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Abstract: Key innovations are fundamental to biological diversification, but their genetic
architecture is poorly understood. A recent transition from egg-laying to live-bearing in
Littorina snails provides the opportunity to study the architecture of an innovation that has
evolved repeatedly in animals. Samples do not cluster by reproductive mode in a genome-
wide phylogeny, but local genealogical analysis revealed numerous genomic regions where
all live-bearers carry the same core haplotype. Associated regions show evidence for live-
bearer-specific positive selection, and are enriched for genes that are differentially
expressed between egg-laying and live-bearing reproductive systems. Ages of selective
sweeps suggest live-bearing alleles accumulated gradually, involving selection at different
times in the past. Our results suggest that innovation can have a polygenic basis, and that
novel functions can evolve gradually, rather than in a single step.

Main text: Evolution is a gradual process, but occasionally results in sudden changes in
form and function that allow organisms to exploit new ecological opportunities (/, 2). These
game-changing traits—including flight, vision, and the bearing of live offspring—are known as
‘key innovations’ (2—5). Key innovations are all around us, and have catalyzed the
diversification of many groups (/). Despite their significance, we know surprisingly little about
the origins and genetic architecture of most innovations (/). This is because most originated deep
in the past, making it difficult to disentangle causal loci from the countless genetic changes that
accumulated up to the present.

A recent transition in female reproductive mode offers a rare opportunity to study the
genetic architecture of an innovation that has evolved many times across the animal kingdom (6).
We focus on a clade of intertidal gastropods (Genus Littorina), where the ancestral state is to lay
a large egg-mass but one species gives birth to live young (Fig. 1A, fig. S1) (7, 8). Egg-layers
have a gland that embeds egg-capsules into a protective jelly. In the live-bearer, L. saxatilis, this
structure has evolved into a brood pouch where embryos develop inside the mother. Live-bearing
is a recent innovation in the littorinidae and is thought to allow snails to reproduce in areas where
eggs are exposed to harsh conditions (8). This is reflected in the much broader ecological and
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geographic distribution of L. saxatilis compared with the two egg-laying sister species, L. arcana
and L. compressa (8) (Fig. 1B and 1C). Egg-laying and live-bearing species have adapted in
parallel to contrasting environments (8, 9), partly decoupling reproductive mode from other axes
of phenotypic divergence (Fig. 1B). There is also evidence for occasional hybridization between
egg-layers and live-bearers (10, 11). These features provide an opportunity to identify and study
the genetic changes underlying the live-bearing innovation.
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Figure 1. Variation in reproductive mode in Littorina. (A) Anatomical differences between modes (B) Egg-
layers reproduce during a limited breeding season, while live-bearers release offspring year-round. The two
egg-layers share their habitats with ecotypes of the live-bearer, L. saxatilis. (C) Approximate distributions of the
modes, highlighting the broader distribution of live birth. (D) Existing hypothesis for the origin of live birth. (E)
ML phylogenetic tree based on whole-genome sequences (108 individuals and 18.5 million variable sites).
Bootstrap support for key nodes is shown.

Live-bearing snails do not form a monophyletic group

We used whole-genome sequences from 108 individuals to test the existing hypothesis of a
single origin of live-bearing (Fig. 1D ) (7). Surprisingly, live-bearers formed two separate clades
in a phylogenetic tree: one containing all L. saxatilis from Spain (hereafter ‘Spanish saxatilis’),
and another including all other L. saxatilis (‘Northern saxatilis’) that was sister to egg-laying L.
arcana (Fig. 1E). The discordance between evolutionary relationships and reproductive mode
(also seen in PCAs, fig. S6) has several possible explanations, including two genetically
independent transitions between egg-laying and-live birth. However, given the close
relationships of these taxa, a single origin could have been followed by the sharing of causal
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69 alleles between lineages via gene exchange and selection (/2). For example, live-bearing could
70  first have evolved in Spain, whereupon causal alleles spread to the north, introgressing into the

71

genetic background of the resident egg-laying lineage. In this case, we would expect genealogies

72 for loci causing live birth to be strongly discordant from the genome-wide tree, with samples

73

grouping by reproductive mode (9).

