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The classical three-stage model of stochastic gene expression predicts the statistics of single cell mRNA
and protein number fluctuations as a function of the rates of promoter switching, transcription, translation,
degradation and dilution. While this model is easily simulated, its analytical solution remains an unsolved
problem. Here we modify this model to explicitly include cell-cycle dynamics and then derive an exact
solution for the time-dependent joint distribution of mRNA and protein numbers. We show large differences
between this model and the classical model which captures cell-cycle effects implicitly via effective first-order
dilution reactions. In particular we find that the Fano factor of protein numbers calculated from a population
snapshot measurement are underestimated by the classical model whereas the correlation between mRNA
and protein can be either over- or underestimated, depending on the timescales of mRNA degradation and
promoter switching relative to the mean cell-cycle duration time.

I. INTRODUCTION
Over the past two decades, experiments have shown

that gene expression is inherently noisy1–6 manifesting
most visibly in the large variability of mRNA and protein
numbers between cells. Understanding the origin of this
noise and how its magnitude can be tuned by changes to
the rate parameter values are important questions that
can be addressed experimentally but also using mathe-
matical modelling. Mathematical models of stochastic
gene expression can be grouped into three classes: (i)
those predicting only the statistics of mRNA numbers;
(ii) those predicting only the statistics of protein num-
bers; (iii) those predicting both types of statistics in-
cluding the correlation between mRNA and proteins. Of
course the latter type is the most realistic and useful,
however the other two are much more commonly found
in the literature because of their simplicity and their use
in interpreting data of only one of these two gene prod-
ucts, e.g. single-cell RNA sequencing7,8 and fluorescent
labeling of proteins9,10. We next briefly review the large
variety of models in each of these categories.

The simplest model of type (i) is the simple-birth death
process whereby the birth reaction models transcription
of mRNA and the death process models its subsequent
decay via degradation and dilution. This is easily solved
exactly and predicts a Poisson distribution in steady-
state conditions11. However, a significant body of exper-
iments suggests that the Fano factor (FF, the variance
divided by the mean) for mRNA numbers is often sub-
stantially higher than that of a Poisson distribution4,7,12.
To reconcile this discrepancy, a revision is necessary to
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the simple birth-death model which involves assuming
that mRNA production occurs in bursts with a random
size sampled from a geometric distribution; this can be
solved exactly leading to a negative binomial distribution
for mRNA numbers in steady-state conditions (which is
well approximated by a gamma distribution when the
mean mRNA numbers are not too small)12–14. How-
ever both of these models cannot explain the bimodal-
ity of distributions for mRNA numbers observed in some
experiments15. A model that can explain bimodality and
reduces to the birth-death or bursty birth-death models
under certain conditions is the telegraph model16,17. This
assumes that a promoter can switch between inactive and
active states, and transcription occurs only from the lat-
ter; this model has been solved exactly in steady-state
and in time, yielding an mRNA distribution in terms
of hypergeometric functions. The commonest model of
type (ii) is the bursty birth-death model which predicts
steady-state negative binomial distributions for protein
numbers (which is well approximated by a gamma dis-
tribution when the mean protein number is high)18,19.
The main difference from the same model when used
to predict mRNA distributions is the origin of burst-
ing. For mRNA, bursts of expression occur when the pro-
moter alternates between long transcriptional pauses and
short intense periods of transcriptional activity. For pro-
teins, bursts can arise from promoter switching and sep-
arately from the rapid translation of short-lived mRNA
(transcriptional and translational bursting)20. Exten-
sions of models of type (i) and (ii) to include an en-
hanced level of biological realism such as regular cell divi-
sion events, gene dosage compensation, DNA replication,
concentration homeostasis, cell-size homeostasis and cell-
to-cell variation in parameters, have also been developed
and solved exactly or approximately under appropriate
assumptions13,21–30.
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The classical models of type (iii) are the two-stage
and three-stage models of gene expression20. The two-
stage model has a simple birth-death process for mRNA
production and degradation augmented with two ad-
ditional first-order reactions describing protein transla-
tion and degradation/dilution. The joint distribution
of mRNA and protein numbers of this model has been
solved exactly in steady-state using the generating func-
tion method31; the time-dependent joint distribution has
been obtained by invoking the partitioning property of
Poisson processes32. A more realistic model is the three-
stage model3 which is the two-stage model with the birth-
death model for mRNA noise replaced by the telegraph
model. This model accounts for promoter switching,
transcription, degradation and translation, and hence
can be seen as the simplest model to capture the essen-
tial processes involved in the central dogma. While the
moments of the gene products can be easily obtained33

(because the moment equations for any system of first-
order reactions are closed) there are no exact analytical
solutions for this model’s marginal protein distributions
and the joint distribution of mRNA and protein numbers
(note that the marginal mRNA distribution is known and
it is the same as that of the telegraph model). However
even if these could be obtained, the issue remains that
this model suffers from some obvious shortcomings, the
most prominent of which is the fact that it does not ex-
plicitly model cell-cycle dynamics; for example it cannot
capture the observation that typically in each cell, pro-
tein numbers increase between birth and cell division,
followed by a sharp dip just after cell division34. This
means that it is not clear how to relate the steady-state
distribution predictions of the three-stage model to those
from a population snapshot measurement, i.e. one that
estimates the mRNA and protein in each cell at a point
in time for a population of dividing cells with unsynchro-
nized cell-cycles.

In this paper, we overcome these limitations. We ex-
tend the three-stage model to include a cell-cycle descrip-
tion and exactly solve for the time-dependent joint dis-
tribution of mRNA and protein numbers, thus providing
a first dynamic stochastic description of both gene prod-
ucts within each cell-cycle and also across generations
for two cases: a population of synchronized cells and the
more typical population of unsynchronized cells where
cell-age varies between cells. The population snapshot
distribution of this model converges to a steady-state af-
ter a some generations; we numerically compare these to
the steady-state solution from the classical three-stage
model. In some regions of parameter space, we find large
differences between the two models in their predictions
of the protein Fano factor and of the correlation between
mRNA and protein, thus highlighting the importance of
an explicit cell-cycle description.

II. RESULTS
A. Models of stochastic gene expression

We consider three models of gene expression with in-
creasing degrees of biological detail.
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FIG. 1. Illustration of three stochastic gene expression mod-
els. Model I: the classical three-stage model of stochastic gene
expression that provides an effective description of promoter
switching between active and inactive states, transcription,
translation, mRNA decay and protein dilution. Model II:
same as Model I except it does not describe protein dilution.
This is a more realistic description of time-dependent gene
expression within a cell-cycle than Model I since there is no
protein dilution prior to cell division. Model III: this extends
Model II by assuming that that a cell-cycle is of length T and
that at cell division the mother cell’s mRNAs and proteins are
randomly partitioned between its daughter cells. It provides
a description of time-dependent gene expression within and
across cell-cycles and is hence the most realistic model of the
three.

Model I
The classical three-stage model of stochastic gene ex-

pression (illustrated in the top left corner of Fig. 1) is
described by the following reaction scheme

D0
σoff−−⇀↽−−
σon

D1, D0
ρ−→ D0 +M, M

λ−→ M + P,

M
d−→ ∅, P

dp−→ ∅.

(1)

Here a promoter switches between two states: an active
state D0 and an inactive state D1. The transitions be-
tween the two states occur at rates σoff and σon. Tran-
scription occurs only from the state D0 leading to mRNA
(M) production at a rate ρ. Proteins (P ) are then trans-
lated from mRNA at a rate λ. mRNAs decay at a rate
d (due to degradation and dilution), and protein dilu-
tion (due to cell division) takes place at a rate dp. Note
that we cannot ignore active mRNA degradation because
the lifetime of mRNA in mammalian cells is a fraction of
the cell-cycle duration whereas for proteins the opposite
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is true: their lifetime due to degradation often exceeds
the cell-cycle duration and hence degradation can be ig-
nored in our model. For e.g. in mouse fibroblasts, the
median lifetime of mRNA is 9 hours, the median lifetime
of proteins is 46 hours and the cell-cycle duration is 27.5
hours35. All reactions in Eq. (1) are first-order and to
be understood as being effective, i.e. describing the over-
all effect of thousands of elementary reactions enabling
transcription, translation and decay processes inside a
cell. The chemical master equation of this model has
not been exactly solved; in particular an inspection of
the generating function equations shows that the prob-
lematic term is that associated with the effective dilution
reaction P → ∅.

