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Summary

During economic choice, we often consider options in alternation, until we commit to one. Nonetheless,
neuroeconomics typically ignores the dynamic aspects of deliberation. We trained macaques to perform a
value-based decision-making task where two risky offers were presented in sequence at different locations
of the visual field, each followed by a delay epoch where offers were invisible. Subjects looked at the offers
in sequence, as expected. Surprisingly, during the delay epochs, we found that subjects still tend to look at
empty locations where the visual offers were formerly presented; and, moreover, longer fixation to given
empty location increases the probability of choosing the associated offer, even after controlling for the offer
values. We show that activity in orbitofrontal cortex (OFC) reflects the value of the gazed offer, but also
the value of the offer associated to the gazed spatial location, even if it is not the most recently viewed. This
reactivation reflects a reevaluation process, as fluctuations in neural spiking during offer stimuli
presentation and delays correlate with upcoming choice. Our results suggest that look-at-nothing gazing
triggers the reactivation of a previously seen offer for further reevaluation, revealing novel aspects of

deliberation.
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Introduction

Introspection and a myriad of studies imply that eye fixations play important roles in decision
making. For instance, when confronted with multiple visual options, we tend to look at them in sequence
until we commit to a choice (Horstmann et al., 2009; Orquin & Mueller Loose, 2013; Reutskaja et al., 2011;
Russo & Rosen, 1975). In addition, we tend to look longer and most imminently to the offers that we finally
choose (Chandon et al., 2009; Krajbich et al., 2010; Russo & Rosen, 1975). This result raises the possibility
that there is a causal interplay between eye movements and choice deliberation (Shimojo et al., 2003). At a
first glance, the sequential nature of fixations can be thought of as an inevitable consequence of the design
fo the visual system, as visual objects need to fall inside the fovea to be accurately processed (Kandel et al.,
2000). However, evaluation of options seems to follow a sequential structure also in non-visually guided,
abstract decisions (Simon, 1997). Therefore, a sequential evaluation of options may be the default
computation in economic choices (Hayden & Moreno-Bote, 2018). This view is supported by the
computational benefits of focused evaluation of fewer options as compared to an overall screening of all
available options (Mastrogiuseppe & Moreno-Bote, 2022; Meyer et al., 1997; Moreno-Bote et al., 2020) as
well as by anatomical and physiological considerations (Rushworth et al., 2011; Yoo & Hayden, 2018).

Neurons in several brain areas, most notably the orbitofrontal cortex (OFC) and ventromedial
prefrontal cortex (vmPFC), show modulations in firing rate activity that correlate with the economic value
of visual offers (Murray et al., 2007; Padoa-Schioppa, 2007, 2011; Padoa-Schioppa & Assad, 2006; Padoa-
Schioppa & Conen, 2017; Rangel et al., 2008; Rich & Wallis, 2016; Rushworth et al., 2011; Schuck et al.,
2016; Strait et al., 2014; Wallis, 2007; Wilson et al., 2014; Yoo & Hayden, 2020). One current view is that
partially segregated neural populations are selective for different offers in the world, and each
independently compute its value as they are compared (Ballesta & Padoa-Schioppa, 2019; Shi et al., 2022).
Asimilar view holds in perceptual decision making, where it has been shown that several competing choices
can be prepared in parallel by partially segregated neural populations in premotor and prefrontal areas
(Churchland et al., 2008; Cisek & Kalaska, 2010). However, some brain areas represent only the options
that are attended to (Butler et al., 2021; Hayden & Moreno-Bote, 2018; Xie et al., 2018), and some work
shows that OFC neurons represented offer values in alternation, not in parallel (Rich & Wallis, 2016).
Therefore, it is still unclear how many alternative offers can be simultaneously encoded, to what extent
offer values are simultaneously evaluated, and how this depends on gaze and attention patterns. Answering

these questions is important to understand the canonical computations underlying economic choice.
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To tackle these questions, one would need a task where encoding of visual offers (e.g., recognition)
and their evaluation are not conflated, which automatically excludes tasks where offers are permanently
visible. This is because otherwise it is not possible to determine whether sequential processing of offers is
the result of the need of moving the eyes or directing attention in sequence to the visual stimuli. An effective
decoupling of encoding and evaluation can be achieved by interleaving the offer presentations with empty
screen delay epochs, which is the approach that we adopt here. Further, to test whether evaluation is
sequential by default, we let subjects to move their eyes at will, and expect tracking the internal deliberation
process by using the look-at-nothing effect (Altmann, 2004; Johansson & Johansson, 2014; Theeuwes et
al., 2011), a visuo-motor tendency to gaze to locations currently empty where relevant stimuli were
formerly presented. Looking at empty locations is thought to aid memory recollection of the formerly
presented visual stimuli (Fourtassi et al., 2014; Johansson & Johansson, 2014) —like looking at the center
of the yard to remember the maple tree that used to be there. We hypothesized that it may be associated
with memory for choice options and moreover, that it may be associated with active and ongoing evaluation

processes that help determine which option is chosen.

We used a two-alternative value-based decision-making task where sequentially presented visual
offers left an empty screen after a short presentation. We tracked the free view gaze of two macaques both
during offers presentation (look-at-something) and later delay times when screen is empty (look-at-
nothing). As expected, we found that animals directed their gaze to the offers, with longer fixations to one
offer predicting a higher probability of choosing said offer. The same pattern is observed when the offers
become invisible during the delay epoch: the more the empty side is looked at, the higher the probability
that the formerly presented offer in that location is subsequently chosen. We confirmed that this effect is
independent of the value of the offers by factoring them out in the analysis. In simultaneous recordings of
OFC neurons, we confirm the well-known finding that neural activity represents the value of the offer gazed
by the subjects. And, more interestingly, looking at the empty location where a previous offer was presented
elicits a neural reactivation of its value, regardless of whether another offer was seen and encoded in the
interim. This representation reflects an active reevaluation process, as fluctuations of neural activity during
look-at-nothing, while controlling for offer values, correlate with choice. We find that the encoding of value
during stimulus presentation and reactivation occurs in overlapping cell populations. Our results show an
unexpected connection between gazing to empty spaces, reactivation, and reevaluation, which reveals a

sequential default mode underlying economic choice.
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Results

Performance and look-at-nothing gazing in a gambling task

We combine the analysis of choices, oculomotor data and spiking neural recordings of two macaque
monkeys performing a visually cued, two-alternative reward gambling task (Fig. 1A; Supp. Tables ST1-
ST2 for exact number of trials) (Maisson et al., 2021; Strait et al., 2014). The task consists of the sequential
presentation of two vertical bar stimuli (offer 1 / offer 2 for 400 ms) at opposite sides of a visual screen
display. Each stimulus presentation is followed by an empty screen delay time (delay 1 / delay 2 for 600
ms). Subjects are left free to move their gaze at their will during both offer and delay epochs. At the end of
delay 2, subjects must re-acquire fixation (re-fixate) for at least 100 ms at the center of the screen. Upon
fixation reacquisition, the two offers appear side by side on their old locations (choice-go cue), which
instructs the animals to choose one by performing a saccade to the target offer. The reward magnitude m
of an offer is indicated by the color of the bottom part of its associated rectangular visual stimulus (gray:
small; blue: medium; green: large; see Methods), which include a top red part. The height of the bottom
part indicates the (success) probability p of obtaining the liquid reward of magnitude m (cued by its color)
if the offer is chosen. The height of the red part corresponds to the complementary probability 1 — p for an
unsuccessful outcome. If the gamble is unsuccessful, no reward is given. We define the expected value
EV = mp of an offer as the product of its magnitude m and its probability p, and its risk is defined as the
value variance, 02 = mp(1 — p). We define subjective value as SV = w; EV + w, a2, which we compute

for each session via logistic regression of choice (Methods Section 4.4; Supp. Table ST3).