74

75  Topology weighting reveals rampant genealogical discordance and loci associated with

76  reproductive mode

77  With this expectation in mind, we used topology weighting (Fig. 2A) to identify genomic regions

78

associated with reproductive mode. For each genomic window, topology weighting calculates

79  the degree of monophylly toward three possible taxon subtrees (Fig. 2C, fig. S8): (i) the
80  background topology, Tb, observed in our genome-wide analysis, (ii) the reproduction topology,

81

Tr, where samples cluster by reproductive mode, and (iii) the control topology, Tc, which is of

82  no specific interest except that it provides a control for distinguishing incomplete lineage sorting

83

(ILS) from other processes that cause genealogical discordance. We used non-overlapping 100-

84  SNP windows (mean size 5.8 kb, fig. S7), and calculated topology weights (/3) for each window

85

by sampling 10,000 subtrees (Fig. 2A). We took the novel approach of analyzing the joint

86  distribution of topology weights in a ternary plot (Fig. 2A) and used simulations to understand
87  how different factors shape the ternary distribution of weights (Fig. 2B; Supplementary text, figs.

88

89
90
91

S9—S19; tables S3 & S4).
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Figure 2. Topology weighting reveals genomic regions associated with reproductive mode. (A) For each
genomic window, we inferred a full tree including all haplotypes, and then sampled and classified 10k ‘subtrees’
by randomly picking one haplotype per group. Topology weights are the proportions of each topology among all
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subtrees. Windows were then plotted in a ternary plot based on their topology weights. (B) Simulated
distributions of weights. A greater opportunity for lineage sorting (i - iii) biases the distribution toward the
topology that matches the demographic history. Incomplete lineage sorting yields genealogies that are a better
fit to one of the discordant trees, but the distribution is always symmetrical between the left and right half
triangles. Additional factors, including gene flow, create a bias toward one of the discordant genealogies
(panels iv - vi). (C) Possible topologies and the empirical distribution of weights for the 154,971, 100 SNP
windows; C: compressa, A: arcana, S: Spanish saxatilis, N: Northern saxatilis. Hexagonal bins are colored
according to window count. (D) Counts of windows in the left and right half triangles, with the asymmetry
quantified using D, r. Further division into sub-triangles reveals left-right asymmetry throughout the distribution.
Asterisks indicate significant asymmetry between corresponding left- and right-sided sub-triangles. (E)
Distributions of weights > 0.7.

We expected the empirical distribution of weights to be biased toward Tb, because
lineage sorting results in concordance between the demographic history and underlying gene
trees (/4) (Fig. 2B, Supplementary text). However, the observed bias was only slight (Tb =
0.380, Tc =0.310, Tr = 0.308), with just 62 of ~155,000 genomic regions perfectly fitting Tb
(i.e., Tb =1) (Fig. 2C). Instead, the bulk of the distribution fell close to the center of the triangle,
revealing extensive ILS due to rapid diversification relative to the effective population size (74,
15). Thus, although well-supported statistically, the genome-wide tree is a very poor predictor of
evolutionary relationships at any given genomic region.

We found substantial left-right asymmetry in the distribution of weights (Fig. 2D). Such a
bias is not expected to arise from ILS, because there is an equal chance that a given gene tree
will more closely resemble either alternative topology (Fig. 2B, supplementary text) (/4). We
detected asymmetry using a new statistic, Drr (Fig. 2D, fig. S19). A genome-wide test,
performed by calculating D;r between the two halves of the triangle, revealed a 3.4% excess of
windows shifted toward the control topology (Drr = 0.034, permutation test p = 1e-5). Drr
calculated between analogous left- and right-side sub-triangles, revealed that this asymmetry was
driven by an excess of trees with a small bias toward Tc (Fig. 2D, table S5). Further exploration
showed that this bias is due to several previously identified chromosomal inversions, where one
arrangement is more common in Spanish L. saxatilis and L. arcana, and the other is more
common in L. compressa and Northern L. saxatilis (Drr for regions outside inversions = -0.007,
p =0.074) (figs. S21—S24, table S6, Supplementary text).

Much stronger asymmetry was observed between the extreme left and right sub-triangles,
corresponding to windows that strongly fit one of the alternative topologies (Fig. 2D). However,
the asymmetry was in the opposite direction to the genome-wide pattern, with a large excess of
windows strongly biased toward the reproduction tree compared with the control tree (Tr > 0.7 =
1151 windows vs. 461 for Tc; Drr =-0.43, p = le-5). A total of 88 windows perfectly fit the
reproduction topology (i.e., Tr = 1), compared with 0 windows that perfectly fit the control
topology (Drr = 1.00, p = 1e-5; Fig. 2E, table S5).

