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1 Abstract

Geographic space is a fundamental dimension of evolutionary change, deter-1

mining how individuals disperse and interact with each other. Consequently,2

space has an important influence on the structure of genealogies and the dis-3

tribution of genetic variants over time. Recently, the development of highly4

flexible simulation tools and computational methods for genealogical inference5

has greatly increased the potential for incorporating space into models of pop-6

ulation genetic variation. It is now possible to explore how spatial ecological7

parameters can influence the distribution of genetic variation among individu-8

als in unprecedented detail. In this study, we explore the effects of three spe-9

cific parameters (the dispersal distance, competition distance and mate choice10

distance) on the spatial structure of genealogies. We carry out a series of in11

silico experiments using forwards-in-time simulations to determine how these12

parameters influence the distance between closely- and distantly-related indi-13

viduals. We also assess the accuracy of the maximum likelihood estimation14

of the dispersal distance in a Gaussian model of dispersal from tree-sequence15

data, and highlight how it is affected by realistic factors such as finite habitat16

size and limited data. We find overall that the scale of mate choice in par-17

ticular has marked patterns on short and long terms patterns of dispersal, as18

well as on the positions of individuals within a habitat. Our results showcase19

the potential for linking phylogeography, population genetics and ecology, in20

order to answer fundamental questions about the nature of spatial interactions21

across a landscape.22

2 Introduction23

From nutrient-fixing bacteria in the digestive system, to pollen carried on the legs of bees,24

all living organisms must deal with the particularities of the range that they inhabit.25
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At each generation, individuals tend to disperse from their parents, often carrying their26

genes across great geographic distances. Geographic space is also a major determinant27

of mate choice and competition for finite resources such as food and water, which can,28

in turn, influence how genetic relatedness decays as a function of the distance between29

individuals (Wright 1943). The connection between genetic differentiation and geography30

has indeed been the focus of numerous theoretical models (for instance François Rousset31

1997; Hardy and Vekemans 1999; B. Charlesworth, D. Charlesworth, and Barton 2003;32

Robledo-Arnuncio and Francois Rousset 2010) and empirical studies (Sexton, Hangartner,33

and Hoffmann 2014; Jenkins et al. 2010; Aguillon et al. 2017). Overall, it is now clear that34

genetic data can hold information about the geographic distribution of individuals in the35

past (Novembre et al. 2008; Aguillon et al. 2017).36

Biologists often seek to understand the rate at which individuals of a given species37

move across space. One way to approach this problem is by focusing on the “dispersal38

distribution”: a probability distribution over the parent-offspring distance (Kot, Lewis, and39

Driessche 1996) i.e. how far away a particular offspring mates compared to its birthplace.40

The shape of the dispersal distribution for different species has been of great interest in41

ecology. In particular, long-distance dispersal is predicted to strongly affect patterns of42

relatedness across a species (T. B. Smith and Weissman 2020), as well as population genetic43

processes such as allele surfing (Paulose and Hallatschek 2020) and ecological phenomena44

including the spread of invasive species and host-parasitoid interactions (McCann et al.45

2000; Clark 1998).46

The dispersal distribution is often summarized via a “dispersal distance” parameter, σ,47

which predicts how far away an offspring tends to be from its parents. More precisely, σ48

should be seen as an “effective” dispersal parameter, which absorbs several stages of mate49

choice and parent or offspring migration, to predict how far a successfully reproducing50

offspring moves from its birth location (Bradburd and Ralph 2019; C. C. Smith et al.51

2023). Over multiple generations — for example, over branches in a phylogeny — this52

determines the speed at which two lineages move away from one another after descending53

from a common ancestor (Francois Rousset 2001). It is known that the rate of geographic54

dispersal affects genetic variation (B. Charlesworth, D. Charlesworth, and Barton 2003).55

Conversely, it is possible to learn σ from genotype data with some accuracy (François56

Rousset 1997; Ringbauer, Coop, and Barton 2017; C. C. Smith et al. 2023).57

One way to estimate the parameters of the dispersal distribution in a real population58

is to track the exact locations of all individuals in a pedigree. However, this is often59

difficult or expensive (Cayuela et al. 2018). While non-recombining genetic sequences can60

be easily recorded in a genealogy or coalescent tree (Miles et al. 2009; Markov et al. 2009;61

Castillo et al. 2011), the full history of recombining genomes cannot. Instead, this may be62

represented as a network, known as the Ancestral Recombination Graph (ARG) (Hudson et63

al. 1990; Griffiths and Marjoram 1996; Griffiths and Marjoram 1997), which fully encodes64

the history of coalescence and recombination of a set of sampled genomes. An alternative65

representation is an ordered set of coalescent trees, each describing the history of a section66

of the genome in the samples (a “tree sequence”, Kelleher, Wong, et al. 2019). Adjacent67

genealogies are separated by recombination events, and tend to be more highly correlated68

than those representing distant genomic tracts. A tree sequence can encode the full ARG,69

if it contains certain annotations (Rasmussen et al. 2014).70

Genome-wide tree sequences are an ideal object on which to perform phylogeographic71

inference, and are already beginning to be used for such analyses (for example, Wohns et al.72

2022). Recent computational developments have made it tractable to approximately infer73
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tree sequences for a given genome panel (Kelleher, Wong, et al. 2019; Speidel et al. 2019;74

Hubisz and Siepel 2020). However, both estimating and working with full tree sequences75

comes with substantial computational burden. One approach to this problem, which has76

been used in recent work (Osmond and Coop 2021), is to “thin” the full sequence of77

trees covering the entire chromosome into a set of approximately independent genealogies.78

