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The concentration of many transcription factors exhibit high cell-to-cell variability due
to differences in synthesis, degradation, and cell size. How these factors are robust to
fluctuations in concentration is poorly understood. Here we quantified the single cell levels of
the YAP/TAZ transcriptional co-activators in parallel with cell morphology for over 400,000
single cells across 17 cell lines. We show the whole cell concentration of YAP/TAZ sub-
scales with respect to size as cells grow during proliferation. However, the mean nuclear
concentration of YAP/TAZ remains constant during the cell cycle. Theoretical modelling
demonstrates that the extent to which whole cell YAP/TAZ dilutes in single cells during
proliferative growth dictates the variability of YAP/TAZ levels across the population. Integrative
analysis of imaging and proteomic data show the average nuclear YAP/TAZ concentration
is predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear
transport processes. We developed a statistical framework capable of discriminating between
perturbations that affect YAP/TAZ directly, or via changes in morphology. Deployment of
these models on genetic screening data or small-molecule treatments reveal that inhibition of
MEK, CDK4/6, LATS and RhoGTPases decouple nuclear YAP/TAZ from cell morphology by
regulating nuclear translocation. Thus signalling activity couples size changes to YAP/TAZ
translocation; leading to a stable pool of nuclear YAP/TAZ during proliferation.

Cell Size | YAP/TAZ | Cell Growth | Dilution

Signalling networks couple transcriptional regulation to the
integrated detection of environmental cues. A common ‘motif’
in these networks is the sequestration of transcription factors
by inhibitory complexes. In the presence of an environmental
cue, transcription factors are released from these complexes
and interact with DNA to engage specific programmes (1-3).
When TFs and inhibitors are at sub-saturating levels, this
allows transcription to be tightly coupled to environmental
flux. For example, dilution of the inhibitory protein RB1 as
cells grow is one mechanism by which E2F activity is coupled to

Significance Statement

Many proteins dilute/concentrate
with changes in cell size. It is
unclear how robustness in cell sig-
nalling emerges across differently
sized cells, with varying intracellular
protein concentrations, over genera-
tions. Here, we have shown that de-
spite whole cell dilution of the tran-
scriptional co activators YAP/TAZ
with increasing size, a steady-state
nuclear concentration distribution is
maintained across the population.
Thus nuclear transport promotes
robustness of signal response in
the face of a dwindling cytoplas-
mic YAP/TAZ levels. An integra-
tive approach revealed that focal
adhesions, RAS/MAPK and nuclear
import contributes to the the main-
tenance of YAP/TAZ nuclear levels.
Cells appear to have evolved sys-
tems to ensure robustness against
alterations to cell size during the cell
cycle.

Author affiliations: *Chester Beatty Laboratories, Divi-
sion of Cancer Biology, Institute of Cancer Research,

size (4, 5). In animal cells especially, inhibitory sequestration
237 Fulham Road, London SW3 6JB, UK; "Institute

of transcription factors often occurs in the cytoplasm; and A X ; -
. ) for Mathematical Innovation, Department of Life Sci-

release from inhibition allows TFs to translocate into the ences, University of Bath, Claverton Down, Bath, BA2

nucleus. For example, the active degradation of inhibitors 7AY, UK

such as APC or IKB in the cytoplasm allows the translocation

of transcription factors such as Beta-Catenin or NFKB into
the nucleus (6, 7); coupling cues such as adhesion and stress to
transcription respectively. The concentration of both inhibitors
and transcription factors in the cytoplasm thus informs the
response of transcription factors to upstream signals (4).

The authors declare no conflict of interest.

It is now clear that the concentration of many cellular
molecules varies between cells, even within an isogenic popu-
lation (8). Such variability can be due to both extrinsic and
intrinsic stochastic differences in protein synthesis, but also
due to differences in cell size and shape (8-11). However, cell
populations and tissues exhibit largely robust and predictable
behaviour despite such fluctuations; i.e. are largely uniform
in the output of their signalling activity. Perhaps the best
example of which is the control of size uniformity during
proliferation, such as during organ and tissue morphogenesis
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(12-14). But how cells are robust to fluctuations in protein
concentration is poorly understood.

In the context of a sub-scaling protein, one means to
provide robustness would be to couple a synthesis step to
cell growth, such that a surge in synthesis offsets the effects
of dilution. Indeed, such a system is believed to underpin
the maintenance of RB1 (yeast WHI5) concentration across
consecutive cycles (4). In the Rb1/Whi5 context, this coupling
is complemented by saturating DNA with RB1/WHI5 (and
degrading the excess) prior to division (15); where the amount
of protein inherited by either daughter is proportional to the
DNA content - and thus size - of the cell. Indeed, a similar
system applies to the partitioning of KRP4 in Arabidopsis
(16). Importantly, these systems can do nothing to constrain
the effects of dilution within a cell cycle. However, it is unclear
how the effects of dilution may be mitigated in other biological
contexts.

YAP and TAZ (henceforth YAP/TAZ) are conserved key
regulators of animal cell growth and proliferation. As transcrip-
tional co-activators, YAP/TAZ are inhibited by sequestration
in the cytoplasm, where nuclear translocation (activation)
is triggered by soluble, mechanical, and geometrical cues
(17-25). For example, changes in cell shape are coupled
to the signalling dynamics of Rho GTP Exchange Factors
(RhoGEFs), Rho GTPase Activating Proteins (RhoGAPs) and
their downstream effector Rho GTPases. RhoGEFs, RhoGAPs;
and Rho GTPases regulate YAP/TAZ translocation both
by regulating YAP/TAZ signalling directly and by affecting
cell shape/size (indirectly) (18, 22, 26-32). The coupling of
YAP/TAZ dynamics to cell shape provides a mechanism that
allows cells to position themselves during development, or to
sense and respond to disruption in tissue structures. (26, 33—
35). YAP/TAZ are also regulated by the Hippo pathway,
whereby the LATS (LATS1 and LATS2) kinases phosphorylate
YAP/TAZ, preventing nuclear translocation by enabling 14-3-3
binding.

Through quantitative analysis of 100,000’s of single cells,
from 17 cell lines, we have demonstrated that the whole
cell and cytoplasmic YAP/TAZ concentration sub-scales
with cell size in G1 and G2. YAP/TAZ synthesis was
dramatically upregulated near S-Phase in a size and ploidy
dependent manner. Crucially, we observed that the nuclear
YAP/TAZ concentration distribution was constant across the
population when binned by cell size, implying continual nuclear
import in the background of depleting whole cell YAP/TAZ
concentration. Through integrative analysis of proteomic data,
we found that YAP/TAZ nuclear transport is predicted by
the phosphorylation state of RAS/MAPK, focal adhesion, and
nuclear transport components; suggesting a role for these
systems in coupling cell/cytoplasm size to nuclear import.
Using a novel statistical framework, we show that RAS/MAPK,
CDK4/6, and RHOA affect YAP/TAZ translocation directly.
Whereas inhibition of genes such as LATS1 and LATS2 affect
both size and translocation. Taken together, our work defines
a system to ensure the robustness of cell signalling to changes
in protein concentration.

1. Results

A. YAP/TAZ concentration decreases with increasing cell size.
We quantified single cell size and the concentration/abundance
distributions of F-actin and cytoplasmic/nuclear YAP/TAZ,

first in 30,000 single cells from nine breast cell lines (Table
1) (Fig.1A). While ostensibly YAP specific, the antibody we
used partially recognises TAZ though to a much lesser extent
(23, 36). We initially investigated whether average YAP/TAZ
intensities varied with cell size across our panel but found no
evidence of a correlation with the nuclear or whole cell signal
(Fig.1B/C). However, there was a clear linear relationship
between the whole cell and nuclear YAP/TAZ mean intensities
(Fig.1D). Thus high expression of YAP/TAZ correlates with
more nuclear import. This relationship was also observed in
single cells within each cell line (Fig.1E). Strikingly, when
investigating whether area predicts whole cell YAP/TAZ in
single cells, we observed a clear negative correlation. Meaning
that whole cell YAP/TAZ dilutes/degrades as the cells grow
(FiglF). This prompted us to more formally investigate the
decrease of whole cell YAP/TAZ within each cell line.

We modelled the concentrations of YAP/TAZ (integrated
intensity/cell area, mean intensity) as power law relationships
with cell area, [Y AP/TAZ] = aA®, such that we could define
a ‘scaling factor’, ‘b’, for each species (Fig.1G). In a log-log
plot, ‘b’ is given as the gradient and log(a) is the y-intercept.
Negative values of ‘b’ correspond to the dilution of the protein
with increasing cell size (sub-scaling), 0, linear scaling, and
positive values, concentration of the protein with increasing
size (super-scaling) (Fig.1H). Fitting ‘a’ and ‘b’ values to each
cell line’s F-actin concentration profile, we observed linear
scaling between cell size and F-actin (b ranging from -0.2 to
0.2, (Fig.11, Supp.Table 2) as observed in previous studies
(4). However, when applying the same analysis to whole
cell YAP/TAZ concentration, we observed, for all cells lines,
a clear sub-scaling relationship between cell size and whole
cell YAP/TAZ concentration (b -0.35 - -0.65), indicating
that whole cell YAP/TAZ dilutes as a cell gets larger (Fig.11,
Supp.Table 3).

To investigate the decrease in whole cell YAP/TAZ con-
centration with cell size, we also analysed the abundance
(integrated whole cell intensity, rather than mean) -size
relationship and observed that the whole cell YAP/TAZ
abundance increases with cell size, but not at a rate sufficient to
maintain a constant concentration (b 0.6). Total YAP/TAZ
increased with size at all sizes implying continued net-synthesis
(That is, synthesis must be outpacing degradation, Supp.Table
4, Supp.Fig.2). F-actin exhibited 1:1 abundance scaling
indicating synthesis exactly offsets the effect of cell size on
concentration. (Supp.Fig.2, Supp.Table 5).

To ensure that YAP alone was diluting with size, and that
the measured effect was not an artefact generated by the
erroneous recognition of TAZ by the antibody, we repeated
the experiment with specific YAP and TAZ antibodies (36).
In both cases, we observed dilution of whole cell YAP or TAZ
protein with increasing cell size relative to F-actin (Supp.fig.1).

Together, these data reveal that both whole cell YAP and
TAZ dilute with increasing cell size. As YAP/TAZ increases
in abundance with as cells enlarge, this dilution is not due to
net degradation of YAP/TAZ at larger cell sizes, but rather
the effect of an expanding volume acting on an insufficient
synthesis-degradation balance.

B. YAP/TAZ concentration, but not scaling, is sensitive to
DNA-content and cell cycle progression. As YAP/TAZ levels
did not correlate with size across lines, but did so within lines,
we hypothesised that sub-scaling of whole cell YAP/TAZ may
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Figure 1: YAP/TAZ concentration decreases with increasing cell size A) (left) Representative image of MBA-MB-231 cells stained with YAP/TAZ (red), Phalloidin (an actin
binding dye, green) and Hoescht (marking the DNA in blue). (Right) Individual colour channels seperated out from the original image. Colour is proportional to image intensity
such that black < purple < red < yellow. The scale bar represents 50 um. B) The relationship between the nuclear YAP/TAZ concentration and cell area across cell
lines. Error bars represent one standard deviation. C) The relationship between the whole cell YAP/TAZ concentration and cell area across cell lines. Error bars represent one
standard deviation. D) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration across cell lines. Error bars represent one
standard deviation. E) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration in single cells in each cell line. The colour is
proportional to data density such that black < purple < red < yellow. F) The relationship between the whole cell YAP/TAZ concentration and cell area in single cells in
each cell line. The colour is proportional to data density such that black j purple j red j yellow. G) YAP/TAZ ‘abundance’ (integrated intensity) as a function of cell area in T47D
cells. We describe this relationship as a power law, y = aAb, shown in red. The colour of the data is proportional to the density of the data. H) Demonstration of how the log-log
plot of size vs concentration is interpreted; a negative gradient corresponds to dilution with growth, positive indicates an increasing concentration and a flat relationship, perfect
scaling with cell size. 1) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to single-cell area. The line represents the mean YAP/TAZ concentration in each size
range. The error margin corresponds to one standard deviation in the same size bin. Concentrations have been normalised to the means across all sizes for viewability. For
each cell line, the relationship is shown across the size range: 0.5*mean — 2* the mean cell size.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248


https://doi.org/10.1101/2023.02.06.527281
http://creativecommons.org/licenses/by-nc-nd/4.0/

249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.06.527281; this version posted October 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1. Cell Line Information: Gene cluster: Lu = luminal, BaA = Basal A,
BaB = Basal B. ER/PR/HER2: +/ from protein and mRNA expression; [] inferred
from mRNA expression; M = mutant, WT = wild-type. MDA 231-LM2-4175* cells
are the highly metastatic subpopulation 4175 from MDA-MB-231 (23, 37-39).

Cell Line Genetic Subtype | ER PR | Her2
MCF7 Lu + [+] -
T47D Lu + [+]

BT474 Lu + — +
SKBR3 Lu - [-] +
HCC1954 BaA - [-] +
MDA-MB-468 BaA -1 [-] -
hs578T BaB - [-1] -
MDA-MB-157 BaB - [-]
MDA-MB-231 BaB - [-1 -

SUM149 BaB -1 [-1] -

SUM159 BaB [-] | [-] -

MCF10A BaB - [-1 -
JIMTA Unclassified — [-] +

MDA-MB-231-LM2-4175*

be due to growth during cell cycle processes. To investigate
this, within each line, we initially binned cells based on their
DNA content (integrated Hoechst intensity). Bin sizes were
constrained such that each bin centroid represents double the
value of the preceding bins. Conducting the previous analysis
on each DNA ‘bin’ within each line, we noticed that while
the mean whole cell YAP/TAZ concentration at any given
size increased for each doubling of the cell DNA (each DNA
content ‘bin’, 1.3-1.6 factor increase) (Supp.Table 3, Fig.2A),
the scaling factor ‘b’ showed no obvious dependence on the
amount of DNA. We performed the same analysis for the
F-actin concentration and noticed no relationship between ‘b’
or mean concentration and DNA content (Fig.2B, Supp.Table
2).Whole cell YAP/TAZ and F-actin abundance showed a
consistent positive scaling factor ( 0.4-0.6) across all DNA
contents (Supp.Table 4/5, Supp.Fig 4/5).