Evidence for live-bearer specific positive selection

Although neutral gene flow can generate strong asymmetry under some circumstances, we are
unable to explain the observed Tr bias without invoking natural selection (supplementary text).
We found strong additional evidence for live-bearer-specific positive selection in these regions.
First, window-based estimates of nucleotide diversity () in live-bearers decreased substantially
with increasing Tr weight (Fig. 3A). We found no such relationship in egg-layers. Eighty-four of
the 88 (95%) perfectly associated regions showed reduced & in live-bearers (mean miive-bearer =
0.0029 vs Ttggg-layer = 0.0065; paired Wilcoxon test, p = 1.313e-15, Fig. 3A, fig. S25), consistent
with selection having purged diversity from live-bearing haplotypes (/6). Although this pattern
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141  could in principle result from a live-bearer-specific demographic bottleneck, we can rule this out
142 because live-bearers and egg-layers have similar levels of genome-wide diversity (mean =« live-
143 bearer = 0.0065 vs. & egg-layer = 0.0062; fig. S26). Further, relationships between « and the

144 other weights (Ts and Tc) were weak, and similar for both groups, confirming that reduced m in
145  live-bearers is specific to Tr rather than being a general feature of windows with extreme weights
146  (fig. S27). The site-frequency spectra (SFS) and sample-size-corrected estimates of private

147  alleles for perfectly associated regions provide further evidence for selection (Fig 3B & C; figs.
148  S28—S30; tables S9 and S10): the live-bearer SFS was strongly skewed toward rare variants
149  (Tajima’s D =-1.89, 95% CIs -1.77 — -2.01; fig. S29), the majority of which (80%) were private
150  to the group. Both results are expected during the phase when diversity is recovered by mutation
151  after a selective sweep (/7). In contrast, the SFS for egg-layers was much closer to the neutral
152  expectation (Tajima’s D = -0.24, 95% ClIs -0.037 — -0.437), with polymorphic sites being 2.14
153  times more abundant in egg-layers after accounting for the difference in sample size.
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154 Figure 3. Evidence for positive selection on haplotypes associated with live birth. (A) Relationship
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157 each mode in perfectly associated regions, projected at the same sample size for comparison. (C) Estimates of
158 Tajima’s D with 95% Cls for perfectly associated regions. (D) Unrooted trees for example windows where Tr =
159 1. (E) Variation across two example contigs that contain a window where Tr = 1 (span of the orange box). The
160 tree associated with each region is shown. Top panel: Fsrbetween egg-layers and live-bearers in 3kb sliding
161 windows (30 bp step). TrARG shows the results of topology weighting applied to marginal trees obtained from
162 inferred ancestral recombination graphs (ARGs). Purple arrows show fixed differences between modes. Middle
163 panel: T and dy in sliding windows. Bottom panel: traces of time to the most recent common ancestor

164 (TMRCA) obtained from ARGs. Bold lines: median estimates; Envelopes: 95% Cls. The red box shows the
165 inferred length of the core haplotype block associated with live birth.

166

167 We characterized footprints of selection within contigs to more accurately estimate the
168  number and size of candidate regions (Fig. 3E). The 88 perfectly associated windows mapped to
169 50 contigs in our genome assembly (mean 1.7 + sd 1.5 windows per contig; table S8). Associated
170  regions were narrow, mostly spanning less than 20 kb (mean 12 kb + sd 14.4 kb). Sliding-

171  window analysis of each contig generally revealed clear peaks of allele frequency differentiation
172 (Fsr) and sequence divergence (d.,) between the groups, as well as valleys of nucleotide diversity
173 (m) in live-bearers (Fig. 3E; fig. S33). We also inferred ancestral recombination graphs (ARGs)
174  for selected contigs to refine candidate regions (Fig. 3E). Unlike the trees for windows of

175  arbitrary size and position, each marginal tree in an ARG corresponds to an inferred non-

176  recombining segment of the genome (/8). Thus, by applying topology weighting to the sequence
177  of marginal trees, we were able to identify more precisely the segment of genome retained by all
178  live bearing samples following the sweep. In both cases, the core live-bearing haplotype spanned
179  less than 2 kb. Live-bearers showed much shallower coalescence in these regions than egg-

180 layers, as expected following a selective sweep (Fig. 3E).

