

Coupling of Nuclear Translocation to Cell Size Promotes Robustness to Fluctuations in YAP/TAZ Concentration

Ian Jones^{a,1}, Mar Arias-Garcia^a, Patricia Pascual-Vargas^a, Melina Beykou^a, Lucas Dent^a, Tara Pal Chaudhuri^a, Theodoros Roumeliotis^a, Jyoti Choudhary^a, Julia Sero^b, and Chris Bakal^a

This manuscript was compiled on October 25, 2023

The concentration of many transcription factors exhibit high cell-to-cell variability due to differences in synthesis, degradation, and cell size. How these factors are robust to fluctuations in concentration is poorly understood. Here we quantified the single cell levels of the YAP/TAZ transcriptional co-activators in parallel with cell morphology for over 400,000 single cells across 17 cell lines. We show the whole cell concentration of YAP/TAZ subscales with respect to size as cells grow during proliferation. However, the mean nuclear concentration of YAP/TAZ remains constant during the cell cycle. Theoretical modelling demonstrates that the extent to which whole cell YAP/TAZ dilutes in single cells during proliferative growth dictates the variability of YAP/TAZ levels across the population. Integrative analysis of imaging and proteomic data show the average nuclear YAP/TAZ concentration is predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear transport processes. We developed a statistical framework capable of discriminating between perturbations that affect YAP/TAZ directly, or via changes in morphology. Deployment of these models on genetic screening data or small-molecule treatments reveal that inhibition of MEK, CDK4/6, LATS and RhoGTPases decouple nuclear YAP/TAZ from cell morphology by regulating nuclear translocation. Thus signalling activity couples size changes to YAP/TAZ translocation; leading to a stable pool of nuclear YAP/TAZ during proliferation.

Cell Size | YAP/TAZ | Cell Growth | Dilution

Signalling networks couple transcriptional regulation to the integrated detection of environmental cues. A common ‘motif’ in these networks is the sequestration of transcription factors by inhibitory complexes. In the presence of an environmental cue, transcription factors are released from these complexes and interact with DNA to engage specific programmes (1–3). When TFs and inhibitors are at sub-saturating levels, this allows transcription to be tightly coupled to environmental flux. For example, dilution of the inhibitory protein RB1 as cells grow is one mechanism by which E2F activity is coupled to size (4, 5). In animal cells especially, inhibitory sequestration of transcription factors often occurs in the cytoplasm; and release from inhibition allows TFs to translocate into the nucleus. For example, the active degradation of inhibitors such as APC or IKK in the cytoplasm allows the translocation of transcription factors such as Beta-Catenin or NFKB into the nucleus (6, 7); coupling cues such as adhesion and stress to transcription respectively. The concentration of both inhibitors and transcription factors in the cytoplasm thus informs the response of transcription factors to upstream signals (4).

It is now clear that the concentration of many cellular molecules varies between cells, even within an isogenic population (8). Such variability can be due to both extrinsic and intrinsic stochastic differences in protein synthesis, but also due to differences in cell size and shape (8–11). However, cell populations and tissues exhibit largely robust and predictable behaviour despite such fluctuations; i.e. are largely uniform in the output of their signalling activity. Perhaps the best example of which is the control of size uniformity during proliferation, such as during organ and tissue morphogenesis

Significance Statement

Many proteins dilute/concentrate with changes in cell size. It is unclear how robustness in cell signalling emerges across differently sized cells, with varying intracellular protein concentrations, over generations. Here, we have shown that despite whole cell dilution of the transcriptional co-activators YAP/TAZ with increasing size, a steady-state nuclear concentration distribution is maintained across the population. Thus nuclear transport promotes robustness of signal response in the face of a dwindling cytoplasmic YAP/TAZ levels. An integrative approach revealed that focal adhesions, RAS/MAPK and nuclear import contributes to the the maintenance of YAP/TAZ nuclear levels. Cells appear to have evolved systems to ensure robustness against alterations to cell size during the cell cycle.

Author affiliations: ^aChester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; ^bInstitute for Mathematical Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK

The authors declare no conflict of interest.

(12–14). But how cells are robust to fluctuations in protein concentration is poorly understood.

In the context of a sub-scaling protein, one means to provide robustness would be to couple a synthesis step to cell growth, such that a surge in synthesis offsets the effects of dilution. Indeed, such a system is believed to underpin the maintenance of RB1 (yeast WHI5) concentration across consecutive cycles (4). In the Rb1/Whi5 context, this coupling is complemented by saturating DNA with RB1/WHI5 (and degrading the excess) prior to division (15); where the amount of protein inherited by either daughter is proportional to the DNA content - and thus size - of the cell. Indeed, a similar system applies to the partitioning of KRP4 in *Arabidopsis* (16). Importantly, these systems can do nothing to constrain the effects of dilution within a cell cycle. However, it is unclear how the effects of dilution may be mitigated in other biological contexts.

YAP and TAZ (henceforth YAP/TAZ) are conserved key regulators of animal cell growth and proliferation. As transcriptional co-activators, YAP/TAZ are inhibited by sequestration in the cytoplasm, where nuclear translocation (activation) is triggered by soluble, mechanical, and geometrical cues (17–25). For example, changes in cell shape are coupled to the signalling dynamics of Rho GTP Exchange Factors (RhoGEFs), Rho GTPase Activating Proteins (RhoGAPs) and their downstream effector Rho GTPases. RhoGEFs, RhoGAPs, and Rho GTPases regulate YAP/TAZ translocation both by regulating YAP/TAZ signalling directly and by affecting cell shape/size (indirectly) (18, 22, 26–32). The coupling of YAP/TAZ dynamics to cell shape provides a mechanism that allows cells to position themselves during development, or to sense and respond to disruption in tissue structures. (26, 33–35). YAP/TAZ are also regulated by the Hippo pathway, whereby the LATS (LATS1 and LATS2) kinases phosphorylate YAP/TAZ, preventing nuclear translocation by enabling 14-3-3 binding.

Through quantitative analysis of 100,000's of single cells, from 17 cell lines, we have demonstrated that the whole cell and cytoplasmic YAP/TAZ concentration sub-scales with cell size in G1 and G2. YAP/TAZ synthesis was dramatically upregulated near S-Phase in a size and ploidy dependent manner. Crucially, we observed that the nuclear YAP/TAZ concentration distribution was constant across the population when binned by cell size, implying continual nuclear import in the background of depleting whole cell YAP/TAZ concentration. Through integrative analysis of proteomic data, we found that YAP/TAZ nuclear transport is predicted by the phosphorylation state of RAS/MAPK, focal adhesion, and nuclear transport components; suggesting a role for these systems in coupling cell/cytoplasm size to nuclear import. Using a novel statistical framework, we show that RAS/MAPK, CDK4/6, and RHOA affect YAP/TAZ translocation directly. Whereas inhibition of genes such as LATS1 and LATS2 affect both size and translocation. Taken together, our work defines a system to ensure the robustness of cell signalling to changes in protein concentration.

1. Results

A. YAP/TAZ concentration decreases with increasing cell size.

We quantified single cell size and the concentration/abundance distributions of F-actin and cytoplasmic/nuclear YAP/TAZ,

first in 30,000 single cells from nine breast cell lines (Table 1) (Fig.1A). While ostensibly YAP specific, the antibody we used partially recognises TAZ though to a much lesser extent (23, 36). We initially investigated whether average YAP/TAZ intensities varied with cell size across our panel but found no evidence of a correlation with the nuclear or whole cell signal (Fig.1B/C). However, there was a clear linear relationship between the whole cell and nuclear YAP/TAZ mean intensities (Fig.1D). Thus high expression of YAP/TAZ correlates with more nuclear import. This relationship was also observed in single cells within each cell line (Fig.1E). Strikingly, when investigating whether area predicts whole cell YAP/TAZ in single cells, we observed a clear negative correlation. Meaning that whole cell YAP/TAZ dilutes/degrades as the cells grow (Fig1F). This prompted us to more formally investigate the decrease of whole cell YAP/TAZ within each cell line.

We modelled the concentrations of YAP/TAZ (integrated intensity/cell area, mean intensity) as power law relationships with cell area, $[YAP/TAZ] = aA^b$, such that we could define a ‘scaling factor’, ‘b’, for each species (Fig.1G). In a log-log plot, ‘b’ is given as the gradient and $\log(a)$ is the y-intercept. Negative values of ‘b’ correspond to the dilution of the protein with increasing cell size (sub-scaling), 0, linear scaling, and positive values, concentration of the protein with increasing size (super-scaling) (Fig.1H). Fitting ‘a’ and ‘b’ values to each cell line's F-actin concentration profile, we observed linear scaling between cell size and F-actin (b ranging from -0.2 to 0.2, (Fig.1I, Supp.Table 2) as observed in previous studies (4). However, when applying the same analysis to whole cell YAP/TAZ concentration, we observed, for all cells lines, a clear sub-scaling relationship between cell size and whole cell YAP/TAZ concentration ($b = -0.35 - -0.65$), indicating that whole cell YAP/TAZ dilutes as a cell gets larger (Fig.1I, Supp.Table 3).

To investigate the decrease in whole cell YAP/TAZ concentration with cell size, we also analysed the abundance (integrated whole cell intensity, rather than mean) -size relationship and observed that the whole cell YAP/TAZ abundance increases with cell size, but not at a rate sufficient to maintain a constant concentration ($b = 0.6$). Total YAP/TAZ increased with size at all sizes implying continued net-synthesis (That is, synthesis must be outpacing degradation, Supp.Table 4, Supp.Fig.2). F-actin exhibited 1:1 abundance scaling indicating synthesis exactly offsets the effect of cell size on concentration. (Supp.Fig.2, Supp.Table 5).

To ensure that YAP alone was diluting with size, and that the measured effect was not an artefact generated by the erroneous recognition of TAZ by the antibody, we repeated the experiment with specific YAP and TAZ antibodies (36). In both cases, we observed dilution of whole cell YAP or TAZ protein with increasing cell size relative to F-actin (Supp.fig.1).

Together, these data reveal that both whole cell YAP and TAZ dilute with increasing cell size. As YAP/TAZ increases in abundance with as cells enlarge, this dilution is not due to net degradation of YAP/TAZ at larger cell sizes, but rather the effect of an expanding volume acting on an insufficient synthesis-degradation balance.

B. YAP/TAZ concentration, but not scaling, is sensitive to DNA-content and cell cycle progression. As YAP/TAZ levels did not correlate with size across lines, but did so within lines, we hypothesised that sub-scaling of whole cell YAP/TAZ may

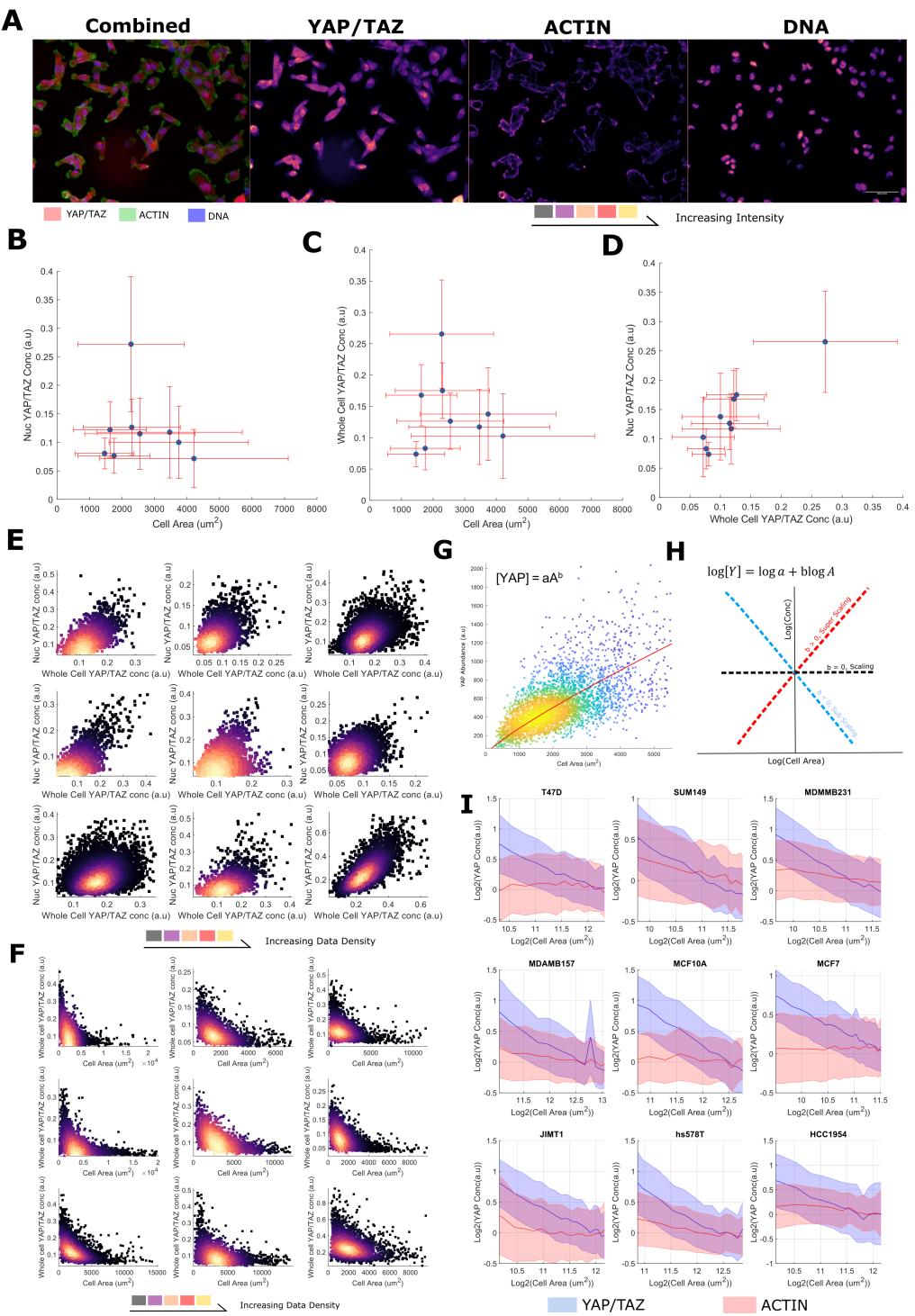


Figure 1: YAP/TAZ concentration decreases with increasing cell size A) (left) Representative image of MBA-MB-231 cells stained with YAP/TAZ (red), Phalloidin (an actin binding dye, green) and Hoechst (marking the DNA in blue). (Right) Individual colour channels separated out from the original image. Colour is proportional to image intensity such that *black < purple < red < yellow*. The scale bar represents 50 μ m. B) The relationship between the nuclear YAP/TAZ concentration and cell area across cell lines. Error bars represent one standard deviation. C) The relationship between the whole cell YAP/TAZ concentration and cell area across cell lines. Error bars represent one standard deviation. D) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration across cell lines. Error bars represent one standard deviation. E) The relationship between the whole cell YAP/TAZ concentration and the nuclear YAP/TAZ concentration in single cells in each cell line. The colour is proportional to data density such that *black < purple < red < yellow*. F) The relationship between the whole cell YAP/TAZ concentration and cell area in single cells in each cell line. The colour is proportional to data density such that *black | purple | red | yellow*. G) YAP/TAZ 'abundance' (integrated intensity) as a function of cell area in T47D cells. We describe this relationship as a power law, $y = aAb$, shown in red. The colour of the data is proportional to the density of the data. H) Demonstration of how the log-log plot of size vs concentration is interpreted; a negative gradient corresponds to dilution with growth, positive indicates an increasing concentration and a flat relationship, perfect scaling with cell size. I) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to single-cell area. The line represents the mean YAP/TAZ concentration in each size range. The error margin corresponds to one standard deviation in the same size bin. Concentrations have been normalised to the means across all sizes for viewability. For each cell line, the relationship is shown across the size range: $0.5^* \text{mean} - 2^* \text{the mean cell size}$.

249 **Table 1. Cell Line Information: Gene cluster: Lu = luminal, BaA = Basal A,**
 250 **BaB = Basal B. ER/PR/HER2: +/ from protein and mRNA expression; [] inferred**
 251 **from mRNA expression; M = mutant, WT = wild-type. MDA 231-LM2-4175* cells**
252 are the highly metastatic subpopulation 4175 from MDA-MB-231 (23, 37-39).

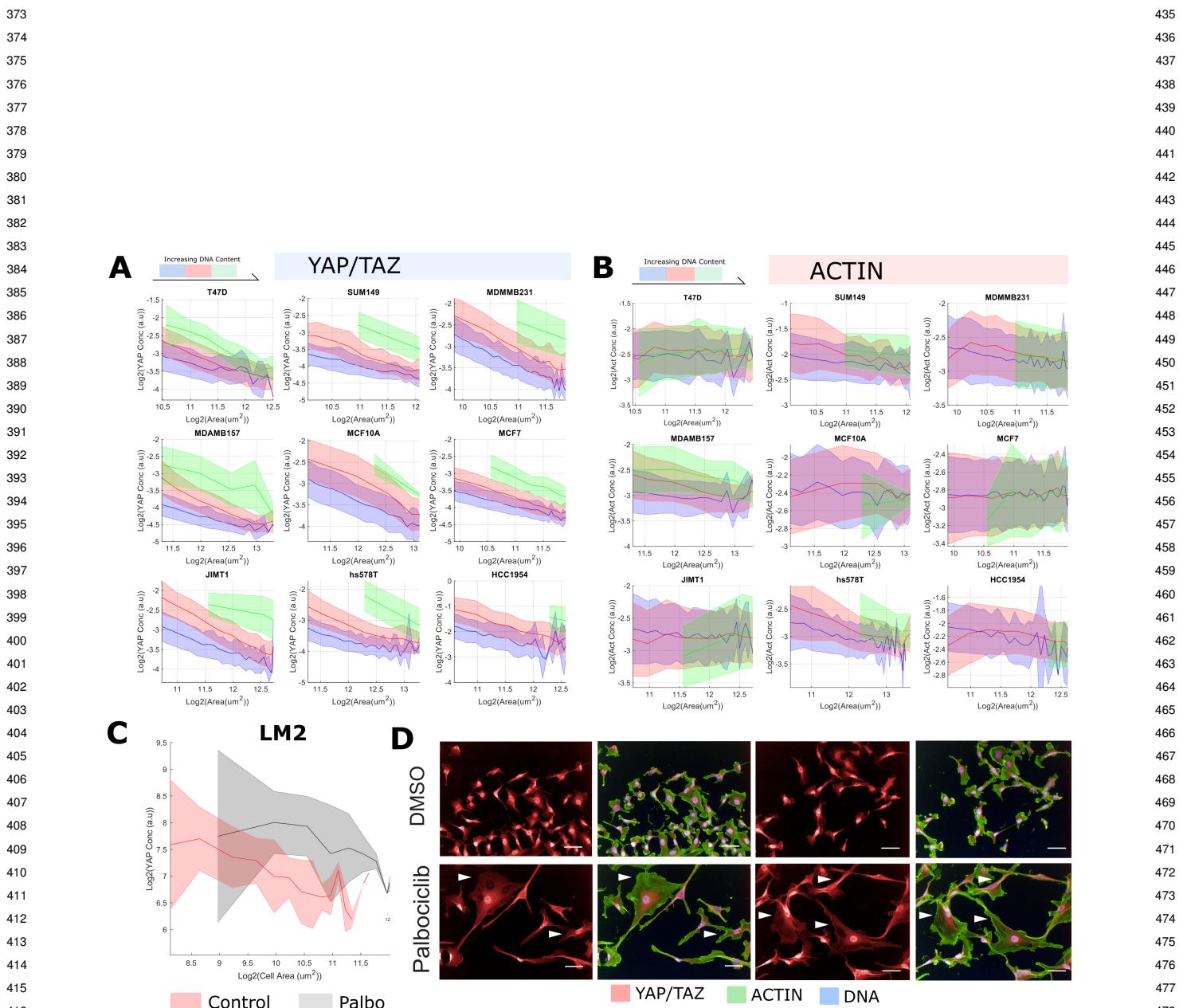
Cell Line	Genetic Subtype	ER	PR	Her2
MCF7	Lu	+	[+]	—
T47D	Lu	+	[+]	—
BT474	Lu	+	—	+
SKBR3	Lu	—	[—]	+
HCC1954	BaA	—	[—]	+
MDA-MB-468	BaA	[—]	[—]	—
hs578T	BaB	—	[—]	—
MDA-MB-157	BaB	—	[—]	—
MDA-MB-231	BaB	—	[—]	—
SUM149	BaB	[—]	[—]	—
SUM159	BaB	[—]	[—]	—
MCF10A	BaB	—	[—]	—
JIMT1	Unclassified	—	[—]	+
MDA-MB-231-LM2-4175*				

268 be due to growth during cell cycle processes. To investigate
 269 this, within each line, we initially binned cells based on their
 270 DNA content (integrated Hoechst intensity). Bin sizes were
 271 constrained such that each bin centroid represents double the
 272 value of the preceding bins. Conducting the previous analysis
 273 on each DNA ‘bin’ within each line, we noticed that while
 274 the mean whole cell YAP/TAZ concentration at any given
 275 size increased for each doubling of the cell DNA (each DNA
 276 content ‘bin’, 1.3-1.6 factor increase) (Supp.Table 3, Fig.2A),
 277 the scaling factor ‘b’ showed no obvious dependence on the
 278 amount of DNA. We performed the same analysis for the
 279 F-actin concentration and noticed no relationship between ‘b’
 280 or mean concentration and DNA content (Fig.2B, Supp.Table
 281 2). Whole cell YAP/TAZ and F-actin abundance showed a
 282 consistent positive scaling factor (0.4-0.6) across all DNA
 283 contents (Supp.Table 4/5, Supp.Fig 4/5).

284 As whole cell YAP/TAZ dilutes within the first and
 285 second DNA ‘bins’, loosely approximating ‘G1’ and ‘G2’,
 286 and undergoes a DNA-correlated regeneration between the
 287 two, potentially at S-phase, we sought to more rigorously
 288 investigate the relationship between cell cycle progression
 289 and YAP/TAZ concentration. We stained MCF10A cells
 290 for YAP/TAZ, PCNA and CCNA2 and trained a linear
 291 classifier to distinguish G0, G1, S and G2 cells using 110
 292 CCNA2 and PCNA intensity features (methods) across 20,000
 293 single cells. Conducting a scaling analysis within each stage,
 294 we observed that the negative size-YAP/TAZ concentration
 295 scaling is preserved across all stages besides G0 (Supp.Fig.6).
 296 Moreover, by binning the cells by area and calculating the
 297 mean YAP/TAZ concentration in each stage, we observed
 298 that the whole cell YAP/TAZ concentration increases from
 299 G1 to G2 and that smaller cells exhibit a greater whole cell
 300 YAP/TAZ concentration at each stage, further corroborating
 301 the previous analyses (Supp.Fig.6).

302 To test the idea that whole cell YAP/TAZ dilution relates
 303 to cell cycle progression, we assessed YAP/TAZ levels in
 304 Palbociclib treated LM2 cells. Palbociclib arrests cells at
 305 the G1/S transition by inhibiting CDK4/6 activity (40). We
 306 found that the average whole cell YAP/TAZ concentration
 307 was unchanged in Palbociclib treated cells despite the two-fold
 308 increase in size. YAP/TAZ dilution, however, still occurred
 309 with increasing size in the Palbociclib treated population

310 (Fig.2C/D). Together, these data show that the regulation of
 311 the cytoplasmic YAP/TAZ concentration is closely tied to the
 312 cell cycle, with dilution only being observed in cycling cells,
 313 and YAP/TAZ synthesis being strongly upregulated around
 314 S-phase.


