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1 Abstract

1 Geographic space is a fundamental dimension of evolutionary change, deter-
> mining how individuals disperse and interact with each other. Consequently,
3 space has an important influence on the structure of genealogies and the dis-
4 tribution of genetic variants over time. Recently, the development of highly
s flexible simulation tools and computational methods for genealogical inference
s has greatly increased the potential for incorporating space into models of pop-
7 ulation genetic variation. It is now possible to explore how spatial ecological
s parameters can influence the distribution of genetic variation among individu-
o als in unprecedented detail. In this study, we explore the effects of three spe-
10 cific parameters (the dispersal distance, competition distance and mate choice
1 distance) on the spatial structure of genealogies. We carry out a series of in
12 stlico experiments using forwards-in-time simulations to determine how these
13 parameters influence the distance between closely- and distantly-related indi-
14 viduals. We also assess the accuracy of the maximum likelihood estimation
15 of the dispersal distance in a Gaussian model of dispersal from tree-sequence
16 data, and highlight how it is affected by realistic factors such as finite habitat
17 size and limited data. We find overall that the scale of mate choice in par-
18 ticular has marked patterns on short and long terms patterns of dispersal, as
19 well as on the positions of individuals within a habitat. Our results showcase
20 the potential for linking phylogeography, population genetics and ecology, in
21 order to answer fundamental questions about the nature of spatial interactions
22 across a landscape.

s 2  Introduction

2 From nutrient-fixing bacteria in the digestive system, to pollen carried on the legs of bees,
25 all living organisms must deal with the particularities of the range that they inhabit.
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26 At each generation, individuals tend to disperse from their parents, often carrying their
27 genes across great geographic distances. Geographic space is also a major determinant
2s of mate choice and competition for finite resources such as food and water, which can,
20 in turn, influence how genetic relatedness decays as a function of the distance between
30 individuals (Wright 1943). The connection between genetic differentiation and geography
31 has indeed been the focus of numerous theoretical models (for instance Frangois Rousset
2 1997; Hardy and Vekemans 1999; B. Charlesworth, D. Charlesworth, and Barton 2003;
33 Robledo-Arnuncio and Francois Rousset 2010) and empirical studies (Sexton, Hangartner,
3¢ and Hoffmann 2014; Jenkins et al. 2010; Aguillon et al. 2017). Overall, it is now clear that
35 genetic data can hold information about the geographic distribution of individuals in the
36 past (Novembre et al. 2008; Aguillon et al. 2017).

37 Biologists often seek to understand the rate at which individuals of a given species
38 move across space. One way to approach this problem is by focusing on the “dispersal
30 distribution”: a probability distribution over the parent-offspring distance (Kot, Lewis, and
a0 Driessche 1996) i.e. how far away a particular offspring mates compared to its birthplace.
a1 The shape of the dispersal distribution for different species has been of great interest in
a2 ecology. In particular, long-distance dispersal is predicted to strongly affect patterns of
a3 relatedness across a species (T. B. Smith and Weissman 2020), as well as population genetic
as  processes such as allele surfing (Paulose and Hallatschek 2020) and ecological phenomena
45 including the spread of invasive species and host-parasitoid interactions (McCann et al.
s 2000; Clark 1998).

a7 The dispersal distribution is often summarized via a “dispersal distance” parameter, o,
4s which predicts how far away an offspring tends to be from its parents. More precisely, o
49 should be seen as an “effective” dispersal parameter, which absorbs several stages of mate
so0 choice and parent or offspring migration, to predict how far a successfully reproducing
s1  offspring moves from its birth location (Bradburd and Ralph 2019; C. C. Smith et al.
52 2023). Over multiple generations — for example, over branches in a phylogeny — this
53 determines the speed at which two lineages move away from one another after descending
s from a common ancestor (Francois Rousset 2001). It is known that the rate of geographic
ss dispersal affects genetic variation (B. Charlesworth, D. Charlesworth, and Barton 2003).
ss Conversely, it is possible to learn o from genotype data with some accuracy (Frangois
57 Rousset 1997; Ringbauer, Coop, and Barton 2017; C. C. Smith et al. 2023).

58 One way to estimate the parameters of the dispersal distribution in a real population
5o is to track the exact locations of all individuals in a pedigree. However, this is often
o difficult or expensive (Cayuela et al. 2018). While non-recombining genetic sequences can
61 be easily recorded in a genealogy or coalescent tree (Miles et al. 2009; Markov et al. 2009;
62 Castillo et al. 2011), the full history of recombining genomes cannot. Instead, this may be
63 represented as a network, known as the Ancestral Recombination Graph (ARG) (Hudson et
64 al. 1990; Griffiths and Marjoram 1996; Griffiths and Marjoram 1997), which fully encodes
6s the history of coalescence and recombination of a set of sampled genomes. An alternative
66 representation is an ordered set of coalescent trees, each describing the history of a section
67 of the genome in the samples (a “tree sequence”, Kelleher, Wong, et al. 2019). Adjacent
6s genealogies are separated by recombination events, and tend to be more highly correlated
6o than those representing distant genomic tracts. A tree sequence can encode the full ARG,
70 if it contains certain annotations (Rasmussen et al. 2014).

71 Genome-wide tree sequences are an ideal object on which to perform phylogeographic
72 inference, and are already beginning to be used for such analyses (for example, Wohns et al.
73 2022). Recent computational developments have made it tractable to approximately infer
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74 tree sequences for a given genome panel (Kelleher, Wong, et al. 2019; Speidel et al. 2019;
75 Hubisz and Siepel 2020). However, both estimating and working with full tree sequences
76 comes with substantial computational burden. One approach to this problem, which has
77 been used in recent work (Osmond and Coop 2021), is to “thin” the full sequence of
78 trees covering the entire chromosome into a set of approximately independent genealogies.
79 Although these genealogies do not wholly capture the complexity of the full tree sequence,
so we believe that the insights obtained from them are an important basis for understanding
s1  how spatial dispersal affects recombining genomes.

