

1 **Title**

2
3 Germ cells do not progress through spermatogenesis in the infertile zebrafish testis

4
5 **Authors**

6
7 Andrea L. Sposato¹, Darren R. Llewellyn¹, Jenna M. Weber¹, Hailey L. Hollins¹, Madison N. Schrock¹, Jeffrey
8 A. Farrell², James A. Gagnon^{1,3,*}

9
10 **Affiliations**

11
12 1. School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
13 2. Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and
14 Human Development, NIH, Bethesda, MD 20814
15 3. Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
16 *. Author for correspondence: james.gagnon@utah.edu

17
18 **Abstract**

19
20 Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal but fertility
21 declines with age. While morphological studies have greatly informed our understanding of typical
22 spermatogenesis, the molecular and cellular mechanisms underlying spermatogenesis are not yet understood,
23 particularly with respect to the onset of fertility. We used single-cell RNA sequencing to generate a
24 developmental atlas of the zebrafish testis. Using 5 timepoints across the adult life of a zebrafish, we described
25 cellular profiles in the testis during and after fertility. While all germ cell stages of spermatogenesis are
26 detected in testes from fertile adult zebrafish, testes from older infertile males only contained spermatogonia
27 and a reduced population of spermatocytes. These remaining germ cells are transcriptionally distinct from
28 fertile spermatogonia. Immune cells including macrophages and lymphocytes drastically increase in
29 abundance in infertile testes. Our developmental atlas reveals the cellular changes as the testis ages and
30 defines a molecular roadmap for the regulation of male fertility.

31
32 **Key Words**

33 testis; fertility; spermatogenesis; immune cells; aging; single-cell RNA sequencing

34

35

36

37 **Introduction**

38
39 The vertebrate testis produces sperm throughout the fertile lifetime of the animal from a population of
40 spermatogonial stem cells. During spermatogenesis, differentiating germ cells undergo transcriptional
41 reprogramming as they mature through a diversity of cell types (Soumillon et al. 2013, Melé et al. 2015).
42 Somatic cells of the testis support spermatogenesis by providing a conducive environment for a balance of
43 germ cell proliferation and differentiation. Several imaging-based strategies have captured the morphology of
44 developing germ and somatic cells, providing insight into the differences in testis composition and organization
45 across species (Maack and Segner 2003, Schulz et al. 2005, Wang et al. 2007, Leal et al. 2009, Uribe et al.
46 2014, Lee et al. 2017, de Siqueira-Silva et al. 2019).

47
48 Mammals and zebrafish share an overall testis architecture composed of several tightly coiled seminiferous
49 tubules (Schulz et al. 2010). As in most animals, spermatogenesis is maintained throughout most of zebrafish
50 adulthood. Unlike mammals, germ cells in zebrafish are not in direct contact with the basement membrane
51 surrounding tubules. Instead, spermatogenesis is a cystic process whereby Sertoli cells surround individual
52 undifferentiated spermatogonia and support their differentiation throughout spermatogenesis (Schulz et al.
53 2005). Within a Sertoli cyst, germ cells first develop in a clonal syncytium of type A spermatogonia before
54 undergoing 9 mitotic divisions as type B spermatogonia then entering meiosis (Leal et al. 2009). After meiosis,
55 germ cells enter the spermiogenic phase, where spermatids develop into spermatozoa following nuclear
56 condensation, organelle elimination, and formation of the flagellum. The cyst then opens to release mature
57 spermatozoa in the lumen of seminiferous tubules (Schulz et al. 2010). In addition to Sertoli cells, other
58 somatic cell types also serve important roles during spermatogenesis. Leydig cells produce testosterone and
59 insulin-like 3 which promote spermatogenesis via Sertoli cells (Walker 2010, Crespo et al. 2021). A host of
60 immune cells are also present in the testis, including macrophages and various lymphocytes. Regulatory T
61 cells play an important role in immune homeostasis during zebrafish testis development (Li et al. 2020). In
62 mammalian testes, macrophage and lymphocyte populations have also been characterized (Guo et al. 2020,
63 Bhushan et al. 2020) and inflammation has been described as a signature of testicular aging (Matzkin et al.
64 2016, Nie et al. 2022). To date, the full scope of cell type diversity and plasticity during zebrafish
65 spermatogenesis and aging is not well understood.

66
67 Zebrafish become fertile at 3 months old and maintain gametogenesis until about 2 years of age when they are
68 unable to breed or make sperm. We do not know how the cell type composition and transcriptional profiles of
69 the testis may change throughout fertility and the transition to infertility. Single-cell RNA sequencing
70 (scRNASeq) has been used to describe the molecular and cellular composition of testes from several
71 vertebrate and invertebrate organisms. A recent scRNASeq survey profiled the cell types present in 5 month
72 old zebrafish (Qian et al. 2022). As expected, these testes exhibited a continuum of cell types from
73 spermatogonia to elongated spermatids. However, this stage of life marks just the sunrise of a dynamic and
74 continually maintained process throughout the adult life of a zebrafish. Another study compared 18-month
75 testes from control zebrafish and infertile fish that were exposed to an endocrine-disruptive chemical early in
76 life (Haimbaugh et al. 2022). Notably, endocrine disruption caused arrest or apoptosis of post-meiotic germ
77 cells after typical development through spermatogonial and meiotic phases. These results suggest that meiosis
78 acts as a key checkpoint for sperm development. However, profiles of somatic cells are missing from this atlas,
79 and it remains unknown whether this drug-induced post-meiotic apoptosis/arrest is also present in natural
80 cases of infertility. While single timepoint atlases of the zebrafish testis provide snapshots of testicular cell type
81 composition, to probe the mechanisms that control infertility we need to capture the dynamic changes in the
82 testis as fertility declines.

84 In this study, we describe a developmental atlas of the whole zebrafish testis which characterizes cell types
85 present throughout the fertility window and beyond. We used scRNAseq to profile cell types, enabling us to
86 identify all stages of germ cell differentiation and somatic cells of the testis including Sertoli, Leydig, vascular
87 smooth muscle cells, and immune cells such as macrophages, T cells, and natural killer cells. In naturally
88 infertile testes, we identify a larger and more diverse population of immune cells and an absence of post-
89 meiotic germ cells. While infertile testes are not depleted of germ cells, these germ cells adopt a distinct
90 transcriptional state and do not develop beyond meiotic stages. Our developmental atlas provides insights
91 regarding the maintenance and breakdown of fertility with cellular and molecular resolution.

92 93 Results

94 95 Timecourse scRNAseq identifies cell types present in the zebrafish testis throughout fertility

96 To define the cellular composition of zebrafish testes during fertility, we dissected whole testes from fertile
97 adult zebrafish at four ages (5, 12, 20, and 22 months old), dissociated whole tissue, and profiled each sample
98 by scRNAseq (Fig. 1A, S1A). Representative histological images of fertile zebrafish testes show densely
99 packed seminiferous tubules with germ cells proceeding through spermatogenesis and somatic support cells in
100 the interstitial spaces (Fig. 1B, S2). Rates of transcription are highest in the testis compared to every other
101 organ (Xia et al. 2020), so we filtered for high quality transcriptomes based on the percentage of mitochondrial
102 reads (<5%) and the number of genes detected per cell using a threshold established for each data set based
103 on the interquartile range (Fig. S1C). Next, we integrated the six biological samples from all four timepoints to
104 establish a composite atlas of the fertile zebrafish testes that contains 32,659 cells (Fig. 1C, S1B).

105
106 We identified all cell types within this fertile atlas using marker genes (Table 1, Fig S1D). We identified germ
107 cells as they progressed through all stages of differentiation from early spermatogonia to spermatozoa (Fig.
108 1D). We also discovered small populations of somatic cells such as Sertoli, Leydig, smooth muscle-like cells
109 and various immune cells (Fig. 1C, E). Overall, >90% of cells in the atlas were differentiating germ cells, which
110 is likely an overrepresentation of their relative abundances in intact tissue. We hypothesize that the enrichment
111 of germ cells may be attributed to dissociation sensitivity, where irregular shape and large size of somatic cell
112 types may have decreased their capture rate during 10X scRNAseq. Notably, every cluster is composed of
113 cells from all four sample ages with the exception of cluster 14 which is unique to the 5 month atlas (Fig. S1E).
114 Top differentially expressed genes in this cluster are associated with cell types found in the liver, suggesting
115 this cluster is derived from contamination during dissection. We conclude that our composite atlas captures all
116 known testis cell types and can serve as a cell type reference for this tissue. A web-based application for
117 exploring the single-cell datasets presented in this paper is available at
118 https://github.com/asposato/zebrafish_testis_fertility.

119 120 Testes from infertile zebrafish lack fully differentiated germ cells

121 A scRNAseq atlas of the infertile zebrafish testis would permit comparisons to uncover the mechanisms that
122 regulate fertility. In laboratory settings, domesticated zebrafish can live for 3-5 years but fecundity decreases
123 around 2 years of age. Testes of infertile animals are smaller and disorganized with expanded interstitial
124 spaces and germ cells in less dense clusters (Fig. 2A, B). Representative images of infertile zebrafish
125 demonstrate that the remaining germ cells within seminiferous tubules are mostly at earlier stages of
126 spermatogenesis and interstitial spaces are expanded between tubules (Fig. S3). We dissected testes from
127 two 27 month old zebrafish, dissociated whole tissue, and profiled each sample by scRNAseq. After filtering,
128 the resulting infertile zebrafish testis atlas contained 24,469 cells (Fig. 2C, S4A).

130 We again identified all cell types within this atlas using marker genes (Fig. 2C, D, S4B). In the infertile atlas,
131 only three clusters of germ cells were identified while the remaining 17 clusters were somatic cell types. While
132 93% of the cells in the composite fertile atlas are germ cells at various stages of development, germ cells make
133 up only 32% of the infertile atlas. Of the germ cell clusters, marker genes for spermatogonia and
134 spermatocytes are detected, yet post-meiotic germ cells were absent (Fig. 2D). Instead, somatic cell types
135 make up the majority of the infertile atlas with immune cells accounting for much of this increase.
136

137 **Somatic cell type composition shifts in the infertile testis**

138 We compared somatic cell types between fertile and infertile testes to discover changes that may correlate with
139 infertility. Coordination among immune cells is critical to the establishment and maintenance of tissue
140 homeostasis (Bhushan et al. 2020, Fan et al. 2021). To investigate changes in immune cell composition, we
141 subsetted immune cells from fertile and infertile testes using marker genes and reclustered these cells to
142 create an immune atlas of the zebrafish testis (Fig. 3A, S5A). We identified cell types within this immune atlas
143 using marker genes (Table 1, Fig. 3B, S5B). We found six T cell subtypes, natural killer cells, B cells, four
144 macrophage subtypes, neutrophils, and one unknown leukocyte cell type. Most cells are from the infertile
145 sample, although there was representation of all cell types within the fertile testes (Fig 3C, 5SA). We
146 categorized cell types into broad somatic categories and calculated the relative abundance for each age. Many
147 somatic cell types are elevated in infertile testes, particularly in macrophage and lymphocyte populations (Fig.
148 3D).
149

150 We also observed an expansion of some non-immune somatic cell populations in infertile testes (Fig. 3D). Split
151 by cell type, blood cells and SMC-like cells were 9-fold higher in abundance in infertile testes, while Leydig and
152 Sertoli cells proportionally decreased in abundance (Fig. 1E). Histological images (Fig. 1A-B, S2, 2A-B, S3)
153 also show a large expansion of the interstitial spaces around tubules in infertile testes. To confirm changes in
154 somatic cell abundances in the zebrafish testis, we used RNA *in situ* hybridization to detect macrophages and
155 smooth muscle cells in both fertile and infertile testes. We found increased signal for the macrophage marker
156 *mpeg1.1* and decreased signal for the smooth muscle marker *acta2* in infertile testes compared to fertile (Fig.
157 3E-F, S6A). Together, these data suggest that where germ cells are not progressing completely through
158 spermatogenesis, the tubules give way to larger interstitial areas of connective tissue that contain many
159 macrophages. Interestingly, while the proportion of blood and SMC-like cells seems to increase in infertile
160 testes according to the single-cell data, molecular imaging shows that smooth muscle marker *acta2* diminishes
161 in infertile testes. *Acta2* only weakly identifies SMC-like cells in the single-cell atlases. However, we do observe
162 more abundant expression of *decorin (dcn)*, a gene known to be expressed by stressed vascular endothelial
163 cells and fibroblasts, in the SMC-like cells of the infertile testes (Fig. S6B, Järveläinen et al. 2015). The SMC-
164 like cells in these interstitial areas may be breaking down between seminiferous tubules in aging testes.
165

