252 replication, as they suffer from problems such as multiple versions of treatments, interference,
253 and noncompliance (44)

254 Bayesian structural equation models (BSEMs) were constructed for each site using all
255 treatments as exogenous variables and insect richness and herbivory as endogenous variables.
256 Three path models were developed under the assumptions that 1) intraspecific and interspecific
257 richness may influence herbivory both directly and indirectly by modulating insect richness 2)
258 water addition may influence both herbivory and insect richness and 3) insect richness may
259 influence herbivory directly (Table 1). Models I-III were tested in Ecuador, Costa Rica and Peru.
260 while a model without the water addition variable was used to analyze data from Mogi-Guaçu
261 and Uaimii. Additional models incorporating interactions between intraspecific richness,
262 interspecific richness, and water availability were tested in Costa Rica, Ecuador, and Peru.

263 Models were run at the leaf level for herbivory and insect richness, and at the plant level
264 for the percentage of leaves with damage, variance of herbivory, and *Piper* survival. For all
265 HBMs and BSEMs, model convergence was estimated visually using traceplots and an R \square
266 discriminatory threshold of 1.1 (45). Model fit was determined via posterior predictive checks
267 (PPC) using the sum of squares of the residuals as the discriminatory function (46). A PPC near
268 0.5 indicates a high model fit, while values near one or zero indicate poor fit. BSEM models
269 were further compared using the Deviance Information Criterion (DIC).

270 All Bayesian models were written in JAGS via the jagsUI package in R (47) using
271 Markov chain Monte Carlo (MCMC) sampling with weakly-informative priors. Residuals were
272 modeled as normally distributed based on PPC comparisons between models. Models using
273 gamma distributions for herbivory and binomial distributions for damage presence and mortality
274 were found to consistently underestimate the magnitude of variance in the data based on PPC.
275 For the majority of models, MCMC runs were conducted for 10,000 iterations using the first
276 1,000 iterations as a burn-in phase to generate posterior distributions of parameter estimates for
277 each response variable. HBMs modeling interactions required 20,000 iterations with the first
278 5,000 as burn-ins for all models to consistently converge. Mean parameter estimates and 95%
279 credible intervals (CIs) were calculated for all responses. 95% CIs which do not cross the y-axis
280 are typically associated with less than a 2.5% type S error rate (48). A posterior probability of
281 direction (PD) was calculated based on the percentage of the posterior distribution responding in
282 the same direction as the median response. A PD of 95%, for example, indicates that the same
283 direction of response (e.g. a positive or negative response) was observed in 95% of iterations,

284 regardless of the magnitude of the response (49). PDs less than 95%, indicate lower confidence
285 that a relationship exists, but can still be interpreted as the probability that an effect exists.

286 To analyze the effects of the experimental treatments on plant survival, survivorship
287 curves were constructed for all sites. Analyses of *Piper* survival were based on the initially
288 planted interspecific richness treatment of each plot because mortality occurred early in the
289 experiment. The effects of water addition, intra- and interspecific richness and species identity
290 on *Piper* survival were analyzed using Cox proportional hazard models. All data were analyzed
291 using R software v4.1.0 (50).

292

293 **Results**

294 Considerable variation in herbivory and plant mortality was observed among study sites.
295 Percent herbivory was lowest at Mogi where only 9% of leaf tissue was consumed by herbivores
296 compared to 22% of leaf tissue consumed in Uaimii. *Piper* mortality was highest in Peru (89%),
297 likely due to El Niño related drought, and was lowest in Ecuador (27%; Fig. S3A). We identified
298 herbivore damage from 13 insect taxa at the five study sites, as well as damage by leaf miners of
299 unknown orders. Damage from a total of 10 taxa were observed in Costa Rica, Ecuador, and
300 Peru, 9 taxa were observed in Mogi, and 8 taxa were observed in Uaimii (Fig. S3 B). The
301 majority of taxa in Peru, Mogi, and Uaimii were generalist herbivores, while 60% of taxa in
302 Costa Rica and 58% of taxa in Ecuador were *Piper* specialists. The proportion of leaf tissue
303 consumed by specialists was only greater than generalist damage in Costa Rica.

304 Our experiments revealed pronounced heterogeneity in ecosystem responses to water
305 availability and *Piper* diversity between sites (Figs. S4 & S5). Posterior predictive checks (PPCs)

306 for all hierarchical Bayesian models (HBMs), and for models I, and III were within 0.03 of 0.5,
307 indicating models fit well. Model III (Table 1) was selected as the most parsimonious causal
308 model for BSEMs in Costa Rica (PPC = 0.499), Ecuador (PPC = 0.499), and Peru (PPC = 0.498).
309 Fit was high for models in Mogi (PPC = 0.5) and Uaimii (PPC = 0.497). Across all sites where
310 the water addition treatment was applied, percent herbivory was $4.2 \pm 3.6\%$ (mean \pm 95% CI)
311 lower in plots that received additional water (PD = 98.7%; Fig. 2 A-B). Greater *Piper*
312 interspecific richness was associated with a $15 \pm 18.6\%$ increase in the richness of insect
313 herbivores (PD = 95.0%; Fig. 2E) and an indirect increase in herbivory was mediated by insect
314 richness (Fig. 3). Insect richness was associated with an $8.8 \pm 2.8\%$ increase in herbivory per
315 insect taxon present (PD = 100%) and a $6.7 \pm 6.9\%$ increase in the percentage of leaves with any
316 damage (PP = 97%) (Figs. 2A, B). Intra- and interspecific richness affected herbivory, although
317 effects varied in strength and direction across sites (Fig. 3, Table S3). Intraspecific richness had
318 similar or greater effects on plant mortality and insect richness than interspecific richness.
319 However, intra- and interspecific richness often had contrasting directions of effect on insect
320 richness and measures of herbivore pressure (Figs. 3, S4B-C & S5B-C). For example, in Costa
321 Rica insect richness was $6.0 \pm 5.9\%$ (PD = 93.7%) lower in plots with high interspecific plant
322 richness, while high intraspecific richness increased insect richness by $7.2 \pm 6.9\%$ (PD = 98.1%).
323 In contrast, in Ecuador high interspecific richness was associated with a $43.6 \pm 6.4\%$ (PD = 100%)
324 increase in insect richness, and high intraspecific richness decreased insect richness by $13.6 \pm 5.2\%$
325 (PD = 100%; Fig. S5B-C).