Model II
In view of this issue we consider a simpler model (il-

lustrated in the top right corner of Fig. 1) described by
the following reaction scheme

D0
σoff−−⇀↽−−
σon

D1, D0
ρ−→ D0 +M, M

λ−→ M +P, M
dm−−→ ∅.

This is the same as Model I but without the protein dilu-
tion reaction; as well the mRNA decay rate here means
specifically that due to degradation (has no contribution
from dilution due to cell division) and hence we label
it as dm instead of d. As we shall see in the next sec-
tion this is more mathematically tractable than Model I;

however also it is a more biologically realistic model of
time-dependent gene expression within a single cell-cycle
(from birth to cell division) since there is no dilution prior
to cell division.

Model III

Of course, generally we are not only interested in in-
tra cell-cycle gene expression but also across many cell-
cycles. To describe this case we extend Model II by as-
suming that at the end of the cell-cycle, mRNA and pro-
tein molecules are randomly partitioned with probability
1/2 between two daughter cells. Specifically, just after
cell division, the probability of a daughter cell having nm
mRNAs and np proteins, conditional on the mother cell
having n′

m mRNAs and n′
p proteins, is given by

P (nm, np|n′
m, n′

p) =

(
n′

m
nm

)(
n′

p
np

)
2−n′

m−n′
p . (2)

While being a simple model of the complex processes
occurring at cell division, this is clearly far more realistic
than the first-order protein dilution reaction in Model I
since dilution now occurs at a point in time rather than
continuously. Model III is illustrated at the bottom of
Fig. 1.

The probabilistic description of Model II is given by
the CME



d
dtP0(nm, np, t) =ρ

(
E(−1,0) − 1

)
P0(nm, np, t) + λ

(
E(0,−1) − 1

)
nmP0(nm, np, t)

+ dm

(
E(1,0) − 1

)
nmP0(nm, np, t) + σonP1(nm, np, t)− σoffP0(nm, np, t),

d
dtP1(nm, np, t) =λ

(
E(0,−1) − 1

)
nmP1(nm, np, t) + dm

(
E(1,0) − 1

)
nmP1(nm, np, t)

− σonP1(nm, np, t) + σoffP0(nm, np, t),

(3)

where Pφ(nm, np, t) is the probability of observing nm
mRNAs and np proteins in a cell when a promoter is ac-
tive (φ = 0) or inactive (φ = 1). The step operator E(i,j)

acts on a general function f(n1, n2) as E(i,j)f(n1, n2) =
f(n1 + i, n2 + j)36. For compactness of notation, the
time argument t is hereafter omitted. Next, we show
how to solve Eq. (3) by means of the generating function
method.

By defining the generating function Gφ =∑
nm,np

znm
1 z

np
2 Pφ(nm, np), Eq. (3) can be recast

as the following set of partial differential equations
∂tG0 = ρw1G0 − dmw1∂w1

G0 + λ(w1 + 1)w2∂w1
G0

−σoffG0 + σonG1, (4a)

∂tG1 = −dmw1∂w1
G1 + λ(w1 + 1)w2∂w1

G1

+σoffG0 − σonG1, (4b)

where w1 = z1 − 1 and w2 = z2 − 1. For ease of nota-
tion, the arguments of the generating function w1 and w2

are omitted. Once the generating function equations are
solved, the conditional joint distributions Pφ(nm, np) in
Eq. (3) can be constructed using the relation

Pφ(nm, np) =
1

nm!np!

∂nm

∂wnm
1

∂np

∂w
np
2

Gφ

∣∣∣∣
w1=−1,w2=−1

. (5)

We note that because the evaluation of high-order sym-
bolic derivatives can be troublesome, a more practical
approach is needed. We first symbolically expand the
generating function as a Taylor series of w1 using the
Mathematica command Series and then perform a Tay-
lor series expansion to the nth

m coefficient for w2 using
the Mathematica command NSeries. The probability
Pφ(nm, np) is then simply given by the nth

p coefficient. A
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similar approach has previously been used for the rapid
evaluation of marginal distributions from the generating

function37,38.
We start by using Eq. (4a) to write G1 as a function

of G0:

G1 =
1

σon
[∂tG0 + (σoff − ρw1)G0 + (dmw1 − λw2 − λw1w2)∂w1

G0] . (6)

Summing up Eqs. (4a) and (4b), and plugging Eq. (6) into the resultant equation, we have a parabolic partial
differential equation that depends only on G0:

∂2
ttG0 + 2(dmw1 − λw2 − λw1w2)∂

2
tw1

G0 + (dmw1 − λw2 − λw1w2)
2∂2

w1w1
G0 + (σoff + σon − ρw1)∂tG0

+ (dmw1 − λw2 − λw1w2)(dm + σoff + σon − ρw1 − λw2)∂w1
G0 − ρ(dmw1 − λw2 − λw1w2 + σonw1)G0 = 0.

(7)

Note that there is no partial derivative with respect to
w2 in Eq. (7), which suggests that the solutions to Eq.
(7) live in a space spanned by the coordinates (t, w1). To
solve Eq. (7), we convert the coordinates (t, w1) to a new
set of coordinates (u, v) as

u = ln (dmw1 − λw2 − λw1w2)− (dm − λw2)t,

v = dmw1 − λw2 − λw1w2.
(8)

This is a standard coordinate-conversion technique for
solving parabolic PDEs39. The following relations be-
tween the derivatives of the two sets of coordinates hold

∂tu = −s, ∂w1
u =

s

v
, ∂tv = 0, ∂w1

v = s, (9)

where s = dm − λw2. We use the chain rule and Eq.
(9) to convert the first- and second-order derivatives of
G0 under the coordinates (t, w1) to those under the new
coordinates:



∂tG0 = ∂uG0 · ∂tu+ ∂vG0 · ∂tv = −s∂uG0,

∂w1
G0 = ∂uG0 · ∂w1

u+ ∂vG0 · ∂w1
v =

s

v
∂uG0 + s∂vG0,

∂2
ttG0 = ∂t(−s∂uG0) = ∂u(−s∂uG0) · ∂tu+ ∂v(−s∂uG0) · ∂tv = s2∂2

uuG0,

∂2
tw1

G0 = ∂w1(−s∂uG0) = ∂u(−s∂uG0) · ∂w1u+ ∂v(−s∂uG0) · ∂w1v = −s2

v
∂2
uuG0 − s2∂2

uvG0,

∂2
w1w1

G0 = ∂w1

( s
v
∂uG0 + s∂vG0

)
= ∂u

( s
v
∂uG0 + s∂vG0

)
∂w1u+ ∂v

( s
v
∂uG0 + s∂vG0

)
∂w1v

=
s2

v2
∂2
uuG0 +

2s2

v
∂2
uvG0 −

s2

v2
∂uG0 + s2∂2

vvG0.

(10)

By using these equations, the parabolic PDE Eq. (7)
further reduces to a second-order ODE

v2∂2
vvG0 + v

(
1− dmρ+ vρ

s2
+

ρ+ σoff + σon
s

)
∂vG0

− ρ

(
v − σon

s2
+

dmσon + vσon
s3

)
G0 = 0.

(11)

Note the coefficient of G0 in Eq. (11) is v-dependent,
which prevents us formulating the solution as standard

solutions of some canonical second-order ODEs. To cir-
cumvent this issue, we replace G0 in Eq. (11) with

G0 = vkG̃0, (12)

which simplifies Eq. (11) to

v∂2
vvG̃0 +

(
r − ρv

s2

)
∂vG̃0 −

ρ

s2

(
r + θ + 1

2

)
G̃0 = 0,

(13)
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where r, θ and k are defined as

θ =
dmρ

s2
− ρ+ σoff − σon

s
,

r = 1 +

√
4

(
ρdmσon

s3
− ρσon

s2

)
+

(
θ − 2σon

s

)2

,

k =
1

2

(
θ − 2σon

s
+ r − 1

)
.

