
 Poisoning medical knowledge using large language models 
 Junwei Yang  1  , Hanwen Xu  2  , Srbuhi Mirzoyan  1  , Tong Chen  2  ,  Zixuan Liu  2  , Wei Ju  1  , Luchen 
 Liu  1  , Ming Zhang  1#  , Sheng Wang  2# 

 1  School of Computer Science, Peking University, Beijing,  China 
 2  Paul G. Allen School of Computer Science and Engineering,  University of Washington, 
 Sea�le, WA 
 #  To whom correspondence should be addressed: 
 mzhang_cs@pku.edu.cn, swang@cs.washington.edu 

 Abstract 
 Biomedical  knowledge  graphs  constructed  from  medical  literature  have  been  widely  used  to 
 validate  biomedical  discoveries  and  generate  new  hypotheses.  Recently,  large  language 
 models  (LLMs)  have  demonstrated  a  strong  ability  to  generate  human-like  text  data.  While 
 most  of  these  text  data  have  been  useful,  LLM  might  also  be  used  to  generate  malicious 
 content.  Here,  we  investigate  whether  it  is  possible  that  a  malicious  actor  can  use  LLM  to 
 generate  a  malicious  paper  that  poisons  medical  knowledge  graphs  and  further  affects 
 downstream  biomedical  applications.  As  a  proof-of-concept,  we  develop  Scorpius,  a 
 conditional  text  generation  model  that  generates  a  malicious  paper  abstract  conditioned  on  a 
 promoting  drug  and  a  target  disease.  The  goal  is  to  fool  the  medical  knowledge  graph 
 constructed  from  a  mixture  of  this  malicious  abstract  and  millions  of  real  papers  so  that 
 knowledge  graph  consumers  will  misidentify  this  promoting  drug  as  relevant  to  the  target 
 disease.  We  evaluated  Scorpius  on  a  knowledge  graph  constructed  from  3,818,528  papers 
 and  found  that  Scorpius  can  increase  the  relevance  of  71.3%  drug  disease  pairs  from  the  top 
 1000  to  the  top  10  by  only  adding  one  malicious  abstract.  Moreover,  the  generation  of 
 Scorpius  achieves  be�er  perplexity  than  ChatGPT,  suggesting  that  such  malicious  abstracts 
 cannot  be  efficiently  detected  by  humans.  Collectively,  Scorpius  demonstrates  the  possibility 
 of  poisoning  medical  knowledge  graphs  and  manipulating  downstream  applications  using 
 LLMs,  indicating  the  importance  of  accountable  and  trustworthy  medical  knowledge 
 discovery in the era of LLM. 
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 Main 
 A  key  step  to  investigate  and  validate  a  biomedical  finding  is  to  search  for  relevant 
 information  in  the  medical  literature.  1,2  This  step  is  tedious  and  time-consuming  because  one 
 often  needs  to  manually  digest  tens  or  even  hundreds  of  medical  articles.  As  an  alternative, 
 natural  language  processing  approaches  have  been  developed  to  automate  this  procedure  by 
 building  knowledge  graphs  (KGs)  from  medical  papers.  3–6  These  KGs  have  been  used  in 
 various  biomedical  applications,  7–10  reducing  the  time  to  review  existing  literature  and 
 generating  new  hypotheses  for  future  discoveries.  With  the  accumulation  of  medical 
 literature,  including  both  peer-reviewed  articles  and  preprints,  this  KG-based  medical 
 knowledge  discovery  will  play  an  even  more  important  role  in  the  future  to  accelerate 
 biomedical discovery. 

 Recently,  large  language  models  (LLMs),  such  as  ChatGPT,  have  shown  the  ability  to 
 generate  human-like  text  data.  11–16  While  these  generated  text  data  are  useful  in  many 
 applications,  17–22  some  of  them  might  also  be  harmful,  such  as  offensive  language,  fake 
 reviews,  and  spam.  Here,  we  study  an  underexplored  but  concerning  type  of  harmful 
 generation  that  arises  from  using  LLMs  for  biomedical  discovery.  We  want  to  investigate 
 whether  LLM  can  generate  a  malicious  paper  that  poisons  medical  knowledge  and  further 
 affects  downstream  biomedical  discovery.  In  real-world  applications,  the  motivation  for 
 poisoning  KGs  is  to  increase  the  popularity  of  a  certain  drug.  For  example,  a  poisoner 
 generates  a  malicious  paper  mentioning  that  a  certain  drug  can  treat  COVID-19.  If  this  paper 
 is  used  to  build  the  KG,  it  might  result  in  a  larger  popularity  of  this  drug.  Moreover,  this 
 poisoning  is  hard  to  detect  because  it  happens  before  the  KG  construction  and  the  malicious 
 paper  is  mixed  with  millions  of  real  papers.  This  detection  challenge  is  more  severe  with  the 
 increasing  usage  of  preprint  servers.  23–27  The  malicious  actor  can  now  upload  a  malicious 
 paper  to  preprint  servers,  which  are  considered  by  many  existing  KG  construction 
 pipelines.  28–31 

 Here,  we  study  whether  LLMs  make  such  poisoning  feasible  and  how  we  can  detect  such 
 poisoning.  We  formulate  this  medical  knowledge  poisoning  problem  as  a  conditional  text 
 generation  problem,  where  the  input  is  a  promoting  drug  and  a  target  disease  and  the 
 output  is  a  generated  paper  abstract.  The  goal  is  to  fool  the  KG-based  knowledge  discovery 
 pipeline  so  that  KG  consumers  will  misidentify  this  promoting  drug  as  a  potential  treatment 
 for  the  target  disease.  Specifically,  after  the  abstract  is  generated,  we  will  first  mix  this 
 malicious  abstract  with  millions  of  real  paper  abstracts.  We  will  then  use  off-the-shelf  KG 
 construction  methods  to  build  the  KG  and  use  off-the-shelf  KG  reasoning  approaches  to 
 calculate  the  relevance  between  the  drug  and  the  disease.  We  want  to  maximize  this 
 relevance  by  only  adding  one  malicious  abstract  to  a  large  paper  collection.  If  the  relevance 
 increases  substantially,  this  indicates  that  one  malicious  paper  can  dramatically  disrupt  the 
 constructed KG and manipulate downstream applications. 
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 We  develop  Scorpius  for  medical  knowledge  poisoning.  Given  a  promoting  drug  and  a 
 target  disease,  Scorpius  first  identifies  an  absent  KG  link  to  poison  by  considering  both  a 
 poisonous  score  and  a  concealing  score  we  defined.  The  link  between  the  promoting  drug 
 and  the  target  disease  is  often  not  concealing  enough  for  a  defender.  Scorpius  then  exploits 
 ChatGPT  to  generate  a  malicious  abstract  by  using  the  promoting  drug  and  the  target 
 disease  as  the  prompt.  It  further  uses  BioBART  to  rewrite  the  generated  abstract.  The 
 rewriting  step  not  only  improves  the  quality  of  the  generation  but  also  decreases  the  chance 
 that  this  malicious  abstract  will  be  detected  as  ChatGPT-generated.  32–35  We  evaluated 
 Scorpius  by  mixing  the  malicious  abstract  with  3,818,528  real  medical  paper  abstracts.  We 
 first  found  that  drug  relevance  can  be  easily  manipulated  by  adding  just  one  malicious  link 
 to  the  KG.  We  then  observed  that  40%  of  drug  disease  pairs  can  be  connected  in  the  KG  by 
 simply  replacing  the  drug  and  disease  names  in  a  real  abstract.  Finally,  we  found  that 
 Scorpius  is  able  to  increase  the  relevance  of  71.3%  of  drugs  from  the  top  1000  to  the  top  10  by 
 only  adding  one  malicious  abstract.  Collectively,  Scorpius  successfully  poisons  medical  KGs 
 and  manipulates  downstream  applications,  demonstrating  the  importance  of  accountable 
 and trustworthy medical knowledge discovery in the era of LLMs. 

 Results 
 Overview of poisoning medical knowledge graphs 
 We  first  use  the  following  scenario  to  introduce  our  framework.  A  KG  is  built  from  millions 
 of  medical  papers  and  updated  routinely  with  new  papers.  KG  consumers  (e.g.,  scientists) 
 use  this  KG  to  identify  the  relevant  drug  to  a  target  disease.  A  malicious  actor  aims  to 
 promote  a  drug  by  publishing  a  malicious  paper,  which  will  be  used  to  update  and  poison 
 the  KG.  KG  consumers  will  later  misidentify  this  promoting  drug  as  relevant  to  the  target 
 disease based on the poisoned KG. 

 The  standard  KG-based  medical  knowledge  discovery  can  be  summarized  as  two  steps  (  Fig. 
 1a  ).  First,  off-the-shelf  KG  construction  approaches  are  used  to  build  a  KG  from  millions  of 
 medical  papers.  Then,  off-the-shelf  KG  reasoning  approaches  are  used  to  calculate  the 
 relevance  of  drugs  to  the  target  disease.  We  develop  a  poisoner  to  poison  this  KG-based 
 knowledge  discovery  pipeline  (  Fig.  1b  ).  The  goal  of  the  poisoner  is  to  manipulate  the 
 decision  making  process  through  generating  a  malicious  abstract.  We  formulate  the  poisoner 
 as  a  conditional  text  generator.  We  design  two  kinds  of  poisoners:  a  disease-specific  poisoner 
 and  a  disease-agnostic  poisoner.  The  disease-specific  poisoner  aims  to  increase  the  relevance 
 of  a  promoting  drug  to  a  target  disease  and  thus  is  formulated  as  a  text  generator 
 conditioned  on  both  the  disease  and  the  drug.  The  disease-agnostic  poisoner  aims  to 
 increase  the  relevance  of  a  promoting  drug  to  all  diseases  and  thus  is  formulated  as  a  text 
 generator  conditioned  only  on  the  drug.  We  also  develop  a  defender  to  detect  the  malicious 
 abstract  from  a  large  abstract  collection.  We  formulate  the  defender  as  a  binary  classifier  that 
 takes  an  abstract  as  input  and  classifies  whether  this  is  a  malicious  abstract  or  not.  This 
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 defender  cannot  be  addressed  by  existing  AI-generation  detecting  tools  36–39  because  it  needs 
 to consider how much this abstract will impact the reasoning on the KG. 

 Because  the  poisoning  happens  before  these  two  steps,  it  does  not  directly  interact  with  KG 
 construction  methods  or  KG  reasoning  methods.  Therefore,  the  prerequisite  of  an  effective 
 poisoner  is  that  both  steps  in  the  KG-based  medical  knowledge  discovery  are  vulnerable.  As 
 a result, we first investigate the vulnerability of these two steps. 

