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Abstract 

 

 

Analyzing tissue microstructure is essential for understanding complex biological systems in 

different species. Tissue functions largely depend on their intrinsic tissue architecture. 

Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is 

particularly fascinating due to its conserved essential roles in metabolic processes and 

detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue 

microstructure reconstruction using Generative Adversarial Networks (GANs) and 

fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration 

and time-intensive procedures by generating accurate, high-resolution predictions of tissue 

components across large volumes without the need of paired images as input. We applied 

TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows 

high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes 

from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally 

reconstruct tissue structures that cannot be directly imaged due experimental limitations in 

deep dense tissues, a significant advancement in deep tissue imaging. Our open-source 

virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure 

analysis, accommodating researchers with varying expertise levels. TiMiGNet's simplicity and 

independence from paired images make it a versatile asset. Overall, our method represents a 

powerful and efficient approach for studying tissue microstructure, with far-reaching 

applications in diverse biological contexts and species.  
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Introduction  

 

The elucidation of tissue microstructure, encompassing the intricate arrangement and 

organization of cells, extracellular matrix, and other components within biological tissues, 

holds paramount significance in biological research(Mayer et al., 2012; Tanaka et al., 2017; 

Yadid et al., 2022; Yamaguchi et al., 2021). Of particular interest is the exploration of three-

dimensional (3D) tissue microstructure, such as that observed in the liver, given its intricate 

organization and indispensable roles in metabolic, detoxification, and synthesis 

processes(Hoehme et al., 2010; Segovia-Miranda et al., 2019). The liver, comprising diverse 

cell types including hepatocytes, stellate cells, endothelial cells, and immune cells, exhibits a 

remarkably ordered arrangement(Morales-Navarrete et al., 2019a). The spatial distribution 

and interactions among these cells play a critical role in governing the liver's proper 

functionality(Baratta et al., 2009; Bouwens et al., 1992). The hepatocytes together with the 

sinusoidal endothelial cells form complex tissue structures which optimizes the exchange of 

nutrients and bile secretion(Bouwens et al., 1992). 

 

Unraveling the 3D microstructure of the liver and other tissues offers invaluable insights into 

tissue development, disease progression, and therapeutic responses(Segovia-Miranda et al., 

2019). Perturbations in tissue microstructure often manifest during pathological conditions, 

including fibrosis, inflammation, and tumor growth(Abdelmalek, 2021). In-depth investigations 

of such alterations facilitate a deeper comprehension of disease mechanisms and the 

identification of potential targets for diagnostic and therapeutic interventions(Popa et al., 2021; 

Ray, 2020). Yet, capturing and reconstructing the 3D tissue microstructure accurately presents 

considerable challenges, even when using both traditional and advanced methodologies(Yoon 

et al, 2022). Reconstructing digital tissue models requires simultaneous imaging of multiple 

markers, such as antibodies, chimeric proteins, and small fluorescent molecules, across 

extensive volumes. The limitations of this endeavor encompass obstacles like inadequate 

antibody penetration, restrictions on the number of concurrently imaged fluorescent markers, 

and considerable acquisition time encompassing sample preparation and imaging procedures 

(Gigan et al, 2022, Yoon et al, 2022). Addressing these bottlenecks holds the key to advancing 

the field of 3D tissue modeling. 

 

Over the past decade, deep learning has emerged as a groundbreaking technique in machine 

learning, showcasing its remarkable ability to unravel intricate patterns and representations 

from vast and complex datasets(LeCun et al., 2015). Deep learning has revolutionized the 

realm of artificial intelligence by eliminating the need for manual feature engineering. It 

employs artificial neural networks, inspired by the intricate connectivity of biological neural 

networks in the human brain, to automatically learn and discern intricate features directly from 

the data(Hallou et al., 2021; LeCun et al., 2015). By leveraging multiple layers of 

interconnected nodes, deep neural networks harness their hierarchical structure to 

progressively extract increasingly abstract and meaningful representations of the input 

data(Aloysius and Geetha, 2017). This learning technique has achieved unprecedented 