82 In recent years, new software for generating spatially explicit, forwards-in-time simula-
83 tions have enabled researchers to explore genetic variation under a wide range of population
s« histories. The recently developed software slendr (Petr et al. 2022), which uses the powerful
s software SLiM as one of its simulation engines (Haller and Messer 2019; Haller, Galloway,
ss et al. 2019) provides a particularly approachable way to model, visualize and simulate mate
sz choice, dispersal and spatial interactions in continuous space. These simulators can bridge
ss the gap between a lack of theoretical results and the desire to build realistic spatial models
so of species.

90 Two types of interactions which people often use to model populations in geographic
o1 space are mate choice and competition for resources. Both of these can be understood via
o2 a distance parameter. The mate choice distance controls the scale at which individuals
o3 tend to find each other to produce an offspring. The competition distance determines how
o4 far individuals can be separated for them to compete for resources. The effects of these
os parameters on dispersal and genetic diversity have not been the main focus on previous
o6 studies. However, there is some evidence from simulations that the scale of mating has
o7 more impact on effective dispersal than that of competition (C. C. Smith et al. 2023).
9s The lack of work in this area is particularly troublesome for any users of forwards-in-time
9o simulators such as SLiM, where they are required to specify these dynamics explicitly.

100 Motivated by these issues, here we set out to understand properties of geographically
101 annotated sequences of genealogies along a genome, using a simulation-based approach. We
102 leverage slendr to carry out forwards-in-time simulations with non-overlapping generations,
103 and study how ecological parameters affect the spatial distribution of individuals, and the
104 structure of genealogies relating them over time.

105 First, we explore the effects of varying the mode and scale of mating and dispersal
106 on the realised distances between parents and their offspring. We show that, in some
107 cases, these distances closely match their theoretical distribution. We find that the scale
108 of mate choice is an important determinant of the shape of dispersal distributions and the
100 overall rate of dispersal. Then, we illustrate a case in which the realised distribution closely
10 matches a theoretical model which explicitly includes the radius of mate choice. Finally, we
11 test the efficacy of a maximum likelihood estimator of the mean distance between parent
112 and offspring, using distances recorded in the branches of a phylogeny under a commonly
us  used Gaussian mode of dispersal.

114 Our work serves to show that a sound understanding of the geographic parameters
us of a species, with respect to the dispersal distribution and to ecological factors (such as
16 competition for resources and mate choice), is key to carrying out reliable phylogeographic
u7 inference in real populations.


https://doi.org/10.1101/2023.03.27.534388
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534388; this version posted December 19, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Mate Choice @

P1-Offspring

Dispersal
~ Gaussian/

Exponential/Cauchy/
Uniform... o

Figure 1: The mechanics of dispersal in our simulations. In our forwards-in-time
simulations, two parents pl and p2 are chosen. The distance between them (red line) must
be less than the user-specified mating distance. The offspring (o) is then dispersed from pl
(blue line) according to a specified mode of dispersal parametrized via a dispersal function
(DF) and distance (which we call o). These mechanics imply that a given one-generation
dispersal may either be a direct observation of a draw from the DF' (the pl — o distance,
blue line) or it may be a composite of mate choice and dispersal (the p2 — o distance, grey
line).

us 3 Results

1o 3.1 Dispersal patterns in spatially-tagged genealogies

Dispersal
Function

Parametrization

Theoretical
Mean

Theoretical
Variance

Brownian

Distance in x and y di-
mensions drawn independently
from N(0,0%). Distance follows
Rayleigh(o)

o\/T/2

o%(4—m)/2

Cauchy

Angle drawn uniformly,
distance drawn from
Cauchy (scale=0,location=0)

undefined

undefined

Exponential

Angle drawn uniformly, dis-
tance drawn from Exp(1/0)

g

Half-Normal

Angle drawn uniformly, dis-
tance drawn from N(0,02).
Distance follows folded normal
distribution

ov\/2/T

Uniform

Angle drawn uniformly, dis-
tance drawn from U(0,0)

o/2

o2 /12

Table 1: The parametrization of parent-offspring distances via the dispersal
distance. We parametrized the dispersal distribution through a parameter o, such that
the theoretical variance increased with ¢, and the mean with o (this does not apply to
the Cauchy distribution, which has undefined mean and variance; here, o was the scale
parameter). Further details are given in Methods section 5.1.1.
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120 We were interested in learning the relationship between the observed parent-offspring
121 distances in a (perfectly inferred) genealogy and the underlying dispersal function in a
122 population. In our simulations, a dispersal function (DF') and its scale parameter, o,
123 determine how the simulator decides where to place offspring compared to the gestating
124 parent (pl). More details on this process are described in the Methods section 5.1.1, and a
125 schematic of these mechanics is shown in Fig. 1. The range of DF's and their parametriza-
126 tion are summarised in Table 1 and plotted in Fig. 2. Although the interpretation of o
127 with respect to the DF varied for each distribution, our parametrization was such that
128 increasing o increased the variance of parent-offspring displacement. In essence, the larger
120 0, the further an offspring tends to be from its parents and the faster genetic lineages
130 spread across the habitat.

131 Two other important parameters in our simulations are the competition and mating
132 distances. The competition distance serves to parametrize competition for resources within
133 a neighbourhood. Essentially, the simulator counts the number of neighbours an individual
132 has within a radius of the competition distance and down-scales their fitness proportionally
135 to this number (see Methods section 5.1.1). The mate choice radius, or mating distance,
136 determines the maximum radius within which a parent can choose a mate. In slendr
137 V0.5.1, mates are chosen uniformly at random from within this distance.