326 The effects of water addition were altered by *Piper* intra- and interspecific richness at all
327 sites (Fig. 4). Water availability reduced herbivory in Costa Rica ($4.7 \pm 2.5\%$, PD = 100%) and

328 Peru ($5.1 \pm 3.7\%$, PD = 100%), but this effect was only present in Ecuador when intraspecific
329 richness was high (Fig. S6). Across sites, water addition had negligible or negative effects on
330 insect richness at low interspecific richness, but this pattern was reduced or reversed when
331 interspecific richness was high. Insect richness increased by $20.8 \pm 18.9\%$ more in
332 interspecifically diverse plots water compared to unwatered plots in Costa Rica (PD = 99%).
333 Insect richness increased by $15.2 \pm 16.8\%$ more in rich, watered plots in Ecuador (PD = 96%),
334 and $29.3 \pm 31.5\%$ more in Peru (PD = 98%). Additionally, water addition had a negligible effect
335 on insect richness in Ecuador when intraspecific richness was low, but increased insect richness
336 by 12.1% when intraspecific richness was high (PD = 99%; Fig. 4B).

337 Water addition had a negative effect on *Piper* survival in Costa Rica when intraspecific
338 richness was low, but improved survival by $12.1 \pm 8.5\%$ in high intraspecific richness plots (PD =
339 99%; Fig. 4C). Interactions with water in Peru may have been influenced by an El Niño related
340 drought which resulted in high *Piper* mortality, while the typically wetter sites in Costa Rica and
341 Ecuador experienced greater precipitation than average (Fig. S2).

342 *Analysis of plant survival*

343 Water addition did not affect *Piper* survival in Costa Rica ($z = -1.2, P > 0.2$), or in
344 Ecuador ($z = 0.2, P > 0.8$), but survival was reduced by 48% in plots without water in Peru ($z =$
345 3.2, $P = 0.001$). Intraspecific richness increased survival by 38% in Costa Rica ($z = -3.3, P <$
346 0.001) and by 32% in Ecuador ($z = -4.9, P < 0.001$), but had no effect on survival in Peru ($z = -$
347 1.55, $P > 0.1$), Mogi ($z = -0.22, P > 0.8$), or Uaimii ($z = 0.18, P > 0.8$). Interspecific richness had
348 no effect on survival in Costa Rica ($z = -1.5, P > 0.1$), Ecuador ($z = -0.56, P > 0.5$), Peru ($z = -$
349 0.49, $P > 0.6$), or Uaimii ($z = 0.21, P > 0.8$). In Mogi, survival was reduced by 13% in plots with

350 higher interspecific richness ($z = -2.16, P = 0.031$). There was an interaction between
351 intraspecific richness and water addition in Costa Rica and Peru. Survival in Costa Rica
352 increased in response to water in high intraspecific richness plots, and decreased in response to
353 water in low intraspecific richness plots ($z = 3.8, P < 0.001$), while the opposite pattern was
354 observed in Peru ($z = -2.4, P = 0.02$; Fig. S7). Although plant die-offs cause a loss in richness in
355 some plots, plant species identity was not related to survival with the exception of *P. peltatum*,
356 which had the lowest survival rate of any species planted in Costa Rica. Further statistical results
357 are available in the supplement.

358

359 **Discussion**

360 Our results demonstrate two key patterns. First, the strength of effects of intraspecific
361 richness on higher trophic levels is comparable to that of interspecific richness, supporting our
362 predictions and corroborating recent studies demonstrating the importance of intraspecific
363 richness (20,21,51). However, the direction of the effect of intraspecific richness on herbivory,
364 insect richness, and plant survival can vary dramatically from the direction of effect of
365 interspecific richness, in contrast to our predictions. Second, we found that perturbations in water
366 availability can have complex effects on herbivores and plant survival, and that these effects can
367 be modulated by plant diversity in a context sensitive manner. While our prediction that water
368 availability would influence herbivory across sites was supported, our results suggest that
369 biodiversity loss and climatic perturbations may have dramatically different effects on ecosystem
370 function at local scales, which may diminish our ability to predict how local communities will
371 change as anthropogenic stressors increase.