315 **C. A constant nuclear concentration of YAP/TAZ is maintained**
 316 **across cell sizes despite whole cell dilution:** . Having observed
 317 a sub-scaling relationship between whole cell YAP/TAZ and
 318 cell size, we were interested in how this related to the nuclear
 319 translocation and concentration of YAP/TAZ. We quantified
 320 the N/C ratio of YAP/TAZ at the single cell level, for each cell
 321 line. Interestingly, YAP/TAZ ratio increased with increasing
 322 cell size, exhibiting the opposite relationship to (whole cell)
 323 YAP/TAZ concentration. The N/C ratio of YAP/TAZ also
 324 changed with DNA content, where the mean YAP/TAZ ratio,
 325 decreased across each DNA ‘bin’. We noted that ‘b’, the scaling
 326 factor between cell area and N/C, remained unchanged across
 327 DNA contents for all cell lines (Fig.3A, Supp.Table 6).

328 We next investigated the scaling of the nuclear concentration
 329 of YAP/TAZ cell area. Strikingly, the nuclear concentration
 330 distribution of YAP/TAZ was almost entirely
 331 insensitive to increases in cell size, exhibiting a constant mean
 332 and variance across all measured areas. Increases in the DNA
 333 content did increase the average nuclear YAP/TAZ level, but
 334 not sufficiently to maintain the same YAP/TAZ ratio across
 335 DNA bins (Fig.3B, Supp.Table 7). Importantly, as nuclear
 336 and cell size correlate (Fig.3C), even without an increase
 337 in DNA content, this result implies continual transport of
 338 YAP/TAZ into the nucleus as cells grow such to maintain
 339 a constant concentration distribution across differently sized
 340 cell populations. Thus, nuclear transport of YAP/TAZ is
 341 coupled to cell size in order to maintain a steady-state level of
 342 YAP/TAZ as the cytoplasmic pool becomes diluted.

343 To determine if nuclear concentration was also dependent
 344 on CDK4/6 activity, we analysed nuclear YAP/TAZ levels in
 345 Palbociclib treated cells. We observed that while the nuclear
 346 concentration was invariant to cell size, it was sensitive to
 347 Palbociclib treatment; as treated cells exhibited higher nuclear
 348 YAP/TAZ concentrations than control cells. (Fig.3D). Thus
 349 CDK4/6 activity and/or cell cycle progression is necessary to
 350 couple nuclear transport of YAP/TAZ to cell size.

351 Together, these data suggest that while the concentration
 352 of the cytoplasmic pool of YAP/TAZ is a function of cell size
 353 and volume, the nuclear YAP/TAZ concentration is regulated
 354 independently. As a transcriptional regulator, this implies
 355 that as cell divide they maintain a constant pool of nuclear
 356 YAP/TAZ activity despite falling cytoplasmic concentrations.
 357 Indeed, this is particularly striking given the strong correlation
 358 between the nuclear and whole cell YAP/TAZ concentration
 359 (Fig.1D/E). Given the scaling between nuclear and cell area,
 360 necessitating continual import of YAP/TAZ, this may be
 361 driven by nuclear transport machinery (summarised in Fig.3E).

362 **D. Integration of YAP/TAZ size-scaling and stochastic cell division**
 363 **determines YAP/TAZ heterogeneity.** The previous analyses
 364 are consistent with a scheme by which a constant amount of
 365 YAP/TAZ is maintained through dilution in G1, synthesis at
 366 S/G2 and a further dilution through the subsequent G2, before
 367 the inheritance of YAP/TAZ by daughter cells (A dilution-
 368 synthesis-dilution, or DSD, scheme (Fig. 4A)). We sought to
 369 understand how such a system would behave across division

424
425
426
427
428
429
430
431
432
433
434

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

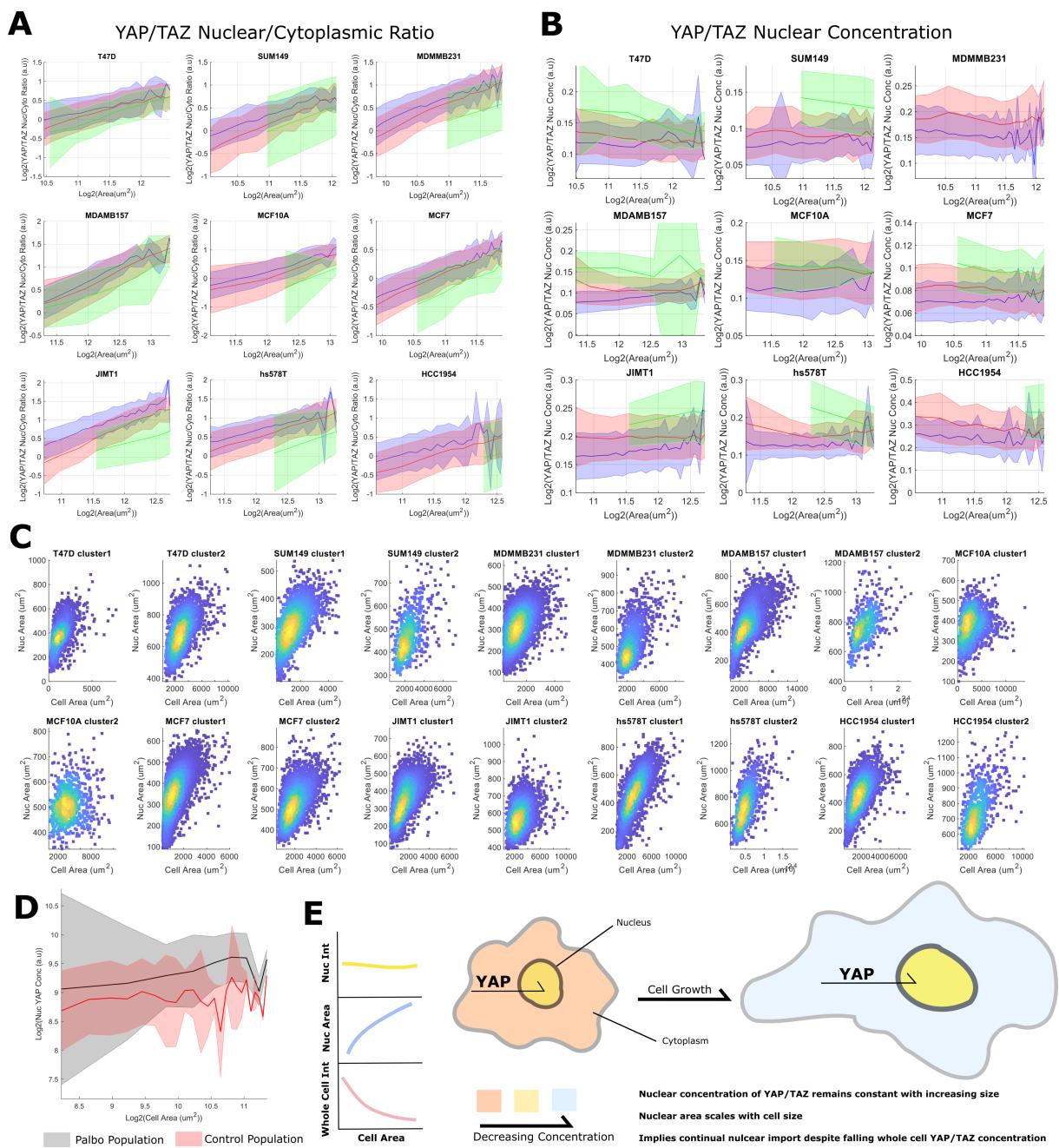


Figure 3: A constant nuclear concentration of YAP/TAZ is maintained across cell sizes despite whole cell dilution: A) Log-log plots relating YAP/TAZ nuclear-cytoplasm ratios and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the lowest DNA content, then red, green and yellow, the most. In all cases, YAP/TAZ ratio positively scales with cell area but decreases with increasing DNA content. The shaded area denotes one standard deviation of the cell size distribution about that size bin. B) Nuclear YAP/TAZ, single cell area relationship plotted across DNA content bins for each cell line. The shaded area denotes one standard deviation of the cell size distribution about that size bin. C) Relationship between cell and nuclear areas across high and low DNA content clusters for each cell line (cluster 1 has less DNA than cluster 2). Nuclear and cell areas continually scale within DNA bins and is not related to DNA synthesis alone. D) The effect of Palbociclib on the nuclear YAP/TAZ concentration. Palbociclib does not affect scaling behaviour but increases the total nuclear concentration. E) A cartoon summarising the major findings of the section: Nuclear YAP/TAZ concentration is constant across sizes, nuclear area scales with size, together implying continual YAP/TAZ nuclear import despite a falling whole cell concentration.

cycles and what consequences this could have for the cell population. To understand how YAP/TAZ scaling affects the YAP/TAZ concentration distribution, we integrated a DSD model with a simple cell cycle system (a two-stage system exhibiting adder size behavior) (9). This model assumes linear dependencies between cell area and the probability to advance in the cell cycle stage and cell area and growth rate. The cell area probability distribution under these constraints is given as a hypo-exponential function $J(A, S, n)$:

$$J(A, S, n) = F^{-1} \left(\prod_{i=1}^n F(G(A, S, n)) \right) \quad [1]$$

where:

$$G(A, S, n) = \frac{\alpha}{\ln(2)k} \sum_{i=1}^S \left[\prod_{j \neq i} \frac{1}{1 + 2^{(j-i)}} \right] \frac{ne^{-n\alpha A/(2^i \ln(2)k)}}{2^i} \quad [2]$$

Where: 'Ad' is the cell area at division, 'a' is a proportionality constant between Ad and cell cycle advancement probability, 'k' a proportionality constant between Ad and growth rate, 'S' is the number of divisions that have occurred, and 'n' is the number of cell cycle 'stages' per division. ' $F(f(x))$ ' denotes the Fourier transform of $f(x)$, and F^{-1} , the inverse. (See methods (calculating area distributions) and supplemental information for details).

To ensure the applicability of this model, we fit equ. 1 to the (G2) cell area distributions of our cell lines using a two-stage system and found good agreement (methods). Here 'stage' refers to the number of growth stages in a cycle (Fig. 4B). Indeed, the CVs of the distributions lie well within the predicted bounds of a two-stage system ($CV = 1/\sqrt{3n}$). For $n = 2$, $0.4 < CV < 0.57$ (Supp. Table 7) (9).

Expressing the 'cell cycle advancement time' (time spent in each cycle stage, CCA) distribution in terms of the dilution factor 'D' ($D = 1/\exp(bkt)$, where 'b' is the scaling factor, 'k' the proportionality constant between size and growth rate, and 't' is time) gives (Fig. 4C) (see supplemental information):

$$P(D) = -\ln(1 - \alpha Ad) (1 - \alpha Ad)^{-\ln(D)/bk} \frac{1}{Dbk} \quad [3]$$

As two dilution events happen in sequence, we were interested in the product distribution of $P(D)$ and a second dilution event, denoted as $F(z)$ (Fig. 4D):

$$F(z) = -\ln(z) \ln(1 - \alpha Ad)^2 (1 - \alpha Ad)^{-\ln(z)/bk} \frac{1}{b^2 k^2 z} \quad [4]$$

Where z is the product of two random 'D' variables distributed according to equ. (3). For simplicity, we considered the two sequential dilution events to be identical, such that the cell grows equally across G1 and G2 and exhibit the same scaling behavior. From $F(z)$, we could calculate the coefficient of variation (σ/μ):

$$CV \approx \sqrt{\left(\frac{\alpha Ad}{\alpha Ad + 2bk} \right)^2 - \left(\frac{\alpha Ad}{\alpha Ad + bk} \right)^4} \quad [5]$$

Which approximately linearly scales with 'b' for $0 < b < 1$ (Fig. 4E); note we have expanded the mean and variance

about $a = 0$ to obtain equ. (5) (α values do not exceed 10^{-5}) (methods). Correlating scaling factors against the CV of YAP/TAZ intensity distributions, we observed a strong negative trend for 7/9 of our cell lines (Supp. Fig. 8).

It is important to note that average 'b' values are not the only source of YAP/TAZ variance in this system; differences in size regulation and the area dependence of 'K' and 'b' all contribute to YAP/TAZ variability (Supp. Fig. 7). Indeed, the MDA-MB-231 and JIMT1 cell lines, those with high scaling factors ($b \approx -0.54$) but comparatively low YAP/TAZ variance ($CV \approx 0.37$), have more homogeneous size distributions than most of the other cell lines (Supp. Table 8, $CV \approx 0.48$) and are some of the few to exhibit an approximately constant 'K' value (Supp. Fig. 7) providing an explanation for their departure from a linear scaling factor-variance relationship.

To capture the concentration distribution of whole cell YAP/TAZ, we simulated equ. 4 across multiple generations (Fig. 4F) (methods). Parameter (Q) values ($bs1$, $bs2$, K) were taken from the size-Q curves for each cell line. Comparing the predicted distributions to those measured, we observed excellent agreement showing that, in these cell lines, the concentration distribution of whole cell YAP/TAZ can be explained by size-dependent stochastic cell division acting on a dilution-synthesis-dilution system (Fig. 4G). Thus, coupling of YAP/TAZ nuclear transport to size is important to suppress variability in YAP/TAZ levels over successive generations.

E. The mean nuclear YAP/TAZ concentration across sizes is associated with altered RAS, adhesion and nuclear transport signalling processes. Having observed the dilution of cytoplasmic (and whole cell) YAP/TAZ with increasing size, and that size had no tangible effect on the mean nuclear concentration (or concentration distribution across the population), we were interested in how continual import could be sustained across sizes whilst the cytoplasmic pool depletes. To investigate this, we combined high-throughput imaging and phosphoproteomic experiments across a separate panel of eight cell lines (semi-redundant with the previous panel) (Fig. 5A, Table.1). The cell lines selected were similar sizes (within a 2-fold range) to prevent size-related phosphorylation events colouring the investigation of nuclear YAP/TAZ and ratio correlates. YAP/TAZ exhibited size sub-scaling behaviour at the whole cell level, but not in the nucleus (relative to tubulin intensity), as is consistent with the prior dataset (Fig. 5B).

We predicted the cell lines nuclear YAP/TAZ and ratio from the phosphoproteomic expression data using partial-least squares regression (PLSR). For this, the expressions of each phosphopeptide were 'corrected' such that they reflected how much more/less expressed they were than expected given the detected expression of the unphosphorylated peptide (see methods). This eliminated the trivial correlation between proteomic and phosphoproteomic data and gives information on the signalling state of the cells. From the PLSR model, we could calculate the contribution of each phospho-peptide and thus, how predictive each phosphopeptide was, as achieved through calculation of a 'Variable importance to projection' (VIP) score.

Mean nuclear YAP/TAZ concentrations were predicted by mass corrected expressions of phosphopeptides enriching for: RTK/MAPK signalling (KEGG pathway 'EGFR tyrosine kinase inhibitor resistance', FDR < 0.05). These included several core regulators of the MAPK pathway including:

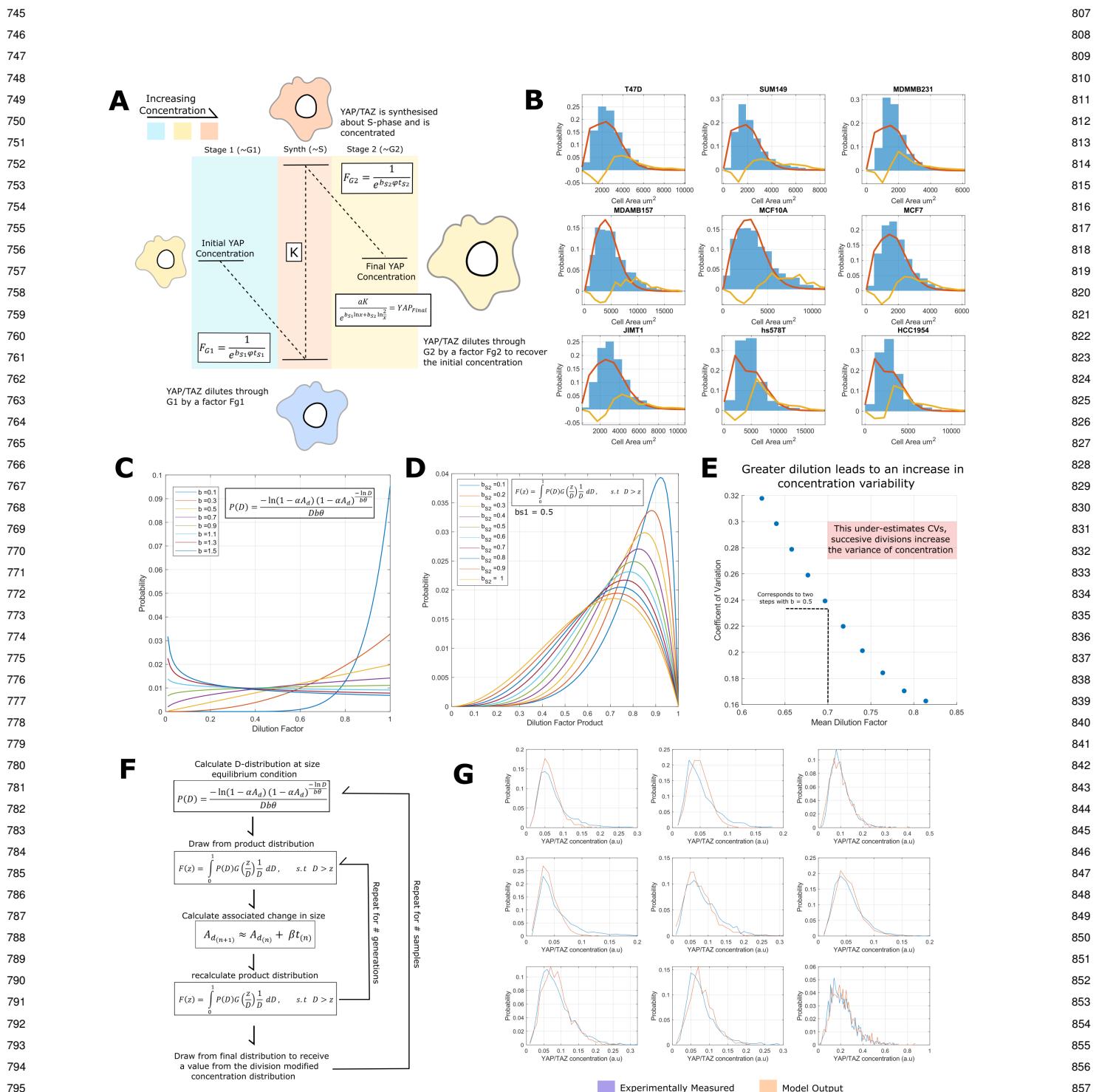


Figure 4: YAP/TAZ scaling behaviour is consistent with a dilution-synthesis-dilution scheme. A) Schematic describing the logic of the dilution-synthesis-dilution system. Relevant dilution factors are marked on each stage. The colours correspond to the final concentration at the end of the stage. Blue is low, orange high. B) Model fits on the single cell 'G2' (as determined by kmeans clustering on the integrated Hoechst intensity) size distributions, blue represents experimental data, orange is the calculated distribution and yellow is the Kullbeck-Leibler Divergence between the distributions. C) The dilution factor probability distribution ($P(D)$) across a range of scaling factors. D) The dilution factor product probability distribution $F(z)$ across a range of scaling factors. E) The relationship between the coefficient of variation and the mean of $F(z)$. The CV increases as the mean decreases. F) Schematic describing how the dilution factor distribution $P(D)$ is used to calculate the expected YAP/TAZ concentration distribution G) Measured YAP/TAZ intensity distributions (blue) and the associated model fits (orange). In all cases we observe excellent agreement.

869 **Table 2. Select phosphorylation sites strongly predictive of the average nuclear YAP/TAZ concentration and/or Nuc/Cyto ratio across lines** 931
 870

Gene	Site	Kinase	Effect	Correlation	Literature	
ERBB2	T701	ERK1/2	Receptor internalization inhibition Inhibits Enzyme activity Multiple Processes including degradation and inhibition Activates Enzyme activity Activates Enzyme activity Grb2 Binding Induces cell growth SH2B1B Binding Unknown	Negative	(43)	
BRAF	S429	AKT1/3		Positive	(44)	
SRC	S75	CDK5		Positive	(45)	
MAPK1	T185	EGFR, MEK		Positive	(46)	
MAPK3	T202	MEK		Positive	(46)	
SOS1	S1178	ERK2		Negative	(47)	
MTOR	S1261	Downstream of PI3K		Positive	(48)	
TLN	Y70	EGFR		Positive	(49)	
VCL	S346	RICTOR		Positive	(50)	
PAK4	S474	PRKD1		Positive	(51)	
RANBP2	S2280	CDK1		Positive	(52)	
XPO1	S11055	NDR1		Positive	(42)	

884 ERBB2 (HER2) (T701), ARAF (S269), SRC (S75), SOS1 931
 885 (S1178), MAPK1 (T185), MAPK3 (T202), PTEN (S294) 932
 886 and MTOR (S1261) (Fig.4C/D). We also observed a clear 933
 887 association between nuclear YAP/TAZ concentration and 934
 888 focal adhesion signalling (KEGG pathway 'Focal adhesion', 935
 889 *FDR* < 0.05), with phosphorylations on TLN (Y70), VCL 936
 890 (S346), PXN (S533), PTK2 (S29), PAK4 (S474), PAK6 937
 891 (S616), ITGB4 (S1457/4) strongly correlating ($|R| > 0.7$) 938
 892 (Fig.5C/D/E/F/G/H). Together, these sites suggest that 939
 893 enrichment of nuclear YAP/TAZ is related to ERK/MAPK 940
 894 signalling activation and the maturation of focal adhesions 941
 (41).

895 Strikingly, when predicting the YAP/TAZ N/C ratio, we 942
 896 observed differential phosphorylation on multiple regulators of 943
 897 nuclear transport across cell lines with high and low YAP/TAZ 944
 898 ratios (GO:0051169, 'nuclear transport. *FDR* < 0.05) These 945
 899 included the nucleoporins, NUP133/153/210/35/188/85 and 946
 900 NDC1 (S406), LMNA (S403), the RAN binding proteins 947
 901 RANBP2 (S2280) and 3 (S27), and XPO1 (S1055), a protein 948
 902 recently directly implicated in YAP/TAZ export from the 949
 903 nucleus (42).

904 To investigate the role of EGFR/MAPK signalling in 950
 905 YAP/TAZ translocation, we treated two breast lines, MDA- 951
 906 MB-231 and MDA-MB-231-LM2, with Binimetinib, a MEK 952
 907 inhibitor. In LM2 cells, Binimetinib treatment resulted in 953
 908 an increase in nuclear YAP/TAZ per cell size whilst having 954
 909 no obvious effect on the scaling of the whole cell YAP/TAZ 955
 910 concentration implying increased translocation. Conversely, 956
 911 in 231 cells, Binimetinib partially reduced nuclear and whole 957
 912 cell YAP/TAZ levels (Fig.5I/J), however, increased the N:C 958
 913 ratio, as in LM2 cells implying increased nuclear import. 959
 914 Taken together these data suggest that RTK-MAPK signalling 960
 915 couples cell size to YAP/TAZ nuclear translocation. Inhibition 961
 916 of MEK signalling disrupts the coupling leading to changes in 962
 917 nuclear translocation.

918 **F. YAP/TAZ dilution behaviour is conserved.** After thoroughly 963
 919 characterizing the dilution behaviour of YAP/TAZ in normal 964
 920 and cancerous breast cells, our study was expanded to examine 965
 921 this effect in different cell contexts and assess its generality as a 966
 922 phenomenon. Specifically, we conducted imaging experiments 967
 923 on WM-266-4 and A375 melanoma cells, as well as retinal 968
 924 pigment epithelial cells (RPE-1). The objectives were to 969
 925 investigate whether: 1) Whole cell YAP/TAZ dilutes as 970
 926 cells enlarge, 2) the nuclear YAP/TAZ concentration remains 971
 927

928 constant with increasing size, and 3) CDK4/6 and MEK 972
 929 inhibition promote nuclear accumulation of YAP/TAZ. 973

930 Strikingly, across all three of the added lines, YAP/TAZ 974
 931 dilution was conserved. To more formally test the relationship 975
 932 between YAP/TAZ dilution and the cell cycle, we also stained 976
 933 these lines for pRB1. Interestingly, dilution only occurred in 977
 934 cell populations with high pRB1 in these lines, corroborating 978
 935 the cell cycle dependency seen in the breast cells (Fig.6A), and 979
 936 the absence of YAP/TAZ dilution in G0 cells. This extended to 980
 937 the Palbociclib treated population, although, cells with higher 981
 938 pRB1 tended to larger in this setting, delaying dilution to a 982
 939 larger cell size (Fig.6A). The YAP/TAZ concentration, but 983
 940 not the scaling behaviour, was found to be sensitive to DNA 984
 941 content in all cell lines in both the control and Palbociclib 985
 942 treated populations (Fig.6B).

