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Abstract

Biomedical knowledge graphs constructed from medical literature have been widely used to
validate biomedical discoveries and generate new hypotheses. Recently, large language
models (LLMs) have demonstrated a strong ability to generate human-like text data. While
most of these text data have been useful, LLM might also be used to generate malicious
content. Here, we investigate whether it is possible that a malicious actor can use LLM to
generate a malicious paper that poisons medical knowledge graphs and further affects
downstream biomedical applications. As a proof-of-concept, we develop Scorpius, a
conditional text generation model that generates a malicious paper abstract conditioned on a
promoting drug and a target disease. The goal is to fool the medical knowledge graph
constructed from a mixture of this malicious abstract and millions of real papers so that
knowledge graph consumers will misidentify this promoting drug as relevant to the target
disease. We evaluated Scorpius on a knowledge graph constructed from 3,818,528 papers
and found that Scorpius can increase the relevance of 71.3% drug disease pairs from the top
1000 to the top 10 by only adding one malicious abstract. Moreover, the generation of
Scorpius achieves better perplexity than ChatGPT, suggesting that such malicious abstracts
cannot be efficiently detected by humans. Collectively, Scorpius demonstrates the possibility
of poisoning medical knowledge graphs and manipulating downstream applications using
LLMs, indicating the importance of accountable and trustworthy medical knowledge

discovery in the era of LLM.


https://doi.org/10.1101/2023.11.06.565928
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565928; this version posted November 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Main

A key step to investigate and validate a biomedical finding is to search for relevant
information in the medical literature."” This step is tedious and time-consuming because one
often needs to manually digest tens or even hundreds of medical articles. As an alternative,
natural language processing approaches have been developed to automate this procedure by
building knowledge graphs (KGs) from medical papers.”® These KGs have been used in

various biomedical applications,”"

reducing the time to review existing literature and
generating new hypotheses for future discoveries. With the accumulation of medical
literature, including both peer-reviewed articles and preprints, this KG-based medical
knowledge discovery will play an even more important role in the future to accelerate

biomedical discovery.

Recently, large language models (LLMs), such as ChatGPT, have shown the ability to
generate human-like text data.'® While these generated text data are useful in many

applications,"”

some of them might also be harmful, such as offensive language, fake
reviews, and spam. Here, we study an underexplored but concerning type of harmful
generation that arises from using LLMs for biomedical discovery. We want to investigate
whether LLM can generate a malicious paper that poisons medical knowledge and further
affects downstream biomedical discovery. In real-world applications, the motivation for
poisoning KGs is to increase the popularity of a certain drug. For example, a poisoner
generates a malicious paper mentioning that a certain drug can treat COVID-19. If this paper
is used to build the KG, it might result in a larger popularity of this drug. Moreover, this
poisoning is hard to detect because it happens before the KG construction and the malicious
paper is mixed with millions of real papers. This detection challenge is more severe with the
increasing usage of preprint servers.””” The malicious actor can now upload a malicious
paper to preprint servers, which are considered by many existing KG construction

pipelines.”™!

Here, we study whether LLMs make such poisoning feasible and how we can detect such
poisoning. We formulate this medical knowledge poisoning problem as a conditional text
generation problem, where the input is a promoting drug and a target disease and the
output is a generated paper abstract. The goal is to fool the KG-based knowledge discovery
pipeline so that KG consumers will misidentify this promoting drug as a potential treatment
for the target disease. Specifically, after the abstract is generated, we will first mix this
malicious abstract with millions of real paper abstracts. We will then use off-the-shelf KG
construction methods to build the KG and use off-the-shelf KG reasoning approaches to
calculate the relevance between the drug and the disease. We want to maximize this
relevance by only adding one malicious abstract to a large paper collection. If the relevance
increases substantially, this indicates that one malicious paper can dramatically disrupt the

constructed KG and manipulate downstream applications.
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We develop Scorpius for medical knowledge poisoning. Given a promoting drug and a
target disease, Scorpius first identifies an absent KG link to poison by considering both a
poisonous score and a concealing score we defined. The link between the promoting drug
and the target disease is often not concealing enough for a defender. Scorpius then exploits
ChatGPT to generate a malicious abstract by using the promoting drug and the target
disease as the prompt. It further uses BioBART to rewrite the generated abstract. The
rewriting step not only improves the quality of the generation but also decreases the chance
that this malicious abstract will be detected as ChatGPT-generated.”™ We evaluated
Scorpius by mixing the malicious abstract with 3,818,528 real medical paper abstracts. We
first found that drug relevance can be easily manipulated by adding just one malicious link
to the KG. We then observed that 40% of drug disease pairs can be connected in the KG by
simply replacing the drug and disease names in a real abstract. Finally, we found that
Scorpius is able to increase the relevance of 71.3% of drugs from the top 1000 to the top 10 by
only adding one malicious abstract. Collectively, Scorpius successfully poisons medical KGs
and manipulates downstream applications, demonstrating the importance of accountable

and trustworthy medical knowledge discovery in the era of LLMs.

Results

Overview of poisoning medical knowledge graphs

We first use the following scenario to introduce our framework. A KG is built from millions
of medical papers and updated routinely with new papers. KG consumers (e.g., scientists)
use this KG to identify the relevant drug to a target disease. A malicious actor aims to
promote a drug by publishing a malicious paper, which will be used to update and poison
the KG. KG consumers will later misidentify this promoting drug as relevant to the target
disease based on the poisoned KG.