166 **Spermatogenesis is stable and continuous through fertility but incomplete in older testes**

167 The absence of later stages of spermatogenesis in testes from infertile zebrafish led us to hypothesize that
168 there may be a developmental block at meiosis. The difference in tissue integrity and lack of densely packed
169 germ cells in the infertile histological images further supported this hypothesis (Fig. 1A-B, S2, 2A-B, S3). As
170 animals age, we hypothesized that the proportion of germ cells may shift toward more spermatogonia
171 compared to spermatozoa. 27 month-old testes completely lack spermatozoa but contain more spermatogonia
172 than 5 month-old testes (Fig. 4A). Next, we sought to quantify how the progression of germ cell differentiation
173 changed as the fertile testis ages using URD pseudotime analysis (Fig. 4B, Farrell et al. 2018). In this analysis,
174 0 represents the most spermatogonial state, and 1 represents the most differentiated spermatid state. We split
175 the integrated object by age to visualize the proportion of germ cells at each stage of spermatogenesis (Fig.
176 4C). While all fertile stages were similar, we observed a modest increase in spermatogonial proportion and a

177 reciprocal decrease in contribution to later stages of spermatogenesis in older fertile testes (20 and 22 months)
178 relative to testes from younger males (5 and 12 months). As animals approach infertility, our data suggests that
179 the spermatogonia population declines in its ability to give rise to post-meiotic cells.
180

181 To investigate this phenomenon, we subsetted and reclustered spermatogonia from both fertile and infertile
182 atlases. We found that the majority of germ cells from the infertile testes are transcriptionally distinct from fertile
183 spermatogonia (Fig. 4D). Several known regulators of spermatogenesis such as *piwi1* and *ilf2* are more highly
184 expressed in fertile germ cells compared to infertile (Fig. 4E). *E2f5*, recently identified as a new marker for
185 undifferentiated spermatogonia (Xie et al. 2020, Qian et al. 2022), is highly expressed at 5 months, decreases
186 in expression by 22 months, and is almost undetectable in spermatogonia from 27 month old testes. Perhaps
187 the contrasting patterns of gene expression underlie the failure of spermatogonia in infertile testes to progress
188 past meiosis. Together, our imaging and single-cell transcriptomic data suggest that infertile testes have a
189 large population of spermatogonia and some spermatocytes but a dearth of post-meiotic cell types. We
190 hypothesized that the expansion of immune cells we observe in infertile testes may help facilitate the apoptosis
191 and removal of dying cells in the testis, perhaps explaining the absence of post-meiotic germ cells in infertile
192 testes by a mechanism similar to what is observed in endocrine-disrupted testes (Haimbaugh et al. 2022).
193 However, we did not detect differences in the expression of markers for apoptosis between fertile and infertile
194 testes (Fig. S7), suggesting instead there may be a block at meiosis preventing the progression of germ cells
195 past a critical checkpoint.
196

197 Discussion

198

199 In this study, we used timecourse scRNASeq to profile cells of the aging zebrafish testis. Our approach
200 captures the stability of spermatogenesis during fertility and the dynamic changes within the testis during the
201 onset of infertility. Germ cells are relatively stable in fertile zebrafish of all ages with proportions of germ cells
202 following a consistent pattern across differentiation. In older yet still fertile testes, we observed a shift in
203 abundance toward less differentiated cell types, but cell types at later stages of spermatogenesis are still
204 detected. However, in infertile testes we did not detect post-meiotic germ cells. Histology of fertile and infertile
205 testes confirmed that seminiferous tubules of fertile testes are densely packed with germ cells across the
206 spectrum of differentiation while tubules of infertile testes have noticeably fewer germ cells of the size and
207 density of post-meiotic germ cells. Infertile testes also exhibit reduced structural integrity with expanded
208 interstitial spaces throughout the tissue without maintenance or expansion of smooth muscle. Infertile testes
209 contain spermatogonial stem cells, but they have a distinct transcriptional identity and spermatogenesis is
210 interrupted during or following the meiotic phase. Our developmental atlases describe testis composition
211 across the fertile and infertile lifespan of a zebrafish, providing a foundation for probing the mechanisms
212 underlying infertility.
213

214 Our results also highlight a diversity of immune cells lacking from previous scRNASeq studies of zebrafish
215 testes. While some immune cells are found in the fertile atlas, the immune cell population of the infertile atlas is
216 more diverse and proportionally far larger than the germ cell population. Notably, lymphocyte and macrophage
217 populations form the majority of cells in infertile testes. In a previous study of endocrine disrupted testes,
218 spermatogenesis failure in post-meiotic cells showed arrest or apoptosis of developing germ cells but does not
219 characterize the immune cells of such tissues (Haimbaugh et al. 2022). In our data, it is unclear whether
220 defects in meiosis or a post-meiotic event is responsible for the absence of these more differentiated cell types
221 in naturally infertile testes. However, the increased presence of immune cells begs the question of whether
222 immune cells act to inhibit fertility or, alternatively, whether they expand in older testes as a response to
223 infertility. If immune cells prevent fertility, one might expect that immunosuppression could rescue fertility in

224 older animals that still contain spermatogonia. Alternatively, immune cells in older testes may regulate
225 spermatogenesis to stave off production of defective sperm. Immune cells may arrive to clear out apoptosing
226 germ cells that were rejected by cell autonomous or hormone-mediated quality control methods (Hikim et al.
227 2003). Tissue-specific perturbations to the testis immune cell population will be necessary to distinguish
228 between these hypotheses and determine if the increased presence of immune cells in older fish is a cause or
229 consequence of infertility.

230
231 Infertile zebrafish testes still contain early germ cells including spermatogonia. It would seem the stem cell pool
232 is not depleted as male zebrafish age, but presence of these cells does not necessarily convey fertility. The
233 spermatogonia population within the testis can be traced back to a small population of embryonic germ cells
234 (Raz 2003). While the spermatogonia population that descends from these embryonic germ cells is maintained
235 in the fertile testis for almost two years, perhaps the clonal diversity declines with age concomitant with the
236 accumulation of detrimental mutations. Lineage tracing of the formation and maintenance of the
237 spermatogonial population may uncover the mechanisms that direct clonality within the spermatogonial
238 population and whether a decrease in clonal diversity accompanies infertility. We anticipate that transcriptomic
239 resources, like those presented here, will facilitate continued explorations of the mechanisms that regulate the
240 development, maintenance, and break down of the zebrafish testis and serve as an evolutionary comparison
241 point for studies of fertility in other vertebrates (Green et al. 2018, Guo et al. 2018, Jung et al. 2019, Guo et al.
242 2020, Lau et al. 2020, Yu et al. 2021, Nie et al. 2022, Garcia-Alonso et al. 2022, Liu et al. 2022, Huang et al.
243 2023).

244 245 **Methods**

246 **Zebrafish husbandry**

247 All zebrafish used in this study were housed at the University of Utah CBRZ facility. This research was
248 conducted under the approval of the Office of Institutional Animal Care and Use Committee (IACUC protocol
249 21-02017) of the University of Utah's animal care and use program.

250 **Sample preparation and single-cell RNA sequencing**

251 After euthanasia, testes were dissected and immediately placed in a dissociation solution of 440 μ L 1X Hank's
252 Balanced Salt Solution (HBSS), 50 μ L 10% pluronic F-68, and 10 μ L 0.26U/mL liberase TM. Tissue was
253 incubated at 37°C for approximately 45 minutes while rotating at 750 rpm in an Eppendorf Thermomixer. The
254 dissociation reaction was stopped by adding 1% bovine serum albumin (BSA) in 500 μ L cold HBSS. The cell
255 suspensions were filtered through a 40 μ m cell strainer. Cells were pelleted in a 4°C centrifuge at 200g for 5
256 minutes, washed with 0.5% BSA in 500 μ L cold HBSS, pelleted again and resuspended in 0.5% BSA in 500 μ L
257 cold HBSS. Single-cell RNA sequencing libraries were prepared by the University of Utah High-Throughput
258 Genomics Shared Resource using the 10X Genomics Next GEM Single Cell 3' Gene Expression Library prep
259 v3.1 with UDI. Libraries were sequenced with the NovaSeq Reagent Kit v1.5 150x150 bp Sequencing.

260 **Data processing**

261 Raw sequencing reads were processed by using 10X Genomics Cell Ranger software with the v4.3.2
262 transcriptome reference (Lawson et al. 2020). Further processing and cell clustering was conducted using
263 Seurat v3 (Stuart et al. 2019). Log normalized gene expression was used for clustering of all atlases. To
264 summarize, the barcode-feature matrices from Cell Ranger were converted to Seurat objects. Quality filtering
265 steps included removing cells with >5% mitochondrial genes. Since rates of transcription in the testes are
266 higher than any other organ, we used an interquartile range calculation to determine a reasonable range for

271 the number of genes per cell. We kept cells with >200 genes but fewer than n where n represents the largest
272 value of the third quartile of each dataset. We used the integration function in Seurat v3 to integrate data sets
273 which considered anchors determined by canonical correlation analysis. Analysis scripts, data, and a web-
274 based app for exploration (Ouyang et al. 2021), are available at
275 https://github.com/asposato/zebrafish_testis_fertility.
276

277 **Trajectory analysis with URD**

278 The fertile testis atlas Seurat object was converted to an URD object for pseudotime analysis (Farrell et al.
279 2018). We used the recommended knn of 199 (square root of total cell number). Each cell within the germ cell
280 atlas was scored according to the state of differentiation. First, we assigned two clusters with the highest *ddx4*
281 expression as the root cells (spermatogonia) and ran URD. Next, we assigned the cluster with the highest
282 *tssk6* expression (spermatozoa) as the root cells and ran URD. We took the mean of the forward pseudotime
283 and the inverse of the reverse pseudotime score to generate a spermatogenesis differentiation score for every
284 germ cell.

285 **Histology, RNAScope, and Imaging**

286 Tissue for Hematoxylin and eosin (H&E) staining was processed using standard protocols (Siegfried and
287 Steinfeld et al. 2021). Briefly, freshly dissected tissue was fixed in Davidsons' Fixative overnight at 4°C. The
288 tissue was then washed with 70% ethanol before processed for paraffin embedding. H&E staining was carried
289 out on 5 μ m thick tissue sections. Tissues used for RNAScope were fixed in 4% paraformaldehyde (PFA)
290 overnight at 4°C, sucrose treated, embedded in optimal cutting temperature compound (OCT), and
291 cryosectioned into 7 μ m thick sections. RNAScope® Multiplex Fluorescent Detection Kit v2 (Ref: 323110) and
292 RNAScope probes for *mpeg1.1* (macrophages, Ref: 536171-C2) and *acta2* (vasculature, Ref: 508581-C3)
293 were used as markers to identify cell types. Fluorescent images shown are maximum intensity projections that
294 were tiled and stitched using ZEN Black software. Images of dissected testis tissue were taken with a Leica
295 S9E stereo microscope. Histological images were captured with a Zeiss Axio Scan.Z1 Slide Scanner at 40X
296 magnification. Fluorescent images were captured with a Zeiss 880 AiryScan confocal microscope.