 Medical knowledge graphs are vulnerable 
 We  first  sought  to  examine  the  second  step  in  the  KG-based  medical  knowledge  discovery, 
 which  reflects  the  vulnerability  of  medical  knowledge  graphs.  In  particular,  we  built  a  KG 
 that  contains  16,468  drugs,  5,379  diseases,  and  38,080  genes  from  3,818,528  medical  papers 
 (see  Methods  ).  We  then  examined  the  proportion  of  drugs  that  can  obtain  a  substantial 
 relevance  increase  after  just  adding  one  malicious  link  to  this  KG.  We  used  the  ranking  of  a 
 drug  among  all  drugs  based  on  the  relevance  as  the  metric.  We  first  evaluated  the 
 disease-specific  se�ing  by  adding  one  malicious  link  between  the  promoting  drug  and  the 
 target  disease.  We  calculated  the  drug  ranking  using  three  KG  reasoning  approaches, 
 including  DistMult,  40  ConvE,  41  and  ComplEx  42  (  Fig.  2a-c  ).  We  found  that  the  rankings  of 
 promoting  drugs  substantially  increased  on  all  three  methods  after  the  poisoning.  In 
 particular,  48.2%  and  64.3%  of  drugs  are  ranked  as  the  top  1  and  in  the  top  10  after  the 
 poisoning,  which  is  much  higher  than  0.3%  and  1.9%  before  the  poisoning.  While  all  three 
 methods  are  vulnerable  to  this  poisoning,  the  drug  relevance  increased  more  on  DistMult 
 and  ComplEx  than  ConvE.  Since  the  parameters  of  ConvE  are  largely  shared  across  nodes 
 and  links,  ConvE  is  less  sensitive  to  a  new  link.  The  substantial  drug  relevance  of  all  three 
 methods  by  only  adding  one  malicious  link  demonstrates  the  vulnerability  of  medical  KG, 
 serving  as  the  basis  for  a  malicious  actor  to  manipulate  the  decision  making  of  KG 
 consumers. 

 Next,  we  evaluated  the  disease-agnostic  se�ing  where  the  goal  is  to  increase  the  relevance  of 
 a  drug  to  all  diseases.  This  se�ing  is  more  challenging  for  the  poisoner  because  it  aims  to 
 impact  many  diseases  by  only  adding  a  few  malicious  links.  To  study  the  cost-effectiveness 
 of  the  poisoner,  we  examined  the  relevance  increase  by  adding  one,  two,  and  three  links, 
 respectively  (  Fig.  2d-f  ).  Similar  to  our  observation  in  the  disease-specific  se�ing,  we  found 
 that  the  ranking  of  all  drugs  increased  substantially.  Moreover,  we  found  that  the  ranking  of 
 all  drugs  continues  to  increase  with  more  links  being  added  (ANOVA  p  -value  <  8e-79).  The 
 increase  converged  after  adding  10  links  (  Supplementary  Figure  1  ).  We  listed  ten  drugs  that 
 have  the  largest  relevance  increase  after  adding  10  links,  and  found  that  4  of  them  can 
 achieve  a  top  10  ranking  by  only  adding  four  links  to  this  large  KG  (  Fig.  2g  ).  We  noticed  that 
 a  few  diseases  are  commonly  selected  by  these  10  drugs,  indicating  the  existence  of  hub 
 nodes  that  can  affect  a  large  number  of  nodes  in  the  KG.  The  large  improvement  of  drug 
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 relevance  in  both  disease-specific  and  disease-agnostic  se�ings  confirms  the  vulnerability  of 
 medical KGs, motivating us to develop a defender to detect these malicious links. 

 Knowledge graph construction is vulnerable 
 We  next  sought  to  validate  whether  existing  KG  construction  methods  are  vulnerable  by 
 examining  how  many  pairs  of  nodes  in  the  KG  can  be  connected  by  adding  just  one 
 malicious  abstract  into  the  paper  collection.  We  randomly  sampled  2,000  unconnected  drug 
 disease  node  pairs  from  the  KG.  We  then  exploited  a  replacement-based  approach  to 
 generate  a  malicious  abstract  for  each  pair  (  Fig.  3a  ).  Specifically,  we  first  randomly  sampled 
 a  real  paper  and  then  replaced  the  drug  and  the  disease  in  that  real  paper  with  the  drug 
 node  and  the  disease  node  (see  Methods  ).  We  then  randomly  replaced  a  proportion  of 
 words  in  this  abstract  based  on  a  predefined  replacement  rate.  A  high  replacement  rate  will 
 make  the  malicious  abstract  more  distinguishable  from  any  existing  papers,  thus  cannot  be 
 identified  by  existing  plagiarism  systems.  36–39  We  assessed  four  different  relation  extraction 
 methods,  including  GNBR,  3  UIE,  43  TDERR,  44  and  LUKE.  45  Each  of  these  methods  was  used  to 
 extract  relations  from  the  malicious  abstract,  which  will  later  be  added  as  a  new  link  into  the 
 KG.  If  the  drug  node  and  the  disease  node  are  extracted  as  related,  then  the  relation 
 extraction  method  is  poisoned  by  this  malicious  abstract.  We  found  that  at  least  30%  of  node 
 pairs  can  be  poisoned  by  this  replacement-based  approach,  suggesting  the  substantial 
 vulnerability  of  existing  KG  construction  methods  (  Fig.  3b-e  ).  Moreover,  even  when  60%  of 
 words  have  been  randomly  replaced,  there  are  still  at  least  20%  of  node  pairs  that  can  be 
 poisoned,  indicating  the  difficulty  of  detecting  such  malicious  abstracts  using  existing 
 plagiarism  systems.  Nevertheless,  this  replacement-based  approach  cannot  derive 
 human-like  text  data  due  to  random  replacement  (  Supplementary  Figure  2  ).  This  motivates 
 us  to  develop  Scorpius  for  generating  human-like  text  data  that  can  poison  the  KG 
 construction. 

 Scorpius poisons knowledge graphs 
 After  confirming  the  vulnerability  of  both  medical  knowledge  graphs  and  knowledge  graph 
 construction  methods,  we  next  evaluated  the  performance  of  Scorpius  on  generating 
 malicious  abstracts  to  manipulate  drug  relevance.  Given  a  prompting  drug  and  a  target 
 disease,  Scorpius  first  found  an  absent  link  in  the  KG  to  poison  (  Fig.  4a  ).  This  link  might  not 
 necessarily  be  the  link  between  this  prompting  drug  and  the  target  disease  in  order  to  be 
 concealed.  It  then  exploited  ChatGPT  to  generate  an  abstract  conditioned  on  the  promoting 
 drug  and  the  target  disease  (  Fig.  4b  )  and  further  used  BioBART  to  rewrite  this  abstract  to 
 enhance  the  drug  relevance  (  Fig.  4c  ).  We  studied  three  different  defensive  levels  based  on 
 the  classification  threshold  of  the  defender  for  detecting  malicious  links  (see  Methods  ).  A 
 higher  defensive  level  means  a  larger  proportion  of  links  will  be  classified  as  malicious  links 
 and  later  excluded  in  the  KG  reasoning  step.  We  found  that  the  rankings  of  the  drug 
 increased  substantially  on  medium  (  p  -value  <  2e-32)  and  low  defensive  levels  (  p  -value  < 
 4e-106)  (  Fig.  4d,e  ),  demonstrating  the  possibility  of  enhancing  the  relevance  of  the 
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 prompting  drug  by  adding  only  one  abstract.  The  improvement  on  the  high  defensive  level 
 is  less  prominent  (  Fig.  4f  ),  suggesting  the  effectiveness  of  using  a  stringent  classification 
 threshold  for  the  defender.  We  next  compared  Scorpius  with  ChatGPT  and  an  insertion 
 approach  (  Fig.  4g  ).  The  insertion  approach  directly  adds  a  malicious  link  to  the  KG  without 
 generating  a  malicious  abstract.  Therefore,  it  can  be  regarded  as  an  upper  bound  for  this 
 task.  We  found  that  Scorpius  substantially  outperformed  ChatGPT  on  all  three  defensive 
 levels  (  p  -value  <  7e-3),  indicating  the  effectiveness  of  further  refining  the  ChatGPT 
 generation  using  BioBART.  Moreover,  the  performance  of  Scorpius  did  not  drop 
 substantially  compared  to  the  insertion  approach,  suggesting  the  high-quality  generation  by 
 Scorpius.  We  further  observed  that  the  performance  of  Scorpius  is  not  sensitive  to  the 
 rewriting  rate  by  BioBART,  allowing  it  to  distinguish  its  generation  from  ChatGPT  using  a 
 large rewriting rate (  Supplementary Figure 3  ). 

 Finally,  we  evaluated  the  performance  of  Scorpius  in  the  disease-agnostic  se�ing,  where  the 
 goal  is  to  increase  the  relevance  of  a  drug  to  all  diseases.  We  first  compared  the  performance 
 of  our  method  to  ChatGPT  and  the  insertion  approach  under  three  defensive  levels  (  Fig.  4h, 
 Supplementary  Figure  4-6  ).  We  found  that  Scorpius  again  outperformed  ChatGPT  on  all 
 three  se�ings.  We  also  noticed  that  the  performance  of  Scorpius  is  worse  than  the  insertion 
 approach,  especially  compared  to  their  difference  in  the  disease-specific  se�ing  (  Fig.  4g  ). 
 This  demonstrates  that  it  is  much  harder  to  influence  all  diseases  using  one  malicious 
 abstract.  Finally,  we  use  perplexity  to  measure  the  fluency  of  Scorpius’s  generation  and 
 found  that  Scorpius  has  a  be�er  perplexity  than  ChatGPT  in  both  disease-specific  and 
 disease-agnostic  se�ings  (  Supplementary  Figure  7-8  ).  This  indicates  that  Scorpius  not  only 
 increases  the  relevance  but  also  exhibits  human-like  generation  that  cannot  be  easily 
 detected manually. 

 Disucssion 
 We  have  studied  a  novel  problem  of  medical  knowledge  poisoning,  where  a  malicious  paper 
 is  generated  by  large  language  models  to  poison  medical  knowledge  graphs  and  further 
 impact  downstream  applications.  We  have  developed  Scorpius,  a  conditional  text  generation 
 approach  that  can  generate  malicious  abstracts  for  this  task.  We  found  that  Scorpius’s 
 generation  is  be�er  than  ChatGPT  on  a  knowledge  graph  of  59,927  nodes  collected  from 
 3,818,528  medical  papers.  Our  experiments  demonstrate  the  vulnerability  of  the  existing 
 pipeline  for  knowledge  discovery  from  medical  papers  and  the  possibility  of  influencing 
 downstream applications by using large language models to generate a malicious paper. 

 There  are  a  few  limitations  we  would  like  to  address  in  the  future.  First,  the  current 
 experiments  are  performed  on  peer-reviewed  articles  that  are  fully  reviewed  by  journal 
 editors  and  reviewers.  In  contrast,  papers  on  preprint  servers  are  less  likely  to  be  examined 
 and  are  thus  more  vulnerable  to  medical  knowledge  poisoning.  We  plan  to  test  our 
 framework  on  preprint  papers  in  the  future.  Second,  the  current  defender  we  developed  can 
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 effectively  identify  malicious  links  in  the  KG  at  the  high  defensive  level.  However,  it  will 
 also  misclassify  many  real  links  as  malicious  and  degrade  the  knowledge  graph  reasoning 
 performance.  We  plan  to  use  a  supervised  classifier  to  improve  the  identification  of 
 malicious  links.  Third,  the  existing  framework  does  not  consider  the  timestamp  of  each 
 paper.  Intuitively,  emerging  topics  (e.g.,  COVID-19)  are  more  likely  to  be  poisoned  since 
 they  have  larger  visibility.  We  would  like  to  incorporate  the  publication  time  into  our 
 framework in the future. 