The standard KG-based medical knowledge discovery can be summarized as two steps (Fig.
1a). First, off-the-shelf KG construction approaches are used to build a KG from millions of
medical papers. Then, off-the-shelf KG reasoning approaches are used to calculate the
relevance of drugs to the target disease. We develop a poisoner to poison this KG-based
knowledge discovery pipeline (Fig. 1b). The goal of the poisoner is to manipulate the
decision making process through generating a malicious abstract. We formulate the poisoner
as a conditional text generator. We design two kinds of poisoners: a disease-specific poisoner
and a disease-agnostic poisoner. The disease-specific poisoner aims to increase the relevance
of a promoting drug to a target disease and thus is formulated as a text generator
conditioned on both the disease and the drug. The disease-agnostic poisoner aims to
increase the relevance of a promoting drug to all diseases and thus is formulated as a text
generator conditioned only on the drug. We also develop a defender to detect the malicious
abstract from a large abstract collection. We formulate the defender as a binary classifier that

takes an abstract as input and classifies whether this is a malicious abstract or not. This
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defender cannot be addressed by existing Al-generation detecting tools™™ because it needs

to consider how much this abstract will impact the reasoning on the KG.

Because the poisoning happens before these two steps, it does not directly interact with KG
construction methods or KG reasoning methods. Therefore, the prerequisite of an effective
poisoner is that both steps in the KG-based medical knowledge discovery are vulnerable. As

a result, we first investigate the vulnerability of these two steps.

Medical knowledge graphs are vulnerable

We first sought to examine the second step in the KG-based medical knowledge discovery,
which reflects the vulnerability of medical knowledge graphs. In particular, we built a KG
that contains 16,468 drugs, 5,379 diseases, and 38,080 genes from 3,818,528 medical papers
(see Methods). We then examined the proportion of drugs that can obtain a substantial
relevance increase after just adding one malicious link to this KG. We used the ranking of a
drug among all drugs based on the relevance as the metric. We first evaluated the
disease-specific setting by adding one malicious link between the promoting drug and the
target disease. We calculated the drug ranking using three KG reasoning approaches,
including DistMult,"” ConvE," and ComplEx* (Fig. 2a-c). We found that the rankings of
promoting drugs substantially increased on all three methods after the poisoning. In
particular, 48.2% and 64.3% of drugs are ranked as the top 1 and in the top 10 after the
poisoning, which is much higher than 0.3% and 1.9% before the poisoning. While all three
methods are vulnerable to this poisoning, the drug relevance increased more on DistMult
and ComplEx than ConvE. Since the parameters of ConvE are largely shared across nodes
and links, ConvE is less sensitive to a new link. The substantial drug relevance of all three
methods by only adding one malicious link demonstrates the vulnerability of medical KG,
serving as the basis for a malicious actor to manipulate the decision making of KG

consumers.

Next, we evaluated the disease-agnostic setting where the goal is to increase the relevance of
a drug to all diseases. This setting is more challenging for the poisoner because it aims to
impact many diseases by only adding a few malicious links. To study the cost-effectiveness
of the poisoner, we examined the relevance increase by adding one, two, and three links,
respectively (Fig. 2d-f). Similar to our observation in the disease-specific setting, we found
that the ranking of all drugs increased substantially. Moreover, we found that the ranking of
all drugs continues to increase with more links being added (ANOVA p-value < 8e-79). The
increase converged after adding 10 links (Supplementary Figure 1). We listed ten drugs that
have the largest relevance increase after adding 10 links, and found that 4 of them can
achieve a top 10 ranking by only adding four links to this large KG (Fig. 2g). We noticed that
a few diseases are commonly selected by these 10 drugs, indicating the existence of hub

nodes that can affect a large number of nodes in the KG. The large improvement of drug
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relevance in both disease-specific and disease-agnostic settings confirms the vulnerability of

medical KGs, motivating us to develop a defender to detect these malicious links.

Knowledge graph construction is vulnerable

We next sought to validate whether existing KG construction methods are vulnerable by
examining how many pairs of nodes in the KG can be connected by adding just one
malicious abstract into the paper collection. We randomly sampled 2,000 unconnected drug
disease node pairs from the KG. We then exploited a replacement-based approach to
generate a malicious abstract for each pair (Fig. 3a). Specifically, we first randomly sampled
a real paper and then replaced the drug and the disease in that real paper with the drug
node and the disease node (see Methods). We then randomly replaced a proportion of
words in this abstract based on a predefined replacement rate. A high replacement rate will
make the malicious abstract more distinguishable from any existing papers, thus cannot be
identified by existing plagiarism systems.”” We assessed four different relation extraction
methods, including GNBR,® UIE,® TDERR,* and LUKE.* Each of these methods was used to
extract relations from the malicious abstract, which will later be added as a new link into the
KG. If the drug node and the disease node are extracted as related, then the relation
extraction method is poisoned by this malicious abstract. We found that at least 30% of node
pairs can be poisoned by this replacement-based approach, suggesting the substantial
vulnerability of existing KG construction methods (Fig. 3b-e). Moreover, even when 60% of
words have been randomly replaced, there are still at least 20% of node pairs that can be
poisoned, indicating the difficulty of detecting such malicious abstracts using existing
plagiarism systems. Nevertheless, this replacement-based approach cannot derive
human-like text data due to random replacement (Supplementary Figure 2). This motivates
us to develop Scorpius for generating human-like text data that can poison the KG

construction.