(14)

Changing to a description in terms of the variable x =
ρv/s2, Eq. (13) further simplifies to

x∂2
xxG̃0 + (r − x)∂xG̃0 −

1

2
(r + θ + 1)G̃0 = 0, (15)

which is the canonical form of Kummer’s equation (see
Eq. (13.2.1) in Ref. 40). This suggests the general solu-
tion to Eq. (15) is

G̃0 = f(u)y2 + g(u)y1, (16)

where y1 and y2 have the form:
y1 =M

(
r + θ + 1

2
, r, x

)
,

y2 =x1−rM

(
−r + θ + 3

2
, 2− r, x

)
.

Note that M is the confluent hypergeometric function,
also known as Kummer’s function, and the functions f
and g only depend on u, and are to be determined from
the initial conditions. It immediately follows from Eqs.
(12) and (16) that the general form of G0 is

G0 = vk[f(h)y2 + g(h)y1]. (17)

Note that the functions f and g depend on u in Eq. (16),
while they depend on h = exp(u) in Eq. (17). Since h is
a function of u only and f and g are undetermined, we
slightly abuse the f -g notations in Eq. (17) to facilitate
the following calculations.

Next we solve for G1 as a function of f , g, y1 and y2.
This can be done via Eq. (6), and it requires the calcu-
lation of ∂tG0 and ∂w1G0. Combined with u = ln v − st
and h = v exp(−st), the two derivatives can be calculated
according to Eq. (10) as follows

∂tG0 =− vksh[f ′(h)y2 + g′(h)y1],

∂w1G0 =vk−1sk[f(h)y2 + g(h)y1]

+ vk−1sh[f ′(h)y2 + g′(h)y1]

+ vk[f(h)∂w1
y2 + g(h)∂w1

y1].

(18)

Plugging Eqs. (17) and (18) into Eq. (6), we find

G1 =
vk

σon
[(σoff − ρw1) (f(h)y2 + g(h)y1)

+sk (f(h)y2 + g(h)y1)

+vf(h)∂w1
y2 + vg(h)∂w1

y1] .

(19)

By using one of the derivative relations of Kummer’s
function, i.e. Eq. (13.3.15) in Ref. 40, the terms ∂w1

y1
and ∂w1

y2 in Eq. (19) can be expressed in a form that is
free of derivatives over Kummer’s function, which easies
their numerical evaluation:



∂w1
y1 =

ρ

s

[
ϵa + 1

r
M (ϵa + 2, r + 1, x)

]
,

∂w1
y2 =

ρ

s

[
(1− r)x−rM (ϵb + 1, 2− r, x)

+

(
ϵb + 1

2− r

)
x1−rM (ϵb + 2, 3− r, x)

]
.

(20)

Here the two quantities ϵa and ϵb are defined as

ϵa =
r + θ − 1

2
, ϵb =

−r + θ + 1

2
. (21)

Hence it can be shown (Appendix A) that Eq. (19) sim-
plifies to

G1 = −svk

σon

[
g(h)ϵbM(ϵa, r, x) + f(h)x1−rϵaM(ϵb, 2− r, x)

]
.

(22)

All that remains to obtain a full solution to Model II is
to determine f and g in Eqs. (17) and (22). We as-
sume that the initial distribution solutions of the CME
Eq. (3), conditioned on the promoter state, are given
by p0(nm, np) and p1(nm, np). One can immediately de-
duce that the corresponding initial conditions for Eqs.
(4a)-(4b) are given by

gφ(w1, w2) =
∑
nm

∑
np

(w1 + 1)nm(w2 + 1)nppφ(nm, np),

for φ = 0 or 1. At time t = 0, the following relation also
holds

h = exp(u) = exp(ln v − st) = v exp(−st) = v.

Then, using Eqs. (17) and (19) one can establish the link
between the initial conditions g0(w1, w2), g1(w1, w2), and
the functions f and g:



vk[f(v)y2 + g(v)y1] = g0(w1, w2),

vk

σon
(σoff − ρw1 + sk)[f(v)y2 + g(v)y1]

+
vk+1

σon
[f(v)∂w1y2 + g(v)∂w1y1] = g1(w1, w2).

(23)
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Solving these equations simultaneously leads us to

f(v) =− g0(w1, w2)v
−kϵb

(r − 1)x1−rex M (ϵa, r, x)

− g1(w1, w2)v
−kσon

s(r − 1)x1−rex M (ϵa + 1, r, x) ,

g(v) =
g0(w1, w2)v

−kϵa
(r − 1)ex M (ϵb, 2− r, x)

+
g1(w1, w2)v

−kσon
s(r − 1)ex M (ϵb + 1, 2− r, x) ,

(24)

with the condition h = v when t = 0 (doe detailed steps
of the calculation see Appendix B).

Now, f and g in Eq. (24) are functions of the variable
h (see Eq. (17)); it is also the case that h = v exp(−st)
and h = v at time t = 0. Hence to obtain the solution
of f and g for any time t, we have to replace v by h,
i.e., v 7→ v exp(−st) and x 7→ x exp(−st). Since the
coordinate w1 is dependent on v (w2 is not a coordinate),
we also need to seek a similar mapping Tt for w1. From
Eq. (8), it is known that

w1 =
v + λw2

dm − λw1
. (25)

Further applying the mapping v 7→ v exp(−st), we obtain
the mapping Tt

Ttw1 =
(dmw1 − λw2 − λw1w2)e−st + λw2

dm − λw1
.

Applying the three mappings v 7→ v exp(−st), x 7→
x exp(−st) and w1 7→ Ttw1 to Eq. (25), and combining
with Eqs. (17) and (A1), we finally find the full exact
time-dependent solution to Model II, which is summa-
rized below as Eqs. (26) and (28).

Gt(w1, w2) = Kt(w1, w2)g(Ttw1, w2) (26)

where Gt(w1, w2) = [G0(w1, w2, t), G1(w1, w2, t)]
⊤,

g(Ttw1, w2) = [g0(Ttw1, w2), g1(Ttw1, w2)]
⊤, and

Kt(w1, w2) =

[
k1(w1, w2, t) k2(w1, w2, t)
k3(w1, w2, t) k4(w1, w2, t)

]
, (27)

with

k1(w1, w2, t) = γa
[
−ϵbγbM(ϵa, r, xe−st)M(ϵb + 1, 2− r, x) + ϵaM(ϵb, 2− r, xe−st)M(ϵa + 1, r, x)

]
,

k2(w1, w2, t) =
γaσon
s

[
−γbM(ϵa + 1, r, xe−st)M(ϵb + 1, 2− r, x) +M(ϵb + 1, 2− r, xe−st)M(ϵa + 1, r, x)

]
,

k3(w1, w2, t) =
γasϵaϵb
σon

[
γbM(ϵa, r, xe−st)M(ϵb, 2− r, x)−M(ϵb, 2− r, xe−st)M(ϵa, r, x)

]
,

k4(w1, w2, t) = γa
[
ϵaγbM(ϵa + 1, r, xe−st)M(ϵb, 2− r, x)− ϵbM(ϵb + 1, 2− r, xe−st)M(ϵa, r, x)

]
,

γa =
exp(kst− xe−st)

r − 1
, γb = exp[−st(r − 1)],

v = dmw1 − λw2 − λw1w2, s = dm − λw2,

x = ρv/s2, θ =
dmρ

s2
− ρ+ σoff − σon

s
, (28)

r = 1 +

√
4

(
ρdmσon

s3
− ρσon

s2

)
+

(
θ − 2σon

s

)2

, k =
1

2

(
θ − 2σon

s
+ r − 1

)
,

ϵa = (r + θ − 1)/2, ϵb = (−r + θ + 1)/2,

Ttw1 =
(dmw1 − λw2 − λw1w2)e−st + λw2

dm − λw2
.