138 We simulated a single, non-recombining locus in a population of 100 individuals in
130 a habitat of size 50 x 50 units. We used a range of dispersal functions and o values,
140 and also varied the mating and competition distances. After 50 generations, we sampled
11 all individuals and reconstructed the genealogy connecting them. In these genealogies,
142 we stored all individuals, rather than coalescent nodes only (this corresponds to a tskit
143 “unsimplified” tree), so that we could observe dispersal at every generation. For each
14 condition, we ran 20 replicates. We will call the distribution of realised parent-offspring
15 distances in these trees the DD (empirical distance distribution).

146 We compared parent-offspring distances sampled from the simulations (the 1/7?7) to
147 the theoretical probability distributions from which pl-offspring distances were drawn (the
s DF). The shape of the DD tended to mirror that of the DF (Fig. 2). For example, when
140 parameterizing the DF' as Cauchy, we observed a higher frequency of long DD dispersal
150 values, compared to other DF distributions, when the parameter o was kept constant.
151 This is consistent with the heavy tail of the theoretical Cauchy distribution, compared to
152 other distributions (uniform, half-normal, exponential or Rayleigh).

153 There was not a perfect correspondence between DD and DF, as the other ecological
154 parameters (namely competition distance and mate choice radius) in the simulation also
155 influenced the realized distance between parent and offspring. We quantified this effect
156 of these parameters on effective dispersal by measuring the excess variance of the ]_/)E,
157 compared to the DF (Fig. 4). Increasing the mating distance caused the DD to accumulate
158 much excess variance, and the DD to acquire a flat “shoulder”, which we model in the next
150 section (section 3.2).

160 In contrast, varying the competition distance had a weaker effect on excess variance
161 (the difference between the variance of the DD and the DF, brought about by mate
162 choice and competition). Excess variance tended to increase with competition distance;
163 however, when the competition distance was 100 (twice the width of the habitat), the
162 effect on the excess variance was small. This was expected, since a radius of 100 spans
165 the entire 50 x 50 habitat we simulated, and therefore is equivalent to no competition at
166 all (since every individual’s fitness is down-scaled by the same factor, the total population
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167 size, leading to equal relative fitness across the population — for details, see Methods
168 section 5.1).

169 Overall, the relationship between the theoretical and realized parent-offspring distribu-
170 tions — under varying competition and, in particular, mating distances — suggests that
171 these ecological parameters may be important determinants of the scale of dispersal of
172 individuals in the wild.

173 To further investigate the nature of the effects of mating and competition, we examined
174 the positions of individuals throughout the simulations. When the mating distance was
175 small, individuals tended to group together and move cohesively throughout the landscape
176 (as shown in Fig. 4). As the mating distance increased, the population broke into discrete
177 clusters which appeared to “repel” each other. Varying the competition distance had little
178 effect on spatial clustering.

179 We next examined how the dispersal, competition and mating distance affected a set of
180 summary statistics for the genealogies (Fig. S1). We computed Sackin’s index, as well as
181 two measures of diversity: the average number of pairwise differences (Tajima’s estimator
182 of diversity) and the number of segregating sites for each of the trees, as described in
183 Methods section 5.1.4.

184 The average number of pairwise differences decreased with the dispersal distance, and
185 the number of segregating sites showed the same pattern. This suggests that limited dis-
186 persal range preserved diversity in the population, although it appears to be inconsistent
157 with the well-known Wahlund effect, the decrease in diversity brought about by population
188 structure (the Wahlund effect, Wahlund 1928). Interestingly, increasing the mating dis-
180 tance instead led to an increase in diversity and the number of segregating sites, which is
100 instead in agreement with the Wahlund effect. The average number of pairwis and number
101 of segregating sites showed no clear pattern with increasing competition distance.

102 Furthermore, the Sackin index exhibited a reduction with increasing dispersal distance,
103 while it remained constant when altering mating and competition distances. Sackin’s index,
102 a measure of tree balance, is defined as the sum of the number of ancestors for each tip of
105 a tree (Lemant et al. 2022). A higher Sackin index signifies a less balanced tree, indicating
106 that certain clades tended to give rise to more descendants than others. Consequently, this
197 pattern suggests that short-range dispersal introduced some imbalance into the branching
108 structure of the genealogies.

10 3.2 Modelling dispersal patterns

200 Inspired by these observations, we developed a theoretical model of parent-offspring dis-
201 tances combining ¢ and the scale of mating, given a mode of dispersal where distances
202 were drawn from a Gaussian distribution (which here we term “Brownian”, as described in
203 Methods section 5.1.1) using the uniform model of mate choice implemented in slendr. This
204 also represents a more general example of a species for which mate choice and dispersal
205 distances are not drawn from the same distribution, or at the same scale.

The distribution of parent-offspring distances is an equally weighted mixture of disper-
sals from a “gestating” parent pl and a non-gestating parent, p2. If the parent-offspring
distance is y, its density given a dispersal distance parameter o and a mate choice radius
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Figure 2: Distributions of parent-offspring distances reflect the underlying dis-
persal function. The left panel shows the empirical distribution of effective parent-
offspring distances drawn from the forwards-in-time spatial simulations, while the right
one shows the PDF of the corresponding dispersal distributions. The effective distances
are affected by the dispersal distribution, as well as competition and mate choice. Bottom:
a zoom-in on the tails of curves; the height of the tails of the distributions corresponded
to those of the corresponding dispersal functions, with the Cauchy having the most heavy
tail, followed by the exponential, Brownian, half-normal and then uniform. The mating
distance competition distances were both 1 unit.

o brownian cauchy exponential half-normal uniform
éloo S L KO g PRI & @
é 10 '»‘9% ’\'9 LA ,;\!;5 ,0'9 «,Ss’ AW ,096) \,?3\ & & \,« [
% 5 0 ¥ & & PEBIR g PN & PP
g- 1 0& 3 «5@ 5 <b/o '&Q‘b /Qq:b ® oY ,0‘& '»Q(;) '\"b 0(0 w/\\/ @q’b
o