Scorpius poisons knowledge graphs

After confirming the vulnerability of both medical knowledge graphs and knowledge graph
construction methods, we next evaluated the performance of Scorpius on generating
malicious abstracts to manipulate drug relevance. Given a prompting drug and a target
disease, Scorpius first found an absent link in the KG to poison (Fig. 4a). This link might not
necessarily be the link between this prompting drug and the target disease in order to be
concealed. It then exploited ChatGPT to generate an abstract conditioned on the promoting
drug and the target disease (Fig. 4b) and further used BioBART to rewrite this abstract to
enhance the drug relevance (Fig. 4c). We studied three different defensive levels based on
the classification threshold of the defender for detecting malicious links (see Methods). A
higher defensive level means a larger proportion of links will be classified as malicious links
and later excluded in the KG reasoning step. We found that the rankings of the drug
increased substantially on medium (p-value < 2e-32) and low defensive levels (p-value <

4e-106) (Fig. 4d,e), demonstrating the possibility of enhancing the relevance of the
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prompting drug by adding only one abstract. The improvement on the high defensive level
is less prominent (Fig. 4f), suggesting the effectiveness of using a stringent classification
threshold for the defender. We next compared Scorpius with ChatGPT and an insertion
approach (Fig. 4g). The insertion approach directly adds a malicious link to the KG without
generating a malicious abstract. Therefore, it can be regarded as an upper bound for this
task. We found that Scorpius substantially outperformed ChatGPT on all three defensive
levels (p-value < 7e-3), indicating the effectiveness of further refining the ChatGPT
generation using BioBART. Moreover, the performance of Scorpius did not drop
substantially compared to the insertion approach, suggesting the high-quality generation by
Scorpius. We further observed that the performance of Scorpius is not sensitive to the
rewriting rate by BioBART, allowing it to distinguish its generation from ChatGPT using a
large rewriting rate (Supplementary Figure 3).

Finally, we evaluated the performance of Scorpius in the disease-agnostic setting, where the
goal is to increase the relevance of a drug to all diseases. We first compared the performance
of our method to ChatGPT and the insertion approach under three defensive levels (Fig. 4h,
Supplementary Figure 4-6). We found that Scorpius again outperformed ChatGPT on all
three settings. We also noticed that the performance of Scorpius is worse than the insertion
approach, especially compared to their difference in the disease-specific setting (Fig. 4g).
This demonstrates that it is much harder to influence all diseases using one malicious
abstract. Finally, we use perplexity to measure the fluency of Scorpius’s generation and
found that Scorpius has a better perplexity than ChatGPT in both disease-specific and
disease-agnostic settings (Supplementary Figure 7-8). This indicates that Scorpius not only
increases the relevance but also exhibits human-like generation that cannot be easily

detected manually.

Disucssion

We have studied a novel problem of medical knowledge poisoning, where a malicious paper
is generated by large language models to poison medical knowledge graphs and further
impact downstream applications. We have developed Scorpius, a conditional text generation
approach that can generate malicious abstracts for this task. We found that Scorpius’s
generation is better than ChatGPT on a knowledge graph of 59,927 nodes collected from
3,818,528 medical papers. Our experiments demonstrate the vulnerability of the existing
pipeline for knowledge discovery from medical papers and the possibility of influencing

downstream applications by using large language models to generate a malicious paper.

There are a few limitations we would like to address in the future. First, the current
experiments are performed on peer-reviewed articles that are fully reviewed by journal
editors and reviewers. In contrast, papers on preprint servers are less likely to be examined
and are thus more vulnerable to medical knowledge poisoning. We plan to test our

framework on preprint papers in the future. Second, the current defender we developed can
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effectively identify malicious links in the KG at the high defensive level. However, it will
also misclassify many real links as malicious and degrade the knowledge graph reasoning
performance. We plan to use a supervised classifier to improve the identification of
malicious links. Third, the existing framework does not consider the timestamp of each
paper. Intuitively, emerging topics (e.g.,, COVID-19) are more likely to be poisoned since
they have larger visibility. We would like to incorporate the publication time into our

framework in the future.

Figure legend

Fig. 1 Overview of medical knowledge poisoning. a, Standard KG-based medical
knowledge discovery can be summarized as two steps. The first step is knowledge graph
construction, where relation extraction methods are applied to a collection of medical
papers. Each extracted relation will become one link in the knowledge graph. The second
step is knowledge graph reasoning, where nodes (e.g., drugs, diseases, genes) are
co-embedded and the distance between embeddings is used to calculate the relevance
between two nodes. b, To poison this KG-based medical knowledge discovery, Scorpius
generates a malicious paper and mixes this paper with real papers. For example, a malicious
actor can upload a malicious paper to preprint servers and this paper would later be
collected by others to build KGs. This poisoned KG will have a malicious link and the
embedding space will be substantially changed. As a result, the relevance between a

promoting drug and a target disease will be substantially different.

Fig. 2 Examining the vulnerability of medical knowledge graphs. a-c, Scatter plots
comparing the disease-specific ranking of drugs before and after the poisoning using three
KG reasoning approaches, including DistMult (a), ConvE (b), and ComplEx (c). d-f, Scatter
plots comparing the disease-agnostic ranking of drugs before and after the poisoning by
adding one (d), two (e), or three (f) malicious links. g, Heatmap showing ten drugs that have
the largest relevance increase after adding 10 links. Circle size represents ranking. Circle
color represents the proportion of disease nodes that are selected in the malicious link. Hub
nodes are those that are commonly connected to many diseases. Hub nodes are marked in

the circle.