As mentioned earlier, the joint distribution of mRNA and
protein numbers follow directly from Eq. (5).

Special Case (i)
Consider the system initiated without any mRNA and

protein and in the active promoter state. The generating
functions for these initial conditions are g0(w1, w2) = 0
and g1(w1, w2) = 1. The general solution given by Eqs.

(26) and (28) then greatly simplifies to

G0(w1, w2, t) = k2(w1, w2, t)

=
σon exp(−xe−st)

s(r − 1)

[
ekstM

(
ϵb + 1, 2− r, xe−st

)
M(ϵa + 1, r, x)

− est(k−r+1)M
(
ϵa + 1, r, xe−st

)
M(ϵb + 1, 2− r, x)

]
,

(29a)
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G1(w1, w2, t) = k4(w1, w2, t)

= exp(−xe−st)

[
ϵbekst
r − 1

M
(
ϵb + 1, 2− r, xe−st

)
M(ϵa, r, x)

+
ϵaest(k−r+1)

r − 1
M

(
ϵa + 1, r, xe−st

)
M(ϵb, 2− r, x)

]
.

(29b)
Special Case (ii)

The marginal distribution of mRNA numbers condi-
tioned on the promoter state can be obtained by setting
w2 to 0 in Eqs. (26) and (28); as expected, this is ex-
actly equal to the solution of the the well known telegraph
model17 since the protein production and decay reactions
in Model II have no influence on mRNA dynamics (for
detailed calculations see Appendix C).

Special Case (iii)
Similarly setting w1 to 0 gives us the marginal protein

number distribution conditioned on the promoter state
which to the best of our knowledge has not been derived
before. This distribution considerably simplifies when
promoter-inactivation events occur far more frequently
than promoter-activation events, i.e., σoff � σon; and
that mRNA decays fast, i.e. dm � 0. This is indeed
the exact solution to the chemical master equation of the
reduced reaction system

D
α−→ D + iP, (30)

where i is a random number sampled from the geometric
distribution P (β, i) = βi/(1 + β)i+1 where i = 0, 1, 2, ...
Note that β is the mean burst size. The kinetic parame-
ters are given by

α =
σonρ

σoff + ρ
, β =

λ(σoff + ρ)

dmσoff
. (31)

For details of the derivation see Appendix D.

Numerical validation of the exact solution
In Figs. 2 and 5, we show that the exact analytical so-

lutions for the joint and marginal distributions are in ex-
cellent agreement with those obtained using the stochas-
tic simulation algorithm (SSA)41 when there is no bi-
modality (top row) and when there is bimodality (bottom
row).

III. EXACT SOLUTION FOR THE TIME-DEPENDENT
JOINT DISTRIBUTION OF MRNA AND PROTEIN
NUMBERS OF MODEL III

Next we solve Model III which is an extension of Model
II. In particular in Model III we introduce a cell-cycle
description whereby at the end of each cell-cycle the
gene products are randomly partitioned between daugh-
ter cells. For generality, we shall assume that the dura-
tion of the nth cell-cycle is Tn.

We start by setting the initial conditions of Model II,
g0 and g1, to be the two generating functions at the be-
ginning of cell-cycle n. Hence using Eq. (26) we have the

time-evolution equations of the two generating functions
within cell-cycle n (prior to cell division)

Gn
t (w1, w2) = Kt(w1, w2)G

n
0 (Ttw1, w2) (32)

where Gn
t (w1, w2) = [Gn

0 (w1, w2, t), Gn
1 (w1, w2, t)]

⊤,
Gn

φ(w1, w2, t) is the generating function of promoter
state Dφ at cell age t ∈ [0, Tn) of cell-cycle n, and
The next step is to seek a recursive equation between
Gn+1

φ (w1, w2, 0) and Gn
φ(w1, w2, 0). According to the def-

inition of the generating function, we have

Gn+1
φ (z1, z2, 0) =

∑
nm

∑
np

znm
1 z

np
2 Pn+1

φ (nm, np, 0), (33)

where we temporarily use z1 and z2 instead of w1 and w2

to facilitate the following derivation. The probabilities
before and after cell division are linked by the law of
total probability

Pn+1
φ (nm, np, 0) =

∑
n′

m

∑
n′

p

Pn
φ (n

′
m, n′

p, Tn)P (nm, np|n′
m, n′

p).

Using the binomial partitioning condition Eq. (2), Eq.
(33) can be written as

Gn+1
φ (z1, z2, 0) =

∑
nm

∑
n′

m

znm
1 2−n′

m

(
n′

m
nm

)

×
∑
np

∑
n′

p

z
np
2 Pn

φ (n
′
m, n′

p, Tn)

(
n′

p
np

)
2−n′

p

︸ ︷︷ ︸
E

.

(34)

The term E can be further simplified to

E =
∑
n′

p

Pn
φ (n

′
m, n′

p, Tn)

(
1

2

)n′
p ∑

np

(
n′

p
np

)
z
np
2 × 1n

′
p−np

=
∑
n′

p

Pn
φ (n

′
m, n′

p, Tn)

(
z2 + 1

2

)n′
p

,

where the second step follows from the binomial theorem.
By performing the same simplification steps Eq. (34)
reduces to

Gn+1
φ (z1, z2, 0) =

∑
n′

m

∑
n′

p

Pn
φ (n

′
m, n′

p, Tn)

×
(
z2 + 1

2

)n′
p
(
z1 + 1

2

)n′
m

= Gn
φ

(
z1 + 1

2
,
z2 + 1

2
, Tn

)
,

where the last step uses the definition of the generating
function. Switching z1 and z2 back to w1 and w2, we fi-
nally obtain the recursive equation linking the generating
function prior to cell division to that after cell division

Gn+1
φ (w1, w2, 0) = Gn

φ

(w1

2
,
w2

2
, Tn

)
. (35)
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FIG. 2. Comparing the analytical joint and marginal distributions of mRNA and protein numbers in Model II predicted by
Eqs. (26) and (28) with those obtained from stochastic simulations using the SSA (the number of independent realizations is
107). The heatmaps show the joint distributions of mRNA and protein numbers predicted by the analytical solution at time
t = 1 and t = 6, and they agree well with the predictions given by SSA in Fig. 5. The marginal distributions of mRNA
numbers given by the exact solution (solid lines) perfectly match the ones given by the SSA (dots). Similar results are found
for the marginal distributions of protein numbers. The kinetic parameters are (top panel) ρ = 6, λ = 1, σoff = 0.1, σon = 1,
and dm = 1; (bottom panel) ρ = 4, λ = 1, σoff = 0.05, σon = 0.02, and dm = 1. Initially the promoter is in the ON state and
there are zero mRNA and protein numbers.

In summary, taken together, Eqs. (27), (32) and (35)
constitute the exact solution to Model III. We note that
in this description, at all points in time, only one cell is
tracked, i.e. when a cell divides, only the gene prod-
uct contents of one of the daughter cells is followed.
Hence each independent realisation of the SSA simulat-
ing Model III describes a particular lineage; this means
that the total number of cells in the population does not
change with time. If furthermore Tn = T , the popula-
tion of cells has perfectly synchronized cell-cycles. In Fig.
3, we perform 4 sets of simulation experiments. In each
experiment, for simplicity we choose Tn = T , i.e. the cell-
cycle duration is the same for all cycles; T is however dif-
ferent for each of the four experiments. We compare the
marginal distribution of protein counts predicted by our
exact solution of Model III and the SSA at different cell

ages in the first 4 cell-cycles. As expected, the theoreti-
cal predictions and the SSA are found to be in excellent
agreement verifying that our theory accurately predicts
gene expression within and across cell-cycles. Note also
that here we have focused on testing the accuracy of the
protein number distribution because the mRNA number
distribution for Model III s a special case of an extended
version of the telegraph model studied earlier21. The the-
oretical joint distribution of mRNA and protein numbers
of Model III can also be directly compared with the SSA
and again the two are found to be in excellent agreement
(results not shown).
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FIG. 3. The marginal distributions of protein numbers in Model III given by theory (Eqs. (27), (32) and (35)) are in excellent
agreement with the distributions computed using the SSA at different cell ages and for different cell-cycle duration T . The
time shown in the figures is the absolute time measured from the beginning of the first cell-cycle. In all the cases, the system
is initiated in the active promoter state D0 with 4 mRNA and 9 protein molecules. For simplicity, the cell-cycle duration is
chosen to be the same for all cell-cycles, i.e. Tn = T . The kinetic parameters are ρ = 2, λ = 3, σoff = 0.1, σon = 0.1 and
dm = 1. We use the modified version of the SSA in Ref. 13, and the number of independent realizations is 106.