As whole cell YAP/TAZ dilutes within the first and
second DNA ‘bins’, loosely approximating ‘G1’ and ‘G2’,
and undergoes a DN A-correlated regeneration between the
two, potentially at S-phase, we sought to more rigorously
investigate the relationship between cell cycle progression
and YAP/TAZ concentration. We stained MCF10A cells
for YAP/TAZ, PCNA and CCNA2 and trained a linear
classifier to distinguish GO, G1, S and G2 cells using 110
CCNAZ2 and PCNA intensity features (methods) across 20,000
single cells. Conducting a scaling analysis within each stage,
we observed that the negative size-YAP/TAZ concentration
scaling is preserved across all stages besides GO (Supp.Fig.6).
Moreover, by binning the cells by area and calculating the
mean YAP/TAZ concentration in each stage, we observed
that the whole cell YAP/TAZ concentration increases from
G1 to G2 and that smaller cells exhibit a greater whole cell
YAP/TAZ concentration at each stage, further corroborating
the previous analyses (Supp.Fig.6).

To test the idea that whole cell YAP/TAZ dilution relates
to cell cycle progression, we assessed YAP/TAZ levels in
Palbociclib treated LM2 cells. Palbociclib arrests cells at
the G1/S transition by inhibiting CDK4/6 activity (40). We
found that the average whole cell YAP/TAZ concentration
was unchanged in Palbociclib treated cells despite the two-fold
increase in size. YAP/TAZ dilution, however, still occurred
with increasing size in the Palbociclib treated population

(Fig.2C/D). Together, these data show that the regulation of
the cytoplasmic YAP/TAZ concentration is closely tied to the
cell cycle, with dilution only being observed in cycling cells,
and YAP/TAZ synthesis being strongly upregulated around
S-phase.

C. A constant nuclear concentration of YAP/TAZ is maintained
across cell sizes despite whole cell dilution: . Having observed
a sub-scaling relationship between whole cell YAP/TAZ and
cell size, we were interested in how this related to the nuclear
translocation and concentration of YAP/TAZ. We quantified
the N/C ratio of YAP/TAZ at the single cell level, for each cell
line. Interestingly, YAP/TAZ ratio increased with increasing
cell size, exhibiting the opposite relationship to (whole cell)
YAP/TAZ concentration. The N/C ratio of YAP/TAZ also
changed with DNA content, where the mean YAP/TAZ ratio,
decreased across each DNA ‘bin’. We noted that ‘b’, the scaling
factor between cell area and N/C, remained unchanged across
DNA contents for all cell lines (Fig.3A, Supp.Table 6).

We next investigated the scaling of the nuclear con-
centration of YAP/TAZ cell area. Strikingly, the nuclear
concentration distribution of YAP/TAZ was almost entirely
insensitive to increases in cell size, exhibiting a constant mean
and variance across all measured areas. Increases in the DNA
content did increase the average nuclear YAP/TAZ level, but
not sufficiently to maintain the same YAP/TAZ ratio across
DNA bins (Fig.3B, Supp.Table 7). Importantly, as nuclear
and cell size correlate (Fig.3C), even without an increase
in DNA content, this result implies continual transport of
YAP/TAZ into the nucleus as cells grow such to maintain
a constant concentration distribution across differently sized
cell populations. Thus, nuclear transport of YAP/TAZ is
coupled to cell size in order to maintain a steady-state level of
YAP/TAZ as the cytoplasmic pool becomes diluted.

To determine if nuclear concentration was also dependent
on CDK4/6 activity, we analysed nuclear YAP/TAZ levels in
Palbociclib treated cells. We observed that while the nuclear
concentration was invariant to cell size, it was sensitive to
Palbociclib treatment; as treated cells exhibited higher nuclear
YAP/TAZ concentrations than control cells. (Fig.3D). Thus
CDK4/6 activity and/or cell cycle progression is necessary to
couple nuclear transport of YAP/TAZ to cell size.

Together, these data suggest that while the concentration
of the cytoplasmic pool of YAP/TAZ is a function of cell size
and volume, the nuclear YAP/TAZ concentration is regulated
independently. As a transcriptional regulator, this implies
that as cell divide they maintain a constant pool of nuclear
YAP/TAZ activity despite falling cytoplasmic concentrations.
Indeed, this is particularly striking given the strong correlation
between the nuclear and whole cell YAP/TAZ concentration
(Fig.1.D/E). Given the scaling between nuclear and cell area,
necessitating continual import of YAP/TAZ, this may be
driven by nuclear transport machinery (summarised in Fig.3E).

D. Integration of YAP/TAZ size-scaling and stochastic cell divi-
sion determines YAP/TAZ heterogeneity. The previous analyses
are consistent with a scheme by which a constant amount of
YAP/TAZ is maintained through dilution in G1, synthesis at
S/G2 and a further dilution through the subsequent G2, before
the inheritence of YAP/TAZ by daughter cells (A dilution-
synthesis-dilution, or DSD, scheme (Fig. 4A)). We sought to
understand how such a system would behave across division
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Figure 2: YAP/TAZ concentration, but not scaling, is sensitive to DNA-content and cell cycle progression A) Log-log plots relating YAP/TAZ concentration to single-cell area
across DNA bins (blue the least DNA, red, green, yellow the most). Cell membership to each ‘bin’ was determined by kmeans clustering on the DNA content. The shaded area
denotes one standard deviation of the cell size distribution about that size bin. B) Log-log plots relating Actin concentration to single-cell area across DNA bins (blue the least
DNA, red, green, yellow the most). Cell membership to each ‘bin’ was determined by kmeans clustering on the DNA content. YAP/TAZ-size scaling is sensitive to DNA content
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LM2 breast cancer cells. The line represents the mean YAP/TAZ concentration in each size range. The error margin corresponds to one standard deviation in the same size bin.

The relationship in untreated cells is shown in red, that for Palbociclib treated cells in grey. D) Representative images demonstrating the effects of palbociclib treatment on
YAP/TAZ abundance and translocation in LM2 cells. Scale bar denotes 50um, YAP/TAZ in red, actin in green, DNA stain in blue.
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Figure 3: A constant nuclear concentration of YAP/TAZ is maintained across cell sizes despite whole cell dilution: A) Log-log plots relating YAP/TAZ nuclear-cytoplasm ratios
and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the
lowest DNA content, then red, green and yellow, the most. In all cases, YAP/TAZ ratio positively scales with cell area but decreases with increasing DNA content. The shaded
area denotes one standard deviation of the cell size distribution about that size bin. B) Nuclear YAP/TAZ, single cell area relationship plotted across DNA content bins for each
cell line. The shaded area denotes one standard deviation of the cell size distribution about that size bin. C) Relationship between cell and nuclear areas across high and low
DNA content clusters for each cell line (cluster 1 has less DNA than cluster 2). Nuclear and cell areas continually scale within DNA bins and is not related to DNA synthesis
alone. D) The effect of Palbociclib on the nuclear YAP/TAZ concentration. Palbociclib does not affect scaling behaviour but increases the total nuclear concentration. E) A
cartoon summarising the major findings of the section: Nuclear YAP/TAZ concentration is constant across sizes, nuclear area scales with size, together implying continual
YAP/TAZ nuclear import despite a falling whole cell concentration.
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cycles and what consequences this could have for the cell
population. To understand how YAP/TAZ scaling affects the
YAP/TAZ concentration distribution, we integrated a DSD
model with a simple cell cycle system (a two-stage system
exhibiting adder size behavior) (9). This model assumes linear
dependencies between cell area and the probability to advance
in the cell cycle stage and cell area and growth rate. The cell
area probability distribution under these constraints is given
as a hypo-exponential function J(A,S,n):

J(A,8,n)=F* HF (A,5,n)) [1]

where:
—naA/(2° In(2)k)
ne
G(4,8,n) = kz H1+2(] B} 2
=1 Li#j
2]
Where: ’Ad’ is the cell area at division, ’a’ is a propor-

tionality constant between Ad and cell cycle advancement
probability, 'k’ a proportionality constant between Ad and
growth rate, ’S’ is the number of divisions that have occurred,
and 'n’ is the number of cell cycle “stages’ per division. 'F(f(x))’
denotes the Fourier transform of f(x), and F~', the inverse.
(See methods (calculating area distributions) and supplemental
information for details).

To ensure the applicability of this model, we fit equ. 1
to the (G2) cell area distributions of our cell lines using a
two-stage system and found good agreement (methods). Here
‘stage’ refers to the number of growth stages in a cycle (Fig.
4B). Indeed, the CVs of the distributions lie well within the
predicted bounds of a two-stage system (CV = 1/+/3n). For
n=2,04<CV <0.57 (Supp. Table 7) (9).

Expressing the ’cell cycle advancement time’ (time spent
in each cycle stage, CCA) distribution in terms of the dilution
factor "D’ (D = 1/exp(bkt), where b’ is the scaling factor,
'k’ the proportionality constant between size and growth rate,
and ’t’ is time) gives (Fig. 4C) (see supplemental information):

1
Dbk
As two dilution events happen in sequence, we were

interested in the product distribution of P(D) and a second
dilution event, denoted as F(z) (Fig. 4D):

P(D) = —1In(1 — aAd) (1 — aAd)~ P/ 3]

1
gz, 4

Where z is the product of two random ’D’ variables
distributed according to equ. (3). For simplicity, we considered
the two sequential dilution events to be identical, such that
the cell grows equally across G1 and G2 and exhibit the same
scaling behavior. From F'(z), we could calculate the coefficient
of variation (o/pu):

\/( AO;iAébk)Q - ( g;dbk)4
fe + « =+
CV =~ 5
( aAd )
aAd+tbk
Which approximately linearly scales with 'b’ for 0 < b < 1
(Fig. 4E); note we have expanded the mean and variance

F(z) = —In(z) In (1 — aAd)? (1 — aAd) ™ (2)/Pk

[5]

about a = 0 to obtain equ. (5) (« values do not exceed
107°) (methods). Correlating scaling factors against the CV
of YAP/TAZ intensity distributions, we observed a strong
negative trend for 7/9 of our cell lines (Supp. Fig. 8).

It is important to note that average ’b’ values are not the
only source of YAP/TAZ variance in this system; differences
in size regulation and the area dependence of K’ and ’b’ all
contribute to YAP/TAZ variability (Supp. Fig. 7). Indeed,
the MDA-MB-231 and JIMT1 cell lines, those with high scaling
factors (b &~ —0.54) but comparatively low YAP/TAZ variance
(CV = 0.37), have more homogeneous size distributions than
most of the other cell lines (Supp. Table 8, CV ~ 0.48) and
are some of the few to exhibit an approximately constant
'K’ value (Supp. Fig. 7) providing an explanation for their
departure from a linear scaling factor-variance relationship.

To capture the concentration distribution of whole cell
YAP/TAZ, we simulated equ. 4 across multiple generations
(Fig. 4F) (methods). Parameter (Q) values (bsl, bs2, K) were
taken from the size-Q curves for each cell line. Comparing
the predicted distributions to those measured, we observed
excellent agreement showing that, in these cell lines, the
concentration distribution of whole cell YAP/TAZ can be
explained by size-dependent stochastic cell division acting on
a dilution-synthesis-dilution system (Fig. 4G). Thus, coupling
of YAP/TAZ nuclear transport to size is important to suppress
variability in YAP/TAZ levels over successive generations.

E. The mean nuclear YAP/TAZ concentration across sizes
is associated with altered RAS, adhesion and nuclear trans-
port signalling processes. Having observed the dilution of
cytoplasmic (and whole cell) YAP/TAZ with increasing
size, and that size had no tangible effect on the mean
nuclear concentration (or concentration distribution across the
population), we were interested in how continual import could
be sustained across sizes whilst the cytoplasmic pool depletes.
To investigate this, we combined high-throughput imaging and
phosphoproteomic experiments across a separate panel of eight
cell lines (semi-redundant with the previous panel) (Fig.5A,
Table.1). The cell lines selected were similar sizes (within a
2-fold range) to prevent size-related phosphorylation events
colouring the investigation of nuclear YAP/TAZ and ratio
correlates. YAP/TAZ exhibited size sub-scaling behaviour at
the whole cell level, but not in the nucleus (relative to tubulin
intensity), as is consistent with the prior dataset (Fig.5B).

We predicted the cell lines nuclear YAP/TAZ and ratio
from the phosphoproteomic expression data using partial-least
squares regression (PLSR). For this, the expressions of each
phosphopeptide were ‘corrected’ such that they reflected how
much more/less expressed they were than expected given
the detected expression of the unphosphorylated peptide (see
methods). This eliminated the trivial correlation between
proteomic and phosphoproteomic data and gives information
on the signalling state of the cells. From the PLSR model, we
could calculate the contribution of each phospho-peptide and
thus, how predictive each phosphopeptide was, as achieved
through calculation of a ‘Variable importance to projection’
(VIP) score.

Mean nuclear YAP/TAZ concentrations were predicted
by mass corrected expressions of phosphopeptides enriching
for: RTK/MAPK signalling (KEGG pathway ‘EGFR tyrosine
kinase inhibitor resistance’, FDR < 0.05). These included
several core regulators of the MAPK pathway including:
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Table 2. Select phosphorylation sites strongly predictive of the average nuclear YAP/TAZ concentration and/or Nuc/Cyto ratio across lines

ERBB2 (HER2) (T701), ARAF (S269), SRC (S75), SOS1
(S1178), MAPK1 (T185), MAPK3 (T202), PTEN (S294)
and MTOR (S1261) (Fig.4C/D). We also observed a clear
association between nuclear YAP/TAZ concentration and
focal adhesion signalling (KEGG pathway ‘Focal adhesion’,
FDR < 0.05), with phosphorylations on TLN (Y70), VCL
(S346), PXN (S533), PTK2 (S29), PAK4 (S474), PAK6
(S616), ITGB4 (S1457/4) strongly correlating (|R| > 0.7)
(Fig.5C/D/E/F/G/H). Together, these sites suggest that
enrichment of nuclear YAP/TAZ is related to ERK/MAPK
signalling activation and the maturation of focal adhesions
(41).

Strikingly, when predicting the YAP/TAZ N/C ratio, we
observed differential phosphorylation on multiple regulators of
nuclear transport across cell lines with high and low YAP/TAZ
ratios (GO:0051169, ‘nuclear transport. F DR < 0.05) These
included the nucleoporins, NUP133/153/210/35/188/85 and
NDC1 (S406), LMNA (S403), the RAN binding proteins
RANBP2 (52280) and 3 (S27), and XPO1 (S1055), a protein
recently directly implicated in YAP/TAZ export from the
nucleus (42).

To investigate the role of EGFR/MAPK signalling in
YAP/TAZ translocation, we treated two breast lines, MDA-
MB-231 and MDA-MB-231-LM2, with Binimetinib, a MEK
inhibitor. In LM2 cells, Binimetinib treatment resulted in
an increase in nuclear YAP/TAZ per cell size whilst having
no obvious effect on the scaling of the whole cell YAP/TAZ
concentration implying increased translocation. Conversely,
in 231 cells, Binimetinib partially reduced nuclear and whole
cell YAP/TAZ levels (Fig.51/J), however, increased the N:C
ratio, as in LM2 cells implying increased nuclear import.
Taken together these data suggest that RTK-MAPK signalling
couples cell size to YAP/TAZ nuclear translocation. Inhibition
of MEK signalling disrupts the coupling leading to changes in
nuclear translocation.