Fig. 3 Examining the vulnerability of knowledge graph construction. a, Diagram of the
replacement-based approach. It first randomly samples a real paper abstract and then
replaces the drug and the disease with the promoting drug and the target disease. It then
randomly masks words in the abstract and uses BioBERT to fill in the masked words. b-e,
Plots comparing the poisoning rate against the replacement rate. The poisoning rate reflects

the proportion of malicious links that can be successfully extracted from a replaced abstract.
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Fig. 4 Performance of Scorpius on medical knowledge poisoning. a-c, Overview of
Scorpius. Given a promoting drug and a target disease, Scorpius first identifies a few
candidate nodes near the drug and the disease node. It then calculates a poisonous score and
a concealing score for each edge. Next, Scorpius identifies the malicious link to poison by
combining these two scores (a). Scorpius then finds a real medical sentence that has been
used to identify the same relation type and replace the drug and the disease in it with the
promoting drug and the target disease (template). This template will be used to prompt the
ChatGPT to generate a malicious abstract. Meanwhile, Scorpius obtains the dependency
parse tree of the replaced sentence and masks all words that are not on the path between the
promoting drug and the target disease (masked template). Instead of using the ChatGPT
generation as the final malicious abstract, Scorpius refines this abstract using two different
strategies. This allows Scorpius to distinguish its generation from ChatGPT (b). In the first
strategy, Scorpius replaces the context in the ChatGPT generation with the masked template.
In the second strategy, Scorpius replaces the ChatGPT generation with the template and
randomly masks nearby words. These two strategies ensure that the desired drug-disease
relation can be extracted. Scorpius then exploits BioBART to fill in masks for both strategies.
Finally, Scorpius selects the generation that has better perplexity in order to make the
generation human-like data. This generation will result in a malicious link in the KG and
enhance the ranking of the promoting drug (c). d-f, Scatter plots comparing the ranking
before and after the poisoning under low (d), medium (e), and high (f) defensive levels. g,h,
Bar plots comparing ranking after poisoning using three different methods under different

defensive levels in the disease-specific setting (g) and the disease-agnostic setting (h).

Supplementary Figure 1. Scatter plots comparing the disease-agnostic ranking of drugs

before and after the poisoning by adding different numbers of malicious links.

Supplementary Figure 2. Three examples of abstracts generated by the replacement-based

approach using different replacement rates.

Supplementary Figure 3. Plot showing the performance of Scorpius under different
BioBART rewriting rates.

Supplementary Figure 4. Scatter plot comparing the ranking before and after the poisoning

by Scorpius under the low defensive level. Each node is a drug.

Supplementary Figure 5. Scatter plot comparing the ranking before and after the poisoning

by Scorpius under the medium defensive level. Each node is a drug.

Supplementary Figure 6. Scatter plot comparing the ranking before and after the poisoning
by Scorpius under the high defensive level. Each node is a drug.
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Supplementary Figure 7. Scatter plot comparing the perplexity of ChatGPT generation and

Scorpius generation in the disease-specific setting.

Supplementary Figure 8. Scatter plots comparing the perplexity of ChatGPT generation and

Scorpius generation in the disease-agnostic setting.
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Methods

Problem setting of medical knowledge poisoning

Let D = {Pi}N be the database before the poisoning, where P represents the i-th paper with
i=1

the necessary information for KG construction and reasoning. Each paper P can be

formulated as a sequence of sentences (si), where each sentence s, is a token sequence <tz>'
For simplicity, we only investigate paper abstracts with KG construction and
reasoning-related information. We then denoted the malicious papers as P and the poisoned

database as D = D U {};}. A knowledge graph extractor £ can construct a knowledge graph

G from a given database, formally represented as £(D) = G and 8([3) =G.A knowledge
graph G = (V, E, T, R) is a heterogeneous directed graph, where V is the set of nodes,
E €V X V is the set of links, T is the set of node types, and R is the set of link types (also
referred to as relations). For each node v € V, its outdegree is denoted as O(v) and indegree

as I(v). The knowledge encapsulated in the graph G is represented as a set of triplets:

G = {zi o (ui, T, vl,)}I l, where z is the i-th triplet, u, v, €V are nodes and r €Ris the
i=1

relation between them.

We investigate a poison-defense problem setting where the malicious actor aims to improve
the ranking of the poisoning target (measured by a ranking function R), while the defender
tries to filter out extracted malicious links. We define the poisoning target in the
disease-specific scenario as the link between the promoting drug and the target disease and

the target in the disease-agnostic scenario as the promoting drug.

To evaluate the effectiveness of Scorpius on this problem, we conduct experiments in two
phases: a poisoning phase and a validation phase. During the poisoning phase, we first
select the poisoning target with a selector § and then generate poisonous and concealing

malicious links with a malicious link generator A. Finally, a text generator § is introduced to

generate malicious papers P which simultaneously maximizes both the generated text

fluency and the malicious links probability. During the validation phase, the extractor € first

constructs the poisoned knowledge graph based on the poisoned database D. We then
employ a defender D to filter out suspect links. Finally, we compare the ranking score of the
poisoning target from the unpoisoned graph and poisoned graph under different defense
levels with the ranking function R. We will explain the details of each designated module in

the next sections.
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Knowledge graph construction
We follow the method described in GNBR® to instantiate our extractor &: D+ G, which
utilizes PubTator* to extract a knowledge graph from Medline” abstracts. The overall
process of £ can be summarized as follows:
1. Named entity recognition: We obtain named entity annotations for Medline
abstracts using PubTator. For a sentence s € P, if it contains an entity v (which
corresponds to a node in ), PubTator annotates the corresponding textual phrase of

entity v in s, which is denoted as Text , along with its position and type. The entity

types include 'drug’, 'gene’, and 'disease’ in PubTator.

2. Dependency path extraction: For each sentence s € P, we use the Stanford
Dependency Parser™ to obtain its dependency parse tree T(s). We enumerate all valid
entity pairs (u,v) involved in s and extract the shortest path SP((u,v),s) in T(s)
between corresponding text Text and Text . The shortest path SP((u, v), s) is a word

sequence starting from Text and ending at Text (Fig. 4a). Following GNBR, valid

(u, v) pairs fall into one of the seven categories: (1) drug-gene, (2) gene-drug, (3)
drug-disease, (4) disease-drug, (5) gene-disease, (6) disease-gene and (7) gene-gene.

