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Abstract

Neural activity contains rich spatio-temporal structure that corresponds to cognition.
This includes oscillatory bursting and dynamic activity that span across networks of brain
regions, all of which can occur on timescales of a tens of milliseconds. While these processes
can be accessed through brain recordings and imaging, modelling them presents method-
ological challenges due to their fast and transient nature. Furthermore, the exact timing
and duration of interesting cognitive events is often a priori unknown. Here we present the
OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that
can identify and describe recurrent dynamics in functional neuroimaging data on timescales
as fast as tens of milliseconds. At its core are machine learning generative models that are
able to adapt to the data and learn the timing, as well as the spatial and spectral character-
istics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art
approaches that can be, and have been, used to elucidate brain dynamics in a wide range of
data types, including magneto/electroencephalography, functional magnetic resonance imag-
ing, invasive local field potential recordings and electrocorticography. It also provides novel
summary measures of brain dynamics that can be used to inform our understanding of cogni-
tion, behaviour and disease. We hope osl-dynamics will further our understanding of brain
function, through its ability to enhance the modelling of fast dynamic processes.

Highlights

e An open-source toolbox for identifying and describing brain dynamics in neuroimaging
data on fast timescales.

Includes visualisation and quantification of oscillatory bursting and network dynamics.

Provides novel summary measures and group analysis tools of brain dynamics that can be
used to inform our understanding of cognition, behaviour and disease.

Implemented in Python and makes use of TensorFlow.

Includes comprehensive documentation and tutorials.
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1 Introduction

There is growing evidence for the importance of oscillatory activity in brain function [1]. Neural
oscillations have been linked to cognitive processes, such as information encoding and processing,
as well as attention [2] and distinct oscillatory activity has been observed in different states of
consciousness [3]. Furthermore, the synchronisation of neural oscillations has been proposed
as a mechanism for communication [4]. Neural oscillations have also been a useful tool for
understanding brain dysfunction; for example, changes have been observed in the oscillatory
activity of diseased and healthy cohorts [5].

An aspect of neural oscillations that remains to be fully understood is its dynamic nature,
particularly at fast timescales [6]. Recently, it has been proposed that neuronal populations
exhibit short bursts of oscillatory activity on timescales of 100ms [7, [8| 9] rather than the
classical view of ongoing oscillations that are modulated in amplitude. This has important
implications for how we should be modelling oscillatory activity changes in cognition and disease
[10L 11, [12]. Unfortunately, the methods available to detect bursts in oscillatory data are limited,
often requiring arbitrary choices for parameters relating to the frequency content, amplitude and
duration [13]. These choices can significantly impact the conclusions reached by such analyses.

Furthermore, oscillatory bursting is not isolated to individual brain regions. It has been
shown that bursting can occur across cortical networks 9], and there are bursts of coherent ac-
tivity in networks that lasts on the order of 50-100 ms in both resting-state [14] and in task [15].
Precise knowledge of these fast network dynamics is a valuable insight that can help us under-
stand cognitive processes; for example, the dynamics of specific functional resting-state networks
have been linked to memory replay (a <50 ms process that occurs in memory consolidation) [16].
Changes in the dynamics of functional networks have also been shown to be predictive of be-
havioural traits [17] and disease [18|, [19] 120} 21| [22], 23]. The key barrier that prevents us from
fully utilising a network perspective is that the accurate estimation of dynamic functional net-
works is challenging. This is in part due to the timing and duration of interesting cognitive
events, and the corresponding activity in functional networks, not being known. Consequently,
we need to rely on methods that can adapt to the data and automatically identify when networks
activate.

Here, we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python
package that meets two far-reaching methodological challenges that limit the field of cognitive
neuroscience: burst detection and the identification of dynamic functional brain networks. It
does so by deploying data driven generative models that have a proven ability to adapt to the
data from a wide range of imaging modalities, and can learn the spatio-temporal characteristics
of brain activity, with few assumptions and at fast timescales |24, [25] 126].

In applications for burst detection, os1-dynamics can automatically detect oscillatory bursts
without the need to specify the frequencies, amplitude threshold or duration of the bursts. This
allows osl-dynamics to answer questions such as: when do oscillatory bursts occur; what is
their oscillatory frequency; and what are their characteristic features (e.g. average lifetime,
interval, occurrence and amplitude)?

In the detection of dynamic functional brain networks, osl-dynamics can automatically
detect network dynamics at fast timescales with few assumptions. This allows osl-dynamics
to answer questions such as: what large-scale functional networks do individuals or groups
exhibit; when do these functional networks activate and what are their characteristic dynamics;
what functional networks activate in response to a task; do individuals differ in their functional
network activations? On top of this, osl-dynamics can characterise functional networks from
a more conventional, static (time-averaged), perspective using the same methodology where
appropriate as the dynamic methods.