943 As in breast cells, the nuclear concentration of YAP/TAZ 986
 944 remained constant with cell size in the background of whole 987
 945 cell dilution, and this was similarly found sensitive to the 988
 946 DNA content of the cell (Fig.6C). Palbociclib increased the 989
 947 nuclear concentration of YAP/TAZ per cell size in all cases 990
 948 (Fig.6D). Binimetinib exhibited similar behaviour in Wm-266-4 991
 949 and RPE-1 cells, but failed to elicit a response from A375 cells 992
 950 (Fig.6E).

951 At a population level, both Palbociclib and Binimetinib 993
 952 increased average cell size, with Palbociclib having a stronger 994
 953 effect (Fig.6F). Despite this, neither treatment had any obvious 995
 954 effect on the whole cell YAP/TAZ concentration. This is 996
 955 presumably due to the delay of dilution in either treatment 997
 956 (Fig.6F). Palbociclib increased the average nuclear YAP/TAZ 998
 957 concentration in all cases. Binimetinib treatment echoed the 999
 958 result in WM-266-4 and RPE-1 but interestingly reduced 999
 960 nuclear YAP/TAZ in A375 cells (Fig.6F). The results of 999
 961 this section are summarised in Fig.6G. Together, these data 999
 962 show that the YAP/TAZ dilution phenomenon extends to the 999
 963 melanoma and RPE cell contexts evidencing the generality of 999
 964 the effect.

965 **G. Dilution of cytoplasmic YAP/TAZ drives increasing nu- 999
 966 clear/cytoplasmic ratios following gene depletion.** Our in- 999
 967 tegrated analysis suggested that RTK-RAS-ERK, focal adhe- 999
 968 sions, and nuclear transport are key processes which couple 999
 969 cell size to YAP/TAZ nuclear transport and act as mechanism to 999
 970 maintain steady state levels of nuclear YAP/TAZ as cells grow. 999
 971 To identify additional factors that may act to couple YAP/TAZ 999
 972 nuclear transport to cell size we performed genetic screen where 999
 973 we systematically depleted 82 RhoGEFs, 67 GAPs, and 19 999
 974

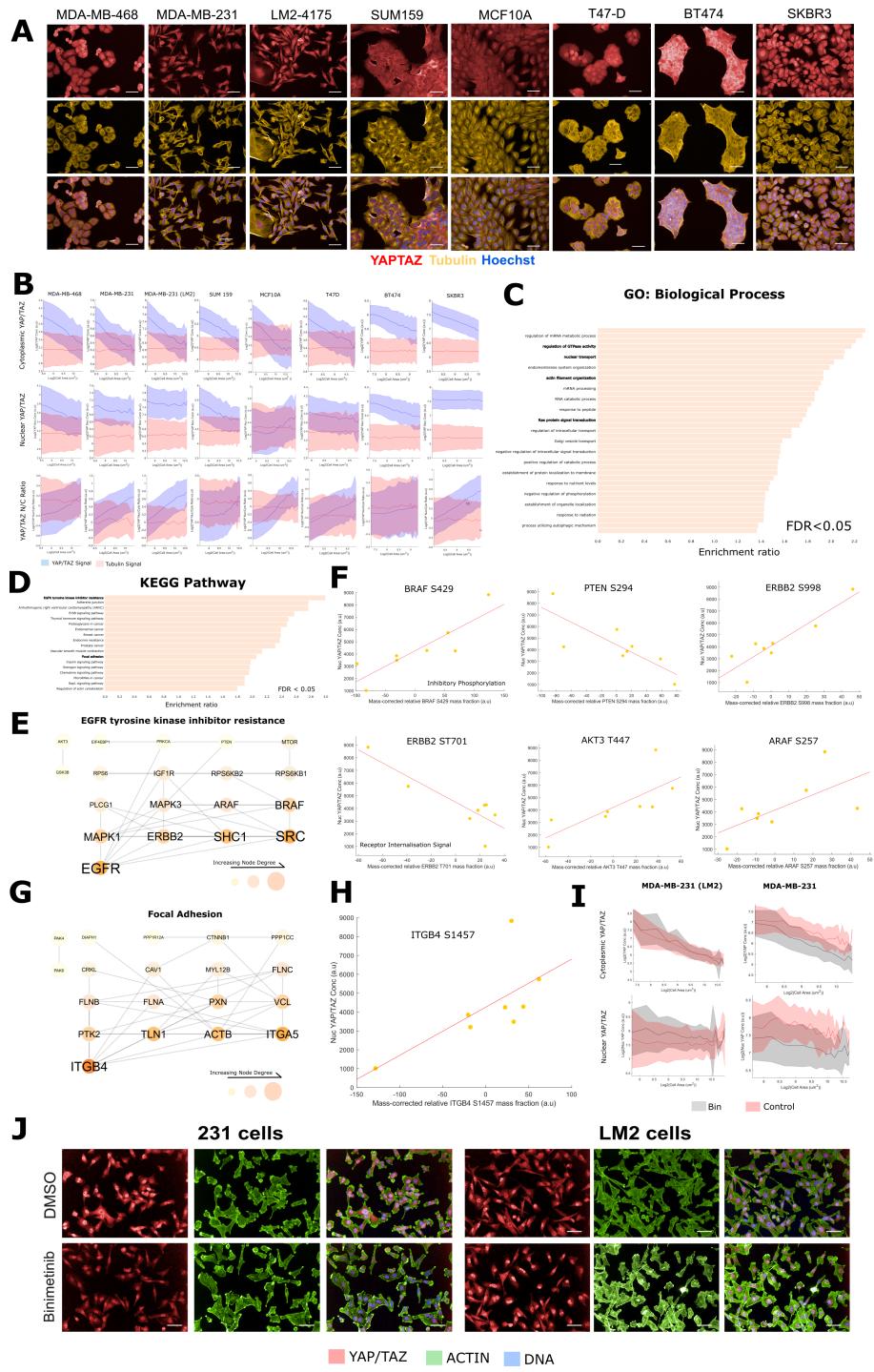


Figure 5: The nuclear YAP/TAZ concentration distribution is associated with altered RAS, adhesion and nuclear transport signalling processes: A) Representative images of the 8-lines across which we conducted phospho-proteomic experiments. Scale bar denotes 50um, YAP/TAZ in red, tubulin in yellow, DNA stain in blue. B) Recapitulation of whole cell YAP/TAZ dilution with increasing cell size and perfectly scaling nuclear concentration against a tubulin standard in a separate experiment and cell line panel. The central line denotes the mean YAP/TAZ cytoplasmic concentration (TOP), nuclear concentration (MID) or N/C ratio (BOT) in each size bin. The error bars correspond to one standard deviation in that bin. Tubulin signal is shown in red and YAP/TAZ in blue. C) Themes from the biological process noRedundant dataset enriched in the list of phosphopeptides most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significant to $FDR < 0.05$. D) Themes from the KEGG pathway dataset enriched in the list of phosphopeptides most predictive of a cells nuclear YAP/TAZ concentration. All enrichments are significant to $FDR < 0.05$. E) A network of the interacting members of the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the 'EGFR tyrosine kinase inhibitor resistance' KEGG pathway. Interactions were derived from the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. F) Example relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the 'EGFR tyrosine kinase inhibitor resistance' KEGG pathway. G) A network of the interacting members of the phosphopeptides predictive of the nuclear YAP/TAZ concentration under the 'Focal Adhesion' KEGG pathway. Interactions were derived from the STRING database, only experimentally determined physical interactions are shown. Node size, label size and colour are proportional to the node degree. H) Example relationships between the nuclear YAP/TAZ concentration and enriched phosphopeptides from the 'Focal Adhesion' KEGG pathway. I) The effect of Binimetinib treatment on YAP/TAZ whole cell and nuclear scaling in LM2 and 231 cells. Binimetinib increased the nuclear concentration of YAP/TAZ across all sizes in LM2 cells. Binimetinib had the opposite effect in M231 cells. J) Representative images demonstrating the effects of binimetinib treatment on YAP/TAZ abundance and translocation. Scale bar denotes 50um, YAP/TAZ in red, actin in green, DNA stain in blue.

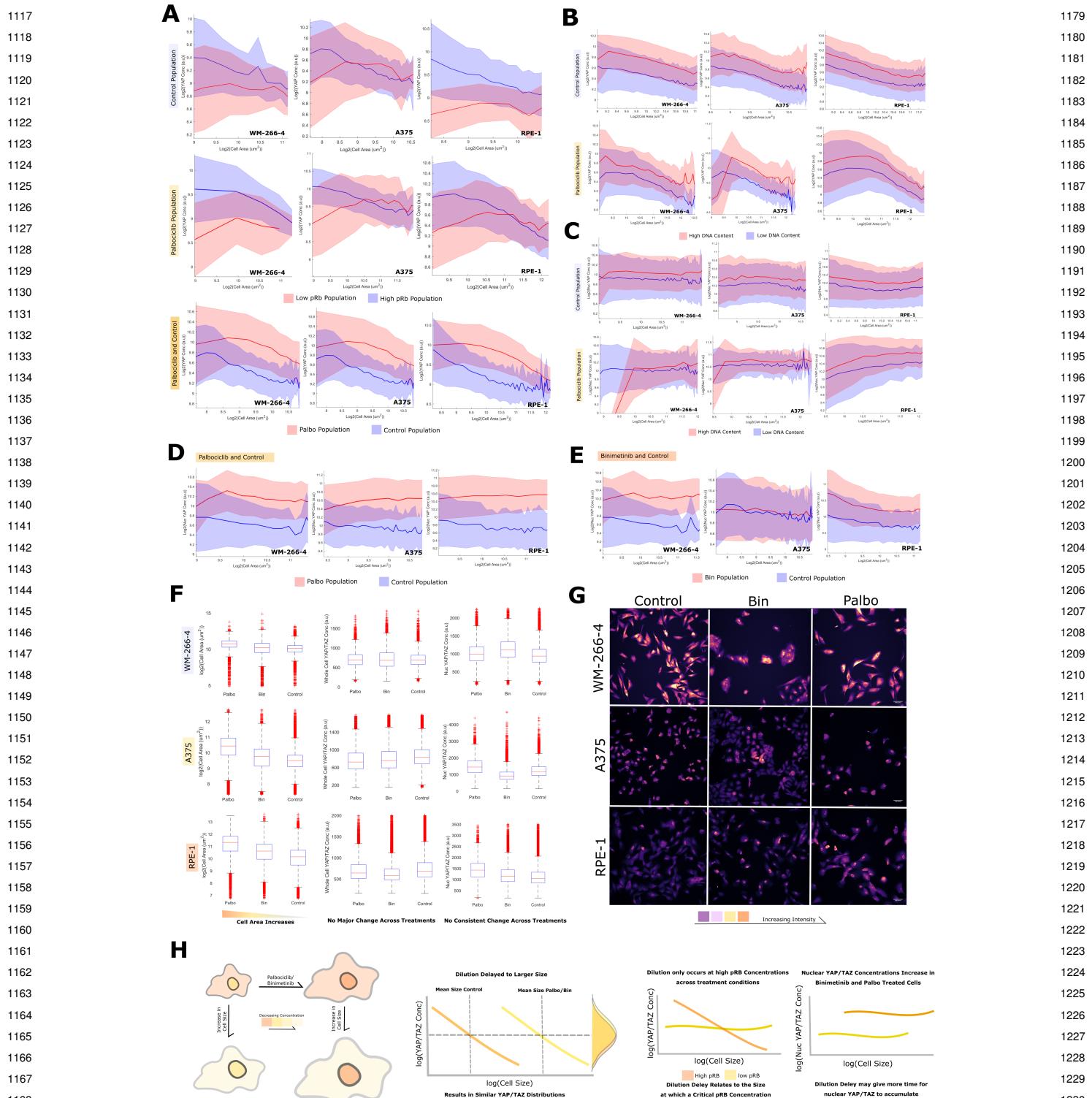


Figure 6: YAP/TAZ dilution behaviour is conserved across melanoma and RPE cells: A) YAP/TAZ concentration – size relationship across WM266-4, A375 and RPE1 cells. Top shows whole-cell YAP/TAZ size scaling in the high (blue) and low (red) phospho-RB1 populations in untreated cells. The middle shows the same in the Palbociclib treated context. The bottom directly compares YAP/TAZ size scaling in the high pRB1 populations in the Palbociclib treated and control cells. In all cases, the middle line represents the mean value of cells about that size 'bin'. The width of the shaded area relates to the standard deviation of cells in that same bin. B) The relationship between YAP/TAZ dilution and DNA content across control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. C) Nuclear YAP/TAZ concentration against cell size across DNA content in control (top) and Palbociclib treated (bottom) cells. The high DNA content cluster is in red, the low cluster in blue. D) Nuclear YAP/TAZ across cell sizes compared across low DNA cluster Palbociclib treated (red) and control (blue) cells. In all three cell lines, Palbociclib increased the nuclear concentration of YAP/TAZ across all cell sizes. E) Nuclear YAP/TAZ across cell sizes compared across low DNA cluster Binimetinib treated (red) and control (blue) cells. In WM266-4 and RPE1 cells, Binimetinib increased the nuclear concentration of YAP/TAZ across all cell sizes. It had no effect in A375 cells. F) Boxplots summarising the effects of Palbociclib and Binimetinib at the population level on: cell area (left), whole cell YAP/TAZ (middle) and nuclear YAP/TAZ (right). G) Representative images of YAP/TAZ signal across cell lines in each treatment. Colour is proportional to the YAP/TAZ intensity. H) Cartoon summarising the major findings of this section: Palbociclib/Binimetinib do not reduce whole-cell YAP/TAZ despite increasing cell size because scaling is delayed to a larger size, this appears related to the phosphorylation of RB1 in these cell lines.

1241 Rho GTPases, across 300,000 LM2 and MDA-MB-231 cells
1242 (39). We focused on RhoGEF, RhoGAPs, and RhoGTPases
1243 as these are well-established regulators of both YAP/TAZ
1244 and cell morphology - thus are excellent candidates for genes
1245 that may act to couple nuclear transport of YAP/TAZ to cell
1246 growth. We also included in this screen siRNAs that targeted
1247 YAP and TAZ, as well as components of the Hippo pathway
1248 such as LATS1 and LATS2.

1249 Identifying regulators of YAP/TAZ transport following
1250 perturbation is complicated by the fact that any given gene
1251 could potentially regulate YAP/TAZ concentration by affecting
1252 volume, by affecting signalling that regulates transport,
1253 or both. Conducting a scaling analysis on the untreated cells
1254 (LM2 and MDA-MB-231 cells) ($n \approx 80,000$), we observed the
1255 same whole cell YAP/TAZ concentration sub-scaling behavior
1256 as in the prior analyses ($b \approx 0.35$). Similarly, the nuclear
1257 concentration distribution remained approximately constant
1258 with size, leading to an increase in average YAP/TAZ n/c
1259 ratio driven by population-level cytoplasmic dilution.

1260 Gene depletions did affect the nuclear and cytoplasmic con-
1261 centration distribution of YAP/TAZ. For example, depletion
1262 of genes such as SPATA13, RALBP1, and BCR increased
1263 average YAP/TAZ concentrations/n/c ratios for any given
1264 cell size in MDA-MB-231 cells. Investigating more deeply, we
1265 constructed partial least squares regression (PLSR) models
1266 which predicted YAP/TAZ concentration and ratio in control
1267 cells as functions of 114 measured morphological and intensity
1268 features (methods) (Supp. Fig. 11/12). Calculating variable
1269 importance to projection (VIP) scores from the model, we
1270 observed that cell area (and associated correlates e.g., Nuclear
1271 area, eccentricity, etc.) most contributed to the prediction of
1272 YAP/TAZ concentration and n/c ratio ($VIP_{scores} > 1$ are
1273 considered major contributors to the model). We applied this
1274 model to all treatment conditions (siRNA knockdowns) finding
1275 that, even under perturbation, the size-YAP/TAZ n/c ratio
1276 and concentration relationship persisted (Supp. Fig. 11/12).
1277 Thus, the scaling of YAP/TAZ levels to size appears rarely
1278 affected by perturbations which affect size, morphology, or Rho
1279 GTPase pathway activation. While many siRNAs are affecting
1280 the YAP/TAZ n/c ratio, often they are doing so through
1281 manipulation of cell morphology and dilution of cytoplasmic
1282 (and total) YAP/TAZ, rather than increasing the nuclear
1283 concentration. These included genes canonically associated
1284 with increased cell size, including ECT2 and RACGAP1,
1285 known to induce cytokinetic failures and polyplloidization when
1286 depleted (53).

1288 Using this framework, we could also investigate genes
1289 that disrupt the coupling between YAP/TAZ and size; those
1290 which are most poorly predicted by the model are those
1291 which most perturb the relationship between YAP/TAZ and
1292 cell morphology. The clearest 'hits' across both cell lines
1293 included YAP itself, the YAP regulatory kinases LATS1 and
1294 LATS2, as well as RHOA, HMHA1, and PIK3R2. Unique to
1295 LM2 cells were ARHGAP33 and STARD13 whilst SOS2 and
1296 ITSN2 perturbed the relationship only in MDA-MB-231 cells
1297 (Fig.7A/B).

1298 Focusing on MDA-MB-231 cells, LATS1/2 and HMHA1
1299 interestingly exhibited a very similar behavior to that captured
1300 by the model, in that they exhibited an increased cell area
1301 and YAP/TAZ ratio, and decreased whole cell YAP/TAZ
1302 concentration (Fig) However, these KDs led to an increase

1303 in YAP/TAZ ratio beyond what would be expected from
1304 an increase in size alone. Furthermore, LATS1/2 KD led
1305 to a small decrease in the nuclear YAP/TAZ concentration
1306 (Fig.7C). Together, we conclude these genes affect the cyto-
1307 plasmic levels of YAP/TAZ both via control of morphology,
1308 size, and signalling mechanisms (Fig.7C).

1309 This phenomenon was not universal, however; several KD
1310 states altered the YAP/TAZ ratio independently of cell area,
1311 such as PIK3R2 and ITSN2 (Fig.7C). Interestingly, the reduc-
1312 tion in YAP/TAZ ratio observed in these cases was nevertheless
1313 associated with a loss of cytoplasmic rather than an increase in
1314 the nuclear YAP/TAZ concentration. Importantly, this shows
1315 that an increase in cell area is not the only way to achieve
1316 a reduction in cytoplasmic YAP/TAZ concentration in this
1317 system (e.g., Increased degradation). These genes could be
1318 involved in directly regulating YAP/TAZ biosynthesis and/or
1319 stability. Of our 'hit' genes that increased YAP/TAZ n/c and
1320 cell area, only RHOA depletion led to a decrease in YAP/TAZ
1321 ratio, driven solely by a canonical reduction in nuclear, rather
1322 than total, YAP/TAZ concentration (Fig.7C). It is unclear
1323 whether RHOA depletion leads to an increase in YAP/TAZ
1324 synthesis per cell size, such to offset the effect of size scaling
1325 on the mean YAP/TAZ concentration, or whether it decouples
1326 cell area from cell volume, leading to an anomalously high
1327 spread area skewing the result. Indeed, such an effect may
1328 underpin the behavior of PIK3R2/ITSN2 KD.

1329 Together these data show that YAP/TAZ size-scaling
1330 and concentration are remarkably robust to perturbations
1331 in RhoGTPase signalling, in that only the depletion of
1332 very few RhoGEF/GAPs disturbed YAP/TAZ in a way
1333 inconsistent with the concomitant change in cell morphology.
1334 However loss of the core Hippo effectors, LATS1/2, and
1335 a master contractility regulator, RHOA (amongst others)
1336 successfully altered the relationship between cell morphology
1337 and YAP/TAZ regulation. Stable expression of these genes
1338 may be vital to maintaining a constant nuclear YAP/TAZ
1339 concentration distribution, and therefore signal sensitivity, as
1340 a cell grows.

2. Discussion

1341 Here we have shown that cytoplasmic YAP/TAZ are sub-
1342 scaling molecules across cell types; specifically, diluting in
1343 G1, undergoing a surge in synthesis near S-phase before
1344 diluting again in G2. This is not unique to YAP/TAZ; seminal
1345 work on size-scaling phenomena showed that RB1 (and the
1346 associated Whi5 in yeast) exhibits extremely similar behaviour.
1347 However, unlike YAP/TAZ, RB1 is not continually synthesised
1348 throughout the cell cycle/across sizes ('b' abundance 0.15
1349 vs 0.4-0.6 for YAP/TAZ) (4, 5, 15). The concentration of
1350 RB1 is, therefore, more directly controlled by changes in cell
1351 volume, befitting of its putative role as a size-sensor, whereas
1352 the YAP/TAZ concentration is complicated by biosynthetic
1353 regulation.