F. YAP/TAZ dilution behaviour is conserved. After thoroughly
characterizing the dilution behaviour of YAP/TAZ in normal
and cancerous breast cells, our study was expanded to examine
this effect in different cell contexts and assess its generality as a
phenomenon. Specifically, we conducted imaging experiments
on WM-266-4 and A375 melanoma cells, as well as retinal
pigment epithelial cells (RPE-1). The objectives were to
investigate whether: 1) Whole cell YAP/TAZ dilutes as
cells enlarge, 2) the nuclear YAP/TAZ concentration remains

Gene Site Kinase Effect Correlation | Literature
ERBB2 T701 ERK1/2 Receptor internalization inhibition Negative (43)
BRAF S429 AKT1/3 Inhibits Enzyme activity Positive (44)
SRC S75 CDK5 Multiple Processes including degradation and inhibition Positive (45)
MAPK1 T185 EGFR, MEK Activates Enzyme activity Positive (46)
MAPK3 T202 MEK Activates Enzyme activity Positive (46)
SOS1 S1178 ERK2 Grb2 Binding Negative (47)
MTOR S1261 Downstream of PI3K Induces cell growth Positive (48)
TLN Y70 EGFR SH2B1B Binding Positive (49)
VCL S346 RICTOR Unknown Positive (50)
PAK4 S474 PRKD1 Activates Enzyme Activity Positive (51)
RANBP2 S2280 CDK1 Localisation Signal Positive (52)
XPO1 S11055 NDR1 Activates Export Function Positive (42)

constant with increasing size, and 3) CDK4/6 and MEK
inhibition promote nuclear accumulation of YAP/TAZ.

Strikingly, across all three of the added lines, YAP/TAZ
dilution was conserved. To more formally test the relationship
between YAP/TAZ dilution and the cell cycle, we also stained
these lines for pRB1. Interestingly, dilution only occurred in
cell populations with high pRB1 in these lines, corroborating
the cell cycle dependency seen in the breast cells (Fig.6A), and
the absence of YAP/TAZ dilution in GO cells. This extended to
the Palbociclib treated population, although, cells with higher
pRB1 tended to larger in this setting, delaying dilution to a
larger cell size (Fig.6A). The YAP/TAZ concentration, but
not the scaling behaviour, was found to be sensitive to DNA
content in all cell lines in both the control and Palbociclib
treated populations (Fig.6B).

As in breast cells, the nuclear concentration of YAP/TAZ
remained constant with cell size in the background of whole
cell dilution, and this was similarly found sensitive to the
DNA content of the cell (Fig.6C). Palbociclib increased the
nuclear concentration of YAP/TAZ per cell size in all cases
(Fig.6D). Binimetinib exhibited similar behaviour in Wm-266-4
and RPE-1 cells, but failed to elicit a response from A375 cells
(Fig.6E).

At a population level, both Palbociclib and Binimetinib
increased average cell size, with Palbociclib having a stronger
effect (Fig.6F). Despite this, neither treatment had any obvious
effect on the whole cell YAP/TAZ concentration. This is
presumably due to the delay of dilution in either treatment
(Fig.6F). Palbociclib increased the average nuclear YAP/TAZ
concentration in all cases. Binimetinib treatment echoed the
result in WM-266-4 and RPE-1 but interestingly reduced
nuclear YAP/TAZ in A375 cells (Fig.6F). The results of
this section are summarised in Fig.6G. Together, these data
show that the YAP/TAZ dilution phenomenon extends to the
melanoma and RPE cell contexts evidencing the generality of
the effect.

G. Dilution of cytoplasmic YAP/TAZ drives increasing nu-
clear/cytoplasmic ratios following gene depletion. Our inte-
grated analysis suggested that RTK-RAS-ERK, focal adhe-
sions, and nuclear transport are key processes which couple cell
size to YAP/TAZ nuclear transport and act as mechanism to
maintain steady state levels of nuclear YAP/TAZ as cells grow.
To identify additional factors that may act to couple YAP/TAZ
nuclear transport to cell size we performed genetic screen where
we systematically depleted 82 RhoGEFs, 67 GAPs, and 19
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Figure 5: The nuclear YAP/TAZ concentration distribution is associated with altered RAS, adhesion and nuclear transport signalling processes: A) Representative images of the
8-lines across which we conducted phospho-proteomic experiments. Scale bar denotes 50um, YAP/TAZ in red, tubulin in yellow, DNA stain in blue. B) Recapitulation of whole
cell YAP/TAZ dilution with increasing cell size and perfectly scaling nuclear concentration against a tubulin standard in a separate experiment and cell line panel. The central
line denotes the mean YAP/TAZ cytoplasmic concentration (TOP), nuclear concentration (MID) or N/C ratio (BOT) in each size bin. The error bars correspond to one standard
deviation in that bin. Tubulin signal is shown in red and YAP/TAZ in blue. C) Themes from the biological process noRedundent dataset enriched in the list of phosphopeptides
most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significant to DR < 0.05. D) Themes from the KEGG pathway dataset enriched in the list of
phosphopeptides most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significantto FDR < 0.05. E) A network of the interacting members of
the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the ‘EGFR tyrosine kinase inhibitor resistance’ KEGG pathway. Interactions were derived from
the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. F) Example
relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the ‘EGFR tyrosine kinase inhibitor resistance’ KEGG pathway. G) A network of
the interacting members of the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the ‘Focal Adhesion’ KEGG pathway. Interactions were derived from
the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. H) Example
relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the ‘Focal Adhesion’ KEGG pathway. 1) The effect of Binimetinib treatment on
YAP/TAZ whole cell and nuclear scaling in LM2 and 231 cells. Binimetinib increased the nuclear concentration of YAP/TAZ across all sizes in LM2 cells. Binimetinib had the
opposite effect in M231 cells. J) Representative images demonstarting the effects of binimetinib treatment on YAP/TAZ abundance and translocation. Scale bar denotes 50um,
YAP/TAZ in red, actin in green, DNA stain in blue.
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Figure 6: YAP/TAZ dilution behaviour is conserved across melanoma and RPE cells: A) YAP/TAZ concentration — size relationship across WM266-4, A375 and RPE1 cells. Top
shows whole-cell YAP/TAZ size scaling in the high (blue) and low (red) phospho-RB1 populations in untreated cells. The middle shows the same in the Palbociclib treated
context. The bottom directly compares YAP/TAZ size scaling in the high pRB1 populations in the Palbociclib treated and control cells. In all cases, the middle line represents the
mean value of cells about that size ‘bin’. The width of the shaded area relates to the standard deviation of cells in that same bin. B) The relationship between YAP/TAZ dilution
and DNA content across control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. C) Nuclear YAP/TAZ concentration
against cell size across DNA content in control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. D) Nuclear YAP/TAZ
across cell sizes compared across low DNA cluster Palbociclib treated (red) and control (blue) cells. In all three cell lines, Palbociclib increased the nuclear concentration of
YAP/TAZ across all cell sizes. E) Nuclear YAP/TAZ across cell sizes compared across low DNA cluster Binimetinib treated (red) and control (blue) cells. In WM266-4 and RPE1
cells, Binimetinib increased the nuclear concentration of YAP/TAZ across all cell sizes. It had no effect in A375 cells. F) Boxplots summarising the effects of Palbociclib and
Binimetinib at the population level on; cell area (left), whole cell YAP/TAZ (middle) and nuclear YAP/TAZ (right). G) Representative images of YAP/TAZ signal across cell lines in
each treatment. Colour is proportional to the YAP/TAZ intensity. H) Cartoon summarising the major findings of this section: Palbociclib/Binimetinib do not reduce whole-cell
YAP/TAZ despite increasing cell size because scaling is delayed to a larger size, this appears related to the phosphorylation of RB1 in these cell lines, the delay may give more
time for nuclear YAP/TAZ to accumulate.
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Rho GTPases, across 300,000 LM2 and MDA-MB-231 cells
(39). We focused on RhoGEF, RhoGAPs, and RhoGTPases
as these are well-established regulators of both YAP/TAZ
and cell morphology - thus are excellent candidates for genes
that may act to couple nuclear transport of YAP/TAZ to cell
growth. We also included in this screen siRNAs that targeted
YAP and TAZ, as well as components of the Hippo pathway
such as LATS1 and LATS2.

Identifying regulators of YAP/TAZ transport following
perturbation is complicated by the fact that any given gene
could potentially regulate YAP/TAZ concentration by affect-
ing volume, by affecting signalling that regulates transport,
or both. Conducting a scaling analysis on the untreated cells
(LM2 and MDA-MB-231 cells) (n = 80,000), we observed the
same whole cell YAP/TAZ concentration sub-scaling behavior
as in the prior analyses (b &~ 0.35). Similarly, the nuclear
concentration distribution remained approximately constant
with size, leading to an increase in average YAP/TAZ n/c
ratio driven by population-level cytoplasmic dilution.

Gene depletions did affect the nuclear and cytoplasmic con-
centration distribution of YAP/TAZ. For example, depletion
of genes such as SPATA13, RALBPI1, and BCR increased
average YAP/TAZ concentrations/n/c ratios for any given
cell size in MDA-MB-231 cells. Investigating more deeply, we
constructed partial least squares regression (PLSR) models
which predicted YAP/TAZ concentration and ratio in control
cells as functions of 114 measured morphological and intensity
features (methods) (Supp. Fig. 11/12). Calculating variable
importance to projection (VIP) scores from the model, we
observed that cell area (and associated correlates e.g., Nuclear
area, eccentricity, etc.) most contributed to the prediction of
YAP/TAZ concentration and n/c ratio (VIPscores > 1 are
considered major contributors to the model). We applied this
model to all treatment conditions (siRNA knockdowns) finding
that, even under perturbation, the size-YAP/TAZ n/c ratio
and concentration relationship persisted (Supp. Fig. 11/12).
Thus, the scaling of YAP/TAZ levels to size appears rarely
affected by perturbations which affect size, morphology, or Rho
GTPase pathway activation. While many siRNAs are affecting
the YAP/TAZ n/c ratio, often they are doing so through
manipulation of cell morphology and dilution of cytoplasmic
(and total) YAP/TAZ, rather than increasing the nuclear
concentration. These included genes canonically associated
with increased cell size, including ECT2 and RACGAPI,
known to induce cytokinetic failures and polyploidization when
depleted (53).

Using this framework, we could also investigate genes
that disrupt the coupling between YAP/TAZ and size; those
which are most poorly predicted by the model are those
which most perturb the relationship between YAP/TAZ and
cell morphology. The clearest ’hits’ across both cell lines
included YAP itself, the YAP regulatory kinases LATS1 and
LATS?2, as well as RHOA, HMHA1, and PIK3R2. Unique to
LM2 cells were ARHGAP33 and STARD13 whilst SOS2 and
ITSN2 perturbed the relationship only in MDA-MB-231 cells
(Fig.7A/B).

Focusing on MDA-MB-231 cells, LATS1/2 and HMHA1
interestingly exhibited a very similar behavior to that captured
by the model, in that they exhibited an increased cell area
and YAP/TAZ ratio, and decreased whole cell YAP/TAZ
concentration (Fig) However, these KDs led to an increase

in YAP/TAZ ratio beyond what would be expected from
an increase in size alone. Furthermore, LATS1/2 KD led
to a small decrease in the nuclear YAP/TAZ concentration
(Fig.7C). Together, we conclude these genes affect the cyto-
plasmic levels of YAP/TAZ both via control of morphology,
size, and signaling mechanisms (Fig.7C).

This phenomenon was not universal, however; several KD
states altered the YAP/TAZ ratio independently of cell area,
such as PIK3R2 and ITSN2 (Fig.7C). Interestingly, the reduc-
tion in YAP /TAZ ratio observed in these cases was nevertheless
associated with a loss of cytoplasmic rather than an increase in
the nuclear YAP/TAZ concentration. Importantly, this shows
that an increase in cell area is not the only way to achieve
a reduction in cytoplasmic YAP/TAZ concentration in this
system (e.g., Increased degradation). These genes could be
involved in directly regulating YAP/TAZ biosynthesis and/or
stability. Of our ’hit’ genes that increased YAP/TAZ n/c and
cell area, only RHOA depletion led to a decrease in YAP/TAZ
ratio, driven solely by a canonical reduction in nuclear, rather
than total, YAP/TAZ concentration (Fig.7C). It is unclear
whether RHOA depletion leads to an increase in YAP/TAZ
synthesis per cell size, such to offset the effect of size scaling
on the mean YAP/TAZ concentration, or whether it decouples
cell area from cell volume, leading to an anomalously high
spread area skewing the result. Indeed, such an effect may
underpin the behavior of PIK3R2/ITSN2 KD.

Together these data show that YAP/TAZ size-scaling
and concentration are remarkably robust to perturbations
in RhoGTPase signalling, in that only the depletion of
very few RhoGEF/GAPs disturbed YAP/TAZ in a way
inconsistent with the concomitant change in cell morphology.
However loss of the core Hippo effectors, LATS1/2, and
a master contractility regulator, RHOA (amongst others)
successfully altered the relationship between cell morphology
and YAP/TAZ regulation. Stable expression of these genes
may be vital to maintaining a constant nuclear YAP/TAZ
concentration distribution, and therefore signal sensitivity, as
a cell grows.

2. Discussion

Here we have shown that cytoplasmic YAP/TAZ are sub-
scaling molecules across cell types; specifically, diluting in
G1, undergoing a surge in synthesis near S-phase before
diluting again in G2. This is not unique to YAP/TAZ; seminal
work on size-scaling phenomena showed that RB1 (and the
associated Whi5 in yeast) exhibits extremely similar behaviour.
However, unlike YAP/TAZ, RB1 is not continually synthesised
throughout the cell cycle/across sizes ('b’ abundance 0.15
vs 0.4-0.6 for YAP/TAZ) (4, 5, 15). The concentration of
RB1 is, therefore, more directly controlled by changes in cell
volume, befitting of its putative role as a size-sensor, whereas
the YAP/TAZ concentration is complicated by biosynthetic
regulation.

That nuclear YAP/TAZ concentration distribution did
not change across cell size bins suggesting that YAP/TAZ
signalling is largely constant across small and large cells during
proliferataion. That is, YAP/TAZ signalling is robust against
changes in cell size occurring throughout a division cycle. Such
robustness is not a rare phenomenon in biology, indeed, recent
works developing models of biological signalling networks have
observed remarkably low parameter sensitivity (54-57). A
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Figure 7: Dilution of cytoplasmic YAP/TAZ drives increasing nuclear/cytoplasmic ratios following gene depletion A(top left)) The relationship between the squared YAP/TAZ
concentration (Z-score) and squared model error (Z-score) for each knockdown state in LM2 cells. The colour and size of each datapoint corresponds to the distance from the
origin. A(bottom left)) The relationship between the squared YAP/TAZ concentration (Z-score) and squared model error (Z-score) for each knockdown state in M231 cells. The
colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom in on the red marked region. We note a strong overlap in hits across the two cell
lines. A(top right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in LM2 cells. KDs affecting YAP/TAZ ratio are not

redundant with those affecting concentration. The colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom in on the red marked region.