successes in critical tasks such as image classification, object detection, and image 

segmentation (Ravindran 2022). A distinctive area where deep learning's prowess shines 

prominently is in the field of biology, particularly the analysis of microscopy images(Hallou et 

al., 2021; McQuin et al., 2018; Moen et al., 2019, Capec et al 2023). Deep learning models 
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applied to microscopy image analysis have showcased their capability to automatically 

segment and classify cells, track their dynamic movements, and extract intricate 

features(Christiansen et al., 2018; Hallou et al., 2021; McQuin et al., 2018; Moen et al., 2019; 

Naert et al., 2021; Ounkomol et al., 2018; Xing et al., 2018). This transformative technology 

empowers researchers to investigate cellular dynamics, identify disease biomarkers, and 

expedite the discovery of novel therapeutics. Here, we propose an approach for virtual tissue 

microstructure reconstruction through the integration of Generative Adversarial Networks 

(GANs)(Goodfellow et al.) and fluorescence microscopy. By harnessing the strengths of GANs 

and leveraging the high-resolution imaging capabilities offered by fluorescence microscopy, 

we aim to provide a simple yet powerful tool to extract tissue micro-structural information from 

microscopy images of the actin meshwork. As a proof of principle, we reconstructed detailed 

and accurate reconstructions of the 3D tissue microstructure of liver samples of different 

species such as mouse and human. Our proposed approach holds high potential for enabling 

a deeper understanding of tissue microstructure in healthy and potentially diseased states. 

 

 

Results 

 

CNNs and GANs accurately predict several tissue structures in mouse liver tissue 

 

Previous studies (Christiansen et al., 2018; Ounkomol et al., 2018) have shown the great 

potential of in-silico labeling by using deep learning models to predict fluorescent labels in 

unlabeled microscopy images. However, they are limited to cell culture systems. Here, we 

used deep learning models to generate in-silico labeling of 3D complex tissue microstructures. 

We used two well-established deep learning models, namely  convolutional neural networks 

(CNNs) and Generative Adversarial Networks (GANs) ; and  we compared their predictive 

power when applied to generate virtual images of various components of liver tissue 

microstructure based solely on high-resolution images of the actin mesh. These images were 

acquired using confocal microscopy. We used two network architectures: modified versions of 

UNet (Ronneberger et al., 2015) and CycleGAN (Zhu et al., 2017), termed TiMiPNet (Tissue 

Microstructure Predictor) and TiMiGNet (Tissue Microstructure Generator), respectively (refer 

to the Methods section for details). The TiMiPNet was trained using a dataset consisting of 

spatially registered pairs of 3D images of both the input and target structures in mouse liver 

tissue. Whereas images of the cell border (i.e. cortical actin mesh) served as the input, the 

output images included the BC network, sinusoids, or Kupffer cells (one target structure per 

trained network). Since, TiMiGNet  (Figure 1a) does not require paired images, we 

computationally mixed the image pairs to simulate unpaired images and have a direct 

comparison with the models that require paired images such as TiMiPNet .  

 

As shown in Figure 1-b and supplementary movies 1-6, both TiMiPNet and TiMiGNet 

generated outputs that closely resembled the ground truth images for the three predicted 

tissue structures, indicating their effectiveness in accurately predicting the different 

components of liver tissue microstructure from the actin mesh images, even in the absence of 

paired images (i.e. TiMiGNet).  Next, we quantitatively evaluated the predictions of our models 

by comparing them with ground truth images acquired experimentally (Figure 1-b). Figure 1-c 

shows the Fréchet Inception Distance (FID) (Heusel et al., 2017), a widely used measure that  

assesses the likeness between the images produced by a generative model and the real 

images (see Methods for details), for TiMiPNet and TiMiGNet. We calculated the FID in the 
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context of the entire images and by separately considering the background and foreground 

regions (Supplementary Figure 1a). Whereas lower values show good predictive power, high 

ones indicate larger difference between the prediction and the ground truth. As shown in 

Figure 1-c, both TiMiPNet and TiMiGNet show similar predictive levels for all structures (i.e. 

