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The concentration of many transcription factors exhibit high cell-to-cell variability due
to differences in synthesis, degradation, and cell size. How these factors are robust to
fluctuations in concentration is poorly understood. Here we quantified the single cell levels of
the YAP/TAZ transcriptional co-activators in parallel with cell morphology for over 400,000
single cells across 17 cell lines. We show the whole cell concentration of YAP/TAZ sub-
scales with respect to size as cells grow during proliferation. However, the mean nuclear
concentration of YAP/TAZ remains constant during the cell cycle. Theoretical modelling
demonstrates that the extent to which whole cell YAP/TAZ dilutes in single cells during
proliferative growth dictates the variability of YAP/TAZ levels across the population. Integrative
analysis of imaging and proteomic data show the average nuclear YAP/TAZ concentration
is predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear
transport processes. We developed a statistical framework capable of discriminating between
perturbations that affect YAP/TAZ directly, or via changes in morphology. Deployment of
these models on genetic screening data or small-molecule treatments reveal that inhibition of
MEK, CDK4/6, LATS and RhoGTPases decouple nuclear YAP/TAZ from cell morphology by
regulating nuclear translocation. Thus signalling activity couples size changes to YAP/TAZ
translocation; leading to a stable pool of nuclear YAP/TAZ during proliferation.
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Signalling networks couple transcriptional regulation to the
integrated detection of environmental cues. A common ‘motif’
in these networks is the sequestration of transcription factors
by inhibitory complexes. In the presence of an environmental
cue, transcription factors are released from these complexes
and interact with DNA to engage specific programmes (1–3).
When TFs and inhibitors are at sub-saturating levels, this
allows transcription to be tightly coupled to environmental
flux. For example, dilution of the inhibitory protein RB1 as
cells grow is one mechanism by which E2F activity is coupled to
size (4, 5). In animal cells especially, inhibitory sequestration
of transcription factors often occurs in the cytoplasm; and
release from inhibition allows TFs to translocate into the
nucleus. For example, the active degradation of inhibitors
such as APC or IKB in the cytoplasm allows the translocation
of transcription factors such as Beta-Catenin or NFKB into
the nucleus (6, 7); coupling cues such as adhesion and stress to
transcription respectively. The concentration of both inhibitors
and transcription factors in the cytoplasm thus informs the
response of transcription factors to upstream signals (4).

It is now clear that the concentration of many cellular
molecules varies between cells, even within an isogenic popu-
lation (8). Such variability can be due to both extrinsic and
intrinsic stochastic differences in protein synthesis, but also
due to differences in cell size and shape (8–11). However, cell
populations and tissues exhibit largely robust and predictable
behaviour despite such fluctuations; i.e. are largely uniform
in the output of their signalling activity. Perhaps the best
example of which is the control of size uniformity during
proliferation, such as during organ and tissue morphogenesis
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(12–14). But how cells are robust to fluctuations in protein
concentration is poorly understood.

In the context of a sub-scaling protein, one means to
provide robustness would be to couple a synthesis step to
cell growth, such that a surge in synthesis offsets the effects
of dilution. Indeed, such a system is believed to underpin
the maintenance of RB1 (yeast WHI5) concentration across
consecutive cycles (4). In the Rb1/Whi5 context, this coupling
is complemented by saturating DNA with RB1/WHI5 (and
degrading the excess) prior to division (15); where the amount
of protein inherited by either daughter is proportional to the
DNA content - and thus size - of the cell. Indeed, a similar
system applies to the partitioning of KRP4 in Arabidopsis
(16). Importantly, these systems can do nothing to constrain
the effects of dilution within a cell cycle. However, it is unclear
how the effects of dilution may be mitigated in other biological
contexts.

YAP and TAZ (henceforth YAP/TAZ) are conserved key
regulators of animal cell growth and proliferation. As transcrip-
tional co-activators, YAP/TAZ are inhibited by sequestration
in the cytoplasm, where nuclear translocation (activation)
is triggered by soluble, mechanical, and geometrical cues
(17–25). For example, changes in cell shape are coupled
to the signalling dynamics of Rho GTP Exchange Factors
(RhoGEFs), Rho GTPase Activating Proteins (RhoGAPs) and
their downstream effector Rho GTPases. RhoGEFs, RhoGAPs,
and Rho GTPases regulate YAP/TAZ translocation both
by regulating YAP/TAZ signalling directly and by affecting
cell shape/size (indirectly) (18, 22, 26–32). The coupling of
YAP/TAZ dynamics to cell shape provides a mechanism that
allows cells to position themselves during development, or to
sense and respond to disruption in tissue structures. (26, 33–
35). YAP/TAZ are also regulated by the Hippo pathway,
whereby the LATS (LATS1 and LATS2) kinases phosphorylate
YAP/TAZ, preventing nuclear translocation by enabling 14-3-3
binding.

Through quantitative analysis of 100,000’s of single cells,
from 17 cell lines, we have demonstrated that the whole
cell and cytoplasmic YAP/TAZ concentration sub-scales
with cell size in G1 and G2. YAP/TAZ synthesis was
dramatically upregulated near S-Phase in a size and ploidy
dependent manner. Crucially, we observed that the nuclear
YAP/TAZ concentration distribution was constant across the
population when binned by cell size, implying continual nuclear
import in the background of depleting whole cell YAP/TAZ
concentration. Through integrative analysis of proteomic data,
we found that YAP/TAZ nuclear transport is predicted by
the phosphorylation state of RAS/MAPK, focal adhesion, and
nuclear transport components; suggesting a role for these
systems in coupling cell/cytoplasm size to nuclear import.
Using a novel statistical framework, we show that RAS/MAPK,
CDK4/6, and RHOA affect YAP/TAZ translocation directly.
Whereas inhibition of genes such as LATS1 and LATS2 affect
both size and translocation. Taken together, our work defines
a system to ensure the robustness of cell signalling to changes
in protein concentration.

1. Results

A. YAP/TAZ concentration decreases with increasing cell size.
We quantified single cell size and the concentration/abundance
distributions of F-actin and cytoplasmic/nuclear YAP/TAZ,

first in 30,000 single cells from nine breast cell lines (Table
1) (Fig.1A). While ostensibly YAP specific, the antibody we
used partially recognises TAZ though to a much lesser extent
(23, 36). We initially investigated whether average YAP/TAZ
intensities varied with cell size across our panel but found no
evidence of a correlation with the nuclear or whole cell signal
(Fig.1B/C). However, there was a clear linear relationship
between the whole cell and nuclear YAP/TAZ mean intensities
(Fig.1D). Thus high expression of YAP/TAZ correlates with
more nuclear import. This relationship was also observed in
single cells within each cell line (Fig.1E). Strikingly, when
investigating whether area predicts whole cell YAP/TAZ in
single cells, we observed a clear negative correlation. Meaning
that whole cell YAP/TAZ dilutes/degrades as the cells grow
(Fig1F). This prompted us to more formally investigate the
decrease of whole cell YAP/TAZ within each cell line.

We modelled the concentrations of YAP/TAZ (integrated
intensity/cell area, mean intensity) as power law relationships
with cell area, [Y AP/T AZ] = aAb, such that we could define
a ‘scaling factor’, ‘b’, for each species (Fig.1G). In a log-log
plot, ‘b’ is given as the gradient and log(a) is the y-intercept.
Negative values of ‘b’ correspond to the dilution of the protein
with increasing cell size (sub-scaling), 0, linear scaling, and
positive values, concentration of the protein with increasing
size (super-scaling) (Fig.1H). Fitting ‘a’ and ‘b’ values to each
cell line’s F-actin concentration profile, we observed linear
scaling between cell size and F-actin (b ranging from -0.2 to
0.2, (Fig.1I, Supp.Table 2) as observed in previous studies
(4). However, when applying the same analysis to whole
cell YAP/TAZ concentration, we observed, for all cells lines,
a clear sub-scaling relationship between cell size and whole
cell YAP/TAZ concentration (b -0.35 - -0.65), indicating
that whole cell YAP/TAZ dilutes as a cell gets larger (Fig.1I,
Supp.Table 3).

To investigate the decrease in whole cell YAP/TAZ con-
centration with cell size, we also analysed the abundance
(integrated whole cell intensity, rather than mean) -size
relationship and observed that the whole cell YAP/TAZ
abundance increases with cell size, but not at a rate sufficient to
maintain a constant concentration (b 0.6). Total YAP/TAZ
increased with size at all sizes implying continued net-synthesis
(That is, synthesis must be outpacing degradation, Supp.Table
4, Supp.Fig.2). F-actin exhibited 1:1 abundance scaling
indicating synthesis exactly offsets the effect of cell size on
concentration. (Supp.Fig.2, Supp.Table 5).

To ensure that YAP alone was diluting with size, and that
the measured effect was not an artefact generated by the
erroneous recognition of TAZ by the antibody, we repeated
the experiment with specific YAP and TAZ antibodies (36).
In both cases, we observed dilution of whole cell YAP or TAZ
protein with increasing cell size relative to F-actin (Supp.fig.1).

Together, these data reveal that both whole cell YAP and
TAZ dilute with increasing cell size. As YAP/TAZ increases
in abundance with as cells enlarge, this dilution is not due to
net degradation of YAP/TAZ at larger cell sizes, but rather
the effect of an expanding volume acting on an insufficient
synthesis-degradation balance.

B. YAP/TAZ concentration, but not scaling, is sensitive to
DNA-content and cell cycle progression. As YAP/TAZ levels
did not correlate with size across lines, but did so within lines,
we hypothesised that sub-scaling of whole cell YAP/TAZ may
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Figure 1: YAP/TAZ concentration decreases with increasing cell size A) (left) Representative image of MBA-MB-231 cells stained with YAP/TAZ (red), Phalloidin (an actin
binding dye, green) and Hoescht (marking the DNA in blue). (Right) Individual colour channels seperated out from the original image. Colour is proportional to image intensity
such that black < purple < red < yellow. The scale bar represents 50 um. B) The relationship between the nuclear YAP/TAZ concentration and cell area across cell
lines. Error bars represent one standard deviation. C) The relationship between the whole cell YAP/TAZ concentration and cell area across cell lines. Error bars represent one
standard deviation. D) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration across cell lines. Error bars represent one
standard deviation. E) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration in single cells in each cell line. The colour is
proportional to data density such that black < purple < red < yellow. F) The relationship between the whole cell YAP/TAZ concentration and cell area in single cells in
each cell line. The colour is proportional to data density such that black ¡ purple ¡ red ¡ yellow. G) YAP/TAZ ‘abundance’ (integrated intensity) as a function of cell area in T47D
cells. We describe this relationship as a power law, y = aAb, shown in red. The colour of the data is proportional to the density of the data. H) Demonstration of how the log-log
plot of size vs concentration is interpreted; a negative gradient corresponds to dilution with growth, positive indicates an increasing concentration and a flat relationship, perfect
scaling with cell size. I) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to single-cell area. The line represents the mean YAP/TAZ concentration in each size
range. The error margin corresponds to one standard deviation in the same size bin. Concentrations have been normalised to the means across all sizes for viewability. For
each cell line, the relationship is shown across the size range: 0.5*mean – 2* the mean cell size.
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Table 1. Cell Line Information: Gene cluster: Lu = luminal, BaA = Basal A,
BaB = Basal B. ER/PR/HER2: +/ from protein and mRNA expression; [] inferred
from mRNA expression; M = mutant, WT = wild-type. MDA 231-LM2-4175* cells
are the highly metastatic subpopulation 4175 from MDA-MB-231 (23, 37–39).

Cell Line Genetic Subtype ER PR Her2
MCF7 Lu + [+] −
T47D Lu + [+] −
BT474 Lu + − +
SKBR3 Lu − [−] +

HCC1954 BaA − [−] +
MDA-MB-468 BaA [−] [−] −

hs578T BaB − [−] −
MDA-MB-157 BaB − [−] −
MDA-MB-231 BaB − [−] −

SUM149 BaB [−] [−] −
SUM159 BaB [−] [−] −
MCF10A BaB − [−] −

JIMT1 Unclassified − [−] +
MDA-MB-231-LM2-4175*

be due to growth during cell cycle processes. To investigate
this, within each line, we initially binned cells based on their
DNA content (integrated Hoechst intensity). Bin sizes were
constrained such that each bin centroid represents double the
value of the preceding bins. Conducting the previous analysis
on each DNA ‘bin’ within each line, we noticed that while
the mean whole cell YAP/TAZ concentration at any given
size increased for each doubling of the cell DNA (each DNA
content ‘bin’, 1.3-1.6 factor increase) (Supp.Table 3, Fig.2A),
the scaling factor ‘b’ showed no obvious dependence on the
amount of DNA. We performed the same analysis for the
F-actin concentration and noticed no relationship between ‘b’
or mean concentration and DNA content (Fig.2B, Supp.Table
2).Whole cell YAP/TAZ and F-actin abundance showed a
consistent positive scaling factor ( 0.4-0.6) across all DNA
contents (Supp.Table 4/5, Supp.Fig 4/5).

As whole cell YAP/TAZ dilutes within the first and
second DNA ‘bins’, loosely approximating ‘G1’ and ‘G2’,
and undergoes a DNA-correlated regeneration between the
two, potentially at S-phase, we sought to more rigorously
investigate the relationship between cell cycle progression
and YAP/TAZ concentration. We stained MCF10A cells
for YAP/TAZ, PCNA and CCNA2 and trained a linear
classifier to distinguish G0, G1, S and G2 cells using 110
CCNA2 and PCNA intensity features (methods) across 20,000
single cells. Conducting a scaling analysis within each stage,
we observed that the negative size-YAP/TAZ concentration
scaling is preserved across all stages besides G0 (Supp.Fig.6).
Moreover, by binning the cells by area and calculating the
mean YAP/TAZ concentration in each stage, we observed
that the whole cell YAP/TAZ concentration increases from
G1 to G2 and that smaller cells exhibit a greater whole cell
YAP/TAZ concentration at each stage, further corroborating
the previous analyses (Supp.Fig.6).