A(bottom right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in M231 cells. The colour and size of each datapoint
corresponds to the distance from the origin. Inset: zoom in on the red marked region. B) A guide to the regions of the graphs shown in ’A’. C) Comparisons of YAP/TAZ
concentration, YAP/TAZ nuclear concentration, YAP/TAZ N/C ratio and cell area across knockdown states by an N-way ANOVA test (n = 200 for control, 4 for all else, ** denotes
P < 0.01).
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particularly striking example can be found in a model of the
Drosophila segmentation network where, across 48 parameters
and two orders of magnitude, if a parameter was assigned a
random value, there was a 90% chance that it was associated
with a functional network (58).

Amongst other mechanisms, a biological system may
achieve robustness through adaptation (57). When investi-
gating the signalling differences in cell lines with high/low
average nuclear YAP/TAZ, we found that the expression
of phosphopeptides relating to nuclear transport, adhesion
and RTK-MAPK signalling best explained the differences,
suggesting that these signalling systems may ’adapt’ (are
up/down regulated with increasing size over generations) to
the depleting YAP/TAZ pool. Indeed, an increased activity
of nuclear transporters (and decreased activity of exporters)
with increasing size provides an intuitive explanation for how
a constant nuclear concentration distribution, sustained by
continual import, could be maintained under a falling cytoplas-
mic concentration. Indeed, XPO1 Ser1055, a phosphopeptide,
upregulated in lines with a lower mean nuclear concentration, is
an activated species known to control the export of YAP/TAZ
(41, 42). Furthermore, conformation changes in nuclear pores
have been shown to stimulate YAP/TAZ entry into the nucleus
(59, 60). This can also be driven by increasing nuclear size
and thus cell spreading and growth, imparting stress on the
nucleus through cytoskeletal connections to the cell body,
and may even be sufficient to sustain the nuclear YAP/TAZ
concentration as the cell expands (61).

When perturbing MAPK and CDK4/6 activity, we observed
an increase in the mean nuclear YAP/TAZ concentration per
cell size. This may relate to YAP/TAZ’s role in prompting
resistance to BRAF-MEK blockade. (62-67). As Binimetinib
and Palbociclib exhibited similar effects, is it likely that
MAPK’s role in promoting proliferation regulates nuclear
YAP/TAZ. As neither treatment tangibly effected the scaling
factor of the nuclear YAP/TAZ concentration, it is unlikely
that MAPK signalling is dynamically regulated with increasing
cell size to maintain robust signalling, but rather, determines
the mean nuclear concentration to be maintained (and thus
the nuclear concentration distribution across the population).
Focal adhesion/mechanosignalling events may play a similar
role. Indeed we did not observe any clear change in the
’scaling factor’ of nuclear YAP/TAZ following depletion of
many RhoGEFs and RhoGAPs which couple adhesion to
signalling and morphogenesis, but only changes to the absolute
quantity of YAP/TAZ per cell size.

Our theoretical model, integrating stochastic cell division
with YAP/TAZ size scaling, revealed that more severe protein-
size scaling results in a greater variance in the proteins
concentration distribution; this may have drastic consequences
for the cytoplasmic functions of YAP/TAZ; for example,
YAP/TAZ has been shown to influence the spindle assembly
checkpoint, potentially through its interactions with BUBR1
(68). Moreover, cytoplasmic YAP/TAZ is known to be a core
component of the CTNNB1 destruction complex (69, 70). As
YAP/TAZ and CTNNBI co-operate as transcription factors
in the nucleus (64, 71), this suggests that the cytoplasmic
dilution of YAP/TAZ may also indirectly influence its nuclear
activity in accordance with the putative importance of the
YAP/TAZ nuc/cyto ratio (72-74).

Together, these data show that that YAP/TAZ can dilute
as the cell increases in size. Remarkably, the nuclear concen-
tration distribution is insensitive to the effect, demonstrating
that cells have developed systems to mitigate the influence
of protein dilution beyond just regulating their size. Such
mechanisms may be crucial in overcoming the emergent
heterogeneity associated with sub/super scaling behaviour
across division cycles and for maintaining robust signalling
throughout the cell cycle.

Materials and Methods

A. Cell Culture. The following human breast cell lines were investi-
gated (novel in this study). T-47D and BT-474 were obtained from
Nicholas Turner (ICR, London), SKBR3 cells were a kind gift from
the laboratory of Olivia Rossanese (ICR), MDA-MB-468 cells were
a kind gift from George Poulogiannis (ICR), MDA-MB-231 were
obtained from Janine Erler (University of Copenhaguen, Denmark)
, LM2 cells (a highly metastatic subpopulation 4175 from MDA-
MB-231, (38)) were obtained from Joan Massagué (Sloan Kettering
Institute, New York), while SUM159 were a kind gift from the
laboratory of Rachel Natrajan (ICR). All the above cancer cell
lines were grown in Roswell Park Memorial Institute (RPMI)-1640
culture medium (Gibco) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) and 1% penicillin/streptomycin. MCF10A
cells were obtained from ATCC and were engineered to express
endogenous mRuby-tagged PCNA (75). They were grown in
DMEM/F12 supplemented with 5% horse serum, 10 pg/ml insulin,
20 ng/ml epidermal growth factor, 100 ng/ml cholera toxin, 500
ng/ml hydrocortisone, and 1% penicillin/streptomycin.

All the cell lines were grown at 37°C and supplemented with 5%
COg2 in humidified incubators. The passage was carried out using
0.25% trypsin-EDTA (GIBCO) followed by centrifugation (1000
rpm, 4 min) and resuspension in a complete medium. Cell counting
was performed using Countess automated cell counter with trypan
blue exclusion (Thermo).

Cells were confirmed to be mycoplasma-negative (e-Myco plus
Mycoplasma PCR Detection Kit, iNtRON Biotechnology).

WDMs, a375, and RPEs cells were maintained in standard
culture conditions (DMEM+10% FBS, vessel: Corning® Primaria™
25cm? Rectangular Canted Neck Cell Culture Flask with Vented
Cap, PN: 353808). Passage was carried out using 0.25% trypsin-
EDTA (GIBCO) followed by centrifugation (1000 rpm, 4 min) and
resuspension in complete medium. Cell counting was performed
using Countess automated cell counter with trypan blue exclusion
(Thermo).

Prior to imaging/ proteomic analysis, cells were plated at day 0
in either 384-well PerkinElmer PhenoPlates (black, optically clear
flat-bottom for imaging) or T175cm flasks for proteome analysis.
For 384 wells the cell densities used per well were: T-47D (1200
cells), BT-474 (2400 cells), SKBR3 (2200 cells), 468 (1000 cells),
231 (800 cells), LM2 (800 cells), MCF10A (400 cells), and for the
proteomics experiments they were scaled according to the surface
area of the vessel used. Following three days of incubation in
the above growth media, cells were either fixed in pre-warmed
4% formaldehyde (ThermoScientific) in PBS for 15 min at room
temperature (image analysis) or collected in a pellet for proteomics
analysis.

B. Immunostaining. After fixation, cells were washed three times in
PBS and then permeabilised in 0.2% Triton X-100/PBS solution
for 15min at RT. Following three washes in PBS, cells were blocked
for 1h in 2% bovine serum albumin (BSA) (Sigma)/PBS solution
at RT. When using both mouse and rat primary antibodies in the
same sample, sequential immunostaining was performed to avoid
any antibody cross-reactions. Typically co-immunostaining with a
mouse, rat and rabbit antibody was used. After the Block step, BSA
was removed and the desired mouse primary antibody was added
in Antibody solution (0.5%BSA/0.01% Triton X-100/PBS) at the
indicated dilutions: YAP (G6) (Santa Cruz, 1:100), YAP/TAZ [67.3]
(Santa Cruz, 1:1000). All the primary antibodies immunostainings
were performed overnight at 4°C. Then cells were washed three times
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in PBS and incubated with a goat anti-mouse antibody 1:1000 in
Antibody solution for 2h at RT. Cells were washed three times in
PBS and incubated with a rat anti-tubulin alpha antibody (Bio
Rad, 1:1000) and an anti-rabbit primary antibody when applied,
for 2 hours at RT. The anti-rabbit primary antibodies were used
at the indicated dilutions: TAZ (V386) (Cell Signalling, 1:200),
Anti-PhosphoRB (Abcam, 1:1000). Then cells were washed three
times in PBS, and incubated for 2h at room temperature with a goat
anti-rat antibody and/or a goat anti-rabbit antibody or Alexa-488
phalloidin (Invitrogen) if needed. Finally, to stain nuclei, 5 mg/ml
Hoescht (Invitrogen)/PBS solution was carried out for 15min at RT.
384-well plates were sealed for imaging with an Opera Cell:Explorer-
automated spinning disk confocal microscope (PerkinElmer) or
Opera Phenix (PerkinElmer) in the magnification indicated in the
figure legends. At least twenty fields at random positions per well
of a 384-well plate were imaged.

For the cell cycle experiments in MCF10A cells, samples were
fixed in freshly prepared 4% PFA/PBS for 15 minutes. Cells were
subsequently permeabilized with 0.25% Triton/PBS for 10 mins and
blocked with 0.5% BSA/0.02% glycine/PBS for 30 minutes. Primary
antibodies CCNA2 (Abcam, ab181591, 1:250) and YAP/TAZ (Santa
Cruz, SC-101199, 1:250) were introduced via the same solution and
left on for 1 hour at room temperature or overnight at 4 degrees.
The plates were washed with PBS and the same was carried out for
the secondary antibodies (Alexa fluor conjugated goat anti-mouse
or anti-rabbit, 1:500) for 1 hour at room temp in PBS. Hoechst
stain was added post-secondary (1:500) to stain DNA. Plates were
imaged as above using the Opera Cell:Explorer with 20X objective
lens (NA = 0.45).

C. Image Acquisition and Feature Extraction. Image acquisition and
cell segmentation was performed using Columbus high-content image
analysis software or Harmony software. Nuclei were segmented using
the Hoechst channel. Cell bodies were segmented using the tubulin
channel. The perinuclear region was used to measure cytoplasmic
antibody intensities. The cell-cell contact area (Neighbour fraction)
was determined using an inbuilt Columbus algorithm ‘Cell Contact
Area with Neighbors [%] expressed as the Percent of the object
border that touches a neighbor object. The border objects were
removed from the analysed cells considering only cells completely
imaged. Mitotic cells were filtered using a combination of Hoechst
intensity mean and Hoechst intensity maximum and excluded of
all the analysis of this study. Geometric features measured include:
the area of all subcellular regions; the length, width, and elongation
(length/ width) of the cell and nucleus, cell and nuclear roundness
and nucleus area/cytoplasm area.

D. Scaling Analysis. We conducted k-means clustering on the
integrated Hoescht intensity of each cell line against nuclear area
across k = 1:8. k was calculated using the elbow method and
augmented with the additional constraint that cluster centroids
should be separated by a factor of 2x, where x = 1:k. This way,
the first cluster approximates 2n G1, the second 2n G2/4n G1 and
so on. The YAP/TAZ - size relationship in each DNA-cluster was
treated as a power law such that:

Y] = aA®

Where; [Y] represents YAP/TAZ concentration, 'A’ cell area,
and ’a’ and b’ are constants. The scaling factor, ’b’ and ’log(a)’
was extracted by conducting a linear fit on:

log([Y]) = log(a) + blog(A)
Which results from a simple manipulation. The factor by which
’a’ increases across DNA groups is trivially retrieved by:

10g2(an+1)'_10g2(an) =, an+1/an =2%

Examining the logarithmic derivative of [Y], we noticed that
’b’ was not constant across the entire size range captured in our
populations, although was over an 8-fold size difference about the
mean. To avoid this complicating our analysis, we conducted the
linear fits on the data within three standard deviations of the mean.
Linear fitting, clustering, and data handling were conducted in the
MATLAB R2019b (Mathworks) environment.

E. Calculating Cell Area Distributions. Cell area distributions were
derived from a simple adder system we published in a previous study
(9). Briefly, we considered the probability of a cell advancing to the
next cell cycle stage at any given time, P, and the cell’s growth rate,
3, as proportional to the area at which it divided in the previous
cycle:

P=ady, fB=kAy

Where ’a’ and ’k’ are proportionality constants. From these two
rules, it can be shown that in each cell cycle stage, the cell gains a
random amount of mass drawn from a size-invariant exponential
distribution centred on k/a, R(A), resulting in adder-like behaviour:

_—ln(l-ady)  «a
T Agkln(2)  In(2)k

R(A) = Ae™ M

The division area distribution, H(A), results from the convo-
lution of the birth distribution B(A) with R(A) 'n’ times, where
n is the number of cell cycle stages. Assuming symmetrical cell
division, the subsequent B(A) (in the next cycle), is given as H(2A).
This is then again convolved with R(A), and so on, resulting in a
hypo-exponential distribution of general form:

S

J(:Jc,n)=z Hﬁ Aie Ni®

i=1 Li#j

Substituting our values for a one-stage cycle system:

n

1 a
74,8 = ] | —
(4,5) 1+2i— | 202k

i=1 Lizj

—aA/ (2% In(2)k)

The n-stage distribution is obtained by first substituting A for
nA:

S

1 no
G(A, S,n) = S
(A.sm)=3] H1+2H 2 In(2)k

i=1 Li#j

—naA/(28 In(2)k)

And convolving G(A, S,n) with itself 'n’ times:

J(A,S,n) = F~1 H F(G(A, S,n))
=1

Where "F(c)’ denotes the Fourier transform of ’c’ and / F(—1)(c)’
the inverse. Here we have leveraged the convolution theorem
to express the convolution as a multiplication in Fourier space.
For calculation, the initial cell area distributions are considered a
delta function centred on In(2)k/a (the mean of R(A)). Every
generation, the area distribution is convolved with the mass-
gain distribution, R(A), 'n’ times, computed by performing an
inverse Fourier transform on the product of the two distributions’
respective Fourier transforms. This produces the division area
distribution, Ad(A), which must be transformed to Ad(2A) to
capture the effects of cell division. We perform this by setting
Ab(Az) = Ad(Ai) + Ad(Ai + 1), where I’ = xn-xn-1 for all z,
where Ab denotes the birth size distribution. This is then convolved
with the gain distribution as before to generate the next division
distribution and so on until a desired number of generations has been
reached. For each, we calculated the Kullbeck-Liebler divergence
between the experimental and simulated data to assess model error.
For discrete probability distributions defined on the same probability
space, X, the Kullback—Leibler divergence from P to Q is:

Dk (PEQ) = Z P(z)logyg <gg;)

zeX

Model fitting was conducted within the commercial MATLAB
R2019b (Math Works) software’s machine learning toolbox.
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F. Calculating YAP/TAZ Concentration Distributions. We computed
the dilution factor distribution for an initial size condition, con-
strained such that the cell begins the simulation at its ‘expected
size’ within our 2-stage adder proliferation model framework:

_w __w
T AdT T 4In(2)

Where ’w’ is an arbitrary constant. These parameters are used
to compute an initial dilution factor distribution:

Ad=<A>, «

—In(1 — aAd)(1 — aAd)(~ In(D)/bk)
Dbk

From which we compute the product distribution (assuming
identical cell cycle stages):

P(D) =

1
F(z) = / P(D)P(z/D)%dD

—In(2) In(1 — 0 Ad)?(1 — aAd)~ n(2)/0k
b2k2z
Where we assume that the cell grows approximately equal
amounts in G1 vs G2. We then draw from this distribution,

obtaining a dilution factor ‘d’, by passing a uniformly distributed
random number through the inverse of F(z), defined as:

1
G’(z):/ F(z)dz
0

We multiply the initial YAP concentration by ‘K*d’ to generate
the starting YAP concentration for the next cycle. ‘K’ is taken
from the size-K curve experimentally measured. From this, we also
calculated the size change needed to generate 'd’ as:

F(z) =

Ad
AA=—In(1/d
- In(1/d)

From which we trivially update Ad:

1
Ady 1 = 5 Ady + AA

This now facilitates re-calculation of P(D), F(z), etc. for
the next generation, and the cycle is repeated for 10 generations
to generate one sample YAP concentration for the cell line.
The process is repeated 1000 times to generate a YAP/TAZ
concentration distribution for each line, which is compared to the
experimentally determined YAP/TAZ intensity distributions via
the KBL divergence.