372 As we did not directly measure plant stress or nutrition, it is difficult to determine the
373 exact mechanism through which water addition reduced herbivory. The presence of an El Niño
374 weather pattern during the course of the Peru experiment may have led the water addition
375 treatment to relieve plants from drought stress, while water addition in Costa Rica and Ecuador
376 may have added to water stress in treated plants as these sites received an above average level of
377 rainfall during the course of the experiment. Despite this, water addition consistently suppressed
378 herbivory in Costa Rica, Ecuador, and Peru under natural levels of *Piper* diversity, suggesting
379 that predicted increases in precipitation in the next century (52) will dramatically alter the flow
380 of resources from primary producers. Although we were only able to record the richness of insect
381 herbivory patterns, this measure is indicative of the functional diversity of insect herbivores on
382 *Piper* and changes to this value represent changes in interactions between *Piper* and higher
383 trophic levels (32,40). As such, the additional reduction in effects of water addition on insect
384 richness when *Piper* richness was low suggest that biodiversity loss in tropical systems will alter
385 the ability of higher trophic levels to respond to environmental perturbations.

386 While our prediction that increased *Piper* interspecific richness would lead to increased
387 insect diversity was met in the majority of sites, interspecific richness was associated with
388 decreased insect diversity in Costa Rica and Peru. As herbivore taxa can be differently affected
389 by manipulations of diversity (53), variation in the direction of the effect of intra- and
390 interspecific richness may be due in part to variation in the composition of insect communities
391 and herbivore pressure measured across sites. Changes in neighborhood effects when small
392 numbers of plant species dominate a community can lead either to the reduction or increase of
393 herbivore pressure, dependent both on the nature of plant species lost and herbivore species

394 present in a given community (54). As such, local variation in community composition has the
395 potential to greatly alter the effects of both climate change and biodiversity loss on ecosystem
396 function.

397 Although experimental methods varied somewhat between study sites, this cannot fully
398 explain the level of heterogeneity observed in ecosystem response. For example, the methods
399 employed in Costa Rica and Ecuador were nearly identical, and yet the directions of effect of
400 intra- and interspecific diversity on insect richness were reversed in these sites (Fig. S5 B-C).
401 There was considerable variation in both biotic (Fig. S3 B) and abiotic factors (Table S1) across
402 sites, which may have contributed to the heterogeneity observed in ecosystem response to *Piper*
403 diversity. Regardless of how biodiversity loss effects ecosystem function at large scales,
404 variation in abiotic and biotic factors at locals scales can alter these effects, reducing our ability
405 to predict how anthropogenic activity will alter ecosystem function. This is especially relevant in
406 tropical systems, which have been the subject of far fewer studies of ecosystem function than
407 temperate ecosystems. As such, our knowledge of local effects on the relationship between
408 biodiversity and ecosystem function remains limited in these systems.

409 A long-standing question in ecology has been the extent to which ecosystem function
410 increases with biodiversity and if this relationship plateaus at a level past which ecological
411 redundancy predominates. Recent results from less complex temperate grassland systems suggest
412 that these ecosystems can be described by a mostly linear relationship between richness and
413 function, where even rare species make unique contributions to ecosystem function (55). In these
414 systems, high contingency can be expected, where ecosystem-level effects will depend on most
415 of the interacting species. In contrast, we might expect that diverse, tropical communities could

416 be characterized by greater ecological redundancy and thus be subject to less contingency
417 (56,57). Despite these expectations, our results demonstrate heterogeneity in ecosystem response
418 to changes in both intraspecific and interspecific richness in five tropical sites, suggesting that
419 complexity in these systems may not reduce the contingency effects of biodiversity loss.
420 Understanding the impact of biodiversity loss in tropical forests is fundamental to our ability to
421 conserve those systems, and our findings highlight the importance of approaching the study of
422 changes in ecosystem function as context sensitive responses in complex ecosystems.

423

424 **Acknowledgments**

425 The authors would like to thank Hacienda San Isidro, Ecuador for access to their forest reserve
426 for experiments, the Meteorological Service from Peru (SENAMHI) for access to their weather
427 data, and IEF, Minas Gerais, for access to Uaimii Forest Reserve during experiments. The
428 collecting permit in Peru was issued by Peruvian Ministry of Agriculture (RDG N 288-2015-
429 SERFOR-DGGSPFFS).

430 **Funding sources**

431 Funding was supplied through NSF grants DEB-1442103 to LAD, LAR, TLP, AMS, and DEB-
432 1442075 to EJT

433 **Author contributions:**

434 L.A.R., L.A.D., A.M.S., T.L.P., E.J.T., J.O.S., M.J.K., and T.J.M. developed the original idea for
435 the research and secured funding. L.A.S., T.J.M, L.A.D, E.J.T., and H.G.L. collected Peru data.
436 H.G.L. and L.A.D. collected Costa Rica data. W.R.S., T.R.W., and L.A.D. collected Ecuador
437 data. T.J.M and A.R.N collected Mogi data. Y.A., L.B., T.J.M, and A.R.N. collected Uaimii data.

438 W.R.S measured herbivory for all sites. A.J.G. analyzed the data and wrote the first draft of the
439 manuscript. All authors contributed to analysis ideas and to writing revisions.