Although these genealogies do not wholly capture the complexity of the full tree sequence,79

we believe that the insights obtained from them are an important basis for understanding80

how spatial dispersal affects recombining genomes.81

In recent years, new software for generating spatially explicit, forwards-in-time simula-82

tions have enabled researchers to explore genetic variation under a wide range of population83

histories. The recently developed software slendr (Petr et al. 2022), which uses the powerful84

software SLiM as one of its simulation engines (Haller and Messer 2019; Haller, Galloway,85

et al. 2019) provides a particularly approachable way to model, visualize and simulate mate86

choice, dispersal and spatial interactions in continuous space. These simulators can bridge87

the gap between a lack of theoretical results and the desire to build realistic spatial models88

of species.89

Two types of interactions which people often use to model populations in geographic90

space are mate choice and competition for resources. Both of these can be understood via91

a distance parameter. The mate choice distance controls the scale at which individuals92

tend to find each other to produce an offspring. The competition distance determines how93

far individuals can be separated for them to compete for resources. The effects of these94

parameters on dispersal and genetic diversity have not been the main focus on previous95

studies. However, there is some evidence from simulations that the scale of mating has96

more impact on effective dispersal than that of competition (C. C. Smith et al. 2023).97

The lack of work in this area is particularly troublesome for any users of forwards-in-time98

simulators such as SLiM, where they are required to specify these dynamics explicitly.99

Motivated by these issues, here we set out to understand properties of geographically100

annotated sequences of genealogies along a genome, using a simulation-based approach. We101

leverage slendr to carry out forwards-in-time simulations with non-overlapping generations,102

and study how ecological parameters affect the spatial distribution of individuals, and the103

structure of genealogies relating them over time.104

First, we explore the effects of varying the mode and scale of mating and dispersal105

on the realised distances between parents and their offspring. We show that, in some106

cases, these distances closely match their theoretical distribution. We find that the scale107

of mate choice is an important determinant of the shape of dispersal distributions and the108

overall rate of dispersal. Then, we illustrate a case in which the realised distribution closely109

matches a theoretical model which explicitly includes the radius of mate choice. Finally, we110

test the efficacy of a maximum likelihood estimator of the mean distance between parent111

and offspring, using distances recorded in the branches of a phylogeny under a commonly112

used Gaussian mode of dispersal.113

Our work serves to show that a sound understanding of the geographic parameters114

of a species, with respect to the dispersal distribution and to ecological factors (such as115

competition for resources and mate choice), is key to carrying out reliable phylogeographic116

inference in real populations.117
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Figure 1: The mechanics of dispersal in our simulations. In our forwards-in-time
simulations, two parents p1 and p2 are chosen. The distance between them (red line) must
be less than the user-specified mating distance. The offspring (o) is then dispersed from p1
(blue line) according to a specified mode of dispersal parametrized via a dispersal function
(DF ) and distance (which we call σ). These mechanics imply that a given one-generation
dispersal may either be a direct observation of a draw from the DF (the p1− o distance,
blue line) or it may be a composite of mate choice and dispersal (the p2− o distance, grey
line).

3 Results118

3.1 Dispersal patterns in spatially-tagged genealogies119

Dispersal
Function

Parametrization Theoretical
Mean

Theoretical
Variance

Brownian Distance in x and y di-
mensions drawn independently
from N(0,σ2). Distance follows
Rayleigh(σ)

σ
√

π/2 σ2(4− π)/2

Cauchy Angle drawn uniformly,
distance drawn from
Cauchy(scale=σ,location=0)

undefined undefined

Exponential Angle drawn uniformly, dis-
tance drawn from Exp(1/σ)

σ σ2

Half-Normal Angle drawn uniformly, dis-
tance drawn from N(0,σ2).
Distance follows folded normal
distribution

σ
√

2/π σ2 − 2
πσ

2

Uniform Angle drawn uniformly, dis-
tance drawn from U(0,σ)

σ/2 σ2/12

Table 1: The parametrization of parent-offspring distances via the dispersal
distance. We parametrized the dispersal distribution through a parameter σ, such that
the theoretical variance increased with σ2, and the mean with σ (this does not apply to
the Cauchy distribution, which has undefined mean and variance; here, σ was the scale
parameter). Further details are given in Methods section 5.1.1.
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We were interested in learning the relationship between the observed parent-offspring120

distances in a (perfectly inferred) genealogy and the underlying dispersal function in a121

population. In our simulations, a dispersal function (DF ) and its scale parameter, σ,122

determine how the simulator decides where to place offspring compared to the gestating123

parent (p1). More details on this process are described in the Methods section 5.1.1, and a124

schematic of these mechanics is shown in Fig. 1. The range of DF s and their parametriza-125

tion are summarised in Table 1 and plotted in Fig. 2. Although the interpretation of σ126

with respect to the DF varied for each distribution, our parametrization was such that127

increasing σ increased the variance of parent-offspring displacement. In essence, the larger128

σ, the further an offspring tends to be from its parents and the faster genetic lineages129

spread across the habitat.130

Two other important parameters in our simulations are the competition and mating131

distances. The competition distance serves to parametrize competition for resources within132

a neighbourhood. Essentially, the simulator counts the number of neighbours an individual133

has within a radius of the competition distance and down-scales their fitness proportionally134

to this number (see Methods section 5.1.1). The mate choice radius, or mating distance,135

determines the maximum radius within which a parent can choose a mate. In slendr136

V0.5.1, mates are chosen uniformly at random from within this distance.137

We simulated a single, non-recombining locus in a population of 100 individuals in138

a habitat of size 50 × 50 units. We used a range of dispersal functions and σ values,139

and also varied the mating and competition distances. After 50 generations, we sampled140

all individuals and reconstructed the genealogy connecting them. In these genealogies,141

we stored all individuals, rather than coalescent nodes only (this corresponds to a tskit142

“unsimplified” tree), so that we could observe dispersal at every generation. For each143

condition, we ran 20 replicates. We will call the distribution of realised parent-offspring144

distances in these trees the D̂D (empirical distance distribution).145

We compared parent-offspring distances sampled from the simulations (the D̂D) to146

the theoretical probability distributions from which p1-offspring distances were drawn (the147