BC, Sinusoids and Kupffer cells).  

 

 

To ensure a more comprehensive evaluation of our predictions, we conducted extra extensive 

tests specifically targeting the accuracy of predicting the BC, also  comparing the results of 

both models in 2D and 3D. For a rigorous quantitative assessment, we employed various well-

known evaluation metrics (See methods and Supplementary Figure 1-b). These metrics 

enabled us to thoroughly analyze the performance of our predictions. Detailed information 

regarding these evaluations can be found in the Methods section and Supplementary Figure 

1. Interestingly, our results showed no substantial differences between the 2D and 3D 

architectures, as depicted in Supplementary Figure 1b. However, the computational costs for 

training 3D models are much higher than the ones needed for 2D architectures, i.e. up to 3 

times higher for similar results. It is noteworthy that the majority of errors were primarily 

concentrated near the large veins, as illustrated in Supplementary Figure 2, as. Sudden 

changes in the morphology of the structures (i.e. BC) could be the source of these errors. 

Remarkably, both the TiMiPNet and TiMiGNet architectures consistently exhibited similar 

performance across all evaluated structures, as demonstrated in Figure 1-c and 

Supplementary Figure 1-b. This indicates that both approaches are equally effective in 

predicting the components of liver tissue microstructure. However, it is worth mentioning that 

the major advantage of the TiMiGNet approach is its ability to generate accurate predictions 

without relying on paired images. This characteristic enhances its flexibility and practical 

applicability in various scenarios. 

 

 

TiMiGNet accurately predicts BC and sinusoidal networks for deep tissue 

reconstructions 

 

Given the generality and high performance demonstrated by TiMiGNet in our initial 

experiments, we proceeded to test its capabilities in more challenging tasks. In particular, we 

aimed to investigate whether TiMiGNet could effectively predict the intricate structures of the 

BC and sinusoidal networks in the context of deep tissue imaging. Traditional 3D imaging 

methods face inherent limitations when it comes to imaging deep tissue regions beyond a 

depth of approximately 80 to 100 micrometers, especially when utilizing antibody markers for 

specific structures such as the BC and sinusoids. The limited penetrance of antibodies within 

the tissue hampers the visualization of these structures beyond the shallow surface layers 

(Figure 2a, Suppl. movie 7-10). We took advantage of the unique properties of small 

fluorescent molecules, such as Phalloidin, which stains the actin mesh of the cells. Phalloidin 

has the remarkable ability to penetrate several hundred microns into the tissue, surpassing 

the constraints of antibody staining. We acquired high-resolution images of the actin mesh at 

a depth of ~240 microns, well beyond the typical imaging range achievable with antibody-

based techniques (Figure 2-a). Using our pre-trained TiMiPNet and TiMiGNet models, we then 

we predicted both the BC and sinusoidal structures from these deep tissue images. Our 

approach yielded accurate predictions of these structures throughout the entire depth of the 
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images, exceeding the limitations imposed by the restricted antibody staining penetration 

depth of 80 microns. This is visually depicted in Figure 2-a and Supplementary movies 7-10. 

Figure 2-b and Figure 2-c show the mean intensity along the tissue depth for the BC and 

sinusoids, respectively.  Whereas the intensity values for the experimental images, suddenly 

decreased after ~80 µm, indicating lack of signal; the values for the virtual predictions 

remained stable along the whole tissue sample, showing both structures (BC and sinusoids) 

in places where no experimental staining existed (Suppl. movies 7-10).     

 

The successful application of TiMiGNet in predicting structures beyond the experimentally 

accessible depth of antibody staining without a need of paired ground truth images represents 

a great advancement in the field of deep tissue imaging. Our approach not only avoids the 

need for laborious, expensive and time-consuming antibody-based techniques but also offers 

a significant reduction in imaging costs. Moreover, by enabling the reconstruction of tissue 

structures that were previously inaccessible using conventional methods, our approach opens 

new avenues for exploring the intricate details of deep tissue microarchitecture. The ability to 

obtain deep tissue reconstructions using a readily available marker, such as Phalloidin,  

streamlines experimental procedures and expedites data acquisition. Furthermore, the 

successful prediction of structures beyond the limitations of antibody staining holds great 

potential for numerous research fields and clinical applications, revolutionizing our 

understanding of deep tissue biology and paving the way for new discoveries. 