440

441 **Competing interests:** The authors declare no competing interests

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460 References

1. Morris RJ. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. *Philos Trans R Soc B Biol Sci.* 2010 Nov 27;365(1558):3709–18.
2. Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. *WIREs Clim Change.* 2014;5(3):317–35.
3. Ebeling A, Rzanny M, Lange M, Eisenhauer N, Hertzog LR, Meyer ST, et al. Plant diversity induces shifts in the functional structure and diversity across trophic levels. *Oikos.* 2018;127(2):208–19.
4. Naeem S, Li S. Biodiversity enhances ecosystem reliability. *Nature.* 1997 Dec;390(6659):507–9.
5. Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, et al. Response diversity, ecosystem change, and resilience. *Front Ecol Environ.* 2003;1(9):488–94.
6. Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, et al. Biodiversity and Resilience of Ecosystem Functions. *Trends Ecol Evol.* 2015 Nov 1;30(11):673–84.
7. Easterling DR. Climate Extremes: Observations, Modeling, and Impacts. *Science.* 2000 Sep 22;289(5487):2068–74.
8. O’Gorman PA, Schneider T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. *Proc Natl Acad Sci.* 2009 Sep 1;106(35):14773–7.
9. Field CB, Barros VR, Mastrandrea MD, Mach KJ, Abdrabo MAK, Adger WN, et al. Summary for Policy Makers: Working group 11 contribution to the fifth assessment report of the Intergovernmental panel on Climate Change [Internet]. Cambridge University Press; 2014 [cited 2023 Feb 10]. (Climate Change 2014: Impacts, Adaptation and Vulnerability - Contributions of the Working Group II to the Fifth Assessment Report). Available from: <http://www.mendeley.com/research/summary-policy-makers-52>
10. Fischer EM, Knutti R. Observed heavy precipitation increase confirms theory and early models. *Nat Clim Change.* 2016 Nov;6(11):986–91.
11. Clarke DA, York PH, Rasheed MA, Northfield TD. Does Biodiversity–Ecosystem Function Literature Neglect Tropical Ecosystems? *Trends Ecol Evol.* 2017 May 1;32(5):320–3.
12. Gentry AH. Tropical forest biodiversity: distributional patterns and their conservational significance. *Oikos.* 1992;19–28.

13. White TCR. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of *Selidosema suavis* in a plantation of *Pinus radiata* in New Zealand. *Oecologia*. 1974 Dec 1;16(4):279–301.
14. Côté IM, Darling ES. Rethinking Ecosystem Resilience in the Face of Climate Change. *PLOS Biol*. 2010 Jul 27;8(7):e1000438.
15. Koricheva J, Larsson S, Haukioja E. Insect performance on experimentally stressed woody plants: A meta-analysis. *Annu Rev Entomol*. 1998;43:195.
16. Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. *Proc Natl Acad Sci*. 1999 Feb 16;96(4):1463–8.
17. Klaus VH, Hölzel N, Prati D, Schmitt B, Schöning I, Schrumpf M, et al. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances. *Sci Total Environ*. 2016 Oct 1;566–567:215–22.
18. Lanta V, Doležal J, Zemková L, Lepš J. Communities of different plant diversity respond similarly to drought stress: experimental evidence from field non-weeded and greenhouse conditions. *Naturwissenschaften*. 2012;99(6):473–82.
19. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M. Ecological consequences of genetic diversity. *Ecol Lett*. 2008;11(6):609–23.
20. Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. *Biol Rev*. 2019;94(2):648–61.
21. Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta-analysis. *Funct Ecol*. 2018;32(7):1704–17.
22. Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ. Plant Genotypic Diversity Predicts Community Structure and Governs an Ecosystem Process. *Science*. 2006 Aug 18;313(5789):966–8.
23. Dyer LA, Palmer ADN, editors. *Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution* [Internet]. Boston, MA: Springer US; 2004 [cited 2021 Feb 26]. Available from: <http://link.springer.com/10.1007/978-0-387-30599-8>
24. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. 2006;
25. Salazar D, Jaramillo MA, Marquis RJ. Chemical similarity and local community assembly in the species rich tropical genus *Piper*. *Ecology*. 2016 Nov;97(11):3176–83.
26. G. Davidse, C. Ulloa Ulloa, H. M. Hernández Macías & S. Knapp (Eds.), editor. *Piperaceae*. In: *Flora Mesoamericana*. St. Louis: Missouri Botanical Garden Press; 2020. p. i–xix; 1–590.

27. Dyer LA, Letourneau DK. Trophic cascades in a complex terrestrial community. *Proc Natl Acad Sci.* 1999;96(9):5072–6.
28. Dyer LA, Letourneau D. Top-down and bottom-up diversity cascades in detrital vs. living food webs. *Ecol Lett.* 2003;6(1):60–8.
29. Dyer LA, Letourneau DK, Dodson CD, Tobler MA, Stireman III JO, Hsu A. Ecological causes and consequences of variation in defensive chemistry of a Neotropical shrub. *Ecology.* 2004;85(10):2795–803.
30. Letourneau DK, Dyer LA, Vega C G. Indirect effects of a top predator on a rain forest understory plant community. *Ecology.* 2004;85(8):2144–52.
31. Connahs H, Rodríguez-Castañeda G, Walters T, Walla T, Dyer L, Miller J. Geographic variation in host-specificity and parasitoid pressure of an herbivore (Geometridae) associated with the tropical genus *Piper* (Piperaceae). *J Insect Sci.* 2009;9(1).
32. Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS. Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. *Ecology.* 2010;91(12):3707–18.
33. Bodner F, Strutzenberger P, Brehm G, Fiedler K. Species richness and host specificity among caterpillar ensembles on shrubs in the Andes of southern Ecuador. *Neotrop Entomol.* 2012;41(5):375–85.
34. Abarca M, Boege K, Zaldívar-Riverón A, Giray T. Shelter-building behavior and natural history of two pyralid caterpillars feeding on *Piper stipulaceum*. *J Insect Sci.* 2014;14(1).
35. Glassmire AE, Jeffrey CS, Forister ML, Parchman TL, Nice CC, Jahner JP, et al. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. *New Phytol.* 2016;212(1):208–19.
36. Slinn HL, Richards LA, Dyer LA, Hurtado PJ, Smilanich AM. Across multiple species, phytochemical diversity and herbivore diet breadth have cascading effects on herbivore immunity and parasitism in a tropical model system. *Front Plant Sci.* 2018;9:656.
37. Cosmo LG, Nascimento AR, Cogni R, Freitas AV. Temporal distribution in a tri-trophic system associated with *Piper amalago* L. in a tropical seasonal forest. *Arthropod-Plant Interact.* 2019;13(4):647–52.
38. Campos-Moreno DF, Dyer LA, Salcido D, Massad TJ, Pérez-Lachaud G, Tepe EJ, et al. Importance of interaction rewiring in determining spatial and temporal turnover of tritrophic (Piper-caterpillar-parasitoid) metanetworks in the Yucatán Península, México. *Biotropica.* 2021;
39. Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution

global dataset of monthly climate and climatic water balance from 1958–2015. *Sci Data*. 2018 Jan 9;5(1):170191.

40. Carvalho MR, Wilf P, Barrios H, Windsor DM, Currano ED, Labandeira CC, et al. Insect Leaf-Chewing Damage Tracks Herbivore Richness in Modern and Ancient Forests. *PLOS ONE*. 2014 May 2;9(5):e94950.
41. Fisher RA. XV.—The correlation between relatives on the supposition of Mendelian inheritance. *Earth Environ Sci Trans R Soc Edinb*. 1919;52(2):399–433.
42. Henderson CR, Kempthorne O, Searle SR, von Krosigk CM. The Estimation of Environmental and Genetic Trends from Records Subject to Culling. *Biometrics*. 1959;15(2):192–218.
43. Abelson R. P.(1995). Statistics as principled argument. Hillsdale, NJ: Lawrence Erlbaum;
44. Kimmel K, Dee LE, Avolio ML, Ferraro PJ. Causal assumptions and causal inference in ecological experiments. *Trends Ecol Evol*. 2021 Dec 1;36(12):1141–52.
45. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. *Stat Sci*. 1992 Nov;7(4):457–72.
46. Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. *Stat Sin*. 1996;733–60.
47. Kellner K, Kellner MK, SystemRequirements J. Package ‘jagsUI.’ 2021;
48. Gelman A, Tuerlinckx F. Type S error rates for classical and Bayesian single and multiple comparison procedures. *Comput Stat*. 2000 Sep 1;15(3):373–90.
49. Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D. Indices of Effect Existence and Significance in the Bayesian Framework. *Front Psychol*. 2019;10:2767.
50. R. Core Team. R: A language and environment for statistical computing. 2013;
51. Cook-Patton SC, McArt SH, Parachnowitsch AL, Thaler JS, Agrawal AA. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. *Ecology*. 2011 Apr;92(4):915–23.
52. Field CB, Barros VR, Intergovernmental Panel on Climate Change, editors. In: Climate change 2014: impacts, adaptation, and vulnerability: Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2014.
53. Agrawal AA, Lau JA, Hambäck PA. Community heterogeneity and the evolution of interactions between plants and insect herbivores. *Q Rev Biol*. 2006 Dec;81(4):349–76.

54. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors. *Annu Rev Ecol Evol Syst.* 2009 Dec;40(1):1–20.
55. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. *Nature.* 2011 Sep;477(7363):199–202.
56. Naeem S. Species Redundancy and Ecosystem Reliability. *Conserv Biol.* 1998;12(1):39–45.
57. Rosenfeld JS. Functional redundancy in ecology and conservation. *Oikos.* 2002;98(1):156–62.
58. Root RB. Organization of a Plant-Arthropod Association in Simple and Diverse Habitats: The Fauna of Collards (*Brassica Oleracea*). *Ecol Monogr.* 1973;43(1):95–124.
59. Gely C, Laurance SGW, Stork NE. How do herbivorous insects respond to drought stress in trees? *Biol Rev.* 2020;95(2):434–48.
60. Lenhart PA, Eubanks MD, Behmer ST. Water stress in grasslands: dynamic responses of plants and insect herbivores. *Oikos.* 2015;124(3):381–90.