G. Calculation of the Coefficient of Variation of F'(z). To calculate
the coefficient of variation of F(z), we first derived the mean:

1 In(1 — aAd)?
(F(2)) :/O 2F(z)dz = (In(1 — aAd) — bk)2 (

Where we have expanded about o = 0. The variance is given as:

aAd ) 2
aAd + bk

1
<wm»:/z%mw—ﬁ
0

~( aAd )2 ( aAd )4
"~ \aAd + 2bk aAd + bk

‘Where we have made the same simplification. From these, we
obtain the coefficient of variation as:

oV ~ \/( aA(fifgbk ) - ( agffbk )4

( aAd ) 2
«Ad+bk

H. PLSR and Hit Detection. Regression analyses were conducted with
the MATLAB (MathWorks) environment using the plsregress
function from the machine learning toolbox. Partial least squares
regression was selected as the method to help mitigate the influence
of co-linearity in the predictor dataset. Model components were
selected through 10-fold cross-validation using the elbow method
on the mean square error as a function of component number.

For the RNAIi screening data, all 114 shape features were
mean-centered prior to model construction. Models were built
from control data and applied to the combined knockdown-control
state. Fit quality was assessed through the r-squared metric.
Linear models (predicted vs observed) were visualized through
the ‘dscatter’ function. Z scores were calculated for the difference
between observed and predicted YAP/TAZ ratios/abundances and
the increase/decrease from the mean YAP/TAZ ratio/abundances.
Knockdown ‘Hits’, those which decoupled, were selected from this
analysis as knockdown states achieving an average Z — score > 2
(two standard deviations from the mean).

For the proteomic analysis, phosphopeptide abundances were
adjusted to reflect ‘excess’ phosphorylation given the total expression
of the peptide. To do this, a regression model was constructed for
each gene relating phosphopeptide and peptide abundance. The ad-
justed phosphopeptide abundance was taken as the phosphopeptides’
deviation from this regression model.

I. Feature Importance to PLSR Models. The influence a feature has on
a model was estimated through ‘Variable importance to projection’
(VIP) scores calculated as:

S w2 SSYy T

VIP; =
SSYtotal - F

Where w r is the weight value for the j variable and f component,
SS8Y; is the sum of squares of explained variance for the fth
component, J number of X variables, and SSY;,tq; is the total
sum of squares explained of the dependent variable, and F' is the
total number of components. Features with a VIP score greater
than 1 were taken as major drivers of the models.

J. Linear Classifier. For the cell cycle experiments in MCF10A cells
(engineered to express endogenous mRuby-tagged PCNA) we used
a manually trained linear classifier. Cell cycle classification was
performed using Columbus (PerkinElmer). We used a combination
of thresholding and linear classifiers based on nuclear morphology
and DNA, CCNA2, and PCNA intensity and texture features.
Classification was performed sequentially by manual annotation to
divide and further subdivide cell cycle stages. First, nuclei and cell
bodies were segmented using the DNA and YAP/TAZ channels and
cells touching the border were removed. Then mitotic nuclei were
distinguished from interphase nuclei based primarily on DNA, PCNA
and morphology features using a manually trained linear classifier
(most relevant features: nucleus DNA texture Bright/Edge/Ridge,
PCNA intensity, nucleus area/roundness/width, nucleus DNA
intensity). Interphase nuclei were thresholded based on mean
nuclear PCNA intensity, with PCNA- nuclei classed as GO. PCNA+
nuclei were divided into CCNA2+ and CCNA2- subpopulations
based on mean nuclear CCNA2 intensity and PCNA+/CCNA2-
cells were classed as G1. PCNA+/CCNA2+ cells with low mean
CCNA2 intensity (first quartile) were classed as Early S-phase.
The remaining cells were finally divided into S and G2 classes
using a manually trained linear classifier. During S-phase, PCNA
goes from being uniformly distributed in the nucleus to having
a progressively more punctate or spotty appearance as DNA
replication proceeds. The PCNA texture linear classifier was
manually trained on PCNA+/CCNA2high cells (most relevant
features: PCNA texture Edge/Saddle/Ridge/Haralick Homogene-
ity/CV, mean nuclear CCNA2 intensity, mean perinuclear ring
region CCNA2 intensity). “Spotty” nuclei classed as S-phase and
“smooth” nuclei classed as G2. YAP/TAZ intensity features were
not included in the spotty/smooth linear classifier. Integrated
DNA intensity (i.e. total amount of DNA) was not included in the
spotty/smooth linear classifier but was used post-hoc to verify S
versus G2 classification.
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K. Cell preparation and proteomics analysis of the Breast cell lines.
Cells were plated at day 0 as stated above and collected 72h
later by trypsinization. After resuspension in growth media and
centrifugation, media was removed and 1mL of cold PBS was added.
Then one million of viable cells per cell line (by duplicate) was
transferred to low binding tubes and washed 2 x with cold PBS
to a final pellet that was flash frozen with 70% ethanol and dry
ice. Cell pellets were lysed in 1% sodium deoxycholate (SDC),
100 mM triethylammonium bicarbonate (TEAB), 10% isopropanol,
50 mM NaCl buffer freshly supplemented with Halt protease and
phosphatase inhibitor cocktail (100X) (Thermo, 78442), 5 mM tris-
2-carboxyethyl phosphine (TCEP), 10 mM iodoacetamide (IAA)
and Universal Nuclease (Pierce) followed by bath sonication for
5 min and incubation at room temperature for 45 min. Protein
concentration was measured with the Quick Start Bradford protein
assay. Aliquots of 60 g of total protein were digested overnight with
trypsin (Pierce, ratio 1:20) and labelled with the TMTpro multiplex
reagents (Thermo) according to manufacturer’s instructions. The
peptide mixture was fractionated with high pH Reversed-Phase
(RP) chromatography using the XBridge C18 column (2.1 x 150
mm, 3.5 m, Waters) on an UltiMate 3000 HPLC system over a 1%
gradient in 35 min. Mobile phase A was 0.1% (v/v) ammonium
hydroxide and mobile phase B was 0.1% ammonium hydroxide
(v/v) in acetonitrile. Phosphopeptide enrichment was performed
with the High-Select™ Fe-NTA Phosphopeptide Enrichment Kit
(Thermo) using a modified protocol in a well plate array format.
A volume of 50 L resin/buffer was transferred on top of 10 L
filter tips that were fitted on a 96-well plate using a suitable tip
rack. The resin was washed three times with 40 L wash/binding
solution and centrifugation at 500 g for 1 min. Peptides were
reconstituted in 30 L wash/binding solution and were loaded onto
the tip-columns with the resin. After 30 min, the flow-through (FT)
from three washes with wash/binding solution were collected in a
clean 96-well plate with centrifugation at 500 g for 1 min each time.
Phosphopeptides were eluted twice with 40 L elution buffer in a clean
96-well plate with centrifugation at 500 g for 1 min, transferred in
glass vials (Waters, P/N 186005669CV) and SpeedVac dried. Both
the flow-through solutions and IMAC eluents were subjected to
LC-MS analysis for bulk proteome and phosphoproteome analysis
respectively. LC-MS analysis was performed on an UltiMate 3000
system coupled with the Orbitrap Fusion Lumos Mass Spectrometer
(Thermo) using an Acclaim PepMap, 75m x 50cm C18 capillary
column over a 95 min (FT) or 65 min (IMAC elution) gradient. MS
spectra were collected with mass resolution of 120k and precursors
were targeted for HCD fragmentation in the top speed mode with
collision energy 36% and IT 54 ms (FT) or 100 ms (IMAC elution)
at 30k Orbitrap resolution. Targeted precursors were dynamically
excluded from further activation for 45 or 30 seconds. The Sequest
HT engine in Proteome Discoverer 2.4 (Thermo) was used to
search the raw mass spectra against reviewed UniProt human
proteins. The precursor mass tolerance was set at 20 ppm and the
fragment ion mass tolerance was 0.02 Da. TMTpro at N-terminus/K
and Carbamidomethyl at C were defined as static modifications.
Dynamic modifications were oxidation of M and deamidation of
N/Q as well as phosphorylation of S/T/Y for the phosphoproteome
analysis. Peptide confidence was estimated with the Percolator node
and peptide FDR was set at 0.01. Only unique peptides were used
for quantification, considering protein groups for peptide uniqueness.
Peptides with average reporter signal-to-noise greater than 3 were
used for protein quantification.

L. Gene Set Enrichment Analysis:. GSEA was conducted using
the ‘WebGestalt’ web application on our ranked list of peptides
(VIP-Score defined the rank) (76). We used the ‘pathway’ and
‘noRedundent Biological process’ enrichment categories to identify
enriched themes/pathways in the high and low scoring peptides.
Parameters used: Minimum IDs per category =5, max = 10000,
permutations = 1000. Enrichments with a false discovery rate <
0.05 were taken as ‘hit’ themes and/or pathways.

M. Drug treatments:. 231 and LM2 were plated in 384 wells and
treated with 10uM of Binimetinib or DMSO. 24h after cells were
fixed in pre-warmed 4% formaldehyde (ThermoScientific) in PBS
for 15 min at room temperature. For the Palbociclib experiments

in LM2, the drug was used at 0.5 uM for 24h hours prior to
formaldehyde fixation, immunofluorescence, and image analysis.
For the experiments in melanoma cells and RPEs 0.33uM
Palbociclib and 0.25uM Binimetinib were added to the cell cultures
and incubated for a duration of 72 hours. Following the treatment,
the cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes at
room temperature. Primary antibody staining was performed using
a dilution of 1:1000 for YAP/TAZ and 1:1000 for pRB. Secondary
antibody staining was conducted using a dilution of 1:500. All

antibody stains were incubated overnight at 4 degrees Celsius.
N. Data Availability. Image datasets for the cell lines used
for morphological profiling are available from: DRYAD:

http://dx.doi.org/10.5061/dryad.tc5g4.
Image Data Repository (http://idr-
demo.openmicroscopy.org/about, accession number S-BSMS6)
Biostudies database (https://www.ebi.ac.uk/biostudies/studies/S-
BSMS6).
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Supplemental Information

A guide to the datasets used in this study:

YAP/TAZ concentration decreases with increasing cell
size: Sero et al, mol sys bio, 2015

YAP/TAZ abundance, concentration, and N/C ratio
scaling are insensitive to cell crowding: Sero et al, mol
sys bio, 2015

YAP/TAZ concentration, but not scaling, is sensitive to
DNA-content and cell cycle progression: Sero et al, mol
sys bio, 2015 / Sero novel to this study

A constant nuclear concentration of YAP/TAZ is main-
tained across cell sizes despite whole cell dilution: Sero
et al, mol sys bio, 2015

the nuclear YAP/TAZ concentration is associated with
altered RAS and nuclear transport signalling processes:
M. Arias-Garcia, M.Beykou, novel to this study

YAP /TAZ dilution behavior is conserved across melanoma
and RPE cells: L.Dent, T. Pal Chaudhuri, novel to this
study

231/LM2 after the MEKi and LM2 after the CDK4/6
inhibitor. M.Arias-Garcia, novel to this study

Integration of YAP/TAZ size-scaling and stochastic cell
division fosters YAP/TAZ heterogeneity: Sero et al, mol
sys bio, 2015

YAP/TAZ scaling behavior drives
clear /cytoplasmic ratios following gene
P.Pascual-Vargas, Scientific data, 2017

increasing nu-
depletion:

A. YAP/TAZ abundance, concentration and N/C ratio scaling
are insensitive to cell crowding. Cell size and YAP/TAZ
activation have previously been associated with cell crowding,
cell-cell adhesion, and contact inhibition (34). In our cell
lines, cell area negatively correlated with neighbour fraction
(NF), raising the possibility that the observed YAP/TAZ sub-
scaling was driven by the NF (Supp.Fig.3). To investigate
this, we first quantified the extent to which YAP/TAZ scaled
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with NF, noticing a strong positive association at high NF’s
(0.4 -1), in accordance with the area correlation. However,
when clustering the cells on NF, and conducting a scaling
analysis between YAP/TAZ concentration and cell area within
each NF group, we observed no change in the YAP/TAZ
concentration per size or ‘b’ across clusters (Supp.Fig.3). We
conducted the same analysis for YAP/TAZ abundance and
nuclear/cytoplasmic ratio, noting the same effect, with the
exception that MCF10A’s YAP/TAZ N/C ratio exhibited a NF
sensitivity (Supp.Fig.3) as is consistent with previous works
(22). From these data, we concluded it is the NF’s influence
on cell area that is driving the NF-YAP scaling relationship
rather than any direct effect of NF on YAP/TAZ in these
lines.