To test the idea that whole cell YAP/TAZ dilution relates
to cell cycle progression, we assessed YAP/TAZ levels in
Palbociclib treated LM2 cells. Palbociclib arrests cells at
the G1/S transition by inhibiting CDK4/6 activity (40). We
found that the average whole cell YAP/TAZ concentration
was unchanged in Palbociclib treated cells despite the two-fold
increase in size. YAP/TAZ dilution, however, still occurred
with increasing size in the Palbociclib treated population

(Fig.2C/D). Together, these data show that the regulation of
the cytoplasmic YAP/TAZ concentration is closely tied to the
cell cycle, with dilution only being observed in cycling cells,
and YAP/TAZ synthesis being strongly upregulated around
S-phase.

C. A constant nuclear concentration of YAP/TAZ is maintained
across cell sizes despite whole cell dilution: . Having observed
a sub-scaling relationship between whole cell YAP/TAZ and
cell size, we were interested in how this related to the nuclear
translocation and concentration of YAP/TAZ. We quantified
the N/C ratio of YAP/TAZ at the single cell level, for each cell
line. Interestingly, YAP/TAZ ratio increased with increasing
cell size, exhibiting the opposite relationship to (whole cell)
YAP/TAZ concentration. The N/C ratio of YAP/TAZ also
changed with DNA content, where the mean YAP/TAZ ratio,
decreased across each DNA ‘bin’. We noted that ‘b’, the scaling
factor between cell area and N/C, remained unchanged across
DNA contents for all cell lines (Fig.3A, Supp.Table 6).

We next investigated the scaling of the nuclear con-
centration of YAP/TAZ cell area. Strikingly, the nuclear
concentration distribution of YAP/TAZ was almost entirely
insensitive to increases in cell size, exhibiting a constant mean
and variance across all measured areas. Increases in the DNA
content did increase the average nuclear YAP/TAZ level, but
not sufficiently to maintain the same YAP/TAZ ratio across
DNA bins (Fig.3B, Supp.Table 7). Importantly, as nuclear
and cell size correlate (Fig.3C), even without an increase
in DNA content, this result implies continual transport of
YAP/TAZ into the nucleus as cells grow such to maintain
a constant concentration distribution across differently sized
cell populations. Thus, nuclear transport of YAP/TAZ is
coupled to cell size in order to maintain a steady-state level of
YAP/TAZ as the cytoplasmic pool becomes diluted.

To determine if nuclear concentration was also dependent
on CDK4/6 activity, we analysed nuclear YAP/TAZ levels in
Palbociclib treated cells. We observed that while the nuclear
concentration was invariant to cell size, it was sensitive to
Palbociclib treatment; as treated cells exhibited higher nuclear
YAP/TAZ concentrations than control cells. (Fig.3D). Thus
CDK4/6 activity and/or cell cycle progression is necessary to
couple nuclear transport of YAP/TAZ to cell size.

Together, these data suggest that while the concentration
of the cytoplasmic pool of YAP/TAZ is a function of cell size
and volume, the nuclear YAP/TAZ concentration is regulated
independently. As a transcriptional regulator, this implies
that as cell divide they maintain a constant pool of nuclear
YAP/TAZ activity despite falling cytoplasmic concentrations.
Indeed, this is particularly striking given the strong correlation
between the nuclear and whole cell YAP/TAZ concentration
(Fig.1.D/E). Given the scaling between nuclear and cell area,
necessitating continual import of YAP/TAZ, this may be
driven by nuclear transport machinery (summarised in Fig.3E).

D. Integration of YAP/TAZ size-scaling and stochastic cell divi-
sion determines YAP/TAZ heterogeneity. The previous analyses
are consistent with a scheme by which a constant amount of
YAP/TAZ is maintained through dilution in G1, synthesis at
S/G2 and a further dilution through the subsequent G2, before
the inheritence of YAP/TAZ by daughter cells (A dilution-
synthesis-dilution, or DSD, scheme (Fig. 4A)). We sought to
understand how such a system would behave across division
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Figure 2: YAP/TAZ concentration, but not scaling, is sensitive to DNA-content and cell cycle progression A) Log-log plots relating YAP/TAZ concentration to single-cell area
across DNA bins (blue the least DNA, red, green, yellow the most). Cell membership to each ‘bin’ was determined by kmeans clustering on the DNA content. The shaded area
denotes one standard deviation of the cell size distribution about that size bin. B) Log-log plots relating Actin concentration to single-cell area across DNA bins (blue the least
DNA, red, green, yellow the most). Cell membership to each ‘bin’ was determined by kmeans clustering on the DNA content. YAP/TAZ-size scaling is sensitive to DNA content
while Actin scaling, is not. The shaded area denotes one standard deviation of the cell size distribution about that size bin. C) Dilution of YAP/TAZ with increasing cell size in
LM2 breast cancer cells. The line represents the mean YAP/TAZ concentration in each size range. The error margin corresponds to one standard deviation in the same size bin.
The relationship in untreated cells is shown in red, that for Palbociclib treated cells in grey. D) Representative images demonstrating the effects of palbociclib treatment on
YAP/TAZ abundance and translocation in LM2 cells. Scale bar denotes 50um, YAP/TAZ in red, actin in green, DNA stain in blue.
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Figure 3: A constant nuclear concentration of YAP/TAZ is maintained across cell sizes despite whole cell dilution: A) Log-log plots relating YAP/TAZ nuclear-cytoplasm ratios
and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the
lowest DNA content, then red, green and yellow, the most. In all cases, YAP/TAZ ratio positively scales with cell area but decreases with increasing DNA content. The shaded
area denotes one standard deviation of the cell size distribution about that size bin. B) Nuclear YAP/TAZ, single cell area relationship plotted across DNA content bins for each
cell line. The shaded area denotes one standard deviation of the cell size distribution about that size bin. C) Relationship between cell and nuclear areas across high and low
DNA content clusters for each cell line (cluster 1 has less DNA than cluster 2). Nuclear and cell areas continually scale within DNA bins and is not related to DNA synthesis
alone. D) The effect of Palbociclib on the nuclear YAP/TAZ concentration. Palbociclib does not affect scaling behaviour but increases the total nuclear concentration. E) A
cartoon summarising the major findings of the section: Nuclear YAP/TAZ concentration is constant across sizes, nuclear area scales with size, together implying continual
YAP/TAZ nuclear import despite a falling whole cell concentration.
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cycles and what consequences this could have for the cell
population. To understand how YAP/TAZ scaling affects the
YAP/TAZ concentration distribution, we integrated a DSD
model with a simple cell cycle system (a two-stage system
exhibiting adder size behavior) (9). This model assumes linear
dependencies between cell area and the probability to advance
in the cell cycle stage and cell area and growth rate. The cell
area probability distribution under these constraints is given
as a hypo-exponential function J(A, S, n):

J(A, S, n) = F −1

(
n∏

i=1

F (G(A, S, n))

)
[1]

where:

G(A, S, n) = α

ln(2)k

S∑
i=1

[∏
i̸=j

1
1 + 2(j−i)

]
ne−nαA/(2i ln(2)k)

2i

[2]
Where: ’Ad’ is the cell area at division, ’a’ is a propor-

tionality constant between Ad and cell cycle advancement
probability, ’k’ a proportionality constant between Ad and
growth rate, ’S’ is the number of divisions that have occurred,
and ’n’ is the number of cell cycle ’stages’ per division. ’F(f(x))’
denotes the Fourier transform of f(x), and F −1, the inverse.
(See methods (calculating area distributions) and supplemental
information for details).

To ensure the applicability of this model, we fit equ. 1
to the (G2) cell area distributions of our cell lines using a
two-stage system and found good agreement (methods). Here
’stage’ refers to the number of growth stages in a cycle (Fig.
4B). Indeed, the CVs of the distributions lie well within the
predicted bounds of a two-stage system (CV = 1/

√
3n). For

n = 2, 0.4 < CV < 0.57 (Supp. Table 7) (9).
Expressing the ’cell cycle advancement time’ (time spent

in each cycle stage, CCA) distribution in terms of the dilution
factor ’D’ (D = 1/ exp(bkt), where ’b’ is the scaling factor,
’k’ the proportionality constant between size and growth rate,
and ’t’ is time) gives (Fig. 4C) (see supplemental information):

P (D) = − ln (1 − αAd) (1 − αAd)− ln(D)/bk 1
Dbk

[3]

As two dilution events happen in sequence, we were
interested in the product distribution of P (D) and a second
dilution event, denoted as F (z) (Fig. 4D):

F (z) = − ln(z) ln (1 − αAd)2 (1 − αAd)− ln(z)/bk 1
b2k2z

[4]

Where z is the product of two random ’D’ variables
distributed according to equ. (3). For simplicity, we considered
the two sequential dilution events to be identical, such that
the cell grows equally across G1 and G2 and exhibit the same
scaling behavior. From F (z), we could calculate the coefficient
of variation (σ/µ):

CV ≈

√(
αAd

αAd+2bk

)2 −
(

αAd
αAd+bk

)4(
αAd

αAd+bk

)2 [5]

Which approximately linearly scales with ’b’ for 0 < b < 1
(Fig. 4E); note we have expanded the mean and variance

about a = 0 to obtain equ. (5) (α values do not exceed
10−5) (methods). Correlating scaling factors against the CV
of YAP/TAZ intensity distributions, we observed a strong
negative trend for 7/9 of our cell lines (Supp. Fig. 8).

It is important to note that average ’b’ values are not the
only source of YAP/TAZ variance in this system; differences
in size regulation and the area dependence of ’K’ and ’b’ all
contribute to YAP/TAZ variability (Supp. Fig. 7). Indeed,
the MDA-MB-231 and JIMT1 cell lines, those with high scaling
factors (b ≈ −0.54) but comparatively low YAP/TAZ variance
(CV ≈ 0.37), have more homogeneous size distributions than
most of the other cell lines (Supp. Table 8, CV ≈ 0.48) and
are some of the few to exhibit an approximately constant
’K’ value (Supp. Fig. 7) providing an explanation for their
departure from a linear scaling factor-variance relationship.

To capture the concentration distribution of whole cell
YAP/TAZ, we simulated equ. 4 across multiple generations
(Fig. 4F) (methods). Parameter (Q) values (bs1, bs2, K) were
taken from the size-Q curves for each cell line. Comparing
the predicted distributions to those measured, we observed
excellent agreement showing that, in these cell lines, the
concentration distribution of whole cell YAP/TAZ can be
explained by size-dependent stochastic cell division acting on
a dilution-synthesis-dilution system (Fig. 4G). Thus, coupling
of YAP/TAZ nuclear transport to size is important to suppress
variability in YAP/TAZ levels over successive generations.

E. The mean nuclear YAP/TAZ concentration across sizes
is associated with altered RAS, adhesion and nuclear trans-
port signalling processes. Having observed the dilution of
cytoplasmic (and whole cell) YAP/TAZ with increasing
size, and that size had no tangible effect on the mean
nuclear concentration (or concentration distribution across the
population), we were interested in how continual import could
be sustained across sizes whilst the cytoplasmic pool depletes.
To investigate this, we combined high-throughput imaging and
phosphoproteomic experiments across a separate panel of eight
cell lines (semi-redundant with the previous panel) (Fig.5A,
Table.1). The cell lines selected were similar sizes (within a
2-fold range) to prevent size-related phosphorylation events
colouring the investigation of nuclear YAP/TAZ and ratio
correlates. YAP/TAZ exhibited size sub-scaling behaviour at
the whole cell level, but not in the nucleus (relative to tubulin
intensity), as is consistent with the prior dataset (Fig.5B).

We predicted the cell lines nuclear YAP/TAZ and ratio
from the phosphoproteomic expression data using partial-least
squares regression (PLSR). For this, the expressions of each
phosphopeptide were ‘corrected’ such that they reflected how
much more/less expressed they were than expected given
the detected expression of the unphosphorylated peptide (see
methods). This eliminated the trivial correlation between
proteomic and phosphoproteomic data and gives information
on the signalling state of the cells. From the PLSR model, we
could calculate the contribution of each phospho-peptide and
thus, how predictive each phosphopeptide was, as achieved
through calculation of a ‘Variable importance to projection’
(VIP) score.

Mean nuclear YAP/TAZ concentrations were predicted
by mass corrected expressions of phosphopeptides enriching
for: RTK/MAPK signalling (KEGG pathway ‘EGFR tyrosine
kinase inhibitor resistance’, FDR < 0.05). These included
several core regulators of the MAPK pathway including:
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Figure 4: YAP/TAZ scaling behaviour is consistent with a dilution-synthesis-dilution scheme. A) Schematic describing the logic of the dilution-synthesis-dilution system. Relevant
dilution factors are marked on each stage. The colours correspond to the final concentration at the end of the stage. Blue is low, orange high. B) Model fits on the single cell
‘G2’ (as determined by kmeans clustering on the integrated Hoechst intensity) size distributions, blue represents experimental data, orange is the calculated distribution and
yellow is the Kullbeck-Leibler Divergence between the distributions. C) The dilution factor probability distribution (P(D)) across a range of scaling factors. D) The dilution factor
product probability distribution F(z) across a range of scaling factors. E) The relationship between the coefficient of variation and the mean of F(z). The CV increases as the
mean decreases. F) Schematic describing how the dilution factor distribution P(D) is used to calculate the expected YAP/TAZ concentration distribution G) Measured YAP/TAZ
intensity distributions (blue) and the associated model fits (orange). In all cases we observe excellent agreement.
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Table 2. Select phosphorylation sites strongly predictive of the average nuclear YAP/TAZ concentration and/or Nuc/Cyto ratio across lines

Gene Site Kinase Effect Correlation Literature
ERBB2 T701 ERK1/2 Receptor internalization inhibition Negative (43)
BRAF S429 AKT1/3 Inhibits Enzyme activity Positive (44)
SRC S75 CDK5 Multiple Processes including degradation and inhibition Positive (45)

MAPK1 T185 EGFR, MEK Activates Enzyme activity Positive (46)
MAPK3 T202 MEK Activates Enzyme activity Positive (46)
SOS1 S1178 ERK2 Grb2 Binding Negative (47)
MTOR S1261 Downstream of PI3K Induces cell growth Positive (48)
TLN Y70 EGFR SH2B1B Binding Positive (49)
VCL S346 RICTOR Unknown Positive (50)
PAK4 S474 PRKD1 Activates Enzyme Activity Positive (51)

RANBP2 S2280 CDK1 Localisation Signal Positive (52)
XPO1 S11055 NDR1 Activates Export Function Positive (42)

ERBB2 (HER2) (T701), ARAF (S269), SRC (S75), SOS1
(S1178), MAPK1 (T185), MAPK3 (T202), PTEN (S294)
and MTOR (S1261) (Fig.4C/D). We also observed a clear
association between nuclear YAP/TAZ concentration and
focal adhesion signalling (KEGG pathway ‘Focal adhesion’,
F DR < 0.05), with phosphorylations on TLN (Y70), VCL
(S346), PXN (S533), PTK2 (S29), PAK4 (S474), PAK6
(S616), ITGB4 (S1457/4) strongly correlating (|R| > 0.7)
(Fig.5C/D/E/F/G/H). Together, these sites suggest that
enrichment of nuclear YAP/TAZ is related to ERK/MAPK
signalling activation and the maturation of focal adhesions
(41).