Both subjects perform the task well, by successfully reporting the choice and by following value-
based contingencies (most often choosing the offer with the higher value; subject 1: 72.19%; subject 2:
75.72%). We find a significant relationship between choice and difference in value for the two offers (Fig.
1B, logistic regression, p<0.001; Supp. Fig. S1A, for each subject). As the task consists of the sequential
presentation of visual offers on opposite sides of the screen, we expect subjects to perform overt visual
search to collect sensory information to estimate the value of the offers. Indeed, the eye position of the two
subjects mainly follows the stimuli locations (Fig. 1C, top), when offers are presented. In most trials,
subjects first fixate the first offer location (offer 1: 78.83% and 81.57% of the trials with first offer on the
left and right side, respectively; Supp. Table ST2), then the opposite location during the second offer epoch
(offer 2: 75.78% and 81.82% when second offer is on the left and right side, respectively; Supp. Table ST2).
Analogous results are found by computing the fraction of trials in 10 ms time bins where the animal looks
at each side of the screen from the midline (Fig. 1C, bottom). We observe that gazing to the visual offers is

most prominent in the last 200 ms of the presentation time, once a saccade towards the target has occurred,
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and partially persists during the delay epochs (Fig. 1C; saccade delay ~ 150-200 ms; offer 1 / offer 2 in
Supp. Fig. S1B, S1C). After offer and delay epochs, the animals behave according to task instructions by
re-acquiring fixation and performing a saccade to one of the two offers to report the choice (Fig. 1C, re-
fixate to choice-hold epochs).

When analyzing eye data in two dimensions mapped on the screen, we find that gaze is concentrated
on the offer locations also along vertical axis, i.e., animals preferentially look at the physical rectangular
shapes of the offers (Fig. 1D, e.g., offer 1 and 2 epochs; Supp Fig. S2A for each subject). Interestingly, we
observe that gaze locations during delay times show a look-at-nothing bias: animals look at the location of
the formerly presented stimuli (delay 1 and 2 epochs in Fig. 1D), indicating that even in the absence of
stimuli, animals recall the spatial location where the stimulus had been presented with a good level of
acuity. This effect is not very surprising during delay 1, as gaze most often remains on the same side where
the first offers has been presented, but less so during delay 2: animals asymmetrically split looking time
between the two sides of the screen (see the two bumps in delay 2), approximately matching the locations
of the two formerly presented offers. Overall, the look-at-nothing gazing to empty regions of the screen
approximately matches the location of look-at-something gazing to the visual offer when physically
presented. These results are observed regardless of whether the first offer is presented on the left or right
(Supp. Fig. S1B, S2B). For this reason, for subsequent analyses, we mirrored data by arbitrarily choosing
the first offer to be shown on the left, and the second one on the right, in all results. Besides doubling the
data size per condition, folding the visual screen to a single reference (by arbitrary convention, we will use

left offer first, right offer second) also simplifies the presentation of the following results.

The patterns of look-at-something (offer 1 and offer 2) and look-at-nothing (delay 1 and delay 2)
depend on several factors, including the difference in values of the offers. When splitting trials according
to the value of the best offer (Fig. 1E; top: best offer is the first one, on the left by convention; bottom: best
offer is the second one, on the right), we observe no substantial difference in gaze position during the offer
1 and delay 1 epochs, probably because animals sample the first offer in most trials, while the second offer
is still unknown. However, during the offer 2 and delay 2 epochs, both look-at-something and look-at-
nothing gazing are biased towards the location of the more valuable offer. For instance (Fig. 1E, top panel),
when the value of the first offer (located on the left) is larger than that of the second offer (on the right),
subjects tend to look more on the left side of the screen during the delay 2 epoch (see Supp. Fig. S2D for
comparison). This important pattern shows that look-at-nothing gaze does not simply reflect a memory of
the last seen offer, but rather gaze typically reallocates to the location of the visual field that, even if empty,
tends to correspond to the better offer. A similar effect is observed during the earlier offer 2 epoch, for

which we find trial occurrences of the gazing over the left side (see bump on the left during the offer 2 in
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Fig.1E, top panel), indicating that in some trials subjects barely look at the right side because the first offer

has higher value than the second one. The opposite tendency is observed when the expected value of the

second offer is higher: subjects mostly look at the right site during the delay 2 epoch (offer

2 in Fig.1E,

bottom panel). Similar conclusions can be drawn by considering the chosen offer (Supp. Fig. S2C, S2E).
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Figure 1: Gambling task and gaze behavior. A. Timeline of the two-alternative sequential gambling task
for a sample trial. Reward offers are cued by sequential presentation of vertical bar stimuli at opposite
screen sides (offer 1 / offer 2) for 400ms, interleaved with blank screen delay times (delay 1 / delay 2) for
600ms. Stimuli colors either cue a safe (always achieved, reward probability=1), but small fluid reward
(gray), or to probabilistic rewards with size medium (blue) or large (green). Reward magnitudes were
pseudo-randomized across trials. Reward probabilities of the medium and large offers were independently
drawn from a uniform probability distribution. The green or blue portions of the bar is proportional to the
reward probability such that if the whole bar is green or blue the probability of the reward would be one.
Following fixation to the center of the screen (re-fixate), choice is performed after choice-go cue by
performing a saccade to the selected side. Choice is reported by holding the gaze on the chosen offer for at
least 200ms (choice-hold). The trial concludes by providing visual feedback and reward or no reward
(feedback). Reward offers order (first presented Left or Right) were pseudo-randomized to have equal
probability across trials. For analysis we mirrored choices and eye data respect to the midline in trials that
started with the right offer, so that all trials ‘started’ with the offer located on the ‘left’ screen side. B. The
probability of choosing the right offer (chR) increases with the difference between right and left expected
values. Solid line shows logistic fit (logit(chR) = By + 1 (EVg — EV})); shaded areas show *95%
Confidence Interval (C.1.), *** p<0.001. C. Top: distribution of horizontal eye position throughout the trial
(spatial bin size is 1 mm, time bin size 1 ms); bottom: fraction (%) of trials separated by looking side (left:
average horizontal eye position <0; right: average >0) in 10ms bins during task execution. D. Gaze
distribution over the visual display throughout the trial. First, subjects preferentially look at the left side,
where the offer is first presented (data in trials where the first offer is presented on the right side are mirrored
right to left), then they mostly look at the right side when the second offer is presented. Importantly, during
the second delay epoch, subjects split gazing to both sizes of the screen, even when the offers are invisible.
E. Same as D but separated for trials where left offer has the highest EV (top), and for trials where right
offer has the highest EV (bottom). Left / Right offer is the best in 48.67% / 49.28% (Supp. Tables ST1, ST2
report the exact number of trials). A-E. Data includes 5971 trials with valid behavioral choice report (2463
for subject 1; 3328 for subject 2, Supp. Tables ST1 and ST2 for exact number of trials for each session).

Gaze position modulates choice during look-at-something and look-at-nothing

To determine the role of gazing in evaluation and choice, we used several analyses to test whether look-at-
something and look-at-nothing gazing are predictive of choices. First, we analyzed the relationship between
choice and expected value for three overall gazing conditions and for each task epoch: using all trials, or
using only trials where the subject spends a larger fraction of time looking at the right side of the screen in
that epoch (fr > 0.5), or using trials where the subject spends a larger fraction of time looking the left side
of screen (fz < 0.5) (Methods Section 2.3). As shown above (Fig. 1B), the probability of choosing the right
offer increases with the value difference EV; — EV, (Fig. 2A), but it is also modulated by which side is
mostly looked at (mostly right fz > 0.5 mostly left f; < 0.5) in all task epochs. Not surprisingly, during
the choice-hold epoch, the effect is reflected by a large horizontal shift of the psychometric curve: if fz >
0.5, the psychometric curves are largely shifted to the left, indicating that the choice is almost always the

right (second) offer. But, surprisingly, a significant shift of the curves is also observed in all other task
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epochs (significance assessment in Supp. Table ST4), being most prominent during delay 2. These results
show that, after controlling for expected value differences, looking time during both look-and-something
and look-at-nothing is predictive of the choice that animal will make at the end of the trial.

In a second analysis, we find that the effect of looking time on the probability of choice is graded
(Fig. 2B). When plotting the probability of choosing the right offer as a function of the difference of the
time looking on the right minus the time looking on the left side (tg — t;), we find that it monotonically
increases for all task epochs, regardless of the expected value difference (all trials). The same monotonic
increase is observed when dividing trials by the expected offers: higher for left offer (EV, > EV}), and
higher for right offer ( EV; > EV,). Note that the slope is larger when the right offer value is higher as we
analyze the probability of choosing the right offer (Supp. Table ST5).