IV. COMPARISON OF THE STATIONARY GENE
PRODUCT NUMBER STATISTICS OF MODELS I & III

Model I

The steady-state statistics of Model I are easy to ob-
tain directly from the moment equations derived from the

CME33. This is because the moment equations for any
system of first-order reactions are closed and hence their
solution in steady-state simply amounts to solving a sys-
tem of simultaneous equations42. The means, variances,
Fano factors (ratio of variance to mean of the molecule
numbers), the covariance of mRNA and protein number
fluctuations, and the correlation coefficient are given by:
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〈nm,I〉 =
σonρ

d(σon + σoff)
, (36)

〈np,I〉 =
σonλρ

ddp(σon + σoff)
, (37)

var(nm,I) =
ρσon

[
ρσoff + d(σoff + σon) + (σon + σoff)

2
]

d(σon + σoff)2(d+ σon + σoff)
,

var(np,I) =
σonλρ[(σon + σoff)(d+ σon + σoff)(dp + σon + σoff)(d+ dp + λ) + λρσoff(d+ dp + σon + σoff)]

ddp(d+ dp)(σon + σoff)2(d+ σon + σoff)(dp + σon + σoff)
,

FF(nm,I) = 1 +
ρσoff

(σon + σoff)(d+ σon + σoff)
,

FF(np,I) = 1 +
λ

d+ dp
+

λρσoff(d+ dp + σon + σoff)

(d+ dp)(σon + σoff)(d+ σon + σoff)(d+ σon + σoff)
, (38)

cov(nm,I, np,I) =
λρσon{(dp + σoff + σon)[ρσoff + (σon + σoff)

2] + d[ρσoff + dp(σon + σoff) + (σon + σoff)
2]}

d(d+ dp)(σon + σoff)2(d+ σon + σoff)(dp + σon + σoff)
,

corr(nm,I, np,I) = cov(nm,I, np,I)/
√

var(nm,I)var(np,I). (39)

Model III
To compare with the steady-state statistics of Model

I, we first need to define what is precisely meant by the
steady-state of Model III. We shall consider the com-
mon case where measurements of the mRNA and protein
numbers for each cell are done at a point in time for a
(growing) population of dividing cells with unsynchro-
nized cell-cycles. Furthermore these measurements are
done when steady-state growth has been achieved, i.e.
the probability that a cell of age t has a given number of
mRNA and proteins is independent of which generation
it belongs to43.

The calculations leading to the derivation of the distri-
butions of mRNA and proteins for a population snapshot
measurement are complex and will be done in two steps:
(i) first we will enforce steady-state growth conditions
on Model III, a condition also referred to as the cyclo-
stationary condition in the literature26. This will lead
to a steady-state distribution of gene products for cells
of age t where t ∈ [0, T ]; (ii) the distributions obtained
from the former step will then be integrated over the cell-
age distribution in a population thus leading to the final
result.

1. Enforcing steady-state growth
According to Eqs. (32) and (35), the generating func-

tions at cell age t = 0 of two successive cell-cycle are
related by

Gn+1
0 (w1, w2) = KT (w1/2, w2/2)G

n
0 (Ω, w2/2),

with

Ω =
e(

λw2
2 −dm)T (λw1w2 + 2λw2 − 2dmw1)− 2λw2

2λw2 − 4dm
.

Then, the cyclo-stationary condition suggests that there
exists a limit such that limn→∞ Gn

0 = G∞
0 . It is equiva-

lent to G∞
0 satisfying

G∞
0 (w1, w2) = KT (w1/2, w2/2)G

∞
0 (Ω, w2/2), (40)

which means the probability distribution of mRNA and
protein numbers at cell age t = 0 reaches steady state.
Once the cyclo-stationary condition is satisfied for t = 0,
the generating functions G∞

t (w1, w2) also becomes cyclo-
stationary, since Kt is cell-cycle invariant in

G∞
t (w1, w2) = Kt(w1, w2)G

∞
0 (Ttw1, w2). (41)

By taking derivative of w1 on the both sides of Eq. (40)
and setting w1 = w2 = 0, one can get the equations
governing the cyclo-stationary means of mRNA numbers
at cell age t = 0

〈nm,0,III〉0 =
e−dmT

2
[k1,T 〈nm,0,III〉0 + k2,T 〈nm,1,III〉0]

+
σonk

(1,0)
1,T + σoffk

(1,0)
2,T

σon + σoff
,

〈nm,1,III〉0 =
e−dmT

2
[k3,T 〈nm,0,III〉0 + k4,T 〈nm,1,III〉0]

+
σonk

(1,0)
3,T + σoffk

(1,0)
4,T

σon + σoff
,

(42)

where 〈nm,φ,III〉t is the cyclo-stationary mean mRNA
number at promoter state Dφ and cell age t, and we
use the following short-hand notations

ki,t = ki(0, 0, t), k
(x,y)
i,t = ∂x

w1
∂y
w2

ki(w1, w2, t)
∣∣
w1=0,w2=0
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for i = 1, 2, 3, 4. The total mean mRNA number at cell
age t, 〈nm,III〉t, is then equal to

〈nm,III〉t = ∂w1
1G∞

t (w1, w2)

= e−dmt(〈nm,0,III〉0 + 〈nm,1,III〉0)

+
σon(k

(1,0)
1,t + k

(1,0)
3,t ) + σoff(k

(1,0)
2,t + k

(1,0)
4,t )

σon + σoff
,

(43)

where 1 = [1, 1]. Solving for 〈nm,0,III〉0 and 〈nm,1,III〉0
from Eq. (42) and substituting them into Eq. (43), we
find an analytical expression for the mean mRNA number
at cell age t under cyclo-stationary conditions

〈nm,III〉t =
σonρ(1 + edm(T−t) − 2edmT )

dm(σon + σoff)(1− 2edmT )
.

By taking derivative of w2 on the both sides of Eqs.
(40) and (41) and using the same principles, we can also
get the expression for protein (〈np,III〉t)

〈np,III〉t =
λρσon

[
edm(T−t) + 1− dm(t+ T ) + 2edmT (−1 + dm(t+ T ))

]
d2m(−1 + 2edmT )(σoff + σon)

,

Similarly one can find the second-order raw mo-
ments for mRNA numbers and protein numbers un-
der the cyclo-stationary condition 〈n2

m,III〉t, 〈n2
p,III〉t and

〈np,IIInm,III〉t. These are too complex to write here (the
interested reader is referred to the Mathematica note-
book).

2. Taking into account the lack of cell-cycle
synchronization between cells

Finally we need to take into account the fact that often
the cell-cycles of different cells are not synchronized and
hence a population snapshot will measure gene product
numbers from cells of different ages. The issue is that if
we consider stochastic simulations of Model III then if we
start from a single cell, at any one time in the future we
obtain a population of perfectly synchronized cells due
to the deterministic cell-cycle duration. Of course, in re-
ality cell-cycle duration is not deterministic but rather is
a random variable, a property that will naturally desyn-
chronize cells. It can be shown that if the cell-cycle dura-
tion has some small noise about a mean T then the cell-
age distribution is given by p(t) = 21−t/T ln 2/T where
t ∈ [0, T ]27,43. Note that this implies that it is more prob-
able to observe cells of a young age (a direct implication
of the doubling of the number of cells with age t = 0
when cell division occurs).