Strikingly, when predicting the YAP/TAZ N/C ratio, we
observed differential phosphorylation on multiple regulators of
nuclear transport across cell lines with high and low YAP/TAZ
ratios (GO:0051169, ‘nuclear transport. F DR < 0.05) These
included the nucleoporins, NUP133/153/210/35/188/85 and
NDC1 (S406), LMNA (S403), the RAN binding proteins
RANBP2 (S2280) and 3 (S27), and XPO1 (S1055), a protein
recently directly implicated in YAP/TAZ export from the
nucleus (42).

To investigate the role of EGFR/MAPK signalling in
YAP/TAZ translocation, we treated two breast lines, MDA-
MB-231 and MDA-MB-231-LM2, with Binimetinib, a MEK
inhibitor. In LM2 cells, Binimetinib treatment resulted in
an increase in nuclear YAP/TAZ per cell size whilst having
no obvious effect on the scaling of the whole cell YAP/TAZ
concentration implying increased translocation. Conversely,
in 231 cells, Binimetinib partially reduced nuclear and whole
cell YAP/TAZ levels (Fig.5I/J), however, increased the N:C
ratio, as in LM2 cells implying increased nuclear import.
Taken together these data suggest that RTK-MAPK signalling
couples cell size to YAP/TAZ nuclear translocation. Inhibition
of MEK signalling disrupts the coupling leading to changes in
nuclear translocation.

F. YAP/TAZ dilution behaviour is conserved. After thoroughly
characterizing the dilution behaviour of YAP/TAZ in normal
and cancerous breast cells, our study was expanded to examine
this effect in different cell contexts and assess its generality as a
phenomenon. Specifically, we conducted imaging experiments
on WM-266-4 and A375 melanoma cells, as well as retinal
pigment epithelial cells (RPE-1). The objectives were to
investigate whether: 1) Whole cell YAP/TAZ dilutes as
cells enlarge, 2) the nuclear YAP/TAZ concentration remains

constant with increasing size, and 3) CDK4/6 and MEK
inhibition promote nuclear accumulation of YAP/TAZ.

Strikingly, across all three of the added lines, YAP/TAZ
dilution was conserved. To more formally test the relationship
between YAP/TAZ dilution and the cell cycle, we also stained
these lines for pRB1. Interestingly, dilution only occurred in
cell populations with high pRB1 in these lines, corroborating
the cell cycle dependency seen in the breast cells (Fig.6A), and
the absence of YAP/TAZ dilution in G0 cells. This extended to
the Palbociclib treated population, although, cells with higher
pRB1 tended to larger in this setting, delaying dilution to a
larger cell size (Fig.6A). The YAP/TAZ concentration, but
not the scaling behaviour, was found to be sensitive to DNA
content in all cell lines in both the control and Palbociclib
treated populations (Fig.6B).

As in breast cells, the nuclear concentration of YAP/TAZ
remained constant with cell size in the background of whole
cell dilution, and this was similarly found sensitive to the
DNA content of the cell (Fig.6C). Palbociclib increased the
nuclear concentration of YAP/TAZ per cell size in all cases
(Fig.6D). Binimetinib exhibited similar behaviour in Wm-266-4
and RPE-1 cells, but failed to elicit a response from A375 cells
(Fig.6E).

At a population level, both Palbociclib and Binimetinib
increased average cell size, with Palbociclib having a stronger
effect (Fig.6F). Despite this, neither treatment had any obvious
effect on the whole cell YAP/TAZ concentration. This is
presumably due to the delay of dilution in either treatment
(Fig.6F). Palbociclib increased the average nuclear YAP/TAZ
concentration in all cases. Binimetinib treatment echoed the
result in WM-266-4 and RPE-1 but interestingly reduced
nuclear YAP/TAZ in A375 cells (Fig.6F). The results of
this section are summarised in Fig.6G. Together, these data
show that the YAP/TAZ dilution phenomenon extends to the
melanoma and RPE cell contexts evidencing the generality of
the effect.

G. Dilution of cytoplasmic YAP/TAZ drives increasing nu-
clear/cytoplasmic ratios following gene depletion. Our inte-
grated analysis suggested that RTK-RAS-ERK, focal adhe-
sions, and nuclear transport are key processes which couple cell
size to YAP/TAZ nuclear transport and act as mechanism to
maintain steady state levels of nuclear YAP/TAZ as cells grow.
To identify additional factors that may act to couple YAP/TAZ
nuclear transport to cell size we performed genetic screen where
we systematically depleted 82 RhoGEFs, 67 GAPs, and 19
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Figure 5: The nuclear YAP/TAZ concentration distribution is associated with altered RAS, adhesion and nuclear transport signalling processes: A) Representative images of the
8-lines across which we conducted phospho-proteomic experiments. Scale bar denotes 50um, YAP/TAZ in red, tubulin in yellow, DNA stain in blue. B) Recapitulation of whole
cell YAP/TAZ dilution with increasing cell size and perfectly scaling nuclear concentration against a tubulin standard in a separate experiment and cell line panel. The central
line denotes the mean YAP/TAZ cytoplasmic concentration (TOP), nuclear concentration (MID) or N/C ratio (BOT) in each size bin. The error bars correspond to one standard
deviation in that bin. Tubulin signal is shown in red and YAP/TAZ in blue. C) Themes from the biological process noRedundent dataset enriched in the list of phosphopeptides
most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significant to F DR < 0.05. D) Themes from the KEGG pathway dataset enriched in the list of
phosphopeptides most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significant to F DR < 0.05. E) A network of the interacting members of
the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the ‘EGFR tyrosine kinase inhibitor resistance’ KEGG pathway. Interactions were derived from
the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. F) Example
relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the ‘EGFR tyrosine kinase inhibitor resistance’ KEGG pathway. G) A network of
the interacting members of the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the ‘Focal Adhesion’ KEGG pathway. Interactions were derived from
the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. H) Example
relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the ‘Focal Adhesion’ KEGG pathway. I) The effect of Binimetinib treatment on
YAP/TAZ whole cell and nuclear scaling in LM2 and 231 cells. Binimetinib increased the nuclear concentration of YAP/TAZ across all sizes in LM2 cells. Binimetinib had the
opposite effect in M231 cells. J) Representative images demonstarting the effects of binimetinib treatment on YAP/TAZ abundance and translocation. Scale bar denotes 50um,
YAP/TAZ in red, actin in green, DNA stain in blue.
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Figure 6: YAP/TAZ dilution behaviour is conserved across melanoma and RPE cells: A) YAP/TAZ concentration – size relationship across WM266-4, A375 and RPE1 cells. Top
shows whole-cell YAP/TAZ size scaling in the high (blue) and low (red) phospho-RB1 populations in untreated cells. The middle shows the same in the Palbociclib treated
context. The bottom directly compares YAP/TAZ size scaling in the high pRB1 populations in the Palbociclib treated and control cells. In all cases, the middle line represents the
mean value of cells about that size ‘bin’. The width of the shaded area relates to the standard deviation of cells in that same bin. B) The relationship between YAP/TAZ dilution
and DNA content across control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. C) Nuclear YAP/TAZ concentration
against cell size across DNA content in control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. D) Nuclear YAP/TAZ
across cell sizes compared across low DNA cluster Palbociclib treated (red) and control (blue) cells. In all three cell lines, Palbociclib increased the nuclear concentration of
YAP/TAZ across all cell sizes. E) Nuclear YAP/TAZ across cell sizes compared across low DNA cluster Binimetinib treated (red) and control (blue) cells. In WM266-4 and RPE1
cells, Binimetinib increased the nuclear concentration of YAP/TAZ across all cell sizes. It had no effect in A375 cells. F) Boxplots summarising the effects of Palbociclib and
Binimetinib at the population level on; cell area (left), whole cell YAP/TAZ (middle) and nuclear YAP/TAZ (right). G) Representative images of YAP/TAZ signal across cell lines in
each treatment. Colour is proportional to the YAP/TAZ intensity. H) Cartoon summarising the major findings of this section: Palbociclib/Binimetinib do not reduce whole-cell
YAP/TAZ despite increasing cell size because scaling is delayed to a larger size, this appears related to the phosphorylation of RB1 in these cell lines, the delay may give more
time for nuclear YAP/TAZ to accumulate.
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Rho GTPases, across 300,000 LM2 and MDA-MB-231 cells
(39). We focused on RhoGEF, RhoGAPs, and RhoGTPases
as these are well-established regulators of both YAP/TAZ
and cell morphology - thus are excellent candidates for genes
that may act to couple nuclear transport of YAP/TAZ to cell
growth. We also included in this screen siRNAs that targeted
YAP and TAZ, as well as components of the Hippo pathway
such as LATS1 and LATS2.

Identifying regulators of YAP/TAZ transport following
perturbation is complicated by the fact that any given gene
could potentially regulate YAP/TAZ concentration by affect-
ing volume, by affecting signalling that regulates transport,
or both. Conducting a scaling analysis on the untreated cells
(LM2 and MDA-MB-231 cells) (n ≈ 80, 000), we observed the
same whole cell YAP/TAZ concentration sub-scaling behavior
as in the prior analyses (b ≈ 0.35). Similarly, the nuclear
concentration distribution remained approximately constant
with size, leading to an increase in average YAP/TAZ n/c
ratio driven by population-level cytoplasmic dilution.

Gene depletions did affect the nuclear and cytoplasmic con-
centration distribution of YAP/TAZ. For example, depletion
of genes such as SPATA13, RALBP1, and BCR increased
average YAP/TAZ concentrations/n/c ratios for any given
cell size in MDA-MB-231 cells. Investigating more deeply, we
constructed partial least squares regression (PLSR) models
which predicted YAP/TAZ concentration and ratio in control
cells as functions of 114 measured morphological and intensity
features (methods) (Supp. Fig. 11/12). Calculating variable
importance to projection (VIP) scores from the model, we
observed that cell area (and associated correlates e.g., Nuclear
area, eccentricity, etc.) most contributed to the prediction of
YAP/TAZ concentration and n/c ratio (V IP scores > 1 are
considered major contributors to the model). We applied this
model to all treatment conditions (siRNA knockdowns) finding
that, even under perturbation, the size-YAP/TAZ n/c ratio
and concentration relationship persisted (Supp. Fig. 11/12).
Thus, the scaling of YAP/TAZ levels to size appears rarely
affected by perturbations which affect size, morphology, or Rho
GTPase pathway activation. While many siRNAs are affecting
the YAP/TAZ n/c ratio, often they are doing so through
manipulation of cell morphology and dilution of cytoplasmic
(and total) YAP/TAZ, rather than increasing the nuclear
concentration. These included genes canonically associated
with increased cell size, including ECT2 and RACGAP1,
known to induce cytokinetic failures and polyploidization when
depleted (53).

Using this framework, we could also investigate genes
that disrupt the coupling between YAP/TAZ and size; those
which are most poorly predicted by the model are those
which most perturb the relationship between YAP/TAZ and
cell morphology. The clearest ’hits’ across both cell lines
included YAP itself, the YAP regulatory kinases LATS1 and
LATS2, as well as RHOA, HMHA1, and PIK3R2. Unique to
LM2 cells were ARHGAP33 and STARD13 whilst SOS2 and
ITSN2 perturbed the relationship only in MDA-MB-231 cells
(Fig.7A/B).

Focusing on MDA-MB-231 cells, LATS1/2 and HMHA1
interestingly exhibited a very similar behavior to that captured
by the model, in that they exhibited an increased cell area
and YAP/TAZ ratio, and decreased whole cell YAP/TAZ
concentration (Fig) However, these KDs led to an increase

in YAP/TAZ ratio beyond what would be expected from
an increase in size alone. Furthermore, LATS1/2 KD led
to a small decrease in the nuclear YAP/TAZ concentration
(Fig.7C). Together, we conclude these genes affect the cyto-
plasmic levels of YAP/TAZ both via control of morphology,
size, and signaling mechanisms (Fig.7C).

This phenomenon was not universal, however; several KD
states altered the YAP/TAZ ratio independently of cell area,
such as PIK3R2 and ITSN2 (Fig.7C). Interestingly, the reduc-
tion in YAP/TAZ ratio observed in these cases was nevertheless
associated with a loss of cytoplasmic rather than an increase in
the nuclear YAP/TAZ concentration. Importantly, this shows
that an increase in cell area is not the only way to achieve
a reduction in cytoplasmic YAP/TAZ concentration in this
system (e.g., Increased degradation). These genes could be
involved in directly regulating YAP/TAZ biosynthesis and/or
stability. Of our ’hit’ genes that increased YAP/TAZ n/c and
cell area, only RHOA depletion led to a decrease in YAP/TAZ
ratio, driven solely by a canonical reduction in nuclear, rather
than total, YAP/TAZ concentration (Fig.7C). It is unclear
whether RHOA depletion leads to an increase in YAP/TAZ
synthesis per cell size, such to offset the effect of size scaling
on the mean YAP/TAZ concentration, or whether it decouples
cell area from cell volume, leading to an anomalously high
spread area skewing the result. Indeed, such an effect may
underpin the behavior of PIK3R2/ITSN2 KD.