B. YAP/TAZ scaling behavior is consistent with a dilution-syn-
thesis-dilution scheme. Theoretically, we assume a two-stage
system. Through stage 1 ( G1), the cell area increases by a
factor of x, and in the subsequent stage ( G2), by a factor 2/x
(such that the cell doubles in size across a cell cycle). The
expected dilution factor, Fg1, of YAP/TAZ through S1 as:

YAPare = aA(0)°5!,  YAPs; = aA(ts1)"s? = a(Age"s1)P61

aA() bs1 1
aAgektsi © ebsiktsy

YAP
Fen st (

- YAPstart B

Although a suitable value of k, between stage synthesis, can
mitigate any value of scaling factor, the DSD system does not
behave identically for any valid parameter combination. This
can be seen by integrating the DSD model with a simple adder
system (9). Within this framework, the cell is considered to
have a probability to advance cell cycle stage proportional to
its division size:

P = (114div

Leading to a cumulative distribution function for the prolifer-
ation time distribution given as:

fi(Adivvt) =1- (1 - OCAdiv)t

Expressing the proliferation time distribution in terms of the
dilution factor D:

P(ng):P(igd):P<_22D§t)

- () -

d In(1 - ady) (1 — adq) o

_ o —InD _ —In — Ag — Ag °
P(D) = gp (1 —ady) 0 = Dbk

We obtain the probability distribution of dilution factors.
As two dilution events happen in sequence, we are interested
in the product distribution of P(D) and a second dilution
event governed by a distribution G(D) given as:

F(z) = /: P(D)G (%) %dD, st. D>z

C. YAP/TAZ scaling rate is a function of cell size. While we
observed clear sub-scaling behavior when investigating the
average scaling factor of YAP/TAZ with cell size, we were
interested in how this extended to the case where the scaling
factor b is treated as a continuous function of cell size, b(A).
We extracted b(A) by taking the logarithmic derivative of
YAP/TAZ concentration with respect to the cell area:

_ dlog,([YAP/TAZ])
a dlog,(A)

b(A)

Strikingly, no cell line exhibited a constant scaling factor.
Scaling factors (b) tended to be lower in small cells and
steadily decreased with increasing cell size (within a cell line);
however, in several lines, this relationship would reverse at
larger sizes, with further increases in area leading to weaker
sub-scaling. This extended to both the G1 and G2 populations.
Remarkably, in a subset of our lines (e.g., HCC1954, MDA-MB-
231), YAP/TAZ concentration even positively scaled with cell
size at small sizes. Although, this effect was limited to G1 cells
(Supp. Fig. 10) implying the existence of an area-dependent
scaling trigger.

To understand how significant size-variable scaling is to
the functioning of the cell, we calculated the range of scaling
factors that occur over the most common size ”"bands,” which
we define here as the mean G1/G2 sizes +/- 1 std deviation.
Calculating this for the G1 cells, we observed that 5/9 of our
cell lines exhibited only a modest variation in the scaling factor
within this size constraint (stddev = 0.03-0.08). However, the
remainder showed far more extreme variations (stddev = 0.14-
0.17) leading to an approximate 2-fold change in scaling factor
b across the size range (Supp. Fig. 10). The mean scaling rate
was approximately constant across cell lines (-0.4 - -0.5). In
the G2 group, the variation in scaling rate increased (std =
0.10-0.18) for all lines, and the mean scaling rate significantly
decreased for only a subset (Supp. Fig. 10). Thus, the
YAP/TAZ scaling factor varies within relevant size ranges and
should not be considered a constant.

We also investigated how the fold difference in YAP/TAZ
concentration between 'G1’ and G2’ cells, K, varied with
cell size. In most (7/9) of our cell lines, K was found to
decrease with increasing cell size; at small sizes (mean size —
2std deviations) taking values between 1.3-1.6, and at larger
sizes (mean size + 2std deviations), 1-1.3 (Supp. Fig. 10).

Together, these data show that the scaling of YAP/TAZ
with cell size is not static but changes dynamically with cell size
within relevant size ranges in both G1 and G2 cells. This size-
dependence extended to the fold-change across DNA-contents,
K, suggesting that the size at which a cell passes the G1/S
checkpoint informs the scaling and production of YAP/TAZ
across subsequent cell cycle stages and potentially, generations.

D. An increased nuclear YAP/TAZ concentration correlates
with a reduction in the YAP/TAZ scaling factor. We noticed
that lines exhibiting super-scaling behavior in their nuclear
YAP/TAZ concentrations at small cell sizes were those with
the most variable scaling factors. To investigate this, we began
by assuming a linear relationship between the scaling factor b
and the logarithm of the nuclear YAP/TAZ concentration:

_ dlogy([Y])

bA) = G 7 = mloga([Y]w) + e
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2233 Where p and c¢ are constants to be determined through fitting 2095
2034  to the experimentally determined b(A) and Y. As b(A) and 2006
o35 Yo vary with size only at very small sizes, when fitting to 2097
o036 this equation, we considered only cells meeting the criterion 2098
2037 Ac < (A) — o, where (A) is the mean cell area and o is the 2009
o038 standard deviation. This avoided the greater density of points 2300
2039 at a constant b and Y, from skewing the calculation. We used 2301
o040 €qu.S9 to calculate the expected scaling rate at each cell area 2302
22417 and found excellent agreement with that measured (Supp. Fig. 2303
o042 12). Importantly, while an increase in nuclear YAP/TAZ leads 2304
2043 1O a decrease in scaling factor, a decrease in YAP/TAZ leads 2305
o044 10 an increase in scaling factor (see SUM149 and MDAMB157 2306
2045 Supp. Fig. 12). This suggests that the effect is not driven 2307
o046 Dy a correlate of YAP/TAZ import but by a correlate of the 2308
o047 nuclear concentration itself. 2309
2048 This effect did not extend across lines; higher nuclear 2310
2049 YAP/TAZ concentrations did not lead to lower scaling factors. 2311
o250 Instead, scaling factors were more associated with higher 2312
2251 YAP/TAZ ratios. The direction of causality is unclear, but it 2313
o052 is plausible that higher scaling factors induce greater ratios by 2314
2053 virtue of reducing the cytoplasmic YAP/TAZ concentration 2315
2254 (SUPP~ Fig. 12)~ 2316
2055 Together, this suggests that the correlation between the 2317
2056 nuclear YAP/TAZ concentration and scaling factor may 2318
o057  emerge from a co-dependence on an unseen cryptic variable 2319
20ss  rather than any direct effect of the nuclear YAP/TAZ 2320
o259 concentration. Indeed, as Palbociclib treatment increases 2391
2060 nuclear YAP/TAZ whilst delaying whole cell dilution to larger 2302
oos1  Sizes, it is likely that the correlation between the nuclear 2303
2062 YAP/TAZ concentration and the scaling factor emerges from 2304
263 nuclear translocation occurring before division commitment 2305
oes and that same commitment triggering whole-cell dilution. 2326
2065 However, we cannot yet exclude the possibility of a negative 2307
o066 feedback mechanism. 2308
2267 2329
2268 2330
2269 2331
2270 2332
2271 2333
2272 2334
2273 2335
2274 2336
2275 2337
2276 2338
2277 2339
2278 2340
2279 2341
2280 2342
2281 2343
2282 2344
2283 2345
2284 2346
2285 2347
2286 2348
2287 2349
2288 2350
2289 2351
2290 2352
2291 2353
2292 2354
2293 2355

2294 2356


https://doi.org/10.1101/2023.02.06.527281
http://creativecommons.org/licenses/by-nc-nd/4.0/

2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.06.527281; this version posted October 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A MDA-MB-468 MDA-MB-231  MDA-MB-231 (LM2)  SUM159 B MDA-MB-468 MDA-MB-231  MDA-MB-231 (LM2)  SUM159
08, 1 1 14 14 15 15-
)
12 ,
_ . ' h

_ 3 :
) @ EPN
e J;; ! ~
s s AR
o 2 AV
=

Loga(Cell Ave

o I I 08
08
o4 0al 05 0 04 06
04 v
zo02 3 5 - =02 =04
w2 - 202 H o 3 £ E
S % e by 502 3 & £ c
@ o g 5 2 ¢ g = g
s 3 A S S S & § oS §oz
ER Y g o N EN ] Sy ]
= irz\Mxi H z : H \\/\/Wz
a = - Vs £ 02 N2 202 20
< 5 g 502 < = [ £
s 3 Tz g g 3 ES ES
e g 5 3 Sas 802
04
a4 a4 as
06 06 0 25 04
0 05 as o o5 08 0s

. R M . . el A
o s o s 0105 o o0 105 s 005 9 e5 w0 tos
Log2(Cell Area (uni?)) Log2(Cell Area (um?)) Log2(Cell Area (um?)) Log2(Cell Area (um?) Log2(Cell Area (um’) Log2(Cell Area um?) Log2(Cell Area (um®) Log2(Cell Area (um®)

S.Figure 1: Deconvolved YAP and TAZ size-scaling A) Log-log plots relating YAP (blue) and Actin (red) abundance to single-cell area. Assuming a power-law relationship
between protein concentration and cell size, the gradient represents the power to which concentration scales with area and the y-intercept determines the maximum
concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin. B) Log-log plots relating TAZ (blue) and Actin (red) abundance to
single-cell area. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with area and
the y-intercept determines the maximum concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin.
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S.Figure 2: YAP/TAZ and actin abundance-size scaling. A) Log-log plots relating YAP/TAZ (blue) and Actin (red) abundance to single-cell area. Assuming a power-law
relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with area and the y-intercept determines the maximum
concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin.
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S.Figure 3: The effect of neighbour fraction on YAP/TAZ scaling A) Log-log plots relating single cell neighbour fraction and cell area. Colour is proportional to the mean YAP
intensity ( concentration). Area and NF negatively correlate at high (close to 1) neighbour fractions. B) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to
single-cell neighbour fraction. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales

with NF and the y-intercept determines the initial concentration at NF = 0. The shaded area denotes one standard deviation of the cell size distribution about that size bin.

C) Log-log plots relating YAP/TAZ concentration and single cell area across lines and each NF bin (as determined by kmeans clustering on the neighbour fraction). Blue
represents the lowest NF, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell size distribution about that size bin. D/E) As in ‘C’
but relating to YAP abundance (D) or N/C ratio (E).
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S.Figure 5: A) Log-log plots relating Actin abundance and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated
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3149 S.Figure 7: YAP/TAZ scaling rate is a function of cell size: A) The relationship between Log(cell area) and the logarithmic derivative of YAP concentration with respect to area. 3211

The blue line represents G1 cells, whilst the red represents G2 cells. G1 and G2 groups were determined through kmeans clustering on the integrated Hoechst intensity.
3150  Shaded regions represent one standard deviation of all values within the local size ‘bin’. B) Average scaling factors within one standard deviation of the G1 area distribution 3212
3151 mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. Cell lines marked with an asterisk are those that showed the highest 3213
variance in scaling factor within a ‘typical’ size range, in each case, these cell lines show a larger than average scaling factor at small sizes. C) Average scaling factors within

3152 one standard deviation of the G2 area distribution mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. D) The fold-change 3214
3153 between G2 and G1 YAP/TAZ as a function of cell size. The shaded region represents one standard deviation from the mean. 3215
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S.Figure 9: Nuclear translocation of YAP/TAZ correlates with a reduction in YAP/TAZ scaling factor. A) Relationship between total YAP/TAZ scaling factor, ‘b’, and cell area (blue)
in the G1 cell population (as determined by kmeans clustering on the integrated Hoechst intensity). Cell lines shown are those which exhibited the greatest area sensitivity
in their scaling factors. The error margin corresponds to 1 standard deviation in that size bin. The red line is an estimate of ‘b’ assuming a linear relationship between ‘b’
and log(Yn), where Yn is the nuclear YAP/TAZ concentration. B) YAP/TAZ nuc/cyto ratio against the average cytoplasmic YAP/TAZ scaling factor. A significant difference
in population scaling factor means was detected across either side of the mean YAP/TAZ ratio (T-Test, n = 4, 5, P j0.0001, each mean calculated from 2000 — 5000 cells
depending on cell line). C) Nuclear YAP/TAZ concentration against the average cytoplasmic YAP/TAZ scaling factor. No clear relationship was observed across cell lines.
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S.Figure 10: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal
intensity features in control cells (R = 0.88). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function
of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ¢, 1 is
considered high and the corresponding feature, important in the prediction; 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows
the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in ‘A’ to the prediction of YAP/TAZ concentration in the knockdown states (R
= 0.48). The colour represents the density of the data and the red line traces y = x. H) Application of the model in ‘D’ to the prediction of YAP/TAZ ratio in the knockdown states
(R = 0.40). The colour represents the density of the data and the red line traces y = x.
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S.Figure 11: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal
intensity features in control cells (R = 0.88). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function
of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ¢, 1 is
considered high and the corresponding feature, important in the prediction; 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows
the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in ‘A’ to the prediction of YAP/TAZ concentration in the knockdown states (R
= 0.48). The colour represents the density of the data and the red line traces y = x. H) Application of the model in ‘D’ to the prediction of YAP/TAZ ratio in the knockdown states
(R = 0.40). The colour represents the density of the data and the red line traces y = x.
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3721 3783
3722 3784
3723 3785
3724 3786
3725 3787
3726 3788
3727 3789
3728 3790
3729 3791
3730 3792
3731 3793

3732 Table 3. Actin Concentration Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in 3794
3733 kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial Actin concentration and b is the power to which 3795