Hence the observed mean mRNA numbers for a cell
population (〈nm,III〉) is given by taking the ensemble av-
erage of the cyclo-stationary mean over p(t). This leads
to

〈nm,III〉 =
∫ T

0

p(t)〈nm,III〉tdt =
σonρT

(σon + σoff)(dmT + ln 2)
.

(44)

The stationary mean protein number for the cell popu-

lation can be similarly computed

〈np,III〉 =
∫ T

0

p(t)〈np,III〉tdt =
λρσonT

2

ln 2(σon + σoff)(dmT + ln 2)
.

(45)

The variance of mRNA and protein numbers for the cell
population are similarly given by

var(nm,III) =

∫ T

0

p(t)〈n2
m,III〉tdt− 〈nm,III〉2, (46)

var(np,III) =

∫ T

0

p(t)〈n2
p,III〉tdt− 〈np,III〉2, (47)

while the covariance of mRNA and protein fluctuations
is given by

cov(nm,III, np,III) =

∫ T

0

p(t)〈nm,IIInp,III〉tdt

− 〈nm,III〉〈np,III〉.

The correlation between mRNA and protein is then ob-
tained using

corr(nm,III, np,III) =
cov(nm,III, np,III)√

var(nm,III)var(cov(np,III)
. (48)

The expressions derived above were validated using
stochastic simulations, as follows. As mentioned earlier,
a non delta-function cell-age distribution can only arise
if the cell-cycle duration is not fixed. To this end, we de-
vise Model IV, one that is the same as Model III except
that the cell-cycle duration is equal to the mean T plus
small noise which is Erlang distributed (an assumption
that is motivated by measurements of several cell types;
see Fig.1c in Ref. 27). For a more detailed discussion
of Model IV we refer the reader to Appendix E. Sim-
ulations of Model IV leads to an exponentially increas-
ing population of cells; at a point in time after several
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generations have elapsed, we calculate the means, vari-
ances and covariance of mRNA and proteins across the
cell population and also the cell age distribution. In Fig.
6 these are compared with those predicted by Model III;
excellent agreement is found for three parameter sets thus
validating the accuracy of Eqs. (44)-(48).

Comparison of Models I and III
Now we are in a position to compare Models I and

III so that we can assess the importance of modelling
the cell-cycle explicitly. To ensure a fair model compar-
ison, we first equate the means of the two models, i.e.
〈nm,I〉 = 〈nm,III〉 and 〈np,I〉 = 〈np,III〉. This equivalence
is possible provided the effective mRNA decay rate d and
the effective protein dilution rate dp in Model I, are cho-
sen to be

d = dm +
ln 2

T
, dp =

ln 2

T
. (49)

Using these effective rates, we compute the Fano factor
for proteins in Model I, FF(np,I), using Eq. (38). The
Fano factor for proteins in Model III, FF(np,III), can be
computed from Eqs. (45) and (47). We then introduce
the ratio R1 defined by

R1 =
FF(np,III)

FF(np,I)
, (50)

which quantifies the discrepancy between the two Fano
factor predictions provided by Model I and Model III.
Similarly, we define the ratio R2 as

R2 =
corr(nm,III, np,III)

corr(nm,I, np,I)
, (51)

to quantify the discrepancy between the correlation co-
efficients between mRNA and protein numbers predicted
by Model I (Eq. (39)) and Model III (Eq. (48)).

In Fig. 4a and b, we investigate how the ratio R1 varies
across parameter space. The results show that Model I
always underestimates the Fano factor of protein num-
ber fluctuations. The deviations between the two models
is mostly determined by the ratio of the time spent in
the ON and OFF states and the cell-cycle duration time
(σoffT and σonT , respectively) and to a much lesser ex-
tent by the ratio of the mRNA lifetime and the cell-cycle
duration time dmT . Generally, the deviations increase
with σonT and with decreasing σoffT and dmT . In Fig.
4c and d, we investigate how the ratio R2 varies across pa-
rameter space. The results show that the Model I can ei-
ther overestimate or underestimate the correlation coeffi-
cient. The factor that most strongly determines whether
R2 is less than or greater than 1 is the ratio of the mRNA
lifetime and the cell-cycle duration time dmT ; we note
that the line dmT = 10 is approximately coincident with
R2 = 1.

V. SUMMARY AND DISCUSSION
In this paper, we have extended the classical three-

stage model to include a cell-cycle description and solved
it exactly using the generating function method. This is
a theoretical advance because to the best of our knowl-
edge, presently there is not an analytical solution for the
joint distribution of mRNA and protein numbers in a
three-state model of gene expression with or without a
cell-cycle description. Prior to this work, an exact an-
alytical solution for the joint distribution existed only
for the classical two-stage model where there is no pro-
moter switching and no cell-cycle description31,32 and the
marginal distribution of protein numbers in the classical
three-stage model was only derived when the timescales
of certain reactions are well separated20.

Because our model has the added advantage of ex-
plicitly incorporating cell division whereas the classical
three-state model20 does not, comparing the steady-state
population snapshot statistics of the two enabled us to
shed light on the effect that cell division has on the pre-
dictions of the Fano factor of protein number fluctuations
and the correlation coefficient between mRNA and pro-
tein number fluctuations. We found there are substan-
tial deviations between the two model predictions be-
cause the first-order reaction modelling mRNA and pro-
tein dilution in the classical model cannot capture the
fluctuations induced by cell division. In particular the
classical model underestimates the Fano factor of pro-
tein numbers. The same has been previously reported
using a model of bursty protein production (where the
burst size is sampled from a geometric distribution) and
cell division26; however this model is a special case of
Model III presented in this paper (valid only when cer-
tain parameter restrictions apply) and hence the Fano
factor analysis presented here is more general. Perhaps
more interestingly, we also found that the classical model
can either under or overestimate the correlation between
mRNA and protein number fluctuations. Roughly speak-
ing, overestimation occurs when the ratio of the cell divi-
sion time and the mRNA lifetime dmT is greater than
10 (Fig. 4c and d). This property reflects the intu-
itive observation that if during most of the cell-cycle the
mRNA is roughly in steady-state but the protein number
is mostly increasing with time (since removal occurs only
at cell division), then the correlation between the two
will necessarily be weak; our cell-cycle model captures
this but the classical model overestimates the correlation
because it predicts that both mRNA and protein reach
or approach a steady-state since both decay due to a
first-order reaction.

Our model of course also has limitations, the major one
being the inherent assumption that protein removal only
occurs via dilution and not due to degradation. It is es-
timated that in mammalian cells about 70% of proteins
have a lifetime that is longer than the mean cell-cycle
duration35 – for these proteins, our model is applicable
because removal will be dominated by dilution. To ob-
tain a stochastic description for the rest of the proteins,
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FIG. 4. Comparison of the steady-state Fano factor of protein numbers and of the correlation coefficient between mRNA and
protein predicted by Model I and Model III. The ratio R1 is the Fano factor of Model III divided by that of Model I (Eq.
(50)). The ratio R2 is the correlation coefficient of Model III divided by that of Model I (Eq. (51)). In (a) and (c) we fix the
values of the switching off rate σoff = 1.5 hr−1 and the transcription rate ρ = 7 hr−1 to be the medians reported in Ref. 7, the
translation rate λ = 198 hr−1 · mRNA−1 to be the median reported in Ref. 35, and the cell-cycle duration T = 27.5 hrs to be
the value reported in Ref. 35. In (b) and (d) the parameter values are the same, except that now we fix the switching on rate
σoff = 0.12 hr−1 to be the median reported in Ref. 7. Note that R1 > 1 all over parameter space implying that Model I always
underestimates the Fano factor of protein fluctuations. The ratio R2 can be greater than or less than 1 implying that Model I
can either over or underestimate the correlation coefficient between mRNA and protein numbers.

active protein degradation needs to be included but un-
fortunately this then makes the analytical solution of the
chemical master equation challenging and it is currently
unclear how to overcome this issue.