Together these data show that YAP/TAZ size-scaling
and concentration are remarkably robust to perturbations
in RhoGTPase signalling, in that only the depletion of
very few RhoGEF/GAPs disturbed YAP/TAZ in a way
inconsistent with the concomitant change in cell morphology.
However loss of the core Hippo effectors, LATS1/2, and
a master contractility regulator, RHOA (amongst others)
successfully altered the relationship between cell morphology
and YAP/TAZ regulation. Stable expression of these genes
may be vital to maintaining a constant nuclear YAP/TAZ
concentration distribution, and therefore signal sensitivity, as
a cell grows.

2. Discussion

Here we have shown that cytoplasmic YAP/TAZ are sub-
scaling molecules across cell types; specifically, diluting in
G1, undergoing a surge in synthesis near S-phase before
diluting again in G2. This is not unique to YAP/TAZ; seminal
work on size-scaling phenomena showed that RB1 (and the
associated Whi5 in yeast) exhibits extremely similar behaviour.
However, unlike YAP/TAZ, RB1 is not continually synthesised
throughout the cell cycle/across sizes (’b’ abundance 0.15
vs 0.4-0.6 for YAP/TAZ) (4, 5, 15). The concentration of
RB1 is, therefore, more directly controlled by changes in cell
volume, befitting of its putative role as a size-sensor, whereas
the YAP/TAZ concentration is complicated by biosynthetic
regulation.

That nuclear YAP/TAZ concentration distribution did
not change across cell size bins suggesting that YAP/TAZ
signalling is largely constant across small and large cells during
proliferataion. That is, YAP/TAZ signalling is robust against
changes in cell size occurring throughout a division cycle. Such
robustness is not a rare phenomenon in biology, indeed, recent
works developing models of biological signalling networks have
observed remarkably low parameter sensitivity (54–57). A
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Figure 7: Dilution of cytoplasmic YAP/TAZ drives increasing nuclear/cytoplasmic ratios following gene depletion A(top left)) The relationship between the squared YAP/TAZ
concentration (Z-score) and squared model error (Z-score) for each knockdown state in LM2 cells. The colour and size of each datapoint corresponds to the distance from the
origin. A(bottom left)) The relationship between the squared YAP/TAZ concentration (Z-score) and squared model error (Z-score) for each knockdown state in M231 cells. The
colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom in on the red marked region. We note a strong overlap in hits across the two cell
lines. A(top right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in LM2 cells. KDs affecting YAP/TAZ ratio are not
redundant with those affecting concentration. The colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom in on the red marked region.
A(bottom right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in M231 cells. The colour and size of each datapoint
corresponds to the distance from the origin. Inset: zoom in on the red marked region. B) A guide to the regions of the graphs shown in ’A’. C) Comparisons of YAP/TAZ
concentration, YAP/TAZ nuclear concentration, YAP/TAZ N/C ratio and cell area across knockdown states by an N-way ANOVA test (n = 200 for control, 4 for all else, ** denotes
P < 0.01).
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particularly striking example can be found in a model of the
Drosophila segmentation network where, across 48 parameters
and two orders of magnitude, if a parameter was assigned a
random value, there was a 90% chance that it was associated
with a functional network (58).

Amongst other mechanisms, a biological system may
achieve robustness through adaptation (57). When investi-
gating the signalling differences in cell lines with high/low
average nuclear YAP/TAZ, we found that the expression
of phosphopeptides relating to nuclear transport, adhesion
and RTK-MAPK signalling best explained the differences,
suggesting that these signalling systems may ’adapt’ (are
up/down regulated with increasing size over generations) to
the depleting YAP/TAZ pool. Indeed, an increased activity
of nuclear transporters (and decreased activity of exporters)
with increasing size provides an intuitive explanation for how
a constant nuclear concentration distribution, sustained by
continual import, could be maintained under a falling cytoplas-
mic concentration. Indeed, XPO1 Ser1055, a phosphopeptide,
upregulated in lines with a lower mean nuclear concentration, is
an activated species known to control the export of YAP/TAZ
(41, 42). Furthermore, conformation changes in nuclear pores
have been shown to stimulate YAP/TAZ entry into the nucleus
(59, 60). This can also be driven by increasing nuclear size
and thus cell spreading and growth, imparting stress on the
nucleus through cytoskeletal connections to the cell body,
and may even be sufficient to sustain the nuclear YAP/TAZ
concentration as the cell expands (61).

When perturbing MAPK and CDK4/6 activity, we observed
an increase in the mean nuclear YAP/TAZ concentration per
cell size. This may relate to YAP/TAZ’s role in prompting
resistance to BRAF-MEK blockade. (62–67). As Binimetinib
and Palbociclib exhibited similar effects, is it likely that
MAPK’s role in promoting proliferation regulates nuclear
YAP/TAZ. As neither treatment tangibly effected the scaling
factor of the nuclear YAP/TAZ concentration, it is unlikely
that MAPK signalling is dynamically regulated with increasing
cell size to maintain robust signalling, but rather, determines
the mean nuclear concentration to be maintained (and thus
the nuclear concentration distribution across the population).
Focal adhesion/mechanosignalling events may play a similar
role. Indeed we did not observe any clear change in the
’scaling factor’ of nuclear YAP/TAZ following depletion of
many RhoGEFs and RhoGAPs which couple adhesion to
signalling and morphogenesis, but only changes to the absolute
quantity of YAP/TAZ per cell size.

Our theoretical model, integrating stochastic cell division
with YAP/TAZ size scaling, revealed that more severe protein-
size scaling results in a greater variance in the proteins
concentration distribution; this may have drastic consequences
for the cytoplasmic functions of YAP/TAZ; for example,
YAP/TAZ has been shown to influence the spindle assembly
checkpoint, potentially through its interactions with BUBR1
(68). Moreover, cytoplasmic YAP/TAZ is known to be a core
component of the CTNNB1 destruction complex (69, 70). As
YAP/TAZ and CTNNB1 co-operate as transcription factors
in the nucleus (64, 71), this suggests that the cytoplasmic
dilution of YAP/TAZ may also indirectly influence its nuclear
activity in accordance with the putative importance of the
YAP/TAZ nuc/cyto ratio (72–74).

Together, these data show that that YAP/TAZ can dilute
as the cell increases in size. Remarkably, the nuclear concen-
tration distribution is insensitive to the effect, demonstrating
that cells have developed systems to mitigate the influence
of protein dilution beyond just regulating their size. Such
mechanisms may be crucial in overcoming the emergent
heterogeneity associated with sub/super scaling behaviour
across division cycles and for maintaining robust signalling
throughout the cell cycle.

Materials and Methods

A. Cell Culture. The following human breast cell lines were investi-
gated (novel in this study). T-47D and BT-474 were obtained from
Nicholas Turner (ICR, London), SKBR3 cells were a kind gift from
the laboratory of Olivia Rossanese (ICR), MDA-MB-468 cells were
a kind gift from George Poulogiannis (ICR), MDA-MB-231 were
obtained from Janine Erler (University of Copenhaguen, Denmark)
, LM2 cells (a highly metastatic subpopulation 4175 from MDA-
MB-231, (38)) were obtained from Joan Massagué (Sloan Kettering
Institute, New York), while SUM159 were a kind gift from the
laboratory of Rachel Natrajan (ICR). All the above cancer cell
lines were grown in Roswell Park Memorial Institute (RPMI)-1640
culture medium (Gibco) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) and 1% penicillin/streptomycin. MCF10A
cells were obtained from ATCC and were engineered to express
endogenous mRuby-tagged PCNA (75). They were grown in
DMEM/F12 supplemented with 5% horse serum, 10 µg/ml insulin,
20 ng/ml epidermal growth factor, 100 ng/ml cholera toxin, 500
ng/ml hydrocortisone, and 1% penicillin/streptomycin.

All the cell lines were grown at 37°C and supplemented with 5%
CO2 in humidified incubators. The passage was carried out using
0.25% trypsin-EDTA (GIBCO) followed by centrifugation (1000
rpm, 4 min) and resuspension in a complete medium. Cell counting
was performed using Countess automated cell counter with trypan
blue exclusion (Thermo).

Cells were confirmed to be mycoplasma-negative (e-Myco plus
Mycoplasma PCR Detection Kit, iNtRON Biotechnology).

WMs, a375, and RPEs cells were maintained in standard
culture conditions (DMEM+10% FBS, vessel: Corning® Primaria™
25cm2 Rectangular Canted Neck Cell Culture Flask with Vented
Cap, PN: 353808). Passage was carried out using 0.25% trypsin-
EDTA (GIBCO) followed by centrifugation (1000 rpm, 4 min) and
resuspension in complete medium. Cell counting was performed
using Countess automated cell counter with trypan blue exclusion
(Thermo).

Prior to imaging/ proteomic analysis, cells were plated at day 0
in either 384-well PerkinElmer PhenoPlates (black, optically clear
flat-bottom for imaging) or T175cm flasks for proteome analysis.
For 384 wells the cell densities used per well were: T-47D (1200
cells), BT-474 (2400 cells), SKBR3 (2200 cells), 468 (1000 cells),
231 (800 cells), LM2 (800 cells), MCF10A (400 cells), and for the
proteomics experiments they were scaled according to the surface
area of the vessel used. Following three days of incubation in
the above growth media, cells were either fixed in pre-warmed
4% formaldehyde (ThermoScientific) in PBS for 15 min at room
temperature (image analysis) or collected in a pellet for proteomics
analysis.

B. Immunostaining. After fixation, cells were washed three times in
PBS and then permeabilised in 0.2% Triton X-100/PBS solution
for 15min at RT. Following three washes in PBS, cells were blocked
for 1h in 2% bovine serum albumin (BSA) (Sigma)/PBS solution
at RT. When using both mouse and rat primary antibodies in the
same sample, sequential immunostaining was performed to avoid
any antibody cross-reactions. Typically co-immunostaining with a
mouse, rat and rabbit antibody was used. After the Block step, BSA
was removed and the desired mouse primary antibody was added
in Antibody solution (0.5%BSA/0.01% Triton X-100/PBS) at the
indicated dilutions: YAP (G6) (Santa Cruz, 1:100), YAP/TAZ [67.3]
(Santa Cruz, 1:1000). All the primary antibodies immunostainings
were performed overnight at 4°C. Then cells were washed three times
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in PBS and incubated with a goat anti-mouse antibody 1:1000 in
Antibody solution for 2h at RT. Cells were washed three times in
PBS and incubated with a rat anti-tubulin alpha antibody (Bio
Rad, 1:1000) and an anti-rabbit primary antibody when applied,
for 2 hours at RT. The anti-rabbit primary antibodies were used
at the indicated dilutions: TAZ (V386) (Cell Signalling, 1:200),
Anti-PhosphoRB (Abcam, 1:1000). Then cells were washed three
times in PBS, and incubated for 2h at room temperature with a goat
anti-rat antibody and/or a goat anti-rabbit antibody or Alexa-488
phalloidin (Invitrogen) if needed. Finally, to stain nuclei, 5 mg/ml
Hoescht (Invitrogen)/PBS solution was carried out for 15min at RT.
384-well plates were sealed for imaging with an Opera Cell:Explorer-
automated spinning disk confocal microscope (PerkinElmer) or
Opera Phenix (PerkinElmer) in the magnification indicated in the
figure legends. At least twenty fields at random positions per well
of a 384-well plate were imaged.

For the cell cycle experiments in MCF10A cells, samples were
fixed in freshly prepared 4% PFA/PBS for 15 minutes. Cells were
subsequently permeabilized with 0.25% Triton/PBS for 10 mins and
blocked with 0.5% BSA/0.02% glycine/PBS for 30 minutes. Primary
antibodies CCNA2 (Abcam, ab181591, 1:250) and YAP/TAZ (Santa
Cruz, SC-101199, 1:250) were introduced via the same solution and
left on for 1 hour at room temperature or overnight at 4 degrees.
The plates were washed with PBS and the same was carried out for
the secondary antibodies (Alexa fluor conjugated goat anti-mouse
or anti-rabbit, 1:500) for 1 hour at room temp in PBS. Hoechst
stain was added post-secondary (1:500) to stain DNA. Plates were
imaged as above using the Opera Cell:Explorer with 20X objective
lens (NA = 0.45).

C. Image Acquisition and Feature Extraction. Image acquisition and
cell segmentation was performed using Columbus high-content image
analysis software or Harmony software. Nuclei were segmented using
the Hoechst channel. Cell bodies were segmented using the tubulin
channel. The perinuclear region was used to measure cytoplasmic
antibody intensities. The cell-cell contact area (Neighbour fraction)
was determined using an inbuilt Columbus algorithm ‘Cell Contact
Area with Neighbors [%]’ expressed as the Percent of the object
border that touches a neighbor object. The border objects were
removed from the analysed cells considering only cells completely
imaged. Mitotic cells were filtered using a combination of Hoechst
intensity mean and Hoechst intensity maximum and excluded of
all the analysis of this study. Geometric features measured include:
the area of all subcellular regions; the length, width, and elongation
(length/ width) of the cell and nucleus, cell and nuclear roundness
and nucleus area/cytoplasm area.