10 100 1 5
mating distance

Figure 3: Quantifying the effect of mate choice and competition radius on re-
alized parent-offspring distances. Each tile shows the excess variance of the empiri-
cal dispersal distribution compared to the theoretical one — as given by Table 1. Since
the Cauchy distribution has undefined variance, the excess is relative to zero. Increasing
the competition distance tended to have relatively little effect on the variance of parent-
offspring distances, but altering the scale of mate choice had a very strong effect.
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Figure 4: The effects of the mating and competition distance on the placement
of individuals in a population. The positions of individuals present in the genealogy
connecting 200 sampled individuals (in the unsimplified tree), over 10 generations are
shown and coloured by time. When the mating distance was small (top row), we observed
a strong clumping behaviour. As we increased the competition and mating distances,
the clustering behaviour was alleviated. In these simulations, the mode of dispersal was
Brownian and o was 1 unit.
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Figure 5: Modelling dispersal and mate choice. The distribution of parent-offspring
distances against the theoretical distribution given in Equation (1) (dashed lines) and the
Rayleigh distribution (purple). There was a close match between the theoretical and sim-
ulated distributions across a range of mating distances. As the mating distance increased,
the distributions acquired a flat shoulder compared to the Rayleigh distribution, arising
from long father-offspring dispersals. In all simulations, the dispersal distance parameter
o was 1 unit and the competition distance was 1 unit.
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ly ~»2 1
Gy|o,ry, (y’Ua Tb) =5 3¢ % + 7fy|cr,rb(y|0-a Tb) (1)
20 2
200 The first term reflects the density given a standard Rayleigh distribution (between the
207 gestating parent and its offspring) with scale o, while the second term models the distance
208 between the non-gestating parent and the offspring.

If we assume a uniformly distributed mate choice radius, then the density function of
the distance between the non-gestating parent and the offspring is given by

L T | a =—a? Y
fy\a,rb(y|o—¢ Tb) = / / — X=X =€ 202 X dadb (2)
o Jo ™ Tp a24b2—y2 \ 2
aby/1 — (72@ )
200 Where a is the distance between the gestating parent (pl) and its offspring, and b is the
210 distance between parents. This derivation is elaborated in the Methods section 5.3. We

211 verified that these equations matched the simulated distances (Fig. 5) across the parameter
212 range we examined.

213 If the mate choice distance is instead modeled more simply as a Rayleigh distribution
214 (see Methods section 5.3), the density function between the offspring and the (unknown)
215 parent can be analytically solved:

2

b i Y o mte
gy‘U,T(y|U,7—):O.5§€ 20 +05m6 o2 (3)

216 where 7 is scale of the Rayleigh distribution governing the mate choice distance.
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217 This formulation also leads to a simple result for the mean parent-offspring distance.
218 Since the expected pl-offspring distance is o4/7/2 and the expected p2-offspring distance
/52 2
210 18 Vo2 + 724/7/2, the expected parent-offspring distance is \/77(0'*‘2—\/;"*‘7) If we were
20 to measure the distances along branches of a genealogy, we would eventually expect to
/52 2
21 see generation-scaled distances follow a Gaussian with mean \/?r(a—;—\/ngT) This may be

222 interpreted as a many-generation “effective” dispersal distance parameter.

23 3.3 Estimating dispersal distances from spatially tagged genealogies

PO

0.100
2 all branches
<0 tree cut at
100 generations
in past
0.010
0.001

unsimplified simplified tips only

Figure 6: Estimating the dispersal distance under a Brownian dispersal kernel.
Each dot is the ML &, from each of 5 simulation replicates. The violin plots show all
branch-wise & values and the grey lines show the true o, 1 unit. The diagrams below
illustrate the lineages used in each case. Excluding older branches, as in Osmond and
Coop 2021, increased the estimated dispersal distance for the simplified tree and the tip-
only distances. We suggest that this is because more ancient, longer branches in the
genealogy are biased due to limited habitat size. In each case, the mating distance was 0.2
units and the competition distance was 0.2 units.
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Finally, we sought to test how accurately ¢ could be estimated, given a perfectly inferred
spatial tree sequence. Under a Gaussian mode of dispersal (what we term “Brownian”),
and negligible mate choice distance, the maximum likelihood estimator of ¢ is

224 where the index ¢ denotes each of N branches in a genealogy, with geographic distance d;
225 and branch-length in generations /; (see Methods section 5.4). It is worth noting that our
26 method of estimation is naive, since it ignores the fact that branches are shared between
207 pairs containing the same individual — indeed, we actually maximize the composite likeli-
228 hood, rather than the full likelihood (as instead is used in Osmond and Coop 2021, where
220 covariance between pairs is appropriately taken into account). However, with enough data,
230 the maximum likelihood estimate of o should be the same in both cases, and we use this
231 as a simple bench-mark approach.

232 We sampled 100 genomes across 5 simulation replicates from a population of size N =
233 2,000, and set the mating distance to be small (0.2 units) to minimize its effect on dispersal.
23 We first obtained maximum likelihood estimates of ¢ from the set of all parent-offspring
235 distances. We next emulated a situation where the geographic positions of tree tips and
236 internal nodes are known, but those of the individuals along lineages in the tree are not
237 known (labelled “simplified” in our plots). Lastly, to mimic a more realistic scenario, we
238 extracted the distances between all pairs of tips, which corresponds to a situation where
230 only present-day individuals have a known location (“tips only”). The results are shown
240 in Figure 6.