DF ). The shape of the D̂D tended to mirror that of the DF (Fig. 2). For example, when148

parameterizing the DF as Cauchy, we observed a higher frequency of long D̂D dispersal149

values, compared to other DF distributions, when the parameter σ was kept constant.150

This is consistent with the heavy tail of the theoretical Cauchy distribution, compared to151

other distributions (uniform, half-normal, exponential or Rayleigh).152

There was not a perfect correspondence between D̂D and DF , as the other ecological153

parameters (namely competition distance and mate choice radius) in the simulation also154

influenced the realized distance between parent and offspring. We quantified this effect155

of these parameters on effective dispersal by measuring the excess variance of the D̂D,156

compared to the DF (Fig. 4). Increasing the mating distance caused the D̂D to accumulate157

much excess variance, and the D̂D to acquire a flat “shoulder”, which we model in the next158

section (section 3.2).159

In contrast, varying the competition distance had a weaker effect on excess variance160

(the difference between the variance of the D̂D and the DF , brought about by mate161

choice and competition). Excess variance tended to increase with competition distance;162

however, when the competition distance was 100 (twice the width of the habitat), the163

effect on the excess variance was small. This was expected, since a radius of 100 spans164

the entire 50 × 50 habitat we simulated, and therefore is equivalent to no competition at165

all (since every individual’s fitness is down-scaled by the same factor, the total population166
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size, leading to equal relative fitness across the population — for details, see Methods167

section 5.1).168

Overall, the relationship between the theoretical and realized parent-offspring distribu-169

tions — under varying competition and, in particular, mating distances — suggests that170

these ecological parameters may be important determinants of the scale of dispersal of171

individuals in the wild.172

To further investigate the nature of the effects of mating and competition, we examined173

the positions of individuals throughout the simulations. When the mating distance was174

small, individuals tended to group together and move cohesively throughout the landscape175

(as shown in Fig. 4). As the mating distance increased, the population broke into discrete176

clusters which appeared to “repel” each other. Varying the competition distance had little177

effect on spatial clustering.178

We next examined how the dispersal, competition and mating distance affected a set of179

summary statistics for the genealogies (Fig. S1). We computed Sackin’s index, as well as180

two measures of diversity: the average number of pairwise differences (Tajima’s estimator181

of diversity) and the number of segregating sites for each of the trees, as described in182

Methods section 5.1.4.183

The average number of pairwise differences decreased with the dispersal distance, and184

the number of segregating sites showed the same pattern. This suggests that limited dis-185

persal range preserved diversity in the population, although it appears to be inconsistent186

with the well-known Wahlund effect, the decrease in diversity brought about by population187

structure (the Wahlund effect, Wahlund 1928). Interestingly, increasing the mating dis-188

tance instead led to an increase in diversity and the number of segregating sites, which is189

instead in agreement with the Wahlund effect. The average number of pairwis and number190

of segregating sites showed no clear pattern with increasing competition distance.191

Furthermore, the Sackin index exhibited a reduction with increasing dispersal distance,192

while it remained constant when altering mating and competition distances. Sackin’s index,193

a measure of tree balance, is defined as the sum of the number of ancestors for each tip of194

a tree (Lemant et al. 2022). A higher Sackin index signifies a less balanced tree, indicating195

that certain clades tended to give rise to more descendants than others. Consequently, this196

pattern suggests that short-range dispersal introduced some imbalance into the branching197

structure of the genealogies.198

3.2 Modelling dispersal patterns199

Inspired by these observations, we developed a theoretical model of parent-offspring dis-200

tances combining σ and the scale of mating, given a mode of dispersal where distances201

were drawn from a Gaussian distribution (which here we term “Brownian”, as described in202

Methods section 5.1.1) using the uniform model of mate choice implemented in slendr. This203

also represents a more general example of a species for which mate choice and dispersal204

distances are not drawn from the same distribution, or at the same scale.205

The distribution of parent-offspring distances is an equally weighted mixture of disper-
sals from a “gestating” parent p1 and a non-gestating parent, p2. If the parent-offspring
distance is y, its density given a dispersal distance parameter σ and a mate choice radius
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Figure 2: Distributions of parent-offspring distances reflect the underlying dis-
persal function. The left panel shows the empirical distribution of effective parent-
offspring distances drawn from the forwards-in-time spatial simulations, while the right
one shows the PDF of the corresponding dispersal distributions. The effective distances
are affected by the dispersal distribution, as well as competition and mate choice. Bottom:
a zoom-in on the tails of curves; the height of the tails of the distributions corresponded
to those of the corresponding dispersal functions, with the Cauchy having the most heavy
tail, followed by the exponential, Brownian, half-normal and then uniform. The mating
distance competition distances were both 1 unit.

0.
02

0

0

0.
01

1.
73

1.
71

1.
58

1.
71

7.
89

8.
46

7.
37

7.
52

10
8.

33
12

1.
98

15
4.

58

89
.6

3

3.
7

5.
15

3.
48

3.
67

8.
77

8.
91

9.
73

8.
44

16
.0

6

16
.6

9

17
.4

3

16
.6

3

14
4.

92
16

9.
19

18
5.

08
14

1.
47

−0
.2

8

−0
.3

6

−0
.3

7

−0
.2

9

1.
75

1.
62

1.
48

1.
65

8.
26

8.
39

7.
42

7.
96

12
4.

63
15

5.
63

19
7.

82
14

5.
49

−0
.0

1

−0
.0

4

−0
.0

5

−0
.0

1

1.
85

1.
76

1.
57

1.
87

7.
46

7.
99

6.
08

7.
75

14
5.

9

18
6.

36
21

4.
87

14
9.

06

0.
05

0.
05

0.
05

0.
05

1.
71

1.
44

1.
37

1.
69

6.
86

7.
36

4.
62

5.
75

16
9.

37
20

4.
59

21
2.