 

Accurate prediction of tissue microstructure in human liver tissue  

 

The general applicability of small dyes like phalloidin and DAPI enables the staining of tissues 

across various species, making them invaluable tools, especially when working with 

immunofluorescence, where challenges often arise due to the limited availability of antibodies 

that effectively function. To further push the boundaries of our approach, we sought to tackle 

an even more challenging task: predicting the bile canaliculi (BC) structures in human liver 

tissues. Overcoming this challenge required addressing the practical limitation of not being 

able to obtain paired images of the actin mesh and BC simultaneously.  

 

For the human samples, we used images sourced from Segovia-Miranda et al. (2019). In their 

study, the authors encountered a challenge as only one antibody was found to effectively stain 

the BC network, and it requires an antigen retrieval protocol for optimal performance. 

However, this protocol disrupts the actin mesh, rendering phalloidin staining ineffective. Since 

simultaneous imaging of the actin mesh and BC in human tissue samples was deemed 

unfeasible, we trained our TiMiGNet model using separate sets of images representing the 

actin mesh and BC from different samples and patients. TiMiGNet exhibited a remarkable 

ability to generate visually convincing predictions of the BC in human liver tissue, as 

demonstrated in Figure 3b-middle and Supplementary movies 11-12. Moreover, we tested if 

the TiMiGNet trained in mouse tissue samples could also predict BC structures in human 

tissue. Surprisingly, TiMiGNet (trained in mouse tissue images) was also able to produce 

highly accurate predictions despite being originally trained on data from a different species 

(Figure 3b, bottom, and Suppl. movies 11-12). We quantitatively evaluate the predictions by 

comparing tissue parameters such as network radius and branch length estimated from 

experimental images and virtual predictions of the same patients but different tissue samples. 

Figures 3 b,c,d shows remarkably similar values for the predictions, despite the sample-to-

sample variability previously shown in Segovia-Miranda et al., 2019. The values of the network 
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radius and branch length were also evaluated along the liver lobule (CV-PV axis) to test spatial 

variability (Figures 3 c,d). It is worth noting that, even though the TiMiGNet model trained in 

mouse samples underestimates the BC radius in ~10/20% , other morphological features such 

as the branch length are properly predicted.  The fact that the network trained on mouse data 

could successfully generalize its predictions to human tissue underscores the remarkable 

conservation of BC structures across species. These findings provide valuable insights into 

the structural similarities and functional significance of BC in both mouse and human liver 

biology. The successful application of TiMiGNet approach in predicting BC structures in the 

absence of paired images highlights the adaptability and robustness of our method. Moreover, 

it suggests that the underlying architecture and organization of BC are highly conserved 

across different species. 

 

 

Discussion 

 

Deep-tissue imaging and 3D reconstruction play pivotal roles in advancing our understanding 

of tissue architecture in both homeostasis and disease conditions. They enable the 

identification of different tissue characteristics, such as aberrant cell distribution, tissue 

remodeling, and the formation of disease-specific microenvironments. Current methods often 

suffer from limitations (poor antibody penetration, restrictions on fluorescent markers), require 

significant expertise, and can be time-consuming as they typically involve simultaneous 

imaging of multiple markers across large volumes (Gigan S. et al., 2022). Previously, we used 