297 **Acknowledgements**

298 We thank all members of the Gagnon lab for helpful discussions and comments. We thank Kellee Siegfried for
299 help with the H&E staining protocol. We thank CZAR and CBRZ staff, especially Nathan Baker, for excellent
300 zebrafish care. We thank the Cell Imaging, Genomics, and Histology core facilities. This project was supported
301 by National Institutes of Health grants R35GM142950 (JAG), T32HD007491 (ALS), 1ZIAHD008997 (JAF), and
302 T32GM141848 (JMW), by a University of Utah (U of U) College of Science Graduate Innovation Fellowship
303 (ALS), by the Las Vegas Alumni Club Scholarship of the University of Utah Alumni Association (ALS), by the U
304 of U Undergraduate Research Opportunity Program (DRL), by the U of U Summer Program for Undergraduate
305 Research (HLH), and by startup funds from the Henry Eyring Center for Cell & Genome Science (JAG). This
306 research was conducted on the traditional and ancestral homeland of the Shoshone, Paiute, Goshute, and Ute
307 Tribes. We affirm and support the University of Utah's partnership with Native Nations and Urban Indian
308 communities.

311 **References**

312 Beer, R.L., Draper, B.W., 2013. Nanos3 maintains germline stem cells and expression of the conserved
313 germline stem cell gene nanos2 in the zebrafish ovary. *Developmental Biology* 374, 308–318.
314 <https://doi.org/10.1016/j.ydbio.2012.12.003>

315 Bhushan, S., Theas, M.S., Guazzone, V.A., Jacobo, P., Wang, M., Fijak, M., Meinhardt, A., Lustig, L.,
316 2020. Immune Cell Subtypes and Their Function in the Testis. *Frontiers in Immunology* 11.

317 Craig, M.P., Grajevskaia, V., Liao, H.-K., Balciuniene, J., Ekker, S.C., Park, J.-S., Essner, J.J., Balciunas,
318 D., Sumanas, S., 2015. Etv2 and fli1b function together as key regulators of vasculogenesis and
319 angiogenesis. *Arterioscler Thromb Vasc Biol* 35, 865–876.
320 <https://doi.org/10.1161/ATVBAHA.114.304768>

321 Crespo, D., Assis, L.H.C., Zhang, Y.T., Safian, D., Furmanek, T., Skaftnesmo, K.O., Norberg, B., Ge, W.,
322 Choi, Y.-C., den Broeder, M.J., Legler, J., Bogerd, J., Schulz, R.W., 2021. Insulin-like 3 affects
323 zebrafish spermatogenic cells directly and via Sertoli cells. *Commun Biol* 4, 1–13.
324 <https://doi.org/10.1038/s42003-021-01708-y>

325 de Siqueira-Silva, D.H., da Silva Rodrigues, M., Nóbrega, R.H., 2019. Testis structure, spermatogonial
326 niche and Sertoli cell efficiency in Neotropical fish. *General and Comparative Endocrinology,*
327 *Endocrinology of Neotropical Vertebrates* 273, 218–226. <https://doi.org/10.1016/j.ygcen.2018.09.004>

328 Fan, X., Cui, L., Hou, T., Xue, X., Zhang, S., Wang, Z., 2021. Stress responses of testicular development,
329 inflammatory and apoptotic activities in male zebrafish (*Danio rerio*) under starvation. *Developmental
330 & Comparative Immunology* 114, 103833. <https://doi.org/10.1016/j.dci.2020.103833>

331 Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., Schier, A.F., 2018. Single-cell
332 reconstruction of developmental trajectories during zebrafish embryogenesis. *Science* 360, eaar3131.
333 <https://doi.org/10.1126/science.aar3131>

334 Fritsch, M., Günther, S.D., Schwarzer, R., Albert, M.-C., Schorn, F., Werthenbach, J.P., Schiffmann, L.M.,
335 Stair, N., Stocks, H., Seeger, J.M., Lamkanfi, M., Krönke, M., Pasparakis, M., Kashkar, H., 2019.
336 Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. *Nature* 575, 683–687.
337 <https://doi.org/10.1038/s41586-019-1770-6>

338 Garcia-Alonso, L., Lorenzi, V., Mazzeo, C.I., Alves-Lopes, J.P., Roberts, K., Sancho-Serra, C., Engelbert,
339 J., Marečková, M., Gruhn, W.H., Botting, R.A., Li, T., Crespo, B., van Dongen, S., Kiselev, V.Y.,
340 Prigmore, E., Herbert, M., Moffett, A., Chédotal, A., Bayraktar, O.A., Surani, A., Haniffa, M., Vento-
341 Tormo, R., 2022. Single-cell roadmap of human gonadal development. *Nature* 2022 607:7919 607,
342 540–547. <https://doi.org/10.1038/s41586-022-04918-4>

343 García-López, A., de Jonge, H., Nóbrega, R.H., de Waal, P.P., van Dijk, W., Hemrika, W., Taranger, G.L.,
344 Bogerd, J., Schulz, R.W., 2010. Studies in zebrafish reveal unusual cellular expression patterns of
345 gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional
346 differentiation of the gonadotropins. *Endocrinology* 151, 2349–2360. [https://doi.org/10.1210/en.2009-1227](https://doi.org/10.1210/en.2009-
347 1227)

348 Gautier, A., Sohm, F., Joly, J.-S., Le Gac, F., Lareyre, J.-J., 2011. The Proximal Promoter Region of the
349 Zebrafish gsdf Gene Is Sufficient to Mimic the Spatio-Temporal Expression Pattern of the
350 Endogenous Gene in Sertoli and Granulosa Cells1. *Biology of Reproduction* 85, 1240–1251.
351 <https://doi.org/10.1095/biolreprod.111.091892>

352 Georgijevic, S., Subramanian, Y., Rollins, E.-L., Starovic-Subota, O., Tang, A.C.Y., Childs, S.J., 2007.
353 Spatiotemporal expression of smooth muscle markers in developing zebrafish gut. *Developmental
354 Dynamics* 236, 1623–1632. <https://doi.org/10.1002/dvdy.21165>

355 Green, C.D., Ma, Q., Manske, G.L., Shami, A.N., Zheng, X., Marini, S., Moritz, L., Sultan, C., Gurczynski,
356 S.J., Moore, B.B., Tallquist, M.D., Li, J.Z., Hammoud, S.S., 2018. A Comprehensive Roadmap of
357 Murine Spermatogenesis Defined by Single-Cell RNA-Seq. *Developmental cell* 46, 651-667.e10.
358 <https://doi.org/10.1016/j.devcel.2018.07.025>

359 Guo, J., Grow, E.J., Mlcochova, H., Maher, G.J., Lindskog, C., Nie, X., Guo, Y., Takei, Y., Yun, J., Cai, L.,
360 Kim, R., Carrell, D.T., Goriely, A., Hotaling, J.M., Cairns, B.R., 2018. The adult human testis
361 transcriptional cell atlas. *Cell Research* 28, 1141–1157. <https://doi.org/10.1038/s41422-018-0099-2>

362 Guo, J., Nie, X., Giebler, M., Mlcochova, H., Wang, Y., Grow, E.J., Kim, R., Tharmalingam, M., Matilonyte,
363 G., Lindskog, C., 2020. The dynamic transcriptional cell atlas of testis development during human
364 puberty. *Cell stem cell* 26, 262–276.

365 Haimbaugh, A., Akemann, C., Meyer, D., Gurdziel, K., Baker, T.R., 2022. Insight into 2,3,7,8-
366 tetrachlorodibenzo-p-dioxin-induced disruption of zebrafish spermatogenesis via single cell RNA-seq.
367 *PNAS Nexus* 1, pgac060. <https://doi.org/10.1093/pnasnexus/pgac060>

368 Hambarde, S., Tsai, C.-L., Pandita, R.K., Bacolla, A., Maitra, A., Charaka, V., Hunt, C.R., Kumar, R.,
369 Limbo, O., Le Meur, R., Chazin, W.J., Tsutakawa, S., Russell, P., Schlacher, K., Pandita, T.K., Tainer,
370 J.A., 2021. EXO5-DNA Structure and BLM Interactions Direct DNA Resection Critical for ATR-
371 dependent Replication Restart. *Mol Cell* 81, 2989-3006.e9.
372 <https://doi.org/10.1016/j.molcel.2021.05.027>

373 Haupt, Y., Barak, Y., Oren, M., 1996. Cell type-specific inhibition of p53-mediated apoptosis by mdm2.
374 The *EMBO Journal* 15, 1596–1606. <https://doi.org/10.1002/j.1460-2075.1996.tb00504.x>

375 Hikim, A.P.S., Lue, Y., Yamamoto, C.M., Vera, Y., Rodriguez, S., Yen, P.H., Soeng, K., Wang, C.,
376 Swerdlow, R.S., 2003. Key Apoptotic Pathways for Heat-Induced Programmed Germ Cell Death in the
377 Testis. *Endocrinology* 144, 3167–3175. <https://doi.org/10.1210/en.2003-0175>

378 Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D.V.,
379 Blaser, H., Raz, E., Moens, C.B., Plasterk, R.H.A., Hannon, G.J., Draper, B.W., Ketting, R.F., 2007. A
380 Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. *Cell* 129,
381 69–82. <https://doi.org/10.1016/J.CELL.2007.03.026>

382 Huang, L., Zhang, J., Zhang, P., Huang, X., Yang, W., Liu, R., Sun, Q., Lu, Y., Zhang, M., Fu, Q., 2023.
383 Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo
384 spermatogenesis. *iScience* 26, 105733. <https://doi.org/10.1016/j.isci.2022.105733>

385 Järveläinen, H., Sainio, A., Wight, T.N., 2015. Pivotal role for decorin in angiogenesis. *Matrix Biology* 43,
386 15–26. <https://doi.org/10.1016/j.matbio.2015.01.023>

387 Kalev-Zylinska, M.L., Horsfield, J.A., Flores, M.V.C., Postlethwait, J.H., Chau, J.Y.M., Cattin, P.M., Vitas,
388 M.R., Crosier, P.S., Crosier, K.E., 2003. Runx3 is required for hematopoietic development in
389 zebrafish. *Developmental Dynamics* 228, 323–336. <https://doi.org/10.1002/dvdy.10388>

390 Kuil, L.E., Oosterhof, N., Ferrero, G., Mikulášová, T., Hason, M., Dekker, J., Rovira, M., van der Linde,
391 H.C., van Strien, P.M., de Pater, E., Schaaf, G., Bindels, E.M., Wittamer, V., van Ham, T.J., 2020.
392 Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-
393 independent metaphocytes. *eLife* 9, e53403. <https://doi.org/10.7554/eLife.53403>

394 Lau, X., Munusamy, P., Ng, M.J., Sangrithi, M., 2020. Single-Cell RNA Sequencing of the Cynomolgus
395 Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis.
396 Developmental Cell 54, 548-566.e7. <https://doi.org/10.1016/j.devcel.2020.07.018>

397 Lawson, N.D., Li, R., Shin, M., Grosse, A., Onur, Y.M.S., Stone, O.A., Kucukural, A., Zhu, L.J., 2020. An
398 improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-
399 specific genes. eLife 9, 1–76. <https://doi.org/10.7554/ELIFE.55792>

400 Leal, M.C., Cardoso, E.R., Nô, R.H., Batlouni, S.R., Bogerd, J., França, L.R., Diger, R., Schulz, W., 2009.
401 Histological and Stereological Evaluation of Zebrafish (*Danio rerio*) Spermatogenesis with an
402 Emphasis on Spermatogonial Generations 1. BIOLOGY OF REPRODUCTION 81, 177–187.
403 <https://doi.org/10.1095/biolreprod.109.076299>

404 Lee, S.L.J., Horsfield, J.A., Black, M.A., Rutherford, K., Fisher, A., Gemmell, N.J., 2017. Histological and
405 transcriptomic effects of 17 α -methyltestosterone on zebrafish gonad development. BMC Genomics
406 18, 557. <https://doi.org/10.1186/s12864-017-3915-z>

407 Li, X., Zhang, F., Wu, N., Ye, D., Wang, Y., Zhang, X., Sun, Y., Zhang, Y.-A., 2020. A critical role of
408 foxp3a-positive regulatory T cells in maintaining immune homeostasis in zebrafish testis development.
409 Journal of Genetics and Genomics 47, 547–561. <https://doi.org/10.1016/j.jgg.2020.07.006>

410 Li, Y., Sosnik, J., Brassard, L., Reese, M., Spiridonov, N.A., Bates, T.C., Johnson, G.R., Anguita, J.,
411 Visconti, P.E., Salicioni, A.M., 2011. Expression and localization of five members of the testis-specific
412 serine kinase (Tssk) family in mouse and human sperm and testis. Mol Hum Reprod 17, 42–56.
413 <https://doi.org/10.1093/molehr/gaq071>

414 Liu, Y., Kossack, M.E., McFaul, M.E., Christensen, L.N., Siebert, S., Wyatt, S.R., Kamei, C.N., Horst, S.,
415 Arroyo, N., Drummond, I.A., 2022. Single-cell transcriptome reveals insights into the development and
416 function of the zebrafish ovary. Elife 11, e76014.