77
16

4.
84

brownian cauchy exponential half−normal uniform

1 5 10 100 1 5 10 100 1 5 10 100 1 5 10 100 1 5 10 100

1

5

10

100

mating distance

co
m

pe
tit

io
n 

di
st

an
ce

Figure 3: Quantifying the effect of mate choice and competition radius on re-
alized parent-offspring distances. Each tile shows the excess variance of the empiri-
cal dispersal distribution compared to the theoretical one — as given by Table 1. Since
the Cauchy distribution has undefined variance, the excess is relative to zero. Increasing
the competition distance tended to have relatively little effect on the variance of parent-
offspring distances, but altering the scale of mate choice had a very strong effect.
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Figure 4: The effects of the mating and competition distance on the placement
of individuals in a population. The positions of individuals present in the genealogy
connecting 200 sampled individuals (in the unsimplified tree), over 10 generations are
shown and coloured by time. When the mating distance was small (top row), we observed
a strong clumping behaviour. As we increased the competition and mating distances,
the clustering behaviour was alleviated. In these simulations, the mode of dispersal was
Brownian and σ was 1 unit.
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Figure 5: Modelling dispersal and mate choice. The distribution of parent-offspring
distances against the theoretical distribution given in Equation (1) (dashed lines) and the
Rayleigh distribution (purple). There was a close match between the theoretical and sim-
ulated distributions across a range of mating distances. As the mating distance increased,
the distributions acquired a flat shoulder compared to the Rayleigh distribution, arising
from long father-offspring dispersals. In all simulations, the dispersal distance parameter
σ was 1 unit and the competition distance was 1 unit.

rb is

gy|σ,rb(y|σ, rb) =
1

2

y

σ2
e−

y2

2σ2 +
1

2
fy|σ,rb(y|σ, rb) (1)

The first term reflects the density given a standard Rayleigh distribution (between the206

gestating parent and its offspring) with scale σ, while the second term models the distance207

between the non-gestating parent and the offspring.208

If we assume a uniformly distributed mate choice radius, then the density function of
the distance between the non-gestating parent and the offspring is given by

fy|σ,rb(y|σ, rb) =
∫ rb

0

∫ ∞

0

1

π
× 1

rb
× a

σ2
e

−a2

2σ2 × y

ab

√
1−

(
a2+b2−y2

2ab

)2
da db (2)

Where a is the distance between the gestating parent (p1) and its offspring, and b is the209

distance between parents. This derivation is elaborated in the Methods section 5.3. We210

verified that these equations matched the simulated distances (Fig. 5) across the parameter211

range we examined.212

If the mate choice distance is instead modeled more simply as a Rayleigh distribution213

(see Methods section 5.3), the density function between the offspring and the (unknown)214

parent can be analytically solved:215

gy|σ,τ (y|σ, τ) = 0.5
y

σ2
e−

y2

2σ2 + 0.5
y

σ2 + τ2
e
− y2

2(σ2+τ2) (3)

where τ is scale of the Rayleigh distribution governing the mate choice distance.216
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This formulation also leads to a simple result for the mean parent-offspring distance.217

Since the expected p1-offspring distance is σ
√
π/2 and the expected p2-offspring distance218

is
√
σ2 + τ2

√
π/2, the expected parent-offspring distance is

√
π(σ+

√
σ2+τ2)

2
√
2

. If we were219

to measure the distances along branches of a genealogy, we would eventually expect to220

see generation-scaled distances follow a Gaussian with mean
√
π(σ+

√
σ2+τ2)

2
√
2

. This may be221

interpreted as a many-generation “effective” dispersal distance parameter.222

3.3 Estimating dispersal distances from spatially tagged genealogies223

0.001

0.010

0.100

1.000

unsimplified simplified tips only

σ̂
M

L all branches
tree cut at 
100 generations 
in past

Figure 6: Estimating the dispersal distance under a Brownian dispersal kernel.
Each dot is the ML σ̂, from each of 5 simulation replicates. The violin plots show all
branch-wise σ̂ values and the grey lines show the true σ, 1 unit. The diagrams below
illustrate the lineages used in each case. Excluding older branches, as in Osmond and
Coop 2021, increased the estimated dispersal distance for the simplified tree and the tip-
only distances. We suggest that this is because more ancient, longer branches in the
genealogy are biased due to limited habitat size. In each case, the mating distance was 0.2
units and the competition distance was 0.2 units.
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Finally, we sought to test how accurately σ could be estimated, given a perfectly inferred
spatial tree sequence. Under a Gaussian mode of dispersal (what we term “Brownian”),
and negligible mate choice distance, the maximum likelihood estimator of σ is

σ̂ML =

√√√√ 1

2N

N∑
i=1

d2i
li

(4)

where the index i denotes each of N branches in a genealogy, with geographic distance di224

and branch-length in generations li (see Methods section 5.4). It is worth noting that our225

method of estimation is naïve, since it ignores the fact that branches are shared between226

pairs containing the same individual — indeed, we actually maximize the composite likeli-227

hood, rather than the full likelihood (as instead is used in Osmond and Coop 2021, where228

covariance between pairs is appropriately taken into account). However, with enough data,229

the maximum likelihood estimate of σ should be the same in both cases, and we use this230

as a simple bench-mark approach.231

We sampled 100 genomes across 5 simulation replicates from a population of size N =232

2, 000, and set the mating distance to be small (0.2 units) to minimize its effect on dispersal.233

We first obtained maximum likelihood estimates of σ from the set of all parent-offspring234

distances. We next emulated a situation where the geographic positions of tree tips and235

internal nodes are known, but those of the individuals along lineages in the tree are not236

known (labelled “simplified ” in our plots). Lastly, to mimic a more realistic scenario, we237

extracted the distances between all pairs of tips, which corresponds to a situation where238

only present-day individuals have a known location (“tips only”). The results are shown239

in Figure 6.240

While the estimates of σ from the full set of parent-offspring distances were accurate,241

the estimates from longer tree branches generally were smaller than the true parameter.242

To investigate whether limited world size was responsible for this observation, we adopted243

the approach detailed in Osmond and Coop 2021 and eliminated branches which were244

more than 100 generations old. In the “simplified ” and “tips only” case, this amounted245

to retaining sub-trees for which the tMRCA lived less than 100 generations in the past.246