3734 Actin concentration scales with cell area. 3796
3735 3797
4736 DNA bin K=1 K =2 K=3 K=4 578
3737 log(a) b log(a) b log(a) b log(a) b 3799
- T47D 1 -3.3179  0.0687 | -3.2756 0.0641 | -3.4727 0.0805 | -3.4144  0.0737 5500
2 0 0 29920  0.0443 | -2.7778 0.0216 | -2.7935  0.0242
8739 3 0 0 0 0 31767 00597 | -2.8385  0.0252 3801
3740 4 0 0 0 0 0 0 -3.3132  0.0714 3802
a4t SUM149 1 -0.9714  -0.1097 | -0.9001 -0.1191 | -0.9215 -0.1148 | -0.8821 -0.1215 3803
3742 2 0 0 -0.2076 -0.1721 | -0.5756 -0.1302 | -0.2379  -0.1701 3804
3743 3 0 0 0 0 1.0844  0.6098 | -1.0573 -0.0913 3805
3744 4 0 0 0 0 0 0 1.0411  0.6147 3806
3745 MDM MB2311 | -2.2489 -0.0540 | -2.2831 -0.0530 | -2.2669 -0.0549 | -2.2688 -0.0548 3807
3748 2 0 0 -15399  -0.1158 | -1.8311 -0.0886 | -1.7991  -0.0917 3808
3747 3 0 0 0 0 -1.7875  -0.0975 | -1.6739  -0.1078 3809
a748 4 0 0 0 0 0 0 -3.8237  0.0631 3810
s740 MDAMB157 1 | -2.0089 -0.0793 | -1.8068 -0.0989 | -1.8722 -0.0991 | -1.8623 -0.1003 a8
- 2 0 0 -0.1318  -0.2102 | -0.4986 -0.1980 | -0.3186 -0.2154 -
3 0 0 0 0 -0.1666  -0.2061 | -0.6992  -0.1698
3781 4 0 0 0 0 0 0 0.1456  -0.2286 3813
3752 MCF10A 1 29218  0.0418 | -2.8995 0.0397 | -3.0518 0.0543 | -3.0728  0.0558 3814
3783 2 0 0 -3.3217  0.0782 | -2.8176  0.0319 | -2.7912  0.0300 3815
3754 3 0 0 0 0 -3.2700  0.0738 | -3.2384  0.0717 3816
3755 4 0 0 0 0 0 0 -7.8482  0.4530 3817
3756 MCF7 1 33127 0.0383 | -3.3151 0.0390 | -3.3169  0.0392 | -3.3723  0.0450 3818
3757 2 0 0 -3.4741  0.0520 | -3.4073 0.0461 | -3.2827  0.0339 3819
3758 3 0 0 0 0 -45712  0.1516 | -3.3871  0.0446 3820
4750 4 0 0 0 0 0 0 -4.9569  0.1848 3821
4760 JIMT1 1 2.0891 -0.0646 | -2.0323 -0.0687 | -2.0284 -0.0690 | -1.9776 -0.0690 .
5761 2 0 0 35197  0.0557 | -3.4107 0.0467 | -2.9770  0.0122 5823
s762 3 0 0 0 0 55725  0.2204 | -3.5962  0.0617 sae
4 0 0 0 0 0 0 -5.3968  0.2053
8763 hs578T 1 17803 01039 | -1.7005 -0.1136 | -1.7038 01134 | -1.6932 -0.1149 8825
3764 2 0 0 -0.6294 -0.1903 | -0.5262 -0.1996 | -0.5156  -0.2057 3826
3765 3 0 0 0 0 -1.4700  -0.1092 | -0.6504  -0.1871 3827
3766 4 0 0 0 0 0 0 -1.1401  -0.1339 3828
3767 HCC1954 1 20209 -0.0155 | -22562 0.0079 | -2.2716  0.0093 | -2.2354  0.0064 3829
3768 2 0 0 -1.9495 -0.0249 | -1.8453 -0.0326 | -2.5514  0.0337 3830
3769 3 0 0 0 0 -4.0674  0.1412 | -2.0490 -0.0183 3831
3770 4 0 0 0 0 0 0 41502 0.1473 3832
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Table 4. YAP/TAZ Concentration Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used
in kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ concentration and b is the power to
which YAP/TAZ concentration scales with cell area.

DNA bin K=1 K=2 K=3 K=4
log(a) b log(a) b log(a) b log(a) b

T47D 1 0.5262  -0.3407 | 0.8357 -0.3736 | 0.7975 -0.3786 0.8452 -0.3840
2 0 0 29510 -0.5278 1.8227  -0.4566 1.8826 -0.4631
3 0 0 0 0 3.0933  -0.5390 3.1395 -0.5505
4 0 0 0 0 0 0 3.1135 -0.5360
SUM149 1 -0.1526  -0.3459 | 0.1584  -0.3817 | 0.1982  -0.3868 0.1983 -0.3868
2 0 0 0.7172  -0.4077 1.0614  -0.4432 1.1188 -0.4490
3 0 0 0 0 1.2846  -0.4076 1.7730 -0.4523
4 0 0 0 0 0 0 45.6573  -3.6959
MDM MB231 1 1.3997  -0.4333 19765 -0.4994 | 2.0367 -0.5074 2.0521 -0.5093
2 0 0 2.3003  -0.4980 | 3.0583  -0.5729 3.1612 -0.5831
3 0 0 0 0 21716 -0.4440 2.8563 -0.5097
4 0 0 0 0 0 0 4.9784 -0.5895
MDA MB157 1 0.9423  -0.4199 1.3804  -0.4621 1.2999  -0.4673 1.3195 -0.4697
2 0 0 3.8252  -0.6085 | 3.7629  -0.6407 4.0220 -0.6665
3 0 0 0 0 4.3659  -0.6457 4.0844 -0.6426
4 0 0 0 0 0 0 4.5864 -0.6578
MCF10A 1 1.6437  -0.4253 1.5918  -0.4234 1.3702  -0.4065 1.3040 -0.4004
2 0 0 2.9101 -0.5091 1.9159  -0.4493 1.9286 -0.4507
3 0 0 0 0 2.8531 -0.5036 2.9763 -0.5163
4 0 0 0 0 0 0 -2.1396  -0.0434
MCF7 1 -0.3921  -0.3218 | -0.1148 -0.3548 | -0.1139  -0.3555 | -0.1103  -0.3570
2 0 0 0.7019  -0.4104 | 0.8025 -0.4229 0.8121 -0.4294
3 0 0 0 0 1.4729  -0.4475 1.0325 -0.4406
4 0 0 0 0 0 0 1.5877 -0.4555
JIMT1 1 1.2772  -0.4002 1.9080 -0.4663 | 2.3463 -0.5182 2.3612 -0.5201
2 0 0 3.4679  -0.5685 | 2.9729 -0.5514 2.9728 -0.5520
3 0 0 0 0 3.5474  -0.5726 3.8726 -0.6028
4 0 0 0 0 0 0 2.6220 -0.4405
hs578T 1 1.0447  -0.3858 1.4946  -0.4327 1.5253  -0.4357 1.5123 -0.4376
2 0 0 29914  -0.5216 | 3.2113  -0.5420 3.4200 -0.5822
3 0 0 0 0 4.4841 -0.5914 3.1357 -0.5330
4 0 0 0 0 0 0 4.4841 -0.5914
HCC1954 1 1.6923  -0.3397 | 2.2352  -0.3970 | 2.3170  -0.4061 2.1364 -0.3907
2 0 0 27372  -0.4109 | 3.5686 -0.4888 4.3223 -0.5697
3 0 0 0 0 2.9610  -0.3894 3.2340 -0.4526
4 0 0 0 0 0 0 2.8783 -0.3839

3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
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3969 4031
3970 4032
3971 4033
3972 4034
3973 4035
3974 4036
3975 4037
3976 4038
3977 4039
3978 4040
3979 4041

3980 Table 5. YAPTAZ Abundance Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in 4042
3981 kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ abundance and b is the power to which 4043

3982  YAP/TAZ abundance scales with cell area. 4044
3983 4045
5084 DNA bin K=1 K =2 K=3 K=4 4046
3985 log(a) b log(a) b log(a) b log(a) b 1047
5086 T47D 1 0.4277 06686 | 0.7347 06361 | 0.6903 06323 | 0.7322  0.6276 w015
2 0 0 21366 05428 | 1.5646 05671 | 1.6178  0.5612
8987 3 0 0 0 0 21900 05392 | 24472  0.5098 4049
3988 4 0 0 0 0 0 0 1.9505  0.5645 4050
3989 SUM149 1 -0.4643 0.6847 | 0.0267 0.6314 | 0.0821 0.6248 | 0.0825  0.6248 4051
3990 2 0 0 0.0597 0.6538 | 0.8467 05770 | 0.8475  0.5767 4052
3991 3 0 0 0 0 1.0844 0.6098 | 1.4860  0.5738 4053
3992 4 0 0 0 0 0 0 2.6006  -0.6672 4054
3993 MDM MB2311 | 1.0130 0.6044 | 1.9090 05073 | 1.9331 05046 | 1.9596  0.4975 4055
3994 2 0 0 16388 0.5645 | 1.8648 05429 | 3.1963  0.4086 4056
3995 3 0 0 0 0 3.3455 05263 | 22313  0.5101 1057
2996 4 0 0 0 0 0 0 19114  0.5850 1058
5097 MDAMB1571 | 0.6812 06033 | 1.1719 05567 | 1.2103 05410 | 1.2320  0.5387 4050
2008 2 0 0 3.4952 04183 | 3.4677 0.3848 | 3.5225  0.3788 1080
3 0 0 0 0 3.9458 0.3882 | 4.1585  0.3580
3999 4 0 0 0 0 0 0 42793 0.3727 4081
4000 MCF10A 1 16390 0.5751 | 1.6480 05714 | 1.6498 05713 | 1.6498  0.5713 4062
4001 2 0 0 2.8037 05003 | 2.7770 0.5003 | 2.7878  0.4994 4063
4002 3 0 0 0 0 21516 05918 | 4.5335  0.3911 4064
4003 4 0 0 0 0 0 0 -6.0728  1.2847 4065
4004 MCF7 1 -0.3816 0.6771 | -0.1306  0.6468 | -0.1328 0.6465 | -0.1416  0.6462 4066
4005 2 0 0 0.6360 05959 | 0.7930 05780 | 0.7511  0.5766 4067
4006 3 0 0 0 0 0.9703 05988 | 1.0212  0.5604 4068
4007 4 0 0 0 0 0 0 1.0781 05912 2069
4008 JIMTT 1 11222 0.6145 | 1.8581 0.5386 | 2.2526 0.4911 | 2.2744  0.4886 4070
4005 2 0 0 2.8276 04879 | 2.8270 0.4622 | 2.8235  0.4619 w07+
1010 3 0 0 0 0 27701 04955 | 3.3382  0.4442 sor2
4 0 0 0 0 0 0 22030  0.5939
4ot hs578T 1 07421 06410 | 1.3691 05786 | 1.4070 05749 | 1.4215 05706 4073
4012 2 0 0 24033 05281 | 27356 0.4983 | 2.7658  0.4733 4074
4013 3 0 0 0 0 42205 0.4298 | 2.6690  0.5064 4075
4014 4 0 0 0 0 0 0 42205  0.4298 4076
4015 HCC1954 1 14279 0.6852 | 2.2160 0.6048 | 2.2937 05961 | 2.1937  0.6037 4077
4016 2 0 0 22640 06311 | 3.0687 05562 | 3.8376  0.4750 4078
4017 3 0 0 0 0 2.0141 06893 | 2.8693  0.5797 4079
018 4 0 0 0 0 0 0 19641  0.6916 4080

4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030

4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092


https://doi.org/10.1101/2023.02.06.527281
http://creativecommons.org/licenses/by-nc-nd/4.0/

4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
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4123
4124
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4127
4128
4129
4130
4131
4132
4133
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4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
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Table 6. Actin Abundance Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in
kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial Actin abundance and b is the power to which Actin
abundance scales with cell area.

DNA bins K=1 K=2 K= K=14
log(a) b log(a) b log(a) b log(a) b

T47D 1 -3.2001  1.0575 | -3.1339 1.0505 | -3.3154 1.0644 | -3.2744  1.0600
2 0 0 -2.8217 1.0296 | -2.6167 1.0068 | -2.6193  1.0069

3 0 0 0 0 -2.9513  1.0401 | -3.0228  1.0458

4 0 0 0 0 0 0 -2.7112  1.0198
SUM149 1 -1.0025 0.8933 | -0.9226 0.8853 | -0.8855 0.8794 | -0.8963  0.8799
2 0 0 -0.5366  0.8665 | -0.4454 0.8500 | -0.2041 0.8267

3 0 0 0 0 1.0844  0.6098 | -1.0362  0.9068
4 0 0 0 0 0 0 2.6006  -0.6672
MDM MB2311 | -2.1327 0.9346 | -2.1865 0.9374 | -2.1787 0.9363 | -2.1893  0.9373
2 0 0 -1.5026  0.8807 | -1.6141  0.8906 | -1.6281 0.8920

3 0 0 0 0 -1.8453  0.9076 | -1.6817  0.8933

4 0 0 0 0 0 0 -4.4738  1.0964
MDA MB157 1 -2.0519 09245 | -1.8712 0.9069 | -1.9028 0.9037 | -1.8963  0.9030
2 0 0 -0.2542  0.7998 | -0.6160 0.8121 | -0.6463  0.8144

3 0 0 0 0 -0.2739  0.8025 | 0.0133 0.7799

4 0 0 0 0 0 0 -2.8673  1.0039
MCF10A 1 -2.8750 1.0375 | -2.8209 1.0325 | -2.8200 1.0324 | -2.9063  1.0402
2 0 0 -3.2331  1.0704 | -3.2336 1.0709 | -2.7583  1.0270

3 0 0 0 0 -3.7696  1.1020 | -3.2170  1.0698

4 0 0 0 0 0 0 -3.8844  1.1070
MCF7 1 -3.2678 1.0338 | -3.2629 1.0337 | -3.2604 1.0334 | -3.2881 1.0363
2 0 0 -3.4257 1.0474 | -3.3604 1.0416 | -3.2727  1.0329

3 0 0 0 0 -4.0509 1.1038 | -3.3499  1.0411

4 0 0 0 0 0 0 -4.2011 1.1156
JIMT1 1 -2.1892  0.9449 | -2.0989 0.9377 | -2.0804 0.9360 | -2.0125  0.9346
2 0 0 -3.5629 1.0595 | -3.4767 1.0526 | -3.0369 1.0178

3 0 0 0 0 -4.8783 1.1628 | -3.6001 1.0622

4 0 0 0 0 0 0 -5.0995  1.1809
hs578T 1 -1.8602 0.9031 | -1.6944 0.8859 | -1.6927 0.8856 | -1.6958  0.8858
2 0 0 -1.0074 0.8417 | -0.8065 0.8242 | -0.7820  0.8221

3 0 0 0 0 -1.7049  0.9097 | -1.6399  0.9033

4 0 0 0 0 0 0 -7.0092  1.3349
HCC1954 1 -1.8894 09720 | -1.9892 0.9821 | -2.0062 0.9836 | -1.9986  0.9832
2 0 0 -1.9533 09755 | -1.8147 0.9646 | -1.9456 0.9784

3 0 0 0 0 -3.5068  1.0947 | -2.2007  0.9946

4 0 0 0 0 0 0 -3.5954  1.1008

4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
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4217 4279
4218 4280
4219 4281
4220 4282
4221 4283
4222 4284
4223 4285
4224 4286
4225 4287
4226 4288
4227 4289

4228 Table 7. YAP/TAZ Ratio Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in 429
4229  kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ ratio and b is the power to which YAP/TAZ 4291