D. Scaling Analysis. We conducted k-means clustering on the
integrated Hoescht intensity of each cell line against nuclear area
across k = 1:8. k was calculated using the elbow method and
augmented with the additional constraint that cluster centroids
should be separated by a factor of 2x, where x = 1:k. This way,
the first cluster approximates 2n G1, the second 2n G2/4n G1 and
so on. The YAP/TAZ – size relationship in each DNA-cluster was
treated as a power law such that:

[Y ] = aAb

Where; [Y ] represents YAP/TAZ concentration, ’A’ cell area,
and ’a’ and ’b’ are constants. The scaling factor, ’b’ and ’log(a)’
was extracted by conducting a linear fit on:

log([Y ]) = log(a) + b log(A)
Which results from a simple manipulation. The factor by which

’a’ increases across DNA groups is trivially retrieved by:

log2(an+1) − log2(an) = x, an+1/an = 2x

Examining the logarithmic derivative of [Y ], we noticed that
’b’ was not constant across the entire size range captured in our
populations, although was over an 8-fold size difference about the
mean. To avoid this complicating our analysis, we conducted the
linear fits on the data within three standard deviations of the mean.
Linear fitting, clustering, and data handling were conducted in the
MATLAB R2019b (Mathworks) environment.

E. Calculating Cell Area Distributions. Cell area distributions were
derived from a simple adder system we published in a previous study
(9). Briefly, we considered the probability of a cell advancing to the
next cell cycle stage at any given time, P, and the cell’s growth rate,
β, as proportional to the area at which it divided in the previous
cycle:

P = αAd, β = kAd

Where ’α’ and ’k’ are proportionality constants. From these two
rules, it can be shown that in each cell cycle stage, the cell gains a
random amount of mass drawn from a size-invariant exponential
distribution centred on k/α, R(A), resulting in adder-like behaviour:

R(A) = λe−λA, λ = − ln(1 − αAd)
Adk ln(2)

≈
α

ln(2)k

The division area distribution, H(A), results from the convo-
lution of the birth distribution B(A) with R(A) ’n’ times, where
n is the number of cell cycle stages. Assuming symmetrical cell
division, the subsequent B(A) (in the next cycle), is given as H(2A).
This is then again convolved with R(A), and so on, resulting in a
hypo-exponential distribution of general form:

J(x, n) =
S∑

i=1

[∏
i̸=j

λj

λj + λi

]
λie

−λix

Substituting our values for a one-stage cycle system:

J(A, S) =
n∑

i=1

[∏
i̸=j

1
1 + 2j−i

]
α

2i ln(2)k
e−αA/(2i ln(2)k)

The n-stage distribution is obtained by first substituting λ for
nλ:

G(A, S, n) =
S∑

i=1

[∏
i̸=j

1
1 + 2j−i

]
nα

2i ln(2)k
e−nαA/(2i ln(2)k)

And convolving G(A, S, n) with itself ’n’ times:

J(A, S, n) = F −1

(
n∏

i=1

F (G(A, S, n))

)
Where ’F(c)’ denotes the Fourier transform of ’c’ and ′F ( −1)(c)′

the inverse. Here we have leveraged the convolution theorem
to express the convolution as a multiplication in Fourier space.
For calculation, the initial cell area distributions are considered a
delta function centred on ln(2)k/α (the mean of R(A)). Every
generation, the area distribution is convolved with the mass-
gain distribution, R(A), ’n’ times, computed by performing an
inverse Fourier transform on the product of the two distributions’
respective Fourier transforms. This produces the division area
distribution, Ad(A), which must be transformed to Ad(2A) to
capture the effects of cell division. We perform this by setting
Ab(Ax) = Ad(Ai) + Ad(Ai + 1), where ’i’ = xn-xn-1 for all x,
where Ab denotes the birth size distribution. This is then convolved
with the gain distribution as before to generate the next division
distribution and so on until a desired number of generations has been
reached. For each, we calculated the Kullbeck-Liebler divergence
between the experimental and simulated data to assess model error.
For discrete probability distributions defined on the same probability
space, X, the Kullback–Leibler divergence from P to Q is:

DKL(P ĘQ) =
∑
x∈X

P (x) log10

(
P (x)
Q(x)

)
Model fitting was conducted within the commercial MATLAB

R2019b (Math Works) software’s machine learning toolbox.
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F. Calculating YAP/TAZ Concentration Distributions. We computed
the dilution factor distribution for an initial size condition, con-
strained such that the cell begins the simulation at its ‘expected
size’ within our 2-stage adder proliferation model framework:

Ad =< A >, α = w

Ad
, k = w

4 ln(2)
Where ’w’ is an arbitrary constant. These parameters are used

to compute an initial dilution factor distribution:

P (D) = − ln(1 − αAd)(1 − αAd)(− ln(D)/bk)

Dbk

From which we compute the product distribution (assuming
identical cell cycle stages):

F (z) =
∫ 1

z

P (D)P (z/D) 1
D

dD

F (z) = − ln(z) ln(1 − αAd)2(1 − αAd)− ln(z)/bk

b2k2z

Where we assume that the cell grows approximately equal
amounts in G1 vs G2. We then draw from this distribution,
obtaining a dilution factor ‘d’, by passing a uniformly distributed
random number through the inverse of F (z), defined as:

G(z) =
∫ 1

0
F (z)dz

We multiply the initial YAP concentration by ‘K*d’ to generate
the starting YAP concentration for the next cycle. ‘K’ is taken
from the size-K curve experimentally measured. From this, we also
calculated the size change needed to generate ’d’ as:

∆A = Ad

2b
ln(1/d)

From which we trivially update Ad:

Adn+1 = 1
2

Adn + ∆A

This now facilitates re-calculation of P (D), F (z), etc. for
the next generation, and the cycle is repeated for 10 generations
to generate one sample YAP concentration for the cell line.
The process is repeated 1000 times to generate a YAP/TAZ
concentration distribution for each line, which is compared to the
experimentally determined YAP/TAZ intensity distributions via
the KBL divergence.

G. Calculation of the Coefficient of Variation of F (z). To calculate
the coefficient of variation of F (z), we first derived the mean:

⟨F (z)⟩ =
∫ 1

0
zF (z)dz = ln(1 − αAd)2

(ln(1 − αAd) − bk)2 ≈
(

αAd

αAd + bk

)2

Where we have expanded about α = 0. The variance is given as:

⟨⟨F (z)⟩⟩ =
∫ 1

0
z2F (z)dz − µ2

≈
(

αAd

αAd + 2bk

)2
−
(

αAd

αAd + bk

)4

Where we have made the same simplification. From these, we
obtain the coefficient of variation as:

CV ≈

√(
αAd

αAd+2bk

)2
−
(

αAd
αAd+bk

)4(
αAd

αAd+bk

)2

H. PLSR and Hit Detection. Regression analyses were conducted with
the MATLAB (MathWorks) environment using the plsregress
function from the machine learning toolbox. Partial least squares
regression was selected as the method to help mitigate the influence
of co-linearity in the predictor dataset. Model components were
selected through 10-fold cross-validation using the elbow method
on the mean square error as a function of component number.

For the RNAi screening data, all 114 shape features were
mean-centered prior to model construction. Models were built
from control data and applied to the combined knockdown-control
state. Fit quality was assessed through the r-squared metric.
Linear models (predicted vs observed) were visualized through
the ‘dscatter’ function. Z scores were calculated for the difference
between observed and predicted YAP/TAZ ratios/abundances and
the increase/decrease from the mean YAP/TAZ ratio/abundances.
Knockdown ‘Hits’, those which decoupled, were selected from this
analysis as knockdown states achieving an average Z − score > 2
(two standard deviations from the mean).

For the proteomic analysis, phosphopeptide abundances were
adjusted to reflect ‘excess’ phosphorylation given the total expression
of the peptide. To do this, a regression model was constructed for
each gene relating phosphopeptide and peptide abundance. The ad-
justed phosphopeptide abundance was taken as the phosphopeptides’
deviation from this regression model.

I. Feature Importance to PLSR Models. The influence a feature has on
a model was estimated through ‘Variable importance to projection’
(VIP) scores calculated as:

V IPj =

√∑F

f=1 w2
jf

· SSYf · J

SSYtotal · F

Where wjf is the weight value for the j variable and f component,
SSYf is the sum of squares of explained variance for the fth
component, J number of X variables, and SSYtotal is the total
sum of squares explained of the dependent variable, and F is the
total number of components. Features with a VIP score greater
than 1 were taken as major drivers of the models.

J. Linear Classifier. For the cell cycle experiments in MCF10A cells
(engineered to express endogenous mRuby-tagged PCNA) we used
a manually trained linear classifier. Cell cycle classification was
performed using Columbus (PerkinElmer). We used a combination
of thresholding and linear classifiers based on nuclear morphology
and DNA, CCNA2, and PCNA intensity and texture features.
Classification was performed sequentially by manual annotation to
divide and further subdivide cell cycle stages. First, nuclei and cell
bodies were segmented using the DNA and YAP/TAZ channels and
cells touching the border were removed. Then mitotic nuclei were
distinguished from interphase nuclei based primarily on DNA, PCNA
and morphology features using a manually trained linear classifier
(most relevant features: nucleus DNA texture Bright/Edge/Ridge,
PCNA intensity, nucleus area/roundness/width, nucleus DNA
intensity). Interphase nuclei were thresholded based on mean
nuclear PCNA intensity, with PCNA- nuclei classed as G0. PCNA+
nuclei were divided into CCNA2+ and CCNA2- subpopulations
based on mean nuclear CCNA2 intensity and PCNA+/CCNA2-
cells were classed as G1. PCNA+/CCNA2+ cells with low mean
CCNA2 intensity (first quartile) were classed as Early S-phase.
The remaining cells were finally divided into S and G2 classes
using a manually trained linear classifier. During S-phase, PCNA
goes from being uniformly distributed in the nucleus to having
a progressively more punctate or spotty appearance as DNA
replication proceeds. The PCNA texture linear classifier was
manually trained on PCNA+/CCNA2high cells (most relevant
features: PCNA texture Edge/Saddle/Ridge/Haralick Homogene-
ity/CV, mean nuclear CCNA2 intensity, mean perinuclear ring
region CCNA2 intensity). “Spotty” nuclei classed as S-phase and
“smooth” nuclei classed as G2. YAP/TAZ intensity features were
not included in the spotty/smooth linear classifier. Integrated
DNA intensity (i.e. total amount of DNA) was not included in the
spotty/smooth linear classifier but was used post-hoc to verify S
versus G2 classification.
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K. Cell preparation and proteomics analysis of the Breast cell lines.
Cells were plated at day 0 as stated above and collected 72h
later by trypsinization. After resuspension in growth media and
centrifugation, media was removed and 1mL of cold PBS was added.
Then one million of viable cells per cell line (by duplicate) was
transferred to low binding tubes and washed 2 x with cold PBS
to a final pellet that was flash frozen with 70% ethanol and dry
ice. Cell pellets were lysed in 1% sodium deoxycholate (SDC),
100 mM triethylammonium bicarbonate (TEAB), 10% isopropanol,
50 mM NaCl buffer freshly supplemented with Halt protease and
phosphatase inhibitor cocktail (100X) (Thermo, 78442), 5 mM tris-
2-carboxyethyl phosphine (TCEP), 10 mM iodoacetamide (IAA)
and Universal Nuclease (Pierce) followed by bath sonication for
5 min and incubation at room temperature for 45 min. Protein
concentration was measured with the Quick Start Bradford protein
assay. Aliquots of 60 g of total protein were digested overnight with
trypsin (Pierce, ratio 1:20) and labelled with the TMTpro multiplex
reagents (Thermo) according to manufacturer’s instructions. The
peptide mixture was fractionated with high pH Reversed-Phase
(RP) chromatography using the XBridge C18 column (2.1 x 150
mm, 3.5 m, Waters) on an UltiMate 3000 HPLC system over a 1%
gradient in 35 min. Mobile phase A was 0.1% (v/v) ammonium
hydroxide and mobile phase B was 0.1% ammonium hydroxide
(v/v) in acetonitrile. Phosphopeptide enrichment was performed
with the High-Select™ Fe-NTA Phosphopeptide Enrichment Kit
(Thermo) using a modified protocol in a well plate array format.
A volume of 50 L resin/buffer was transferred on top of 10 L
filter tips that were fitted on a 96-well plate using a suitable tip
rack. The resin was washed three times with 40 L wash/binding
solution and centrifugation at 500 g for 1 min. Peptides were
reconstituted in 30 L wash/binding solution and were loaded onto
the tip-columns with the resin. After 30 min, the flow-through (FT)
from three washes with wash/binding solution were collected in a
clean 96-well plate with centrifugation at 500 g for 1 min each time.
Phosphopeptides were eluted twice with 40 L elution buffer in a clean
96-well plate with centrifugation at 500 g for 1 min, transferred in
glass vials (Waters, P/N 186005669CV) and SpeedVac dried. Both
the flow-through solutions and IMAC eluents were subjected to
LC-MS analysis for bulk proteome and phosphoproteome analysis
respectively. LC-MS analysis was performed on an UltiMate 3000
system coupled with the Orbitrap Fusion Lumos Mass Spectrometer
(Thermo) using an Acclaim PepMap, 75m x 50cm C18 capillary
column over a 95 min (FT) or 65 min (IMAC elution) gradient. MS
spectra were collected with mass resolution of 120k and precursors
were targeted for HCD fragmentation in the top speed mode with
collision energy 36% and IT 54 ms (FT) or 100 ms (IMAC elution)
at 30k Orbitrap resolution. Targeted precursors were dynamically
excluded from further activation for 45 or 30 seconds. The Sequest
HT engine in Proteome Discoverer 2.4 (Thermo) was used to
search the raw mass spectra against reviewed UniProt human
proteins. The precursor mass tolerance was set at 20 ppm and the
fragment ion mass tolerance was 0.02 Da. TMTpro at N-terminus/K
and Carbamidomethyl at C were defined as static modifications.
Dynamic modifications were oxidation of M and deamidation of
N/Q as well as phosphorylation of S/T/Y for the phosphoproteome
analysis. Peptide confidence was estimated with the Percolator node
and peptide FDR was set at 0.01. Only unique peptides were used
for quantification, considering protein groups for peptide uniqueness.
Peptides with average reporter signal-to-noise greater than 3 were
used for protein quantification.