1354 That nuclear YAP/TAZ concentration distribution did
1355 not change across cell size bins suggesting that YAP/TAZ
1356 signalling is largely constant across small and large cells during
1357 proliferataion. That is, YAP/TAZ signalling is robust against
1358 changes in cell size occurring throughout a division cycle. Such
1359 robustness is not a rare phenomenon in biology, indeed, recent
1360 works developing models of biological signalling networks have
1361 observed remarkably low parameter sensitivity (54-57). A
1362
1363
1364

1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

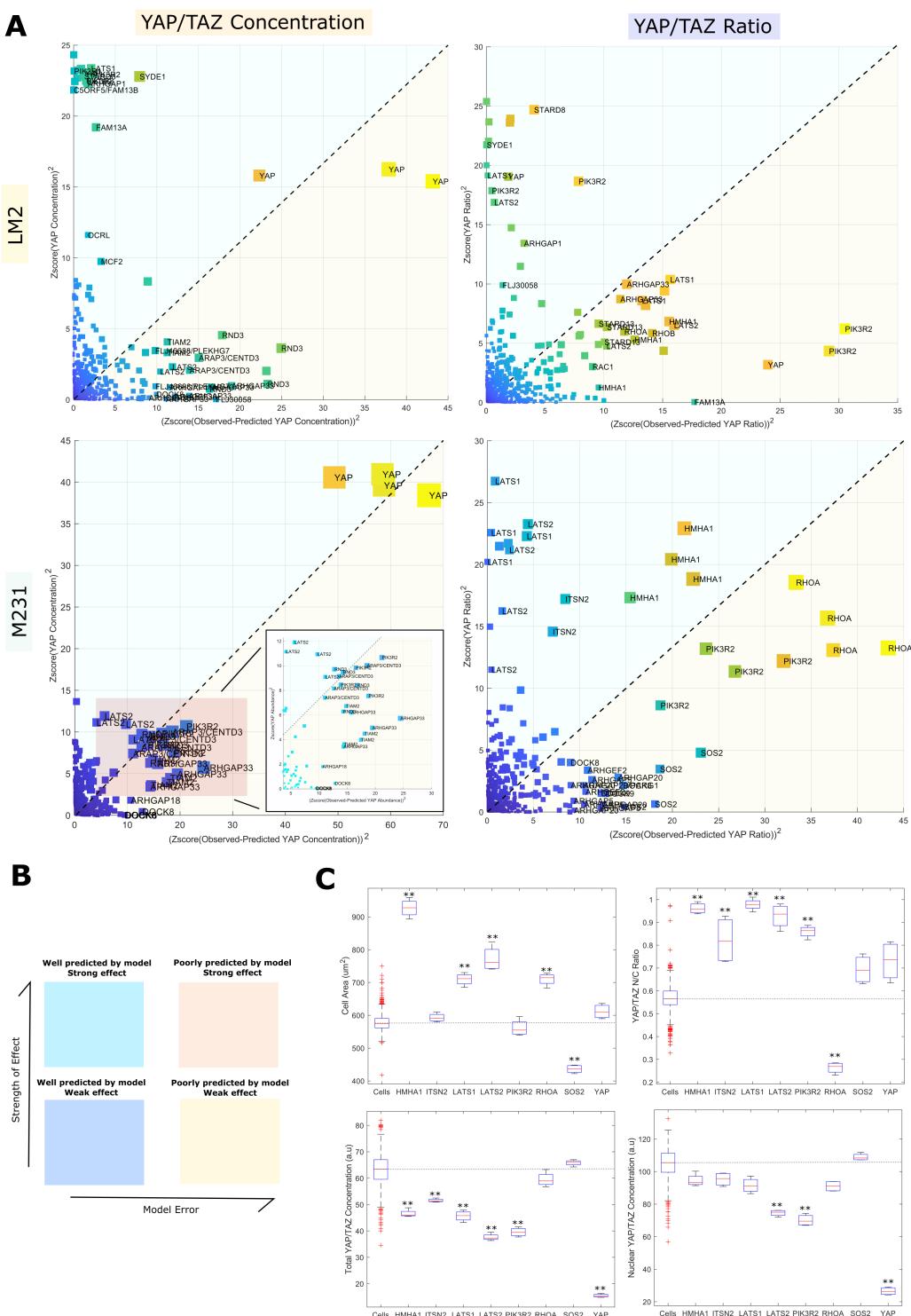


Figure 7: Dilution of cytoplasmic YAP/TAZ drives increasing nuclear/cytoplasmic ratios following gene depletion A(top left)) The relationship between the squared YAP/TAZ concentration (Z-score) and squared model error (Z-score) for each knockdown state in LM2 cells. The colour and size of each datapoint corresponds to the distance from the origin. A(bottom left)) The relationship between the squared YAP/TAZ concentration (Z-score) and squared model error (Z-score) for each knockdown state in M231 cells. The colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom on the red marked region. We note a strong overlap in hits across the two cell lines. A(top right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in LM2 cells. KDs affecting YAP/TAZ ratio are not redundant with those affecting concentration. The colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom on the red marked region. A(bottom right)) The relationship between the squared YAP/TAZ ratio and squared model error for each knockdown state in M231 cells. The colour and size of each datapoint corresponds to the distance from the origin. Inset: zoom on the red marked region. B) A guide to the regions of the graphs shown in 'A'. C) Comparisons of YAP/TAZ concentration, YAP/TAZ nuclear concentration, YAP/TAZ N/C ratio and cell area across knockdown states by an N-way ANOVA test ($n = 200$ for control, 4 for all else, ** denotes $P < 0.01$).

1489 particularly striking example can be found in a model of the
1490 Drosophila segmentation network where, across 48 parameters
1491 and two orders of magnitude, if a parameter was assigned a
1492 random value, there was a 90% chance that it was associated
1493 with a functional network (58).

1494 Amongst other mechanisms, a biological system may
1495 achieve robustness through adaptation (57). When investigating
1496 the signalling differences in cell lines with high/low
1497 average nuclear YAP/TAZ, we found that the expression
1498 of phosphopeptides relating to nuclear transport, adhesion
1499 and RTK-MAPK signalling best explained the differences,
1500 suggesting that these signalling systems may 'adapt' (are
1501 up/down regulated with increasing size over generations) to
1502 the depleting YAP/TAZ pool. Indeed, an increased activity
1503 of nuclear transporters (and decreased activity of exporters)
1504 with increasing size provides an intuitive explanation for how
1505 a constant nuclear concentration distribution, sustained by
1506 continual import, could be maintained under a falling cytoplas-
1507 mic concentration. Indeed, XPO1 Ser1055, a phosphopeptide,
1508 upregulated in lines with a lower mean nuclear concentration, is
1509 an activated species known to control the export of YAP/TAZ
1510 (41, 42). Furthermore, conformation changes in nuclear pores
1511 have been shown to stimulate YAP/TAZ entry into the nucleus
1512 (59, 60). This can also be driven by increasing nuclear size
1513 and thus cell spreading and growth, imparting stress on the
1514 nucleus through cytoskeletal connections to the cell body,
1515 and may even be sufficient to sustain the nuclear YAP/TAZ
1516 concentration as the cell expands (61).

1517 When perturbing MAPK and CDK4/6 activity, we observed
1518 an increase in the mean nuclear YAP/TAZ concentration per
1519 cell size. This may relate to YAP/TAZ's role in prompting
1520 resistance to BRAF-MEK blockade. (62–67). As Binimetinib
1521 and Palbociclib exhibited similar effects, is it likely that
1522 MAPK's role in promoting proliferation regulates nuclear
1523 YAP/TAZ. As neither treatment tangibly effected the scaling
1524 factor of the nuclear YAP/TAZ concentration, it is unlikely
1525 that MAPK signalling is dynamically regulated with increasing
1526 cell size to maintain robust signalling, but rather, determines
1527 the mean nuclear concentration to be maintained (and thus
1528 the nuclear concentration distribution across the population).
1529 Focal adhesion/mechanosignalling events may play a similar
1530 role. Indeed we did not observe any clear change in the
1531 'scaling factor' of nuclear YAP/TAZ following depletion of
1532 many RhoGEFs and RhoGAPs which couple adhesion to
1533 signalling and morphogenesis, but only changes to the absolute
1534 quantity of YAP/TAZ per cell size.

1535 Our theoretical model, integrating stochastic cell division
1536 with YAP/TAZ size scaling, revealed that more severe protein-
1537 size scaling results in a greater variance in the proteins
1538 concentration distribution; this may have drastic consequences
1539 for the cytoplasmic functions of YAP/TAZ; for example,
1540 YAP/TAZ has been shown to influence the spindle assembly
1541 checkpoint, potentially through its interactions with BUBR1
1542 (68). Moreover, cytoplasmic YAP/TAZ is known to be a core
1543 component of the CTNNB1 destruction complex (69, 70). As
1544 YAP/TAZ and CTNNB1 co-operate as transcription factors
1545 in the nucleus (64, 71), this suggests that the cytoplasmic
1546 dilution of YAP/TAZ may also indirectly influence its nuclear
1547 activity in accordance with the putative importance of the
1548 YAP/TAZ nuc/cyto ratio (72–74).

1549 Together, these data show that that YAP/TAZ can dilute
1550 as the cell increases in size. Remarkably, the nuclear concen-
1551 tration distribution is insensitive to the effect, demonstrating
1552 that cells have developed systems to mitigate the influence
1553 of protein dilution beyond just regulating their size. Such
1554 mechanisms may be crucial in overcoming the emergent
1555 heterogeneity associated with sub/super scaling behaviour
1556 across division cycles and for maintaining robust signalling
1557 throughout the cell cycle.

1558 Materials and Methods

1559 **A. Cell Culture.** The following human breast cell lines were investi-
1560 gated (novel in this study). T-47D and BT-474 were obtained from
1561 Nicholas Turner (ICR, London), SKBR3 cells were a kind gift from
1562 the laboratory of Olivia Rossanese (ICR), MDA-MB-468 cells were
1563 a kind gift from George Poulgiannis (ICR), MDA-MB-231 were
1564 obtained from Janine Erler (University of Copenhagen, Denmark)
1565 , LM2 cells (a highly metastatic subpopulation 4175 from MDA-
1566 MB-231, (38)) were obtained from Joan Massagué (Sloan Kettering
1567 Institute, New York), while SUM159 were a kind gift from the
1568 laboratory of Rachel Natrajan (ICR). All the above cancer cell
1569 lines were grown in Roswell Park Memorial Institute (RPMI)-1640
1570 culture medium (Gibco) supplemented with 10% heat-inactivated
1571 fetal bovine serum (FBS) and 1% penicillin/streptomycin. MCF10A
1572 cells were obtained from ATCC and were engineered to express
1573 endogenous mRuby-tagged PCNA (75). They were grown in
1574 DMEM/F12 supplemented with 5% horse serum, 10 µg/ml insulin,
1575 20 ng/ml epidermal growth factor, 100 ng/ml cholera toxin, 500
1576 ng/ml hydrocortisone, and 1% penicillin/streptomycin.

1577 All the cell lines were grown at 37°C and supplemented with 5%
1578 CO₂ in humidified incubators. The passage was carried out using
1579 0.25% trypsin-EDTA (GIBCO) followed by centrifugation (1000
1580 rpm, 4 min) and resuspension in a complete medium. Cell counting
1581 was performed using Countess automated cell counter with trypan
1582 blue exclusion (Thermo).

1583 Cells were confirmed to be mycoplasma-negative (e-Myco plus
1584 Mycoplasma PCR Detection Kit, iNTRON Biotechnology).

1585 WMs, a375, and RPEs cells were maintained in standard
1586 culture conditions (DMEM+10% FBS, vessel: Corning® Primaria™
1587 25cm² Rectangular Canted Neck Cell Culture Flask with Vented
1588 Cap, PN: 353808). Passage was carried out using 0.25% trypsin-
1589 EDTA (GIBCO) followed by centrifugation (1000 rpm, 4 min) and
1590 resuspension in complete medium. Cell counting was performed
1591 using Countess automated cell counter with trypan blue exclusion
1592 (Thermo).

1593 Prior to imaging/ proteomic analysis, cells were plated at day 0
1594 in either 384-well PerkinElmer PhenoPlates (black, optically clear
1595 flat-bottom for imaging) or T175cm flasks for proteome analysis.
1596 For 384 wells the cell densities used per well were: T-47D (1200
1597 cells), BT-474 (2400 cells), SKBR3 (2200 cells), 468 (1000 cells),
1598 231 (800 cells), LM2 (800 cells), MCF10A (400 cells), and for the
1599 proteomics experiments they were scaled according to the surface
1600 area of the vessel used. Following three days of incubation in
1601 the above growth media, cells were either fixed in pre-warmed
1602 4% formaldehyde (ThermoScientific) in PBS for 15 min at room
1603 temperature (image analysis) or collected in a pellet for proteomics
1604 analysis.

1605 **B. Immunostaining.** After fixation, cells were washed three times
1606 in PBS and then permeabilised in 0.2% Triton X-100/PBS solution
1607 for 15min at RT. Following three washes in PBS, cells were blocked
1608 for 1h in 2% bovine serum albumin (BSA) (Sigma)/PBS solution
1609 at RT. When using both mouse and rat primary antibodies in the
1610 same sample, sequential immunostaining was performed to avoid
1611 any antibody cross-reactions. Typically co-immunostaining with a
1612 mouse, rat and rabbit antibody was used. After the Block step, BSA
1613 was removed and the desired mouse primary antibody was added
1614 in Antibody solution (0.5%BSA/0.01% Triton X-100/PBS) at the
1615 indicated dilutions: YAP (G6) (Santa Cruz, 1:100), YAP/TAZ [67.3]
1616 (Santa Cruz, 1:1000). All the primary antibodies immunostainings
1617 were performed overnight at 4°C. Then cells were washed three times

1613 in PBS and incubated with a goat anti-mouse antibody 1:1000 in
 1614 Antibody solution for 2h at RT. Cells were washed three times in
 1615 PBS and incubated with a rat anti-tubulin alpha antibody (Bio
 1616 Rad, 1:1000) and an anti-rabbit primary antibody when applied,
 1617 for 2 hours at RT. The anti-rabbit primary antibodies were used
 1618 at the indicated dilutions: TAZ (V386) (Cell Signalling, 1:200),
 1619 Anti-PhosphoRB (Abcam, 1:1000). Then cells were washed three
 1620 times in PBS, and incubated for 2h at room temperature with a goat
 1621 anti-rat antibody and/or a goat anti-rabbit antibody or Alexa-488
 1622 phalloidin (Invitrogen) if needed. Finally, to stain nuclei, 5 mg/ml
 1623 Hoescht (Invitrogen)/PBS solution was carried out for 15min at RT.
 1624 384-well plates were sealed for imaging with an Opera Cell:Explorer-
 1625 automated spinning disk confocal microscope (PerkinElmer) or
 1626 Opera Phenix (PerkinElmer) in the magnification indicated in the
 1627 figure legends. At least twenty fields at random positions per well of
 1628 a 384-well plate were imaged.

1629 For the cell cycle experiments in MCF10A cells, samples were
 1630 fixed in freshly prepared 4% PFA/PBS for 15 minutes. Cells were
 1631 subsequently permeabilized with 0.25% Triton/PBS for 10 mins and
 1632 blocked with 0.5% BSA/0.02% glycine/PBS for 30 minutes. Primary
 1633 antibodies CCNA2 (Abcam, ab181591, 1:250) and YAP/TAZ (Santa
 1634 Cruz, SC-101199, 1:250) were introduced via the same solution and
 1635 left on for 1 hour at room temperature or overnight at 4 degrees.
 1636 The plates were washed with PBS and the same was carried out for
 1637 the secondary antibodies (Alexa fluor conjugated goat anti-mouse
 1638 or anti-rabbit, 1:500) for 1 hour at room temp in PBS. Hoechst
 1639 stain was added post-secondary (1:500) to stain DNA. Plates were
 1640 imaged as above using the Opera Cell:Explorer with 20X objective
 1641 lens (NA = 0.45).

1642 **C. Image Acquisition and Feature Extraction.** Image acquisition and
 1643 cell segmentation was performed using Columbus high-content image
 1644 analysis software or Harmony software. Nuclei were segmented using
 1645 the Hoechst channel. Cell bodies were segmented using the tubulin
 1646 channel. The perinuclear region was used to measure cytoplasmic
 1647 antibody intensities. The cell-cell contact area (Neighbour fraction)
 1648 was determined using an inbuilt Columbus algorithm 'Cell Contact
 1649 Area with Neighbors [%]' expressed as the Percent of the object
 1650 border that touches a neighbor object. The border objects were
 1651 removed from the analysed cells considering only cells completely
 1652 imaged. Mitotic cells were filtered using a combination of Hoechst
 1653 intensity mean and Hoechst intensity maximum and excluded of
 1654 all the analysis of this study. Geometric features measured include:
 1655 the area of all subcellular regions; the length, width, and elongation
 1656 (length/ width) of the cell and nucleus, cell and nuclear roundness
 1657 and nucleus area/cytoplasm area.

1658 **D. Scaling Analysis.** We conducted k-means clustering on the
 1659 integrated Hoescht intensity of each cell line against nuclear area
 1660 across k = 1:8. k was calculated using the elbow method and
 1661 augmented with the additional constraint that cluster centroids
 1662 should be separated by a factor of 2x, where x = 1:k. This way,
 1663 the first cluster approximates 2n G1, the second 2n G2/4n G1 and
 1664 so on. The YAP/TAZ – size relationship in each DNA-cluster was
 1665 treated as a power law such that:

$$[Y] = aA^b$$

1666 Where; [Y] represents YAP/TAZ concentration, 'A' cell area,
 1667 and 'a' and 'b' are constants. The scaling factor, 'b' and 'log(a)'
 1668 was extracted by conducting a linear fit on:

$$\log([Y]) = \log(a) + b \log(A)$$

1669 Which results from a simple manipulation. The factor by which
 1670 'a' increases across DNA groups is trivially retrieved by:

$$\log_2(a_{n+1}) - \log_2(a_n) = x, \quad a_{n+1}/a_n = 2^x$$

1671 Examining the logarithmic derivative of [Y], we noticed that
 1672 'b' was not constant across the entire size range captured in our
 1673 populations, although was over an 8-fold size difference about the
 1674 mean. To avoid this complicating our analysis, we conducted the
 1675 linear fits on the data within three standard deviations of the mean.
 1676 Linear fitting, clustering, and data handling were conducted in the
 1677 MATLAB R2019b (Mathworks) environment.

1678 **E. Calculating Cell Area Distributions.** Cell area distributions were
 1679 derived from a simple adder system we published in a previous study
 1680 (9). Briefly, we considered the probability of a cell advancing to the
 1681 next cell cycle stage at any given time, P, and the cell's growth rate,
 1682 β , as proportional to the area at which it divided in the previous
 1683 cycle:

$$P = \alpha A_d, \quad \beta = k A_d$$

1684 Where 'α' and 'k' are proportionality constants. From these two
 1685 rules, it can be shown that in each cell cycle stage, the cell gains a
 1686 random amount of mass drawn from a size-invariant exponential
 1687 distribution centred on k/α , $R(A)$, resulting in adder-like behaviour:

$$R(A) = \lambda e^{-\lambda A}, \quad \lambda = \frac{-\ln(1 - \alpha A_d)}{A_d k \ln(2)} \approx \frac{\alpha}{\ln(2)k}$$

1688 The division area distribution, $H(A)$, results from the convolution
 1689 of the birth distribution $B(A)$ with $R(A)$ 'n' times, where
 1690 n is the number of cell cycle stages. Assuming symmetrical cell
 1691 division, the subsequent $B(A)$ (in the next cycle), is given as $H(2A)$.
 1692 This is then again convolved with $R(A)$, and so on, resulting in a
 1693 hypo-exponential distribution of general form:

$$J(x, n) = \sum_{i=1}^S \left[\prod_{i \neq j} \frac{\lambda_j}{\lambda_j + \lambda_i} \right] \lambda_i e^{-\lambda_i x}$$

1694 Substituting our values for a one-stage cycle system:

$$J(A, S) = \sum_{i=1}^n \left[\prod_{i \neq j} \frac{1}{1 + 2^{j-i}} \right] \frac{\alpha}{2^i \ln(2)k} e^{-\alpha A / (2^i \ln(2)k)}$$

1695 The n-stage distribution is obtained by first substituting λ for
 1696 $n\lambda$:

$$G(A, S, n) = \sum_{i=1}^S \left[\prod_{i \neq j} \frac{1}{1 + 2^{j-i}} \right] \frac{n\alpha}{2^i \ln(2)k} e^{-n\alpha A / (2^i \ln(2)k)}$$

1697 And convolving $G(A, S, n)$ with itself 'n' times:

$$J(A, S, n) = F^{-1} \left(\prod_{i=1}^n F(G(A, S, n)) \right)$$

1698 Where 'F(c)' denotes the Fourier transform of 'c' and 'F⁽⁻¹⁾(c)'
 1699 the inverse. Here we have leveraged the convolution theorem
 1700 to express the convolution as a multiplication in Fourier space.
 1701 For calculation, the initial cell area distributions are considered a
 1702 delta function centred on $\ln(2)k/\alpha$ (the mean of $R(A)$). Every
 1703 generation, the area distribution is convolved with the mass-
 1704 gain distribution, $R(A)$, 'n' times, computed by performing an
 1705 inverse Fourier transform on the product of the two distributions'
 1706 respective Fourier transforms. This produces the division area
 1707 distribution, $Ad(A)$, which must be transformed to $Ad(2A)$ to
 1708 capture the effects of cell division. We perform this by setting
 1709 $Ab(Ax) = Ad(Ai) + Ad(Ai + 1)$, where 'i' = $xn-xn-1$ for all x ,
 1710 where Ab denotes the birth size distribution. This is then convolved
 1711 with the gain distribution as before to generate the next division
 1712 distribution and so on until a desired number of generations has been
 1713 reached. For each, we calculated the Kullbeck-Liebler divergence
 1714 between the experimental and simulated data to assess model error.
 1715 For discrete probability distributions defined on the same probability
 1716 space, X , the Kullback–Leibler divergence from P to Q is:

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log_{10} \left(\frac{P(x)}{Q(x)} \right)$$

1717 Model fitting was conducted within the commercial MATLAB
 1718 R2019b (Math Works) software's machine learning toolbox.

1737 **F. Calculating YAP/TAZ Concentration Distributions.** We computed
 1738 the dilution factor distribution for an initial size condition, con-
 1739 strained such that the cell begins the simulation at its ‘expected
 1740 size’ within our 2-stage adder proliferation model framework:

$$1741 Ad = \langle A \rangle, \quad \alpha = \frac{w}{Ad}, \quad k = \frac{w}{4 \ln(2)} \\ 1742$$

1743 Where ‘w’ is an arbitrary constant. These parameters are used
 1744 to compute an initial dilution factor distribution:

$$1745 P(D) = \frac{-\ln(1 - \alpha Ad)(1 - \alpha Ad)^{(-\ln(D)/bk)}}{Dbk} \\ 1746$$

1747 From which we compute the product distribution (assuming
 1748 identical cell cycle stages):

$$1749 F(z) = \int_z^1 P(D)P(z/D) \frac{1}{D} dD \\ 1750 \\ 1751 F(z) = \frac{-\ln(z) \ln(1 - \alpha Ad)^2 (1 - \alpha Ad)^{-\ln(z)/bk}}{b^2 k^2 z} \\ 1752$$

1753 Where we assume that the cell grows approximately equal
 1754 amounts in G1 vs G2. We then draw from this distribution,
 1755 obtaining a dilution factor ‘d’, by passing a uniformly distributed
 1756 random number through the inverse of $F(z)$, defined as:

$$1757 G(z) = \int_0^1 F(z) dz \\ 1758$$

1759 We multiply the initial YAP concentration by ‘K*d’ to generate
 1760 the starting YAP concentration for the next cycle. ‘K’ is taken
 1761 from the size-K curve experimentally measured. From this, we also
 1762 calculated the size change needed to generate ‘d’ as:

$$1763 \Delta A = \frac{Ad}{2b} \ln(1/d) \\ 1764$$

1765 From which we trivially update Ad :

$$1766 Ad_{n+1} = \frac{1}{2} Ad_n + \Delta A \\ 1767$$

1768 This now facilitates re-calculation of $P(D)$, $F(z)$, etc. for
 1769 the next generation, and the cycle is repeated for 10 generations
 1770 to generate one sample YAP concentration for the cell line.
 1771 The process is repeated 1000 times to generate a YAP/TAZ
 1772 concentration distribution for each line, which is compared to the
 1773 experimentally determined YAP/TAZ intensity distributions via
 1774 the KBL divergence.

1775 **G. Calculation of the Coefficient of Variation of $F(z)$.** To calculate
 1776 the coefficient of variation of $F(z)$, we first derived the mean:

$$1777 \langle F(z) \rangle = \int_0^1 z F(z) dz = \frac{\ln(1 - \alpha Ad)^2}{(\ln(1 - \alpha Ad) - bk)^2} \approx \left(\frac{\alpha Ad}{\alpha Ad + bk} \right)^2 \\ 1778$$

1779 Where we have expanded about $\alpha = 0$. The variance is given as:

$$1780 \langle \langle F(z) \rangle \rangle = \int_0^1 z^2 F(z) dz - \mu^2 \\ 1781 \\ 1782 \approx \left(\frac{\alpha Ad}{\alpha Ad + 2bk} \right)^2 - \left(\frac{\alpha Ad}{\alpha Ad + bk} \right)^4 \\ 1783$$

1784 Where we have made the same simplification. From these, we
 1785 obtain the coefficient of variation as:

$$1786 CV \approx \sqrt{\left(\frac{\alpha Ad}{\alpha Ad + 2bk} \right)^2 - \left(\frac{\alpha Ad}{\alpha Ad + bk} \right)^4} \\ 1787 \\ 1788 \\ 1789$$

1790 **H. PLSR and Hit Detection.** Regression analyses were conducted with
 1791 the MATLAB (MathWorks) environment using the `plsregress`
 1792 function from the machine learning toolbox. Partial least squares
 1793 regression was selected as the method to help mitigate the influence
 1794 of co-linearity in the predictor dataset. Model components were
 1795 selected through 10-fold cross-validation using the elbow method
 1796 on the mean square error as a function of component number.