241 While the estimates of ¢ from the full set of parent-offspring distances were accurate,
222 the estimates from longer tree branches generally were smaller than the true parameter.
223 'To investigate whether limited world size was responsible for this observation, we adopted
224 the approach detailed in Osmond and Coop 2021 and eliminated branches which were
225 more than 100 generations old. In the “simplified” and “tips only” case, this amounted
26 to retaining sub-trees for which the tMRCA lived less than 100 generations in the past.
247 Pruning the trees caused the distribution of branch-wise distances to more closely resemble
28 that of the simplified trees, and correspondingly caused an increase in the estimated o.
220 This suggests that distances accumulated over long branches in a given genealogy tended
250 to be shorter than expected: a phenomenon probably caused by the fact that long-range
251 dispersal is limited in a finite habitat. This pattern was consistent across a range of
252 dispersal distances (Fig. S2).

253 We also tested whether assuming an incorrect dispersal kernel could affect estimates
254 of 0. This might be applicable in a situation where, for example, a population follows
255 power-law dispersal, but we assume parent-offspring distances to be Gaussian and attempt
256 to estimate the variance parameter. Another way to interpret this, is to estimate the net
257 effective dispersal parameter which results from a Cauchy DF'. To mimic this situation,
258 we simulated under a mode of dispersal where a random angle was drawn from a uniform
250 distribution and a distance from a Cauchy distribution with scale and location of 1 unit.
260 The Cauchy distribution is more heavy-tailed compared to a Rayleigh distribution with
261 the same scale. In agreement with this, the estimated o was larger than the true parameter
262 (Fig. 7). We also varied the scale of mate choice to see what synergy large mating distances
263 might have with a misspecified dispersal kernel. As expected, the estimates of ¢ increased
264 as with the scale of mate choice. Interestingly, there appeared to be a steeper increase in
265 ¢ with mating distance when the DF was Cauchy.
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Figure 7: Estimating the dispersal distance under a misspecified model. Left:
increasing the mating distance increases the effective dispersal distance. Right: in these
simulations, the dispersal function was Cauchy with scale and location 1 unit, but we
naively used maximum likelihood estimator of ¢ for the Brownian mode of dispersal. In
this setting, increasing the mating distance led to further inflation of 6. The dots show
the result of each of five replicates, and the lines are smoothed rolling means.

w6 4 Discussion

267 In this study, we explore the effects of three important ecological parameters (dispersal dis-
268 tance and distribution, competition distance and mate choice distance) on the geographic
260 distances captured in a geographically tagged genealogy.

270 We show that altering the kernel of parent-offspring dispersal can have strong effects
271 on the diffusion captured within a genealogy, and in particular on the tails of the realised
272 parent-offspring distance distribution. For example, the Cauchy distribution, which is a
2713 text-book example of a “heavy-tailed” distribution, did indeed produce a greater proportion
274 of long-distance dispersals.

275 There was some difficulty in choosing a common parametrization for these dispersal
276 distributions, especially since slendr implements two different mechanics of parent-offspring
277 dispersal (one where a random distance and angle are chosen, and another where latitudinal
27e and longitudinal distances are chosen, see Methods section 5.1.1). We suggest that a
270 pragmatic solution for the sake of simulation might be to encode a dispersal distribution
280 where the height of the tail may be controlled more directly. An example may be the Pareto
281 distribution, where the tail probability is particularly sensitive to the shape parameter,
22 and does not directly depend on the variance (in contrast to, for example, the normal
283 distribution).

284 The mate choice radius caused distinctive patterns in the distribution of a population
285 within its landscape. In particular, close-range mating led to clustered groups of individu-
286 als, which may be a practical nuisance to simulation users, and lead to unwanted geographic
287 structure. We suggest that this is the same phenomenon described in Felsenstein 1975.
288 As Felsenstein describes, the intuition behind this behaviour is that, when either mate
280 choice or dispersal distances are small, individuals each seed a “clump” of descendants.
200 Due to the constraint of constant population size, several of these clumps are destined to
201 die out. The small mating distance forbids mating between these clumps, so the remaining
202 ones become larger and further apart. This is particularly cumbersome because relatively
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203 small mating distances are required for the average parent-offspring dispersal to match
204 pl-offspring dispersal. Although not possible in the most recent version of slendr (Petr
205 et al. 2022), allowing for less generally constrained simulations with fluctuating population
206 size might alleviate these factors. However, this would require the development of dedi-
207 cated software for the analysis of tree sequences produced by such dynamics (known as
208 “non-Wright-Fisher”) in slendr.

299 We also observed that the distances within a genealogy increased dramatically if the
300 scale of mate choice was large. Mating is often not explicitly modelled — yet the step
301 of mate allocation is essential in forwards-in-time, agent-based genetic simulators such as
302 slendr and SLiM. Furthermore, the dynamics of mate choice and parent-offspring dispersal
303 may differ starkly in natural populations: for example, the same model of dispersal may not
304 apply to the dynamics with which pollen and seeds spread. Our results support that this
305 is an important parameter, and absorbing mating and parent-offspring dispersal dynamics
306 into one step may not always be appropriate.

307 Aside from changing the distances in the genealogy, the scale of mate choice also
308 changed the shape of the distribution of parent-offspring distances. To illustrate a case
300 where this may be modelled, we described the theoretical distribution of parent-offspring
310 distances under uniform mate choice, and found a close match between the this and simu-
s lated distances. The natural next step would be to use these results in an inference frame-
312 work, by deriving analytical solutions for the maximum-likelihood or method-of-moments
313 estimators for the dispersal and mating distances.