417 Maack, G., Segner, H., 2003. Morphological development of the gonads in zebrafish. Journal of Fish
418 Biology 62, 895–906. <https://doi.org/10.1046/j.1095-8649.2003.00074.x>

419 Mathias, J.R., Perrin, B.J., Liu, T.-X., Kanki, J., Look, A.T., Huttenlocher, A., 2006. Resolution of
420 inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80, 1281–
421 1288. <https://doi.org/10.1189/jlb.0506346>

422 Matzkin, M.E., Miquet, J.G., Fang, Y., Hill, C.M., Turyn, D., Calandra, R.S., Bartke, A., Frungieri, M.B.,
423 2016. Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice
424 testes. Aging (Albany NY) 8, 95–110.

425 Meijer, A.H., van der Sar, A.M., Cunha, C., Lamers, G.E.M., Laplante, M.A., Kikuta, H., Bitter, W., Becker,
426 T.S., Spaink, H.P., 2008. Identification and real-time imaging of a myc-expressing neutrophil
427 population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev Comp
428 Immunol 32, 36–49. <https://doi.org/10.1016/j.dci.2007.04.003>

429 Melé, M., Ferreira, P.G., Reverter, F., DeLuca, D.S., Monlong, J., Sammeth, M., Young, T.R., Goldmann,
430 J.M., Pervouchine, D.D., Sullivan, T.J., Johnson, R., Segrè, A.V., Djebali, S., Niarchou, A.,
431 Consortium, T.Gte., Wright, F.A., Lappalainen, T., Calvo, M., Getz, G., Dermitzakis, E.T., Ardlie, K.G.,
432 Guigó, R., 2015. The human transcriptome across tissues and individuals. Science 348, 660–665.
433 <https://doi.org/10.1126/science.aaa0355>

434 Nie, X., Munyoki, S.K., Sukhwani, M., Schmid, N., Missel, A., Emery, B.R., DonorConnect, Stukenborg, J.-
435 B., Mayerhofer, A., Orwig, K.E., Aston, K.I., Hotaling, J.M., Cairns, B.R., Guo, J., 2022. Single-cell
436 analysis of human testis aging and correlation with elevated body mass index. *Developmental Cell* 57,
437 1160-1176.e5. <https://doi.org/10.1016/j.devcel.2022.04.004>

438 Ouyang, J.F., Kamaraj, U.S., Cao, E.Y., Rackham, O.J.L., 2021. ShinyCell: simple and sharable
439 visualization of single-cell gene expression data. *Bioinformatics* 37, 3374–3376.
440 <https://doi.org/10.1093/bioinformatics/btab209>

441 Ozaki, Y., Saito, K., Shinya, M., Kawasaki, T., Sakai, N., 2011. Evaluation of Sycp3, Plzf and cyclin B3
442 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. *Gene*
443 *Expression Patterns* 11, 309–315. <https://doi.org/10.1016/j.gep.2011.03.002>

444 Pereiro, P., Varela, M., Diaz-Rosales, P., Romero, A., Dios, S., Figueiras, A., Novoa, B., 2015. Zebrafish
445 Nk-lysins: First insights about their cellular and functional diversification. *Developmental &*
446 *Comparative Immunology* 51, 148–159. <https://doi.org/10.1016/j.dci.2015.03.009>

447 Qian, P., Kang, J., Liu, D., Xie, G., 2022. Single Cell Transcriptome Sequencing of Zebrafish Testis
448 Revealed Novel Spermatogenesis Marker Genes and Stronger Leydig-Germ Cell Paracrine
449 Interactions. *Frontiers in Genetics* 13.

450 Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. *Nature Reviews Genetics* 4,
451 690–700. <https://doi.org/10.1038/nrg1154>

452 Roessler, S., Györy, I., Imhof, S., Spivakov, M., Williams, R.R., Busslinger, M., Fisher, A.G., Grosschedl,
453 R., 2007. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and
454 Pax5. *Mol Cell Biol* 27, 579–594. <https://doi.org/10.1128/MCB.01192-06>

455 Rougeot, J., Torracca, V., Zakrzewska, A., Kanwal, Z., Jansen, H.J., Sommer, F., Spaink, H.P., Meijer,
456 A.H., 2019. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11
457 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection. *Frontiers in*
458 *Immunology* 10.

459 Santoro, M.M., Pesce, G., Stainier, D.Y., 2009. Characterization of vascular mural cells during zebrafish
460 development. *Mech Dev* 126, 638–649. <https://doi.org/10.1016/j.mod.2009.06.1080>

461 Schulz, R.W., de França, L.R., Lareyre, J.-J., LeGac, F., Chiarini-Garcia, H., Nobrega, R.H., Miura, T.,
462 2010. Spermatogenesis in fish. *General and Comparative Endocrinology, Fish Reproduction* 165,
463 390–411. <https://doi.org/10.1016/j.ygcn.2009.02.013>

464 Schulz, R.W., Menting, S., Bogerd, J., França, L.R., Vilela, D.A.R., Godinho, H.P., 2005. Sertoli Cell
465 Proliferation in the Adult Testis—Evidence from Two Fish Species Belonging to Different Orders1.
466 *Biology of Reproduction* 73, 891–898. <https://doi.org/10.1095/biolreprod.105.039891>

467 Siegfried, K.R., Steinfeld, J.S., 2021. Histological analysis of gonads in zebrafish. *Germline Development*
468 *in the Zebrafish: Methods and Protocols* 253–263.

469 Song, H.-D., Sun, X.-J., Deng, M., Zhang, G.-W., Zhou, Y., Wu, X.-Y., Sheng, Y., Chen, Y., Ruan, Z.,
470 Jiang, C.-L., Fan, H.-Y., Zon, L.I., Kanki, J.P., Liu, T.X., Look, A.T., Chen, Z., 2004. Hematopoietic
471 gene expression profile in zebrafish kidney marrow. *Proceedings of the National Academy of*
472 *Sciences* 101, 16240–16245. <https://doi.org/10.1073/pnas.0407241101>

473 Soumillon, M., Necsulea, A., Weier, M., Brawand, D., Zhang, X., Gu, H., Barthes, P., Kokkinaki, M., Nef,
474 S., Gnirke, A., 2013. Cellular source and mechanisms of high transcriptome complexity in the
475 mammalian testis. *Cell reports* 3, 2179–2190.

476 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M.,
477 Smibert, P., Satija, R., 2019. Comprehensive Integration of Single-Cell Data. *Cell* 177, 1888–
478 1902.e21. <https://doi.org/10.1016/j.cell.2019.05.031>

479 Tomasini, R., Seux, M., Nowak, J., Bontemps, C., Carrier, A., Dagorn, J.-C., Pébusque, M.-J., Iovanna,
480 J.L., Dusetti, N.J., 2005. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell
481 death by modulating p73 transcriptional activity. *Oncogene* 24, 8093–8104.
482 <https://doi.org/10.1038/sj.onc.1208951>

483 Uribe, M.C., Grier, H.J., Mejía-Roa, V., 2014. Comparative testicular structure and spermatogenesis in
484 bony fishes. *Spermatogenesis* 4, e983400. <https://doi.org/10.4161/21565562.2014.983400>

485 Walker, W.H., 2010. Non-classical actions of testosterone and spermatogenesis. *Philos Trans R Soc Lond*
486 *B Biol Sci* 365, 1557–1569. <https://doi.org/10.1098/rstb.2009.0258>

487 Wang, X.G., Bartfai, R., Sleptsova-Freidrich, I., Orban, L., 2007. The timing and extent of ‘juvenile ovary’
488 phase are highly variable during zebrafish testis differentiation. *Journal of Fish Biology* 70, 33–44.
489 <https://doi.org/10.1111/j.1095-8649.2007.01363.x>

490 Webster, K.A., Schach, U., Ordaz, A., Steinfeld, J.S., Draper, B.W., Siegfried, K.R., 2017. Dmrt1 is
491 necessary for male sexual development in zebrafish. *Developmental Biology* 422, 33–46.
492 <https://doi.org/10.1016/j.ydbio.2016.12.008>

493 Wu, H., Chen, Y., Miao, S., Zhang, C., Zong, S., Koide, S.S., Wang, L., 2010. Sperm associated antigen 8
494 (SPAG8), a novel regulator of activator of CREM in testis during spermatogenesis. *FEBS Letters* 584,
495 2807–2815. <https://doi.org/10.1016/j.febslet.2010.05.016>

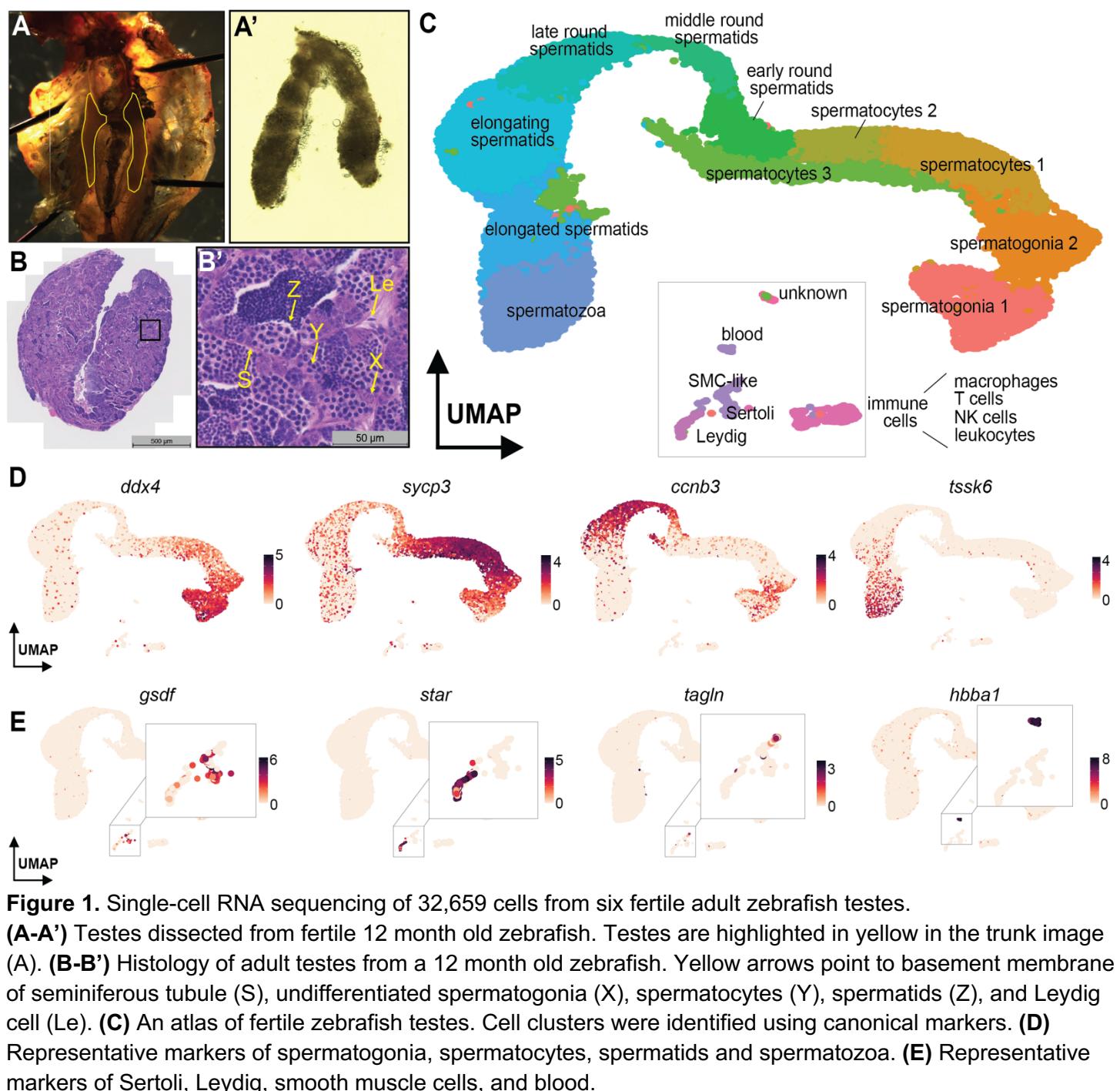
496 Xia, B., Yan, Y., Baron, M., Wagner, F., Barkley, D., Chiodin, M., Kim, S.Y., Keefe, D.L., Alukal, J.P.,
497 Boeke, J.D., Yanai, I., 2020. Widespread Transcriptional Scanning in the Testis Modulates Gene
498 Evolution Rates. *Cell* 180, 248–262.e21. <https://doi.org/10.1016/j.cell.2019.12.015>