To predict choice on a trial-by-trial basis, we used a logistic regression model that included as
regressors the values of the offers, their risk, the location of the first offer, and the fraction of time that the
animal looks at the right side each epoch (Fig. 2C; Supp. Fig. S3A for each animal; Methods section 2.3).
Adding both the expected value of the offer and their risk is important to control for other factors known to
determine choices and could affect gaze position. We find, as expected, that in all epochs from offer 1 to
re-fixate epochs, the value of the offers are the strongest regressors (Fig. 2C). The risk of each offer (see
Methods) has also a positive contribution to the choice probability, in accordance with the well-known risk-
seeking behavior of monkeys (Heilbronner & Hayden, 2013). In the choice-hold epoch, the strongest
regressor is the fraction of looking time, due to the causal role of visual fixation and choice by task
construction. Confirming the previous analyses, in earlier epochs (offer 1 to re-fixate), the fraction of
looking at the right side has a small but significant effect on the final choice. This effect is not only observed
during the offer epochs, but also in the delay epochs, when no stimulus is displayed. Thus, in the absence
of stimuli, the animals have an increased probability of choosing the right offer if they look at the right
empty side of the screen for a longer duration, and the opposite when looking more to the left empty side,
even after controlling for the expected values and risks of each offer. Importantly, the results are reproduced
when using for the analysis the fraction of time that animals spend looking over the rectangles that define
the location of the offers (Supp. Fig. S3B). We also asked whether the gaze patterns during the blank epochs
can account by themselves for some variability in choice even after accounting for gaze during the stimulus
epochs. We therefore used a new logistic regression model where the fractions of looking at the right side
for all epochs prior to choice are included as regressors (offer 1/ 2, delay 1/ 2, Fig. 2D). This regression
again shows that the fraction of time looking at the right during the delay 2 epoch has a significant effect
on choice (p<0.01, Fig. 2D).
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Figure 2. The fraction of time spent looking at either screen side predicts choice, even after
controlling for expected value and risks of the offers. A. Probability of choosing the right offer as a
function of difference in EV of the two offers EVy — EV,. Solid lines are logistic regression fits
logit(chR) = By + B1(EVy — EV}), shaded areas are £95% C.I. The analysis is applied in each epoch for
all trials where subjects mostly look to the left (fr = tgz/(tg + t;) < 0.5) or to the right (fz > 0.5) screen
side. B. Probability of choosing the right offer as a function of the difference in the right- and left-screen
looking times tg — t;. Solid lines are logistic regression fits logit(chR) = By + B1(tg — t1.), Shaded areas
are £95% C.I. The analysis is applied in each time window for all trials, for trials with the highest EV on
the left and for trials with the highest EV on the right. C. Logistic regression of behavioral choice.
Regressors include the expected value of left and right offers EV,, EVy, variance (risk) of the two offers o7,
o3, order of presentation (s, = +1 if first offer is on the left; —1 if it is on the right), and fraction of time
looking at right screen side f. D. Logistic regression model of regression of behavioral choice, using all
regressors used in C along with the fractions of right-looking time f; for most relevant task epochs (offer
1, delay 1, offer 2, delay 2). A-D. Data include n = 5971 trials with valid behavioral choice report (n =
2463 for subject 1; n = 3328 for subject 2, Supp. Tables ST1 and ST2 for exact number of trials). Pooling
across trials is made with reference to the first offer side: data in trials with first offer on the Right side are
horizontally mirrored. Significance levels: *p<0.05, **p<0.01, ***p<0.001.
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Look-at-something and look-at-nothing value encoding

While look-at-nothing gazing is suggestive of an evaluation process that persists after stimulus
disappearance from the visual field and contributes to the choice, to further support this hypothesis we need
to show that neural activity indeed reflects re-evaluation of the offers. We recorded responses from n=248
neurons (n = 163 for subject 1, n = 85 for subject 2, Supp. Table ST1) in two core reward regions, areas
11 and 13 of orbitofrontal cortex OFC (Fig. 3A). The importance of OFC and reward value estimation is
well established (Murray et al., 2007; Padoa-Schioppa, 2011; Padoa-Schioppa & Conen, 2017; Rushworth
etal., 2011; Schuck et al., 2016; Wallis, 2007; Wilson et al., 2014). We first studied the neural encoding of
expected value of the offers by analyzing the evoked spiking activity at different task epochs. To do so, we
compute the average number of spikes in sliding time windows of 200 ms, shifted by 10 ms steps, for each
trial (n = 5791 total trials, n = 2643 for Subject 1; n = 3328 for Subject 2; Supp. Tables ST1-ST2 for
details). To calculate the fraction of neurons that encode the value of each of the two offers, we used linear
regression models where the activity of each neuron was exclusively predicted by the EV of either offer
(first or second, respectively: left EV;, or right EVR) and computed the fraction of neurons with significant
regression weights (Methods Section 4.1; significances is assessed both from F and permutation tests). To
control for spurious fluctuations in the significance of the fraction of significant neurons in short sequences

of times, we performed a cluster-based run-length analysis (Butler et al., 2021; Methods Section 4.1).

First, using all the trials (without conditioning on gaze), we find that the fraction of neurons encoding
either the first or second expected values is not significantly different from chance in the pre-offer 1 epoch
time, as expected, but it is strongly modulated in the following epochs in a sensible way (Fig. 3B).
Specifically, the fraction of neurons that encode the value of the first offer (Fig. 3B, EV,, green line)
increases significantly above chance (shaded area) in the offer 1 epoch after a latency of 150-200 ms, and
it remains above chance for almost all delay 1 time. In contrast, the fraction of neurons that encode the
value of the second offer (EVy, blue line), is not significantly above chance during both offer 1 and delay 1
epochs, as it has not been presented yet. During the offer 2 and delay 1 epochs the reversed pattern is
observed: there is a significant encoding of the value of the second offer (blue line), while the encoding of
the first value seems to vanish. The absence of encoding of the expected value of the first offer during the
offer 2 epoch is consistent with the idea that in most trials the subjects look at the location of the second
offer, and therefore encoding of the second offer grows in alternation to the encoding of the first one. The
difference in encoding at each task epoch of the expected values of the first and second offers is also evident

when comparing the fractions of neurons encoding each value averaged across task epochs (Fig. 3C).

We next asked whether gaze direction modulates neural encoding, even in epochs where the screen

is empty. For each 10 ms bin in each trial, we separate trials depending on whether animals mainly look at
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the right or left sides of the screen, based on whether the average eye position in that bin is negative or
positive, respectively (Methods Section 4.2). We first corroborate what has been observed during look-at-
something gazing: in trials and bins where animals look at the left side of the screen (LookL), we find that
there is a significant fraction of neurons encoding the first offer during the offer 1 epoch (Fig. 3D top,
LookL, dark green line), with magnitude and temporal profile comparable to the gaze-independent encoding
of that value (compare with Fig. 3B, green line). Interestingly, in trials where the animal does not look at
the first offer side during the offer 1 epoch (Fig. 3D top, LookR, light green line), the encoding of the
expected value of the first offer is not present. As expected, the value of the second offer during the offer 1
epoch is not significant (Fig. 3D bottom) regardless of the average gaze position within the epoch (LookL,

dark blue line; LookR, light blue), as the second offer has not been presented yet.

The same pattern of results described so far is reproduced during the delay 1 epoch (Fig. 3D, delay
1), with the relevant novelty that during this epoch the first offer is no longer visible. Thus, for look-at-
nothing gazing we find that delay 1 activity is significantly modulated by offer value (Fig. 3D top, dark
green line). We argue that this encoding is not simply a passive, gaze-independent memory of the formerly
presented first offer: we find that by using only the trials where subjects look at the first offer during offer
1 (LookL during the last 200 ms of offer 1), but then look at the opposite side during delay 1 (LookR during
the last 200 ms of delay 1), there is lack of encoding of the expected value of the first offer (Fig. 3F, left
panel, light orange; 32.26% of trials, Supp. Table ST2). Thus, looking at the empty side where no previous
offer has been presented so far washes out any significant trace of the value of the first seen offer, suggesting

that its memory persistence or lack of thereof depends on gaze.

During the offer 2 epoch, we observe the reversed pattern compared to the offer 1: there is significant
encoding of the expected value of the second offer when subjects look to the right, where second offer is
located, (Fig. 3D bottom, offer 2, light blue line) and absence of encoding when the left side is gazed (Fig.
3D bottom, dark blue). Again, during the delay 2 epoch, where the screen is empty, we find that there is
encoding of the second offer only when the animal looks at the right (Fig. 3D bottom, light blue line).
Crucially, if the animal looks at the left side during the delay 2 epoch, there is a significant re-activation of
the encoding of the first offer (Fig. 3D top, delay 2, dark green line). Therefore, look-at-nothing gazing
during the delay 2 epoch leads to the maintenance of neural representation of the most recently presented
(second) offer value when looking at its former location (LookR), and to the reactivation of the first offer
value if looking at the first offer presentation side (LookL). This observation cannot be accounted for by a
pure memory trace of the last seen offer coming from trials where the animals simply have not looked at
the second offer (which occurs in 21.2% of the trials, Supp. Table ST2): when the second offer is gazed

during the offer 2 epoch, but then gaze is diverted to the opposite side during the delay 2 epoch (36.48% of
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the trials, Supp. Table ST2), we find a significant reactivation of the expected value of the first offer (Fig.
3G, left panel, dark orange line). As controls, we observe the maintenance of the encoding of the value of
the second offer when the animals keep looking at the right side of the empty screen in the delay 2 epoch
after looking at the second offer in the offer 2 epoch (Fig. 3G, right; 43.32% of the trials, Supp. Table ST2).