 Figure legend 
 Fig.  1  Overview  of  medical  knowledge  poisoning.  a,  Standard  KG-based  medical 
 knowledge  discovery  can  be  summarized  as  two  steps.  The  first  step  is  knowledge  graph 
 construction,  where  relation  extraction  methods  are  applied  to  a  collection  of  medical 
 papers.  Each  extracted  relation  will  become  one  link  in  the  knowledge  graph.  The  second 
 step  is  knowledge  graph  reasoning,  where  nodes  (e.g.,  drugs,  diseases,  genes)  are 
 co-embedded  and  the  distance  between  embeddings  is  used  to  calculate  the  relevance 
 between  two  nodes.  b,  To  poison  this  KG-based  medical  knowledge  discovery,  Scorpius 
 generates  a  malicious  paper  and  mixes  this  paper  with  real  papers.  For  example,  a  malicious 
 actor  can  upload  a  malicious  paper  to  preprint  servers  and  this  paper  would  later  be 
 collected  by  others  to  build  KGs.  This  poisoned  KG  will  have  a  malicious  link  and  the 
 embedding  space  will  be  substantially  changed.  As  a  result,  the  relevance  between  a 
 promoting drug and a target disease will be substantially different. 

 Fig.  2  Examining  the  vulnerability  of  medical  knowledge  graphs.  a-c,  Sca�er  plots 
 comparing  the  disease-specific  ranking  of  drugs  before  and  after  the  poisoning  using  three 
 KG  reasoning  approaches,  including  DistMult  (  a  ),  ConvE  (  b  ),  and  ComplEx  (  c  ).  d-f,  Sca�er 
 plots  comparing  the  disease-agnostic  ranking  of  drugs  before  and  after  the  poisoning  by 
 adding  one  (  d  ),  two  (  e  ),  or  three  (  f  )  malicious  links.  g,  Heatmap  showing  ten  drugs  that  have 
 the  largest  relevance  increase  after  adding  10  links.  Circle  size  represents  ranking.  Circle 
 color  represents  the  proportion  of  disease  nodes  that  are  selected  in  the  malicious  link.  Hub 
 nodes  are  those  that  are  commonly  connected  to  many  diseases.  Hub  nodes  are  marked  in 
 the circle. 

 Fig.  3  Examining  the  vulnerability  of  knowledge  graph  construction.  a,  Diagram  of  the 
 replacement-based  approach.  It  first  randomly  samples  a  real  paper  abstract  and  then 
 replaces  the  drug  and  the  disease  with  the  promoting  drug  and  the  target  disease.  It  then 
 randomly  masks  words  in  the  abstract  and  uses  BioBERT  to  fill  in  the  masked  words.  b-e, 
 Plots  comparing  the  poisoning  rate  against  the  replacement  rate.  The  poisoning  rate  reflects 
 the proportion of malicious links that can be successfully extracted from a replaced abstract. 
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 Fig.  4  Performance  of  Scorpius  on  medical  knowledge  poisoning.  a-c,  Overview  of 
 Scorpius.  Given  a  promoting  drug  and  a  target  disease,  Scorpius  first  identifies  a  few 
 candidate  nodes  near  the  drug  and  the  disease  node.  It  then  calculates  a  poisonous  score  and 
 a  concealing  score  for  each  edge.  Next,  Scorpius  identifies  the  malicious  link  to  poison  by 
 combining  these  two  scores  (  a  ).  Scorpius  then  finds  a  real  medical  sentence  that  has  been 
 used  to  identify  the  same  relation  type  and  replace  the  drug  and  the  disease  in  it  with  the 
 promoting  drug  and  the  target  disease  (template).  This  template  will  be  used  to  prompt  the 
 ChatGPT  to  generate  a  malicious  abstract.  Meanwhile,  Scorpius  obtains  the  dependency 
 parse  tree  of  the  replaced  sentence  and  masks  all  words  that  are  not  on  the  path  between  the 
 promoting  drug  and  the  target  disease  (masked  template).  Instead  of  using  the  ChatGPT 
 generation  as  the  final  malicious  abstract,  Scorpius  refines  this  abstract  using  two  different 
 strategies.  This  allows  Scorpius  to  distinguish  its  generation  from  ChatGPT  (  b  ).  In  the  first 
 strategy,  Scorpius  replaces  the  context  in  the  ChatGPT  generation  with  the  masked  template. 
 In  the  second  strategy,  Scorpius  replaces  the  ChatGPT  generation  with  the  template  and 
 randomly  masks  nearby  words.  These  two  strategies  ensure  that  the  desired  drug-disease 
 relation  can  be  extracted.  Scorpius  then  exploits  BioBART  to  fill  in  masks  for  both  strategies. 
 Finally,  Scorpius  selects  the  generation  that  has  be�er  perplexity  in  order  to  make  the 
 generation  human-like  data.  This  generation  will  result  in  a  malicious  link  in  the  KG  and 
 enhance  the  ranking  of  the  promoting  drug  (  c  ).  d-f,  Sca�er  plots  comparing  the  ranking 
 before  and  after  the  poisoning  under  low  (  d  ),  medium  (  e  ),  and  high  (  f  )  defensive  levels.  g,h, 
 Bar  plots  comparing  ranking  after  poisoning  using  three  different  methods  under  different 
 defensive levels in the disease-specific se�ing (  g  )  and the disease-agnostic se�ing (  h  ). 

 Supplementary  Figure  1.  Sca�er  plots  comparing  the  disease-agnostic  ranking  of  drugs 
 before and after the poisoning by adding different numbers of malicious links. 

 Supplementary  Figure  2.  Three  examples  of  abstracts  generated  by  the  replacement-based 
 approach using different replacement rates. 

 Supplementary  Figure  3.  Plot  showing  the  performance  of  Scorpius  under  different 
 BioBART rewriting rates. 

 Supplementary  Figure  4.  Sca�er  plot  comparing  the  ranking  before  and  after  the  poisoning 
 by Scorpius under the low defensive level. Each node is a drug. 

 Supplementary  Figure  5.  Sca�er  plot  comparing  the  ranking  before  and  after  the  poisoning 
 by Scorpius under the medium defensive level. Each node is a drug. 

 Supplementary  Figure  6.  Sca�er  plot  comparing  the  ranking  before  and  after  the  poisoning 
 by Scorpius under the high defensive level. Each node is a drug. 
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 Supplementary  Figure  7.  Sca�er  plot  comparing  the  perplexity  of  ChatGPT  generation  and 
 Scorpius generation in the disease-specific se�ing. 

 Supplementary  Figure  8.  Sca�er  plots  comparing  the  perplexity  of  ChatGPT  generation  and 
 Scorpius generation in the disease-agnostic se�ing. 
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 Methods 

 Problem se�ing of medical knowledge poisoning 

 Let  be  the  database  before  the  poisoning,  where  represents  the  -th  paper  with  𝐷 = { 𝑃 
 𝑖 
}

 𝑖 = 1 

 𝑁  𝑃 
 𝑖 

 𝑖 

 the  necessary  information  for  KG  construction  and  reasoning.  Each  paper  can  be  𝑃 
 formulated  as  a  sequence  of  sentences  ,  where  each  sentence  is  a  token  sequence  .  〈  𝑠 

 𝑖 
 〉  𝑠 

 𝑖 
 〈  𝑡 

 𝑖 
 〉 

 For  simplicity,  we  only  investigate  paper  abstracts  with  KG  construction  and 

 reasoning-related  information.  We  then  denoted  the  malicious  papers  as  and  the  poisoned  𝑃 
^

 database  as  .  A  knowledge  graph  extractor  can  construct  a  knowledge  graph  𝐷 
^

=  𝐷 ∪ { 𝑃 
^
}  ℰ 

 from  a  given  database,  formally  represented  as  and  .  A  knowledge  𝐺  ℰ ( 𝐷 ) =  𝐺  ℰ ( 𝐷 
^
) =  𝐺 

^

 graph  )  is  a  heterogeneous  directed  graph,  where  is  the  set  of  nodes,  𝐺 = ( 𝑉 ,     𝐸 ,     𝑇 ,     𝑅  𝑉 
 is  the  set  of  links,  is  the  set  of  node  types,  and  is  the  set  of  link  types  (also  𝐸 ⊆  𝑉 ×  𝑉  𝑇  𝑅 

 referred  to  as  relations).  For  each  node  ,  its  outdegree  is  denoted  as  and  indegree  𝑣 ∈  𝑉  𝑂 ( 𝑣 )
 as  .  The  knowledge  encapsulated  in  the  graph  is  represented  as  a  set  of  triplets:  𝐼 ( 𝑣 )  𝐺 

 ,  where  is  the  -th  triplet,  are  nodes  and  is  the  𝐺 = { 𝑧 
 𝑖 
    ≝    ( 𝑢 

 𝑖 
,  𝑟 

 𝑖 
,  𝑣 

 𝑖 
)}

 𝑖 = 1 

 |  𝐸  |  𝑧 
 𝑖 

 𝑖  𝑢 
 𝑖 
,     𝑣 

 𝑖 
∈  𝑉     𝑟 

 𝑖 
∈  𝑅 

 relation between them. 

 We  investigate  a  poison-defense  problem  se�ing  where  the  malicious  actor  aims  to  improve 
 the  ranking  of  the  poisoning  target  (measured  by  a  ranking  function  ),  while  the  defender  ℛ 
 tries  to  filter  out  extracted  malicious  links.  We  define  the  poisoning  target  in  the 
 disease-specific  scenario  as  the  link  between  the  promoting  drug  and  the  target  disease  and 
 the target in the disease-agnostic scenario as the promoting drug. 