Pruning the trees caused the distribution of branch-wise distances to more closely resemble247

that of the simplified trees, and correspondingly caused an increase in the estimated σ.248

This suggests that distances accumulated over long branches in a given genealogy tended249

to be shorter than expected: a phenomenon probably caused by the fact that long-range250

dispersal is limited in a finite habitat. This pattern was consistent across a range of251

dispersal distances (Fig. S2).252

We also tested whether assuming an incorrect dispersal kernel could affect estimates253

of σ. This might be applicable in a situation where, for example, a population follows254

power-law dispersal, but we assume parent-offspring distances to be Gaussian and attempt255

to estimate the variance parameter. Another way to interpret this, is to estimate the net256

effective dispersal parameter which results from a Cauchy DF . To mimic this situation,257

we simulated under a mode of dispersal where a random angle was drawn from a uniform258

distribution and a distance from a Cauchy distribution with scale and location of 1 unit.259

The Cauchy distribution is more heavy-tailed compared to a Rayleigh distribution with260

the same scale. In agreement with this, the estimated σ was larger than the true parameter261

(Fig. 7). We also varied the scale of mate choice to see what synergy large mating distances262

might have with a misspecified dispersal kernel. As expected, the estimates of σ increased263

as with the scale of mate choice. Interestingly, there appeared to be a steeper increase in264

σ̂ with mating distance when the DF was Cauchy.265
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brownian cauchy

0 1 2 3 4 5 0 1 2 3 4 5
0

1

2

3

mating distance

σ̂ M
L

simplified

simplified

tips only

unsimplified

Figure 7: Estimating the dispersal distance under a misspecified model. Left:
increasing the mating distance increases the effective dispersal distance. Right: in these
simulations, the dispersal function was Cauchy with scale and location 1 unit, but we
naively used maximum likelihood estimator of σ for the Brownian mode of dispersal. In
this setting, increasing the mating distance led to further inflation of σ̂. The dots show
the result of each of five replicates, and the lines are smoothed rolling means.

4 Discussion266

In this study, we explore the effects of three important ecological parameters (dispersal dis-267

tance and distribution, competition distance and mate choice distance) on the geographic268

distances captured in a geographically tagged genealogy.269

We show that altering the kernel of parent-offspring dispersal can have strong effects270

on the diffusion captured within a genealogy, and in particular on the tails of the realised271

parent-offspring distance distribution. For example, the Cauchy distribution, which is a272

text-book example of a “heavy-tailed” distribution, did indeed produce a greater proportion273

of long-distance dispersals.274

There was some difficulty in choosing a common parametrization for these dispersal275

distributions, especially since slendr implements two different mechanics of parent-offspring276

dispersal (one where a random distance and angle are chosen, and another where latitudinal277

and longitudinal distances are chosen, see Methods section 5.1.1). We suggest that a278

pragmatic solution for the sake of simulation might be to encode a dispersal distribution279

where the height of the tail may be controlled more directly. An example may be the Pareto280

distribution, where the tail probability is particularly sensitive to the shape parameter,281

and does not directly depend on the variance (in contrast to, for example, the normal282

distribution).283

The mate choice radius caused distinctive patterns in the distribution of a population284

within its landscape. In particular, close-range mating led to clustered groups of individu-285

als, which may be a practical nuisance to simulation users, and lead to unwanted geographic286

structure. We suggest that this is the same phenomenon described in Felsenstein 1975.287

As Felsenstein describes, the intuition behind this behaviour is that, when either mate288

choice or dispersal distances are small, individuals each seed a “clump” of descendants.289

Due to the constraint of constant population size, several of these clumps are destined to290

die out. The small mating distance forbids mating between these clumps, so the remaining291

ones become larger and further apart. This is particularly cumbersome because relatively292
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small mating distances are required for the average parent-offspring dispersal to match293

p1-offspring dispersal. Although not possible in the most recent version of slendr (Petr294

et al. 2022), allowing for less generally constrained simulations with fluctuating population295

size might alleviate these factors. However, this would require the development of dedi-296

cated software for the analysis of tree sequences produced by such dynamics (known as297

“non-Wright-Fisher”) in slendr.298

We also observed that the distances within a genealogy increased dramatically if the299

scale of mate choice was large. Mating is often not explicitly modelled — yet the step300

of mate allocation is essential in forwards-in-time, agent-based genetic simulators such as301

slendr and SLiM. Furthermore, the dynamics of mate choice and parent-offspring dispersal302

may differ starkly in natural populations: for example, the same model of dispersal may not303

apply to the dynamics with which pollen and seeds spread. Our results support that this304

is an important parameter, and absorbing mating and parent-offspring dispersal dynamics305

into one step may not always be appropriate.306

Aside from changing the distances in the genealogy, the scale of mate choice also307

changed the shape of the distribution of parent-offspring distances. To illustrate a case308

where this may be modelled, we described the theoretical distribution of parent-offspring309

distances under uniform mate choice, and found a close match between the this and simu-310

lated distances. The natural next step would be to use these results in an inference frame-311

work, by deriving analytical solutions for the maximum-likelihood or method-of-moments312

estimators for the dispersal and mating distances.313

Rather than the theoretical dispersal distance itself, a parameter that may be more314

liable to inference is an effective dispersal distance parameter, which incorporates both315

the mate choice and dispersal processes. The distance between parents and offspring over316

many generations should follow a normal distribution in the limit of infinite generations,317

due to the central limit theorem. Therefore, if we were to take the distances along branches318

of a phylogeny and scale them by the respective number of generations (as inferred from319

genetic data), the distribution of distances would approach a Gaussian distribution, centred320

around this effective dispersal distance. Specifically, this is an equally weighted mean of321

the expected distances of the offspring from either parent (see Methods section 5.3). For322

example, in the Methods section 5.3.1, we show that under a model with Gaussian dispersal323