4230 ratio scales with cell area. 4292
4231 4293
1230 DNA bins K=1 K= K= K=4 4294
4233 log(a) b log(a) b log(a) b log(a) b 4295
. T47D 1 -3.7184 03538 | -3.7698 0.3593 | -3.9382 0.3771 | -3.9423  0.3776 1296
2 0 0 -4.0243 03765 | -3.7953 0.3609 | -3.8076  0.3623
423 3 0 0 0 0 -4.0252  0.3760 | -3.8289  0.3634 4297
4236 4 0 0 0 0 0 0 -3.9161  0.3666 4298
4237 SUM149 1 -45111  0.4383 | -4.7306 0.4606 | -4.7200 0.4595 | -4.7100  0.4588 4299
4238 2 0 0 -42107 0.4077 | -4.2781 0.4142 | -4.4984  0.4349 4300
4239 3 0 0 0 0 1.0844  0.6098 | -4.4554  0.4250 4301
4240 4 0 0 0 0 0 0 2.6006  -0.6672 4302
4241 MDM MB2311 | -4.4381 04709 | -4.9459 05227 | -4.9796 05262 | -5.0023  0.5285 4303
4242 2 0 0 -4.0847 0.4322 | -4.4357 0.4687 | -4.7030  0.4967 4304
4243 3 0 0 0 0 -5.0151  0.4960 | -4.2615  0.4497 4305
- 4 0 0 0 0 0 0 51602  0.5044 4306
145 MDAMB157 1 | -5.3866 05074 | -54141 05103 | -5.3701 0.5064 | -5.3665  0.5061 4507
1245 2 0 0 -6.1785 05649 | -5.5694 0.5231 | -5.5672  0.5231 408
3 0 0 0 0 -6.0631 05545 | -6.3036  0.5738
4247 4 0 0 0 0 0 0 -3.6657  0.3590 4309
4248 MCF10A 1 49326 04358 | -4.8611 0.4297 | -45969 0.4077 | -45415  0.4026 4310
4249 2 0 0 -5.6429  0.4947 | -5.1453 0.4533 | -5.1558  0.4542 4m
4250 3 0 0 0 0 56250 0.4925 | -5.6539  0.4970 4312
4251 4 0 0 0 0 0 0 -5.2204  0.4295 4313
4252 MCF7 1 41951 03976 | -4.2538 0.4037 | -4.2500 0.4032 | -42170  0.3996 4314
4253 2 0 0 -4.0951 03876 | -4.1438 0.3934 | -4.2358  0.4037 4315
4254 3 0 0 0 0 -4.4485 04072 | -4.1816  0.3956 4316
4255 4 0 0 0 0 0 0 -4.4507  0.4063 317
1256 JIMTT 1 52234 05266 | -5.6523 0.5702 | -5.8733 0.5963 | -5.8993  0.5996 s318
1257 2 0 0 57522 05621 | -6.1314  0.6084 | -6.1220  0.6084 4510
o 3 0 0 0 0 -5.8167 05652 | -6.3189  0.6151 sa20
4 0 0 0 0 0 0 -5.4792  0.5300
4259 hs578T 1 45086 0.4295 | -4.7467 0.4523 | -4.7635 0.4538 | -4.7266  0.4506 4321
4260 2 0 0 46766  0.4369 | -4.8156  0.4496 | -4.9701  0.4688 4322
4261 3 0 0 0 0 -5.4278  0.4730 | -5.0081  0.4626 4323
4262 4 0 0 0 0 0 0 -5.4298  0.4732 4324
4263 HCC1954 1 3.8277 03523 | -4.0674 0.3762 | -4.0849 0.3780 | -4.0849  0.3780 4325
4264 2 0 0 -3.8424 03492 | -4.0080 0.3656 | -3.9826  0.3639 4326
4265 3 0 0 0 0 -5.0037 0.4273 | -4.9538  0.4272 4327
4266 4 0 0 0 0 0 0 -7.3042  0.5841 4328

4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278

4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
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4341 4403
4342 4404
4343 4405
4344 4406
4345 4407
4346 4408
4347 4409
4348 4410
4349 4411
4350 4412
4351 4413

4352 Table 8. YAP/TAZ Nuclear Scaling: Scaling parameter values for each cell line across DNA bins within each ‘K’, the cluster number used in 4414
4353  kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ nuclear concentration and b is the power to 4415

4354  Which YAP/TAZ nuclear concentration scales with cell area. 4416
4355 4417
1356 DNA bins K=1 K =2 K=3 K=4 w418
4357 log(a) b log(a) b log(a) b log(a) b 4419
sass T47D 1 32907 0.0224 | -3.0351 -0.0046 | -3.2447 0.0091 | -3.2009  0.0043 1420
2 0 0 -1.8877  -0.0807 | -2.2368 -0.0715 | -2.1733  -0.0782
4359 3 0 0 0 0 -1.8368  -0.0847 | -1.8376  -0.0895 4421
4360 4 0 0 0 0 0 0 -1.8577  -0.0792 4422
4361 SUM149 1 -4.9754 0.1230 | -4.7030 0.0919 | -4.6279 0.0836 | -4.6291  0.0837 4423
4362 2 0 0 41466  0.0612 | -3.6632 0.0130 | -3.6473 0.0112 4424
4363 3 0 0 0 0 31299  0.0121 | -2.9694 -0.0013 4425
4364 4 0 0 0 0 0 0 2.6006  -0.6672 4426
4365 MDM MB2311 | -3.4251 0.0754 | -3.0369  0.0299 | -3.0159 0.0260 | -3.0021  0.0245 4427
4366 2 0 0 24259  -0.0033 | -1.6974 -0.0735 | -1.6858  -0.0747 4428
2367 3 0 0 0 0 32183  0.0843 | -3.1292  0.0744 1429
4368 4 0 0 0 0 0 0 -3.2497  0.1093 2430
4360 MDAMB157 1 | -4.7055 0.1107 | -4.2422  0.0670 | -4.1574  0.0472 | -4.1500  0.0465 2i31
470 2 0 0 26833 -0.0168 | -2.1044  -0.0919 | -2.1003  -0.0923 siso
3 0 0 0 0 21173 -0.0573 | -2.1900 -0.0532
487 4 0 0 0 0 0 0 05188  -0.2218 4433
4372 MCF10A 1 32935 0.0109 | -3.2132 0.0011 | -3.2116  0.0010 | -3.1906 -0.0010 4434
4373 2 0 0 -2.8392  -0.0050 | -2.8533  -0.0039 | -3.4012  0.0450 4435
4374 3 0 0 0 0 34502  0.0437 | -2.4171  -0.0418 4436
4375 4 0 0 0 0 0 0 -7.8275  0.4099 4437
4376 MCF7 1 45767 0.0747 | -4.3844 0.0504 | -4.3828 0.0497 | -4.3587  0.0458 4438
4377 2 0 0 34590 -0.0165 | -3.3509 -0.0287 | -3.4847 -0.0196 4439
4378 3 0 0 0 0 -3.4782  0.0081 | -3.1605 -0.0439 4440
4379 4 0 0 0 0 0 0 -3.3726  -0.0025 4441
4380 JIMT1 1 41012 0.1410 | -3.7943  0.1088 | -3.6254 0.0880 | -3.6121  0.0864 aaso
4351 2 0 0 -2.9245  0.0500 | -3.3025 0.0703 | -3.3069  0.0704 1443
132 3 0 0 0 0 -3.0465  0.0807 | -2.7758  0.0368 sais
4 0 0 0 0 0 0 -3.3505  0.1035
4383 hs578T 1 37665 00705 | -3.3777 0.0309 | -3.3565 0.0287 | -3.3388  0.0245 4445
4384 2 0 0 22733 -0.0349 | -2.0800 -0.0521 | -2.1138  -0.0646 4446
4385 3 0 0 0 0 -1.2073  -0.0972 | -2.2373  -0.0379 4447
4386 4 0 0 0 0 0 0 -1.2073  -0.0972 4448
4387 HCC1954 1 23998 0.0375 | -1.8529 -0.0189 | -1.7912 -0.0259 | -1.9462 -0.0126 4449
4388 2 0 0 -1.5727  -0.0201 | -0.9309 -0.0790 | -0.2789  -0.1468 4450
4389 3 0 0 0 0 -2.9907 0.1166 | -1.1521  -0.0563 4451
4390 4 0 0 0 0 0 0 -3.3299  0.1406 1452

4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402

4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
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4465 4527
4466 4528
4467 4529
4468 4530
4469 4531
4470 4532
4471 4533
4472 4534
4473 4535
4474 4536
4475 4537
4476 4538
4477 4539
4478 4540
4479 4541
4480 4542
4481 4543
4482 4544
4483 4545
4484 4546
4485 4547
4486 4548
4487 4549
4488 4550
4489 Table 9. Population Characteristics: Cell area distribution statistics. ‘G1’ and ‘G2’ are defined via kmeans clustering on the integrated Hoechst 4551
4490  intensity 4552
4491 4553
4492 Population G1mean (um?) | G1CV (%) | G2mean (um?) | G2CV (%) 4554
4493 MCF7 1200 0.6 1710 0.52 4555
4494 MDMMB231 1360 0.49 1820 0.48 4556
2495 T47D 1420 0.61 2760 0.56 4557
JIMTA 1470 0.57 2390 0.49
4496 SUM149 1480 0.57 1850 0.53 4558
4497 HCC1954 1840 0.55 3060 0.45 4559
4498 MCF10A 2660 0.63 3280 0.6 4560
4499 MDAMB157 3150 0.61 4760 0.56 4561
4500 hs578T 3280 0.47 4920 0.44 4562
4501 Average N/A 0.57 + 0.05 N/A 0.51 £ 0.05 4563
4502 4564
4503 4565
4504 4566
4505 4567
4506 4568
4507 4569
4508 4570
4509 4571
4510 4572
4511 4573
4512 4574
4513 4575
4514 4576
4515 4577
4516 4578
4517 4579
4518 4580
4519 4581
4520 4582
4521 4583
4522 4584
4523 4585
4524 4586
4525 4587

4526 4588
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4589 Hea‘gem- or Resource Source 4651
Antibodies
4590 YAP Antibody (G-6) -Mouse Santa Cruz Cat# sc-376830 4652
YAP/TAZ [67.3] -Mouse Santa Cruz Cat# sc-101199
4591 TAZ (V386) Antibody -Rabbit Cell Signalling Cat# 4883 4653
4592 Tubulin Alpha Antibody — YL1/2 -Rat Bio-Rad Cat#t MCA77G 4654
Phospho-Rb (Ser807/811) (D20B12) XP® -Rabbit Cell Signalling Cati# 8516S
4593 Recombinant Anti-Cyclin A2 antibody [EPR17351] -Rabbit Abcam Cat#t ab181591 4655
4594 Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Invitrogen Cat# A11029 4656
4595 Amlbody., A\exa\' Fluor 488 ) ) 4657
Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Invitrogen Cat# A11034
4596 Antibody, Alexa Fluor 488 4658
4597 Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Anti- Invitrogen Cat# A11004 4659
4598 body, Alexa Fluor 568 4660
Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Invitrogen Cat# A11077
4599 4661
Alexa Fluor 568
4600 Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Anti- Invitrogen Cat# A21235 4662
4601 body, Alexa Fluor™ 647 4663
F(ab’)2-Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Sec- Invitrogen Cat# A21246
4602 4664
ondary Antibody, Alexa Fluor 647
4603 Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Invitrogen Cat# A21247 4665
4604 Alexa Fluor 647 4666
4605 Bacterial and Virus Strains 4667
Biological Samples
4606 g i 4668
Chemi ptides, and i teil
4607 RPMI 1640 Medium, no phenol red GIBCO Cat# 11835 4669
4608 DMEM/F-12, GlutaMAX™ Supplement GIBCO Cat# 31331 4670
Horse Serum GIBCO Cat# 16050
4609 Insulin Sigma Cat# 1-1882 4671
4610 Cholera toxin S!gma Cat# C-8052 4672
Hydrocortisone Sigma Cat# H-0888
4611 Human EGF Sigma Cati#t E-9644 4673
Penicillin-Streptomycin GIBCO Cat# 15070
4612 Human EGF Sigma Cat# E-9644 4674
4613 RPMI 1640 Medium, no phenol red GIBCO Cat# 11835 4675
DMEM, high glucose, pyruvate GIBCO Cat# 41966
4614 Fetal Bovine Serum (heat-inactivated) GIBCO Cat# 16140 4676
4615 Trypsin-EDTA (0.25%), phenol red GIBCO Cat# 25200 4677
Opti-MEM | Reduced Serum Medium GIBCO Cat# 31985
4616 Lipofectamine RNAIMAX Invitrogen Cat# 13778 4678
4617 Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Scientific Cat# 28908 4679
Alexa Fluor 647 Phalloidin Invitrogen Cat# A22287
4618 Alexa Fluor 488 Phalloidin Invitrogen Cat# A-12379 4680
Hoechst 33258 Invitrogen Cat# H3569
4619 Palbociclib, PD0332991 Sigma Cat# PZ0199 4681
4620 Binimetinib Sigma Cat# 4682
Critical Commercial Assays
4621 4 4683
Deposited Data
4622 Proteome? 4684
4623 Experimental Models: Cell Lines 4685
T47-D N. Turner (ICR) N/A
4624 4
6 BT474 N. Turner (ICR) N/A 686
4625 MDA-MB-468 G. Poulogiannis (ICR) N/A 4687
462 SKBR3 O. Rossanese (ICR) N/A .
626 SuUM159 R. Natrajan (ICR) N/A 688
4627 MDA-MB-231 J. Erler (University of Copenhagen) N/A 4689
MDA-MB-231-LM2-4175 J. Massagué (Sloan Kettering Institute) N/A
4628 Minn, Andy J. et al., 2005 4690
4629 MCF10A mRuby-PCNA J. Mansfeld (Technische Universitat Dresden) N/A 4691
Zerjatke, Thomas et al., 2017
4630 hTERT RPE-1 4692
4631 Whts 4693
a375p
4632 Experimental Models: O 4694
4633 [ Oligonucleotides and siRNA Based 4695
4634 [ DNA 4696
4635 Software and Algorithms ) o 4697
Morpheus Broad Institute https://software.broadinstitute.org/
4636 4698
morpheus/
4637 Acapella 4.0 PerkinElmer N/A 4699
Columbus Image Data Storage and Analysis System PerkinElmer http://columbus2.icr.ac.uk/login?
4638 4700
next=/
4639 Harmony High-Content Imaging and Analysis Software PerkinElmer https://www.perkinelmer. 4701
4640 com/product/ 4702
4641 harmony-5- 1-office-hh17000012 4703
Prism GraphPad https://www.graphpad.com/
4642 4704
scientific- software/prism/
4643 Excel Microsoft N/A 4705
4644 ImageJ S.chneider etal, 2012 https://imagej.nih.gov/ij/ 4706
Adobe lllustrator Figures http://www.adobe.com/de/
4645 products/illustrator.html, 4707
4646 versionCC2015.3 4708
4647 Other 4709
PhenoPlate 384-well PerkinElmer Cati# 6057300
4648 - 4710
Table 10. List of reagents and resources.
4649 4711
4650 4712
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