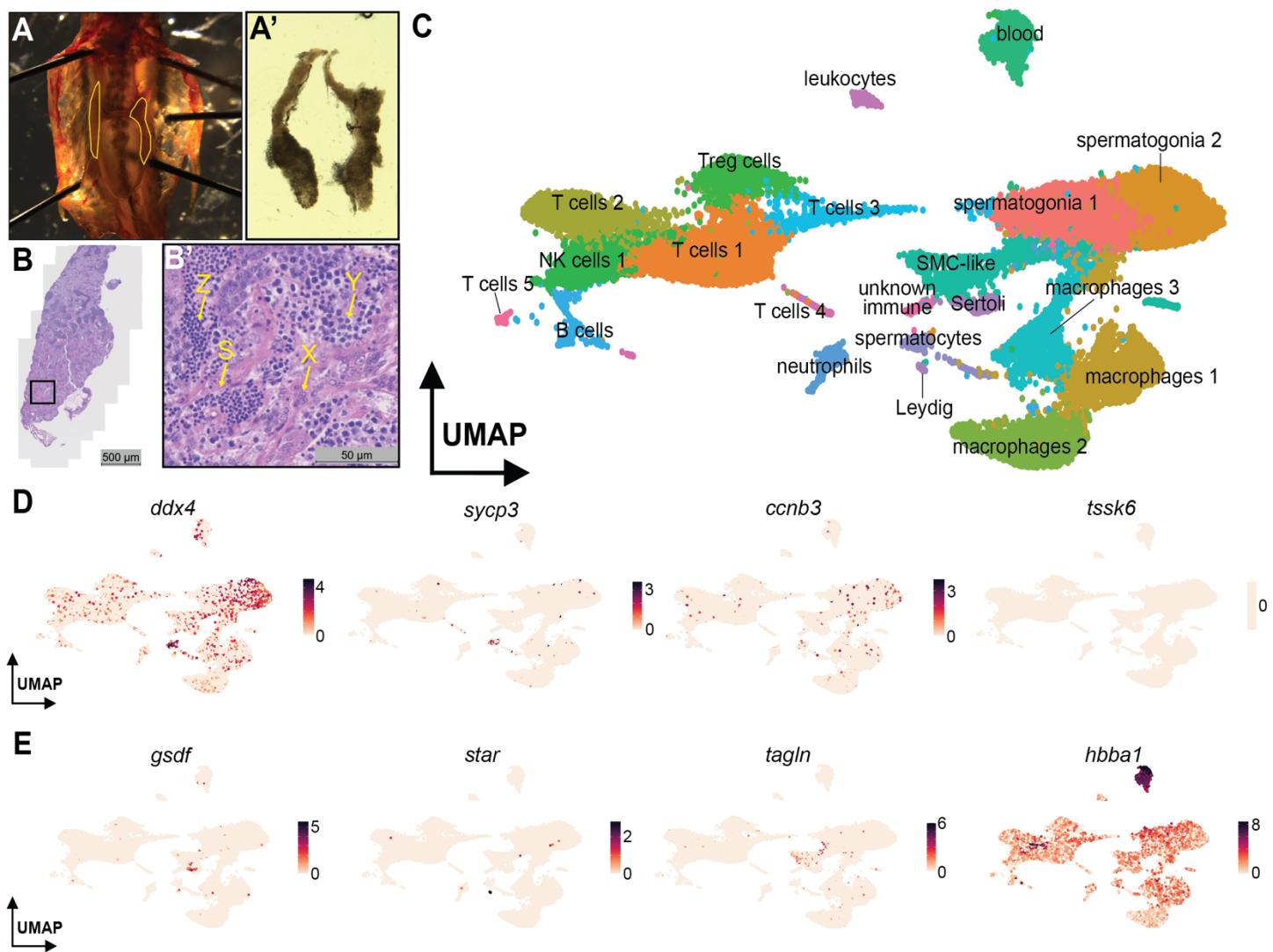
499 Xie, H., Kang, Y., Wang, S., Zheng, P., Chen, Z., Roy, S., Zhao, C., 2020. E2f5 is a versatile
500 transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish.
501 *PLOS Genetics* 16, e1008655–e1008655. <https://doi.org/10.1371/JOURNAL.PGEN.1008655>

502 Ye, D., Liu, T., Li, Y., Wang, Y., Hu, W., Zhu, Z., Sun, Y., 2023. Identification of fish spermatogenic cells
503 through high-throughput immunofluorescence against testis with an antibody set. *Frontiers in*
504 *Endocrinology* 14, 1–14. <https://doi.org/10.3389/fendo.2023.1044318>

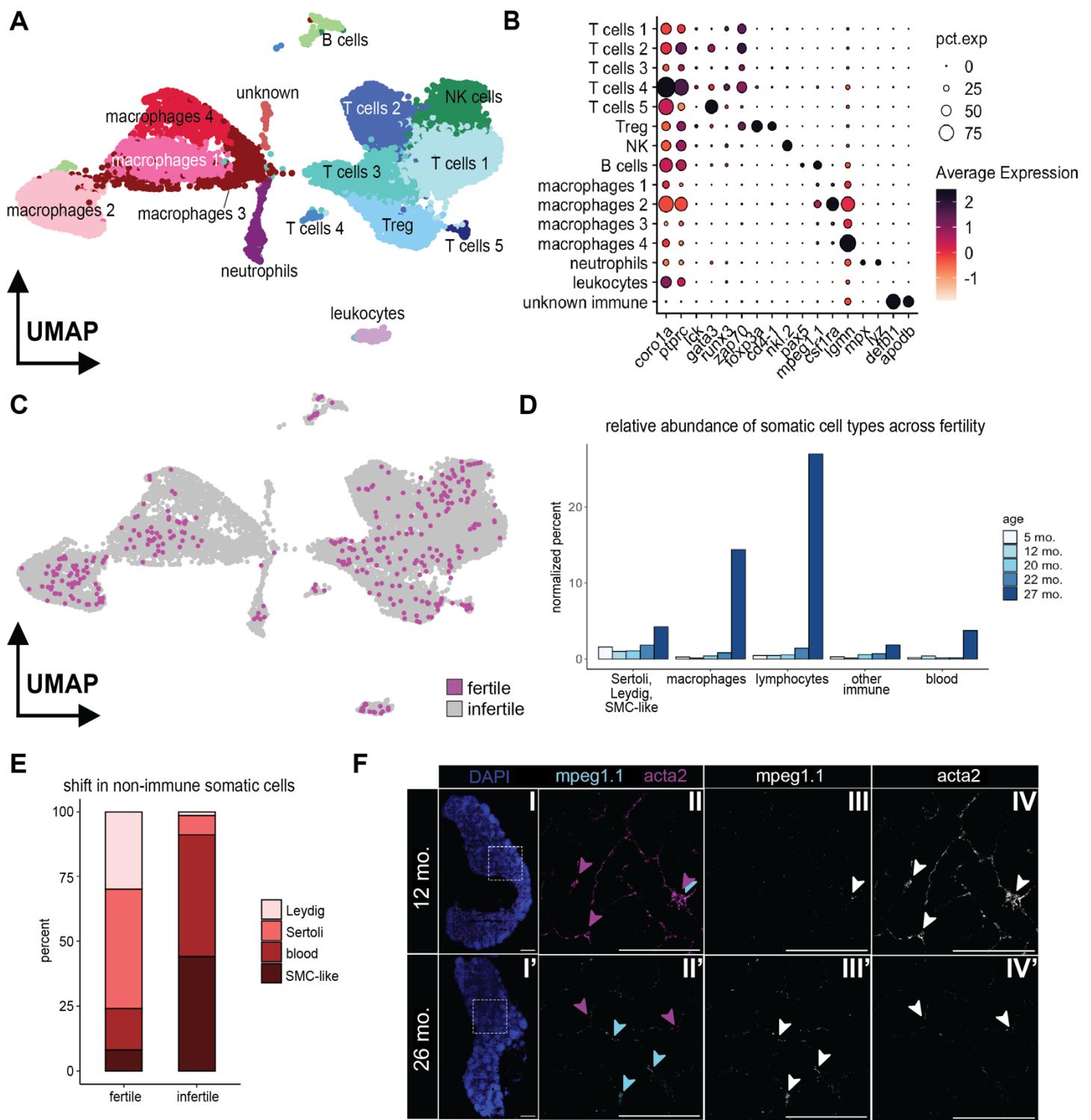
505 Yoon, C., Kawakami, K., Hopkins, N., 1997. Zebrafish vasa homologue RNA is localized to the cleavage
506 planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. *Development*
507 124, 3157–3165. <https://doi.org/10.1242/dev.124.16.3157>

508 Yoon, S., Mitra, S., Wyse, C., Alnabulsi, A., Zou, J., Weerdenburg, E.M., Sar, A.M. van der, Wang, D.,
509 Secombes, C.J., Bird, S., 2015. First Demonstration of Antigen Induced Cytokine Expression by CD4-
510 1+ Lymphocytes in a Poikilotherm: Studies in Zebrafish (*Danio rerio*). *PLOS ONE* 10, e0126378.
511 <https://doi.org/10.1371/journal.pone.0126378>