(with scale σ) and mate choice (with scale τ), this effective dispersal distance can be easily324

calculated as π(σ+
√
σ2+τ2)

2
√
2

.325

This compound parameter is in effect what is estimated when mate choice dynamics326

are not explicitly modelled in phylogeographic studies. We therefore motivate distinguish-327

ing between spatial models intended for few generations, where the stages of mating and328

dispersal should be treated as distinct, from those for phylogenetic time-scales, where they329

may be absorbed into one parameter. We also note that, over long time-scales, disper-330

sal was limited by finite population ranges. In our results, this led to estimates of the331

mean dispersal distance which were smaller than expected, illustrating that deep coales-332

cent branches should only be used with caution for inference, as illustrated by Osmond333

and Coop 2021.334

This study has focused on single-locus genealogies, which is comparable to studying335

approximately independent genealogies from a tree sequence. Such an approach, followed336

for example in Osmond and Coop 2021, greatly reduces the computational burden of337

analysing the full tree sequence, yet retains the ability to uncover variation in dispersal and338

geographic ancestry across the genome. However, we expect that ignoring the correlation339
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structure which exists between trees in a tree sequence leads to some loss of information340

— specifically, in a fully annotated tree sequence, it is possible to identify nodes which341

are shared between trees. This information could be used, for example, to constrain the342

positions of shared internal nodes based on information coming from several trees. We note343

that, since SLiM and slendr are able to run spatial simulations of recombining genomes,344

they might be valuable tools to begin to investigate how much information is lost when we345

“thin” tree sequences.346

Another aspect of complexity which we have not investigated is the bias which might347

arise from using estimated genealogies, rather than known ones. There is recent evidence348

that currently available methods (Argweaver, Relate and tsinfer + tsdate) tend to under-349

estimate the time of deep coalescences, and vice versa (YC Brandt et al. 2022). This is350

a form of a well-known phenomenon in phylogenetics called “long branch attraction”. We351

expect that would lead to biases in inferences of dispersal (longer-range than reality to-352

wards internal nodes, and shorter than expected at the tips). Again, this could be aptly353

studied in slendr by post-hoc adding mutations onto the simulated genealogies, and adding354

a genealogy estimation step to the analyses.355

In cases where we are interested in untangling the mating and dispersal distances, uni-356

parentally inherited genetic material could be of use. Mitochondrial DNA only moves via357

mother-offspring dispersals, the direct manifestation of the dispersal function (when the358

mother is p1). Conversely, the Y-chromosome always moves according to a convolution of359

mating and dispersal distances. Comparing their respective rates of diffusion could help360

us identify cases in which the between-parent distance might be masking the underlying361

mother-offspring dispersal dynamic.362

At the moment, slendr is not able to model sex differences. Yet, mother-offspring363

dispersal and mate choice may span different scales if dispersal is strongly sex-biased.364

Theoretical results across a range of animals suggest that this is the case when the limiting365

resource differs between males and females (Li and Kokko 2019). In line with this, field366

observations and genetic data have pointed to a breadth of matrilocal and patrilocal be-367

haviours across animal species (for example Liebgold, Brodie III, and Cabe 2011; Oota et368

al. 2001; Schubert et al. 2011). These sex-biased processes might be an intriguing direction369

for further investigation.370

Another exciting direction for further study is selection. A positively selected allele371

will often have more descendants than a neutral one, resulting in excess branching. This372

means that positively selected loci, and genomic regions in linkage disequilibrium with373

them, are expected to have more descendant lineages which can explore space and travel374

faster than neutral ones. This result is similar to Fisher’s travelling wave model, where375

the velocity of spread is proportional to the square root of the selection coefficient (Fisher376

1937; Muktupavela et al. 2021; Steiner and Novembre 2022). For the purpose of inference,377

we often assume that the coalescent branching process and geographic location are inde-378

pendent (although this is not the case, see Wilkins and Wakeley 2002). How far do we379

deviate from this assumption, for example, when selection pressures are local?380

Overall, it is clear that accurately modelling the dispersal of a given species may require381

sound understanding of a variety of ecological parameters. From our simulations, we382

observed that geographic distances captured within a geographically tagged genealogy383

captured these compound effects. These are not yet theoretically well-understood, and384

may become confounding factors in joint analyses of geographic space and genetic diversity.385

Simulations will be key to approaching these issues.386
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5 Methods387

5.1 Spatial simulations388

We used the software SLiM (Haller and Messer 2019) via its R interface slendr (Petr et al.389

2022) to simulate populations in space and time.390

Generations were discrete and non-overlapping, and there was no modelled age struc-391

ture or sex-based differentiation. We chose to keep populations at a constant size in order392

to focus on fundamental aspects of dispersal without confounding effects from demographic393

size changes.394

At each generation and for every individual, the program counted the number of neigh-395

bours within a radius of the competition distance (let this be n). Then, the fitness was396

down-scaled by this number to model competition for resources (fitness ∝ 1/n).397

Individuals were chosen randomly, weighted by their fitness, to be the parents of the398

next generation. Pairs of mates were chosen within a radius of the mating distance, with399

uniform probability. Within each of these pairs, one parent at random was set to be p1,400

which is sometimes called the “gestating parent”. However, note that this is purely a label401

— it may also be that p2, whether it be the mother or the father, migrates to p1’s position402

to raise the offspring.403

In this set-up, the location at which individuals mate is also that at which their fitness404

is evaluated. These are the coordinates recorded in our simulations. This means that405

p1 − o displacement can be seen as the net of parents moving to have the offspring, and406

the migration over the offspring’s lifetime from their birthplace to their mating location.407

In slendr, a user specifies a model and its parameters. These are passed to a SLiM408

backend, which executes the simulation. After this, among the data which can be recovered409

from a simulation are the locations of all individuals, the times at which they lived and410

the phylogeny and pedigree connecting them.411

5.1.1 Encoding dispersal412

We simulated under several modes of p1-offspring dispersal, coming under two categories:413