All above results were confirmed comparing the fraction of neurons significantly encoding either the
left or right expected values when conditioning on trials where the animals looked on the right or on the
left of the screen by considering average fractions of significant cells in each epoch time (Fig. 3E; Methods
Section 4.2). We also confirmed that results in Fig. 3 hold for each individual subject (Supp. Fig. S5), using
window sizes of 150 ms and 250 ms instead of 200 ms (Supp. Fig. S6), normalizing activity by subtraction
of the pre-offer 1 activity (Supp. Fig. S7, Methods Section 4.1), taking the coefficient of determination R?
of the linear fits as statistics instead of the fraction of cells (Supp. Fig. S8A,C; Methods Section 4.1), and
using model-free permutation tests instead of F-test statistics to test significance (Supp. Fig. S8B,D;
Methods Section 4.1). Further, since the trial pools for LookL and LookR have in general a different size,
we repeated our analysis, and reproduced the results, by subsampling to pools of even size (Supp. Fig. S9;
Methods Section 4.1).
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Figure 3. Gaze-dependent encoding of the EV of the offers and reactivation in OFC. A. Recorded brain
areas, covering macaque brain areas 11 and 13 in OFC. B. Fraction of cells showing significant encoding
of offer expected value (either EV, or EVg) for each neuron using the linear models n = S, + BLEV,,
(green) and n = By + B1EVy (blue) where 5 is the spike rate of that neuron in each trial. The regression
using all trials, regardless of where animals are looking at. Solid lines show the empirical fraction in each
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time 10ms bin; shaded areas (overlaid, green and blue, in opacity) cover the 5" to 95" percentile of
significant fraction of cells encoding the respective EV obtained via n = 1000 trial order permutations;
bottom lines report consecutive runs of time bins with significant encoding of EV; or EV} (assessed via run
length analysis, detecting significantly long bursts with fraction of encoding cells above the 95" percentile
of trial-order shuffled data). C. Time-averaged fraction of cells showing significant encoding of offer EVs.
The significance of empirical values is assessed as exceeding of the 95 percentile of the same values run
over n = 1000 trial-order shuffles of the data (non-significant bars are reported in white, with colored
frame). Results for the fraction of cells for EV, and EVy are compared via non-parametric tests (two-sided
Wilcoxon signed-rank test), significance: - n.s., *p<0.01, **p<0.01, ***p<0.001. D. Top: fraction of
significant cells encoding E'V, using trials where subjects mostly LookL (average eye position for current
bin <0, green) with trials where subjects mostly LookR (average eye position >0, light green). Bottom:
same as before but focusing on EVy and comparing LookL trials (blue) with LookR trials (light blue). E.
Top: same as C but focusing on EV, and comparing LookL with LookR trials. Bottom: same as C but
focusing on EVy and comparing LookL with LookR trials. Comparisons of looking sides are run via non-
parametric (one-sided Wilcoxon signed-rank tests), testing that directing gaze to either side yields stronger
encoding for ipsilateral EV. F. Encoding of offer EV's at delay 1 time for trials when subjects gazed to left
side of the screen during the last 200 ms of offer 1 presentation. Results show the encoding of EV, (left)
and EVy (right), comparing LookL (orange for EV;, purple for EVy) and LookR (light orange for EV;, light
purple for EVy). Solid lines, shaded areas and bottom lines are computed as in B. G. Same as F, but focusing
on delay 2 time, for trials when subjects inspected the right side of the screen during the last 200 ms of offer
2 presentation. F-G. Complementary cases, i.e., comparisons between LookL and LookR at delay 1 for
LookR during the last 200 ms of offer 1, and comparisons between LookL and LookR at delay 2 for LookL
during the last 200 ms of offer 2, are shown in Supp. Fig. S11. B-G. Monkeys and screen display icons are
reported to support the visualization by recalling task conditions and respective main gaze patterns during
task epochs.

Reactivation of value encoding during look-at-nothing correlates with choice and is mediated by neural

populations overlapping the ones encoding value during look-at-something

A final crucial question is whether activity in OFC during look-at-nothing simply reflects a reactivation of
a spatial association of the formerly presented offer, or whether there is further re-evaluation during this
reactivation. To answer this question, we performed two analyses. First, we used a linear model to predict
the activity of OFC neurons using as regressors the subjective value (SV) of the offers and the choice of the
animal at the end of the trial. We argue that if look-at-nothing gazing reflects reevaluation of the offers, we
should see in the delay epochs a significant effect of choice that cannot be accounted for by the subjective
values of the offers alone. Indeed, in a gaze-independent analysis, a significant fraction of neurons carries
choice signals through the last task epochs and became prominent during the choice epoch (Fig. 4A top,
black line). Therefore, fluctuations of activity of the neurons are accounted for by for choices beyond what
would be predicted by the subjective values of the offers alone, suggesting a role of the OFC activity in the
choice, in accordance with previous literature (Ballesta et al., 2020, 2022; Strait et al., 2014). And

importantly, similar patterns are revealed when conditioning on gazed location to an offer or its empty
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location (Fig. 4 middle and bottom), suggesting that evaluation and reevaluation of the offers continues
through late task epochs (see Supp. Fig. S11 for a replication of the results using SVs instead of EV’s).

Second, if reactivation of the formerly presented offer reflects reevaluation, we expect to see that the
same neurons participate in both the encoding of the value and in its reactivation. Thus, we considered the
encoding of either offer in combination with look-at-something and look-at-nothing. We observe that the
encoding weights for the value of an offer when is looked at correlate across neurons with the encoding
weights for the value of the same offer when looking at its empty location during delay 2 (offer 1: p = 0.49,
offer 2: p =0.23; p < 0.001 in both cases; Supp. Fig. S11A; weights are computed using the last 200 ms of
each relevant epoch). This confirms that overlapping neural populations are responsible for both value
encoding and value reactivation. However, the same weights are negatively correlated when subjects look
to the opposite location during delay 2 (offer 1: p =-0.34, offer 2: p =-0.26; p < 0.001 in both cases; Supp.
Fig. S11B), suggesting that activity decays during the reactivation of the value of the alternative offer.
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Figure 4. Choice-related activity supports the re-activation of offer value encoding. A. Fraction of cells
encoding for offer subjective value (SV,, SVz) and choice (chR = 1 right offer is chosen, 0 otherwise), fit
to a linear model of the spike rate n, as n = By + B1SVr + B,SV, + B3chR using all trials (thus ignoring
gaze position). Subjective Values (SV, = wy, EV, + wy 07 and  SVi = wygEVg + Wyr0o3;
Wi, Wy, Wig, Wog) are computed in each session via regression of the choice: logit(chR) = wy —
w1 EV, — wy 07 + wigEVg + wyraf (Supp. Table ST3). Solid lines, shaded areas and bottom lines are
computed as in Fig. 3B. B. Time-averaged fraction of cells showing significant encoding of offer SV's and
chR, computed as in Fig. 3D. C. Top: same as A, focusing on the encoding of SV;, comparing trials where
subjects mostly LookL vs LookR in each time bin; middle: same as A, focusing on the encoding of SV,
comparing LookL vs LookR; bottom: same as A, focusing on the encoding of chR, comparing LookL vs
LookR. D. Top: same as B but focusing on SV, and comparing LookL vs LookR; Middle: same as top, but
for SVg; Bottom: same as top, but for chR. The time-averaged fraction of time bins with significant
encoding for LookL and LookR are compared via non-parametric tests (Wilcoxon signed rank, one-tailed
for SV's, testing that ipsilateral look yields higher fraction of encoding cells; two-sided for chR, testing for
non-zero mean in their difference) significance levels: - n.s., *p<0.05, **p<0.01, ***p<0.001.
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Discussion

Using an economic choice task where offers are sequentially presented and free fixation, we show that gaze
can reactivate neural responses that reflect the values of previously shown offers, presumably to facilitate
their re-evaluation for the formation of a choice. After accounting for value, residual variability in choice
is explained by two additional factors: how much time the subjects were looking at the offers when
presented (a look-at-something bias), and, in addition, how much time they look at the locations where they
were formerly presented in empty screens (a look-at-nothing bias). Therefore, gaze biases choice regardless
of the value of the visual stimulus. Based on single-neuron activity in OFC, we find that (1) gazing to an
offer triggers a neural encoding of its value, (2) gazing to an empty region where no stimulus has been
presented washes out that value encoding, and (3) gazing to an empty region where a stimulus was formerly
presented re-activates its value encoding. Furthermore, variability in the size of this reactivation predicts
choice, and overlapping neural population are involved in both sensory encoding of value and its
reactivation during look-at-nothing, suggesting a role of re-activation in the formation of the choice.
Altogether, our data and results eloquently speak in favor of an active role of gaze in decision making by

facilitating memory re-activation and offers reevaluation.