Here, we will illustrate the use of osl-dynamics using publicly available magnetoencephalog-
raphy (MEG) datasets. However, we emphasise that the scope of the toolbox extends well beyond
MEG, containing approaches that can be used, and have been used, to elucidate network and
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oscillatory dynamics in a range of applications that include electroencephalography [27, 28],
functional magnetic resonance imaging (fMRI) [25] 130], invasive local field potential record-
ings [11} [29] and electrocorticography [31].

2 Methods

2.1 Generative Models

In the study of dynamics, we are often interested in the properties of a time series, such as
power spectral density (PSD), mean, covariance, etc., at a given time point. A common heuristic
approach for calculating this is to use a sliding window. However, this approach only utilises a
short window around the time point of interest and suffers from a tradeoff between the temporal
precision of dynamics and an accurate estimation of the properties (via a sufficiently large
window). In [32], it was shown that this approach is inadequate for studying fast changes in
functional connectivity. In osl-dynamics, we adopt an alternative approach based on generative
models [33]. These are models that learn the probability distribution of the training data. In this
report, we will focus on two generative models for time series data: the Hidden Markov Model
(HMM) [34] and Dynamic Network Modes (DyNeMo) [26]. Both of these models (discussed
further below) incorporate an underlying dynamic latent variable in the generative process.
The objective during training is to learn the most likely latent variables to have generated the
observed time series (we minimise the variational free energy'|[35]). In doing this, the model can
identify non-contiguous segments of the time series that share the same latent variable. Pooling
this information leads to more robust estimates of the local properties of the data.
The generative model for the HMM (shown in Figure [LA) is

T
p(@1r, 017) = p(a1|01)p(01) [ | ol 01)p(0:]0:1), (1)
t=2

where 0; € {1,..., K} is the latent state at time ¢, K is the number of states and x; is the
generated data. p(x¢|6;) is the observation model. Here, we use

p(x|0; = k) = N(py,, Di), (2)

where p), € {1, ..., g } is a state mean and Dy, € {Dj, ..., Dk} is a state covariance. Dynamics
in the time series are generated through state switching, which is characterised by the transition
probability p(6;|0;—1). Each pairwise state transition forms the transition probability matriz, [34]

Aij = p(0r = jl0r—1 = 1). (3)

osl-dynamics uses variational Bayesian inference [35] to learn the most likely state to have
generated the observed data. This has the advantage of being able to account for uncer-
tainty in the latent state. For more information regarding the implementation of the HMM in
osl-dynamics see the documentation: https://osl-dynamics.readthedocs.io/en/latest/
models/hmm.html. The HMM has been successfully used to study dynamics in neuroimaging
data in a variety of settings [9, [11} [14} [15] 16} [18], 201 [24} 25| [30].

DyNeMo is a recently proposed model that overcomes two key limitations of the HMM: the
mutually exclusive states and limited memory [26]. The generative model for DyNeMo (shown
in Figure [IB) is

T
p(1.7, 01.7) = p(1]01)p(01) [ [ p(2:]0:)p(0:101:1-1), (4)
t=2

IThis is equivalent to maximising the negative variational free energy, which is also known as the evidence
lower bound (ELBO) [35].
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Figure 1: Generative models implemented in osl-dynamics. A) Hidden Markov Model
(HMM) [24, 25]. Here, data is generated using a hidden state (6;) and observation model,
which in our case is a multivariate normal distribution parameterised by a state mean (u,,) and
covariance (Dy). Only one state can be active at a given time point. Dynamics are modelled
via state switching using a transition probability matrix (A;;), which forecasts the probability
of the current state based on the previous state. B) Dynamic Network Modes (DyNeMo) [26].
Here, the data is generated using a linear combination of modes (uj and D;) and dynamics are
modelled using a recurrent neural network (RNN: f and g), which forecasts the probability of a
particular mixing ratio (a;) based on a long history of previous values via the underlying logits

(61).

where 6, is a latent vector at time ¢ (referred to as a logit) and x; is the generated data. The
observation model we use is

p(wt‘et) = N(mtu Ct)u

J
™= oy,
=1

J
Ct: E Oéthj,
j=1

where p; € {py,...,p;} is a mode mean, D; € {Dq,...,D,} is a mode covariance, J is the
number of modes and
Q¢ = {softmax(@t}j (6)

is the mixing coefficient for mode j. Dynamics in the latent vector are generated through
p(0¢]01:4—1), which is a distribution parameterised using a recurrent neural network [36]. Specif-
ically,

p(etlelzt—1> == N(mew Ugt>7
my, = f(01.4-1) (7)
o5, = 9(61:4-1),

where f and g are calculated using a recurrent neural network. osl-dynamics uses amortised
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variational Bayesian inference [37] to learn the most likely latent vector to have generated the
observed data. This is a highly efficient inference scheme that is scalable to large datasets. For
more information regarding the implementation of DyNeMo in osl-dynamics see the documen-
tation: https://osl-dynamics.readthedocs.io/en/latest/models/dynemo.html.