1797 For the RNAi screening data, all 114 shape features were
 1798 mean-centered prior to model construction. Models were built
 1799 from control data and applied to the combined knockdown-control
 1800 state. Fit quality was assessed through the r-squared metric.
 1801 Linear models (predicted vs observed) were visualized through
 1802 the ‘`dscatter`’ function. Z scores were calculated for the difference
 1803 between observed and predicted YAP/TAZ ratios/abundances and
 1804 the increase/decrease from the mean YAP/TAZ ratio/abundances.
 1805 Knockdown ‘Hits’, those which decoupled, were selected from this
 1806 analysis as knockdown states achieving an average $Z - score > 2$
 1807 (two standard deviations from the mean).

1808 For the proteomic analysis, phosphopeptide abundances were
 1809 adjusted to reflect ‘excess’ phosphorylation given the total expression
 1810 of the peptide. To do this, a regression model was constructed for
 1811 each gene relating phosphopeptide and peptide abundance. The ad-
 1812 justed phosphopeptide abundance was taken as the phosphopeptides’
 1813 deviation from this regression model.

1814 **I. Feature Importance to PLSR Models.** The influence a feature has on
 1815 a model was estimated through ‘Variable importance to projection’
 1816 (VIP) scores calculated as:

$$1817 VIP_j = \sqrt{\frac{\sum_{f=1}^F w_{jf}^2 \cdot SSY_f \cdot J}{SSY_{total} \cdot F}} \\ 1818$$

1819 Where w_{jf} is the weight value for the j variable and f component,
 1820 SSY_f is the sum of squares of explained variance for the f th
 1821 component, J number of X variables, and SSY_{total} is the total
 1822 sum of squares explained of the dependent variable, and F is the
 1823 total number of components. Features with a VIP score greater
 1824 than 1 were taken as major drivers of the models.

1825 **J. Linear Classifier.** For the cell cycle experiments in MCF10A cells
 1826 (engineered to express endogenous mRuby-tagged PCNA) we used
 1827 a manually trained linear classifier. Cell cycle classification was
 1828 performed using Columbus (PerkinElmer). We used a combination
 1829 of thresholding and linear classifiers based on nuclear morphology
 1830 and DNA, CCNA2, and PCNA intensity and texture features.
 1831 Classification was performed sequentially by manual annotation to
 1832 divide and further subdivide cell cycle stages. First, nuclei and cell
 1833 bodies were segmented using the DNA and YAP/TAZ channels and
 1834 cells touching the border were removed. Then mitotic nuclei were
 1835 distinguished from interphase nuclei based primarily on DNA, PCNA
 1836 and morphology features using a manually trained linear classifier
 1837 (most relevant features: nucleus DNA texture Bright/Edge/Ridge,
 1838 PCNA intensity, nucleus area/roundness/width, nucleus DNA
 1839 intensity). Interphase nuclei were thresholded based on mean
 1840 nuclear PCNA intensity, with PCNA+ nuclei classed as G0. PCNA+
 1841 nuclei were divided into CCNA2+ and CCNA2- subpopulations
 1842 based on mean nuclear CCNA2 intensity and PCNA+/CCNA2-
 1843 cells were classed as G1. PCNA+/CCNA2+ cells with low mean
 1844 CCNA2 intensity (first quartile) were classed as Early S-phase.
 1845 The remaining cells were finally divided into S and G2 classes
 1846 using a manually trained linear classifier. During S-phase, PCNA
 1847 goes from being uniformly distributed in the nucleus to having
 1848 a progressively more punctate or spotty appearance as DNA
 1849 replication proceeds. The PCNA texture linear classifier was
 1850 manually trained on PCNA+/CCNA2high cells (most relevant
 1851 features: PCNA texture Edge/Saddle/Ridge/Haralick Homogene-
 1852 ity/CV, mean nuclear CCNA2 intensity, mean perinuclear ring
 1853 region CCNA2 intensity). “Spotty” nuclei classed as S-phase and
 1854 “smooth” nuclei classed as G2. YAP/TAZ intensity features were
 1855 not included in the spotty/smooth linear classifier. Integrated
 1856 DNA intensity (i.e. total amount of DNA) was not included in the
 1857 spotty/smooth linear classifier but was used post-hoc to verify S
 1858 versus G2 classification.

1861 **K. Cell preparation and proteomics analysis of the Breast cell lines.** Cells were plated at day 0 as stated above and collected 72h later by trypsinization. After resuspension in growth media and centrifugation, media was removed and 1mL of cold PBS was added. Then one million of viable cells per cell line (by duplicate) was transferred to low binding tubes and washed 2 x with cold PBS to a final pellet that was flash frozen with 70% ethanol and dry ice. Cell pellets were lysed in 1% sodium deoxycholate (SDC), 100 mM triethylammonium bicarbonate (TEAB), 10% isopropanol, 50 mM NaCl buffer freshly supplemented with Halt protease and phosphatase inhibitor cocktail (100X) (Thermo, 78442), 5 mM tris-2-carboxyethyl phosphine (TCEP), 10 mM iodoacetamide (IAA) and Universal Nuclease (Pierce) followed by bath sonication for 5 min and incubation at room temperature for 45 min. Protein concentration was measured with the Quick Start Bradford protein assay. Aliquots of 60 g of total protein were digested overnight with trypsin (Pierce, ratio 1:20) and labelled with the TMTpro multiplex reagents (Thermo) according to manufacturer's instructions. The peptide mixture was fractionated with high pH Reversed-Phase (RP) chromatography using the XBridge C18 column (2.1 x 150 mm, 3.5 m, Waters) on an UltiMate 3000 HPLC system over a 1% gradient in 35 min. Mobile phase A was 0.1% (v/v) ammonium hydroxide and mobile phase B was 0.1% ammonium hydroxide (v/v) in acetonitrile. Phosphopeptide enrichment was performed with the High-Select™ Fe-NTA Phosphopeptide Enrichment Kit (Thermo) using a modified protocol in a well plate array format. A volume of 50 L resin/buffer was transferred on top of 10 L filter tips that were fitted on a 96-well plate using a suitable tip rack. The resin was washed three times with 40 L wash/binding solution and centrifugation at 500 g for 1 min. Peptides were reconstituted in 30 L wash/binding solution and were loaded onto the tip-columns with the resin. After 30 min, the flow-through (FT) from three washes with wash/binding solution were collected in a clean 96-well plate with centrifugation at 500 g for 1 min each time. Phosphopeptides were eluted twice with 40 L elution buffer in a clean 96-well plate with centrifugation at 500 g for 1 min, transferred in glass vials (Waters, P/N 186005669CV) and SpeedVac dried. Both the flow-through solutions and IMAC eluents were subjected to LC-MS analysis for bulk proteome and phosphoproteome analysis respectively. LC-MS analysis was performed on an UltiMate 3000 system coupled with the Orbitrap Fusion Lumos Mass Spectrometer (Thermo) using an Acclaim PepMap, 75m x 50cm C18 capillary column over a 95 min (FT) or 65 min (IMAC elution) gradient. MS spectra were collected with mass resolution of 120k and precursors were targeted for HCD fragmentation in the top speed mode with collision energy 36% and IT 54 ms (FT) or 100 ms (IMAC elution) at 30k Orbitrap resolution. Targeted precursors were dynamically excluded from further activation for 45 or 30 seconds. The Sequest HT engine in Proteome Discoverer 2.4 (Thermo) was used to search the raw mass spectra against reviewed UniProt human proteins. The precursor mass tolerance was set at 20 ppm and the fragment ion mass tolerance was 0.02 Da. TMTpro at N-terminus/K and Carbamidomethyl at C were defined as static modifications. Dynamic modifications were oxidation of M and deamidation of N/Q as well as phosphorylation of S/T/Y for the phosphoproteome analysis. Peptide confidence was estimated with the Percolator node and peptide FDR was set at 0.01. Only unique peptides were used for quantification, considering protein groups for peptide uniqueness. Peptides with average reporter signal-to-noise greater than 3 were used for protein quantification.

1911 **L. Gene Set Enrichment Analysis:** GSEA was conducted using the 'WebGestalt' web application on our ranked list of peptides (VIP-Score defined the rank) (76). We used the 'pathway' and 'nonRedundant Biological process' enrichment categories to identify enriched themes/pathways in the high and low scoring peptides. Parameters used: Minimum IDs per category =5, max = 10000, permutations = 1000. Enrichments with a false discovery rate < 0.05 were taken as 'hit' themes and/or pathways.

1919 **M. Drug treatments:** 231 and LM2 were plated in 384 wells and 1920 treated with 10uM of Binimetinib or DMSO. 24h after cells were 1921 fixed in pre-warmed 4% formaldehyde (ThermoScientific) in PBS 1922 for 15 min at room temperature. For the Palbociclib experiments

in LM2, the drug was used at 0.5 uM for 24h hours prior to formaldehyde fixation, immunofluorescence, and image analysis.

For the experiments in melanoma cells and RPEs 0.33uM Palbociclib and 0.25uM Binimetinib were added to the cell cultures and incubated for a duration of 72 hours. Following the treatment, the cells were fixed in 4% paraformaldehyde (PFA) for 15 minutes at room temperature. Primary antibody staining was performed using a dilution of 1:1000 for YAP/TAZ and 1:1000 for pRB. Secondary antibody staining was conducted using a dilution of 1:500. All antibody stains were incubated overnight at 4 degrees Celsius.

N. Data Availability. Image datasets for the cell lines used for morphological profiling are available from: DRYAD: <http://dx.doi.org/10.5061/dryad.tc5g4>.

Image Data Repository (<http://idr-demo.openmicroscopy.org/about>, accession number S-BSMS6)

Biostudies database (<https://www.ebi.ac.uk/biostudies/studies/S-BSMS6>).

3. Author Contributions

J.Jones analysed the data, developed the computational models and with C.Bakal wrote the manuscript. J.Sero, M.Arias-Garcia and M.Beykou cultured the breast cells and generated the imaging datasets. J.Sero and M.Arias-Garcia carried out the image analysis. P.Pascual-Vargas conducted the RNAi screens and performed the image analysis and M.Arias-Garcia optimised the screening and staining methodology. M.Arias-Garcia and L.Dent performed the drug experiments and their image analysis in breast and melanoma cells respectively. T.Roumeliotis, M.Beykou and M.Arias-Garcia, with J.Choudhary, generated the proteomic datasets. C.Bakal conceived and designed the research.

4. Competing Interests

The authors declare no competing interests.

5. References

1. P Cartwright, K Helin, Nucleocytoplasmic shuttling of transcription factors (2000).
2. EW Harhaj, SC Sun, Regulation of rela subcellular localization by a putative nuclear export signal and p50. *Mol. Cell. Biol.* **19** (1999).
3. S Piccolo, S Dupont, M Cordenonsi, The biology of yap/taz: Hippo signaling and beyond. *Physiol. Rev.* **94** (2014).
4. E Zatulovsky, S Zhang, DF Berenson, BR Topacio, JM Skotheim, Cell growth dilutes the cell cycle inhibitor rb to trigger cell division. *Science* **369** (2020).
5. KM Schmoller, JJ Turner, M Kõivomägi, JM Skotheim, Dilution of the cell cycle inhibitor whi5 controls budding-yeast cell size. *Nature* **526** (2015).
6. TW Parker, KL Neufeld, Apc controls wnt-induced -catenin destruction complex recruitment in human colonocytes. *Sci. Reports* **10** (2020).
7. DU Ferreiro, EA Komives, Molecular mechanisms of system control of nf-**b** signaling by ib. *Biochemistry* **49** (2010).
8. MC Lanz, et al., Increasing cell size remodels the proteome and promotes senescence. *Mol. Cell* **82**, 3255–3269.e8 (2022).
9. I Jones, et al., Characterization of proteome-size scaling by integrative omics reveals mechanisms of proliferation control in cancer. *Sci. Adv.* **9** (2023).
10. L Cheng, et al., Size-scaling promotes senescence-like changes in proteome and organelle content. *bioRxiv* (2021).
11. GE Neurohr, et al., Excessive cell growth causes cytoplasm dilution and contributes to senescence. *Cell* **176** (2019).
12. AA Amodeo, JM Skotheim, Cell-size control. *Cold Spring Harb. Perspectives Biol.* **8** (2016).
13. MB Ginzberg, R Kafri, M Kirschner, On being the right (cell) size (2015).
14. M Zhu, et al., Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. *Nat. Plants* **6** (2020).
15. MP Swaffer, et al., Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling from cell size. *Mol. Cell* **81** (2021).
16. M D'Ario, et al., Cell size controlled in plants using dna content as an internal scale. *Science* **372** (2021).
17. M Aragona, et al., A mechanical checkpoint controls multicellular growth through yap/taz regulation by actin-processing factors. *Cell* **154** (2013).
18. S Dupont, et al., Role of yap/taz in mechanotransduction. *Nature* **474** (2011).
19. JM Lamar, et al., The hippo pathway target, yap, promotes metastasis through its tead-interaction domain. *Proc. Natl. Acad. Sci. United States Am.* **109** (2012).
20. T Moroishi, CG Hansen, KL Guan, The emerging roles of yap and taz in cancer. *Nat. Rev. Cancer* **15** (2015).
21. D Pan, The hippo signaling pathway in development and cancer (2010).
22. JE Sero, C Bakal, Multiparametric analysis of cell shape demonstrates that -pix directly couples yap activation to extracellular matrix adhesion. *Cell Syst.* **4** (2017).

1985 23. JE Sero, et al., Cell shape and the microenvironment regulate nuclear translocation of nf -b in
1986 breast epithelial and tumor cells. *Mol. Syst. Biol.* **11** (2015). 2047

1987 24. A Totaro, T Panciera, S Piccolo, Yap/taz upstream signals and downstream responses (2018). 2048

1988 25. B Zhao, et al., Tead mediates yap-dependent gene induction and growth control. *Genes Dev.* 2049
22 (2008).

1989 26. A Reginensi, et al., Yap- and cdc42-dependent nephrogenesis and morphogenesis during 2050
mouse kidney development. *PLoS Genet.* **9** (2013).

1990 27. Z Diamantopoulou, et al., Tiam1 antagonizes taz/yap both in the destruction complex in the 2051
cytoplasm and in the nucleus to inhibit invasion of intestinal epithelial cells. *Cancer Cell* **31** (2017).

1991 28. X Feng, et al., Hippo-independent activation of yap by the gnaq uveal melanoma oncogene 2052
through a trio-regulated rho gtpase signaling circuitry. *Cancer Cell* **25** (2014).

1992 29. JKH Hu, et al., An fak-yap-mtor signaling axis regulates stem cell-based tissue renewal in 2053
mice. *Cell Stem Cell* **21** (2017).

1993 30. NG Kim, BM Gumbiner, Adhesion to fibronectin regulates hippo signaling via the fak-src-pi3k 2054
pathway. *J. Cell Biol.* **210** (2015).

1994 31. H Sabra, et al., 1 integrin-dependent rac/group i pak signaling mediates yap activation of 2055
yes-associated protein 1 (yap1) via nf2/merlin. *J. Biol. Chem.* **292** (2017).

1995 32. G Sorrentino, et al., Metabolic control of yap and taz by the mevalonate pathway. *Nat. Cell* 2056
Biol. **16** (2014).

1996 33. J Dong, et al., Elucidation of a universal size-control mechanism in drosophila and mammals. 2057
Cell **130** (2007).

1997 34. B Zhao, et al., Inactivation of yap oncprotein by the hippo pathway is involved in cell contact 2058
inhibition and tissue growth control. *Genes Dev.* **21** (2007).

1998 35. J Huang, S Wu, J Barrera, K Matthews, D Pan, The hippo signaling pathway coordinately 2059
regulates cell proliferation and apoptosis by inactivating yorie, the drosophila homolog of yap. 2060
Cell **122** (2005).

1999 36. MA Garcia, et al., Epithelial-mesenchymal plasticity is regulated by inflammatory signalling 2061
networks coupled to cell morphology. *bioRxiv* (2022).

2000 37. RM Neve, et al., A collection of breast cancer cell lines for the study of functionally distinct 2062
cancer subtypes. *Cancer Cell* **10** (2006).

2001 38. AJ Minn, et al., Genes that mediate breast cancer metastasis to lung. *Nature* **436** (2005).

2002 39. P Pascual-Vargas, et al., Rnai screens for rho gtpase regulators of cell shape and yap/taz 2063
localisation in triple negative breast cancer. *Sci. Data* **4** (2017).

2003 40. A Rocca, A Farolli, S Bravaccini, A Schirone, D Amadori, Palbociclib (pd 0332991): Targeting 2064
the cell cycle machinery in breast cancer. *Expert. Opin. on Pharmacother.* **15** (2014).

2004 41. PV Hornbeck, et al., Phosphositeplus, 2014: Mutations, pmts and recalibrations. *Nucleic* 2065
Acids Res. **43** (2015).

2005 42. N Ege, et al., Quantitative analysis reveals that actin and src-family kinases regulate nuclear 2066
yap1 and its export. *Cell Syst.* **6** (2018).

2006 43. CH Chen, et al., Mek inhibitors induce akt activation and drug resistance by suppressing 2067
negative feedback erk-mediated her2 phosphorylation at thr701. *Mol. Oncol.* **11** (2017).

2007 44. AE Eisenhardt, et al., Phospho-proteomic analyses of b-raf protein complexes reveal new 2068
regulatory principles. *Oncotarget* **7** (2016).

2008 45. Q Pan, et al., Cdk5 targets active src for ubiquitin-dependent degradation by phosphorylating 2069
src(75). *Cell. Mol. Life Sci.* **68** (2011).

2009 46. JE Ferrell, RR Bhatt, Mechanistic studies of the dual phosphorylation of mitogen-activated 2070
protein kinase. *J. Biol. Chem.* **272** (1997).

2010 47. S Corbalan-Garcia, SS Yang, KR Degenhardt, D Bar-Sagi, Identification of the 2071
mitogen-activated protein kinase phosphorylation sites on human sosi that regulate 2072
interaction with grb2. *Mol. Cell. Biol.* **16** (1996).

2011 48. HA Acosta-Jaquez, et al., Site-specific mtor phosphorylation promotes mtorc1-mediated 2073
signaling and cell growth. *Mol. Cell. Biol.* **29** (2009).

2012 49. NJ Lanning, HW Su, LS Argentinger, C Carter-Su, Identification of sh2b1 as a focal adhesion 2074
protein that regulates focal adhesion size and number. *J. Cell Sci.* **124** (2011).

2013 50. AM Robitaille, et al., Quantitative phosphoproteomics reveal mtorc1 activates de novo 2075
pyrimidine synthesis. *Science* **339** (2013).

2014 51. H Döppler, et al., Protein kinase d isoforms differentially modulate cofilin-driven directed cell 2076
migration. *PLoS ONE* **9** (2014).

2015 52. AD Baffet, DJ Hu, RB Valle, Cdk1 activates pre-mitotic nuclear envelope dynein recruitment 2077
and apical nuclear migration in neural stem cells. *Dev. Cell* **33** (2015).

2016 53. KC Su, T Takaki, M Petronczki, Targeting of the rhogef ect2 to the equatorial membrane 2078
controls cleavage furrow formation during cytokinesis. *Dev. Cell* **21** (2011).

2017 54. TYC Tsai, et al., Robust, tunable biological oscillations from interlinked positive and negative 2079
feedback loops. *Science* **321** (2008).

2018 55. OE Sturm, et al., The mammalian mapk/erk pathway exhibits properties of a negative 2080
feedback amplifier. *Sci. Signal.* **3** (2010).

2019 56. US Bhalla, R Iyengar, Robustness of the bistable behavior of a biological signaling feedback 2081
loop (2001).

2020 57. R Wollman, Robustness, accuracy, and cell state heterogeneity in biological systems (2018).

2021 58. GV Dassow, E Meir, EM Munro, GM Odell, The segment polarity network is a robust 2082
developmental module. *Nature* **406** (2000).

2022 59. G Nardone, et al., Yap regulates cell mechanics by controlling focal adhesion assembly. *Nat.* 2083
Commun. **8** (2017).

2023 60. A Elosegui-Artola, et al., Force triggers yap nuclear entry by regulating transport across 2084
nuclear pores. *Cell* **171** (2017).

2024 61. CE Zimmerli, et al., Nuclear pores dilate and constrict in cellulo. *Science* **374** (2021).

2025 62. A Kapoor, et al., Yap1 activation enables bypass of oncogenic kras addiction in pancreatic 2085
cancer. *Cell* **158** (2014).

2026 63. F Zanconato, G Battilana, M Cordenonsi, S Piccolo, Yap/taz as therapeutic targets in cancer 2086
(2016).

2027 64. CD Nguyen, C Yi, Yap/taz signaling and resistance to cancer therapy (2019).

2028 65. W Zhao, et al., Transcriptional co-activators yap/taz: Potential therapeutic targets for 2087
metastatic breast cancer (2021).

2029 66. L Lin, TG Bivona, The hippo effector yap regulates the response of cancer cells to mapk 2088
pathway inhibitors. *Mol. Cell. Oncol.* **3** (2016).

2030 67. L Lin, et al., The hippo effector yap promotes resistance to raf- andmek-targeted cancer 2089
therapies. *Nat. Genet.* **47** (2015).

2031 68. S Yang, L Zhang, X Chen, Y Chen, J Dong, Oncoprotein yap regulates the spindle checkpoint 2090
activation in a mitotic phosphorylation-dependent manner through up-regulation of bubr1. *J.* 2091
Biol. Chem. **290** (2015).

2032 69. L Azzolin, et al., Yap/taz incorporation in the -catenin destruction complex orchestrates the 2092
wnt response. *Cell* **158** (2014).

2033 70. C Chen, et al., Yap-dependent ubiquitination and degradation of -catenin mediates inhibition 2093
of wnt signalling induced by physalin f in colorectal cancer article. *Cell Death Dis.* **9** (2018).

2034 71. T Liu, et al., The -catenin/yap signaling axis is a key regulator of melanoma-associated 2094
fibroblasts. *Signal Transduct. Target. Ther.* **4** (2019).

2035 72. J Rosenbluh, et al., -catenin-driven cancers require a yap1 transcriptional complex for 2095
survival and tumorigenesis. *Cell* **151** (2012).

2036 73. L Goentoro, MW Kirschner, Evidence that fold-change, and not absolute level, of -catenin 2096
dictates wnt signaling. *Mol. Cell* **36** (2009).

2037 74. C Cohen-Saidon, AA Cohen, A Sigal, Y Liron, U Alon, Dynamics and variability of erk2 2097
response to egf in individual living cells. *Mol. Cell* **36** (2009).

2038 75. T Jerzak, et al., Quantitative cell cycle analysis based on an endogenous all-in-one reporter 2098
for cell tracking and classification. *Cell Reports* **19** (2017).

2039 76. J Wang, S Vasaikar, Z Shi, M Greer, B Zhang, Webgestalt 2017: A more comprehensive, 2099
powerful, flexible and interactive gene set enrichment analysis toolkit. *Nucleic Acids Res.* **45** 2100
(2017).

2040 77. A. YAP/TAZ abundance, concentration and N/C ratio scaling 2101
are insensitive to cell crowding. Cell size and YAP/TAZ 2102
activation have previously been associated with cell crowding, 2103
cell-cell adhesion, and contact inhibition (34). In our cell 2104
lines, cell area negatively correlated with neighbour fraction 2105
(NF), raising the possibility that the observed YAP/TAZ sub- 2106
scaling was driven by the NF (Supp.Fig.3). To investigate 2107
this, we first quantified the extent to which YAP/TAZ scaled 2108

2109 with NF, noticing a strong positive association at high NF's
 2110 (0.4 -1), in accordance with the area correlation. However,
 2111 when clustering the cells on NF, and conducting a scaling
 2112 analysis between YAP/TAZ concentration and cell area within
 2113 each NF group, we observed no change in the YAP/TAZ
 2114 concentration per size or 'b' across clusters (Supp. Fig. 3). We
 2115 conducted the same analysis for YAP/TAZ abundance and
 2116 nuclear/cytoplasmic ratio, noting the same effect, with the
 2117 exception that MCF10A's YAP/TAZ N/C ratio exhibited a NF
 2118 sensitivity (Supp. Fig. 3) as is consistent with previous works
 2119 (22). From these data, we concluded it is the NF's influence
 2120 on cell area that is driving the NF-YAP scaling relationship
 2121 rather than any direct effect of NF on YAP/TAZ in these
 2122 lines.