461

462

463

464

465

466

467

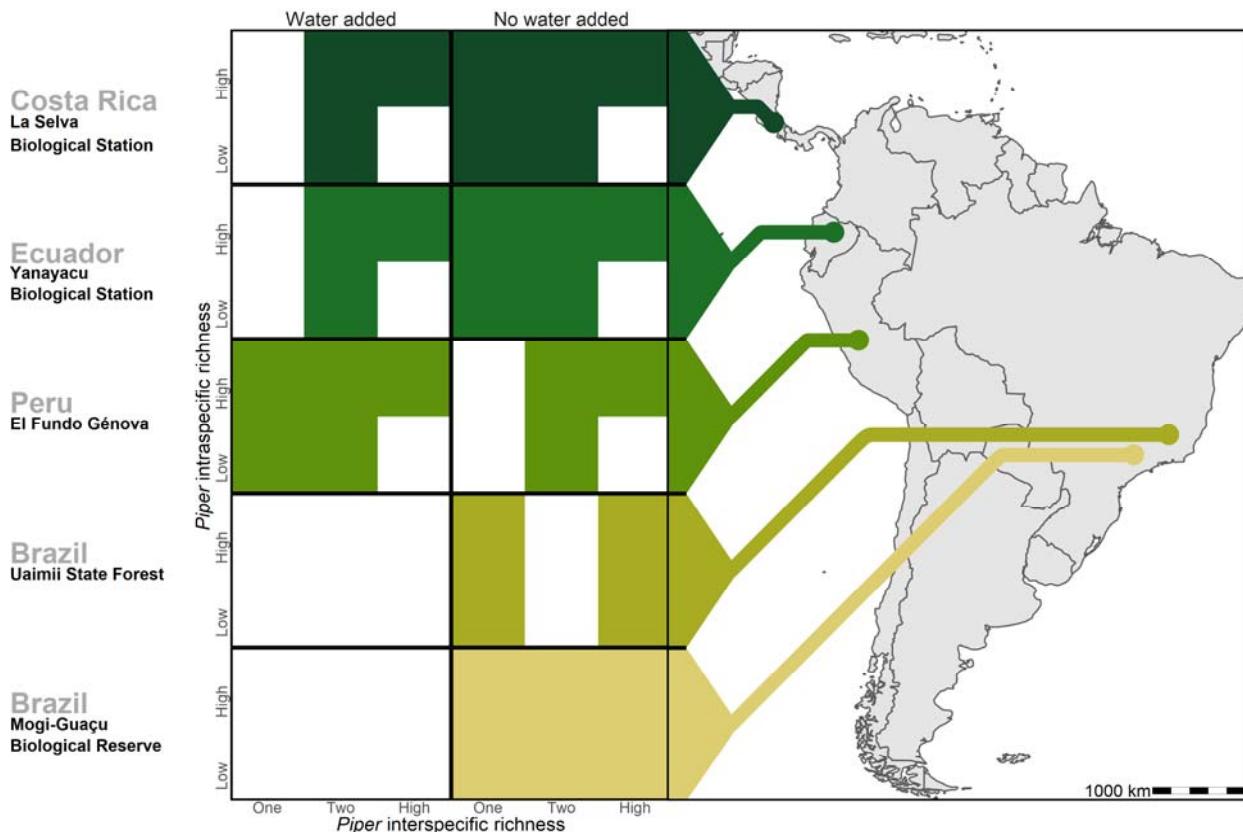
468

469

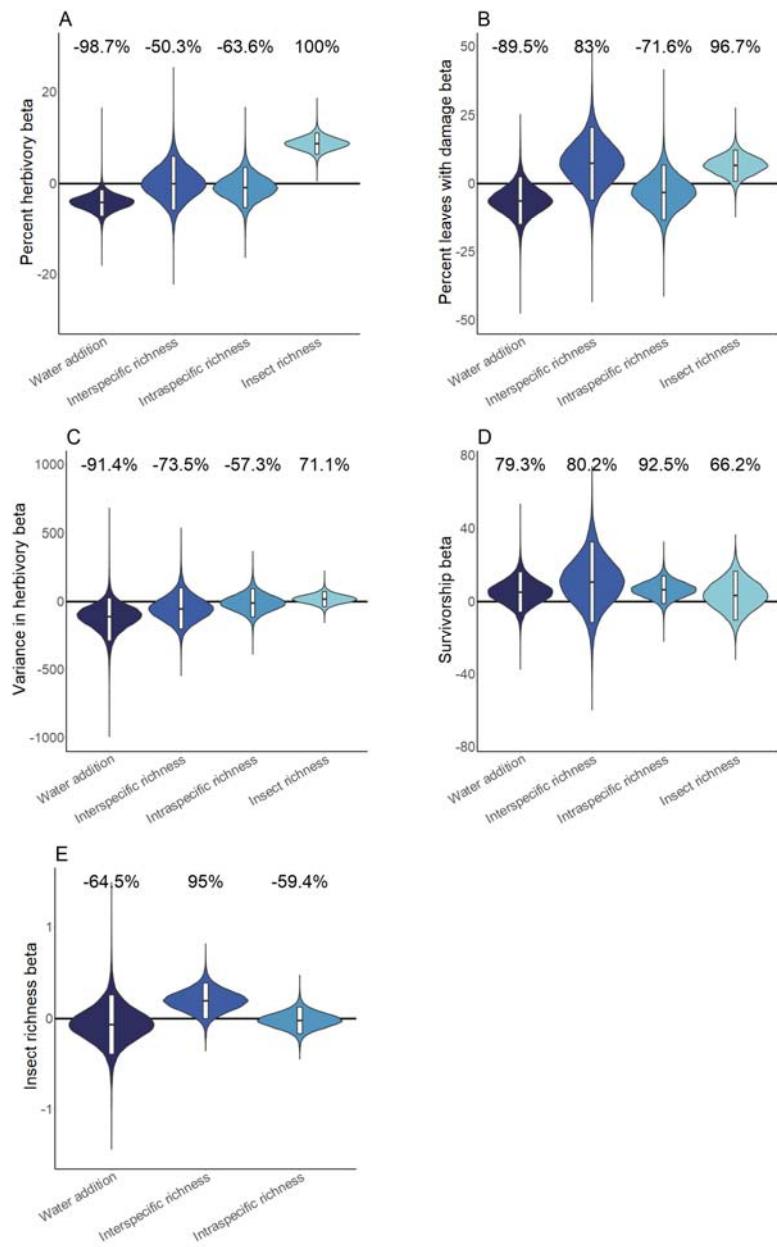
470

471

472


473 **Figures and tables**

474 **Table 1. Path models and explanatory hypotheses.** Black arrows indicate causal paths between