1. Angle-distance dispersal: in these, the absolute distance is controlled by a given414

distribution. An angle is drawn randomly from a uniform distribution between 0 and415

2π, and a distance d was drawn from one of the following distributions:416

• Uniform: the p1-offspring distance is uniformly distributed between 0 and σ,417

d ∼ U(0, σ). The mean absolute distance is σ/2 and the variance is (1/12)σ2.418

• Half-Normal : the p1-offspring distance is Gaussian distributed, with mean 0 and419

variance σ2. When a distance is below zero, the offspring is effectively ejected420

backwards. The mean of the resulting folded normal distribution (specifically,421

a half-normal) is σ(
√
2/π) and the variance is σ2.422

• Exponential : the p1-offspring distance is exponentially distributed, with rate423

parameter 1/σ, d ∼ Exp(σ). The mean is σ and the variance is σ2.424

• Cauchy : the p1-offspring distance is Cauchy distributed, with location 0 and425

rate parameter σ, d ∼ Cauchy(0, σ). The mean and variance of this distribution426

are undefined.427
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2. Brownian: here, the axial distances are controlled. Random distances in the x and y428

dimensions (dx and dy) are each drawn from a Gaussian with mean 0 and variance σ2,429

dx ∼ N (0, σ2), dy ∼ N (0, σ2). This means that the absolute distance then follows430

a Rayleigh distribution with scale σ, which has mean σ(
√

π/2) and variance 4−π
2 σ2.431

This mode is named “Brownian” due to its conceptual relation to a 2-dimensional432

Brownian motion.433

5.1.2 Tree recording and manipulation434

We simulated a single locus in order to focus on fundamental geographic dynamics which435

act on single trees. After a simulation run, we retrieved the simplified and unsimplified436

trees. Simplified trees, which are the same as standard coalescent trees, consist of nodes437

representing coalescence events, and edges connecting them. These edges implicitly record438

many individuals. In contrast, an unsimplified tree records all individuals along edges.439

Such a tree is useful to directly observe the dispersals which occurred at every generation440

along a long branch. We processed and analysed these via the slendr interface to the441

tskit library (Kelleher, Thornton, et al. 2018). tskit is a powerful framework for storing442

and manipulating trees and tree-sequences with close-to-optimal space usage. We also443

converted these trees to the “phylo” R object class, which allowed us to analyse them via444

the phylogenetics package ape (Paradis and Schliep 2019).445

5.1.3 Geo-spatial analyses446

slendr integrates with the spatial package sf (Pebesma et al. 2018), and this allowed us to447

extract a variety of spatial features from the trees, including the positions of individuals,448

the vectors connecting nodes and the distances between them.449

5.1.4 Computing tree statistics450

We computed the normalized Sackin’s index using the R package, apTreeshape (Borto-451

lussi et al. 2006). In order to compute the number of segregating sites, we used slendr ’s452

ts_segregating function in “branch” mode. To compute the diversity (the average pair-453

wise difference between sequences), we added mutations to the genealogies post-hoc with454

ts_mutate, and then applied the ts_diversity function.455

5.2 Statistics and Plotting456

We calculated statistics in base R, as well as with the packages VGAM (T. W. Yee, M. T.457

Yee, and VGAMdata 2022) and moments (Komsta and Novomestky 2015). We evaluated458

numerical integrals in Mathematica (Wolfram 1991). We produced plots with ggplot2459

(Gómez-Rubio 2017) and auxiliary packages.460

5.3 Derivation of the probability density of the distribution of parent-461

offspring distances462

A diploid individual carries two genome copies, each inherited from a parent. These have463

a distinct genealogy and in any given tree, we follow the movement of one of these copies464

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.03.27.534388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534388
http://creativecommons.org/licenses/by/4.0/


p1

p2

y

O
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a

θ

b ∼ Unif(0,rb)

a ∼ Rayleigh(σ)

θ ∼ Unif(0,2π)

y = a2 + b2 − 2ab cos θ

Figure 8: A schematic of parent-offspring dispersal. When we observe dispersal from
p2, the observed parent-offspring distance (y) is a convolution of the distance between p1
and p2 (b, in red), and the dispersal between p1 and the offspring (a, in blue). The cosine
rule gives us an expression for y in terms of a, b and the angle between them θ. If we
know the probability distributions of a, b and θ, we can obtain that of y via a change of
variables.

through individuals over time and space. We can therefore break down the dispersals which465

occur in one generation into two categories:466

1. Genetic parent is the “mother”, p1. We observe p1-offspring dispersal, (which in467

slendr is directly encoded).468

2. Genetic parent is the “father”, p2. We observe a convolution of p1-offspring dispersal469

and the p1− p2 distance.470

We can draw a triangle which connects both parents and offspring, as shown in Fig.471

8. In case (1), we observe side ã. In case (2), we observe side ỹ. b̃ is the distance which472

separates the two parents, and the angle between sides ã and b̃ is θ̃. ã ∼ Rayleigh(σ), if we473

have Brownian dispersal. Since in slendr, parents are chosen with uniform probability from474

a specified radius rb (the mating distance), b̃ ∼ Unif(0, rb) where rb is the mating distance.475

The angle between these sides is free to range between zero and π, so θ̃ ∼ Unif(0, π).476

We can calculate the length of the side y from a, b and θ:477

y =
√

a2 + b2 − 2ab cos θ

We aim to derive the probability density function (pdf) of y, using the pdfs of a, b and478

θ. This can be achieved with a change of variables:479

fy,a,b(y, a, b) = fa(a)fb(b)fθ(θ)×
1

det(J)
(5)

J is the jacobian matrix of partial derivatives:480
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J =

∂y
∂θ

∂y
∂a

∂y
∂b

∂a
∂θ

∂a
∂a

∂a
∂b

∂b
∂θ

∂b
∂a

∂b
∂b

 =

∂y
∂θ

∂y
∂a

∂y
∂b

0 1 0
0 0 1


The determinant of this matrix is481

det(J) =
∂y

∂θ
=

ab

√
1−

(
a2+b2−y2

2ab

)2

y
(6)