2123
 2124 **B. YAP/TAZ scaling behavior is consistent with a dilution-syn-
 2125 thesis-dilution scheme.** Theoretically, we assume a two-stage
 2126 system. Through stage 1 (G1), the cell area increases by a
 2127 factor of x , and in the subsequent stage (G2), by a factor $2/x$
 2128 (such that the cell doubles in size across a cell cycle). The
 2129 expected dilution factor, F_{G1} , of YAP/TAZ through S1 as:

$$2131 \quad \text{YAP}_{\text{start}} = aA(0)^{b_{S1}}, \quad \text{YAP}_{S1} = aA(t_{S1})^{b_{S1}} = a(A_0 e^{kt_{S1}})^{b_{G1}}$$

$$2134 \quad F_{G1} = \frac{\text{YAP}_{S1}}{\text{YAP}_{\text{start}}} = \left(\frac{aA_0}{aA_0 e^{kt_{S1}}} \right)^{b_{S1}} = \frac{1}{e^{b_{S1}kt_{S1}}}$$

2135 Although a suitable value of k , between stage synthesis, can
 2136 mitigate any value of scaling factor, the DSD system does not
 2137 behave identically for any valid parameter combination. This
 2138 can be seen by integrating the DSD model with a simple adder
 2139 system (9). Within this framework, the cell is considered to
 2140 have a probability to advance cell cycle stage proportional to
 2141 its division size:

$$2144 \quad P = \alpha A_{\text{div}}$$

2145 Leading to a cumulative distribution function for the prolif-
 2146 eration time distribution given as:

$$2149 \quad f_t(A_{\text{div}}, t) = 1 - (1 - \alpha A_{\text{div}})^t$$

2150 Expressing the proliferation time distribution in terms of the
 2151 dilution factor D :

$$2154 \quad P(D \leq d) = P\left(\frac{1}{e^{bk}} \leq d\right) = P\left(\frac{-\ln D}{bk} \leq t\right)$$

$$2158 \quad = 1 - f_t\left(\frac{-\ln D}{bk}\right) = (1 - \alpha A_d)^{\frac{-\ln D}{bk}}$$

$$2161 \quad P(D) = \frac{d}{dD} (1 - \alpha A_d)^{\frac{-\ln D}{bk}} = \frac{-\ln (1 - \alpha A_d) (1 - \alpha A_d)^{\frac{-\ln D}{bk}}}{Dbk}$$

2163 We obtain the probability distribution of dilution factors.
 2164 As two dilution events happen in sequence, we are interested
 2165 in the product distribution of $P(D)$ and a second dilution
 2166 event governed by a distribution $G(D)$ given as:

$$2168 \quad F(z) = \int_z^1 P(D)G\left(\frac{z}{D}\right) \frac{1}{D} dD, \quad \text{s.t.} \quad D > z$$

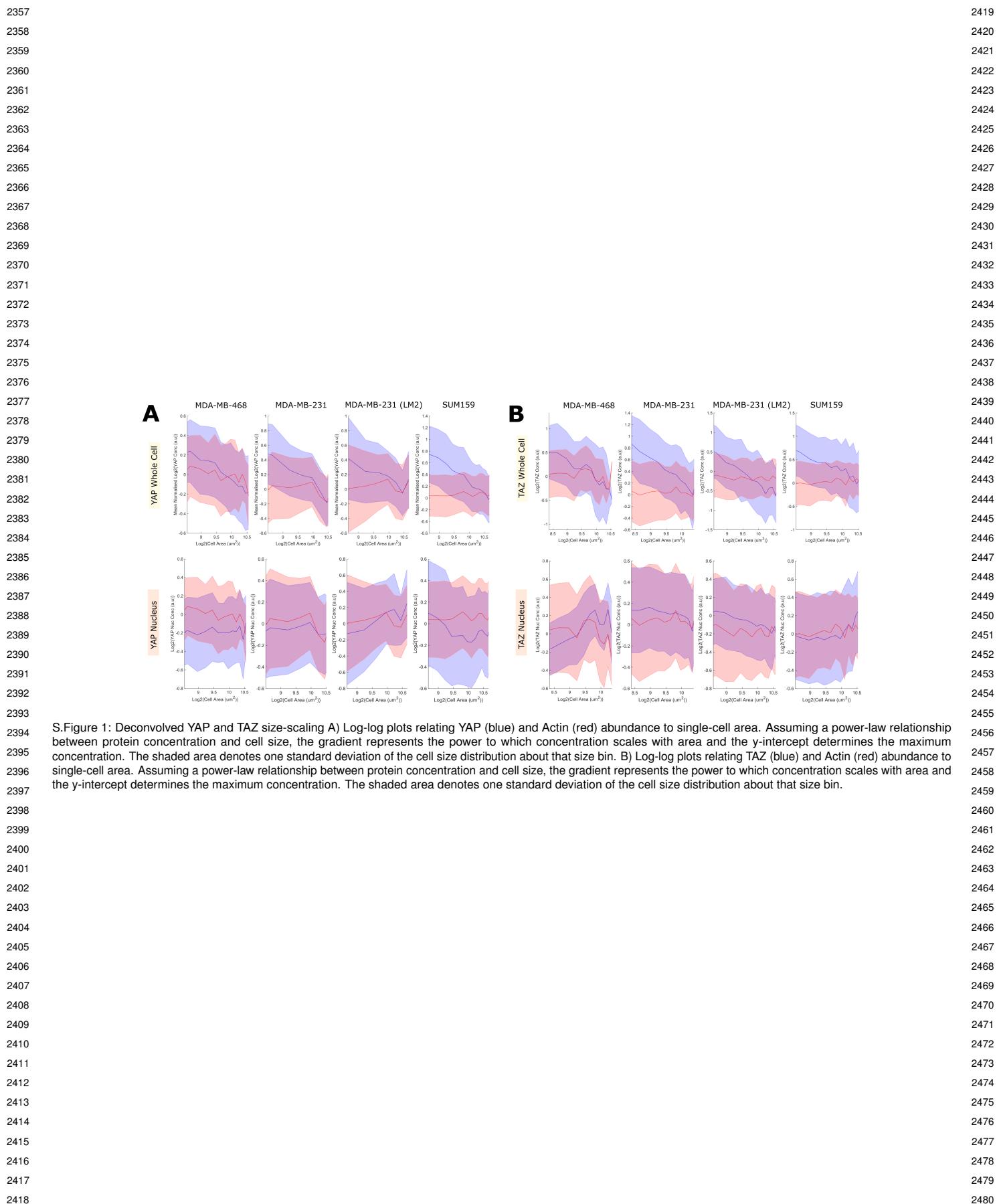
2169 **C. YAP/TAZ scaling rate is a function of cell size.** While we
 2170 observed clear sub-scaling behavior when investigating the
 2171 average scaling factor of YAP/TAZ with cell size, we were
 2172 interested in how this extended to the case where the scaling
 2173 factor b is treated as a continuous function of cell size, $b(A)$.
 2174 We extracted $b(A)$ by taking the logarithmic derivative of
 2175 YAP/TAZ concentration with respect to the cell area:

$$2178 \quad b(A) = \frac{d \log_2([YAP/TAZ])}{d \log_2(A)}$$

2179 Strikingly, no cell line exhibited a constant scaling factor.
 2180 Scaling factors (b) tended to be lower in small cells and
 2181 steadily decreased with increasing cell size (within a cell line);
 2182 however, in several lines, this relationship would reverse at
 2183 larger sizes, with further increases in area leading to weaker
 2184 sub-scaling. This extended to both the G1 and G2 populations.
 2185 Remarkably, in a subset of our lines (e.g., HCC1954, MDA-MB-
 2186 231), YAP/TAZ concentration even positively scaled with cell
 2187 size at small sizes. Although, this effect was limited to G1 cells
 2188 (Supp. Fig. 10) implying the existence of an area-dependent
 2189 scaling trigger.

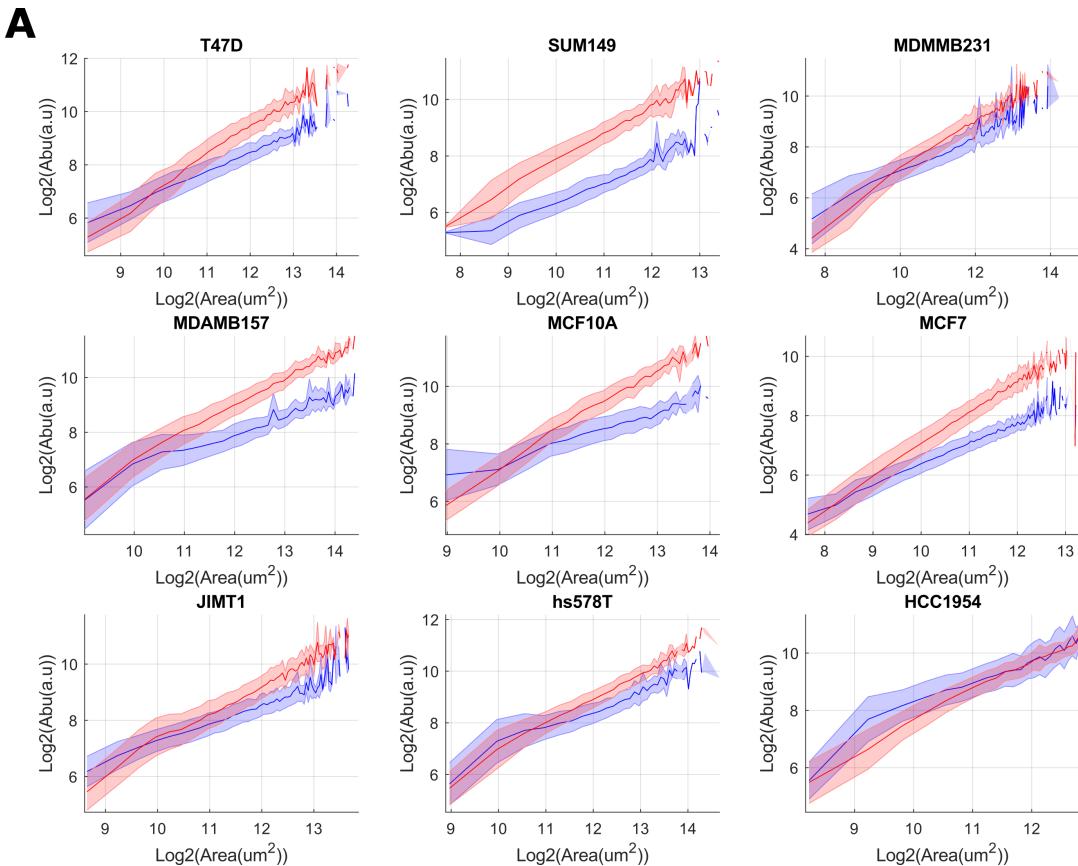
2190 To understand how significant size-variable scaling is to
 2191 the functioning of the cell, we calculated the range of scaling
 2192 factors that occur over the most common size "bands," which
 2193 we define here as the mean G1/G2 sizes +/- 1 std deviation.
 2194 Calculating this for the G1 cells, we observed that 5/9 of our
 2195 cell lines exhibited only a modest variation in the scaling factor
 2196 within this size constraint (stddev = 0.03-0.08). However, the
 2197 remainder showed far more extreme variations (stddev = 0.14-
 2198 0.17) leading to an approximate 2-fold change in scaling factor
 2199 b across the size range (Supp. Fig. 10). The mean scaling rate
 2200 was approximately constant across cell lines (-0.4 - -0.5). In
 2201 the G2 group, the variation in scaling rate increased (std =
 2202 0.10-0.18) for all lines, and the mean scaling rate significantly
 2203 decreased for only a subset (Supp. Fig. 10). Thus, the
 2204 YAP/TAZ scaling factor varies within relevant size ranges and
 2205 should not be considered a constant.

2206 We also investigated how the fold difference in YAP/TAZ
 2207 concentration between 'G1' and 'G2' cells, K , varied with
 2208 cell size. In most (7/9) of our cell lines, K was found to
 2209 decrease with increasing cell size; at small sizes (mean size -
 2210 2std deviations) taking values between 1.3-1.6, and at larger
 2211 sizes (mean size + 2std deviations), 1-1.3 (Supp. Fig. 10).

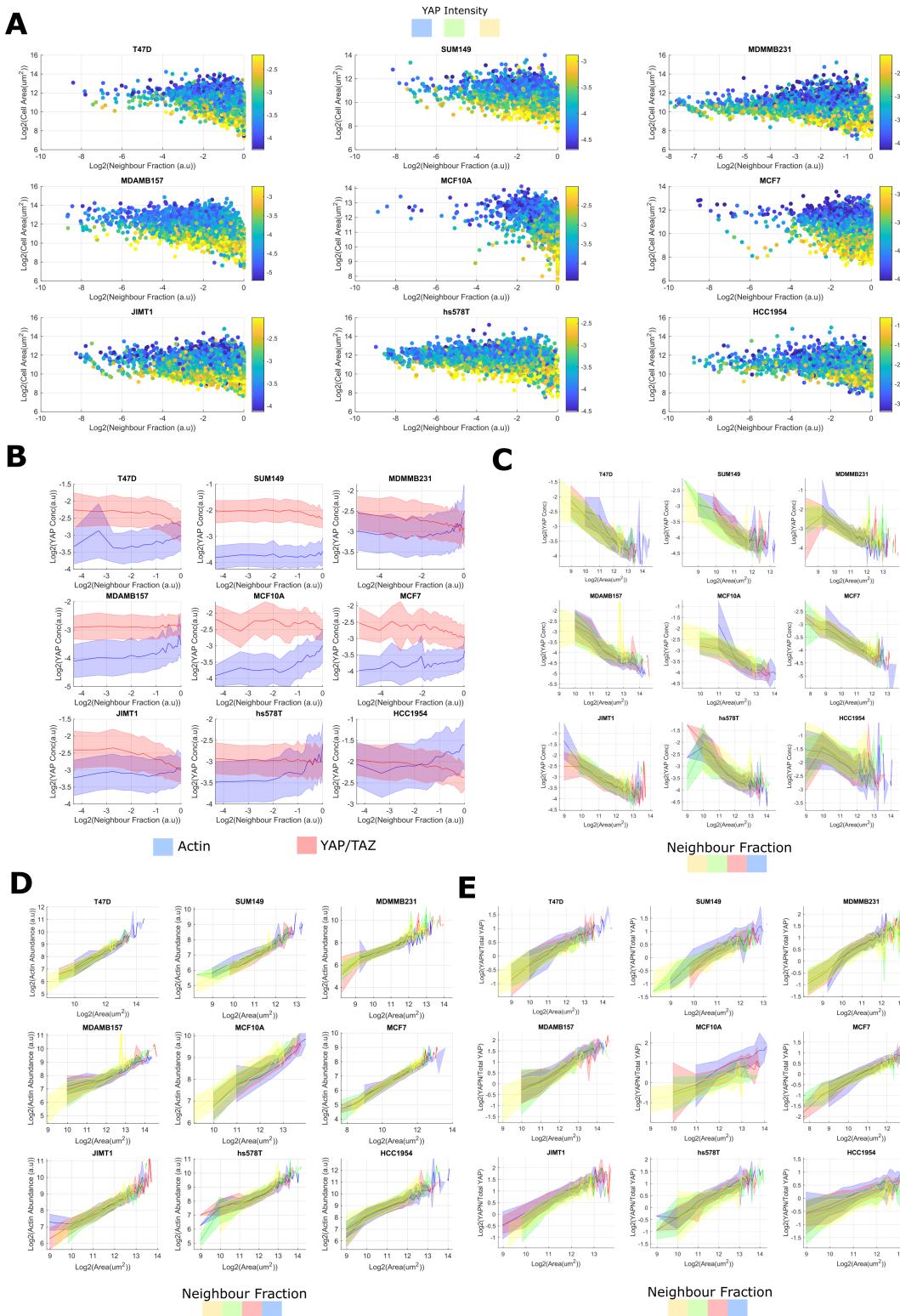

2212 Together, these data show that the scaling of YAP/TAZ
 2213 with cell size is not static but changes dynamically with cell size
 2214 within relevant size ranges in both G1 and G2 cells. This size-
 2215 dependence extended to the fold-change across DNA-contents,
 2216 K , suggesting that the size at which a cell passes the G1/S
 2217 checkpoint informs the scaling and production of YAP/TAZ
 2218 across subsequent cell cycle stages and potentially, generations.

2219 **D. An increased nuclear YAP/TAZ concentration correlates
 2220 with a reduction in the YAP/TAZ scaling factor.** We noticed
 2221 that lines exhibiting super-scaling behavior in their nuclear
 2222 YAP/TAZ concentrations at small cell sizes were those with
 2223 the most variable scaling factors. To investigate this, we began
 2224 by assuming a linear relationship between the scaling factor b
 2225 and the logarithm of the nuclear YAP/TAZ concentration:

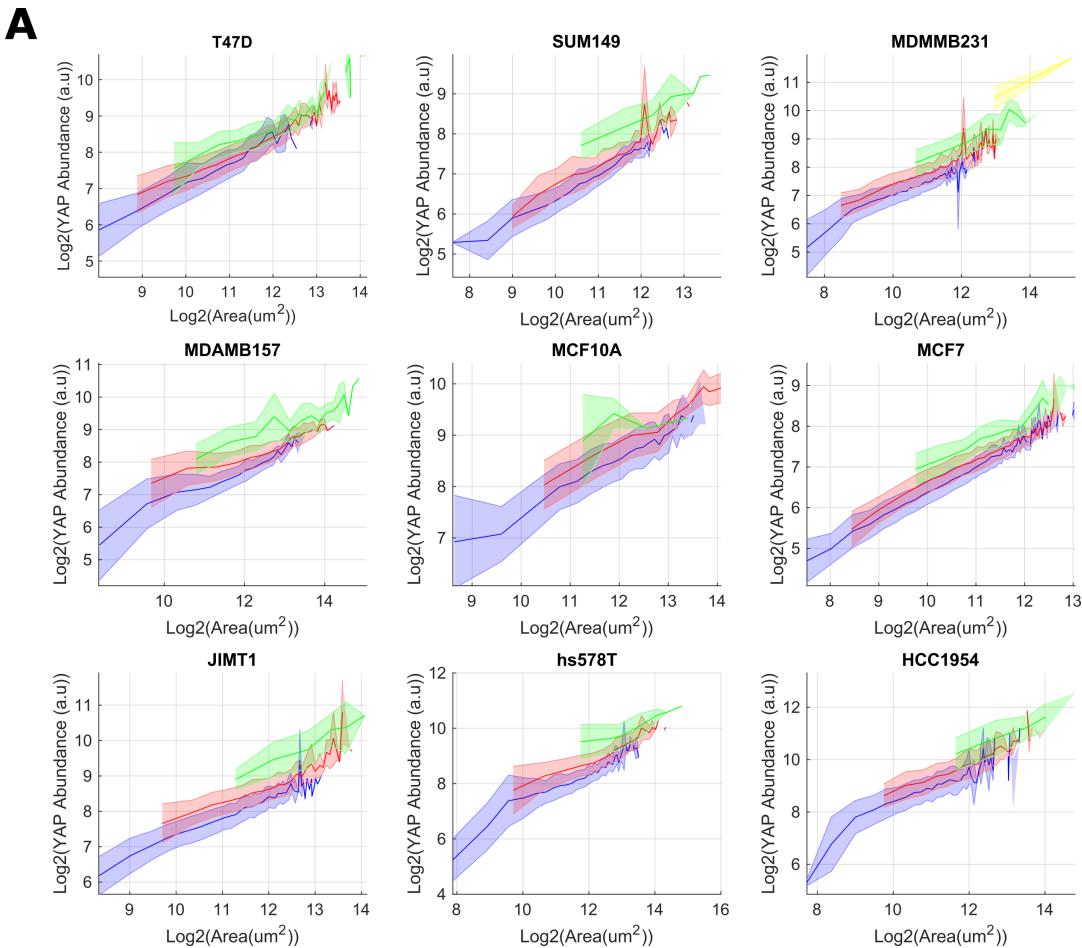
$$2226 \quad b(A) = \frac{d \log_2([Y])}{d \log_2(A)} = \mu \log_2([Y]_N) + c$$


2233 Where μ and c are constants to be determined through fitting
2234 to the experimentally determined $b(A)$ and Y_n . As $b(A)$ and
2235 Y_n vary with size only at very small sizes, when fitting to
2236 this equation, we considered only cells meeting the criterion
2237 $A_c < \langle A \rangle - \sigma$, where $\langle A \rangle$ is the mean cell area and σ is the
2238 standard deviation. This avoided the greater density of points
2239 at a constant b and Y_n from skewing the calculation. We used
2240 equ.S9 to calculate the expected scaling rate at each cell area
2241 and found excellent agreement with that measured (Supp. Fig.
2242 12). Importantly, while an increase in nuclear YAP/TAZ leads
2243 to a decrease in scaling factor, a decrease in YAP/TAZ leads
2244 to an increase in scaling factor (see SUM149 and MDAMB157
2245 Supp. Fig. 12). This suggests that the effect is not driven
2246 by a correlate of YAP/TAZ import but by a correlate of the
2247 nuclear concentration itself.
2248 This effect did not extend across lines; higher nuclear
2249 YAP/TAZ concentrations did not lead to lower scaling factors.
2250 Instead, scaling factors were more associated with higher
2251 YAP/TAZ ratios. The direction of causality is unclear, but it
2252 is plausible that higher scaling factors induce greater ratios by
2253 virtue of reducing the cytoplasmic YAP/TAZ concentration
2254 (Supp. Fig. 12).
2255 Together, this suggests that the correlation between the
2256 nuclear YAP/TAZ concentration and scaling factor may
2257 emerge from a co-dependence on an unseen cryptic variable
2258 rather than any direct effect of the nuclear YAP/TAZ
2259 concentration. Indeed, as Palbociclib treatment increases
2260 nuclear YAP/TAZ whilst delaying whole cell dilution to larger
2261 sizes, it is likely that the correlation between the nuclear
2262 YAP/TAZ concentration and the scaling factor emerges from
2263 nuclear translocation occurring before division commitment
2264 and that same commitment triggering whole-cell dilution.
2265 However, we cannot yet exclude the possibility of a negative
2266 feedback mechanism.
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294

2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356


2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542

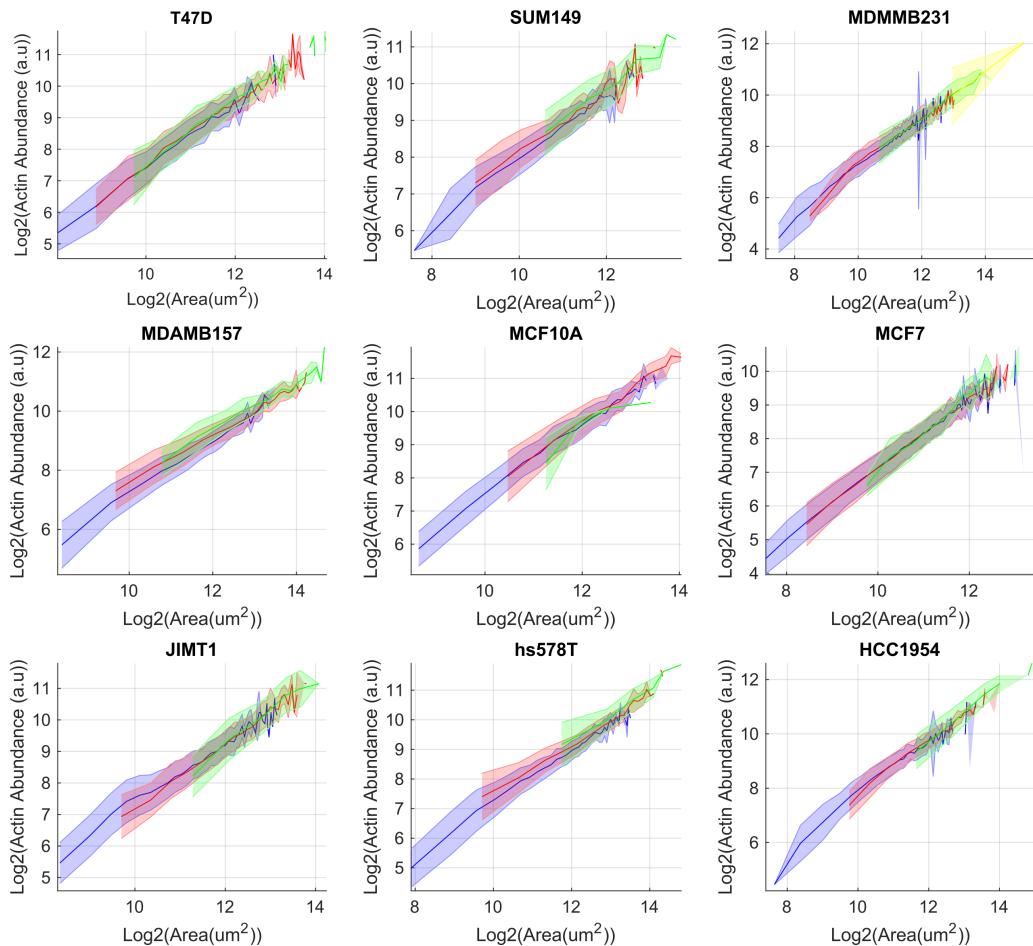
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604


S. Figure 2: YAP/TAZ and actin abundance-size scaling. A) Log-log plots relating YAP/TAZ (blue) and Actin (red) abundance to single-cell area. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with area and the y-intercept determines the maximum concentration. The shaded area denotes one standard deviation of the cell size distribution about that size bin.