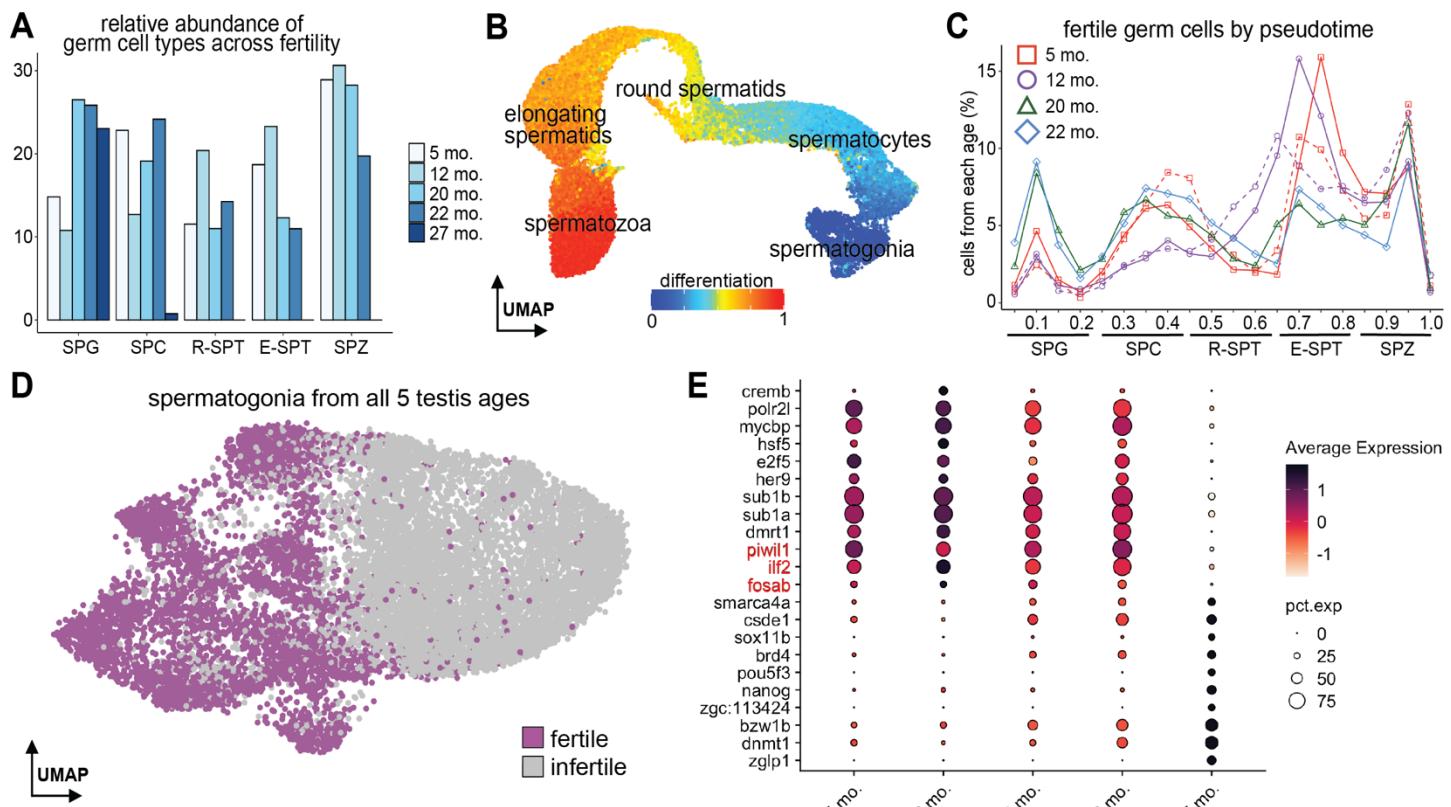

512 Yu, X.-W., Li, T.-T., Du, X.-M., Shen, Q.-Y., Zhang, M.-F., Wei, Y.-D., Yang, D.-H., Xu, W.-J., Chen, W.-B.,
513 Bai, C.-L., Li, X.-L., Li, G.-P., Li, N., Peng, S., Liao, M.-Z., Hua, J.-L., 2021. Single-cell RNA
514 sequencing reveals atlas of dairy goat testis cells. *Zool Res* 42, 401–405.
515 <https://doi.org/10.24272/j.issn.2095-8137.2020.373>


516 Zhang, X., Tang, N., Hadden, T.J., Rishi, A.K., 2011. Akt, FoxO and regulation of apoptosis. *Biochim
517 Biophys Acta* 1813, 1978–1986. <https://doi.org/10.1016/j.bbamcr.2011.03.010>

518 Zhang, Y., Li, Z., Nie, Y., Ou, G., Chen, C., Cai, S., Liu, L., Yang, P., 2020. Sexually dimorphic
519 reproductive defects in zebrafish with spo11 mutation. *Aquaculture Research* 51, 4916–4924.
520 <https://doi.org/10.1111/are.14829>


521
522

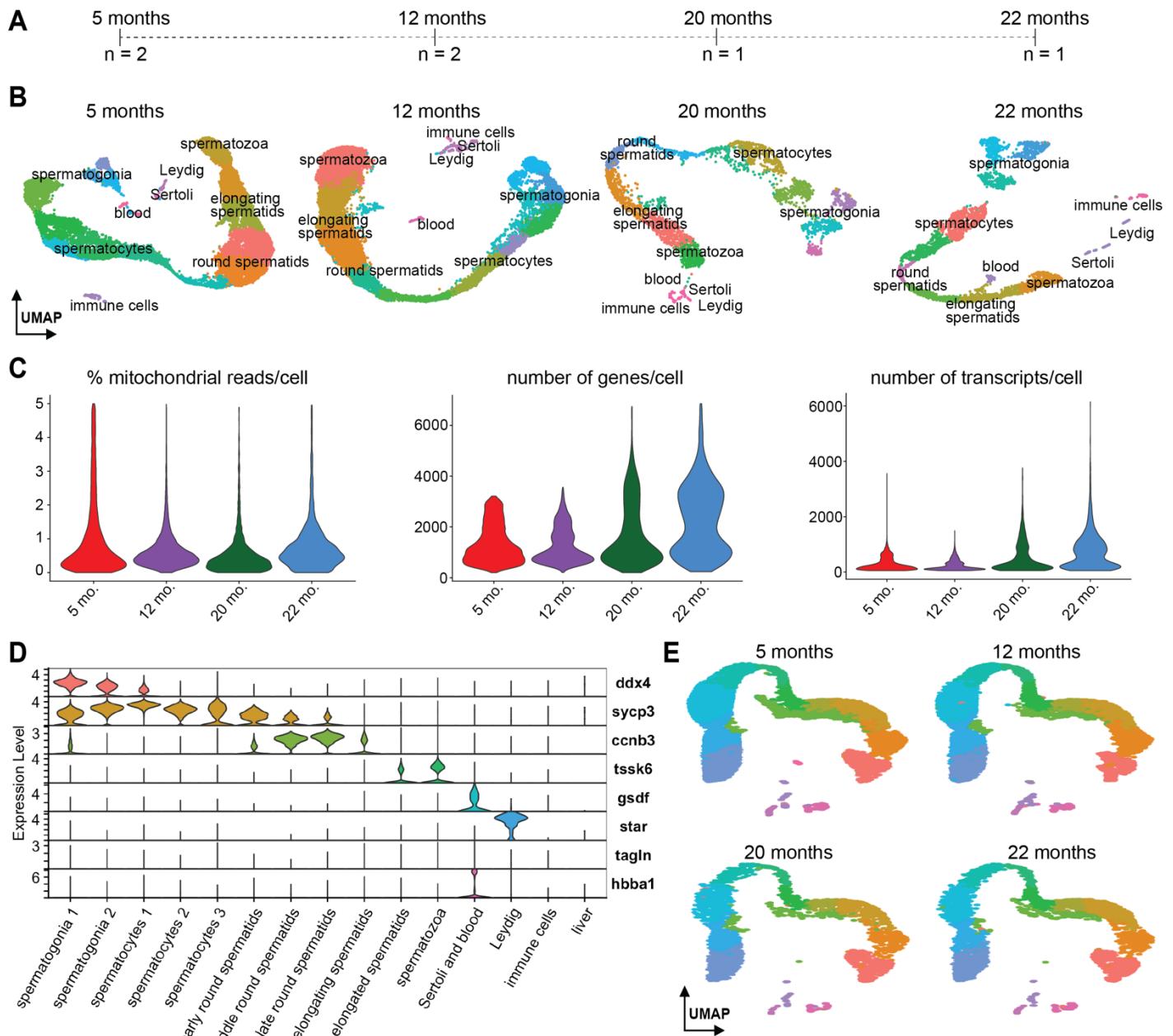
Figures



531
532
533 **Figure 2.** Single-cell RNA sequencing of 24,469 cells from two infertile 27 month old adult zebrafish testes.
534 (A-A') Testes dissected from infertile 26 month old zebrafish. Testes are highlighted in yellow in the trunk
535 image. (B-B') Histology of adult testes from a 26 month old zebrafish. Yellow arrows point to basement
536 membrane of seminiferous tubule (S), undifferentiated spermatogonia (X), spermatocytes (Y) and spermatids
537 (Z). (C) An atlas of infertile zebrafish testes. Cell clusters were identified using canonical markers. (D)
538 Representative markers of spermatogonia and spermatocytes. Cyclin B3 (*ccnb3*) is expressed by round
539 spermatids and 16-cell stage spermatogonial cysts. (E) Representative markers of Sertoli, Leydig, smooth
540 muscle cells, and blood.
541
542

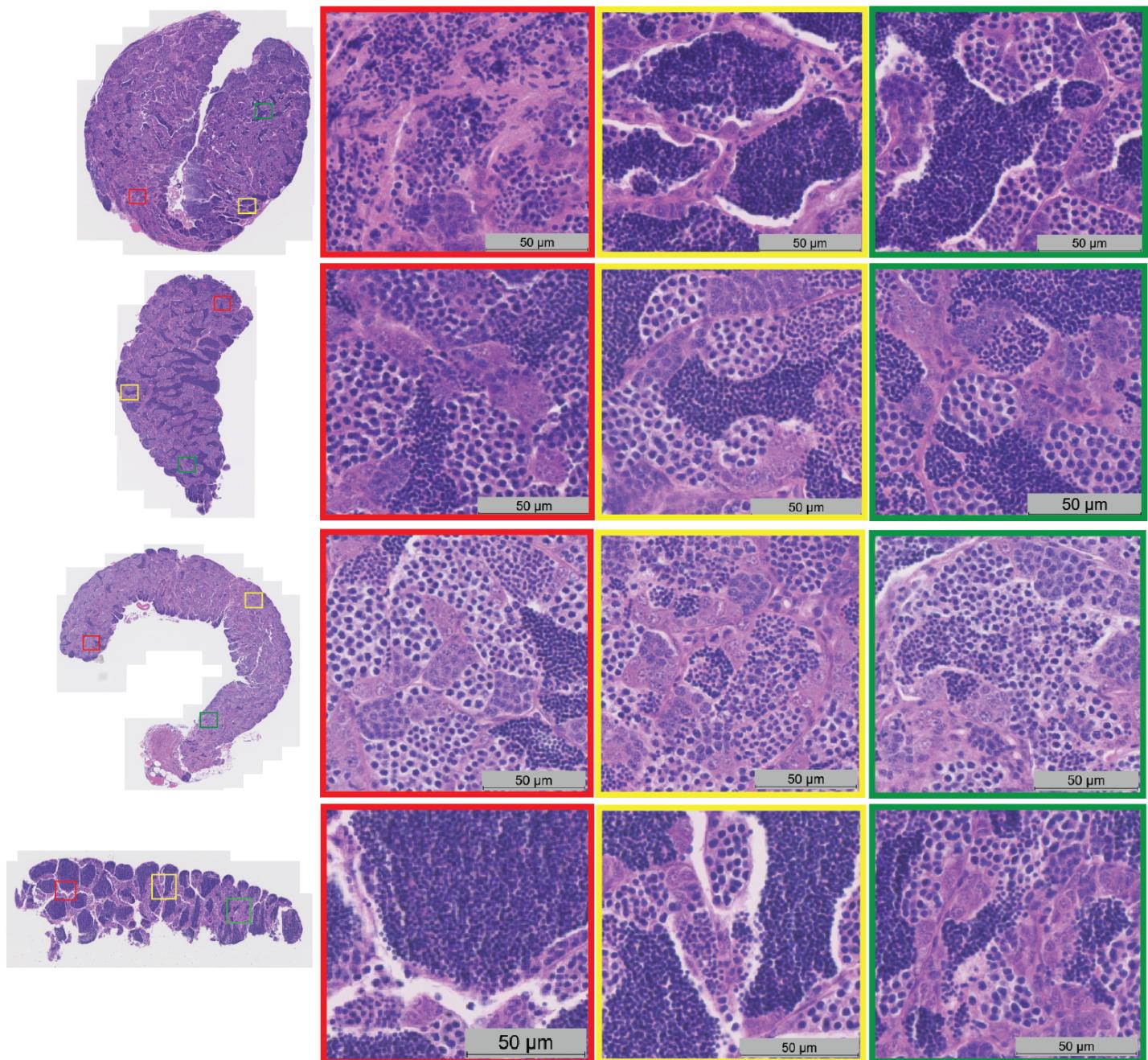
543
544 **Figure 3.** Reclustered immune cells from fertile and infertile atlases.
545

546 **(A)** The infertile testes are enriched for immune cells. Particularly, large populations of T cells and
547 macrophages were detected. **(B)** Canonical marker genes were used to identify each cell type. **(C)** Cells from
548 fertile animals highlighted on immune cells atlas. **(D)** Relative abundance of somatic cell types from each
549 sample age. **(E)** Proportions of Sertoli, Leydig, blood and smooth muscle in fertile and infertile testes. **(F)**
550 RNAscope of smooth muscle marker *acta2* and macrophage marker *mpeg1.1* in fertile and infertile testes. (I-I')
551 DAPI staining of testis lobes from 12 mo. and 26 mo. zebrafish. Square inset used for images in panels II-IV.
552 (I-II') Merge of *acta2* (magenta) and *mpeg1.1* (cyan) markers. (III-III') Macrophage marker *mpeg1.1*. (IV-IV')
Smooth muscle marker *acta2*. Arrowheads highlight examples of fluorescence.