314 Rather than the theoretical dispersal distance itself, a parameter that may be more
315 liable to inference is an effective dispersal distance parameter, which incorporates both
s16  the mate choice and dispersal processes. The distance between parents and offspring over
317 many generations should follow a normal distribution in the limit of infinite generations,
318 due to the central limit theorem. Therefore, if we were to take the distances along branches
s19 of a phylogeny and scale them by the respective number of generations (as inferred from
320 genetic data), the distribution of distances would approach a Gaussian distribution, centred
321 around this effective dispersal distance. Specifically, this is an equally weighted mean of
322 the expected distances of the offspring from either parent (see Methods section 5.3). For
323 example, in the Methods section 5.3.1, we show that under a model with Gaussian dispersal
324 (with scale o) and mate choice (with scale 7), this effective dispersal distance can be easily

m(o+vo2+72)
325 calculated as v
326 This compound parameter is in effect what is estimated when mate choice dynamics

327 are not explicitly modelled in phylogeographic studies. We therefore motivate distinguish-
328 ing between spatial models intended for few generations, where the stages of mating and
320 dispersal should be treated as distinct, from those for phylogenetic time-scales, where they
330 may be absorbed into one parameter. We also note that, over long time-scales, disper-
331 sal was limited by finite population ranges. In our results, this led to estimates of the
332 mean dispersal distance which were smaller than expected, illustrating that deep coales-
333 cent branches should only be used with caution for inference, as illustrated by Osmond
33 and Coop 2021.

335 This study has focused on single-locus genealogies, which is comparable to studying
336 approximately independent genealogies from a tree sequence. Such an approach, followed
337 for example in Osmond and Coop 2021, greatly reduces the computational burden of
338 analysing the full tree sequence, yet retains the ability to uncover variation in dispersal and
330 geographic ancestry across the genome. However, we expect that ignoring the correlation
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320 structure which exists between trees in a tree sequence leads to some loss of information
ss1 — specifically, in a fully annotated tree sequence, it is possible to identify nodes which
322 are shared between trees. This information could be used, for example, to constrain the
343 positions of shared internal nodes based on information coming from several trees. We note
aaa  that, since SLiM and slendr are able to run spatial simulations of recombining genomes,
35 they might be valuable tools to begin to investigate how much information is lost when we
36 “thin” tree sequences.

347 Another aspect of complexity which we have not investigated is the bias which might
g arise from using estimated genealogies, rather than known ones. There is recent evidence
sa9 that currently available methods (Argweaver, Relate and tsinfer + tsdate) tend to under-
350 estimate the time of deep coalescences, and vice versa (YC Brandt et al. 2022). This is
351 a form of a well-known phenomenon in phylogenetics called “long branch attraction”. We
352 expect that would lead to biases in inferences of dispersal (longer-range than reality to-
353 wards internal nodes, and shorter than expected at the tips). Again, this could be aptly
354 studied in slendr by post-hoc adding mutations onto the simulated genealogies, and adding
355 a genealogy estimation step to the analyses.

356 In cases where we are interested in untangling the mating and dispersal distances, uni-
357 parentally inherited genetic material could be of use. Mitochondrial DNA only moves via
sss  mother-offspring dispersals, the direct manifestation of the dispersal function (when the
sso mother is pl). Conversely, the Y-chromosome always moves according to a convolution of
360 mating and dispersal distances. Comparing their respective rates of diffusion could help
31 us identify cases in which the between-parent distance might be masking the underlying
362 mother-offspring dispersal dynamic.

363 At the moment, slendr is not able to model sex differences. Yet, mother-offspring
3¢ dispersal and mate choice may span different scales if dispersal is strongly sex-biased.
365 Theoretical results across a range of animals suggest that this is the case when the limiting
ses resource differs between males and females (Li and Kokko 2019). In line with this, field
367 observations and genetic data have pointed to a breadth of matrilocal and patrilocal be-
ss  haviours across animal species (for example Liebgold, Brodie III, and Cabe 2011; Oota et
seo al. 2001; Schubert et al. 2011). These sex-biased processes might be an intriguing direction
370 for further investigation.

371 Another exciting direction for further study is selection. A positively selected allele
372 will often have more descendants than a neutral one, resulting in excess branching. This
373 means that positively selected loci, and genomic regions in linkage disequilibrium with
s74 them, are expected to have more descendant lineages which can explore space and travel
375 faster than neutral ones. This result is similar to Fisher’s travelling wave model, where
sre  the velocity of spread is proportional to the square root of the selection coefficient (Fisher
sz 1937; Muktupavela et al. 2021; Steiner and Novembre 2022). For the purpose of inference,
78 we often assume that the coalescent branching process and geographic location are inde-
s7o pendent (although this is not the case, see Wilkins and Wakeley 2002). How far do we
ss0 deviate from this assumption, for example, when selection pressures are local?

381 Overall, it is clear that accurately modelling the dispersal of a given species may require
ss2 sound understanding of a variety of ecological parameters. From our simulations, we
3s3 observed that geographic distances captured within a geographically tagged genealogy
ss4 captured these compound effects. These are not yet theoretically well-understood, and
35 may become confounding factors in joint analyses of geographic space and genetic diversity.
386 Simulations will be key to approaching these issues.
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w7 b Methods

s H.1 Spatial simulations

ss0  We used the software SLiM (Haller and Messer 2019) via its R interface slendr (Petr et al.
300 2022) to simulate populations in space and time.

301 Generations were discrete and non-overlapping, and there was no modelled age struc-
302 ture or sex-based differentiation. We chose to keep populations at a constant size in order
303 to focus on fundamental aspects of dispersal without confounding effects from demographic
304 size changes.

395 At each generation and for every individual, the program counted the number of neigh-
396 bours within a radius of the competition distance (let this be n). Then, the fitness was
307 down-scaled by this number to model competition for resources (fitness o< 1/n).

308 Individuals were chosen randomly, weighted by their fitness, to be the parents of the
390 next generation. Pairs of mates were chosen within a radius of the mating distance, with
200 uniform probability. Within each of these pairs, one parent at random was set to be pl,
s01  which is sometimes called the “gestating parent”. However, note that this is purely a label
202 — it may also be that p2, whether it be the mother or the father, migrates to p1’s position
203 to raise the offspring.