Our study is based on a large body of research showing that gaze is important for decision making
(Horstmann et al., 2009; Krajbich et al., 2010; Orquin & Mueller Loose, 2013; Reutskaja et al., 2011; Russo
& Rosen, 1975; Shimojo et al., 2003), but to our knowledge ours is the first work that studies look-at-
nothing gazing in neural data. Previous works that left stimuli over the screen (Butler et al., 2021; McGinty
et al., 2016) also observe a reduction in value encoding as soon as gaze moved away from the physical
stimulus, consistent with our results. Our work shows the more intriguing result that looking at regions of
space where there was a stimulus triggers the re-activation of its associated memory. This reactivation is
not a simple memory trace of the most recently gazed stimulus, as reactivation of the first offer occurs even
when fixation is broken by looking to a second offer in the meantime, eventually playing the role of a
distractor. Our results are in line with previous theorization of looking-at-nothing gazing, that has proposed
that gaze is used as memory spatial indexing mechanism (Platzer et al., 2014; Renkewitz & Jahn, 2012),
thus providing neural support for the of gaze-triggered memory recollection hypothesis. Morevoer, these
results suggest the reactivation process is itself associated with the evaluation process and is not simply a

passive recollection.

Gaze in other conditions has also been shown to re-activate sensory memories. For instance, work
in rodents has shown that during rapid eye movement (REM) sleep, eye movements trigger neural activity
in the anterodorsal nucleus of the thalamus that reflects internal heading in the virtual world of the sleeping

animal, showing a tight coupling between eye and internal variables (Senzai & Scanziani, 2022). Our work
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in addition shows that the coupling between eye position and internal variables extends to awake primates
and might subserve an important mechanism for memory re-activation during decision making. Further,
our results extend those of re-activation in the hippocampus for memory reconsolidation (Grella et al.,
2022) and planning (Foster & Wilson, 2006), but here we show that it can also be a mechanism for re-

evaluation of information in cortex to aid visually guided economic decision making.

We have shown the moving the eyes to another location, even if empty, washes out the neural
memory of the previously seen offer in OFC: only the value of the offer that falls, or immediately fell, in
the fovea is strongly encoded. This might imply that OFC does not hold a memory of all previously
considered offers —just the one of the most recently fixated. These results are consistent with recent research
showing that OFC only encodes the value of fixated offers, while other areas, such as the anterior cingulate
cortex (ACC), might have a more detailed map of the relevant offers in the visual field and possibly perform
a comparison (Butler et al., 2021). Therefore, these and our results suggest that OFC is unique in holding
and evaluating the most recent offer and reactivating it when necessary for further evaluation. This view
contrasts with the simultaneous encoding of offers previously reported in OFC in tasks where gaze remained
fixed on a central fixation point (Ballesta & Padoa-Schioppa, 2019). An important difference of this study
with ours is the lack of eye movements: as stimuli are passively projected onto the fovea, the task of
maintaining previously encoded information might be simplified, thus making possible multiple offer’s
value encoding. In contrast, in the more naturalistic scenario where gaze is required to foveate offers, it is
possible that an association is made between offer and its location, such that later reactivation of a formerly
presented offer requires, or is facilitated by, look-at-nothing gazing. Our results are also more in accord
with other work showing that fluctuations of covert attention are translated into alternations between
encoding one of two presented offers as a function of time, surprisingly independent of gaze (Rich & Wallis,
2016). Recent work where attention is decoupled from stimulus saliency shows that value encoding of
well-known offers in single-neuron OFC is independent of attentional shifts (Zhang et al., 2022). It is
possible that in this study overtraining makes simpler the encoding of value and thus gaze and attention can
be decoupled. In contrast, in our case offers are more complex in number and variety but also in the
requirement of having to combine two features (color for reward size and height for probability) to form an
estimate of their value, and then it is possible that a more robust, gaze-centered working memory

mechanism needs to be at place.

On the face of it, there is no clear reason why the brain would benefit from shifting gaze back to
the previous location to reactivate a previously encoded offer. One possibility is that coupling between gaze
and evaluation leverages brain machinery that allows for an efficient spatial representation of visual offers

to be used for storage and comparison (Backen et al., 2018). Indeed, behavioral studies have proposed the
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gazing allows for memory index in spatial coordinates (Ferreira et al., 2008; Renkewitz & Jahn, 2012;
Richardson & Spivey, 2000), therefore facilitating memory retrieval and decision making. Alternatively, it
is also possible that economic decision making is necessarily embodied by linking gaze with cognitive
processing, and that spontaneous associations between gazed spatial locations and offers form on the fly
with no clear advantage beyond creating biases.

All in all, our results generally support the hypothesis of sequential value encoding (Hayden &
Moreno-Bote, 2018), whereby specific brain allocates the neural resources to a single offer being
scrutinized at a time. Recent theoretical work shows focused evaluation of offers is generally a much better
strategy than dividing neural resources into several, or many, offers to be processed in parallel
(Mastrogiuseppe & Moreno-Bote, 2022; Moreno-Bote et al., 2020). The one-at-a-time processing of offers
during look-at-something and the specific re-activation of one offer at a time during look-at-nothing thus
suggests a syntax of syllable-like neural operations that need to be executed sequentially in decision

making.
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Methods

Two male rhesus macaques (Macaca mulatta) were trained to perform a two-alternative risky choice task
(Strait et al., 2014). All procedures were approved by the University Committee on Animal Resources at
the University of Rochester or the University of Minnesota and were designed and conducted in compliance
with the Guide for the Care and Use of Animals of the Public Health Service. Recordings covered brain
Areas 11 and 13, in orbitofrontal cortex (Fig. 3A). Data include 5971 trials correctly performed (2643 from
subject 1, 3328 from subject 2) and 248 neurons (163 from subject 1, 85 from subject 2; the average number
of simultaneously recorded cells per session is 40.75 + 16.9 (mean + s.d.) for subject 1, and 21.25+9.98 for
subject 2), detailed number of trials and cells for each session and for each subject are reported in
Supplementary Tables ST1 and ST2.

1. Behavioral task
The behavioral task consisted in the sequential presentation of two visual stimuli on the two opposite sides
of the screen. Each visual stimulus indicated the size of a reward that could be chosen at the end of the trial
by saccade to stimuli location (Fig. 1.A). The task starts with a first offer presentation (offer 1) displayed
on the screen for 400 ms, followed by a first black screen delay time with duration 600 ms (delay 1); the
same timings are used for a subsequent, second offer presentation (offer 2), respectively followed by a
second, black screen delay time (delay 2). After the presentation of the two alternative offers, subjects were
instructed to reacquire fixation (re-fixate), for at least 100 ms, at the center of the screen through the
appearance of a central fixation dot. Following fixation, the choice could be indicated by the animal after
the choice-go cue, which consisted of the simultaneous presentation of both offer stimuli in the same
locations where they were previously shown. Choice was reported by shifting gaze to the preferred offer
location and holding fixation on it for 200 ms (choice-hold). Fixation breaks during choice-hold periods led
to a return to the choice report stage, giving subjects the chance to change their mind, thus to re-start fixation
to either offer location for a duration of 200 ms. In trials with a valid choice report, the trial follows with
the gamble outcome resolution: reward delivery for a successful outcome and lack of thereof for an
unsuccessful outcome (see below for the probabilities of these events and the stimuli cues). Subjects were
left free to direct their gaze during all task epochs except when instructed to fixate. Trials that took more
than 7 seconds were considered inattentive and were not included in the analyses. Successfully rewarded
trials were followed by visual feedback made of a white circle centered on the chosen offer stimulus.
Visual stimuli were presented on a 24 monitor with resolution 1024 pixels x 768 pixels, physical
width 48.8 cm and height 36.6 cm at 57 cm from the eyes of the animals. The visual offers consisted of two