Which goes back into equation (5):482

fy,a,b(y, a, b) = fa(a)fb(b)fθ(θ)×
1

det(J)
(7)

= fa(a)fb(b)fθ(θ)×
y

ab

√
1−

(
a2+b2−y2

2ab

)2
(8)

This is the joint pdf of the three sides of the triangle. Now, we integrate out the483

parameters a and b in order to get a fully marginalised fy.484

fy(y) =

∫
b

∫
a
fa(a)fb(b)fθ(θ)×

y

ab

√
1−

(
a2+b2−y2

2ab

)2
da db (9)

This holds for any distribution of a and b. Let’s consider the case where a is Rayleigh485

distributed (as it is under the Brownian mode of dispersal), and mate choice is random486

within a radius rb (as encoded in slendr). θ and b are uniform random variables, so have487

a constant probability of 1/π and 1/rb respectively. We also know that a has a Rayleigh488

pdf of (a/σ2)e(−a2/2σ2). Replacing these in the function above:489

fy(y) =

∫ rb

0

∫ ∞

0

1

π
× 1

rb
× a

σ2
e

−a2

2σ2 × y

ab

√
1−

(
a2+b2−y2

2ab

)2
da db (10)

This is the fully marginalised pdf of y. This integral is challenging to solve analytically,490

but we can obtain the approximate shape of the pdf by numerical integration.491

Finally, we can write out the pdf of the distance between a randomly chosen parent492

and its offspring. Let’s call this pdf gy(y). With probability P = 0.5, the parent is493

the mother (p1) and y simply follows a Rayleigh distribution with scale σ. When the494

genome is inherited from the father (p2), which again occurs with P = 0.5, the pdf of y495

is the distribution shown above. This leads to the final pdf gy(y) of the parent-offspring496

distance,497

gy|σ,rb(y|σ, rb) =
1

2

y

σ2
e−

y2

2σ2 +
1

2
fy|σ,rb(y|σ, rb) (11)
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From this expression, we can obtain any moment of the distribution. The expectation498

of the distance y is:499

E[y|σ, rb] =
∫
0
y

[
1

2

y

σ2
e−

y2

2σ2 +
1

2
fy|σ,rb(y|σ, rb)

]
dy

=

∫ ∞

0

[
y2

2σ2
e−

y2

2σ2

]
dy +

∫ ∞

0

[y
2
fy|σ,rb(y|σ, rb)

]
dy (12)

=
1

2
σ

√
π

2
+

∫ ∞

0

[y
2
fy|σ,rb(y|σ, rb)

]
dy (13)

which is a half-weighted average of the distance expected from the parent-offspring500

distance kernel, and from mate choice.501

5.3.1 A simpler model with Gaussian mate choice502

There are simple scenarios that lead to a more analytically tractable pdf. For example,503

let us suppose that the distance between parents is also generated in a similar way to504

Brownian dispersal, from independent normal distributions in x and y dimensions with505

variance τ2. In this case, the father-offspring distance in each dimension is a sum of two506

Gaussian random variables and is itself normally distributed with variance σ2 + τ2. This507

gives rise to a Rayleigh distribution with scale
√
σ2 + τ2 for the norm of the distance, y.508

In that case, the final pdf is then:509

gy|σ,τ (y|σ, τ) = 0.5
y

σ2
e−

y2

2σ2 + 0.5
y

σ2 + τ2
e
− y2

2(σ2+τ2) (14)

As noted in Battey, Ralph, and Kern 2020, if the scale of dispersal and mate choice510

are the same (if σ = τ), the spatial diffusion process becomes Gaussian with an overall511

variance 3σ2/2.512

5.4 Maximum likelihood estimation of σ513

When the mating distance is small, and dispersal is “Brownian”, distances in latitude and
longitude at each generation are drawn from independent N (0, σ2), and the dispersal over
many generations may be modelled as a Brownian motion. Given a genealogy with N
branches i, of length li and geographic distance di, the log likelihood of the distances is

ℓ(σ) =
N∑
i=1

log
di√
li
− 2n log σ − 1

σ2

N∑
i=1

(di/
√
li)

2

2

Here, we have divided each branch distance di by
√
li to account for multi-generation514

branches. The absolute distance should increase proportionally to the square root of the515

number of generations, since dispersal is Gaussian in two dimensions.516

The gradient of the likelihood function with respect to σ is517
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d

dσ
ℓ(σ) =

−2n

σ
+

2

σ3

N∑
i=1

d2i
li

The maximum likelihood estimator of σ, which solves d
dσ ℓ(σ) = 0, is given by518

σ̂ML =

√√√√ 1

2N

N∑
i=1

d2i
li

(15)

We may also wish to survey how each branch is contributing to the estimate. Since519

E[di] =
√
liσ

√
π
2 , we define σ̂branch = di√

liπ

2

.520

5.5 Code availability521

The functions used (which are not included in slendr or other packages) are available as522

an R package treesinspace (https://github.com/mkiravn/treesinspace/). We include523

all relevant scripts, with which the simulations and plots included may be reproduced.524
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Figure S1: The effect of dispersal, mate choice and competition on tree-based
statistics. Each column shows the effect of increasing one parameter, with the others kept
constant at 1. Stars show the level of significance of a two-sided t-test. The diversity was
calculated as average pair-wise difference between sequences; the Sackin index is the sum
of leaf depths for a given tree and reflects tree balance (less balances trees have a higher
Sackin index). We ran 20 replicates of a simulation with 100 individuals with Brownian
dispersal, over 500 generations.
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Figure S2: Estimating the dispersal distance with Brownian dispersal, across a
range of σ values. The grey line shows the true σ. We found that the pattern of bias
shown in (a) was replicated across the range of σ values tested. In these simulations, the
mating distance was 0.2 and the competition distance was 0.2.
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