CNNs to predict tissue structures by learning features embedded within single-marker 

images(Morales-Navarrete et al., 2019b). In particular, our deep learning framework showed 

remarkable accuracy for the prediction of the bile canaliculi (BC) and sinusoidal networks from 

images of the actin meshwork of liver tissue. However, this approach has several limitations: 

i) requiring a pair of images of the BC/Sinusoids and the actin mesh, which is not always 

technically possible, ii) using a 2D approach to predict 3D structures could cause loss of data 

information, iii) is limited to healthy mouse liver tissue. Here, we overcame these issues and 

generalized the approach by using Generative Adversarial Network, TiMiGNet. We showed 

that our proposed methodology has the capability to produce precise and high-resolution 

predictions of various tissue components, such as bile canaliculus, sinusoids, and Kupffer cell 

shapes, based on cell border images (actin meshwork), thereby facilitating efficient and 

dependable analysis. The integration of TiMiGNet with fluorescence microscopy allowed us to 

predict tissue structures in scenarios where paired images of ground truth were not attainable. 

For instance, we demonstrated the potential of using  TiMiGNet in predicting structures beyond 

the experimentally accessible depth of antibody staining, representing a significant 

advancement in the field of deep tissue imaging. Moreover, we showed that TiMiGNet 

facilitated multi-species analysis (mouse, human). This makes TiMiGNet a powerful and 

versatile tool for researchers and practitioners in various domains of biology and medicine. 

 

The utilization of a simple marker, such as Phalloidin, in our method further enhances the 

practicality and broadens the applicability of our method. Unlike the complex and time-

consuming procedures required for simultaneous imaging of multiple markers, our approach 

relies on a single marker, making it more efficient and cost-effective. This simplicity enables 

researchers to obtain deep tissue reconstructions with ease, providing a valuable tool for 

investigating tissue microstructure. Moreover, our method could potentially even be applied in 

the absence of specific markers, if manually annotated structures are provided as input. This 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.06.12.544541doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544541
http://creativecommons.org/licenses/by-nc/4.0/


flexibility would allow to utilize our approach in situations where specific markers may not be 

available or suitable.  

 

The ability to predict BC structures in human liver tissue using TiMiGNet, despite the inherent 

challenges and limitations, represents a significant advance. This achievement not only could 

help us to expand our understanding of liver tissue microarchitecture in the context of human 

biology but also opens up new avenues for investigating the role of BC in various liver diseases 

and clinical applications. Our results demonstrate the power of leveraging computational 

methods and deep learning techniques to overcome experimental constraints and provide 

valuable insights into complex biological systems. The successful translation of our approach 

from mouse to human liver tissue holds great promise for advancing our understanding of liver 

biology and facilitating the development of novel diagnostic and therapeutic strategies for liver-

related disorders. 

 

Our study presents a novel approach for analyzing tissue microstructure using well-

established yet powerful deep learning models and demonstrates its effectiveness in 

predicting structures beyond the limitations of conventional methods. The simplicity and 

versatility of our method, particularly with the use of a single marker or minimal annotations, 

make it a valuable tool for research in various systems. TiMiGNet is made available to the 

community as open-source software through our GitHub repository 

(http://github.com/hernanmorales-navarrete/TiMiGNet) and includes the data sets used  for 

training and testing via a Zenodo link. Its straightforward yet efficient design allows for 

seamless adaptation to diverse applications, ensuring its versatility for various purposes. 

Future improvements, such as expanding the training dataset and refining the network 

architecture, have the potential to further enhance the accuracy and reliability of our 

predictions, ultimately advancing our understanding of tissue microarchitecture and its 

implications in biological systems. 
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Methods 

 

Animals 

Adult C57BL/6J mice (8-10 weeks old) were obtained from the animal facility (Centro Regional 

de Estudios Avanzados para la Vida (CREAV)) at the Universidad de Concepción. The 

animals were maintained in strict pathogen-free conditions and received ad libitum feeding. 

All procedures performed were approved by the vice rectory of ethics and biosecurity 

committee from the investigation and development of Universidad de Concepción. Z-stack 

images of NAFLD human liver samples were obtained from(Segovia-Miranda et al., 2019).  