475 variables

Hypothesis	Causal paths	Sites tested	Model I
Bottom-up diversity: Host plant diversity impacts insect richness through multiple mechanisms, such as reducing host density, masking or amplifying host signals, or altering the proportion of specialist herbivores (53,54,58)	All models; paths A, C	All sites	
Neighborhood effects: Plant diversity directly affects herbivory through mechanisms which do not alter herbivore diversity (53,54)	All models; paths B, D	All sites	
Water affects herbivore diversity: Changes in water availability induce changes to plant nutrition and defenses which can benefit or harm different herbivore taxa, leading to changes in herbivore diversity (59,60)	Models I, II; path G	Costa Rica, Ecuador, Peru	
Water affects herbivory: Water addition directly affects plant physiology, altering both the nutritive quality of plant tissue and the ability of plants to combat herbivores and leading to changes in herbivory (13)	Models I, III; path F	Costa Rica, Ecuador, Peru	

476

477 **Figure 1.** *Treatments of intraspecific richness, interspecific richness, and water addition used in*
478 *each of the five study sites.* White tiles represent treatment combinations which were not tested in
479 a given site

497

498 **Figure 2.** Hierarchical Bayesian model parameter estimates for the effects of water availability,
499 as well as intraspecific and interspecific *Piper* richness on herbivory, herbivorous insect richness,
500 and *Piper* survivorship across sites

501 Violins represent the cross-site posterior parameter distribution for each relationship in site level
502 hierarchical Bayesian models. Black lines represent the median posterior estimate and white bars
503 represent 95% credible intervals. Percentages above violins indicate the probability of an effect
504 being positive or negative (as indicated by a negative probability) in response to an increase of
505 the independent variable. Distributions for water addition compare watered and control plots;
506 distributions for interspecific richness compare *Piper* species richness standardized as the
507 proportion of the maximum richness used at a site; distributions for intraspecific richness
508 compare low and high intraspecific richness treatments; distributions for insect richness compare
509 responses per insect taxon present on an individual leaf