 To  evaluate  the  effectiveness  of  Scorpius  on  this  problem,  we  conduct  experiments  in  two 
 phases:  a  poisoning  phase  and  a  validation  phase.  During  the  poisoning  phase,  we  first 
 select  the  poisoning  target  with  a  selector  and  then  generate  poisonous  and  concealing  𝒮 
 malicious  links  with  a  malicious  link  generator  .  Finally,  a  text  generator  is  introduced  to  𝐴  𝒢 

 generate  malicious  papers  which  simultaneously  maximizes  both  the  generated  text  𝑃 
^

 fluency  and  the  malicious  links  probability.  During  the  validation  phase,  the  extractor  first  ℰ 

 constructs  the  poisoned  knowledge  graph  based  on  the  poisoned  database  .  We  then  𝐷 
^

 employ  a  defender  to  filter  out  suspect  links.  Finally,  we  compare  the  ranking  score  of  the  𝒟 
 poisoning  target  from  the  unpoisoned  graph  and  poisoned  graph  under  different  defense 
 levels  with  the  ranking  function  .  We  will  explain  the  details  of  each  designated  module  in  ℛ 
 the next sections. 
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 Knowledge graph construction 
 We  follow  the  method  described  in  GNBR  3  to  instantiate  our  extractor  ,  which  ℰ :  𝐷     ⟼     𝐺 
 utilizes  PubTator  46  to  extract  a  knowledge  graph  from  Medline  47  abstracts.  The  overall 
 process of  can be summarized as follows:  ℰ 

 1.  Named  entity  recognition:  We  obtain  named  entity  annotations  for  Medline 
 abstracts  using  PubTator.  For  a  sentence  ,  if  it  contains  an  entity  (which  𝑠 ∈  𝑃  𝑣 
 corresponds  to  a  node  in  ),  PubTator  annotates  the  corresponding  textual  phrase  of  𝐺 
 entity  in  ,  which  is  denoted  as  ,  along  with  its  position  and  type.  The  entity  𝑣  𝑠  𝑇𝑒𝑥  𝑡 

 𝑣 

 types include 'drug', 'gene', and 'disease' in PubTator. 
 2.  Dependency  path  extraction:  For  each  sentence  ,  we  use  the  Stanford  𝑠 ∈  𝑃 

 Dependency  Parser  48  to  obtain  its  dependency  parse  tree  .  We  enumerate  all  valid  𝑇 ( 𝑠 )
 entity  pairs  involved  in  and  extract  the  shortest  path  in ( 𝑢 ,  𝑣 )  𝑠  𝑆𝑃 (( 𝑢 ,  𝑣 ),  𝑠 )  𝑇 ( 𝑠 )
 between  corresponding  text  and  .  The  shortest  path  is  a  word  𝑇𝑒𝑥  𝑡 

 𝑢 
 𝑇𝑒𝑥  𝑡 

 𝑣 
 𝑆𝑃 (( 𝑢 ,  𝑣 ),  𝑠 )

 sequence  starting  from  and  ending  at  (  Fig.  4a  ).  Following  GNBR,  valid  𝑇𝑒𝑥  𝑡 
 𝑢 

 𝑇𝑒𝑥  𝑡 
 𝑣 

 pairs  fall  into  one  of  the  seven  categories:  (1)  drug-gene,  (2)  gene-drug,  (3) ( 𝑢 ,  𝑣 )
 drug-disease, (4) disease-drug, (5) gene-disease, (6) disease-gene and (7) gene-gene. 

 3.  Assigning  dependency  paths  to  relations:  In  this  step,  GNBR  employs  a  clustering 
 and  manual  annotation  approach  to  obtain  a  mapping  function  .  This  𝑔 :     𝑆𝑃     ⟼     𝑟 ∈  𝑅 
 function  is  stored  as  a  database,  allowing  us  to  directly  utilize  it.  For  a  sentence  and  𝑠 
 the  associated  dependency  path  ,  the  corresponding  relation  is  defined  as  𝑆𝑃 (( 𝑢 ,  𝑣 ),  𝑠 )

 .  The  path  is  ignored  if  it’s  out  of  ’s  𝑟 (( 𝑢 ,  𝑣 ),  𝑠 ) =  𝑔 ( 𝑆𝑃 (( 𝑢 ,  𝑣 ),  𝑠 ))  𝑆𝑃 (( 𝑢 ,  𝑣 ),  𝑠 )  𝑔 
 domain. 

 4.  Assigning  links  to  relations:  If  multiple  relation  types  are  identified  between  the 
 same  nodes  and  ,  we  used  majority  voting  to  determine  the  relation  :  𝑢  𝑣  𝑟 ( 𝑢 ,  𝑣 )

 .  Finally,  we  extract  all  the  triplets  𝑟 ( 𝑢 ,  𝑣 ) =  𝑀𝑎𝑗𝑜𝑟𝑉𝑜𝑡  𝑖𝑛𝑔 
 𝑃 ∈ 𝐷 , 𝑠 ∈ 𝑃 

 𝑟 (( 𝑢 ,  𝑣 ),  𝑠 )

 from the Medline, the collection of which forms the knowledge graph  . ( 𝑢 ,  𝑟 ( 𝑢 ,  𝑣 ),  𝑣 )  𝐺 
 Notably,  since  GNBR  only  offers  the  intermediate  results  of  the  first  three  steps  of  ,  our  ℰ 
 instantiation  of  the  extractor  may  differ  slightly  from  the  original  implementation.  To  ℰ 
 minimize  the  potential  difference,  we  start  from  GNBR's  intermediate  results  and  perform 

 the  fourth  step  of  when  constructing  .  When  constructing  ,  we  perform  the  whole  ℰ  𝐺  𝐺 
^

 pipeline on  and combine the extracted triplets with  as  .  𝑃 
^

 𝐺  𝐺 
^

=  𝐺 ∪  ℰ ({ 𝑃 
^
})

 Ranking based on relevance 
 We  adapted  the  forms  of  the  ranking  function  in  the  disease-specific  and  disease-agnostic 
 scenarios.  In  the  disease-specific  scenario,  given  the  relationship  r  and  a  node  ,  the  ranking  𝑢 
 function  yields  a  rank  for  the  candidate  node  .  A  ℛ 

 1 
: (( 𝑢 ,  𝑟 ,  𝑣 ),  𝐺 )    ⟼     ℛ 

 1 
(( 𝑢 ,  𝑟 ,  𝑣 ),  𝐺 ) ∈  ℕ  𝑣 

 higher  rank  corresponds  to  higher  confidence  of  the  triplet  .  In  the  disease-agnostic ( 𝑢 ,  𝑟 ,  𝑣 )
 scenario,  ranking  function  yields  a  rank  that  reflects  the  ℛ 

 2 
: ( 𝑣 ,  𝐺 )    ⟼  ℛ 

 2 
( 𝑣 ,  𝐺 ) ∈  ℕ 

 significance  of  node  appearing  in  graph  ,  a  higher  rank  indicates  higher  significance.  𝑣  𝐺 
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 Then,  the  poisoning  objective  in  both  scenarios  can  be  formulated  as:  ℛ 
 1 
(( 𝑢 ,  𝑟 ,  𝑣 ),  𝐺 

^
) <

 , and  .  ℛ 
 1 
(( 𝑢 ,  𝑟 ,  𝑣 ),  𝐺 )  ℛ 

 2    
( 𝑣 ,  𝐺 

^
) <  ℛ 

 2    
( 𝑣 ,  𝐺 )

 1.  Disease-specific  triplet  ranking  function  :  First,  we  obtain  the  node  and  relation  ℛ 
 1 

 embeddings  from  the  graph  ,  which  are  denoted  as  =  {  V  ,  R  }.  Here  V  is  the  𝐺  𝜃 ∈  ℝ  |  𝑉  | × 𝑑    

 node  embedding  matrix,  R  is  the  relation  embedding  matrix,  and  is  the ∈  ℝ  |  𝑅  | × 𝑑  𝑑 
 embedding  dimension.  To  learn  embeddings  that  both  capture  semantic  and 
 structural  information,  we  define  a  score  function  to  calculate  the  uncertainty  of  𝑓 
 interactions  between  nodes  and  relations.  We  adopt  three  loss  functions  following 
 DistMult,  40  ConvE  41  and ComplEx  42  respectively: 

 u  r  v  ,  𝑓 (( 𝑢 ,  𝑟 ,  𝑣 ),  𝜃 ) =− ⊙ *
 (  u  ,  r  )  v  ,  𝑓 (( 𝑢 ,  𝑟 ,  𝑣 ),  𝜃 ) =−  𝑐𝑜𝑛𝑣 *

 (  u  r  (  v  ) ),  𝑓 (( 𝑢 ,  𝑟 ,  𝑣 ),  𝜃 ) =− ℝ ⊙ *  𝑐𝑜𝑛𝑗 
 where  u  ,  r  and  v  are  embedding  vectors  corresponding  to  and  .  For  DistMult,  𝑢 ,  𝑟  𝑣 ⊙
 is  the  element-wise  Hadamard  product,  is  the  dot  product.  For  ConvE,  is  a *  𝑐𝑜𝑛𝑣 (·)
 convolution  neural  network  with  learnable  parameters.  For  ComplEx,  u  ,  r  and  v  are 
 complex  vectors,  is  conjugate  for  complex  vectors.  During  training,  𝑐𝑜𝑛𝑗 (·)
 embedding  vectors  is  optimized  to  minimize  the  loss  function  on  existing  triplets  𝜃 
 and maximize it on non-existing triplets. The training objective can be formulated as: 

 ℒ 
 𝑒𝑚𝑏 

(( 𝑢 ,  𝑟 ,  𝑣 ),  𝜃 ) =− log exp(− 𝑓 (( 𝑢 , 𝑟 , 𝑣 ), 𝜃 ))
Σ

 𝑢  ' ∈ 𝑉 
exp(− 𝑓 (( 𝑢  ' , 𝑟 , 𝑣 ), 𝜃 )) − log exp(− 𝑓 (( 𝑢 , 𝑟 , 𝑣 ), 𝜃 ))

Σ
 𝑣  ' ∈ 𝑉 

exp(− 𝑓 (( 𝑢 , 𝑟 , 𝑣  ' ), 𝜃 )) .

 Then  the  best  parameter  is  defined  as  .  Based  on  the  𝜃 
^

=     𝑎𝑟𝑔𝑚𝑖  𝑛 
 𝜃 
    1 

 |  𝐸  | 
 𝑧    ∈ 𝐺 
∑  ℒ 

 𝑒𝑚𝑏 
( 𝑧 ,  𝜃 )

 optimized  parameter  ,  we  construct  the  ranking  function  ,  to  compute  the  relative  𝜃 
^

 ℛ 
 1 

 confidence  of  a  triplet.  Specifically,  given  a  triplet  ,  we  first  construct  a  query ( 𝑢 ,  𝑟 ,  𝑣 )
 .  We  then  define  a  candidate  sequence  for  ,  for  instance,  if  is  a ( 𝑢 

 𝑥    
,  𝑟 ,  𝑣 )  𝐶 

 1 
=  〈  𝑢 

 𝑖 
 〉  𝑢 

 𝑥    
 𝑣 

 disease  name  and  is  ‘treatment’,  then  would  be  the  sequence  of  all  ‘drug’  nodes.  𝑟  𝐶 
 1 

 Subsequently,  we  sort  based  on  the  loss  function  ,  resulting  in  the  sorted  𝐶 
 1 

 𝑓 

 sequence  .  Finally,  we  use  the  rank  of  in  as  the  output  of  .  The  entire  process  𝐶 
 1 
 '  𝑢  𝐶 

 1 
 '  ℛ 

 1 

 can be formalized as follows: 

 𝐶 
 1 
 ' =  𝑆𝑜𝑟𝑡 

 𝑘𝑒𝑦 = 𝑓 (( 𝑢 
 𝑖 
,    𝑟 ,    𝑣 ),    𝜃 

^
)
( 𝐶 

 1 
),

 ℛ 
 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑢     |     𝑟 ,  𝑣 ,  𝐺 ) =  𝑃𝑜𝑠 ( 𝑢 ,  𝐶 

 1 
 ' ),

 or  .  ℛ 
 1 
(( 𝑢 ,  𝑟 ,  𝑣 ),  𝐺 ) =  ℛ 

 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑢     |     𝑟 ,  𝑣 ,  𝐺 )  ℛ 

 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑣     |     𝑟 ,  𝑢 ,  𝐺 )

 Here,  represents  the  sorting  function,  calculates  the  position  of  in  .  𝑆𝑜𝑟𝑡  𝑃𝑜𝑠  𝑢     𝐶 
 1 
 ' 

 is  computed  symmetrically  to  ,  and  the  final  ℛ 
 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑣     |     𝑟 ,  𝑢 ,  𝐺 )  ℛ 

 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑢     |     𝑟 ,  𝑣 ,  𝐺 )
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 choice  between  these  two  ranks  as  the  output  depends  on  which  node  the  poisoner 
 intends to manipulate. 