vertical rectangles 300 pixels tall and 80 pixels wide (14.3 cm height and 3.8 cm width). Their centers were
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displaced right or left from the center of the screen by 256 pixels (12.2 cm,1/4 of total screen width). The
presentation sites were randomized so that the first offer could be presented with equal probability to either
side of the screen, and the second on the opposite side (the final count was that in 50.01% of the trials the
first offer was presented on the left side of the screen). The colors of the rectangles indicated the magnitude
m and probability p of the offered liquid reward. The magnitude of the reward was indicated by the color
of the bottom part of the rectangle (gray: small, 125uL; blue: medium,165uL; green: large, 240uL). In all
analyses, reward magnitudes m are reported and used in nominal units (1 = small, 2 = medium, 3 = large
reward). The height of the bottom fraction of the stimuli indicated the (success) probability p of obtaining
the liquid reward (with magnitude m as indicated by its color) if the offer was chosen. Whenever p was <1,
the stimuli top fraction was colored in red, with its height indicating the complementary probability 1 — p
for unsuccessful outcome. We define the expected value of an offer as the product of its probability times
its magnitude: EV = mp. To consider the trial-to-trial variability of offer value, we also defined the
variance a? = mp(1 — p), also referred to as offer risk. Offers having small rewards were always sure,
p = 1 (safe option). Reward probabilities for the medium and large magnitude offers were randomly and
independently drawn from a uniform distribution in the unit interval, whose presentation was limited in size
only to the resolution of screen pixel size. Reward magnitudes (small, medium, or large) of the first and
second offer were randomized across trials so that 1/8 were safe, and for the remainder 7/8, offers could be
either medium or large in equal fractions (yielding a total of: 12.15% small, safe offers; 43.93% medium
sized gamble offers, 43.92% large sized gamble offers). Trials were interleaved with an 800ms idle inter-
trial interval when subjects were not given instructions and the screen was left blank.

Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR Research).
Stimuli were controlled by a computer running Matlab (Mathworks) with Psychtoolbox (Brainard, 1997)

and Eyelink Toolbox (Cornelissen et al., 2002).

2. Behavioral data analyses

In all analyses, we pool trials where the first offer was on the left with trials where the first offer was on the
right by mirroring in the latter behavioral variables and eye tracking data along the vertical axis. Therefore,
in all analyses and figures the first offer is anchored on the left presentation site, since we did not find
appreciable difference between trials with opposite order of presentation (Supp. Fig. S1B). For time
resolved analyses, time epochs are aligned to task-related event times (e.g., offer 1 time runs from stimulus
onset up to the end of its presentation). For time epochs with random duration (e.g., for delay 2, due to trial-

to-trial variation in fixation re-acquisition time), we limited the end of task-relevant time epochs to the
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duration of shortest trial across all data (in both monkeys and sessions), so that all analyzed data points
were covered by all trials.

2.1 Behavioral performance

We quantify the behavioral performance on the value-based decision-making task by regressing the fraction
of choices for Right offer side (chR = 1 if chosen offer is on Right side; chR = 0 if chosen offer is on the
Left side) by the difference in the expected value of the two offers EVy — EV}, (Fig. 1B). We fit choice data
to the model: logit(chR) = B, + B1(EVyz — EV}), and assess the significance of linear interaction term f3;

via F-Statistic test to compare the model fit vs a constant mean model (with 8, = 0), ***p<0.001.

2.2 Analyses of eye position and gaze shifts

The spatial distribution of horizontal eye position across task epochs (Fig. 1C, top) is computed by counting
occurrences across trials with spatial resolution 0.14 cm at a temporal resolution of 1 ms. The counting is
then applied by splitting trials where subjects mainly looked either left or right screen side (Fig. 1C, bottom).
We call a trial LookL or LookR based on whether the average horizontal eye position in 10 ms bins is
negative or positive, respectively. The 2D spatial distribution of eye position on the screen is reported as
heatmaps around the center of the visual scene (Fig. 1.D), binned with resolution 0.14 cm, smoothed with
a gaussian filter (o, = o, = 5 bins, 0.7 cm). The 2D analysis is initially run for each task epoch and by
pooling data across all sessions from the two subjects (Fig 1D), then repeated by separating trials by best
offer EV (best L: EV;> EVy, or best R: EVz> EV;; Fig. 1E), by separating data from the two subjects (Supp.
Fig. S2A), for the two orders of presentation (first = L, or first = R; Supp. Fig. S2B), and for different
choices (choice = L, or choice = R; Supp. Fig. S2C). Results for different conditions are subtracted to
highlight differences between best offer cases (best R — best L, Supp. Fig. S2D) and chosen offers (choice
R — choice L, Supp. Fig. S2E).

We analyzed horizontal gaze shifts, which we defined as monotonic variations in the horizontal eye
position with duration of at least 25ms (Supp. Fig. S1C). The shifts are labeled by horizontal direction
(left/right) based on the sign of their first order discrete-time derivative (left if the eye position derivative
is negative), at Ims resolution. We show the time histograms of horizontal gaze shifts both for shifts within

each visual hemifield and by also including midline-crossing (Supp. Fig. S1C).

2.3 Probability of choice as a function of offer expected values and looking times
For each task-related time epoch (offer 1, delay 1, etc.) and for each trial, we computed the fraction of time
looking at the right screen side, fr = tg/(tg + t;), Where ty is the total time that the subject spends looking

at the right screen side, and ¢, is the total time looking at left screen side in that epoch and trial.
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We further analyzed the choice variable chR (set to 1 if choice is right, O if left) as a function of the
difference in expected value of the two offers EV; — EV}, (Fig. 2A). The choice variable was fit using least
squares method to the model logit(chR) = By + B1(EVz — EV}), with a resolution of 0.2 nominal reward
units. First, we run the analysis including all trials, then we split trial pools where subject mainly look left
(fr < 0.5; light red in Fig. 2A), or right (fr > 0.5; dark red in Fig. 2A). The £95% C.1. is computed via the
estimation of inverse cumulative t-distribution given the coefficients (8,, £1), their covariance matrix and
standard errors of the fit. The differences in slope show that the eye position shifts the logistic relationship
between choice and EV difference, hence that eye position affects the choice beyond the EV differences.

Following a similar logic, we predict the chosen offer chR across trials using the logistic regression
model logit(chR) = By + B1 (tr — t1), i.e. by including as regressor the difference in right vs left screen
looking times tz — t; within each trial (Fig. 2B). The difference in looking times t, — t; is normalized to
the maximum of its absolute value across trials (maximum is taken across data in all sessions and in both
subjects), and therefore the value of this regressor always falls within [-1, +1]. The £95% C.I. is computed
via estimation of inverse cumulative t-distribution as before. We find a significant relationship between
choice and difference in inspection time for the two screen sides in all task epochs. The same analysis is
repeated for trial pools where first offer is best (EV, > EVy, light purple in Fig. 2B) and second offer is
best (EVy > EV,, dark purple in Fig. 2.B). We found a shift in the relationship between choice and
difference in looking times, indicating that choice for either offer was more likely if the same offer was
looked at for longer time, and if it had best EV'.

Further than this, we refine the above models by combining task variables in the logistic model
logit(chR) = By + BLEV,, + BoEVg + 307 + B40f + Bssir + Be fr (Fig. 2C), with the following trial-
by-trial regressors: expected value of left and right offers EV; and EVy (computed as EV = mp); risk, or
variance of left/right offers, o? and o2 (computed as o2 = mp (1 — p)); order of offers presentation
spr (+1if first offer is left, —1 first offer is right); and fraction of time looking at right screen side fz =
tr/(tgr +t.). To compare the magnitudes of the regressors, we normalized EV and o2 to their maximum
value across all trials all sessions, and in both subjects, so for the analyses on the whole data set their trial-
by-trial values ranged within unitary values (in the set [0, 1]). Results for the regression of EV and o only
are reported in Supplementary Table ST3. Results are also shown separately for the two subjects (Supp.
Fig. S4A). To test the effect of the fraction of looking time (fz) on the choice (chR), we added to the
previous logistic regression model the fractions of looking at the right side in each of the following relevant
task epochs: (offer 1, delay 1, offer 2, delay 2 (Fig. 2D), showing that f5 in delay 2 has significant impact
on the choice (**p < 0.01) even when other regressors are included. We performed an addition analysis
by redefining the looking times t5 and ¢t; as the total amount of time when the gaze of the subjects is inside

the physical locations of the offers (or when they are left empty) (Supp. Fig. S3B). The locations of the
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visual stimuli are: left side, horizontal coordinates -7.5+1.5cm; right side, horizontal coordinates
+7.5£1.5cm; Left and right sides: vertical coordinates between + 6 cm. This allowed us to determine
whether gaze spatial precision is important for the encoding of the stimulus (gazing to the offer vs looking
to the screen side where the offer was located). We find no qualitative difference in our results when using
screen vs offer looking times (Supp. Fig. S3B; compare with Fig. 2C).