An interesting direction we have not here explored is
the implication of our analytical results to parameter in-
ference from experimental data6,44, i.e. given measure-
ments of single cell mRNA and protein numbers in a pop-
ulation of cells45, how is inference of rate parameter val-
ues (by matching the theoretical and experimental joint
distribution via the method of maximum likelihood) us-
ing Model III (three-stage model with cell-cycle) different
than using Model I (classical three-stage model without
cell-cycle)? This is under investigation and we hope to
report on it in a separate study.

VI. CODE AND DATA AVAILABILITY
The Mathematica notebooks, Python codes and rel-

evant data are deposited at https://github.com/
edwardcao3026/three-stage-model.git.
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Appendix A: Derivation of Eq. (22)
It then follows from Eqs. (19) and (20) that the solu-

tion G1 becomes
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G1 =
vk

σon
sg(h)

−(ϵb + x)M (ϵa + 1, r, x) + x

(
ϵa + 1

r

)
M (ϵa + 2, r + 1, x)︸ ︷︷ ︸

A



+
vk

σon
sf(h)x1−r

−(ϵa + x)M (ϵb + 1, 2− r, x) + x

(
ϵb + 1

2− r

)
M (ϵb + 2, 3− r, x)︸ ︷︷ ︸

B

 .

(A1)

In the following steps, we show that Eq. (A1) can be
further simplified by making use of recurrence relations
of the Kummer function. For the term A, we have

A = −(ϵb + x)M(ϵa + 1, r, x) + (ϵa + 1)M(ϵa + 2, r, x)

− (ϵa + 1)M(ϵa + 1, r, x),

= −(ϵa + ϵb + 1 + x)M(ϵa + 1, r, x)

+ (ϵa + 1)M(ϵa + 2, r, x),

= −ϵbM(ϵa, r, x).

(A2)

Here the first step of Eq. (A2) is achieved by applying
Eq. (13.3.4) of Ref. 40 to the second term in A, and the
second step re-organizes the expression in the first step,
while the third step follows Eq. (13.3.1) of Ref. 40. By

similar arguments, we also obtain

B = −(ϵa + x)M(ϵb + 1, 2− r, x) + (ϵb + 1)M(ϵb + 2, 2− r, x)

− (ϵb + 1)M(ϵb + 1, 2− r, x),

= −(ϵa + ϵb + 1 + x)M(ϵb + 1, 2− r, x)

+ (ϵb + 1)M(ϵb + 2, 2− r, x),

= −ϵaM(ϵb, 2− r, x).

(A3)

Finally using Eqs. (A1)-(A3) we obtain the much simpler
expression for G1 given by Eq. (22).

Appendix B: Derivation of Eq. (24)
The left-hand side of both equations in Eq. (23) are

linear functions of both f and g, and hence they can be
immediately obtained


f(v) =

g0(w1, w2)v
−k

[
(−σoffs− ks2 + ρdm − ρs+ ρv)y1 − sv∂w1y1

]
sv(y1∂w1

y2 − y2∂w1
y1)

+
g1(w1, w2)v

−kσonsy1
sv(y1∂w1

y2 − y2∂w1
y1)

,

g(v) = −
g0(w1, w2)v

−k
[
(−σoffs− ks2 + ρdm − ρs+ ρv)y2 − sv∂w1

y2
]

sv(y1∂w1
y2 − y2∂w1

y1)
− g1(w1, w2)v

−kσonsy2
sv(y1∂w1

y2 − y2∂w1
y1)

.

Note that the term C = y1∂w1
y2−y2∂w2

y1 appears in sev-
eral parts of the expression; it introduces the reciprocal
of the Kummer function into the full solution and may
thus hamper the efficient evaluation when we use G0 and
G1 to obtain P0(nm, np) and P1(nm, np). Therefore, we
need to simplify C, which is indeed the Wronskian iden-

tity of the two general solutions y1 and y2. Introducing
D, we find C simplifies to

C = ∂vx · ∂w1
v · (y1∂xy2 − y2∂xy1)︸ ︷︷ ︸

D

=
ρ

s
D.

Utilizing the observations above, one can simplify D to

D = W
{
M (ϵa + 1, r, x) , x1−rM (ϵb + 1, 2− r, x)

}
Eq. (13.2.4)

= W
{

M (ϵa + 1, r, x) , x1−rM (ϵb + 1, 2− r, x)
}
Γ(r)Γ(2− r) Eq. (13.2.33)

=
(sinπr)x-rex

π

π

sinπr
(1− r) Eq. (5.5.3)

= (1− r)exx−r Eq. (5.5.1)

(B1)

where W{·, ·} stands for the Wronskian identity and M(a, b, z) = Γ(b)M(a, b, z). Note that the equations of
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Ref. 40 used in the above simplification steps are de-
scribed at the end of each step. Following the procedures
performed in Eqs. (A2) and (A3), we can use Eq. (B1)
to simplify f and g to the form in Eq. (24) under the
condition that h = v when t = 0.

Appendix C: Marginal distribution of mRNA numbers for
Model II

We start by setting w2 = 0 in Eq. (28) which leads to
the simplified quantities

v = w1dm, s = dm, x =
ρw1

dm
, θ =

σon − σoff
dm

, r =
dm + σon + σoff

dm
, k = 0, ϵa =

σon
dm

,

ϵb = −σoff
dm

, γa =
dm

σon + σoff
exp

(
−e−dmtw1ρ

dm

)
, γb = e−(σon+σoff)t, Ttw1 = e−dmtw1.

This implies the functions k1, k2, k3 and k4 in Eq. (28) have the following form



k1(w1, t) =
e−ρ̄

Σ

[
e−ΣtσoffM

(
1− σoff

dm
, 1− Σ

dm
,
w1ρ

dm

)
M

(
σon
dm

, 1 +
Σ

dm
, ρ̄

)
+σonM

(
−σoff

dm
, 1− Σ

dm
, ρ̄

)
M

(
1 +

σon
dm

, 1 +
Σ

dm
,
w1ρ

dm

)]
,

k2(w1, t) =
e−ρ̄

Σ
σon

[
−e−ΣtM

(
1− σoff

dm
, 1− Σ

dm
,
w1ρ

dm

)
M

(
1 +

σon
dm

, 1 +
Σ

dm
, ρ̄

)
+M

(
1− σoff

dm
, 1− Σ

dm
, ρ̄

)
M

(
1 +

σon
dm

, 1 +
Σ

dm
,
w1ρ

dm

)]
,

k3(w1, t) =
e−ρ̄

Σ
σoff

[
−e−ΣtM

(
−σoff

dm
, 1− Σ

dm
,
w1ρ

dm

)
M

(
σon
dm

, 1 +
Σ

dm
, ρ̄

)
+M

(
−σoff

dm
, 1− Σ

dm
, ρ̄

)
M

(
σon
dm

, 1 +
Σ

dm
,
w1ρ

dm

)]
,

k4(w1, t) =
e−ρ̄

Σ

[
σoffM

(
1− σoff

dm
, 1− Σ

dm
, ρ̄

)
M

(
σon
dm

, 1 +
Σ

dm
,
w1ρ

dm

)
+e−ΣtσonM

(
−σoff

dm
, 1− Σ

dm
,
w1ρ

dm

)
M

(
1 +

σon
dm

, 1 +
Σ

dm
, ρ̄

)]
.

where ρ̄ = ρw1 exp(−dmt)/dm and Σ = σon + σoff. For
initial conditions of promoter state D0 and zero mRNA,
specifically g0(w1) = 1 and g1(w1) = 0, one can straight-
forwardly verify that the solution becomes perfectly the
same as Eqs. (13) and (14) in Ref. 37 (whereby ρb
should be set to 0) according to G0(w1, t) = k1(w1, t)
and G1(w1, t) = k3(w1, t).

Appendix D: Marginal distribution of proteins numbers for
Model II under timescale separation

We will here show the reduction of the solution Eq.
(29) under the conditions σoff � σon and ρ/σoff being
some finite quantity. Specifically, for some finite σ̃off and
ρ̃, we posit the existence of a variable δ such that σoff =
δσ̃off, ρ = δρ̃ and δ → ∞.