L. Gene Set Enrichment Analysis:. GSEA was conducted using
the ‘WebGestalt’ web application on our ranked list of peptides
(VIP-Score defined the rank) (76). We used the ‘pathway’ and
‘noRedundent Biological process’ enrichment categories to identify
enriched themes/pathways in the high and low scoring peptides.
Parameters used: Minimum IDs per category =5, max = 10000,
permutations = 1000. Enrichments with a false discovery rate <
0.05 were taken as ‘hit’ themes and/or pathways.

M. Drug treatments:. 231 and LM2 were plated in 384 wells and
treated with 10uM of Binimetinib or DMSO. 24h after cells were
fixed in pre-warmed 4% formaldehyde (ThermoScientific) in PBS
for 15 min at room temperature. For the Palbociclib experiments

in LM2, the drug was used at 0.5 uM for 24h hours prior to
formaldehyde fixation, immunofluorescence, and image analysis.

For the experiments in melanoma cells and RPEs 0.33uM
Palbociclib and 0.25uM Binimetinib were added to the cell cultures
and incubated for a duration of 72 hours. Following the treatment,
the cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes at
room temperature. Primary antibody staining was performed using
a dilution of 1:1000 for YAP/TAZ and 1:1000 for pRB. Secondary
antibody staining was conducted using a dilution of 1:500. All
antibody stains were incubated overnight at 4 degrees Celsius.

N. Data Availability. Image datasets for the cell lines used
for morphological profiling are available from: DRYAD:
http://dx.doi.org/10.5061/dryad.tc5g4.

Image Data Repository (http://idr-
demo.openmicroscopy.org/about, accession number S-BSMS6)

Biostudies database (https://www.ebi.ac.uk/biostudies/studies/S-
BSMS6).
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Supplemental Information

A guide to the datasets used in this study:

• YAP/TAZ concentration decreases with increasing cell
size: Sero et al, mol sys bio, 2015

• YAP/TAZ abundance, concentration, and N/C ratio
scaling are insensitive to cell crowding: Sero et al, mol
sys bio, 2015

• YAP/TAZ concentration, but not scaling, is sensitive to
DNA-content and cell cycle progression: Sero et al, mol
sys bio, 2015 / Sero novel to this study

• A constant nuclear concentration of YAP/TAZ is main-
tained across cell sizes despite whole cell dilution: Sero
et al, mol sys bio, 2015

• the nuclear YAP/TAZ concentration is associated with
altered RAS and nuclear transport signalling processes:
M.Arias-Garcia, M.Beykou, novel to this study

• YAP/TAZ dilution behavior is conserved across melanoma
and RPE cells: L.Dent, T. Pal Chaudhuri, novel to this
study

• 231/LM2 after the MEKi and LM2 after the CDK4/6
inhibitor. M.Arias-Garcia, novel to this study

• Integration of YAP/TAZ size-scaling and stochastic cell
division fosters YAP/TAZ heterogeneity: Sero et al, mol
sys bio, 2015

• YAP/TAZ scaling behavior drives increasing nu-
clear/cytoplasmic ratios following gene depletion:
P.Pascual-Vargas, Scientific data, 2017

A. YAP/TAZ abundance, concentration and N/C ratio scaling
are insensitive to cell crowding. Cell size and YAP/TAZ
activation have previously been associated with cell crowding,
cell-cell adhesion, and contact inhibition (34). In our cell
lines, cell area negatively correlated with neighbour fraction
(NF), raising the possibility that the observed YAP/TAZ sub-
scaling was driven by the NF (Supp.Fig.3). To investigate
this, we first quantified the extent to which YAP/TAZ scaled
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with NF, noticing a strong positive association at high NF’s
(0.4 -1), in accordance with the area correlation. However,
when clustering the cells on NF, and conducting a scaling
analysis between YAP/TAZ concentration and cell area within
each NF group, we observed no change in the YAP/TAZ
concentration per size or ‘b’ across clusters (Supp.Fig.3). We
conducted the same analysis for YAP/TAZ abundance and
nuclear/cytoplasmic ratio, noting the same effect, with the
exception that MCF10A’s YAP/TAZ N/C ratio exhibited a NF
sensitivity (Supp.Fig.3) as is consistent with previous works
(22). From these data, we concluded it is the NF’s influence
on cell area that is driving the NF-YAP scaling relationship
rather than any direct effect of NF on YAP/TAZ in these
lines.

B. YAP/TAZ scaling behavior is consistent with a dilution-syn-
thesis-dilution scheme. Theoretically, we assume a two-stage
system. Through stage 1 ( G1), the cell area increases by a
factor of x, and in the subsequent stage ( G2), by a factor 2/x
(such that the cell doubles in size across a cell cycle). The
expected dilution factor, FG1, of YAP/TAZ through S1 as:

YAPstart = aA(0)bS1 , YAPS1 = aA(tS1)bS1 = a(A0ektS1 )bG1

FG1 = YAPS1

YAPstart
=
(

aA0

aA0ektS1

)bS1
= 1

ebS1ktS1

Although a suitable value of k, between stage synthesis, can
mitigate any value of scaling factor, the DSD system does not
behave identically for any valid parameter combination. This
can be seen by integrating the DSD model with a simple adder
system (9). Within this framework, the cell is considered to
have a probability to advance cell cycle stage proportional to
its division size:

P = αAdiv

Leading to a cumulative distribution function for the prolifer-
ation time distribution given as:

ft(Adiv, t) = 1 − (1 − αAdiv)t

Expressing the proliferation time distribution in terms of the
dilution factor D:

P (D ≤ d) = P
( 1

ebk
≤ d
)

= P
(− ln D

bk
≤ t
)

= 1 − ft

(− ln D

bk

)
= (1 − αAd)

− ln D
bk

P (D) = d

dD
(1 − αAd)

− ln D
bk = − ln (1 − αAd) (1 − αAd)

− ln D
bk

Dbk

We obtain the probability distribution of dilution factors.
As two dilution events happen in sequence, we are interested
in the product distribution of P (D) and a second dilution
event governed by a distribution G(D) given as:

F (z) =
∫ 1

z

P (D)G
(

z

D

) 1
D

dD, s.t. D > z

C. YAP/TAZ scaling rate is a function of cell size. While we
observed clear sub-scaling behavior when investigating the
average scaling factor of YAP/TAZ with cell size, we were
interested in how this extended to the case where the scaling
factor b is treated as a continuous function of cell size, b(A).
We extracted b(A) by taking the logarithmic derivative of
YAP/TAZ concentration with respect to the cell area:

b(A) = d log2([Y AP/T AZ])
d log2(A)

Strikingly, no cell line exhibited a constant scaling factor.
Scaling factors (b) tended to be lower in small cells and
steadily decreased with increasing cell size (within a cell line);
however, in several lines, this relationship would reverse at
larger sizes, with further increases in area leading to weaker
sub-scaling. This extended to both the G1 and G2 populations.
Remarkably, in a subset of our lines (e.g., HCC1954, MDA-MB-
231), YAP/TAZ concentration even positively scaled with cell
size at small sizes. Although, this effect was limited to G1 cells
(Supp. Fig. 10) implying the existence of an area-dependent
scaling trigger.

To understand how significant size-variable scaling is to
the functioning of the cell, we calculated the range of scaling
factors that occur over the most common size ”bands,” which
we define here as the mean G1/G2 sizes +/- 1 std deviation.
Calculating this for the G1 cells, we observed that 5/9 of our
cell lines exhibited only a modest variation in the scaling factor
within this size constraint (stddev = 0.03-0.08). However, the
remainder showed far more extreme variations (stddev = 0.14-
0.17) leading to an approximate 2-fold change in scaling factor
b across the size range (Supp. Fig. 10). The mean scaling rate
was approximately constant across cell lines (-0.4 - -0.5). In
the G2 group, the variation in scaling rate increased (std =
0.10-0.18) for all lines, and the mean scaling rate significantly
decreased for only a subset (Supp. Fig. 10). Thus, the
YAP/TAZ scaling factor varies within relevant size ranges and
should not be considered a constant.

We also investigated how the fold difference in YAP/TAZ
concentration between ’G1’ and ’G2’ cells, K, varied with
cell size. In most (7/9) of our cell lines, K was found to
decrease with increasing cell size; at small sizes (mean size –
2std deviations) taking values between 1.3-1.6, and at larger
sizes (mean size + 2std deviations), 1-1.3 (Supp. Fig. 10).

Together, these data show that the scaling of YAP/TAZ
with cell size is not static but changes dynamically with cell size
within relevant size ranges in both G1 and G2 cells. This size-
dependence extended to the fold-change across DNA-contents,
K, suggesting that the size at which a cell passes the G1/S
checkpoint informs the scaling and production of YAP/TAZ
across subsequent cell cycle stages and potentially, generations.

D. An increased nuclear YAP/TAZ concentration correlates
with a reduction in the YAP/TAZ scaling factor. We noticed
that lines exhibiting super-scaling behavior in their nuclear
YAP/TAZ concentrations at small cell sizes were those with
the most variable scaling factors. To investigate this, we began
by assuming a linear relationship between the scaling factor b
and the logarithm of the nuclear YAP/TAZ concentration:

b(A) = d log2([Y ])
d log2(A) = µ log2([Y ]N ) + c
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Where µ and c are constants to be determined through fitting
to the experimentally determined b(A) and Yn. As b(A) and
Yn vary with size only at very small sizes, when fitting to
this equation, we considered only cells meeting the criterion
Ac < ⟨A⟩ − σ, where ⟨A⟩ is the mean cell area and σ is the
standard deviation. This avoided the greater density of points
at a constant b and Yn from skewing the calculation. We used
equ.S9 to calculate the expected scaling rate at each cell area
and found excellent agreement with that measured (Supp. Fig.
12). Importantly, while an increase in nuclear YAP/TAZ leads
to a decrease in scaling factor, a decrease in YAP/TAZ leads
to an increase in scaling factor (see SUM149 and MDAMB157
Supp. Fig. 12). This suggests that the effect is not driven
by a correlate of YAP/TAZ import but by a correlate of the
nuclear concentration itself.

This effect did not extend across lines; higher nuclear
YAP/TAZ concentrations did not lead to lower scaling factors.
Instead, scaling factors were more associated with higher
YAP/TAZ ratios. The direction of causality is unclear, but it
is plausible that higher scaling factors induce greater ratios by
virtue of reducing the cytoplasmic YAP/TAZ concentration
(Supp. Fig. 12).

Together, this suggests that the correlation between the
nuclear YAP/TAZ concentration and scaling factor may
emerge from a co-dependence on an unseen cryptic variable
rather than any direct effect of the nuclear YAP/TAZ
concentration. Indeed, as Palbociclib treatment increases
nuclear YAP/TAZ whilst delaying whole cell dilution to larger
sizes, it is likely that the correlation between the nuclear
YAP/TAZ concentration and the scaling factor emerges from
nuclear translocation occurring before division commitment
and that same commitment triggering whole-cell dilution.
However, we cannot yet exclude the possibility of a negative
feedback mechanism.
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S.Figure 1: Deconvolved YAP and TAZ size-scaling A) Log-log plots relating YAP (blue) and Actin (red) abundance to single-cell area. Assuming a power-law relationship
between protein concentration and cell size, the gradient represents the power to which concentration scales with area and the y-intercept determines the maximum
concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin. B) Log-log plots relating TAZ (blue) and Actin (red) abundance to
single-cell area. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with area and
the y-intercept determines the maximum concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin.
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S.Figure 2: YAP/TAZ and actin abundance-size scaling. A) Log-log plots relating YAP/TAZ (blue) and Actin (red) abundance to single-cell area. Assuming a power-law
relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with area and the y-intercept determines the maximum
concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin.
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S.Figure 3: The effect of neighbour fraction on YAP/TAZ scaling A) Log-log plots relating single cell neighbour fraction and cell area. Colour is proportional to the mean YAP
intensity ( concentration). Area and NF negatively correlate at high (close to 1) neighbour fractions. B) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to
single-cell neighbour fraction. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales
with NF and the y-intercept determines the initial concentration at NF = 0. The shaded area denotes one standard deviation of the cell size distribution about that size bin.
C) Log-log plots relating YAP/TAZ concentration and single cell area across lines and each NF bin (as determined by kmeans clustering on the neighbour fraction). Blue
represents the lowest NF, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell size distribution about that size bin. D/E) As in ‘C’
but relating to YAP abundance (D) or N/C ratio (E).
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S.Figure 4: DNA sensitivity of YAP/TAZ abundance-size scaling A) Log-log plots relating YAP/TAZ abundance and single cell area across lines and each DNA content bin (as
determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the lowest DNA content, then red, green and yellow, the most. The
shaded area denotes one standard deviation of the cell size distribution about that size bin.
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S.Figure 5: A) Log-log plots relating Actin abundance and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated
Hoechst intensity and nuclear area). Blue represents the lowest DNA content, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell
size distribution about that size bin.
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S.Figure 6: YAP/TAZ scaling is independent of cell cycle phase A) Log-log plots relating single cell area and YAP/TAZ concentration across cell cycle stages. Stages are
defined by a linear classifier trained on PCNA and CCNA1 intensity data. Colour is proportional to the density of the data. The red line is a linear fit of the data. B) Scaling
parameters for each cell cycle stage; log(a) is the y-intercept and ‘b’ is the gradient. C) Mean YAP/TAZ concentration across cell cycle stages where cells are ‘binned’ by size
(indicted by colour).
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S.Figure 7: YAP/TAZ scaling rate is a function of cell size: A) The relationship between Log(cell area) and the logarithmic derivative of YAP concentration with respect to area.
The blue line represents G1 cells, whilst the red represents G2 cells. G1 and G2 groups were determined through kmeans clustering on the integrated Hoechst intensity.
Shaded regions represent one standard deviation of all values within the local size ‘bin’. B) Average scaling factors within one standard deviation of the G1 area distribution
mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. Cell lines marked with an asterisk are those that showed the highest
variance in scaling factor within a ‘typical’ size range, in each case, these cell lines show a larger than average scaling factor at small sizes. C) Average scaling factors within
one standard deviation of the G2 area distribution mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. D) The fold-change
between G2 and G1 YAP/TAZ as a function of cell size. The shaded region represents one standard deviation from the mean.
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S.Figure 8: YAP/TAZ intensity distribution variance and the scaling factor. The relationship between the coefficient of variation of the YAP/TAZ intensity distributions and the
average scaling factor across G1 and G2 populations.
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S.Figure 9: Nuclear translocation of YAP/TAZ correlates with a reduction in YAP/TAZ scaling factor. A) Relationship between total YAP/TAZ scaling factor, ‘b’, and cell area (blue)
in the G1 cell population (as determined by kmeans clustering on the integrated Hoechst intensity). Cell lines shown are those which exhibited the greatest area sensitivity
in their scaling factors. The error margin corresponds to 1 standard deviation in that size bin. The red line is an estimate of ‘b’ assuming a linear relationship between ‘b’
and log(Yn), where Yn is the nuclear YAP/TAZ concentration. B) YAP/TAZ nuc/cyto ratio against the average cytoplasmic YAP/TAZ scaling factor. A significant difference
in population scaling factor means was detected across either side of the mean YAP/TAZ ratio (T-Test, n = 4, 5, P ¡0.0001, each mean calculated from 2000 – 5000 cells
depending on cell line). C) Nuclear YAP/TAZ concentration against the average cytoplasmic YAP/TAZ scaling factor. No clear relationship was observed across cell lines.
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S.Figure 10: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal
intensity features in control cells (R = 0.88). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function
of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ¿ 1 is
considered high and the corresponding feature, important in the prediction; 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows
the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in ‘A’ to the prediction of YAP/TAZ concentration in the knockdown states (R
= 0.48). The colour represents the density of the data and the red line traces y = x. H) Application of the model in ‘D’ to the prediction of YAP/TAZ ratio in the knockdown states
(R = 0.40). The colour represents the density of the data and the red line traces y = x.
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S.Figure 11: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal
intensity features in control cells (R = 0.88). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function
of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ¿ 1 is
considered high and the corresponding feature, important in the prediction; 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows
the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in ‘A’ to the prediction of YAP/TAZ concentration in the knockdown states (R
= 0.48). The colour represents the density of the data and the red line traces y = x. H) Application of the model in ‘D’ to the prediction of YAP/TAZ ratio in the knockdown states
(R = 0.40). The colour represents the density of the data and the red line traces y = x.
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Table 3. Actin Concentration Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial Actin concentration and b is the power to which
Actin concentration scales with cell area.