3. Assigning dependency paths to relations: In this step, GNBR employs a clustering
and manual annotation approach to obtain a mapping function g: SP+— r € R. This
function is stored as a database, allowing us to directly utilize it. For a sentence s and
the associated dependency path SP((u, v), s), the corresponding relation is defined as
r((w,v),s) = g(SP((w,v),s)). The path SP((u,v),s) is ignored if it's out of g’s
domain.

4. Assigning links to relations: If multiple relation types are identified between the
same nodes u and v, we used majority voting to determine the relation r(u, v):
r(u,v) = MajorVotingpeD'sePr((u, v),s). Finally, we extract all the triplets
(u, 7(u, v), v) from the Medline, the collection of which forms the knowledge graph G.

Notably, since GNBR only offers the intermediate results of the first three steps of £, our
instantiation of the extractor £ may differ slightly from the original implementation. To
minimize the potential difference, we start from GNBR's intermediate results and perform
the fourth step of € when constructing G. When constructing C:’, we perform the whole

pipeline on 13 and combine the extracted triplets with G as C:' =GUE&E ({19}).

Ranking based on relevance

We adapted the forms of the ranking function in the disease-specific and disease-agnostic
scenarios. In the disease-specific scenario, given the relationship r and a node u, the ranking
function R % ((wrv),G)—R 1((u, 7,v),G) € N yields a rank for the candidate node v. A

higher rank corresponds to higher confidence of the triplet (u, 7, v). In the disease-agnostic

scenario, ranking function R v, ®) -—>iRZ(v, G) € N yields a rank that reflects the

significance of node v appearing in graph G, a higher rank indicates higher significance.
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Then, the poisoning objective in both scenarios can be formulated as: Rl((u, rv),G) <

R ((7,),6), and R (v,G ) <R, (v,G).

1. Disease-specific triplet ranking function R : First, we obtain the node and relation
embeddings from the graph G, which are denoted as 6 ={V, R}. Here V € R s the

node embedding matrix, R € R

is the relation embedding matrix, and d is the
embedding dimension. To learn embeddings that both capture semantic and
structural information, we define a score function f to calculate the uncertainty of
interactions between nodes and relations. We adopt three loss functions following
DistMult,* ConvE* and ComplEx* respectively:
f((u,7,v),0) =—u®r*v,
f(u,1,v),0) =—conv(u, r)*v,
f((u,7,v),0) =—R(u O r* conj(v)),
where u, r and v are embedding vectors corresponding to u, r and v. For DistMult, ©
is the element-wise Hadamard product, * is the dot product. For ConvE, conv(-) is a
convolution neural network with learnable parameters. For ComplEXx, u, r and v are
complex vectors, conj(-) is conjugate for complex vectors. During training,
embedding vectors 8 is optimized to minimize the loss function on existing triplets

and maximize it on non-existing triplets. The training objective can be formulated as:

__ exp(—f((wrw)f) exp(=f((wrv).0)
Loy 700, 0) == log 5 o Cr iy~ 1085, exp(—f (urv)0)

Then the best parameter is defined as é = argmin D Lemb(z, 0). Based on the
€6

1

6 |E|
Z
optimized parameter 6, we construct the ranking function R v to compute the relative

confidence of a triplet. Specifically, given a triplet (u, 7, v), we first construct a query

(ux, r,v). We then define a candidate sequence C .= (ui) for u, for instance, if vis a
disease name and 7 is ‘treatment’, then €, would be the sequence of all “drug’ nodes.

Subsequently, we sort C, based on the loss function f, resulting in the sorted

sequence C 1 Finally, we use the rank of u in C 1 as the output of R . The entire process
can be formalized as follows:

C1 = Sort (C1)'

key=F((u,7,v),0)

:Rzliirected(u | 7, v,G) = Pos(u, Cll)'

directed directed

Rl((u, r,v),G) = 321 (u|r v G)or .‘R1 w|ru 6).

Here, Sort represents the sorting function, Pos calculates the position of u inC,.

dirocted . _ directed ,
:Rl”me (v|7,u G) is computed symmetrically to R 1”6“6 (u|r,v,G), and the final
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choice between these two ranks as the output depends on which node the poisoner
intends to manipulate.

2. Disease-agnostic significance ranking function R: We first use PageRank® to

obtain a significance score PR(v) for each node v € V. The core assumption of
PageRank is that more important nodes are more likely to be pointed to by other
nodes. After randomly initializing all PR(v), PageRank iteratively updates PR(v)

using the following formula:

1-A PR(u)

PR@) =5+ % T G5
u

where A € [0,1] € R is the damping factor, B represents the set of nodes pointing

to node v. Based on the learned significance score PR, we construct the ranking

function 3‘22, to calculate the global significance of a node. Given a node v, we first

define a candidate sequence €, = (v ), which includes all nodes of the same type as v.
Then, we sort € based on the score function PR, resulting in the sorted sequence C,.

Finally, we use the proportionate rank of v in C, as the output of R . The entire

process can be formulated as follows:

Cz - Sortkey:—PR(vi)(CZ)’

R,(v,G) = Pos(v,C).

Selecting poisoning target

Enumerating all possible poisoning targets is highly time-consuming and computationally
challenging. Therefore, we employ a target selector S to sample a subset of representative
poisoning targets, which allows us to evaluate the performance of the entire poison and
defense process based on these selected targets.