510

511

512

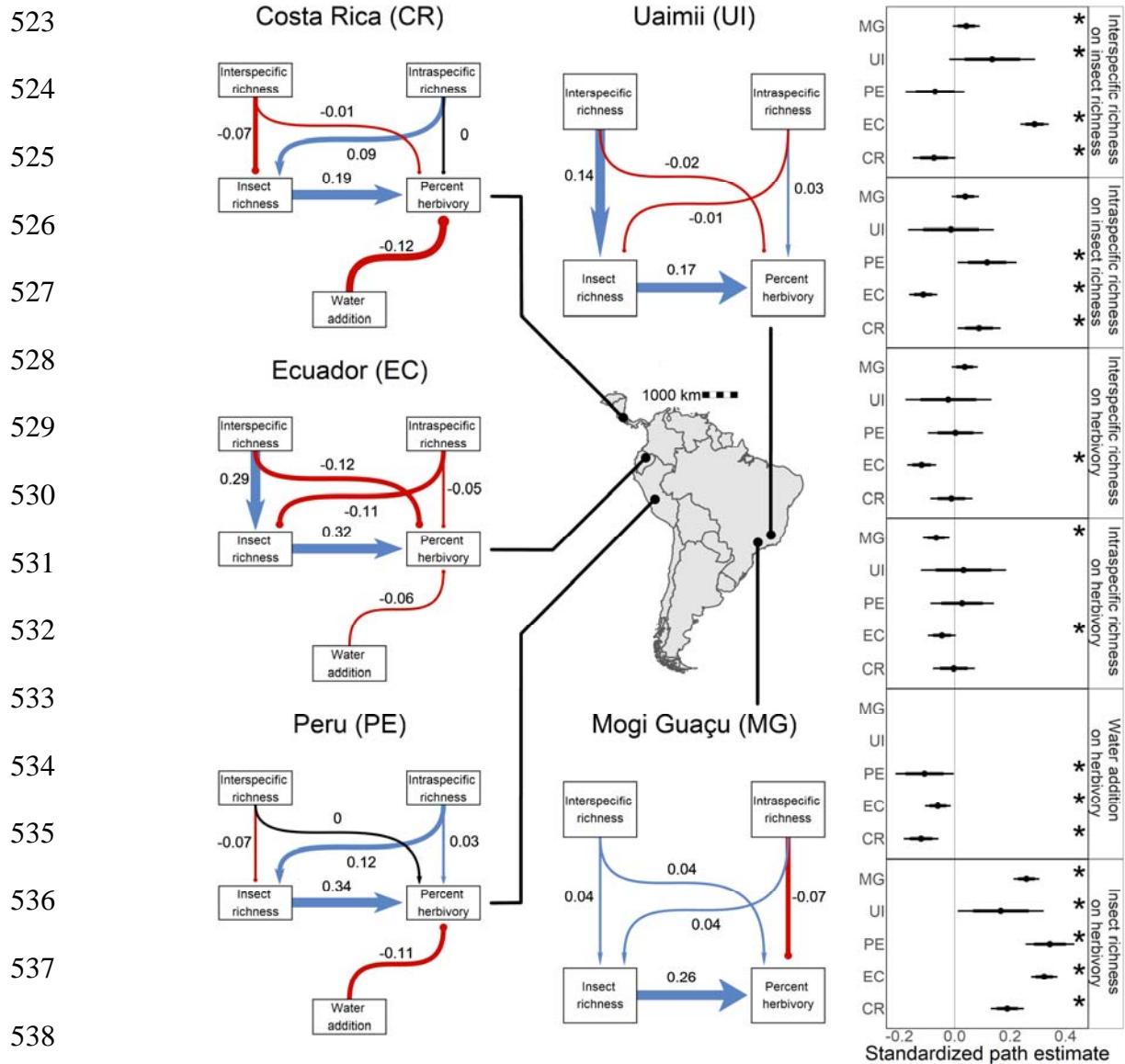
513

514

515

516

517


518

519

520

521

522

539 **Figure 3.** Direct and indirect effects of plant diversity and water availability on insect
 540 herbivores at five study sites. Bayesian structural equation models comparing effects of different
 541 drivers of herbivorous insect richness and herbivory at five sites. Standardized path coefficients
 542 are means of the posterior distribution for the effects estimated at each causal path. Positive
 543 relationships are indicated in blue with triangular heads, and negative relationships are indicated
 544 in red with circular heads. Black arrows indicate path coefficients of zero magnitude. Dot plots

545 summarize the standardized mean of the posterior distribution for each causal path with 95% and
546 80% credible intervals. Asterisks indicate causal paths where the probability of an effect being
547 positive or negative is >95%

548

549

550

551

552

553

554

555

556

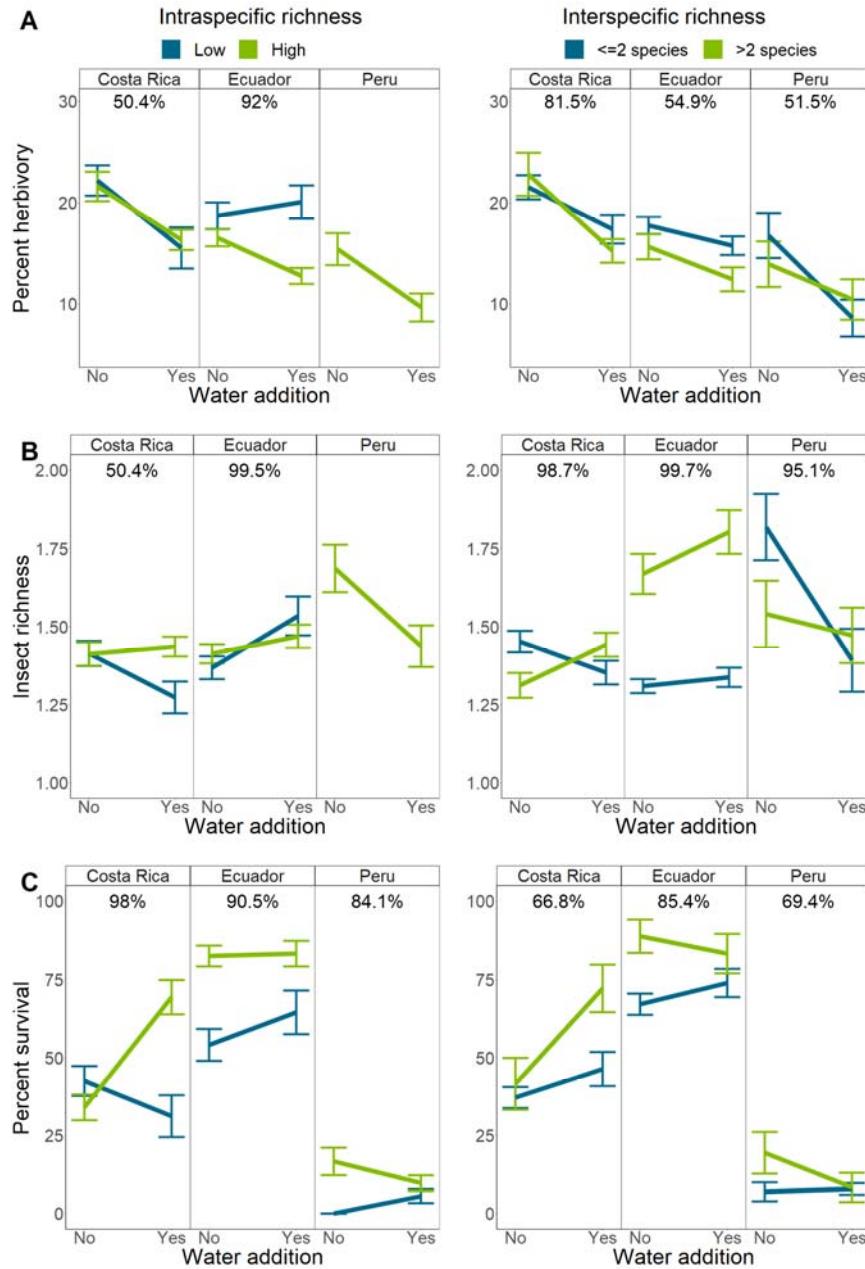
557

558

559

560

561


562

563

564

565

566

585 **Figure 4.** *Interactions between intraspecific or interspecific richness and water availability on*
 586 *herbivory, herbivorous insect richness, and Piper survival*
 587 Bars indicate mean response and standard error of the mean. Percentages above each sub-figure
 588 indicate the probability that the two slopes are different as calculated using site level hierarchical

589 Bayesian models. Due to high mortality in Peru, interactions between water and intraspecific
590 richness could not be compared for any responses except mortality. Single and two species
591 richness plots have been combined for visualization purposes only