404 In this set-up, the location at which individuals mate is also that at which their fitness
205 is evaluated. These are the coordinates recorded in our simulations. This means that
206 pl — o displacement can be seen as the net of parents moving to have the offspring, and
207 the migration over the offspring’s lifetime from their birthplace to their mating location.

408 In slendr, a user specifies a model and its parameters. These are passed to a SLiM
200 backend, which executes the simulation. After this, among the data which can be recovered
a0 from a simulation are the locations of all individuals, the times at which they lived and
a11  the phylogeny and pedigree connecting them.

a2 5.1.1 Encoding dispersal

a3 We simulated under several modes of pl-offspring dispersal, coming under two categories:

414 1. Angle-distance dispersal: in these, the absolute distance is controlled by a given
415 distribution. An angle is drawn randomly from a uniform distribution between 0 and
416 27, and a distance d was drawn from one of the following distributions:

a17 e Uniform: the pl-offspring distance is uniformly distributed between 0 and o,
a18 d ~ U(0,0). The mean absolute distance is ¢/2 and the variance is (1/12)02.
a19 e Half-Normal: the pl-offspring distance is Gaussian distributed, with mean 0 and
420 variance o2. When a distance is below zero, the offspring is effectively ejected
421 backwards. The mean of the resulting folded normal distribution (specifically,
a22 a half-normal) is o(1/2/7) and the variance is 2.

423 e FEzxponential: the pl-offspring distance is exponentially distributed, with rate
424 parameter 1/0, d ~ Exp(c). The mean is o and the variance is 2.

425 e (Cauchy: the pl-offspring distance is Cauchy distributed, with location 0 and
426 rate parameter o, d ~ Cauchy(0,0). The mean and variance of this distribution
427 are undefined.
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428 2. Brownian: here, the axial distances are controlled. Random distances in the x and y
429 dimensions (d, and dy) are each drawn from a Gaussian with mean 0 and variance o2,
430 dy ~ N(0,0%), dy ~ N(0,0?). This means that the absolute distance then follows
431 a Rayleigh distribution with scale o, which has mean o(y/7/2) and variance 4_?”02.
432 This mode is named “Brownian” due to its conceptual relation to a 2-dimensional
433 Brownian motion.

3¢ 5.1.2 Tree recording and manipulation

435 We simulated a single locus in order to focus on fundamental geographic dynamics which
436 act on single trees. After a simulation run, we retrieved the simplified and unsimplified
437 trees. Simplified trees, which are the same as standard coalescent trees, consist of nodes
438 representing coalescence events, and edges connecting them. These edges implicitly record
430 many individuals. In contrast, an unsimplified tree records all individuals along edges.
420 Such a tree is useful to directly observe the dispersals which occurred at every generation
as1  along a long branch. We processed and analysed these via the slendr interface to the
aa2  tskit library (Kelleher, Thornton, et al. 2018). tskit is a powerful framework for storing
423 and manipulating trees and tree-sequences with close-to-optimal space usage. We also
asa converted these trees to the “phylo” R object class, which allowed us to analyse them via
ass  the phylogenetics package ape (Paradis and Schliep 2019).

as 5.1.3 Geo-spatial analyses

a7 slendr integrates with the spatial package sf (Pebesma et al. 2018), and this allowed us to
as  extract a variety of spatial features from the trees, including the positions of individuals,
a0 the vectors connecting nodes and the distances between them.

0 5.1.4 Computing tree statistics

as1 We computed the normalized Sackin’s index using the R package, apTreeshape (Borto-
as2 lussi et al. 2006). In order to compute the number of segregating sites, we used slendr’s
as3  ts_segregating function in “branch” mode. To compute the diversity (the average pair-
asa wise difference between sequences), we added mutations to the genealogies post-hoc with
a5 tsmutate, and then applied the ts_diversity function.

6 5.2 Statistics and Plotting

a7 We calculated statistics in base R, as well as with the packages VGAM (T. W. Yee, M. T.
ass Yee, and VGAMdata 2022) and moments (Komsta and Novomestky 2015). We evaluated
sso numerical integrals in Mathematica (Wolfram 1991). We produced plots with ggplot2
a0 (GOomez-Rubio 2017) and auxiliary packages.

w61 5.3 Derivation of the probability density of the distribution of parent-
262 offspring distances

a3 A diploid individual carries two genome copies, each inherited from a parent. These have
a4 a distinct genealogy and in any given tree, we follow the movement of one of these copies
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b ~ Unif(0,r,) b
0 ~ Unif(027) @9

a ~ Rayleigh(o) a

o
y=vVa*+b*—2abcos

Figure 8: A schematic of parent-offspring dispersal. When we observe dispersal from
p2, the observed parent-offspring distance (y) is a convolution of the distance between pl
and p2 (b, in red), and the dispersal between pl and the offspring (a, in blue). The cosine
rule gives us an expression for y in terms of a, b and the angle between them 6. If we
know the probability distributions of a, b and 6, we can obtain that of y via a change of
variables.

465 through individuals over time and space. We can therefore break down the dispersals which
466 Occur in one generation into two categories:

467 1. Genetic parent is the “mother”, pl. We observe pl-offspring dispersal, (which in
468 slendr is directly encoded).