 

Mice liver collection and immunostaining 

Mice livers were fixed through intracardiac perfusion with 4% paraformaldehyde 0.1% Tween-

20/PBS and post-fixed overnight with the same solution at room temperature. 100 µm thick 

liver sections were obtained with a vibratome. Immunolabeling and optical clearing were 

performed as described previously(Morales-Navarrete et al., 2019a).  

 

Imaging 

Liver samples were imaged (0.3 µm voxel size) in an inverted multiphoton laser-scanning 

microscope (Zeiss LSM 780) using a 40x1.2 numerical aperture multi-Immersion objective 

(Zeiss). DAPI was excited at 780 nm using a Chameleon Ti-Sapphire 2-photon laser. Alexa 

Fluor 488, 555 and 647 were excited with 488, 561 and 633 laser lines and detected with 

Gallium arsenide phosphide (GaAsp) detectors. 

 

Image pre-processing 

The different components of liver tissues (BC, sinusoids and cortical mesh) were imaged with 

high-resolution (voxel size 0.3 x 0.3 x 0.3 µm) fluorescent image stacks (80/100µm depth). To 

cover the entire CV-PV axes, 2x1 tiles were stitched using the image stitching plug-in of 

Fiji(Preibisch et al., 2009). The 3D images were first denoised using the PURE-LET 

algorithm(Luisier et al., 2010) with the maximum number of cycles. Then, a background and 

shading correction was performed using the tool BaSiC(Peng et al., 2017) along the stack. 

Finally, all channels were aligned to the actin mesh channels using the function Correct 3D 

Drift from Fiji.  

 

TiMiGNet  Architecture 

The model consists of two Generators and two Discriminators. Generator A to B (G-AB) takes 

an image (real) of class A as input and generates an image (fake) of class B as output. On the 

other hand, Generator B to A (G-BA) takes an image (real) of class B as input and generates 

an image (fake) of class A as output. Discriminator A (D-A) classifies images generated by G-

BA as real or fake, whilst Discriminator B (D-B) classifies images generated by G-AB as real 

or fake. The objective is to train both generators and both discriminators. This process will, 

eventually, allow the generators to create realistic enough fake images and deceive the 

discriminators.  

Generator architecture: The architecture for models trained with patches of size 128x128 

pixels: c7s1-64, d128, d256, R256 (x6), u128, u64, c7s1-1. The architecture for models trained 

with patches of size 256x256 pixels: c7s1-64, d128, d256, R256 (x9), u128, u64, c7s1-1. 

Where:  c7s1-k is a convolution of k filters of size 7x7 and stride 1, followed by an Instance 

Normalization (IN) layer and a ReLU layer,  dk is a convolution of k filters of size 3x3 with 

stride 2, followed by an IN layer and a ReLU layer,  Rk is a residual block with two convolutions 
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with equal number of filters of size 3x3, uk is a block of a transposed convolution with k filters 

of size 3x3 and stride 2, followed by an IN layer and a ReLU layer. Discriminator architecture: 

The architecture for both discriminators is: C64 - C128 - C256 - C512 - F1. Where: Ck is a 

block of a convolution of k filters of size 4x4, followed by an IN layer and a LeakyReLU layer, 

F1 is a convolution of 1 filter of size 4x4.  

 

The network for the 3D model is essentially the same as the 2D model, with minor differences 

only: the 2D input and output layers were adapted to accept and produce 3D patches, 

respectively, and all 2D convolution layers were swapped for 3D convolution layers. 

 

 

Model Training 

TiMiGNet 2D: Four images, two for each domain, were used to train the 2D models. Pixel 

values were normalized between -1 and 1. 2500 two-dimensional patches were extracted from 

each image, leading to 5000 patches per domain. Patches of size 128x128 pixels were used 

for the membrane/BC and the membrane/sinusoids models, whereas patches of size 256x256 

pixels were used for the membrane/Kupffer model. All models were trained for 100 epochs 

using Adam optimizer with a learning-rate of 0.002, a beta value of 0.5, a batch-size of 1 and 

Mean Squared Error as the loss function.  