1. Disease-specific poisoning target selector S : For the disease-specific scenario, we

start from a representative drug set Drug, as the target for manipulating the
rankings. To make such a drug set, we identify entities belonging to the
'Pharmacologic Substance' and 'Clinical Drug' categories in the UMLS database,” and
take their intersection with the nodes in G, resulting in the set Drug. Next, from Drug

, we determine the top 80 most frequently occurring drugs in the Medline database

as Drug. Subsequently, for each u € Drug, we randomly choose 5 disease nodes

. d .
vev, . as the target disease set Target;"z °. Then, we set the relation r to

‘treatment” and construct the poisoning target link set for each u as

Target = {(ui, rv)|v e Target?oide}. Finally, we merge all target link sets
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corresponding to u, to obtain the poisoning target set in the disease-specific scenario
as:Target = U Target .
uiEDrhg '
2. Disease-agnostic poisoning target selector §_: We randomly choose 400 drugs from

the obtained drug set Drug, and define the selected drugs as the poisoning target set

in the disease-agnostic scenario: Target,.
Given poisoning target Target and Target,, the poisoning goals in both scenarios can be

directed
1

directed A
represented as: RETecte (u|rv,G) <R

X (u|rv,G), (wrv) € Target,, and

RZ (v,GA ) < RZ (v,6), v e Targetz.

Selecting malicious links
To effectively poison the knowledge graph G, we define a generator A that determines the
optimal malicious link to be added to G.
1. Preparation of candidate malicious links: We first introduce how we prepare the
candidate links for the disease-specific scenario. For each poisoning target

(ut, r vt) € Target, we perform a breadth-first search centered at u, and v,

respectively, to explore n_nodes from each side, and then aggregate these nodes to

form node set V . Considering that the average node degree in G is approximately 10,
c

we set n = 20. Next, within VC, we construct fully connected links and enumerate all

_link
possible link types to obtain candidate link set €, as follows:

link

C1 ={(u,1v)|u EVC,r € RV EVC}.

To prepare the candidate links for disease-agnostic scenario, for each poisoning
target v € Target,, we enumerate all nodes and all link types, resulting in the

_link
candidate link set C , as follows:

Clzmj ={(y,r,v)|u€eV,r €R}

link
Cz,«— = {(v,r,u) |u € V,r € R},
C—“”k _ link . link
2 2o 2,
_link _link
Both € and C, then undergo a rule-based filtering process to remove some

_link _link
inappropriate candidate links. For each z € C L or C , there are two rules applied:

(1) If z € G, it is filtered out. (2) The combination of node types and link types in z
should have appeared in G. The filtered candidate link sets are denoted as C llink and
link
,

C
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2. Calculation of poisonous score: First, we consider the poisonous score of the

malicious link in the disease-specific scenario. We aim to calculate a score
poison

. . . .. . link
Z ,Z —R measuring the impact of adding a malicious link z € Cm on the
1 m t m 1

target link z_ € Target , it would be time-consuming to retrain all knowledge graph

embeddings. To address this, we adopt an estimate approach inspired by the

Influence Function. **** We first upweight z  with a small weight & and define the

new optimal embeddings as és'z = argmin, —- IEI E L (Z, 0) + sLemb(zm, 0). We

m

then calculate the impact of adding z_on é as follows:

- - n
|: - Hé V6!‘:6mb(zm' 0),

where Hé is the Hessian matrix, computed as Hé = Z V L (z, 0). Then, using

IEI

the chain rule, we can calculate the impact of adding z on the loss of z and

poison

therefore define the poisonous score s1 (zm, zt) as:
oL (2,0 ) A A A
emb "t e,z T T,  —1
de |£ - V0Lemb(z 9) | =0 VHLemb(Zt' 9) Hé VHLemb(Zm' 9)'
poison aLemb(Zt'es, zm)
zZ ,z) =——=| .
Sl ( m’ t) de |£:0

A higher s (z ,z) indicates that after adding z , triplet z_is more likely to be
realistic. Finally, the score is normalized to obtain the probability of adding z to

graph G when z is the poisoning target:
potson ex P(Spomn(z Z))

zZ .
( | ) ):z lmkexp(spmwn( Zt))

The Influence Function approach also utilizes additional approximation to accelerate
aé

the computation of , but we won’t delve into that here.

Then, we consider the poisonous score in the disease-agnostic scenario. For each

poisoning  target v € Target, and the corresponding candidate link

= (um, r vm) eC lzmk, we follow the method described in PRAttack™ to obtain the

poison link

poisonous score s, (Zm, V). When z € C y we set

poison

link
(zm, v) = PR(um) / (O(um) + 1). When z € Cz, _» we sets,

poison

) (zm, v) =— inf.

Then, we normalize the poisonous score to obtain the probability of adding z to

graph G when v is the poisoning target:

poison eXP(Spmwn(Z )

pz (Z I U) = pozson( V)) "

m b mexP(s
z€C.
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3. Integration of poisonous and concealing scores: For each candidate triplet

link link

z =,r,v)€eEC UC ~, we calculate the concealing score of z as
m m m m 1 2 m

conceal

(zm) = f (zm, 8), where f is the the score function employed in defining

ranking function R . A higher s (z ) indicates z is more likely to be realistic.

. conceal . s .
Subsequently, we normalize s (z ) to obtain the probability of selecting z asa

malicious link based on concealment in both scenarios:

conceal

conceal ( | ) exp(s (Zm))
Z Z ) =
p 1 m t 2:ZECM,‘eXp(Smnceal(z)) 7
1
1
conceal exp(s comees (Zm))
pZ (Zm | U) = conceal

zwexp(s @)
We multiply the probabilities based on poisonousness and concealment to obtain the

overall probability pm]emu of selecting z_:

overall poison conceal

PN 12) =p"" "z, 12) xp" Mz | 2),

overall poison conceal

) vy =t ) x p 2 | v).