469 2. Genetic parent is the “father”, p2. We observe a convolution of pl-offspring dispersal
470 and the pl — p2 distance.
471 We can draw a triangle which connects both parents and offspring, as shown in Fig.

a2 8. In case (1), we observe side a. In case (2), we observe side §. b is the distance which
473 separates the two parents, and the angle between sides a and bisf. @~ Rayleigh(o), if we
474 have Brownian dispersal. Since in slendr, parents are chosen with uniform probability from
ars  a specified radius 7, (the mating distance), b~ Uni f(0,7p) where ry, is the mating distance.
476 The angle between these sides is free to range between zero and m, so 6 ~ Uni f(0,7).

a77 We can calculate the length of the side y from a, b and 6:

y = a2+ b2 — 2abcos

478 We aim to derive the probability density function (pdf) of y, using the pdfs of a, b and
a79 0. This can be achieved with a change of variables:

1
det(J)

fyan(y,a,0) = fa(a) f5(b) fo(0) X

480 J is the jacobian matrix of partial derivatives:
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481 The determinant of this matrix is
a24b2—y2 ' 2
ety ay ab\/l - (42(11) y ) .
t = — =
et(3) = - (6
a82 Which goes back into equation (5):
Pyl ,8) = Fal ) Fo0)fo(6) x — ©
y,a,b\Y, @, = Ja\Q)Jb [ det(.])
Y
= fa(a) f5(b) fo(0) X = (8)
a2+4+b2—y2
483 This is the joint pdf of the three sides of the triangle. Now, we integrate out the

as4 parameters a and b in order to get a fully marginalised f,,.

Yy
1) = [ [ fala) s)1006) x _dadb ©
bJa ab\/l _ (a2+2bjl;y2>
485 This holds for any distribution of a and b. Let’s consider the case where a is Rayleigh
ase  distributed (as it is under the Brownian mode of dispersal), and mate choice is random
as7  within a radius 7, (as encoded in slendr). € and b are uniform random variables, so have

ass  a constant probability of 1/7 and 1/r, respectively. We also know that a has a Rayleigh
wo  pdf of (a/02)e(~9°/20")  Replacing these in the function above:

o1 1 —a?
fy(y) =/ / X — X %6262 X Y da db (10)
o Jo ™ T, O ab\/l— (a2+b2—y2)2
2ab
490 This is the fully marginalised pdf of y. This integral is challenging to solve analytically,
201 but we can obtain the approximate shape of the pdf by numerical integration.

492 Finally, we can write out the pdf of the distance between a randomly chosen parent
a3 and its offspring. Let’s call this pdf g,(y). With probability P = 0.5, the parent is
a0 the mother (pl) and y simply follows a Rayleigh distribution with scale . When the
a0s genome is inherited from the father (p2), which again occurs with P = 0.5, the pdf of y
a6 is the distribution shown above. This leads to the final pdf g,(y) of the parent-offspring
297 distance,

1y 5] 11
gy|o’,?“b(y’0—7 rb) - 5;6 202 4 §fy|a,7“b(y’07 Tb) ( )
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498 From this expression, we can obtain any moment of the distribution. The expectation
490 of the distance y is:

1y _2° 1
Ely|o, ] = /y [226 207 + = fylom, (o, m)} dy
0 g 2

[T S s [ Lol (12)

0\/> / fy\mb ylo, Tb)} (13)

500 which is a half-weighted average of the distance expected from the parent-offspring
so1 distance kernel, and from mate choice.

52 5.3.1 A simpler model with Gaussian mate choice

s03 There are simple scenarios that lead to a more analytically tractable pdf. For example,
so4 let us suppose that the distance between parents is also generated in a similar way to
sos  Brownian dispersal, from independent normal distributions in x and y dimensions with
sos variance 72. In this case, the father-offspring distance in each dimension is a sum of two
sor  Gaussian random variables and is itself normally distributed with variance o? + 72. This
so8  gives rise to a Rayleigh distribution with scale v/o2 + 72 for the norm of the distance, y.
s00 In that case, the final pdf is then:

2

—05L e pos Yo wt 14
Qy\a,r(y|077')— ~§6 v ‘027+7'26 (14)

510 As noted in Battey, Ralph, and Kern 2020, if the scale of dispersal and mate choice
su are the same (if 0 = 7), the spatial diffusion process becomes Gaussian with an overall
512 variance 302 /2.

53 5.4 Maximum likelihood estimation of o

When the mating distance is small, and dispersal is “Brownian”, distances in latitude and
longitude at each generation are drawn from independent A/(0,2), and the dispersal over
many generations may be modelled as a Brownian motion. Given a genealogy with NV
branches %, of length [; and geographic distance d;, the log likelihood of the distances is

N
U)zZlog di —2nloga——z d/\f
i=1

514 Here, we have divided each branch distance d; by v/I; to account for multi-generation
s15 branches. The absolute distance should increase proportionally to the square root of the
s1.6 number of generations, since dispersal is Gaussian in two dimensions.

517 The gradient of the likelihood function with respect to o is
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N
d —2n 2 d?
Loy = 2,2 4
do (o) o + o3 ; l;

518 The maximum likelihood estimator of o, which solves -L{(o) = 0, is given by

(15)

519 We may also wish to survey how each branch is contributing to the estimate. Since

520 E[dz] = \/EO’\/?, we define &branch = -4

lym
2

s1 5.5  Code availability

s22. The functions used (which are not included in slendr or other packages) are available as
s23 an R package treesinspace (https://github.com/mkiravn/treesinspace/). We include
s24  all relevant scripts, with which the simulations and plots included may be reproduced.
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Figure S1: The effect of dispersal, mate choice and competition on tree-based
statistics. Each column shows the effect of increasing one parameter, with the others kept
constant at 1. Stars show the level of significance of a two-sided t-test. The diversity was
calculated as average pair-wise difference between sequences; the Sackin index is the sum
of leaf depths for a given tree and reflects tree balance (less balances trees have a higher
Sackin index). We ran 20 replicates of a simulation with 100 individuals with Brownian
dispersal, over 500 generations.
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Figure S2: Estimating the dispersal distance with Brownian dispersal, across a
range of o values. The grey line shows the true o. We found that the pattern of bias
shown in (a) was replicated across the range of o values tested. In these simulations, the
mating distance was 0.2 and the competition distance was 0.2.
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