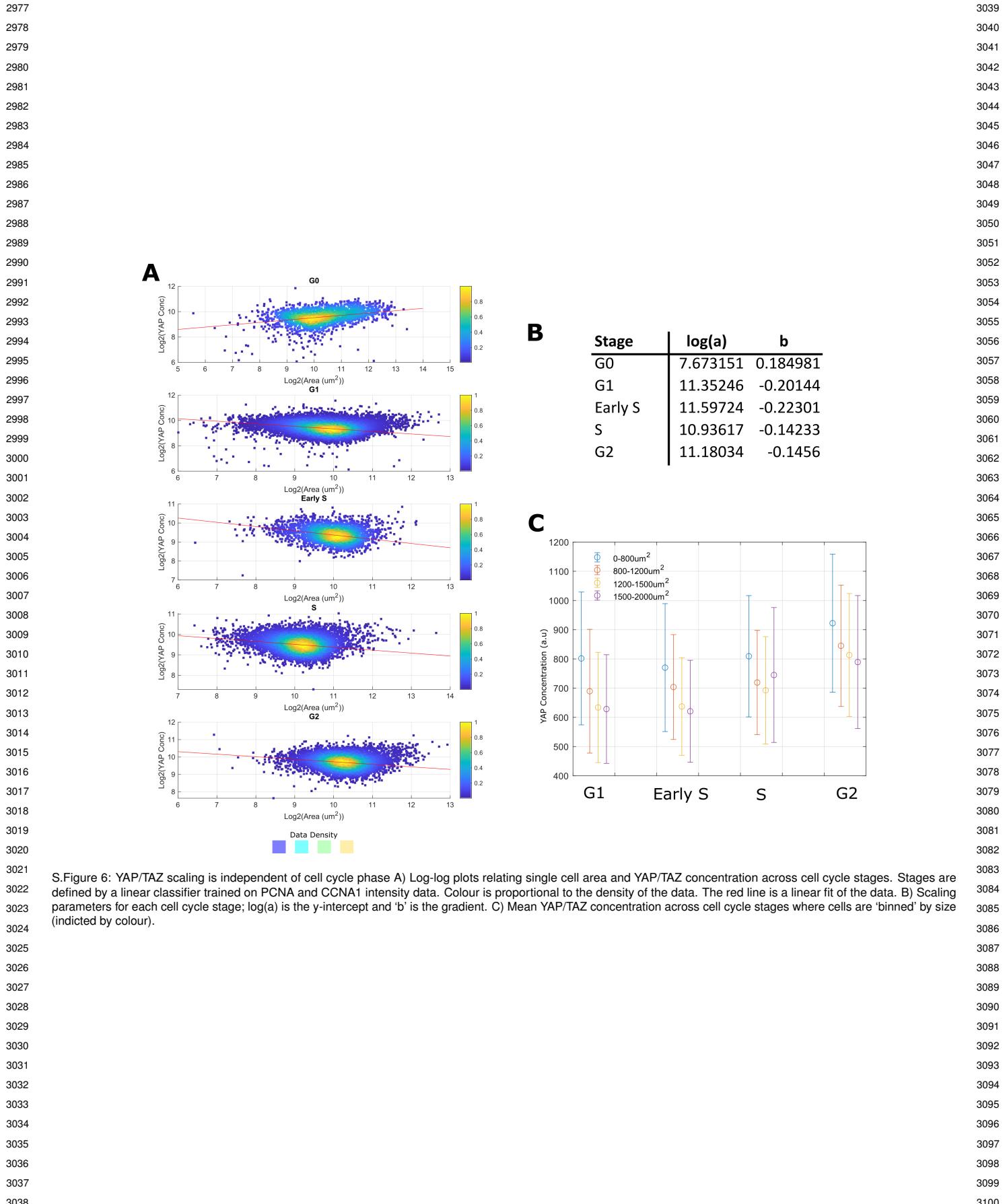
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728

S. Figure 3: The effect of neighbour fraction on YAP/TAZ scaling A) Log-log plots relating single cell neighbour fraction and cell area. Colour is proportional to the mean YAP intensity (concentration). Area and NF negatively correlate at high (close to 1) neighbour fractions. B) Log-log plots relating YAP/TAZ (blue) and Actin (red) concentration to single-cell neighbour fraction. Assuming a power-law relationship between protein concentration and cell size, the gradient represents the power to which concentration scales with NF and the y-intercept determines the initial concentration at NF = 0. The shaded area denotes one standard deviation of the cell size distribution about that size bin. C) Log-log plots relating YAP/TAZ concentration and single cell area across lines and each NF bin (as determined by kmeans clustering on the neighbour fraction). Blue represents the lowest NF, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell size distribution about that size bin. D/E) As in 'C' but relating to YAP abundance (D) or N/C ratio (E).

2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852

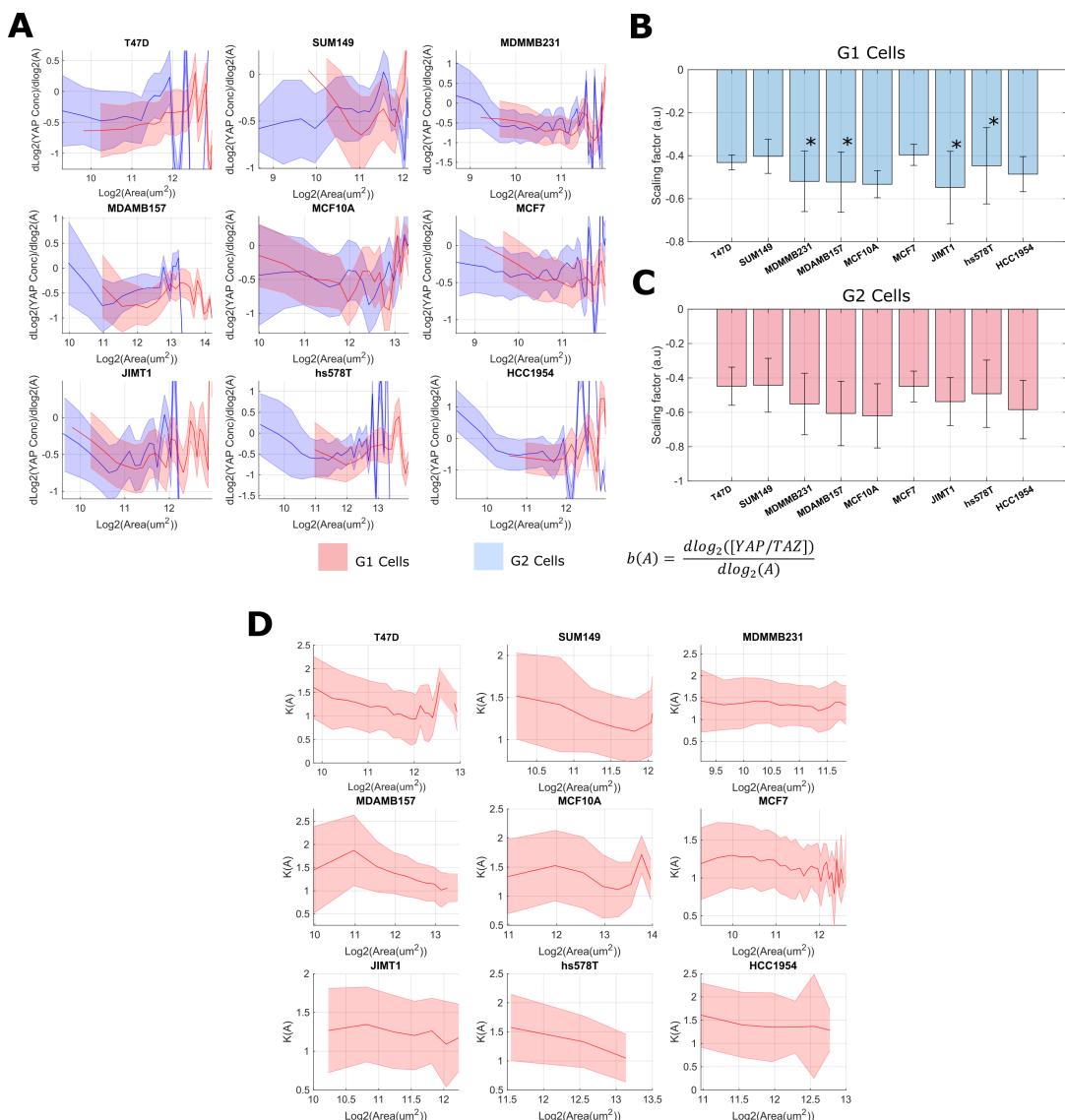


S.Figure 4: DNA sensitivity of YAP/TAZ abundance-size scaling A) Log-log plots relating YAP/TAZ abundance and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the lowest DNA content, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell size distribution about that size bin.

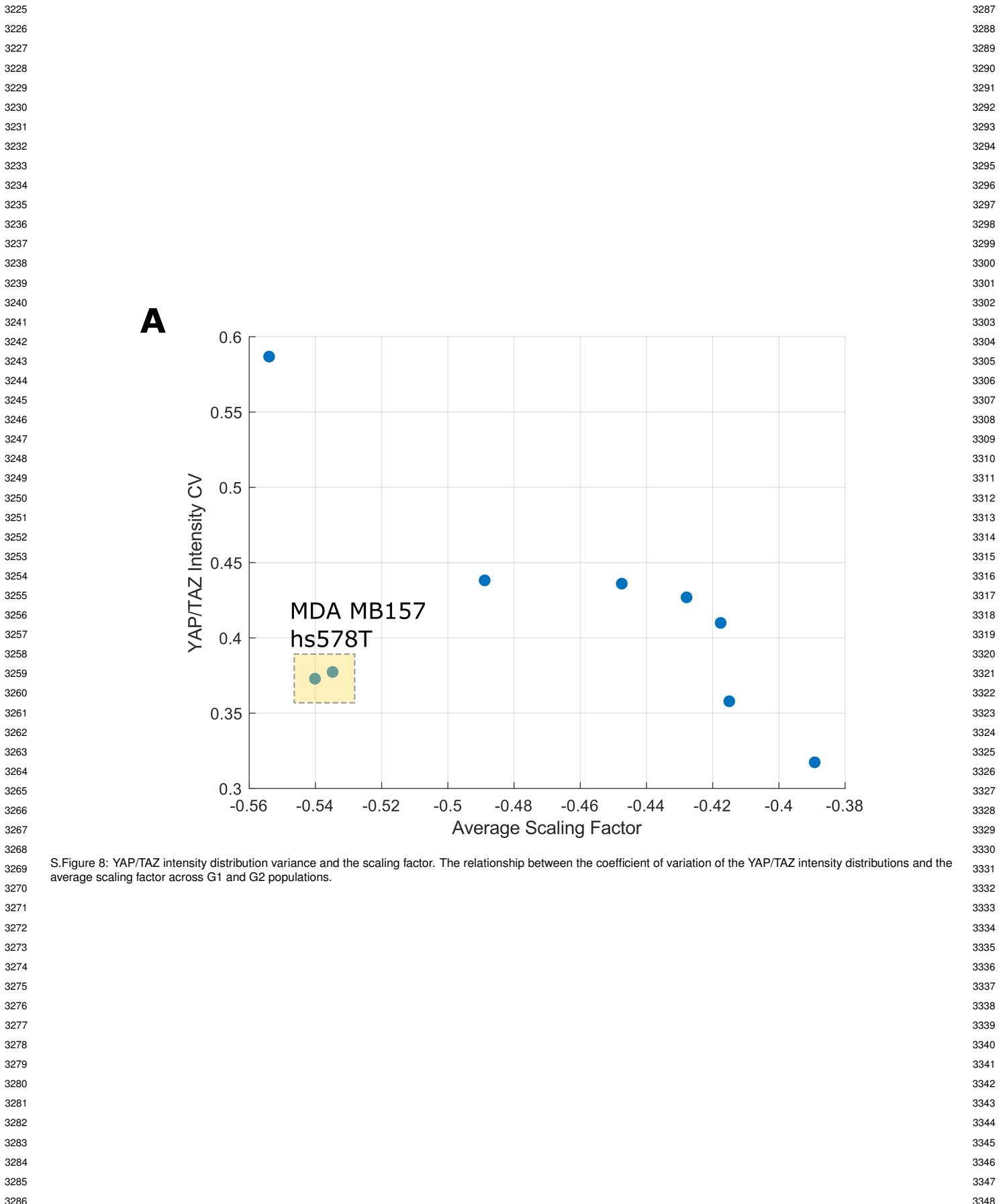

2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914

2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

A

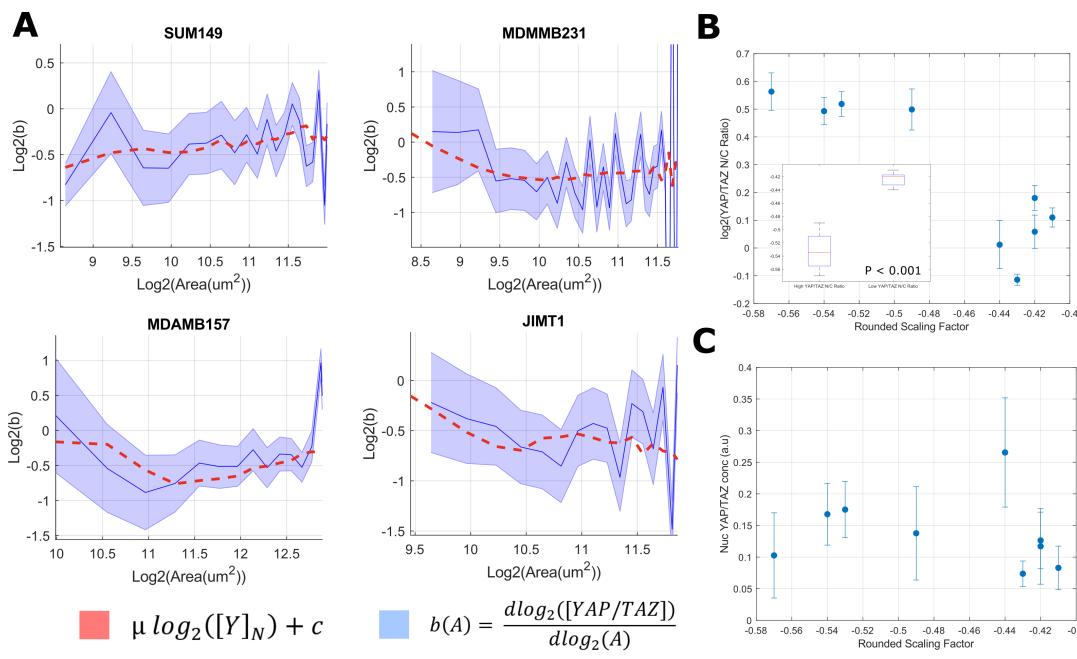


S. Figure 5: A) Log-log plots relating Actin abundance and single cell area across lines and each DNA content bin (as determined by kmeans clustering on the integrated Hoechst intensity and nuclear area). Blue represents the lowest DNA content, then red, green and yellow, the most. The shaded area denotes one standard deviation of the cell size distribution about that size bin.

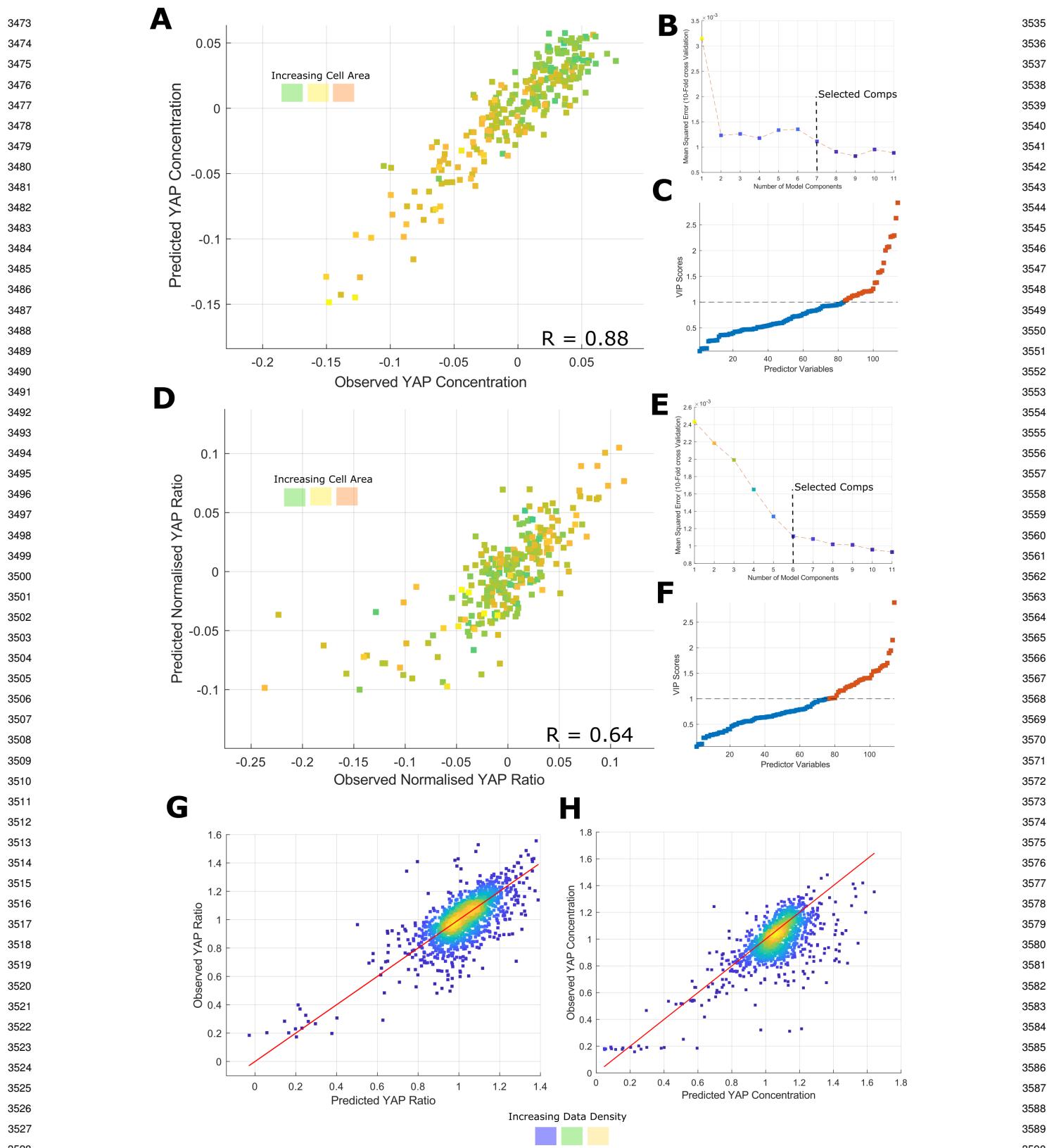


3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224

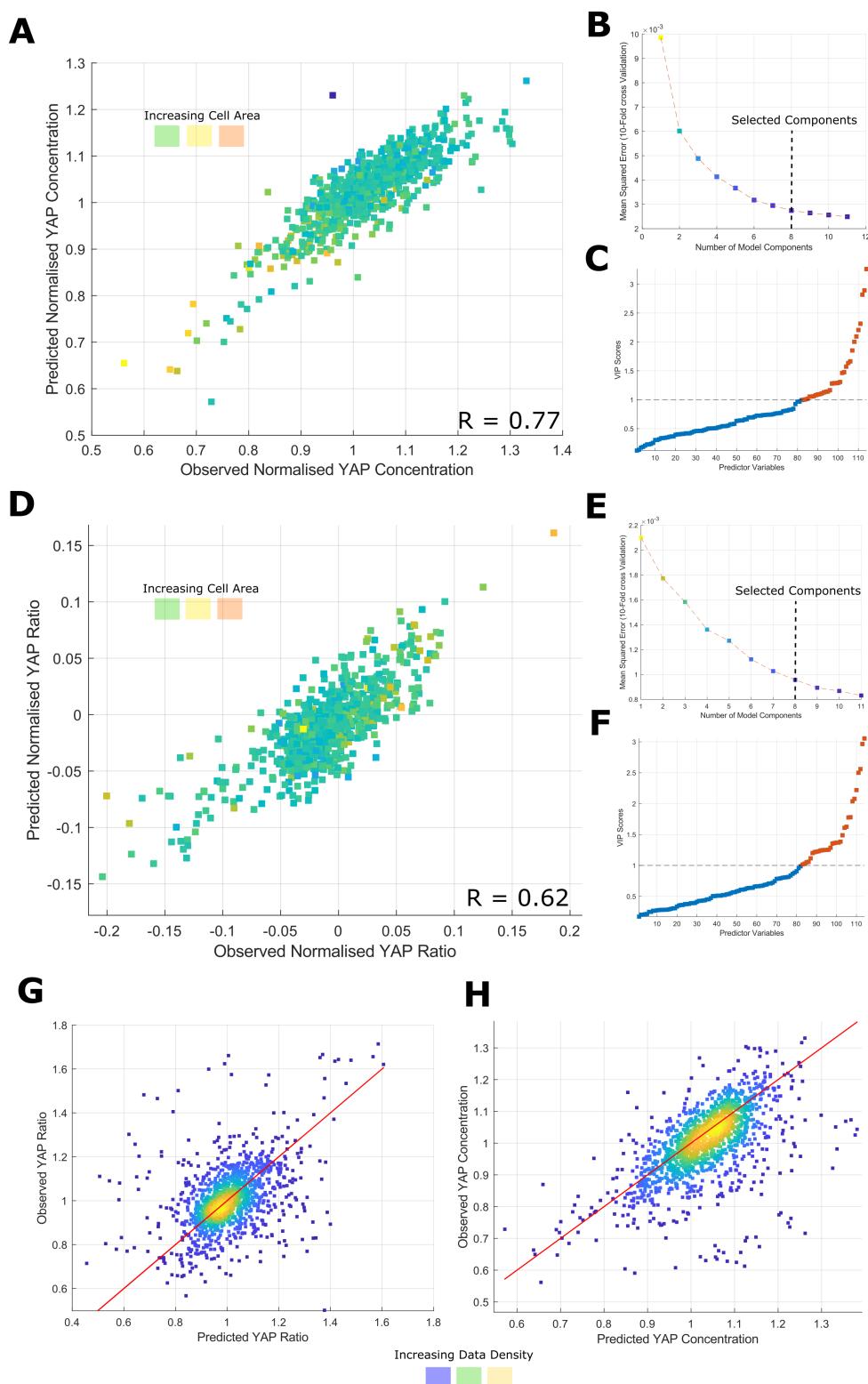


S.Figure 7: YAP/TAZ scaling rate is a function of cell size: A) The relationship between Log(cell area) and the logarithmic derivative of YAP concentration with respect to area. The blue line represents G1 cells, whilst the red represents G2 cells. G1 and G2 groups were determined through kmeans clustering on the integrated Hoechst intensity. Shaded regions represent one standard deviation of all values within the local size 'bin'. B) Average scaling factors within one standard deviation of the G1 area distribution mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. Cell lines marked with an asterisk are those that showed the highest variance in scaling factor within a 'typical' size range, in each case, these cell lines show a larger than average scaling factor at small sizes. C) Average scaling factors within one standard deviation of the G2 area distribution mean. Error bars represent one standard deviation of the scaling factor distribution in that size range. D) The fold-change between G2 and G1 YAP/TAZ as a function of cell size. The shaded region represents one standard deviation from the mean.