 2.  Disease-agnostic  significance  ranking  function  :  We  first  use  PageRank  49  to  ℛ 
 2 

 obtain  a  significance  score  for  each  node  .  The  core  assumption  of  𝑃𝑅 ( 𝑣 )  𝑣 ∈  𝑉 
 PageRank  is  that  more  important  nodes  are  more  likely  to  be  pointed  to  by  other 
 nodes.  After  randomly  initializing  all  ,  PageRank  iteratively  updates  𝑃𝑅 ( 𝑣 )  𝑃𝑅 ( 𝑣 )
 using the following formula: 

 𝑃𝑅 ( 𝑣 ) =  1 −λ
 |  𝑉  | + λ

 𝑢 ∈ ℬ 
 𝑣 

∑  𝑃𝑅 ( 𝑢 )
 𝑂 ( 𝑢 ) ,

 where  is  the  damping  factor,  represents  the  set  of  nodes  pointing λ ∈ [ 0 ,  1 ] ⊆  ℝ  ℬ 
 𝑣 

 to  node  .  Based  on  the  learned  significance  score  ,  we  construct  the  ranking  𝑣  𝑃𝑅 
 function  ,  to  calculate  the  global  significance  of  a  node.  Given  a  node  ,  we  first  ℛ 

 2 
 𝑣 

 define  a  candidate  sequence  ,  which  includes  all  nodes  of  the  same  type  as  .  𝐶 
 2 

=  〈  𝑣 
 𝑖 
 〉  𝑣 

 Then,  we  sort  based  on  the  score  function  ,  resulting  in  the  sorted  sequence  .  𝐶 
 2 

 𝑃𝑅  𝐶 
 2 
 ' 

 Finally,  we  use  the  proportionate  rank  of  in  as  the  output  of  .  The  entire  𝑣  𝐶 
 2 
 '  ℛ 

 2 

 process can be formulated as follows: 

 𝐶 
 2 
 ' =  𝑆𝑜𝑟𝑡 

 𝑘𝑒𝑦 =− 𝑃𝑅 ( 𝑣 
 𝑖    
)
( 𝐶 

 2 
),

 ℛ 
 2    

( 𝑣 ,  𝐺 ) =  𝑃𝑜𝑠 ( 𝑣 ,  𝐶 
 2 
 ' ).

 Selecting poisoning target 
 Enumerating  all  possible  poisoning  targets  is  highly  time-consuming  and  computationally 
 challenging.  Therefore,  we  employ  a  target  selector  to  sample  a  subset  of  representative  𝒮 
 poisoning  targets,  which  allows  us  to  evaluate  the  performance  of  the  entire  poison  and 
 defense process based on these selected targets. 

 1.  Disease-specific  poisoning  target  selector  :  For  the  disease-specific  scenario,  we  𝒮 
 1 

 start  from  a  representative  drug  set  ,  as  the  target  for  manipulating  the  𝐷𝑟𝑢𝑔 ‾

 rankings.  To  make  such  a  drug  set,  we  identify  entities  belonging  to  the 
 'Pharmacologic  Substance'  and  'Clinical  Drug'  categories  in  the  UMLS  database,  50  and 
 take  their  intersection  with  the  nodes  in  ,  resulting  in  the  set  .  Next,  from  𝐺  𝐷𝑟𝑢𝑔  𝐷𝑟𝑢𝑔 
 ,  we  determine  the  top  80  most  frequently  occurring  drugs  in  the  Medline  database 

 as  .  Subsequently,  for  each  ,  we  randomly  choose  5  disease  nodes  𝐷𝑟𝑢𝑔 ‾  𝑢 
 𝑖 

∈  𝐷𝑟𝑢𝑔 ‾

 ,  as  the  target  disease  set  .  Then,  we  set  the  relation  to  𝑣 ∈  𝑉 
 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

 𝑇𝑎𝑟𝑔𝑒𝑡 
 1 . 𝑖 
 𝑛𝑜𝑑𝑒  𝑟 

 ‘treatment’  and  construct  the  poisoning  target  link  set  for  each  as  𝑢 
 𝑖 

 .  Finally,  we  merge  all  target  link  sets  𝑇𝑎𝑟𝑔𝑒𝑡 
 1 , 𝑖 

= {( 𝑢 
 𝑖 
,  𝑟 ,  𝑣 )    |     𝑣 ∈  𝑇𝑎𝑟𝑔𝑒𝑡 

 1 . 𝑖 
 𝑛𝑜𝑑𝑒 }
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 corresponding  to  to  obtain  the  poisoning  target  set  in  the  disease-specific  scenario  𝑢 
 𝑖 

 as:  .  𝑇𝑎𝑟𝑔𝑒  𝑡 
 1 

=
 𝑢 

 𝑖 
∈ 𝐷𝑟𝑢𝑔 ‾
⋃  𝑇𝑎𝑟𝑔𝑒𝑡 

 1 , 𝑖 

 2.  Disease-agnostic  poisoning  target  selector  :  We  randomly  choose  400  drugs  from  𝒮 
 2 

 the  obtained  drug  set  ,  and  define  the  selected  drugs  as  the  poisoning  target  set  𝐷𝑟𝑢𝑔 
 in the disease-agnostic scenario:  .  𝑇𝑎𝑟𝑔𝑒  𝑡 

 2 

 Given  poisoning  target  and  ,  the  poisoning  goals  in  both  scenarios  can  be  𝑇𝑎𝑟𝑔𝑒  𝑡 
 1 

 𝑇𝑎𝑟𝑔𝑒  𝑡 
 2 

 represented  as:  ,  and  ℛ 
 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑢     |     𝑟 ,  𝑣 ,  𝐺 

^
) < ℛ 

 1 
 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 ( 𝑢     |     𝑟 ,  𝑣 ,  𝐺 ),    ( 𝑢 ,  𝑟 ,  𝑣 ) ∈  𝑇𝑎𝑟𝑔𝑒  𝑡 

 1 

 .  ℛ 
 2    

( 𝑣 ,  𝐺 
^

) <  ℛ 
 2    

( 𝑣 ,  𝐺 ),     𝑣 ∈  𝑇𝑎𝑟𝑔𝑒  𝑡 
 2 

 Selecting malicious links 
 To  effectively  poison  the  knowledge  graph  ,  we  define  a  generator  that  determines  the  𝐺  𝐴 
 optimal malicious link to be added to  .  𝐺 

 1.  Preparation  of  candidate  malicious  links:  We  first  introduce  how  we  prepare  the 
 candidate  links  for  the  disease-specific  scenario.  For  each  poisoning  target 

 ,  we  perform  a  breadth-first  search  centered  at  and ( 𝑢 
 𝑡 
,  𝑟 

 𝑡 
,  𝑣 

 𝑡 
) ∈  𝑇𝑎𝑟𝑔𝑒  𝑡 

 1 
 𝑢 

 𝑡 
 𝑣 

 𝑡 

 respectively,  to  explore  nodes  from  each  side,  and  then  aggregate  these  nodes  to  𝑛 
 𝑐 

 form  node  set  .  Considering  that  the  average  node  degree  in  is  approximately  10,  𝑉 
 𝑐 

 𝐺 

 we  set  .  Next,  within  ,  we  construct  fully  connected  links  and  enumerate  all  𝑛 
 𝑐 

=  20  𝑉 
 𝑐 

 possible link types to obtain candidate link set  as follows:  𝐶 ‾
 1 

 𝑙𝑖𝑛𝑘 

 .  𝐶 ‾
 1 

 𝑙𝑖𝑛𝑘 
= {( 𝑢 ,  𝑟 ,  𝑣 )    |     𝑢 ∈  𝑉 

 𝑐 
,  𝑟 ∈  𝑅 ,  𝑣 ∈  𝑉 

 𝑐 
}

 To  prepare  the  candidate  links  for  disease-agnostic  scenario,  for  each  poisoning 
 target  ,  we  enumerate  all  nodes  and  all  link  types,  resulting  in  the  𝑣 ∈  𝑇𝑎𝑟𝑔𝑒  𝑡 

 2 

 candidate link set  as follows:  𝐶 ‾
 2 

 𝑙𝑖𝑛𝑘 

 𝐶 
 2 ,   →
 𝑙𝑖𝑛𝑘 = {( 𝑢 ,  𝑟 ,  𝑣 )    |     𝑢 ∈  𝑉 ,  𝑟 ∈  𝑅 },

 𝐶 
 2 ,   ←
 𝑙𝑖𝑛𝑘 = {( 𝑣 ,  𝑟 ,  𝑢 )    |     𝑢 ∈  𝑉 ,  𝑟 ∈  𝑅 },

 .  𝐶 ‾
 2 

 𝑙𝑖𝑛𝑘 
=  𝐶 

 2 ,   →
 𝑙𝑖𝑛𝑘 ∪  𝐶 

 2 ,   ←
 𝑙𝑖𝑛𝑘 

 Both  and  then  undergo  a  rule-based  filtering  process  to  remove  some  𝐶 ‾
 1 

 𝑙𝑖𝑛𝑘 
 𝐶 ‾

 2 

 𝑙𝑖𝑛𝑘 

 inappropriate  candidate  links.  For  each  ,  there  are  two  rules  applied:  𝑧 ∈  𝐶 ‾
 1    

 𝑙𝑖𝑛𝑘 
 𝑜𝑟     𝐶 ‾

 2    

 𝑙𝑖𝑛𝑘 

 (1)  If  ,  it  is  filtered  out.  (2)  The  combination  of  node  types  and  link  types  in  𝑧 ∈  𝐺  𝑧 

 should  have  appeared  in  .  The  filtered  candidate  link  sets  are  denoted  as  and     𝐺  𝐶 
 1 
 𝑙𝑖𝑛𝑘 

 .  𝐶 
 2 
 𝑙𝑖𝑛𝑘 
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 2.  Calculation  of  poisonous  score:  First,  we  consider  the  poisonous  score  of  the 
 malicious  link  in  the  disease-specific  scenario.  We  aim  to  calculate  a  score 

 measuring  the  impact  of  adding  a  malicious  link  on  the  𝑠 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 : ( 𝑧 