 

TiMiGNet 3D: Four images, two for each domain, were used to train the 3D model. Pixel values 

were normalized between -1 and 1. For the membrane/BC model, 900 three-dimensional 

patches of size 64x64x64 pixels were extracted from each image, leading to 1800 patches per 

domain. The ninety percent of the patches were used for training and the remaining ten 

percent were used for validation. Hyperparameters for the 3D model were set to be equal to 

those of the 2D model, except for the number of epochs which was set to 300. This allowed 

us to stop the training early if no improvements were observed. 

 

Quality evaluation metrics 

The test images were divided in 128x128x128 cubes and the metrics were estimated 

independently for each cube. We evaluated the predictive power of the models using an 

extensive set of well-establish metrics including: 

 

Fechet Inception Distance (FID) [1], which measures the similarity between the generated and 

ground truth images based on features of the raw images calculated using the inception v3 

model. FID is calculated by computing the Fréchet distance between two Gaussians fitted to 

feature representations of this model. 

 

Mean Squared Error (MSE) [2], which measures the average squared difference between the 

pixel values of an image generated by a model and the pixel values of the ground truth image. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 −  𝑦𝑖̂)

2

𝑛

𝑖=1

 

Where ŷ is the predicted image and ŷ is the ground truth image, 𝑛 is the number of 
pixel/voxels in the images 
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Mean Squared Logarithmic Error (MSLE) [2] is similar to MSE but is applied to the natural 

logarithm of the generated and ground truth images. It is often used in tasks where the error 

distribution is expected to be logarithmic in nature. 

 

Mean Absolute Error (MAE) [2] calculates the average absolute difference between the pixel 

values of the generated and ground truth images, making it less sensitive to outliers compared 

to MSE. 

 

Root Mean Squared Error (RMSE) [2] is the square root of the MSE. It provides a measure of 

the standard deviation of the errors. 

 

Peak Signal-to-Noise Ratio (PSNR) [3] is an expression for the ratio between the maximum 

pixel value of the ground truth image to the Mean Squared Error between the generated and 

ground truth images. 

 

Structural Similarity Index Measure (SSIM) [3] is a metric used to assess the structural 

similarity between two images based on a perception-based model that takes into account 

image luminance, contrast, and structure. 

 

Multi-scale Structural Similarity Index Measure (MS-SSIM) [4] is an extension of SSIM that 

considers multiple scales in the image. It provides a more comprehensive assessment of 

image quality by taking into account variations at different levels. 

 

Cosine Similarity (COS) [5] is a measure used to determine the similarity between two vectors 

in a multi-dimensional space. It calculates the cosine of the angle between the vectors. 

 

Correlation Coefficient (CoC) [5] is a statistical measure that quantifies the linear relationship 

between two sets of data points. For 2D images it can be used to assess how closely related 

or linearly associated are the pixel values of the generated and ground truth images. 
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Figures  

 
 

Fig. 1: Deep CNN and GANs accurately predict liver tissue structures from cell border 

images.  

(a) Schematic representation of TiMiGNet. (b) 2D sections of 3D fluorescent images of the 

actin mesh (membranes), Bile Canaliculi, Sinusoids, and Kupffer cells (experimental images) 
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as well as the corresponding predictions by Unet and CycleGAN in 2D. c) Quantification of the 

performance of the predictions of the BC network generated by the models. The test images 

were divided in 128x128x128 cubes and the metrics were estimated independently for each 

cube, i.e. each dot represents one image cube. 

 

 
Fig. 2: Deep tissue reconstructions using TiMiGNet 

(a) 2D maximum projections of ~20 µm of the axial sections of 3D fluorescent images of the 

actin mesh (membranes), Bile Canaliculi, Sinusoids (experimental images) as well as the 

predictions of TiMiGNet and  TiMiGNet. (b) Quantification of the BC signal (mean intensity) 
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along the tissue depth, in the corresponding images of panel a. (c) Quantification of the 

Sinusoids signal (mean intensity) along the tissue depth, in the corresponding images of panel 

a. 