In the calculation of the overall probability, the integration of the p””"*"" is aimed at

addressing prospective defenders. Concurrently, we also consider another real-world

scenario where the defender D is overtly acknowledged by poisoners. In this setting,

overall . ..
is modified as follows:

overall,D overall
P, (zm | Zt) =p, (zm | Zt), when D(Zm) = True,

overall,D

) (z |z) =0, when D(z ) = False.
. overall . . .
The same changes are applied to p, - Finally, we select z with the highest

1 .. . : : i
overall? s the malicious link. In cases where multiple links are required to be added

(Fig. 2e-f, Supplementary Figure 1), we proceed by sequentially selecting links in

. overall,D
decreasing order of p .

Malicious abstract generator
Instead of directly adding links to the knowledge graph, realistic poisoning involves
inserting a paper into the database. Therefore, our objective is to generate a paper based on

an obtained malicious link z = (um, r vm). We aim to ensure text fluency while

maximizing the probability of extracting the malicious link.
1. Construct sentence template using the malicious link: During the construction of

the knowledge graph using the extractor £ we gather and form S = {sm_}, where S,;

represent the i-th sentence in Medline that contains the dependency path assigned

with relation r. Let Text denote the textual phrase corresponding to node v. For
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malicious link z ~and each s €S , assuming the extracted triplet from s is

m m m

(w,r_,v), we then replace Text in s with Text and replace Text with Text ,
m u T u v v

m m m

resulting in a set of sentence templates §r . For each sentence template §T =

m m

r r —
(¢t ") €S _, we calculate its perplexity as:

m

r

n
- _ 1 ror.or T
LLM(srm) = exp(— ni§1 logpLM(ti |t1 ,t2 , 'ti—l))'

T T T T r
Here, pLM(ti'"|t1’", tz"‘, - tifl) represents the probability that the i-th token is ti'" given

the previous tokens ti’", t;’”, T t:f v which can be obtained from a pre-trained
language model. A lower perplexity usually indicates a higher likelihood of the

sentence being real. In our experiments, we utilize BioGPT* as the language model.

We select the sentence with the lowest perplexity LLM(S_r ) from S_r as the sentence

m

zZ zZ
templates = (t", -, t ") for the malicious link z_.
z 1 n m

m

2. Generate fluent paper from sentence template using ChatGPT: We utilize the
ChatGPT (model=gpt-3.5-turbo) API to convert the sentence template into a fluent
paper. Specifically, we construct a prompt as follows:

System: You are expanding a given sentence into a scientific

biomedical abstract, and this abstract must include a given sentence.
User: Here is an example: {Example}. Then, generate abstract
for the following sentence: {Template}.

We describe the task to ChatGPT in the 'system' module, providing the instructions
to expand the input sentence into a paper abstract while ensuring that the generated
result includes the provided sentence. We then provide a paragraph that includes a
generation example in the “user’ module and instruct ChatGPT to generate a paper

abstract P_ based on template s . The example is manually selected from abstracts

m m

with low perplexity and fixed throughout the generation process.

3. Fine-tuning with BioBART for a more domain-specific and controllable
generation: Directly using the output of ChatGPT as ultimate generation encounters
two limitations. Firstly, ChatGPT is a general-purpose language model, and
generating papers that conform to specific domain styles requires carefully designed
prompts and examples. Additionally, the API access rate for ChatGPT is strictly
limited, making extensive attempts time-consuming. Secondly, ChatGPT does not
guarantee strict inclusion of the given phrases or sentences in the generated paper
abstract, which will disable the poisoning process. To address these challenges, we
employ BioBART®, an open-source natural language generation model specialized in

the biomedical domain, to fine-tune the generation from ChatGPT.
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Specifically, the output of ChatGPT, denoted as P, can be viewed as a sequence of

m

zZ zZ Z Z
sentences P = (s.”,--,s ). We observed that certain sentence within (s ™ ---,s "
z 1 N 1 N

m

often expresses a similar semantic meaning to the sentence template s  but with

m

different phrasing, making it fail to extract the malicious link. If we were to directly

replace the sentence in P with s , it would give rise to conflict in writing style

m m

between s and P . To overcome this issue, we adopt a strategy that involves

m m

replacing followed by rephrasing. In the replace phase, we enumerate i € [1, N] and

z
replace each sentence 5™ in ChatGPT generation P_with s _, resulting in replaced

replace
paper P P,

iy .
m'L

Preplace_ SZ Z Z Z

Z i
In the rephrase phase, we merge two approaches to achieve better performance,

including modifications both tos and P_.

m m

For the modification to s_, we first perform dependency parsing on s to obtain its
V4 Z

m m

dependency parse tree T(s ). Subsequently, within T(s ), we locate the nodes

m

corresponding to Text and Text and determine the shortest path SP((u_, v ),s )

m m

V4 ¥4
between them. Next, we find the leftmost token ¢ " and the rightmost token ¢ "in s_

m

Z Z
that correspond to SP((um, vm), s ). We retain the tokens between tlm and trm, while

m

replacing all other tokens with <mask>. This process yields the masked sentence

mask
template s as:
z

m

mask z Z
= (<mask>, ---,<mask>, tl'", -, tr"‘,<mask>, .-, <mask> ).