 𝑚 
,  𝑧 

 𝑡 
)    ⟼ℝ     𝑧 

 𝑚 
∈  𝐶 

 1 
 𝑙𝑖𝑛𝑘 

 target  link  ,  it  would  be  time-consuming  to  retrain  all  knowledge  graph  𝑧 
 𝑡 

∈  𝑇𝑎𝑟𝑔𝑒  𝑡 
 1 

 embeddings.  To  address  this,  we  adopt  an  estimate  approach  inspired  by  the 
 Influence  Function.  51,52  We  first  upweight  with  a  small  weight  and  define  the  𝑧 

 𝑚 
 𝜀 

 new  optimal  embeddings  as  .  We  𝜃 
^

 𝜀 ,    𝑧 
 𝑚 

=  𝑎𝑟𝑔𝑚𝑖  𝑛 
 𝜃 

 1 
 |  𝐸  | 

 𝑧    ∈ 𝐺 
∑  ℒ 

 𝑒𝑚𝑏 
( 𝑧 ,  𝜃 ) +  𝜀  ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑚 
,  𝜃 )

 then calculate the impact of adding  on  as follows:  𝑧 
 𝑚 

 𝜃 
^

∂ 𝜃 
^

 𝜀 ,    𝑧 
 𝑚 

∂ 𝜀  | 
 𝜀 = 0 

=−  𝐻 
 𝜃 
^
− 1 ∇

 𝜃 
 ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑚 
,  𝜃 

^
),

 where  is  the  Hessian  matrix,  computed  as  .  Then,  using  𝐻 
 𝜃 
^  𝐻 

 𝜃 
^ =  1 

 |  𝐸  | 
 𝑧 ∈ 𝐺 
∑ ∇

 𝜃 
 2  ℒ 

 𝑒𝑚𝑏 
( 𝑧 ,  𝜃 

^
)

 the  chain  rule,  we  can  calculate  the  impact  of  adding  on  the  loss  of  and  𝑧 
 𝑚 

 𝑧 
 𝑡 

 therefore define the  poisonous  score  as:  𝑠 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑧 

 𝑡 
)

 , 
∂ ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑡 
, 𝜃 
^

 𝜀 ,    𝑧 
 𝑚 

)

∂ 𝜀  | 
 𝜀 = 0 

= ∇
 𝜃 
 ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑡 
,  𝜃 

^
) Τ ∂ 𝜃 

^

 𝜀 ,    𝑧 
 𝑚 

∂ 𝜀  | 
 𝜀 = 0 

= ∇
 𝜃 
 ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑡 
,  𝜃 

^
) Τ  𝐻 

 𝜃 
^
− 1 ∇

 𝜃 
 ℒ 

 𝑒𝑚𝑏 
( 𝑧 

 𝑚 
,  𝜃 

^
)

 𝑠 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑧 

 𝑡 
) =−

∂ ℒ 
 𝑒𝑚𝑏 

( 𝑧 
 𝑡 
, 𝜃 
^

 𝜀 ,    𝑧 
 𝑚 

)

∂ 𝜀  | 
 𝜀 = 0 

.

 A  higher  indicates  that  after  adding  ,  triplet  is  more  likely  to  be  𝑠 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑧 

 𝑡 
)  𝑧 

 𝑚 
 𝑧 

 𝑡 

 realistic.  Finally,  the  score  is  normalized  to  obtain  the  probability  of  adding  to  𝑧 
 𝑚 

 graph  when  is the poisoning target:  𝐺  𝑧 
 𝑡 

 𝑝 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) =

exp( 𝑠 
 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
, 𝑧 

 𝑡 
))

Σ
 𝑧 ∈ 𝐶 

 1 
 𝑙𝑖𝑛𝑘 exp( 𝑠 

 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 , 𝑧 

 𝑡 
))

.

 The  Influence  Function  approach  also  utilizes  additional  approximation  to  accelerate 

 the computation of  , but  we won’t delve into that here. 
∂ 𝜃 

^

 𝜀 ,    𝑧 
 𝑚 

∂ 𝜀 

 Then,  we  consider  the  poisonous  score  in  the  disease-agnostic  scenario.  For  each 
 poisoning  target  and  the  corresponding  candidate  link  𝑣 ∈  𝑇𝑎𝑟𝑔𝑒  𝑡 

 2 

 ,  we  follow  the  method  described  in  PRA�ack  53  to  obtain  the  𝑧 
 𝑚 

= ( 𝑢 
 𝑚 

,  𝑟 
 𝑚 

,  𝑣 
 𝑚 

)   ∈  𝐶 
 2 
 𝑙𝑖𝑛𝑘 

 poisonous  score  .  When  ,  we  set  𝑠 
 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑣 )  𝑧 

 𝑚 
∈  𝐶 

 2 ,   →
 𝑙𝑖𝑛𝑘 

 .  When  ,  we  set  .  𝑠 
 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑣 ) =  𝑃𝑅 ( 𝑢 

 𝑚 
)    /    ( 𝑂 ( 𝑢 

 𝑚    
) +  1 )  𝑧 

 𝑚 
∈  𝐶 

 2 ,   ←
 𝑙𝑖𝑛𝑘  𝑠 

 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
,  𝑣 ) =− inf

 Then,  we  normalize  the  poisonous  score  to  obtain  the  probability  of  adding  to  𝑧 
 𝑚 

 graph  when  is the poisoning target:  𝐺  𝑣 

 𝑝 
 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
    |     𝑣 ) =

exp( 𝑠 
 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
, 𝑣 ))

Σ
 𝑧 ∈ 𝐶 

 2 
 𝑙𝑖𝑛𝑘 exp( 𝑠 

 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 ,    𝑣 ))

.
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 3.  Integration  of  poisonous  and  concealing  scores:  For  each  candidate  triplet 

 ,  we  calculate  the  concealing  score  of  as  𝑧 
 𝑚 

= ( 𝑢 
 𝑚 

,  𝑟 
 𝑚 

,  𝑣 
 𝑚 

) ∈  𝐶 
 1 
 𝑙𝑖𝑛𝑘 ∪  𝐶 

 2 
 𝑙𝑖𝑛𝑘  𝑧 

 𝑚 

 ,  where  is  the  the  score  function  employed  in  defining  𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 
 𝑚 

) =−  𝑓 ( 𝑧 
 𝑚 

,  𝜃 
^

)  𝑓 

 ranking  function  .  A  higher  indicates  is  more  likely  to  be  realistic.  ℛ 
 1 

 𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 
 𝑚 

)  𝑧 
 𝑚 

 Subsequently,  we  normalize  to  obtain  the  probability  of  selecting  as  a  𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 
 𝑚 

)  𝑧 
 𝑚 

 malicious link based on concealment in both  scenarios: 

 ,  𝑝 
 1 
 𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) =

exp( 𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 
 𝑚 

))

Σ
 𝑧 ∈ 𝐶 

 1 
 𝑙𝑖𝑛𝑘 exp( 𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 ))

 .  𝑝 
 2 
 𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 

 𝑚 
    |     𝑣 ) =

exp( 𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 
 𝑚 

))

Σ
 𝑧 ∈ 𝐶 

 2 
 𝑙𝑖𝑛𝑘 exp( 𝑠  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 ))

 We  multiply  the  probabilities  b  ased  on  poisonousness  and  concealment  to  obtain  the 

 overall probability  of selecting  :  𝑝  𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑧 
 𝑚 

   

 𝑝 
 1 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) =  𝑝 

 1 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) ×  𝑝 

 1 
 𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
),

 𝑝 
 2 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ( 𝑧 

 𝑚 
    |     𝑣 ) =  𝑝 

 2 
 𝑝𝑜𝑖𝑠𝑜𝑛 ( 𝑧 

 𝑚 
    |     𝑣 ) ×  𝑝 

 2 
 𝑐𝑜𝑛𝑐𝑒𝑎𝑙 ( 𝑧 

 𝑚 
    |     𝑣 ).

 In  the  calculation  of  the  overall  probability,  the  integration  of  the  is  aimed  at  𝑝  𝑐𝑜𝑛𝑐𝑒𝑎𝑙 

 addressing  prospective  defenders.  Concurrently,  we  also  consider  another  real-world 
 scenario  where  the  defender  is  overtly  acknowledged  by  poisoners.  In  this  se�ing,  𝒟 

 is modified as follows:  𝑝 
 1 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 

 when  ,  𝑝 
 1 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝒟 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) =  𝑝 

 1 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
),  𝒟 ( 𝑧 

 𝑚 
) =  𝑇𝑟𝑢𝑒 

 when  .  𝑝 
 1 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝒟 ( 𝑧 

 𝑚 
    |     𝑧 

 𝑡 
) =  0 ,  𝒟 ( 𝑧 

 𝑚 
) =  𝐹𝑎𝑙𝑠𝑒 

 The  same  changes  are  applied  to  .  Finally,  we  select  with  the  highest  𝑝 
 2 
 𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑧 

 𝑚 

 as  the  malicious  link.  In  cases  where  multiple  links  are  required  to  be  added  𝑝  𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝒟 

 (  Fig.  2e-f,  Supplementary  Figure  1  ),  we  proceed  by  sequentially  selecting  links  in 

 decreasing order of  .  𝑝  𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , 𝒟 

 Malicious abstract generator 
 Instead  of  directly  adding  links  to  the  knowledge  graph,  realistic  poisoning  involves 
 inserting  a  paper  into  the  database.  Therefore,  our  objective  is  to  generate  a  paper  based  on 
 an  obtained  malicious  link  .  We  aim  to  ensure  text  fluency  while  𝑧 

 𝑚 
= ( 𝑢 

 𝑚 
,  𝑟 

 𝑚 
,  𝑣 

 𝑚 
)

 maximizing the  probability of extracting the malicious  link  . 
 1.  Construct  sentence  template  using  the  malicious  link:  During  the  construction  of 

 the  knowledge  graph  using  the  extractor  ,  we  gather  and  form  ,  where  ℰ  𝑆 
 𝑟    

= { 𝑠 
 𝑟 , 𝑖 

}  𝑠 
 𝑟 , 𝑖 

 represent  the  -th  sentence  in  Medline  that  contains  the  dependency  path  assigned  𝑖 
 with  relation  .  Let  denote  the  textual  phrase  corresponding  to  node  .  For  𝑟  𝑇𝑒𝑥  𝑡 

 𝑣 
 𝑣 
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 malicious  link  and  each  ,  assuming  the  extracted  triplet  from  is  𝑧 
 𝑚 

 𝑠 
 𝑟 

 𝑚 

∈  𝑆 
 𝑟 

 𝑚 

 𝑠 
 𝑟 

 𝑚 

 ,  we  then  replace  in  with  and  replace  with  , ( 𝑢 ,  𝑟 
 𝑚 

,  𝑣 )  𝑇𝑒𝑥  𝑡 
 𝑢 

 𝑠 
 𝑟 

 𝑚 

 𝑇𝑒𝑥  𝑡 
 𝑢 

 𝑚 

 𝑇𝑒𝑥  𝑡 
 𝑣 

 𝑇𝑒𝑥  𝑡 
 𝑣 

 𝑚 

 resulting  in  a  set  of  sentence  templates  .  For  each  sentence  template  𝑆 ‾
 𝑟 

 𝑚 

 𝑠 ‾
 𝑟 

 𝑚 

=

 , we calculate  its perplexity as:  〈  𝑡 
 1 

 𝑟 
 𝑚 , ···,  𝑡 

 𝑛 

 𝑟 
 𝑚  〉 ∈  𝑆 ‾

 𝑟 
 𝑚 

 ℒ 
 𝐿𝑀 

( 𝑠 ‾
 𝑟 

 𝑚 

) = exp(−  1 
 𝑛 

 𝑖 = 1 

 𝑛 

∑ log  𝑝 
 𝐿𝑀 

( 𝑡 
 𝑖 

 𝑟 
 𝑚  |  𝑡 

 1 

 𝑟 
 𝑚 ,  𝑡 

 2 

 𝑟 
 𝑚 , ···,  𝑡 

 𝑖 − 1 

 𝑟 
 𝑚 )).