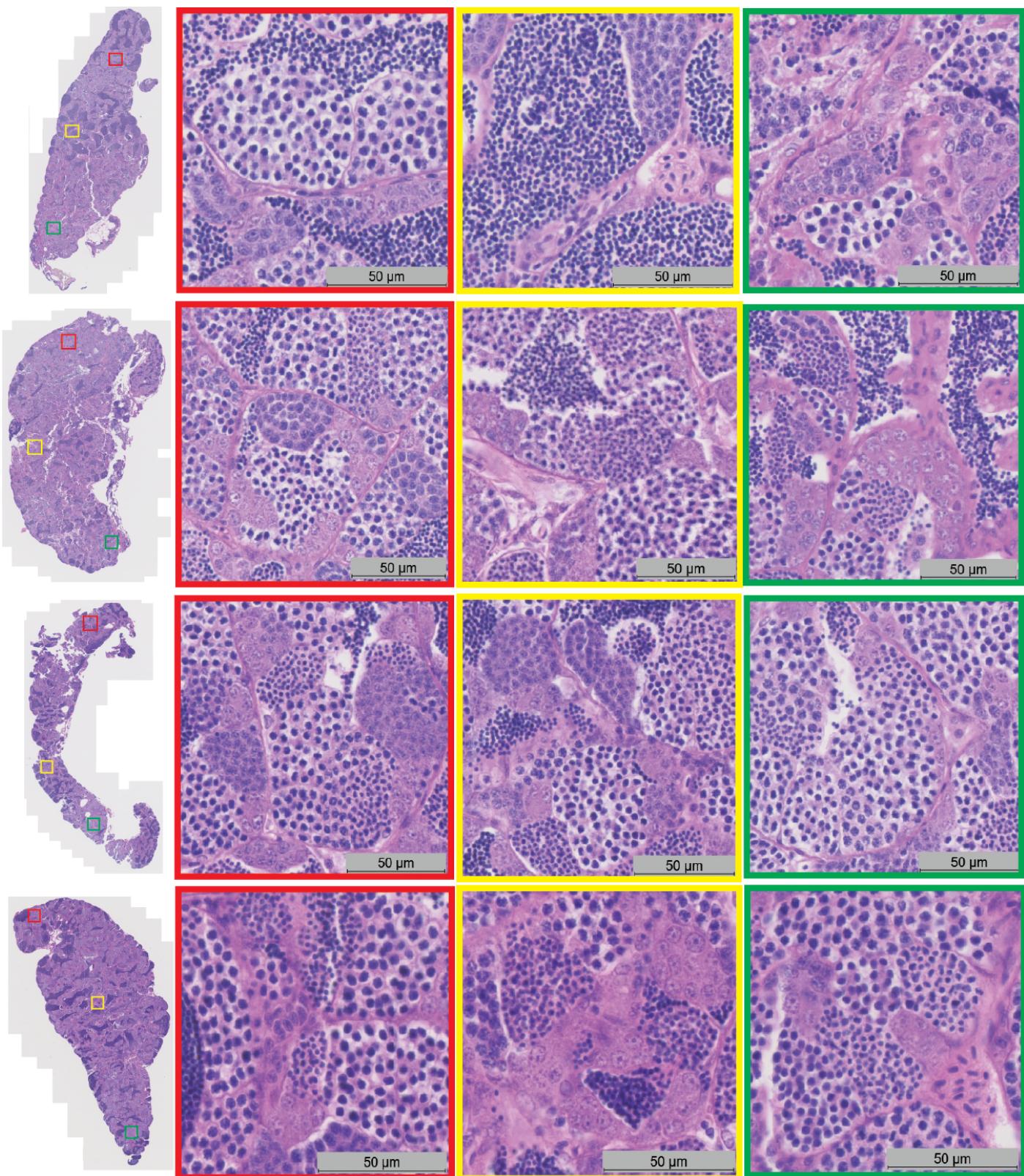


cell type	marker	reference	DOI
germ cells	<i>ddx4</i>	Yoon et al., 1997	10.1242/dev.124.16.3157
	<i>piwil1</i>	Houwing et al., 2007	10.1016/j.cell.2007.03.026
	<i>dmrt1</i>	Webster et al., 2017	10.1016/j.ydbio.2016.12.008
spermatogonia	<i>sumo3b</i>	Qian et al., 2022	10.3389/fgene.2022.851719
	<i>pcna</i>	Ye et al., 2023	10.3389/fendo.2023.1044318
	<i>hist1h4l</i>	Qian et al., 2022	10.3389/fgene.2022.851719
	<i>ccnb3</i>	Ozaki et al., 2011	10.1016/j.gep.2011.03.002
spermatocytes	<i>sycp3</i>	Ozaki et al., 2011	10.1016/j.gep.2011.03.002
	<i>dmc1</i>	Beer & Draper, 2012	10.1016/j.ydbio.2012.12.003
	<i>spo11</i>	Zhang et al., 2020	10.1111/are.14829
	<i>e2f5</i>	Xie et al., 2020	10.1371/journal.pgen.1008655
spermatids	<i>ccnb3</i>	Ozaki et al., 2011	10.1016/j.gep.2011.03.002
	<i>larp1b</i>	Qian et al., 2022	10.3389/fgene.2022.851719
	<i>edrf1</i>	Qian et al., 2022	10.3389/fgene.2022.851719
spermatozoa	<i>tssk6</i>	Li. et al., 2011	10.1093/molehr/gaq071
	<i>spag8</i>	Wu et al., 2010	10.1016/j.febslet.2010.05.016
Sertoli	<i>gsdf</i>	Gautier et al., 2011	10.1095/biolreprod.111.091892
	<i>krt18a.1</i>	Qian et al., 2022	10.3389/fgene.2022.851719
Leydig	<i>star</i>	Gautier et al., 2011	10.1095/biolreprod.111.091892
	<i>cyp17a2</i>	Gautier et al., 2011	10.1095/biolreprod.111.091892
SMC-like	<i>tagln</i>	Santoro et al., 2009	10.1016/j.mod.2009.06.1080
	<i>acta2</i>	Georgijevic et al., 2007	10.1002/dvdy.21165
	<i>dcn</i>	Järveläinen et al., 2015	10.1016/j.matbio.2015.01.023
blood	<i>hbba1</i>	Qian et al., 2022	10.3389/fgene.2022.851719
	<i>fli1b</i>	Craig et al. 2015	10.1161/ATVBAHA.114.304768
leukocytes	<i>coro1a</i>	Song et al., 2004	10.1073/pnas.0407241101
	<i>ptprc</i>	Rougeot et al., 2019	10.3389/fimmu.2019.00832
macrophages	<i>mpeg1.1</i>	Kuil et al., 2020	10.7554/eLife.53403
	<i>csf1ra</i>	Kuil et al., 2020	10.7554/eLife.53403
T cells	<i>zap70</i>	Yoon et al., 2015	10.1371/journal.pone.0126378
	<i>cd4-1</i>	Yoon et al., 2015	10.1371/journal.pone.0126378
	<i>runx3</i>	Kalev-Zylinska et al., 2003	10.1002/dvdy.10388
	<i>foxp3a</i>	Li. et al., 2020	10.1016/j.jgg.2020.07.006
neutrophils	<i>mpx</i>	Mathias et al., 2006	10.1189/jlb.0506346
	<i>lyz</i>	Meijer et al., 2007	10.1016/j.dci.2007.04.003
B cells	<i>pax5</i>	Roessler et al., 2007	10.1128/MCB.01192-06
NK cells	<i>nkl.2</i>	Pereiro et al., 2015	10.1016/j.dci.2015.03.009

562 **Table 1.** A subset of marker genes used to identify testicular cell types.


563

564



565
566 **Supplemental Figure 1. Fertile atlas.**

567 **(A)** Ages and sample sizes of testes comprising fertile atlas. **(B)** Individual UMAPs of each age comprising the
568 fertile atlas. **(C)** Violin plots show the percent mitochondrial reads, number of genes, and number of transcripts
569 per cell. **(D)** Violin plots of the marker genes used in Figure 1D-E. **(E)** Fertile atlas split by sample age.

572
573 **Supplemental Figure 2.** Histology of fertile zebrafish testes.
574
575

576
577 **Supplemental Figure 3.** Histology of infertile zebrafish testes.

578
579
580
581
582
583

A

The figure consists of three violin plots arranged in a grid. The top row contains two plots: '% mitochondrial reads/cell' on the left and 'number of genes/cell' on the right. The bottom row contains one plot: 'number of transcripts/cell'. Each plot has five violin shapes, one for each cell type: germ cells (red), Sertoli & Leydig (olive green), SMC-like (teal), blood (blue), and immune (purple). The y-axis for '% mitochondrial reads/cell' ranges from 0 to 5. The y-axis for 'number of genes/cell' ranges from 0 to 3000. The y-axis for 'number of transcripts/cell' ranges from 0 to 30000. The 'blood' cell type shows significantly lower values in all three metrics compared to the other four cell types.