3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410

3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472


S.Figure 9: Nuclear translocation of YAP/TAZ correlates with a reduction in YAP/TAZ scaling factor. A) Relationship between total YAP/TAZ scaling factor, 'b', and cell area (blue) in the G1 cell population (as determined by kmeans clustering on the integrated Hoechst intensity). Cell lines shown are those which exhibited the greatest area sensitivity in their scaling factors. The error margin corresponds to 1 standard deviation in that size bin. The red line is an estimate of 'b' assuming a linear relationship between 'b' and $\log(Y_n)$, where Y_n is the nuclear YAP/TAZ concentration. B) YAP/TAZ nuc/cyto ratio against the average cytoplasmic YAP/TAZ scaling factor. A significant difference in population scaling factor means was detected across either side of the mean YAP/TAZ ratio (T-Test, $n = 4, 5$, $P < 0.0001$, each mean calculated from 2000 – 5000 cells depending on cell line). C) Nuclear YAP/TAZ concentration against the average cytoplasmic YAP/TAZ scaling factor. No clear relationship was observed across cell lines.

S.Figure 10: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal intensity features in control cells ($R = 0.88$). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ≥ 1 is considered high and the corresponding feature, important in the prediction; 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in 'A' to the prediction of YAP/TAZ concentration in the knockdown states ($R = 0.48$). The colour represents the density of the data and the red line traces $y = x$. H) Application of the model in 'D' to the prediction of YAP/TAZ ratio in the knockdown states ($R = 0.40$). The colour represents the density of the data and the red line traces $y = x$.

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596

3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658

S.Figure 11: PLSR modelling of YAP/TAZ abundance and ratio in LM2 Cells A) PLSR model predicting well-average YAP/TAZ concentration from morphological and cytoskeletal intensity features in control cells ($R = 0.88$). The colour reflects the mean cell size in each well. B) Mean squared error evaluated through 10-fold cross validation as a function of component number. The dotted line represents the selected component number. C) Variable importance to projection (VIP) scores for the predictor variables, a score ≥ 1 is considered high and the corresponding feature, important in the prediction: 25% of features significantly contribute to the prediction of YAP/TAZ concentration. D-F) Follows the same pattern as A-C, but relates to the prediction to YAP/TAZ ratio. G) Application of the model in 'A' to the prediction of YAP/TAZ concentration in the knockdown states ($R = 0.48$). The colour represents the density of the data and the red line traces $y = x$. H) Application of the model in 'D' to the prediction of YAP/TAZ ratio in the knockdown states ($R = 0.40$). The colour represents the density of the data and the red line traces $y = x$.

3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720

3845							3907
3846							3908
3847							3909
3848							3910
3849							3911
3850							3912
3851							3913
3852							3914
3853							3915
3854							3916
3855							3917
3856	Table 4. YAP/TAZ Concentration Scaling: Scaling parameter values for each cell line across DNA bins within each 'K', the cluster number used in kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ concentration and b is the power to which YAP/TAZ concentration scales with cell area.						3918
3857							3919
3858							3920
3859							3921
3860							3922
3861							3923
3862							3924
3863							3925
3864							3926
3865							3927
3866							3928
3867							3929
3868							3930
3869							3931
3870							3932
3871							3933
3872							3934
3873							3935
3874							3936
3875							3937
3876							3938
3877							3939
3878							3940
3879							3941
3880							3942
3881							3943
3882							3944
3883							3945
3884							3946
3885							3947
3886							3948
3887							3949
3888							3950
3889							3951
3890							3952
3891							3953
3892							3954
3893							3955
3894							3956
3895							3957
3896							3958
3897							3959
3898							3960
3899							3961
3900							3962
3901							3963
3902							3964
3903							3965
3904							3966
3905							3967
3906							3968

3969	4031							
3970	4032							
3971	4033							
3972	4034							
3973	4035							
3974	4036							
3975	4037							
3976	4038							
3977	4039							
3978	4040							
3979	4041							
3980	4042							
3981	4043							
3982	4044							
3983	4045							
3984	4046							
3985	4047							
3986	4048							
3987	4049							
3988	4050							
3989	4051							
3990	4052							
3991	4053							
3992	4054							
3993	4055							
3994	4056							
3995	4057							
3996	4058							
3997	4059							
3998	4060							
3999	4061							
4000	4062							
4001	4063							
4002	4064							
4003	4065							
4004	4066							
4005	4067							
4006	4068							
4007	4069							
4008	4070							
4009	4071							
4010	4072							
4011	4073							
4012	4074							
4013	4075							
4014	4076							
4015	4077							
4016	4078							
4017	4079							
4018	4080							
4019	4081							
4020	4082							
4021	4083							
4022	4084							
4023	4085							
4024	4086							
4025	4087							
4026	4088							
4027	4089							
4028	4090							
4029	4091							
4030	4092							
DNA bin	$K = 1$		$K = 2$		$K = 3$		$K = 4$	
	log(a)	b	log(a)	b	log(a)	b	log(a)	b
T47D 1	0.4277	0.6686	0.7347	0.6361	0.6903	0.6323	0.7322	0.6276
2	0	0	2.1366	0.5428	1.5646	0.5671	1.6178	0.5612
3	0	0	0	0	2.1900	0.5392	2.4472	0.5098
4	0	0	0	0	0	0	1.9505	0.5645
SUM149 1	-0.4643	0.6847	0.0267	0.6314	0.0821	0.6248	0.0825	0.6248
2	0	0	0.0597	0.6538	0.8467	0.5770	0.8475	0.5767
3	0	0	0	0	1.0844	0.6098	1.4860	0.5738
4	0	0	0	0	0	0	2.6006	-0.6672
MDM MB231 1	1.0130	0.6044	1.9090	0.5073	1.9331	0.5046	1.9596	0.4975
2	0	0	1.6388	0.5645	1.8648	0.5429	3.1963	0.4086
3	0	0	0	0	3.3455	0.5263	2.2313	0.5101
4	0	0	0	0	0	0	1.9114	0.5850
MDA MB157 1	0.6812	0.6033	1.1719	0.5567	1.2103	0.5410	1.2320	0.5387
2	0	0	3.4952	0.4183	3.4677	0.3848	3.5225	0.3788
3	0	0	0	0	3.9458	0.3882	4.1585	0.3580
4	0	0	0	0	0	0	4.2793	0.3727
MCF10A 1	1.6390	0.5751	1.6480	0.5714	1.6498	0.5713	1.6498	0.5713
2	0	0	2.8037	0.5003	2.7770	0.5003	2.7878	0.4994
3	0	0	0	0	2.1516	0.5918	4.5335	0.3911
4	0	0	0	0	0	0	-6.0728	1.2847
MCF7 1	-0.3816	0.6771	-0.1306	0.6468	-0.1328	0.6465	-0.1416	0.6462
2	0	0	0.6360	0.5959	0.7930	0.5780	0.7511	0.5766
3	0	0	0	0	0.9703	0.5988	1.0212	0.5604
4	0	0	0	0	0	0	1.0781	0.5912
JIMT1 1	1.1222	0.6145	1.8581	0.5386	2.2526	0.4911	2.2744	0.4886
2	0	0	2.8276	0.4879	2.8270	0.4622	2.8235	0.4619
3	0	0	0	0	2.7701	0.4955	3.3382	0.4442
4	0	0	0	0	0	0	2.2030	0.5939
hs578T 1	0.7421	0.6410	1.3691	0.5786	1.4070	0.5749	1.4215	0.5706
2	0	0	2.4033	0.5281	2.7356	0.4983	2.7658	0.4733
3	0	0	0	0	4.2205	0.4298	2.6690	0.5064
4	0	0	0	0	0	0	4.2205	0.4298
HCC1954 1	1.4279	0.6852	2.2160	0.6048	2.2937	0.5961	2.1937	0.6037
2	0	0	2.2640	0.6311	3.0687	0.5562	3.8376	0.4750
3	0	0	0	0	2.0141	0.6893	2.8693	0.5797
4	0	0	0	0	0	0	1.9641	0.6916

DNA bins	$K = 1$		$K = 2$		$K = 3$		$K = 4$		
	log(a)	b	log(a)	b	log(a)	b	log(a)	b	
T47D 1	-3.2001	1.0575	-3.1339	1.0505	-3.3154	1.0644	-3.2744	1.0600	
	2	0	0	-2.8217	1.0296	-2.6167	1.0068	-2.6193	1.0069
	3	0	0	0	0	-2.9513	1.0401	-3.0228	1.0458
	4	0	0	0	0	0	0	-2.7112	1.0198
SUM149 1	-1.0025	0.8933	-0.9226	0.8853	-0.8855	0.8794	-0.8963	0.8799	
	2	0	0	-0.5366	0.8665	-0.4454	0.8500	-0.2041	0.8267
	3	0	0	0	0	1.0844	0.6098	-1.0362	0.9068
	4	0	0	0	0	0	0	2.6006	-0.6672
MDM MB231 1	-2.1327	0.9346	-2.1865	0.9374	-2.1787	0.9363	-2.1893	0.9373	
	2	0	0	-1.5026	0.8807	-1.6141	0.8906	-1.6281	0.8920
	3	0	0	0	0	-1.8453	0.9076	-1.6817	0.8933
	4	0	0	0	0	0	0	-4.4738	1.0964
MDA MB157 1	-2.0519	0.9245	-1.8712	0.9069	-1.9028	0.9037	-1.8963	0.9030	
	2	0	0	-0.2542	0.7998	-0.6160	0.8121	-0.6463	0.8144
	3	0	0	0	0	-0.2739	0.8025	0.0133	0.7799
	4	0	0	0	0	0	0	-2.8673	1.0039
MCF10A 1	-2.8750	1.0375	-2.8209	1.0325	-2.8200	1.0324	-2.9063	1.0402	
	2	0	0	-3.2331	1.0704	-3.2336	1.0709	-2.7583	1.0270
	3	0	0	0	0	-3.7696	1.1020	-3.2170	1.0698
	4	0	0	0	0	0	0	-3.8844	1.1070
MCF7 1	-3.2678	1.0338	-3.2629	1.0337	-3.2604	1.0334	-3.2881	1.0363	
	2	0	0	-3.4257	1.0474	-3.3604	1.0416	-3.2727	1.0329
	3	0	0	0	0	-4.0509	1.1038	-3.3499	1.0411
	4	0	0	0	0	0	0	-4.2011	1.1156
JIMT1 1	-2.1892	0.9449	-2.0989	0.9377	-2.0804	0.9360	-2.0125	0.9346	
	2	0	0	-3.5629	1.0595	-3.4767	1.0526	-3.0369	1.0178
	3	0	0	0	0	-4.8783	1.1628	-3.6001	1.0622
	4	0	0	0	0	0	0	-5.0995	1.1809
hs578T 1	-1.8602	0.9031	-1.6944	0.8859	-1.6927	0.8856	-1.6958	0.8858	
	2	0	0	-1.0074	0.8417	-0.8065	0.8242	-0.7820	0.8221
	3	0	0	0	0	-1.7049	0.9097	-1.6399	0.9033
	4	0	0	0	0	0	0	-7.0092	1.3349
HCC1954 1	-1.8894	0.9720	-1.9892	0.9821	-2.0062	0.9836	-1.9986	0.9832	
	2	0	0	-1.9533	0.9755	-1.8147	0.9646	-1.9456	0.9784
	3	0	0	0	0	-3.5068	1.0947	-2.2007	0.9946
	4	0	0	0	0	0	0	-3.5954	1.1008

DNA bins	$K = 1$		$K = 2$		$K = 3$		$K = 4$	
	log(a)	b	log(a)	b	log(a)	b	log(a)	b
T47D 1	-3.7184	0.3538	-3.7698	0.3593	-3.9382	0.3771	-3.9423	0.3776
	2	0	-4.0243	0.3765	-3.7953	0.3609	-3.8076	0.3623
	3	0	0	0	-4.0252	0.3760	-3.8289	0.3634
	4	0	0	0	0	0	-3.9161	0.3666
SUM149 1	-4.5111	0.4383	-4.7306	0.4606	-4.7200	0.4595	-4.7100	0.4588
	2	0	-4.2107	0.4077	-4.2781	0.4142	-4.4984	0.4349
	3	0	0	0	1.0844	0.6098	-4.4554	0.4250
	4	0	0	0	0	0	2.6006	-0.6672
MDM MB231 1	-4.4381	0.4709	-4.9459	0.5227	-4.9796	0.5262	-5.0023	0.5285
	2	0	-4.0647	0.4322	-4.4357	0.4687	-4.7030	0.4967
	3	0	0	0	-5.0151	0.4960	-4.2615	0.4497
	4	0	0	0	0	0	-5.1602	0.5044
MDA MB157 1	-5.3866	0.5074	-5.4141	0.5103	-5.3701	0.5064	-5.3665	0.5061
	2	0	-6.1785	0.5649	-5.5694	0.5231	-5.5672	0.5231
	3	0	0	0	-6.0631	0.5545	-6.3036	0.5738
	4	0	0	0	0	0	-3.6657	0.3590
MCF10A 1	-4.9326	0.4358	-4.8611	0.4297	-4.5969	0.4077	-4.5415	0.4026
	2	0	-5.6429	0.4947	-5.1453	0.4533	-5.1558	0.4542
	3	0	0	0	-5.6250	0.4925	-5.6539	0.4970
	4	0	0	0	0	0	-5.2204	0.4295
MCF7 1	-4.1951	0.3976	-4.2538	0.4037	-4.2500	0.4032	-4.2170	0.3996
	2	0	-4.0951	0.3876	-4.1438	0.3934	-4.2358	0.4037
	3	0	0	0	-4.4485	0.4072	-4.1816	0.3956
	4	0	0	0	0	0	-4.4507	0.4063
JIMT1 1	-5.2234	0.5266	-5.6523	0.5702	-5.8733	0.5963	-5.8993	0.5996
	2	0	-5.7522	0.5621	-6.1314	0.6084	-6.1220	0.6084
	3	0	0	0	-5.8167	0.5652	-6.3189	0.6151
	4	0	0	0	0	0	-5.4792	0.5300
hs578T 1	-4.5086	0.4295	-4.7467	0.4523	-4.7635	0.4538	-4.7266	0.4506
	2	0	-4.6766	0.4369	-4.8156	0.4496	-4.9701	0.4688
	3	0	0	0	-5.4278	0.4730	-5.0081	0.4626
	4	0	0	0	0	0	-5.4298	0.4732
HCC1954 1	-3.8277	0.3523	-4.0674	0.3762	-4.0849	0.3780	-4.0849	0.3780
	2	0	-3.8424	0.3492	-4.0080	0.3656	-3.9826	0.3639
	3	0	0	0	-5.0037	0.4273	-4.9538	0.4272
	4	0	0	0	0	0	-7.3042	0.5841

4341							4403
4342							4404
4343							4405
4344							4406
4345							4407
4346							4408
4347							4409
4348							4410
4349							4411
4350							4412
4351							4413
4352	Table 8. YAP/TAZ Nuclear Scaling: Scaling parameter values for each cell line across DNA bins within each 'K', the cluster number used in kmeans clustering on the integrated Hoechst intensity. Log(a) is proportional to the initial YAP/TAZ nuclear concentration and b is the power to which YAP/TAZ nuclear concentration scales with cell area.						4414
4353							4415
4354							4416
4355							4417
4356							4418
4357							4419
4358							4420
4359							4421
4360							4422
4361							4423
4362							4424
4363							4425
4364							4426
4365							4427
4366							4428
4367							4429
4368							4430
4369							4431
4370							4432
4371							4433
4372							4434
4373							4435
4374							4436
4375							4437
4376							4438
4377							4439
4378							4440
4379							4441
4380							4442
4381							4443
4382							4444
4383							4445
4384							4446
4385							4447
4386							4448
4387							4449
4388							4450
4389							4451
4390							4452
4391							4453
4392							4454
4393							4455
4394							4456
4395							4457
4396							4458
4397							4459
4398							4460
4399							4461
4400							4462
4401							4463
4402							4464

4465				4527
4466				4528
4467				4529
4468				4530
4469				4531
4470				4532
4471				4533
4472				4534
4473				4535
4474				4536
4475				4537
4476				4538
4477				4539
4478				4540
4479				4541
4480				4542
4481				4543
4482				4544
4483				4545
4484				4546
4485				4547
4486				4548
4487				4549
4488				4550
4489	Table 9. Population Characteristics: Cell area distribution statistics. 'G1' and 'G2' are defined via kmeans clustering on the integrated Hoechst intensity			4551
4490				4552
4491				4553
4492				4554
4493				4555
4494				4556
4495				4557
4496				4558
4497				4559
4498				4560
4499				4561
4500				4562
4501				4563
4502				4564
4503				4565
4504				4566
4505				4567
4506				4568
4507				4569
4508				4570
4509				4571
4510				4572
4511				4573
4512				4574
4513				4575
4514				4576
4515				4577
4516				4578
4517				4579
4518				4580
4519				4581
4520				4582
4521				4583
4522				4584
4523				4585
4524				4586
4525				4587
4526				4588

4589	Reagent or Resource	Source	Identifier	4651
4590	Antibodies			4652
4591	YAP Antibody (G-6) -Mouse	Santa Cruz	Cat# sc-376830	4653
4592	YAP/TAZ [67.3] -Mouse	Santa Cruz	Cat# sc-101199	4653
4593	TAZ (V386) Antibody -Rabbit	Cell Signalling	Cat# 4883	4654
4594	Tubulin Alpha Antibody — YL1/2 -Rat	Bio-Rad	Cat# MCA77G	4655
4595	Phospho-Rb (Ser807/811) (D20B12) XP® -Rabbit	Cell Signalling	Cat# 8516S	4655
4596	Recombinant Anti-Cyclin A2 antibody [EPR17351] -Rabbit	Abcam	Cat# ab181591	4656
4597	Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Invitrogen	Cat# A11029	4657
4598	Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Invitrogen	Cat# A11034	4658
4599	Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 568	Invitrogen	Cat# A11004	4659
4600	Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 647	Invitrogen	Cat# A11077	4660
4601	F(ab')2-Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Invitrogen	Cat# A21235	4661
4602	Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Invitrogen	Cat# A21246	4662
4603	Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Invitrogen	Cat# A21247	4663
4604				4664
4605				4665
4606				4666
4607	Bacterial and Virus Strains			4667
4608				4668
4609	Biological Samples			4669
4610				4670
4611	Chemicals, Peptides, and Recombinant Proteins			4671
4612	RPMI 1640 Medium, no phenol red	GIBCO	Cat# 11835	4672
4613	DMEM/F-12, GlutaMAX™ Supplement	GIBCO	Cat# 31331	4673
4614	Horse Serum	GIBCO	Cat# 16050	4674
4615	Insulin	Sigma	Cat# I-1882	4675
4616	Cholera toxin	Sigma	Cat# C-8052	4676
4617	Hydrocortisone	Sigma	Cat# H-8888	4677
4618	Human EGF	Sigma	Cat# E-9644	4678
4619	Penicillin-Streptomycin	GIBCO	Cat# 15070	4679
4620	Human EGF	Sigma	Cat# E-9644	4680
4621	RPMI 1640 Medium, no phenol red	GIBCO	Cat# 11835	4681
4622	DMEM, high glucose, pyruvate	GIBCO	Cat# 41966	4682
4623	Fetal Bovine Serum (heat-inactivated)	GIBCO	Cat# 16140	4683
4624	Trypsin-EDTA (0.25%), phenol red	GIBCO	Cat# 25200	4684
4625	Opti-MEM I Reduced Serum Medium	GIBCO	Cat# 31985	4685
4626	Lipofectamine RNAimax	Invitrogen	Cat# 13778	4686
4627	Pierce 16% Formaldehyde (w/v), Methanol-free	Thermo Scientific	Cat# 28908	4687
4628	Alexa Fluor 647 Phalloidin	Invitrogen	Cat# A22287	4688
4629	Alexa Fluor 488 Phalloidin	Invitrogen	Cat# A-12379	4689
4630	Hoechst 33258	Invitrogen	Cat# H3569	4690
4631	Palbociclib, PD0332991	Sigma	Cat# PZ0199	4691
4632	Binimetinib	Sigma	Cat#	4692
4633				4693
4634	Critical Commercial Assays			4694
4635				4695
4636	Deposited Data			4696
4637	Proteome?			4697
4638				4698
4639	Experimental Models: Cell Lines			4699
4640	T47-D	N. Turner (ICR)	N/A	4700
4641	BT474	N. Turner (ICR)	N/A	4701
4642	MDA-MB-468	G. Poulogiannis (ICR)	N/A	4702
4643	SKBR3	O. Rossanese (ICR)	N/A	4703
4644	SUM159	R. Natrajan (ICR)	N/A	4704
4645	MDA-MB-231	J. Erler (University of Copenhagen)	N/A	4705
4646	MDA-MB-231-LM2-4175	J. Massagué (Sloan Kettering Institute)	N/A	4706
4647	MCF10A mRuby-PCNA	Minn, Andy J. et al., 2005	N/A	4707
4648	hTERT RPE-1	J. Mansfeld (Technische Universität Dresden)	N/A	4708
4649	WMs	Zerjalke, Thomas et al., 2017		4709
4650	a375p			4710
4651				4711
4652				4712
4653	Experimental Models: Organisms/Strains			
4654				
4655	Oligonucleotides and siRNA (Sequenced-Based reagents)			
4656				
4657	Recombinant DNA			
4658				
4659	Software and Algorithms			
4660	Morpheus	Broad Institute	https://software.broadinstitute.org/morpheus/	
4661			N/A	
4662	Acapella 4.0	PerkinElmer	http://columbus2.icr.ac.uk/login?next=/	
4663	Columbus Image Data Storage and Analysis System	PerkinElmer	https://www.perkinelmer.com/product/harmony-5-1-office-hh17000012	
4664				
4665	Harmony High-Content Imaging and Analysis Software	PerkinElmer	https://www.perkinelmer.com/product/harmony-5-1-office-hh17000012	
4666				
4667	Prism	GraphPad	https://www.graphpad.com/scientific-software/prism/	
4668			N/A	
4669	Excel	Microsoft	https://imagej.nih.gov/ij/	
4670	ImageJ	Schneider et al., 2012	http://www.adobe.com/de/products/illustrator.html	
4671	Adobe Illustrator	Figures	versionCC2015.3	
4672				
4673	Other	PerkinElmer	Cat# 6057300	
4674	PhenoPlate 384-well			

Table 10. List of reagents and resources.