 Here,  represents  the  probability  that  the  -th  token  is  given  𝑝 
 𝐿𝑀 

( 𝑡 
 𝑖 

 𝑟 
 𝑚  |  𝑡 

 1 

 𝑟 
 𝑚 ,  𝑡 

 2 

 𝑟 
 𝑚 , ···,  𝑡 

 𝑖 − 1 

 𝑟 
 𝑚 )  𝑖  𝑡 

 𝑖 

 𝑟 
 𝑚 

 the  previous  tokens  ,  which  can  be  obtained  from  a  pre-trained  𝑡 
 1 

 𝑟 
 𝑚 ,  𝑡 

 2 

 𝑟 
 𝑚 , ···,  𝑡 

 𝑖 − 1 

 𝑟 
 𝑚 

 language  model.  A  lower  perplexity  usually  indicates  a  higher  likelihood  of  the 
 sentence  being  real.  In  our  experiments,  we  utilize  BioGPT  54  as  the  language  model. 

 We  select  the  sentence  with  the  lowest  perplexity  from  as  the  sentence  ℒ 
 𝐿𝑀 

( 𝑠 ‾
 𝑟 

 𝑚 

)  𝑆 ‾
 𝑟 

 𝑚 

 template  for the malicious link  .  𝑠 
 𝑧 

 𝑚 

=  〈  𝑡 
 1 

 𝑧 
 𝑚 , ···,  𝑡 

 𝑛 

 𝑧 
 𝑚  〉  𝑧 

 𝑚 

 2.  Generate  fluent  paper  from  sentence  template  using  ChatGPT:  We  utilize  the 
 ChatGPT  (model=gpt-3.5-turbo)  API  to  convert  the  sentence  template  into  a  fluent 
 paper. Specifically, we construct a prompt as follows: 

 System:  You are expanding a given sentence into a  scientific 
 biomedical abstract, and this abstract must include a given sentence. 

 User:  Here is an example:  {Example}  . Then, generate  abstract 
 for the following sentence:  {Template}  . 

 We  describe  the  task  to  ChatGPT  in  the  'system'  module,  providing  the  instructions 
 to  expand  the  input  sentence  into  a  paper  abstract  while  ensuring  that  the  generated 
 result  includes  the  provided  sentence.  We  then  provide  a  paragraph  that  includes  a 
 generation  example  in  the  ‘user’  module  and  instruct  ChatGPT  to  generate  a  paper 
 abstract  based  on  template  .  The  example  is  manually  selected  from  abstracts  𝑃 

 𝑧 
 𝑚 

 𝑠 
 𝑧 

 𝑚 

 with low perplexity and fixed throughout the generation process. 
 3.  Fine-tuning  with  BioBART  for  a  more  domain-specific  and  controllable 

 generation:  Directly  using  the  output  of  ChatGPT  as  ultimate  generation  encounters 
 two  limitations.  Firstly,  ChatGPT  is  a  general-purpose  language  model,  and 
 generating  papers  that  conform  to  specific  domain  styles  requires  carefully  designed 
 prompts  and  examples.  Additionally,  the  API  access  rate  for  ChatGPT  is  strictly 
 limited,  making  extensive  a�empts  time-consuming.  Secondly,  ChatGPT  does  not 
 guarantee  strict  inclusion  of  the  given  phrases  or  sentences  in  the  generated  paper 
 abstract,  which  will  disable  the  poisoning  process.  To  address  these  challenges,  we 
 employ  BioBART  55  ,  an  open-source  natural  language  generation  model  specialized  in 
 the biomedical domain, to fine-tune the generation from ChatGPT. 
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 Specifically,  the  output  of  ChatGPT,  denoted  as  ,  can  be  viewed  as  a  sequence  of  𝑃 
 𝑧 

 𝑚 

 sentences  We  observed  that  certain  sentence  within  𝑃 
 𝑧 

 𝑚 

=  〈  𝑠 
 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑁 

 𝑧 
 𝑚  〉 .  〈  𝑠 

 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑁 

 𝑧 
 𝑚  〉 

 often  expresses  a  similar  semantic  meaning  to  the  sentence  template  but  with  𝑠 
 𝑧 

 𝑚 

 different  phrasing,  making  it  fail  to  extract  the  malicious  link.  If  we  were  to  directly 
 replace  the  sentence  in  with  ,  it  would  give  rise  to  conflict  in  writing  style  𝑃 

 𝑧 
 𝑚 

 𝑠 
 𝑧 

 𝑚 

 between  and  .  To  overcome  this  issue,  we  adopt  a  strategy  that  involves  𝑠 
 𝑧 

 𝑚 

 𝑃 
 𝑧 

 𝑚 

 replacing  followed  by  rephrasing.  In  the  replace  phase,  we  enumerate  and  𝑖 ∈ [ 1 ,  𝑁 ]

 replace  each  sentence  in  ChatGPT  generation  with  ,  resulting  in  replaced  𝑠 
 𝑖 

 𝑧 
 𝑚  𝑃 

 𝑧 
 𝑚 

 𝑠 
 𝑧 

 𝑚 

 paper  :  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 

 𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 =  〈  𝑠 
 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑖 − 1 

 𝑧 
 𝑚 ,  𝑠 

 𝑧 
 𝑚 

,  𝑠 
 𝑖 + 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑁 

 𝑧 
 𝑚  〉 .

 In  the  rephrase  phase,  we  merge  two  approaches  to  achieve  be�er  performance, 
 including modifications both to  and  .  𝑠 

 𝑧 
 𝑚 

 𝑃 
 𝑧 

 𝑚 

 For  the  modification  to  ,  we  first  perform  dependency  parsing  on  to  obtain  its  𝑠 
 𝑧 

 𝑚 

 𝑠 
 𝑧 

 𝑚 

 dependency  parse  tree  .  Subsequently,  within  ,  we  locate  the  nodes  𝑇 ( 𝑠 
 𝑧 

 𝑚 

)  𝑇 ( 𝑠 
 𝑧 

 𝑚 

)

 corresponding  to  and  and  determine  the  shortest  path  𝑇𝑒𝑥  𝑡 
 𝑢 

 𝑚 

 𝑇𝑒𝑥  𝑡 
 𝑣 

 𝑚 

 𝑆𝑃 (( 𝑢 
 𝑚 

,  𝑣 
 𝑚 

),  𝑠 
 𝑧 

 𝑚 

)

 between  them.  Next,  we  find  the  leftmost  token  and  the  rightmost  token  in  𝑡 
 𝑙 

 𝑧 
 𝑚  𝑡 

 𝑟 

 𝑧 
 𝑚  𝑠 

 𝑧 
 𝑚 

 that  correspond  to  .  We  retain  the  tokens  between  and  ,  while  𝑆𝑃 (( 𝑢 
 𝑚 

,  𝑣 
 𝑚 

),  𝑠 
 𝑧 

 𝑚 

)  𝑡 
 𝑙 

 𝑧 
 𝑚  𝑡 

 𝑟 

 𝑧 
 𝑚 

 replacing  all  other  tokens  with  <mask>.  This  process  yields  the  masked  sentence 

 template  as:  𝑠 
 𝑧 

 𝑚 

 𝑚𝑎𝑠𝑘 

 <mask>  <mask>  <mask>  <mask>  𝑠 
 𝑧 

 𝑚 

 𝑚𝑎𝑠𝑘 =  〈 , ···, ,  𝑡 
 𝑙 

 𝑧 
 𝑚 , ···,  𝑡 

 𝑟 

 𝑧 
 𝑚 , , ···,  〉 .

 We  set  a  constraint  to  prevent  the  occurrence  of  more  than  8  consecutive  <mask> 

 tokens,  and  truncate  any  exceeding  portion.  Subsequently,  we  replace  in  𝑠 
 𝑧 

 𝑚 

 𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 

 with  and get the masked paper  :  𝑠 
 𝑧 

 𝑚 

 𝑚𝑎𝑠𝑘  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑚𝑎𝑠𝑘 , 𝑠 

 𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑚𝑎𝑠𝑘 , 𝑠 =  〈  𝑠 
 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑖 − 1 

 𝑧 
 𝑚 ,  𝑠 

 𝑧 
 𝑚 

 𝑚𝑎𝑠𝑘 ,  𝑠 
 𝑖 + 1 

 𝑧 
 𝑚 , ···,  𝑠 

 𝑁 

 𝑧 
 𝑚  〉 .