DNA bin K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 -3.3179 0.0687 -3.2756 0.0641 -3.4727 0.0805 -3.4144 0.0737
2 0 0 -2.9920 0.0443 -2.7778 0.0216 -2.7935 0.0242
3 0 0 0 0 -3.1767 0.0597 -2.8385 0.0252
4 0 0 0 0 0 0 -3.3132 0.0714

SUM149 1 -0.9714 -0.1097 -0.9001 -0.1191 -0.9215 -0.1148 -0.8821 -0.1215
2 0 0 -0.2076 -0.1721 -0.5756 -0.1302 -0.2379 -0.1701
3 0 0 0 0 1.0844 0.6098 -1.0573 -0.0913
4 0 0 0 0 0 0 1.0411 0.6147

MDM MB231 1 -2.2489 -0.0540 -2.2831 -0.0530 -2.2669 -0.0549 -2.2688 -0.0548
2 0 0 -1.5399 -0.1158 -1.8311 -0.0886 -1.7991 -0.0917
3 0 0 0 0 -1.7875 -0.0975 -1.6739 -0.1078
4 0 0 0 0 0 0 -3.8237 0.0631

MDA MB157 1 -2.0089 -0.0793 -1.8068 -0.0989 -1.8722 -0.0991 -1.8623 -0.1003
2 0 0 -0.1318 -0.2102 -0.4986 -0.1980 -0.3186 -0.2154
3 0 0 0 0 -0.1666 -0.2061 -0.6992 -0.1698
4 0 0 0 0 0 0 0.1456 -0.2286

MCF10A 1 -2.9218 0.0418 -2.8995 0.0397 -3.0518 0.0543 -3.0728 0.0558
2 0 0 -3.3217 0.0782 -2.8176 0.0319 -2.7912 0.0300
3 0 0 0 0 -3.2700 0.0738 -3.2384 0.0717
4 0 0 0 0 0 0 -7.8482 0.4530

MCF7 1 -3.3127 0.0383 -3.3151 0.0390 -3.3169 0.0392 -3.3723 0.0450
2 0 0 -3.4741 0.0520 -3.4073 0.0461 -3.2827 0.0339
3 0 0 0 0 -4.5712 0.1516 -3.3871 0.0446
4 0 0 0 0 0 0 -4.9569 0.1848

JIMT1 1 -2.0891 -0.0646 -2.0323 -0.0687 -2.0284 -0.0690 -1.9776 -0.0690
2 0 0 -3.5197 0.0557 -3.4107 0.0467 -2.9770 0.0122
3 0 0 0 0 -5.5725 0.2204 -3.5962 0.0617
4 0 0 0 0 0 0 -5.3968 0.2053

hs578T 1 -1.7803 -0.1039 -1.7005 -0.1136 -1.7038 -0.1134 -1.6932 -0.1149
2 0 0 -0.6294 -0.1903 -0.5262 -0.1996 -0.5156 -0.2057
3 0 0 0 0 -1.4700 -0.1092 -0.6504 -0.1871
4 0 0 0 0 0 0 -1.1401 -0.1339

HCC1954 1 -2.0209 -0.0155 -2.2562 0.0079 -2.2716 0.0093 -2.2354 0.0064
2 0 0 -1.9495 -0.0249 -1.8453 -0.0326 -2.5514 0.0337
3 0 0 0 0 -4.0674 0.1412 -2.0490 -0.0183
4 0 0 0 0 0 0 -4.1502 0.1473
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Table 4. YAP/TAZ Concentration Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used
in kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ concentration and b is the power to
which YAP/TAZ concentration scales with cell area.

DNA bin K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 0.5262 -0.3407 0.8357 -0.3736 0.7975 -0.3786 0.8452 -0.3840
2 0 0 2.9510 -0.5278 1.8227 -0.4566 1.8826 -0.4631
3 0 0 0 0 3.0933 -0.5390 3.1395 -0.5505
4 0 0 0 0 0 0 3.1135 -0.5360

SUM149 1 -0.1526 -0.3459 0.1584 -0.3817 0.1982 -0.3868 0.1983 -0.3868
2 0 0 0.7172 -0.4077 1.0614 -0.4432 1.1188 -0.4490
3 0 0 0 0 1.2846 -0.4076 1.7730 -0.4523
4 0 0 0 0 0 0 45.6573 -3.6959

MDM MB231 1 1.3997 -0.4333 1.9765 -0.4994 2.0367 -0.5074 2.0521 -0.5093
2 0 0 2.3003 -0.4980 3.0583 -0.5729 3.1612 -0.5831
3 0 0 0 0 2.1716 -0.4440 2.8563 -0.5097
4 0 0 0 0 0 0 4.9784 -0.5895

MDA MB157 1 0.9423 -0.4199 1.3804 -0.4621 1.2999 -0.4673 1.3195 -0.4697
2 0 0 3.8252 -0.6085 3.7629 -0.6407 4.0220 -0.6665
3 0 0 0 0 4.3659 -0.6457 4.0844 -0.6426
4 0 0 0 0 0 0 4.5864 -0.6578

MCF10A 1 1.6437 -0.4253 1.5918 -0.4234 1.3702 -0.4065 1.3040 -0.4004
2 0 0 2.9101 -0.5091 1.9159 -0.4493 1.9286 -0.4507
3 0 0 0 0 2.8531 -0.5036 2.9763 -0.5163
4 0 0 0 0 0 0 -2.1396 -0.0434

MCF7 1 -0.3921 -0.3218 -0.1148 -0.3548 -0.1139 -0.3555 -0.1103 -0.3570
2 0 0 0.7019 -0.4104 0.8025 -0.4229 0.8121 -0.4294
3 0 0 0 0 1.4729 -0.4475 1.0325 -0.4406
4 0 0 0 0 0 0 1.5877 -0.4555

JIMT1 1 1.2772 -0.4002 1.9080 -0.4663 2.3463 -0.5182 2.3612 -0.5201
2 0 0 3.4679 -0.5685 2.9729 -0.5514 2.9728 -0.5520
3 0 0 0 0 3.5474 -0.5726 3.8726 -0.6028
4 0 0 0 0 0 0 2.6220 -0.4405

hs578T 1 1.0447 -0.3858 1.4946 -0.4327 1.5253 -0.4357 1.5123 -0.4376
2 0 0 2.9914 -0.5216 3.2113 -0.5420 3.4200 -0.5822
3 0 0 0 0 4.4841 -0.5914 3.1357 -0.5330
4 0 0 0 0 0 0 4.4841 -0.5914

HCC1954 1 1.6923 -0.3397 2.2352 -0.3970 2.3170 -0.4061 2.1364 -0.3907
2 0 0 2.7372 -0.4109 3.5686 -0.4888 4.3223 -0.5697
3 0 0 0 0 2.9610 -0.3894 3.2340 -0.4526
4 0 0 0 0 0 0 2.8783 -0.3839
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Table 5. YAPTAZ Abundance Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ abundance and b is the power to which
YAP/TAZ abundance scales with cell area.

DNA bin K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 0.4277 0.6686 0.7347 0.6361 0.6903 0.6323 0.7322 0.6276
2 0 0 2.1366 0.5428 1.5646 0.5671 1.6178 0.5612
3 0 0 0 0 2.1900 0.5392 2.4472 0.5098
4 0 0 0 0 0 0 1.9505 0.5645

SUM149 1 -0.4643 0.6847 0.0267 0.6314 0.0821 0.6248 0.0825 0.6248
2 0 0 0.0597 0.6538 0.8467 0.5770 0.8475 0.5767
3 0 0 0 0 1.0844 0.6098 1.4860 0.5738
4 0 0 0 0 0 0 2.6006 -0.6672

MDM MB231 1 1.0130 0.6044 1.9090 0.5073 1.9331 0.5046 1.9596 0.4975
2 0 0 1.6388 0.5645 1.8648 0.5429 3.1963 0.4086
3 0 0 0 0 3.3455 0.5263 2.2313 0.5101
4 0 0 0 0 0 0 1.9114 0.5850

MDA MB157 1 0.6812 0.6033 1.1719 0.5567 1.2103 0.5410 1.2320 0.5387
2 0 0 3.4952 0.4183 3.4677 0.3848 3.5225 0.3788
3 0 0 0 0 3.9458 0.3882 4.1585 0.3580
4 0 0 0 0 0 0 4.2793 0.3727

MCF10A 1 1.6390 0.5751 1.6480 0.5714 1.6498 0.5713 1.6498 0.5713
2 0 0 2.8037 0.5003 2.7770 0.5003 2.7878 0.4994
3 0 0 0 0 2.1516 0.5918 4.5335 0.3911
4 0 0 0 0 0 0 -6.0728 1.2847

MCF7 1 -0.3816 0.6771 -0.1306 0.6468 -0.1328 0.6465 -0.1416 0.6462
2 0 0 0.6360 0.5959 0.7930 0.5780 0.7511 0.5766
3 0 0 0 0 0.9703 0.5988 1.0212 0.5604
4 0 0 0 0 0 0 1.0781 0.5912

JIMT1 1 1.1222 0.6145 1.8581 0.5386 2.2526 0.4911 2.2744 0.4886
2 0 0 2.8276 0.4879 2.8270 0.4622 2.8235 0.4619
3 0 0 0 0 2.7701 0.4955 3.3382 0.4442
4 0 0 0 0 0 0 2.2030 0.5939

hs578T 1 0.7421 0.6410 1.3691 0.5786 1.4070 0.5749 1.4215 0.5706
2 0 0 2.4033 0.5281 2.7356 0.4983 2.7658 0.4733
3 0 0 0 0 4.2205 0.4298 2.6690 0.5064
4 0 0 0 0 0 0 4.2205 0.4298

HCC1954 1 1.4279 0.6852 2.2160 0.6048 2.2937 0.5961 2.1937 0.6037
2 0 0 2.2640 0.6311 3.0687 0.5562 3.8376 0.4750
3 0 0 0 0 2.0141 0.6893 2.8693 0.5797
4 0 0 0 0 0 0 1.9641 0.6916
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Table 6. Actin Abundance Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial Actin abundance and b is the power to which Actin
abundance scales with cell area.