 

 
 

Fig. 3: Prediction of tissue microstructure in human liver tissue using TiMiGNet 

b) 2D sections of 3D fluorescent images of the actin mesh (membranes) and Bile Canaliculi 

(experimental images) of human liver tissue together with the corresponding predictions of the 

TiMiGNet 2D model trained in mouse and human tissue images. c-d) Quantification of 

morphological BC parameters for experimental images and TiMiGNet predictions: radius 

distribution(b), mean radius (c) and mean branch length (d) along the CV-PV axis.  
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Supp Fig. 1: Quantification of the performance of the predictions. 

a) Schematic representation of the process for generating the mask to split background from 

foreground in ground truth samples. The masks were calculated using the Otsu method for 

binary thresholding. b) Quantification of the performance of the predictions of the BC network 

generated by the 2D and 3D,  TiMiPNet, and TiMiGNet models using the following metrics 

Mean Squared Error, Mean Squared Logarithmic Error, Mean Absolute Error, Root Mean 

Squared Error, Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, Multi-scale 

Structural Similarity Index Measure, Cosine Similarity, and Coefficient of Correlation. The test 

images were splitted in 128x128x128 cubes and the metrics were estimated independently for 

each cube, i.e. each dot represents one image cube. 
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Supp Fig. 2: Artificial neural networks show errors close to veins in mouse tissue. 

(a-b) Representative images actin mesh (membranes), Bile Canaliculi. (c-f) the images were 

divided into 9x9 blocks and the mean squared error of the predictions of the different models 

was calculated and shown as a heat map. Whereas low values show good agreement with 

the ground truth, high vales show potential mispredictions.  
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Supplementary  Movie Legends 

 

Supp Movie 1. Z-stack visualization of predicted BC.  

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and Bile Canaliculi (experimental images) and the corresponding predictions of 

TiMiPNet and TiMiGNet 

 

Supp Movie 2. 3D rendering of predicted BC.  

3D rendering of the experimental an predicted images of mouse BC.  

 

Supp Movie 3. Z-stack visualization of predicted sinusoids.  

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and Sinusoids (experimental images) and the corresponding predictions of 

TiMiPNet and TiMiGNet 

 

 

Supp Movie 4. 3D rendering of predicted sinusoids.  

3D rendering of the experimental an predicted images of mouse Sinusoids. 

 

 

Supp Movie 5. Z-stack visualization of predicted KCs.  

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and Kupffer cells (experimental images) and the corresponding predictions of 

TiMiPNet and TiMiGNet 

 

 

Supp Movie 6. 3D rendering of predicted KCs.  

3D rendering of the experimental an predicted images of mouse Kupffer cells. 

 

 

Supp Movie 7. Z-stack visualization of TiMiGNet-predicted BC for deep tissue 

reconstruction.  

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and Bile Canaliculi (experimental images) and the corresponding predictions of 

TiMiPNet and TiMiGNet for deep tissue imaging 

 

 

Supp Movie 8. 3D rendering of TiMiGNet-predicted BC for deep tissue reconstruction.  

3D rendering of the experimental an predicted images of mouse BC for deep tissue imaging. 

 

 

Supp Movie 9. Z-stack visualization of TiMiGNet-predicted sinusoids for deep tissue 

reconstruction.  

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and Sinusoids (experimental images) and the corresponding predictions of 

TiMiPNet and TiMiGNet for deep tissue imaging 
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Supp Movie 10. 3D rendering of TiMiGNet-predicted sinusoids for deep tissue 

reconstruction.  

3D rendering of the experimental an predicted images of mouse Sinusoids for deep tissue 

imaging. 

 

 

 

 

Supp Movie 11. Z-stack visualization of TiMiGNet-predicted BC for human tissue 

Animation of 2D sections along the axial axis of 3D fluorescent images of the actin mesh 

(membranes) and BC (experimental images) and the corresponding predictions of TiMiPNet 

and TiMiGNet for human liver tissue 

 

 

Supp Movie 12. 3D rendering of TiMiGNet-predicted BC for human tissue  

3D rendering of the experimental an predicted images of mouse BC for human tissue. 
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