 We  then  utilize  BioBART  to  perform  fill-in-the-blank  task  on  in  order  to  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑚𝑎𝑠𝑘 , 𝑠 

 replace  <mask>  tokens  with  appropriate  textual  segments  and  obtain  the  modified 

 paper  . And this task aligns exactly  with the pre-training task of BioBART.  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑠 
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 For  the  modification  to  ,  our  goal  is  to  eliminate  expression  style  in  that  might  𝑃 
 𝑧 

 𝑚 

 𝑃 
 𝑧 

 𝑚 

 deviate  from  the  biomedical  domain  and  writing  style  in  .  We  apply  random  𝑠 
 𝑧 

 𝑚 

 masking  to  some  tokens  in  each  sentence  ,  .  For  each  ,  we  𝑠 
 𝑗 

 𝑧 
 𝑚 =  〈  𝑡 

 𝑗 , 𝑥 

 𝑧 
 𝑚  〉 ∈  𝑃 

 𝑧 
 𝑚 

, 𝑖 
 𝑟𝑒𝑝𝑙𝑎𝑐𝑒  𝑖 ≠  𝑗  𝑥 

 randomly  replace  the  span  with  one  <mask>  token  with  a  probability  of  0.8  𝑡 
 𝑗 ,[ 𝑥 , 𝑥 + 𝑙𝑒𝑛 )

 𝑧 
 𝑚 

 (rewrite  rate).  Following  BioBART,  we  sample  from  the  Poisson  distribution  with  𝑙𝑒𝑛 

 a  mean  of  3.  The  masked  sentence  of  is  denoted  as  ,  and  the  masked  paper  𝑠 
 𝑗 

 𝑧 
 𝑚  𝑠 

 𝑗 

 𝑧 
 𝑚 

, 𝑚𝑎𝑠𝑘 

 is represented as:  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑚𝑎𝑠𝑘 , 𝑃 

 .  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑚𝑎𝑠𝑘 , 𝑃 =  〈  𝑠 
 1 

 𝑧 
 𝑚 

, 𝑚𝑎𝑠𝑘 
, ···,  𝑠 

 𝑖 − 1 

 𝑧 
 𝑚 

, 𝑚𝑎𝑠𝑘 
,  𝑠 

 𝑧 
 𝑚 

,  𝑠 
 𝑖 + 1 

 𝑧 
 𝑚 

, 𝑚𝑎𝑠𝑘 
, ···,  𝑠 

 𝑁 

 𝑧 
 𝑚 

, 𝑚𝑎𝑠𝑘 
 〉 

 Similarly, we use BioBART to fill all <mask> tokens and get the modified paper  .  𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑃 

 Finally,  we  select  the  paper  with  the  lowest  perplexity  among  the  replaced  papers, 
 the  papers  generated  from  two  rephrasing  approaches,  and  the  paper  generated 

 through ChatGPT, and consider it as the ultimate generation  :  𝑃 
^

 𝑧 
 𝑚 

 𝐷 
 𝐶 

= { 𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 }
 𝑖 = 1 

 𝑁 
∪ { 𝑃 

 𝑧 
 𝑚 

, 𝑖 
 𝑠 }

 𝑖 = 1 

 𝑁 
∪ { 𝑃 

 𝑧 
 𝑚 

, 𝑖 
 𝑃 }

 𝑖 = 1 

 𝑁 
∪ { 𝑃 

 𝑧 
 𝑚 

},

 𝑃 
^

 𝑧 
 𝑚 

=  𝑎𝑟𝑔𝑚𝑖  𝑛 
 𝑃 ∈ 𝐷 

 𝐶 

 ℒ 
 𝐿𝑀 

( 𝑃 ).

 Here,  is  the  candidate  paper  set.  To  make  fair  comparisons,  for  all  experiments  𝐷 
 𝐶 

 comparing  Scorpius  and  ChatGPT  (  Fig.  4g-h,  Supplementary  Figure  7-8  ),  is { 𝑃 
 𝑧 

 𝑚 

}

 excluded  from  consideration.  In  all  experiments  exploring  changes  in  rewrite  rate 

 (  Supplementary Figure 3  )  , only  is taken into consideration. { 𝑃 
 𝑧 

 𝑚 
, 𝑖 

 𝑃 }
 𝑖 = 1 

 𝑁 

 Defender 
 We  construct  a  defender  to  filter  out  untrustworthy  links  𝒟 :  𝑧     ⟼     𝒟 ( 𝑧 ) ∈ { 𝑇𝑟𝑢𝑒 ,     𝐹𝑎𝑙𝑠𝑒 }
 extracted  by  .  Here,  indicates  a  trustworthy  link,  while  indicates  an  ℰ  𝑇𝑟𝑢𝑒  𝐹𝑎𝑙𝑠𝑒 
 untrustworthy  link.  We  define  a  logistic  regressor  ,  aiming  for  this  𝑠 

 𝒟 
:  𝑧     ⟼     𝑠 

 𝒟 
( 𝑧 ) ∈  ℝ [ 0 ,  1 ]

 regressor  to  provide  the  likelihood  that  represents  a  trustworthy  link.  Notably,  we  cannot  𝑧 
 directly  use  normalized  or  employed  in  defining  as  ,  because  they  are  ℛ 

 1 
exp(−  ℒ 

 𝑒𝑚𝑏 
)  ℛ  𝑠 

 𝒟 

 calculated  on  locally  marginalized  probabilities,  whereas  we  want  to  be  a  global  logistic  𝑠 
 𝒟 

 regressor. 
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 Firstly,  we  randomly  sample  nonexistent  triplets  from  knowledge  graph  ,  denoted  as  |  𝐸  |  𝐺 

 ,  and  the  union  of  and  is  denoted  as  .  Let  be  the  𝐺 
 𝑛𝑒𝑔 

 𝐺  𝐺 
 𝑛𝑒𝑔 

 𝐺 
 𝑢𝑛𝑖𝑜𝑛 

 𝐹 
 𝑝𝑜𝑠 

= {−  𝑓 ( 𝑧 ,  𝜃 
^

)    |     𝑧 ∈  𝐺 }

 scores  of  positive  links,  and  similarly,  we  obtain  and  .  We  calculate  the  mean  and  𝐹 
 𝑛𝑒𝑔 

 𝐹 
 𝑢𝑛𝑖𝑜𝑛 

 𝜇 

 standard  deviation  of  and  normalize  and  as  𝜎  𝐹 
 𝑢𝑛𝑖𝑜𝑛 

 𝐹 
 𝑝𝑜𝑠 

 𝐹 
 𝑢𝑛𝑖𝑜𝑛 

 𝐹 ‾
 𝑝𝑜𝑠 

= {
 𝑓 

 𝑝𝑜𝑠 
− 𝜇    

 𝜎     |     𝑓 
 𝑝𝑜𝑠 

∈  𝐹 
 𝑝𝑜𝑠 

}

 and  .  We  assume  that  and  are  𝐹 ‾
 𝑛𝑒𝑔 

= {
 𝑓 

 𝑛𝑒𝑔 
− 𝜇    

 𝜎     |     𝑓 
 𝑛𝑒𝑔 

∈  𝐹 
 𝑛𝑒𝑔 

}  𝑓 ‾
 𝑝𝑜𝑠 

∈  𝐹 ‾
 𝑝𝑜𝑠 

 𝑓 ‾
 𝑛𝑒𝑔 

∈  𝐹 ‾
 𝑛𝑒𝑔 

 independently  sampled  from  Gaussian  distributions:  ,  and  𝑓 ‾
 𝑝𝑜𝑠 

∼  𝒩 ( 𝑢 ‾
 𝑝𝑜𝑠 

,  𝜎 ‾
 𝑝𝑜𝑠 

 2 
)

 .  Here,  and  are  the  mean  and  standard  deviation  of  𝑓 ‾
 𝑛𝑒𝑔 

∼  𝒩 ( 𝑢 ‾
 𝑛𝑒𝑔 

,  𝜎 ‾
 𝑛𝑒𝑔 

 2 
)  𝑢 ‾

 𝑝𝑜𝑠     /     𝑛𝑒𝑔 
 𝜎 ‾

 𝑝𝑜𝑠     /     𝑛𝑒𝑔 

 .  Then,  the  decision  boundary  for  positive  and  negative  samples  can  be  calculated  as  𝐹 ‾
 𝑝𝑜𝑠     /     𝑛𝑒𝑔 

 follows: 

 ,  𝐴 =−  1/  𝜎 ‾
 𝑝𝑜𝑠 

 2 
+  1/  𝜎 ‾

 𝑛𝑒𝑔 

 2 

 ,  𝐵 =  2 (−  𝑢 ‾
    𝑛𝑒𝑔 

    /     𝜎 ‾
 𝑛𝑒𝑔 

 2 
   +     𝑢 ‾

    𝑝𝑜𝑠 
    /     𝜎 ‾

 𝑝𝑜𝑠 

 2 
   )

 ,  𝐶 =  𝑢 ‾
 𝑛𝑒𝑔 

 2 
    /     𝜎 ‾

 𝑛𝑒𝑔 

 2 
−  𝑢 ‾

 𝑝𝑜𝑠 

 2 
    /     𝜎 ‾

 𝑝𝑜𝑠 

 2 
+ log( 𝜎 ‾

 𝑛𝑒𝑔 

 2 
    /     𝜎 ‾

 𝑝𝑜𝑠 

 2 
)

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟  𝑦 
 1 , 2 

= − 𝐵 ±  𝐵  2 − 4  𝐴𝐶 
 2  𝐴 .

 We  select  the  optimal  decision  boundary  from  that  lies  between  and  .  𝑏𝑜𝑢𝑛𝑑𝑎𝑟  𝑦 
 1 , 2 

 𝑢 ‾
 𝑝𝑜𝑠 

 𝑢 ‾
 𝑛𝑒𝑔 

 Thus,  can be formulated as:  𝑠 
 𝒟 

 .  𝑠 
 𝒟 

( 𝑧 ) =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (  𝑓 ( 𝑧 , 𝜃 
^

)− 𝜇 
 𝜎 −  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 )

 Here,  the  function  is  .  Finally,  we  set  a  threshold  value  𝑆𝑖𝑔𝑚𝑜𝑖𝑑  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ( 𝑥 ) =  1 
 1 +exp(− 𝑥 )

 .  If  ,  then  ,  indicating  a  trustworthy  link.  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈  ℝ [ 0 ,  1 ]  𝑠 
 𝒟 

( 𝑧 ) >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  𝒟 ( 𝑧 ) =  𝑇𝑟𝑢𝑒 

 Otherwise,  if  ,  then  .  For  the  defense  level  'Low',  'Medium',  𝑠 
 𝒟 

( 𝑧 ) ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  𝒟 ( 𝑧 ) =  𝐹𝑎𝑙𝑠𝑒 

 and 'High', the threshold values are chosen as 0.3, 0.5, and 0.7 respectively. 

 Code availability 
 Scorpius code is available at  h�ps://github.com/yjwtheonly/Scorpius  .  An interactive server 
 to explore Scorpius can be accessed at 
 h�ps://huggingface.co/spaces/yjwtheonly/Scorpius_HF  . 
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METHODS AND RESULTS: Apolipoprotein E-defi-
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METHODS AND RESULTS: Apolipoprotein 
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<Masked template> Mice were treated with 
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monitored for plaque development. Our results 
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Atherosclerosis is a chronic inflammatory condi-
tion characterized by the accumulation of lipids 
and fibrous elements in arterial walls, leading to 
the formation of plaques. Apolipoprotein E-defi-
cient (apoE-/-) mice are widely used as a model 
of atherosclerosis due to their high susceptibili-
ty to the development of plaques when fed a 
high-fat diet. In this study, we investigated the 
effects of two inhibitors, Pregabalin and 
SC-236, on atherosclerotic plaque formation in 
apoE-/- mice fed a 1% cholesterol diet. Mice 
were treated with either Pregabalin, SC-236, or 
vehicle and were monitored for plaque develop-
ment. Our results showed that treatment with 
both Pregabalin and SC-236 significantly re-
duced plaque formation compared to vehi-
cle-treated mice. These findings suggest that 
selective inhibition of elastin and COX-2 may 
be effective strategies for preventing or slowing 
the progression of atherosclerosis.
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COX-2) play important roles in the formation and sta-
bilization of atherosclerotic plaques. METHODS AND 
RESULTS: Apolipoprotein E-deficient (apoE-/-) mice 
fed a 1% cholesterol diet were treated with a selec-
tive elastin inhibitor (Pregabalin), a selective COX-2 
inhibitor (SC-236) , or vehicle. The results showed 
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