% mitochondrial reads/cell

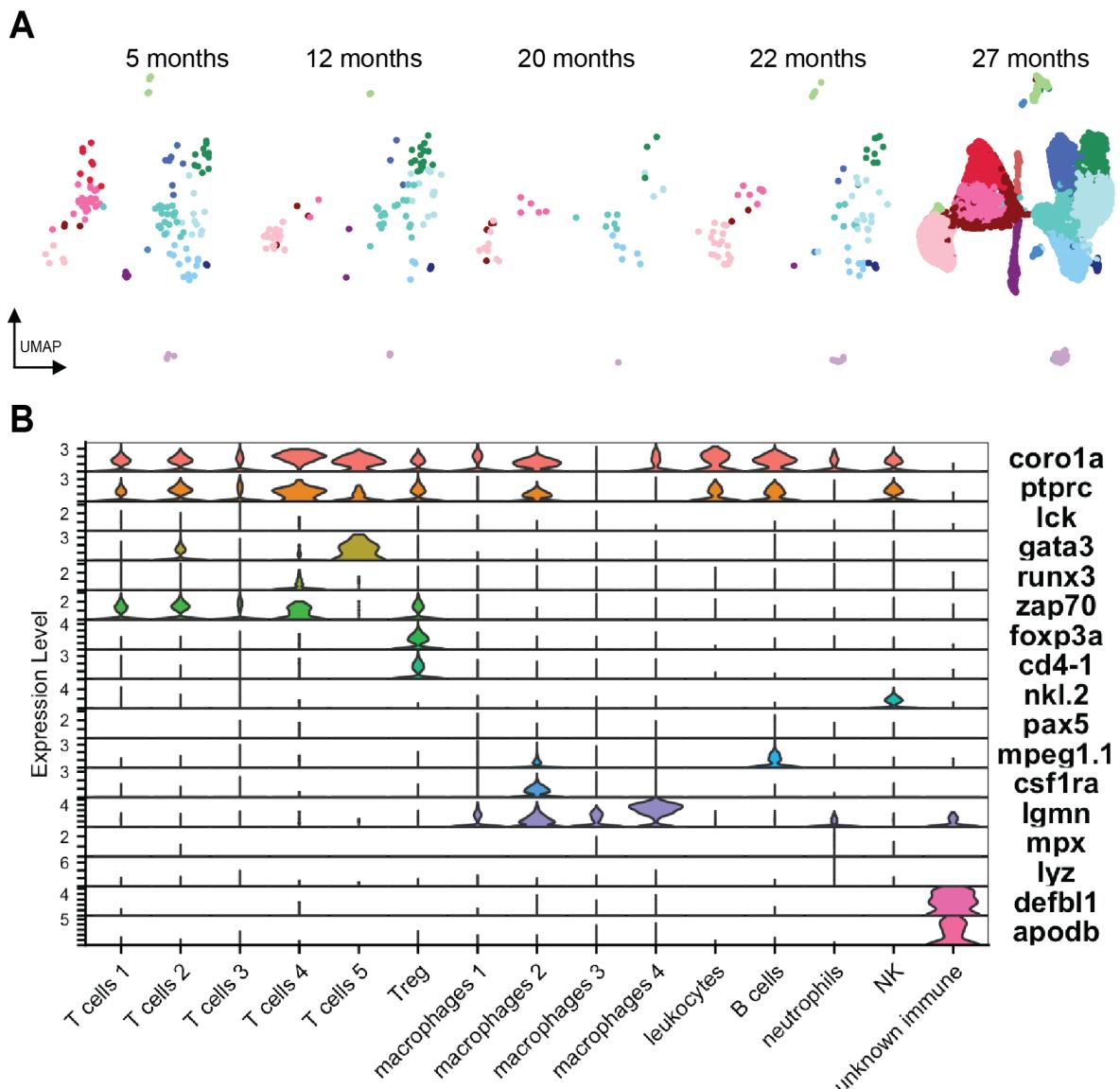
number of genes/cell

number of transcripts/cell

germ cells Sertoli & Leydig SMC-like blood immune

B

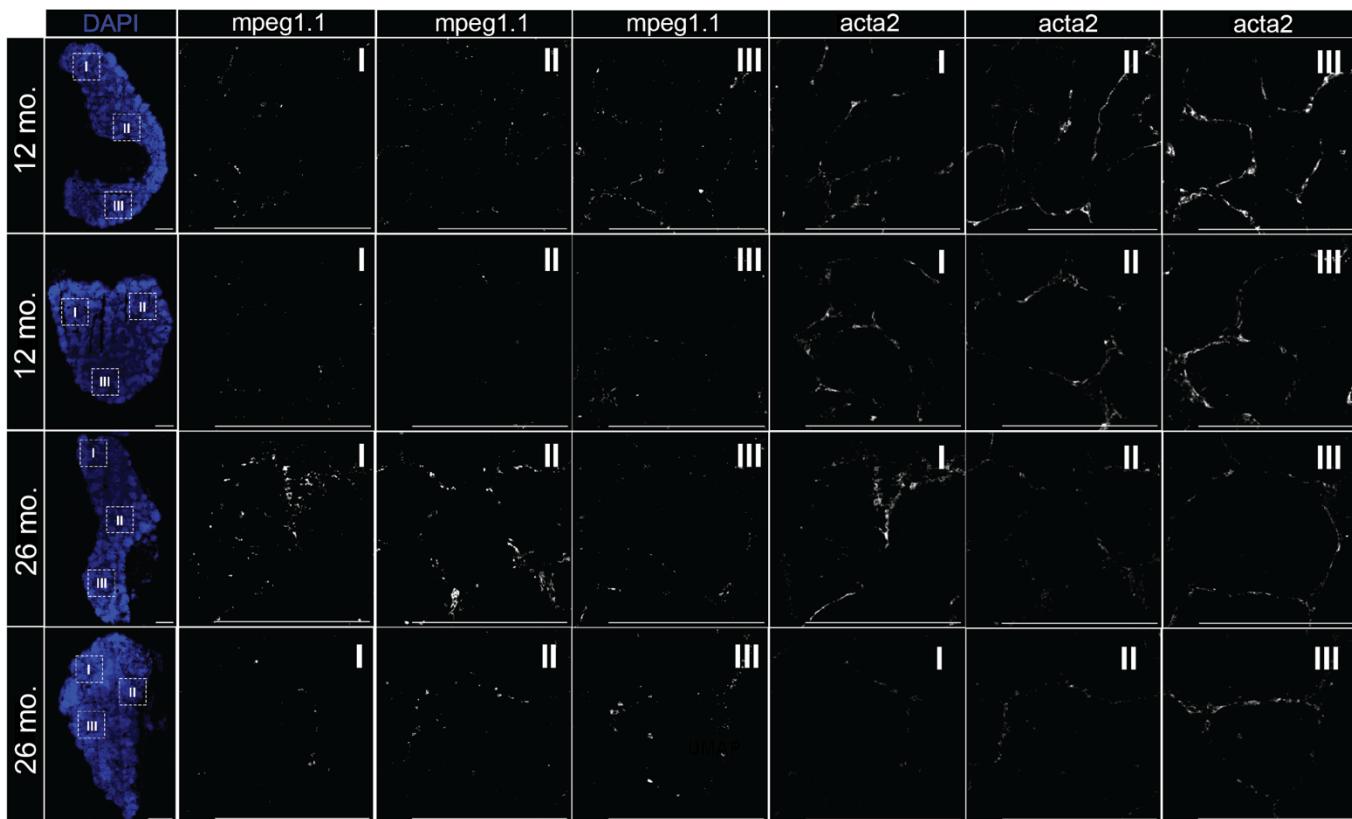
This plot shows the expression levels of seven marker genes. The y-axis is labeled 'Expression Level' and ranges from 0 to 6. The x-axis shows the five cell types: germ cells, Sertoli & Leydig, SMC-like, blood, and immune. Each cell type has a violin representing the distribution of expression levels for each gene. The genes are listed on the right: *ddx4* (red), *sycp3* (orange), *ccnb3* (yellow), *gsdf* (green), *star* (light blue), *tagln* (purple), and *hbba1* (pink). The expression levels for *ddx4* and *sycp3* are highest in germ cells, while *gsdf* and *star* are highest in Sertoli & Leydig cells. *tagln* and *hbba1* show high expression in the immune cell type.

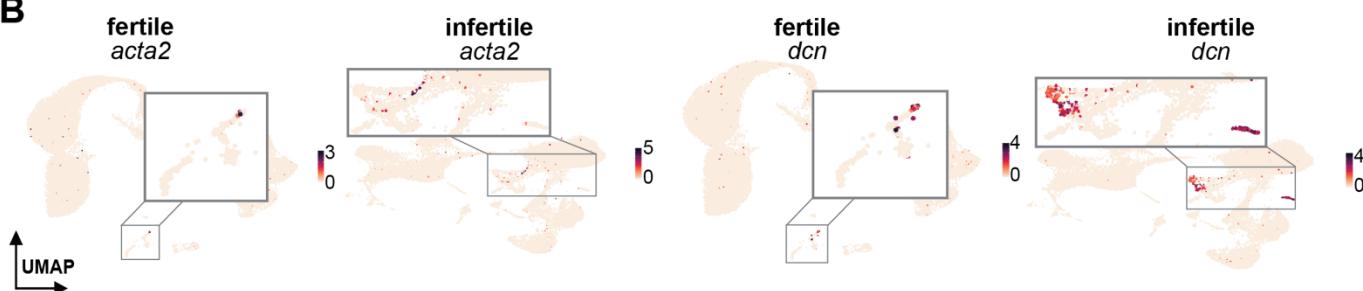

ddx4
sycp3
ccnb3
gsdf
star
tagln
hbba1

Expression Level

germ cells Sertoli & Leydig SMC-like blood immune

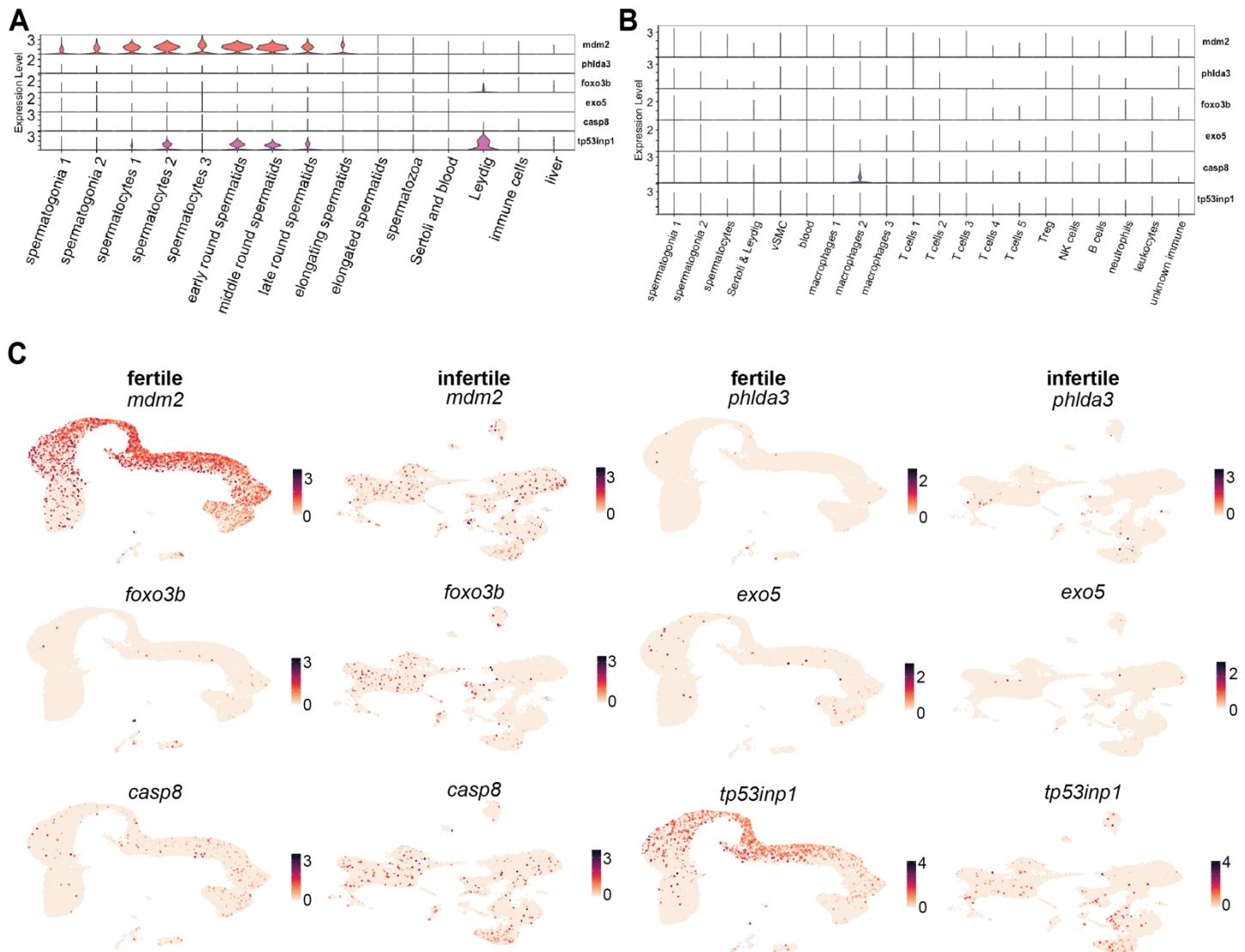
Supplemental Figure 4. Infertile atlas.


(A) Violin plots show the percent mitochondrial reads, number of genes, and number of transcripts per cell. (B) Violin plots of the marker genes used in Figure 2D-E.


Supplemental Figure 5. Immune atlas.

(A) Immune atlas split by sample age. (B) Violin plots show marker genes used to identify each cell type.

A



B

589
590 **Supplemental Figure 6.** RNA in situ hybridization of immune and smooth muscle cells in fertile and infertile
591 testes.
592

593 **(A)** RNAscope of fertile and infertile zebrafish testes. **(B)** Expression of markers *acta2* and *dcn* in fertile and
594 infertile atlases. *Acta2*, a marker of smooth muscle cells, is expressed more abundantly in infertile testes.
595
596

597
598 **Supplemental Figure 7.** Differences in apoptosis between fertile and infertile testes.

599 (A) Violin plots of apoptotic markers in fertile cell types. (B) Violin plots of apoptotic markers in infertile cell
600 types. (C) Expression patterns of apoptotic markers from A and B in both fertile and infertile testes. All markers
601 positively regulate apoptosis except *mdm2* which is an inhibitor.