To achieve so, we will decompose the problem into
showing the following five subproblems

(a) limδ→∞ exp[st(k − r + 1)] = 0,

(b) limδ→∞
σon

s(r−1) = 0,

(c) limδ→∞
ϵb

r−1 = −1,

(d) limδ→∞
ϵa
r−1 = 0,

(e) limδ→∞ exp(kst) exists.

For (a), it is known that w2 ∈ [−1, 0] since z2 ∈ [0, 1].
One immediately has

s = dm − λw2 ≥ dm,

and further deduce from Eq. (14) that

θ =
ρ

s

(
dm
s

− 1

)
− σoff − σon

s
≤ −σoff − σon

s
.
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Since σoff � σon and σoff → ∞ as δ → ∞, we conclude
that θ → −∞ as δ → ∞. More specifically, θ ∼ O(δ). It
is also known from Eq. (14) that

k − r + 1 =
θ − 2σons

−1 −
√
θ2 + 4σoffσons−2

2

<
θ − 2σons

−1 − |θ|
2

< θ,

which indicates that k − r+ 1 → −∞ as δ → ∞. Equiv-
alently, it means limδ→∞ exp[st(k − r + 1)] = 0.

For (b), since r > 1 and s > 0, we have

0 <
σon

s(r − 1)
=

σon√
θ2s2 + 4σoffσon

<
σon
θs

.

As δ → ∞, σon/(θs) → 0, which suggests that

lim
δ→∞

σon
s(r − 1)

= 0.

For (c), it follows from Eq. (31) that

ϵa =
1

2

(
θ +

√
θ2 + 4

σoffσon
s2

)
,

ϵb =
1

2

(
θ −

√
θ2 + 4

σoffσon
s2

)
,

r − 1 =

√
θ2 + 4

σoffσon
s2

,

(D1)

which further leads to

lim
δ→∞

ϵb
r − 1

= lim
δ→∞

1

2

(
− 1√

1 + 4σoffσons−2θ−2
− 1

)
= −1,

where the last step uses θ ∼ O(δ) and σoff ∼ O(δ).
For (d), it is known from Eq. (D1) that

ϵa
r − 1

= − σoffσon
s2ϵb(r − 1)

.

Thus, we have

lim
δ→∞

ϵa
r − 1

= lim
δ→∞

− σoffσon
s2(r − 1)2

· r − 1

ϵb
= lim

δ→∞

σoffσon
s2(r − 1)2

= lim
δ→∞

1

θ2s2/(σoffσon) + 4
= 0,

since θ ∼ O(δ) and σoff ∼ O(δ).
For (e), we first show that k is a finite quantity under

the condition δ → ∞. By using Eqs. (14) and (D1), k
can be written as

k = ϵa − σons
−1 =

σon
s

(
−σoff

θs
− 1

)
=

σon
s

(
dmρs−1 − ρ+ σon

−dmρs−1 + ρ+ σoff − σon

)
.

Hence, we conclude that

lim
δ→∞

k =
σon
s

(
dmρs−1 − ρ

−dmρs−1 + ρ+ σoff

)
.

Based on the results (a)-(e), the solutions G0 and G1

reduce to

G0(w1, w2, t) =0,

G1(w1, w2, t) =exp
[(

dmρs−1 − ρ

−dmρs−1 + ρ+ σoff

)
σont

]
× exp(−xe−st)

×M(ϵb + 1, 2− r, xe−st)M(ϵa, r, x).

(D2)

Next, we will show how Eq. (D2) can be further re-
duced under the condition that dm and λ are very large,
and λ/dm is finite. Specifically, dm ∼ λ ∼ O(∆) and
∆ → ∞. As such, it immediately follows that s ∼ O(∆)
and

lim
∆→∞

x = lim
∆→∞

ρv

s2
= lim

∆→∞

ρ(dmw1 − λw2 − λw1w2)

(dm − λw2)2
= 0.

Therefore, xe−st → 0 as ∆ → ∞. It is suggested by Eq.
(14) that r is finite. And so are ϵa and ϵb, according to
Eq. (21). Then, by expanding Kummer functions in Eq.
(D2), we obtain that

M(ϵb + 1, 2− r, xe−st) = 1 + o(∆−1),

M(ϵa, r, x) = 1 + o(∆−1).

These lead to the reduced solution

G = G0 +G1 = exp
[

σonw2tλρ

dmσoff − w2λ(σoff + ρ)

]
. (D3)

Finally, we show Eq. (D3) is the solution of the chem-
ical master equation of the reaction system Eq. (30). To
this end, we analytically solve the dynamics of this reac-
tion system – instead of directly solving the correspond-
ing generating function equation, we adopt a shortcut by
using the generating-function property of a compound
process (Supplementary Note 3 in Ref. 46).

We are interested in the distribution of protein num-
bers np(t) to the system Eq. (30). Clearly, np(t) is a
random integer variable, and is determined by two fac-
tors – the number of “packages” I(t) (where a package
stands for a protein-production event occurring before
time t) and the number of proteins Xi ∼ Geom( β

1+β ) in
each package i. Therefore, np(t) can be presented in the
form:

np(t) =

I(t)∑
i=1

Xi,

thereby constituting a compound process. The package
number I(t) is determined by the pure birth process with
rate α, and hence its generating function is

GI(z, t) = exp[αt(z − 1)].

The generating function of Xi is

GX(z, t) =
1

1− b(z − 1)
.
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Hence, the generating function for np(t) becomes

Gnp(z, t) = GI [GX(z, t), t] = exp

[
αtβ(z − 1)

1− β(z − 1)

]
.

Finally substituting the expressions for α and β from Eq.
(31) into the equation above, we find it leads the same
equation as Eq. (D3), thereby completing the proof.

Appendix E: Description of Model IV
Model IV is illustrated in Fig. 6a. We divide the cell-

cycle into N stages; the reactions in each stage are the
same as Model II. The rate of transitioning between the
stages is k and cell division (and binomial partitioning of
gene products) occurs when the stage changes from N to
1. The cell-cycle duration is hence a sum of N exponen-
tial variables with mean 1/k, i.e. the cell-cycle duration
is Erlang distributed with mean T and coefficient of vari-
ation 1/

√
N . Note that the cell-cycle stages are not to

be understood as the actual biological cell-cycle phases
(G1, S, G2, M); rather these are introduced as a natural
means to model an Erlang distributed cell-cycle dura-
tion where the parameter N can be directly estimated
from experimental measurements of the cell-cycle dura-
tion distribution27.

Simulations of this model starting from one or more
cells leads to an exponentially growing population of
cells. After some generations the system reaches a
steady-state, in the sense that the population distribu-
tion of gene products becomes invariant with time. From
a snapshot measurement, we compute the moments of
gene products which we compare with those of Model III
in Fig. 6b. The cell-age distribution is also computed
and it is found to be in good agreement with the cell-age
distribution used in calculations of Model III (Fig. 6c).
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FIG. 6. Comparison of the population snapshot predictions of Models III and IV. (a) Illustration of Model IV. This is described
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simulations of Model IV; specifically starting from a certain number of cells, the population grows exponentially and the
moments are calculated after several generations when a steady-state distribution has been achieved. These moments are
compared to those predicted by Model III using Eqs. (44)-(48) and excellent agreement is found between the two models for
three sets of parameters. (c) From simulations of Model IV we also compute the cell-age distribution; the cell age for a cell
with cell-cycle stage i is given by t = iT/N . The distribution from simulations is found to be in excellent agreement with the
theoretical distribution p(t) = 21−t/T ln 2/T used in the analytical calculations for Model III. The kinetic parameters together
with the initial number of cells ninitial, the total simulation time tmax, the number of phases N , and cell-cycle stage transition
rate k used for SSA simulations are: (Set 1) σon = 0.1, σoff = 0.1, ρ = 3, λ = 10, d = 2, T = 27.5, N = 50, tmax = 400,
ninitial = 5, k = 1.82; (Set 2) σon = 0.5, σoff = 2, ρ = 3, λ = 5, d = 1, T = 10, N = 40, tmax = 180, ninitial = 1, k = 4; (Set 3)
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