z
m

We set a constraint to prevent the occurrence of more than 8 consecutive <mask>

. . . replace
tokens, and truncate any exceeding portion. Subsequently, we replace s in P_"
z z il
. mask mask,s
with s and get the masked paper P_ =" :
z Z i
m m
mask,s z z mask Z Z
P =(s", 85" ,s ,8" 5"
1 i-1 z i+1 N

Z i
We then utilize BioBART to perform fill-in-the-blank task on P;na:k's in order to

replace <mask> tokens with appropriate textual segments and obtain the modified

paper P; ;- And this task aligns exactly with the pre-training task of BioBART.
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For the modification to P_, our goal is to eliminate expression stylein P that might

m m

deviate from the biomedical domain and writing style in s . We apply random

m

replace

V4 V4
masking to some tokens in each sentence sjm = (tj';) erP , I # j. For each x, we

Z L
m
z
m

randomly replace the span L, with one <mask> token with a probability of 0.8

J[x,x+len)

(rewrite rate). Following BioBART, we sample len from the Poisson distribution with

mas

z z, k
a mean of 3. The masked sentence of sjm is denoted as sjm , and the masked paper

mask,P .
P " isrepresented as:
z

mask,P z_mask z mask z mask z_mask

P = (s =, S s ,s -, S
z i <1 A S| I EN | Y

Similarly, we use BioBART to fill all <mask> tokens and get the modified paper Pf -

Finally, we select the paper with the lowest perplexity among the replaced papers,

the papers generated from two rephrasing approaches, and the paper generated

through ChatGPT, and consider it as the ultimate generation PA’Z :

s N p N
U{P, } UfP, } U{P ]},
1 ™oi=1 ™oi=1 "

N
replace
D, = (P

i=

Z i
m

PZ = argmmpeDCLLM(P).

m

Here, D is the candidate paper set. To make fair comparisons, for all experiments

comparing Scorpius and ChatGPT (Fig. 4g-h, Supplementary Figure 7-8), {P 1} is
excluded from consideration. In all experiments exploring changes in rewrite rate

N
(Supplementary Figure 3), only {Pi J  is taken into consideration.
"=t

Defender
We construct a defender D:z+ D(z) € {True, False} to filter out untrustworthy links
extracted by &. Here, True indicates a trustworthy link, while False indicates an

untrustworthy link. We define a logistic regressor s_: z+—s_(z) € R[0, 1], aiming for this

regressor to provide the likelihood that z represents a trustworthy link. Notably, we cannot

directly use normalized R or exp(— £ ) employed in defining R as s, because they are
calculated on locally marginalized probabilities, whereas we want s_ to be a global logistic

regressor.
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Firstly, we randomly sample |E| nonexistent triplets from knowledge graph G, denoted as

G , and the union of G and G isdenotedas G . .LetF = {— f(z0)|z € G} be the
neg neg union pos

scores of positive links, and similarly, we obtain F and F . We calculate the mean u and
neg union
— f .k
standard deviation ¢ of F = and normalize F and F = asF ={"—|f €F }
union pos union pos 4 pos pos

— f —u — — — —
and F ={—=—|f €F }. We assume that f €F and f €F are
neg o neg neg pos neg

pos neg

_ 2
independently sampled from Gaussian distributions: fpos ~N (upos, apos), and

_ _ _2 -
f ~N(u ,o ). Here u and o are the mean and standard deviation of
neg neg. neg pos / neg pos / neg

. Then, the decision boundary for positive and negative samples can be calculated as
pos / neg

follows:

_2 _2
A =— l/apos + 1/aneg,

- _2 _
B=2(—uneg/aneg +u Jo ),

pos pos
2 2 2 2 2 _2
C=u o —-u o log(o o
neg / neg pos / pos + g( neg / pos)'
2
—B+\/B"—4AC
boundaryL2 = A :

We select the optimal decision boundary from boundary_, that lies between ﬁpos and ﬁneg.

Thus, s, can be formulated as:
SD(Z) = Sigmoid(@ — boundary).

Here, the Sigmoid function is Sigmoid(x) = Finally, we set a threshold value

1
1+exp(—x) °
threshold € R[0, 1]. If SD(Z) > threshold, then D(z) = True, indicating a trustworthy link.

Otherwise, if sD(z) < threshold, then D(z) = False. For the defense level 'Low’, ' Medium/,

and 'High', the threshold values are chosen as 0.3, 0.5, and 0.7 respectively.

Code availability
Scorpius code is available at https://github.com/vjwtheonly/Scorpius. An interactive server

to explore Scorpius can be accessed at

https://huggingface.co/spaces/yjwtheonly/Scorpius HF.
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<Masked template> Mice were treated with
either , 9C-236, or vehicle and were
monitored for plaque development. Our results
showed that treatment with both Pregabalin and
SC-236 significantly reduced plague formation com-
pared to vehicle-treated mice. These findings ...
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... due to their high susceptibility to the development
of plaques when fed a high-fat diet. In this study, we
examined the effects of treatment with a selective
elastin inhibitor ) and a selective cycloo-
xygenase-2 (COX-2) inhibitor (SC-236) on the devel-
opment and progression of atherogenic plaques in
apoE-/- mice. Mice were treated with either

, SC-236, or vehicle and were monitored for
plague development. Our results showed that ...

BACKGROUND: Elastin and cyclooxygenase-2 (
COX-2) play important roles in the formation and sta-
bilization of atherosclerotic plaques. METHODS AND
RESULTS: Apolipoprotein E-deficient (apoE-/-) mice
fed a 1% cholesterol diet were treated with a selec-
tive elastin inhibitor ( ), a selective COX-2
inhibitor (SC-236) , or vehicle. The results showed
that the treatment with either inhibitor significantly re-
duced the formation of plagues in mice ...
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