181

182  Mode-associated regions are widespread and enriched for genes that are differentially

183  expressed between reproductive systems

184  The assignment of contigs to a genetic map revealed that reproductive-mode-associated windows
185  are widespread across the genome, rather than co-localizing to one or a few genomic regions

186  (Fig. 4a; table S11). As expected for a polygenic trait, the number of mode-associated windows
187  on each LG was strongly predicted by LG size (Tr > 0.7, r=0.79, p <0.0001; Tr> 0.9, r =0.71,
188  p <0.005). Associated windows were also widespread within linkage groups, in some cases with
189  strong associations near opposite ends of the same LG (Fig. 4B).

190 Candidate regions also showed strong enrichment of genes that are differentially

191  expressed between live-bearing and egg-laying reproductive tissues. To identify differentially
192  expressed genes (DEGs), we collected reproductively mature female L. arcana and Northern L.
193 saxatilis from a single location to control for environmental effects, and compared

194  transcriptomes from whole reproductive systems (brood pouch vs jelly gland) and a non-

195  reproductive control tissue (foot). We identified 1,598 DEGs, the majority of which showed

196  differential expression between the reproductive tissues (1,297) (Fig. 4C, fig. S36). Of these,

197  66.1% (858) showed higher expression in the brood pouch of live bearers (Fig. 4D). To test for
198  the enrichment of DEGs in regions associated with reproductive mode, we binned each DEG
199  according to the Tr score of its associated genomic region (Fig. 4E). We found that the

200  proportion of reproductive mode DEGs strongly increased with increasing Tr weight

201  (Spearman’s rho = 0.903, p = 9e-04; table S12)

202 Gene ontology analysis and functional annotation suggest that the transition to live-birth
203  involved genes with diverse functions. Separate GO analyses conducted on a sequence-based
204  gene set (574 genes in regions where Tr > 0.7) and expression-based gene set (1,450
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205  reproductive mode DEGs) yielded 37 enriched gene ontology terms, including transmembrane
206  transport, calcium ion binding, and ion channel activity (Fig. S37). We examined the putative
207  functions of the 27 genes found in both sets in more detail (table S13). These included genes
208  putatively associated with antibacterial activity (lectin L6-like protein; higher expression in

209  brood pouch), the synthesis of mucin-type oligosaccharides (GALNT10-like; higher expression
210  in brood pouch), the formation of structural tissue (IFB-like and CMP-like, both higher

211  expression in brood pouch), and two secretary genes involved in egg-mass production in another
212 marine snail (both with lower expression in brood pouch).
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250 Figure 4. Candidate regions are widespread across the genome and enriched for genes that are

251 differentially expressed between reproductive systems. (A) The number of high Tr windows (Tr > 0.7)

252  assigned to each of the 17 L. saxatilis LGs. The circles show the expected number given the total assigned of
253 windows to each LG. Asterisks indicate when the observed number is unlikely to be recovered by chance (p <
254 0.05). (B) Distribution of high Tr windows across LGs. Vertical blue lines indicate map positions that are

255 enriched for high Tr windows. (C) Number of genes that showed differential expression (DE) and the number of
256 DE genes in each expression class. (D) Clustering of reproductive tissue libraries based on patterns of

257  expression. (E) The proportion of genes in each DE class after binning each gene according to the Tr weight.
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258  Conclusions
259  Our analyses show that live-bearing, a key innovation, is associated with selection on many loci,
260 as in the only comparable analysis in Zootoca lizards (19). Although our genome-wide analysis
261  hinted at two independent origins of live-bearing, the alleles associated with this trait have a
262  single origin and have spread across space and genetic background. We found evidence that
263  selection has acted on differences in gene expression, driving the origin of the live-bearing brood
264  pouch. Other associated loci may underpin physiological changes that contribute to the
265  difference in mode, such as differences in embryo retention-time (20), or may underlie other
266  adaptations the became beneficial as live-bearing spread. Approximate estimates of the timing of
267  selective sweeps at live-bearing loci, based on the accumulation of private mutations (7' = mw/2u),
268  span a broad range from ~20 k to 200 k generations before present, with a median time of 70 k
269  generations BP (roughly 35k years BP, assuming 2 generations per year) (fig. S38). Thus, our
270  results suggest that alleles associated with live-bearing accumulated gradually over the last 100 k
271  years. These findings are relevant to the long-standing debate about the genetic basis of
272 evolutionary novelty. Because key innovations are not visible to selection before they arise,
273 models of saltational evolution invoke large-effect macromutations to explain their sudden
274  appearance (21). However, our results show that innovation can have a polygenic basis, and
275  suggest that novel functions can arise as the end product of sustained quantitative evolution,
276  rather than in a single evolutionary step.
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