DNA bins K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 -3.2001 1.0575 -3.1339 1.0505 -3.3154 1.0644 -3.2744 1.0600
2 0 0 -2.8217 1.0296 -2.6167 1.0068 -2.6193 1.0069
3 0 0 0 0 -2.9513 1.0401 -3.0228 1.0458
4 0 0 0 0 0 0 -2.7112 1.0198

SUM149 1 -1.0025 0.8933 -0.9226 0.8853 -0.8855 0.8794 -0.8963 0.8799
2 0 0 -0.5366 0.8665 -0.4454 0.8500 -0.2041 0.8267
3 0 0 0 0 1.0844 0.6098 -1.0362 0.9068
4 0 0 0 0 0 0 2.6006 -0.6672

MDM MB231 1 -2.1327 0.9346 -2.1865 0.9374 -2.1787 0.9363 -2.1893 0.9373
2 0 0 -1.5026 0.8807 -1.6141 0.8906 -1.6281 0.8920
3 0 0 0 0 -1.8453 0.9076 -1.6817 0.8933
4 0 0 0 0 0 0 -4.4738 1.0964

MDA MB157 1 -2.0519 0.9245 -1.8712 0.9069 -1.9028 0.9037 -1.8963 0.9030
2 0 0 -0.2542 0.7998 -0.6160 0.8121 -0.6463 0.8144
3 0 0 0 0 -0.2739 0.8025 0.0133 0.7799
4 0 0 0 0 0 0 -2.8673 1.0039

MCF10A 1 -2.8750 1.0375 -2.8209 1.0325 -2.8200 1.0324 -2.9063 1.0402
2 0 0 -3.2331 1.0704 -3.2336 1.0709 -2.7583 1.0270
3 0 0 0 0 -3.7696 1.1020 -3.2170 1.0698
4 0 0 0 0 0 0 -3.8844 1.1070

MCF7 1 -3.2678 1.0338 -3.2629 1.0337 -3.2604 1.0334 -3.2881 1.0363
2 0 0 -3.4257 1.0474 -3.3604 1.0416 -3.2727 1.0329
3 0 0 0 0 -4.0509 1.1038 -3.3499 1.0411
4 0 0 0 0 0 0 -4.2011 1.1156

JIMT1 1 -2.1892 0.9449 -2.0989 0.9377 -2.0804 0.9360 -2.0125 0.9346
2 0 0 -3.5629 1.0595 -3.4767 1.0526 -3.0369 1.0178
3 0 0 0 0 -4.8783 1.1628 -3.6001 1.0622
4 0 0 0 0 0 0 -5.0995 1.1809

hs578T 1 -1.8602 0.9031 -1.6944 0.8859 -1.6927 0.8856 -1.6958 0.8858
2 0 0 -1.0074 0.8417 -0.8065 0.8242 -0.7820 0.8221
3 0 0 0 0 -1.7049 0.9097 -1.6399 0.9033
4 0 0 0 0 0 0 -7.0092 1.3349

HCC1954 1 -1.8894 0.9720 -1.9892 0.9821 -2.0062 0.9836 -1.9986 0.9832
2 0 0 -1.9533 0.9755 -1.8147 0.9646 -1.9456 0.9784
3 0 0 0 0 -3.5068 1.0947 -2.2007 0.9946
4 0 0 0 0 0 0 -3.5954 1.1008
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Table 7. YAP/TAZ Ratio Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ ratio and b is the power to which YAP/TAZ
ratio scales with cell area.

DNA bins K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 -3.7184 0.3538 -3.7698 0.3593 -3.9382 0.3771 -3.9423 0.3776
2 0 0 -4.0243 0.3765 -3.7953 0.3609 -3.8076 0.3623
3 0 0 0 0 -4.0252 0.3760 -3.8289 0.3634
4 0 0 0 0 0 0 -3.9161 0.3666

SUM149 1 -4.5111 0.4383 -4.7306 0.4606 -4.7200 0.4595 -4.7100 0.4588
2 0 0 -4.2107 0.4077 -4.2781 0.4142 -4.4984 0.4349
3 0 0 0 0 1.0844 0.6098 -4.4554 0.4250
4 0 0 0 0 0 0 2.6006 -0.6672

MDM MB231 1 -4.4381 0.4709 -4.9459 0.5227 -4.9796 0.5262 -5.0023 0.5285
2 0 0 -4.0647 0.4322 -4.4357 0.4687 -4.7030 0.4967
3 0 0 0 0 -5.0151 0.4960 -4.2615 0.4497
4 0 0 0 0 0 0 -5.1602 0.5044

MDA MB157 1 -5.3866 0.5074 -5.4141 0.5103 -5.3701 0.5064 -5.3665 0.5061
2 0 0 -6.1785 0.5649 -5.5694 0.5231 -5.5672 0.5231
3 0 0 0 0 -6.0631 0.5545 -6.3036 0.5738
4 0 0 0 0 0 0 -3.6657 0.3590

MCF10A 1 -4.9326 0.4358 -4.8611 0.4297 -4.5969 0.4077 -4.5415 0.4026
2 0 0 -5.6429 0.4947 -5.1453 0.4533 -5.1558 0.4542
3 0 0 0 0 -5.6250 0.4925 -5.6539 0.4970
4 0 0 0 0 0 0 -5.2204 0.4295

MCF7 1 -4.1951 0.3976 -4.2538 0.4037 -4.2500 0.4032 -4.2170 0.3996
2 0 0 -4.0951 0.3876 -4.1438 0.3934 -4.2358 0.4037
3 0 0 0 0 -4.4485 0.4072 -4.1816 0.3956
4 0 0 0 0 0 0 -4.4507 0.4063

JIMT1 1 -5.2234 0.5266 -5.6523 0.5702 -5.8733 0.5963 -5.8993 0.5996
2 0 0 -5.7522 0.5621 -6.1314 0.6084 -6.1220 0.6084
3 0 0 0 0 -5.8167 0.5652 -6.3189 0.6151
4 0 0 0 0 0 0 -5.4792 0.5300

hs578T 1 -4.5086 0.4295 -4.7467 0.4523 -4.7635 0.4538 -4.7266 0.4506
2 0 0 -4.6766 0.4369 -4.8156 0.4496 -4.9701 0.4688
3 0 0 0 0 -5.4278 0.4730 -5.0081 0.4626
4 0 0 0 0 0 0 -5.4298 0.4732

HCC1954 1 -3.8277 0.3523 -4.0674 0.3762 -4.0849 0.3780 -4.0849 0.3780
2 0 0 -3.8424 0.3492 -4.0080 0.3656 -3.9826 0.3639
3 0 0 0 0 -5.0037 0.4273 -4.9538 0.4272
4 0 0 0 0 0 0 -7.3042 0.5841
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Table 8. YAP/TAZ Nuclear Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ nuclear concentration and b is the power to
which YAP/TAZ nuclear concentration scales with cell area.

DNA bins K = 1 K = 2 K = 3 K = 4
log(a) b log(a) b log(a) b log(a) b

T47D 1 -3.2907 0.0224 -3.0351 -0.0046 -3.2447 0.0091 -3.2009 0.0043
2 0 0 -1.8877 -0.0807 -2.2368 -0.0715 -2.1733 -0.0782
3 0 0 0 0 -1.8368 -0.0847 -1.8376 -0.0895
4 0 0 0 0 0 0 -1.8577 -0.0792

SUM149 1 -4.9754 0.1230 -4.7030 0.0919 -4.6279 0.0836 -4.6291 0.0837
2 0 0 -4.1466 0.0612 -3.6632 0.0130 -3.6473 0.0112
3 0 0 0 0 -3.1299 0.0121 -2.9694 -0.0013
4 0 0 0 0 0 0 2.6006 -0.6672

MDM MB231 1 -3.4251 0.0754 -3.0369 0.0299 -3.0159 0.0260 -3.0021 0.0245
2 0 0 -2.4259 -0.0033 -1.6974 -0.0735 -1.6858 -0.0747
3 0 0 0 0 -3.2183 0.0843 -3.1292 0.0744
4 0 0 0 0 0 0 -3.2497 0.1093

MDA MB157 1 -4.7055 0.1107 -4.2422 0.0670 -4.1574 0.0472 -4.1500 0.0465
2 0 0 -2.6833 -0.0168 -2.1044 -0.0919 -2.1003 -0.0923
3 0 0 0 0 -2.1173 -0.0573 -2.1900 -0.0532
4 0 0 0 0 0 0 0.5188 -0.2218

MCF10A 1 -3.2935 0.0109 -3.2132 0.0011 -3.2116 0.0010 -3.1906 -0.0010
2 0 0 -2.8392 -0.0050 -2.8533 -0.0039 -3.4012 0.0450
3 0 0 0 0 -3.4502 0.0437 -2.4171 -0.0418
4 0 0 0 0 0 0 -7.8275 0.4099

MCF7 1 -4.5767 0.0747 -4.3844 0.0504 -4.3828 0.0497 -4.3587 0.0458
2 0 0 -3.4590 -0.0165 -3.3509 -0.0287 -3.4847 -0.0196
3 0 0 0 0 -3.4782 0.0061 -3.1605 -0.0439
4 0 0 0 0 0 0 -3.3726 -0.0025

JIMT1 1 -4.1012 0.1410 -3.7943 0.1088 -3.6254 0.0880 -3.6121 0.0864
2 0 0 -2.9245 0.0500 -3.3025 0.0703 -3.3069 0.0704
3 0 0 0 0 -3.0465 0.0607 -2.7758 0.0368
4 0 0 0 0 0 0 -3.3505 0.1035

hs578T 1 -3.7665 0.0705 -3.3777 0.0309 -3.3565 0.0287 -3.3388 0.0245
2 0 0 -2.2733 -0.0349 -2.0800 -0.0521 -2.1138 -0.0646
3 0 0 0 0 -1.2073 -0.0972 -2.2373 -0.0379
4 0 0 0 0 0 0 -1.2073 -0.0972

HCC1954 1 -2.3998 0.0375 -1.8529 -0.0189 -1.7912 -0.0259 -1.9462 -0.0126
2 0 0 -1.5727 -0.0201 -0.9309 -0.0790 -0.2789 -0.1468
3 0 0 0 0 -2.9907 0.1166 -1.1521 -0.0563
4 0 0 0 0 0 0 -3.3299 0.1406
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Table 9. Population Characteristics: Cell area distribution statistics. ‘G1’ and ‘G2’ are defined via kmeans clustering on the integrated Hoechst
intensity

Population G1 mean (um2) G1 CV (%) G2 mean (um2) G2 CV (%)
MCF7 1200 0.6 1710 0.52

MDMMB231 1360 0.49 1820 0.48
T47D 1420 0.61 2760 0.56
JIMT1 1470 0.57 2390 0.49

SUM149 1480 0.57 1850 0.53
HCC1954 1840 0.55 3060 0.45
MCF10A 2660 0.63 3280 0.6

MDAMB157 3150 0.61 4760 0.56
hs578T 3280 0.47 4920 0.44
Average N/A 0.57 ± 0.05 N/A 0.51 ± 0.05
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Reagent or Resource Source Identifier
Antibodies
YAP Antibody (G-6) -Mouse Santa Cruz Cat# sc-376830
YAP/TAZ [67.3] -Mouse Santa Cruz Cat# sc-101199
TAZ (V386) Antibody -Rabbit Cell Signalling Cat# 4883
Tubulin Alpha Antibody — YL1/2 -Rat Bio-Rad Cat# MCA77G
Phospho-Rb (Ser807/811) (D20B12) XP® -Rabbit Cell Signalling Cat# 8516S
Recombinant Anti-Cyclin A2 antibody [EPR17351] -Rabbit Abcam Cat# ab181591
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary

Antibody, Alexa Fluor 488

Invitrogen Cat# A11029

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary

Antibody, Alexa Fluor 488

Invitrogen Cat# A11034

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Anti-

body, Alexa Fluor 568

Invitrogen Cat# A11004

Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody,

Alexa Fluor 568

Invitrogen Cat# A11077

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Anti-

body, Alexa Fluor™ 647

Invitrogen Cat# A21235

F(ab’)2-Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Sec-

ondary Antibody, Alexa Fluor 647

Invitrogen Cat# A21246

Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody,

Alexa Fluor 647

Invitrogen Cat# A21247

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins
RPMI 1640 Medium, no phenol red GIBCO Cat# 11835
DMEM/F-12, GlutaMAX™ Supplement GIBCO Cat# 31331
Horse Serum GIBCO Cat# 16050
Insulin Sigma Cat# I-1882
Cholera toxin Sigma Cat# C-8052
Hydrocortisone Sigma Cat# H-0888
Human EGF Sigma Cat# E-9644
Penicillin-Streptomycin GIBCO Cat# 15070
Human EGF Sigma Cat# E-9644
RPMI 1640 Medium, no phenol red GIBCO Cat# 11835
DMEM, high glucose, pyruvate GIBCO Cat# 41966
Fetal Bovine Serum (heat-inactivated) GIBCO Cat# 16140
Trypsin-EDTA (0.25%), phenol red GIBCO Cat# 25200
Opti-MEM I Reduced Serum Medium GIBCO Cat# 31985
Lipofectamine RNAiMAX Invitrogen Cat# 13778
Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Scientific Cat# 28908
Alexa Fluor 647 Phalloidin Invitrogen Cat# A22287
Alexa Fluor 488 Phalloidin Invitrogen Cat# A-12379
Hoechst 33258 Invitrogen Cat# H3569
Palbociclib, PD0332991 Sigma Cat# PZ0199
Binimetinib Sigma Cat#

Critical Commercial Assays

Deposited Data
Proteome?

Experimental Models: Cell Lines
T47-D N. Turner (ICR) N/A
BT474 N. Turner (ICR) N/A
MDA-MB-468 G. Poulogiannis (ICR) N/A
SKBR3 O. Rossanese (ICR) N/A
SUM159 R. Natrajan (ICR) N/A
MDA-MB-231 J. Erler (University of Copenhagen) N/A
MDA-MB-231-LM2-4175 J. Massagué (Sloan Kettering Institute) N/A

Minn, Andy J. et al., 2005
MCF10A mRuby-PCNA J. Mansfeld (Technische Universität Dresden) N/A

Zerjatke, Thomas et al., 2017
hTERT RPE-1
WMs
a375p

Experimental Models: Organisms/Strains

Oligonucleotides and siRNA (Sequenced-Based reagents)

Recombinant DNA

Software and Algorithms
Morpheus Broad Institute https://software.broadinstitute.org/

morpheus/
Acapella 4.0 PerkinElmer N/A
Columbus Image Data Storage and Analysis System PerkinElmer http://columbus2.icr.ac.uk/login?

next=/
Harmony High-Content Imaging and Analysis Software PerkinElmer https://www.perkinelmer.

com/product/

harmony-5-1-office-hh17000012
Prism GraphPad https://www.graphpad.com/

scientific-software/prism/
Excel Microsoft N/A
ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/
Adobe Illustrator Figures http://www.adobe.com/de/

products/illustrator.html,

versionCC2015.3

Other
PhenoPlate 384-well PerkinElmer Cat# 6057300

Table 10. List of reagents and resources.
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