3. Neuronal data recordings

Animals were habituated to laboratory conditions and then trained to perform oculomotor tasks for liquid
reward. We approached Areas 11 and 13 through a standard Cilux recording chamber (Crist Instruments).
A small prothesis for holding the head was used. Position was verified by magnetic resonance imaging by
aligning white and gray matter scans to standard anatomical atlas with the aid of a Brainsight system (Rogue
Research Inc.). Neuroimaging was performed using a 3T MAGNETOM Trio Tim using 0.5 mm wide
voxels. Animals received appropriate analgesics and antibiotics after all procedures. Throughout both
behavioral and physiological recording sessions, the chamber was kept sterile with regular antibiotic washes
and sealed with sterile caps. Single contact electrodes (Frederick Haer & Co., impedance range 0.8 to 4
MU) were lowered using a microdrive (NAN Instruments) until waveforms of between one and three
neuron(s) were isolated. Individual action potentials were isolated on a Plexon system (Plexon, Inc.).
Following a settling period, all active cells were recorded. Cells were sorted offline manually by trained
electrophysiologists; no automated sorting tools were used. Neurons were selected for study solely based
on the quality of isolation; they were never preselected based on task-related response properties. All
collected neurons for which we managed to obtain at least 300 trials were analyzed; no neurons that

surpassed our isolation criteria were excluded from analysis.

4. Analyses of neural data

Following the manual isolation of units, spiking activity data were preprocessed by thresholding,
guantization, and subsampling to 1kHz resolution. The resulting data have an average spike rate of 1.46 +
2.38 (mean = s.d.) spikes/s. Given the sparsity of the data, to improve the detectability of encoding of task
variables, we always applied the analysis of neural data by using a time-resolved strategy based on boxcar

sliding window.

4.1 Neural spiking and the encoding of reward expected value
For each of the recorded units, we computed the time-averaged spike count n in time windows of 200ms,

in every 10 ms bins (consecutive time windows have 95% overlap; time windows start at every 10 ms bin).
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These settings were chosen because they provided a good trade-off between the temporal resolution of our
analysis and large enough time windows to compute spike rates given the sparsity of OFC activity. In
addition, these settings were in line with ranges used in previous studies of OFC activity (Conen, Padoa-
Schioppa, 2015; Maisson, D. et al., 2021). The spike rate in each time window, for each neuron, and in each
10 ms bin was fit to the linear model n = B, + B1x, where x was either the EV of the left offer, EV,, or
right offer, EVy. This time-resolved, cell-by-cell analysis was performed using three different sets of trials:
(1) using all available trials, i.e. neglecting where the animal is looking; (2) using all trials within a session
where the animal mainly looks at the left side of the screen in a given bin (defined as trials where the
average gaze position within the 10 ms time bin is negative); ; and (3) trials where the animal mainly looked
at the right side (average gaze position is positive). The sets of trials (2) and (3) allowed to study the
modulatory effect of gaze on the encoding of the value of the offers by distinguishing trials where subjects
mainly ‘Look Left = LookL’ from trials where subjects mainly ‘Look Right = LookR’, respectively (the
bottom panel of Fig. 1C shows the fraction of trials for LookL / LookR for each session, in each time bin).
The number of available trials could vary across sessions (n = 746.38 + 87.29 mean * s.e.m trials per
session, n = 5971 in total; Supp. Table ST1 for exact numbers for each session) but coincided for
simultaneously recorded cells. Given that both subjects shared the look-at-something and look-at-nothing
gaze patterns for the two screen sides, we considered looking conditions as the opposite sides of the screen
(LookL / LookR), which also allowed to maximize the usage of available trials. We did not consider looking
conditions as based on perfect alignment of gaze position over stimuli presentation sites as the subjects gaze
did lack precision in reaching exact stimuli locations (e.g. delay 2 in Fig. 1D,E; Supp. Fig. S2). Such looking
conditions drastically reduce the number of available trials, preventing us from applying neural encoding
analyses, especially at delay times (at delay 1 time the fraction of available trials is 9.79% of the total for
LookL, 1.75% for LookR; at delay 2 time it is 3.76% for LookL, 7.43% for LookR; see Supp. Table ST2 for
available trials at opposite screen sides).

To compute the fraction of significant cells, we pooled cells across all sessions for the two subjects
(n = 31 £ 5.85 mean + s.e.m. cells per session, n = 248 in total; Supp. Table ST1 for exact numbers per
session). The significance of each cell in encoding the offer EV in each time bin is assessed via F-Statistic
tests comparing the linear model vs constant model, thus assessing whether the linear coefficient g, is
significantly different from zero (p < 0.05). From this, we estimated the fraction of significant cells over
the total number of available cells (for both monkeys, Fig. 3B; for the two monkeys separately, Supp. Fig.
S5). In our results we do not find qualitative change if shorter (150ms) or longer (250ms) time windows
are used for spike rates (Supp. Fig. S6), nor if we applied baseline normalization (for each cell, for each

trial, we subtracted the spike rate in each 10ms bin by average spike rate in pre-offer 1, Supp. Fig. S7).
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Although we mostly showed results for the neural encoding in terms of fraction of significantly
encoding cells, we also show the coefficient of determination R? for all the regressions that we implemented
(Supp. Fig. S8A). In addition, we repeated our significant tests based on F-tests by(non-parametric)
permutation tests on the values of R? (Supp. Fig. S8B). In the permutation test, the trial order of EV's and
spike-counts are shuffled independently n = 1000 times in each 10 ms time bin, for each cell, in each
session, for the two subjects. Then, the empirical R? (based on the not shuffled data) is compared to the
n = 1000 shuffled R? values, and the p-value is defined as the fraction of shuffles with R? larger than
empirical R? (Nogueira et al., 2017). Finally, we counted the cells with significant encoding (p < 0.05).
The results for the permutation test (Supp. Fig. S8B) qualitatively match results run via F-statistic tests
(Fig. 3B,D).

To provide our bin-resolved analysis with statistical robustness, we did not naively consider
significance of the fraction of cells for single bins, as many of those bins could be significant just by chance
(i.e., the eventuality that the fraction of significant cells in any time bins crossed the 95" percentile
significance threshold due to spurious fluctuations). To address this issue, we performed a cluster-based
run-length analysis as follows (Butler et al., 2021). Here, we defined the length of a run as the number of
consecutive significant time bins (significant here means that in the current time bin we have a fraction of
significant cells exceeding the 95" percentile of the fraction of cells from shuffled data). We considered
that a run length was significantly longer than expected by chance if its length exceeded the 95™ percentile
of run lengths obtained from shuffled data. The time bins involved in significantly long runs are shown by
the solid line at the bottom of each panel in Fig. 3B-D, in Fig.4, and in Supp. Figs. S4-S10.

In all our neural data analyses we compared with the respective control results obtained over trial-
order shuffled data. For each time bin, we shuffled the trial order of spike rates and expected values
independently for each cell, to destroy the correlation between spike rates, expected values and eye position.
For each of the n = 1000 independent shuffles generated, we computed the fraction of cells that encoded
either the left or right expected values. The 1000 fractions were used to build the null-hypothesis
distribution. Finally, the 95" percentile (right tail) of the null-hypothesis distribution is used to test at 5%
significance level if the observed fraction of significant cells is significantly larger than the one expected
by chance. We chose a right-tailed test because we consider only meaningful fractions of significant cells
larger than expected by chance, not smaller. For illustration purposes, we display the 5"-to-95" percentile
of the null-hypothesis distribution as shaded areas in Fig. 3B-D, in Fig.4 and in Supp. Figs. S4-S10.

We repeated the analysis of Fig. 3D by controlling for the unbalanced number of trials for the
conditions ‘LookL’ and ‘LookR’ (see Fig. 1C, bottom). To implement this, we performed a sub-sampling
trial method such that the number of trials for each condition is the same, before performing statistical

comparisons (Supp. Fig. S9). In each time bin, the number of trials for both LookL and LookR is set to
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n(t) = min (number of trials LookL, number of trials LookR) in each session (e.g. n(t) = min(60, 535)).
The number of subsets at each time bin is given by m(t) = [N/n(t)], with N the total number of trials in
each session (e.g., m(t) = [595/60] = 10). Then, the average fraction of significant cells is computed for
each subset, and finally the fractions for all m(t) subsets are averaged. We show that the main results (Fig.
3D) are found by sub-sampling (Supp. Fig. S9C), yielding equivalent overall levels of R? for LookL and
LookR (Supp. Fig. S9D).

4.2 Difference in encoding EV versus EVg as a function of time, and difference in encoding EV;, or
EV , when looking at different looking sides: LookL versus LookR.

We tested whether in any task-related epoch (e.g., offer 1, delay 1, etc.), cells showed more encoding of
EV, or EVy. We first consider all the trials, regardless of where the monkeys directed their gaze (below, we
conditioned the same analysis on the gaze of the subjects). For each task-related epoch, we first built two
Neelts X Neimebins DINAry matrices, M, and M. In each matrix, the element m; ; = 1 if cell i at time bin j
has a significant encoding of the left or right EV (p < 0.05, defined by F-tests on the linear term interaction
coefficient described in previous Section 4.1), m; ; = 0 otherwise.

We compute the fraction of time bins with significant encoding of either expected value by
averaging the matrices M, and My along time dimension in each task epoch, yielding vectors u; and ug
with size n..;;s X 1. In Fig. 3C we report average + s.e.m. across cells of the vectors u; and ug. For each
of the two cases, we computed the 95" percentile values from the distribution of the fraction of bins
averaged across cells u;" and u3? for n = 1000 shuffles of the trials order, to be used as significance
threshold to be exceeded (in Fig. 3C, non-significant bars are reported in white, with colored frame). The
two vectors u; and up were compared via non-parametric tests (Wilcoxon signed rank test; *p<0.05,
**p<0.01 and ***p<0.001 in Fig. 3C).

After this, we analyzed the fraction of neurons that encoded the left and right expected values
depending on the subject’s gaze in each time bin within a task-related epoch. We divided trials into two
groups: LookL trials, where average gaze position is < 0 in the 10 ms time bin in each of those trials; and
LookR trials, where average > 0. Focusing on either offer EV, and EVg, we re-run the neural encoding
analysis again to compute the fraction of cells significantly encoding for either looking side (EV; LookL
and LookR, Fig. 3D, top; EVg for LookL and LookR, Fig. 3D, bottom). For both the EVs and for the two
trial pools, we computed again the vectors u; and uy as above, called them uf?%*L and ukO°kL for the
LookL trials, and ut°°*R and uk°°*R for the and LookR trials. Like in Fig. 3C, we report average + s.e.m.
across cells of the vectors ukookL yLookR (Fig. 3E, top), and ukokt, ukeokR (Fig. 3E, bottom) (non-

significant bars are reported in white, with colored frame). We compared the encoding of left expected
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value EV, when the animal mostly looked at left versus the encoding when it mostly looked at right, that
is, we compared uk°°kL vs u£99kR again, via non-parametric tests (one-sided Wilcoxon signed rank test;
*p<0.05, **p<0.01 and ***p<0.001 in Fig. 3E, top). This time we use one-sided tests as we are interested
in LookL significance being more prominent than in LookR, and not just significantly different in their mean
value. The same is done for the effect of gaze on the encoding of right expected value EVy, i.e., we applied
non-parametric tests to compare uk°°kt vs uk°kR (Fig. 3E, bottom), this time assessing whether LookR

was larger than LookL, as we wanted to test stronger encoding of EVj.

4.3 Neural encoding at delay times conditioned on previous looking side
To determine whether memory traces and reactivation of activity in OFC are mostly due to trials where
animals did not change their gaze (e.g., whether the animals look at the left side during delay 2 because it
did not look at the right side during offer 2), we repeated the encoding analysis during the delay periods but
making sure that we used only trials where the animal actually looked at the offer immediately before them.
We first focused on delay 1 time and compared LookL vs LookR by conditioning on trials when subjects
were previously looking at the left during the last 200 ms of offer 1 (looking at the left is of course the most
common gazing pattern). We find that the subject LookL during the last 200 ms of offer 1 on 80.21% of the
total amount of trials, they keep LookL during the last 200 ms of delay 1 on 47.95% of total amount of
trials, while they switch to LookR during the last 200 ms of delay 1 on 32.26% of the total trials. For the
two cases we applied independently the regression of EV; and EVy, as described in previous section 4.2
(Fig. 3F). We find that the encoding of the first offer EV, persisted if the subjects keep looking at the left
side of the screen during delay 1. Next, we focused our analyses on delay 2 time and we compared looking
conditions for trials when subjects were looking to the right during the last 200 ms of offer 2, which is the
most common pattern (78.8% of the total amount of trials). Again, we applied the time-resolved regression
of offer EV's to compare trials when subjects shifted to LookL (36.48% of total amount of trials) versus the
trials when subjects kept LookR (42.32% of total amount of trials) during delay 2 (Fig. 3G). We strikingly
find significant increase in the encoding of left offer EV, when subjects look back to first offer location
during delay 2, despite the screen was left blank; and this reactivation occurred even when the second offer
was looked at, which means that reactivation is robust to distractors. For EVyg, just like for EV;, in delay 1,
we find that its encoding persists only if the subjects keep staring at ipsilateral screen location. The analyses
were run also for less common, complementary cases (LookR during offerl and LookL during offer 2),
shown in Supp. Fig. S4A, Supp. Fig S4B.

As a further analysis, we computed the correlation of regression weights for the linear regression
weights 3, for the spike rate and EV of the offers (n = S, + 1 EV). We compared the weights for the two

look-at-nothing cases (LookL / LookR during delay 2) and the respective look-at-something cases (LookL /


https://doi.org/10.1101/2023.04.20.537677
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.20.537677; this version posted April 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

LookR during offer 1 / offer 2). In this analysis we computed the regression weights in the last 200 ms of
each epoch time (offer 1 / offer 2 / delay 2) by considering the average spike rate in the whole windows
(instead of using a time-resolved approach used in the remainder of this section). This choice is motivated
by the observation that both eye position and neural encoding results show steady patterns in these time
windows. Lastly, we computed Spearman correlations between the 8, of each cell in different pairs of task

scenarios, i.e., for ipsilateral looking cases (Supp. Fig. S11A) and contralateral cases (Supp. Fig. S11B).

4.4 Neural encoding of offer subjective value and the choice

We further tested a more complete model where we applied the regression of both offer Subjective Values
(SV) and the choice variable chR (chR = 1 if choice is for right offer, 0 otherwise). The SVs are computed
by using behavioral data in each session, as SV, = wy, EV, + wy, 07 and SV, = wyg EVg + Wyg 03,
regressing the choice variable as logit(chR) = wy + wy EV, + wigEVg + Wy, 07 + wyroi. For the
analysis of neural data, we fit the linear model n = S, + 8,5V, + B,SVz + S3chR to spike rate n in each
10 ms hins, using a sliding time window of 200 ms. In this analysis we followed the same methodology as
for the time-resolved analysis previously run independently for the encoding of EV, and EVy described in
Section 4.1. To investigate the modulatory effects of gaze position, we repeated the same analysis by either
including all trials (Fig. 4A, top), or focusing on LookL trials (Fig. 4A, middle), and on LookR trials (Fig.
4A, bottom). Interestingly, we found that our main results for the two SV's qualitatively matched results for
the encoding of the two EVs in isolation, even when including the choice variable, which in turn is
significantly encoded in the late task epochs. We first assess the mean fraction of significant cells by
comparing them with the 95" percentile of the same quantities computed over n = 1000 shuffles of the
trial order, to be used as significance threshold (in Figs. 4B and 4D, non-significant bars are reported in
white, with colored frame). Then, for the encoding of SV's, we compared the fraction of significant bins in
LookL and LookR (Fig. 4D, top and middle) via one-sided Wilcoxon signed-rank tests, to test that either SV
had higher encoding for ipsilateral inspection (following the derivation of the vectors u; and ug described
in Section 4.2). For the encoding of chR (Fig. 4D, bottom), we compared LookL and LookR (again using
u; and ugz computed as in Section 4.2) via two-tailed Wilcoxon signed-rank tests to test that the two

conditions showed non-zero mean difference.
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