Once trained, both models reveal a dynamic latent description of the training data. For
the HMM, the latent description is a hidden state time courseﬂ which is the most likely state
inferred at each time point in the training data. For DyNeMo, it is a mode time course, which is
the mixing coeflicient time series for each mode inferred from the training data. We will discuss
in Sections and how these latent descriptions can be used to summarise dynamics in
the training data.

2.2 Datasets

We make use of two publicly available datasets:

e CTF rest MEG dataset. This contains resting-state (eyes open) MEG data collected us-
ing a 275-channel CTF scanner. This dataset contains 5 minute recordings from 65 healthy
participants. It was collected at Nottingham University, UK as part of the MEGUK part-
nership [38].

e Elekta task MEG dataset. This contains MEG data recorded during a visual perception
task [39]. 6 runs from 19 healthy participants were recorded using an Elekta Neuromag
Vectorview 306 scanner. This dataset was collected at Cambridge University, UK.

2.3 Preprocessing and Source Reconstruction

The steps involved in estimating source data from an MEG recording are shown in Figure
This part of the pipeline can be performed with the OHBA Software Library (OSL) [40, 41],
which is a separate Python package for M/EEG analysis. The exact steps applied to the raw
data for each dataset were:

1. MaxFilter (only applied to the Elekta dataset).

2. Bandpass filter 0.5-125 Hz.

©w

Notch filter 50 Hz and 100 Hz.

.~

Downsample to 250 Hz.
5. Automated bad segment removal and bad channel detection |

6. Automated ICA cleaning using the correlation the EOG/ECG channel to select artefact
componentsH

7. Coregistration (using polhemus headshape points/fiducials and a structural MRI).
8. Bandpass filter 1-45 Hz.
9. Linearly Constrained Minimum Variance (LCMV) beamformer.

10. Parcellate to regions of interest. In this work, we used 38 parcel

11. Symmetric orthogonalisation (to correct source leakage [42]).

2Also known as the Viterbi path.

3See osl.preprocessing.osl_wrappers.detect_badsegments and detect_badchannels in [40].

4See osl.preprocessing.mne_wrappers.runmne_ica_autoreject in [40].

®We used a parcellation based on anatomy: fmri_d100_parcellation with PCC_reduced 2mm_ss5mm_ds8mm.nii.gz [40).
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Figure 2: Preprocessing and source reconstruction. First, the sensor-level record-
ings are cleaned using standard signal processing techniques. This includes filtering, down-
sampling and artefact removal. Following this, the sensor-level recordings are used to esti-
mate source activity using a beamformer. Finally, we parcellate the data and perform cor-
rections (orthogonalisation and dipole sign flipping). Acronyms: electrocardiogram (ECG),
electrooculogram (EOG), independent component analysis (ICA), Linearly Constrained Min-
imum Variance (LCMV). These steps can be performed with the OHBA Software Library:
https://github.com/0HBA-analysis/osl.

12. Dipole sign flipping (to align the sign of parcel time courses across subjects/ runs)ﬁ
13. Downsample to 100 Hz (only included in the burst detection pipeline).

These preprocessing steps have been found to work well for a wide variety of datasets when study-
ing dynamics. The scripts used for preprocessing and source reconstruction can be found here:
https://github.com/0HBA-analysis/osl-dynamics/tree/main/examples/toolbox_paper.

2.4 Data Preparation

We usually prepare the source data before training a model. The data preparation can be
different depending on what aspect of the data we are interested in studying.

Amplitude Envelope (AE). If we are interested in studying dynamics in the amplitude
of oscillations, we can train a model on AE data. Here, we typically bandpass filter a frequency
range of interest and calculate an AE using the absolute value of a Hilbert transform. Figure
shows what happens when we calculate the AE of oscillatory data. We can see the AE data
tracks changes in the amplitude of oscillations.

Time-Delay Embedding (TDE). Studying the amplitude dynamics of oscillations does
not reveal any insights into how different regions interact via phase synchronisation. For this,
we need to prepare the data using TDE [43]. This augments the time series with extra channels
containing time-lagged versions of the original channels. Figure [B[C.I shows an example of
this. To perform TDE, we need to specify the number of lagged channels to add (number of

6See 0sl.source_recon.sign_flipping in [40]. Note, this step can be skipped if you are training on amplitude
envelope data.
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Figure 3: Methods for preparing training data. A.I) Original (simulated) time series data.
Only a short segment (0.2s) is shown. Channel 1 (2) is a modulated sine wave at 15 Hz (30 Hz)
with A/(0,0.1) noise added. A.IT) Covariance of the original data. B) Amplitude Envelope (AE)
data (solid red line) and original data (dashed blue line). C.I) Time-Delay Embedded (TDE)
time series. An embedding window of +7 lags was used. C.II) Covariance of TDE data. C.III)
Spectral properties of the original data estimated using the covariance matrix of TDE data.
Acronyms: Autocorrelation Function (ACF), Power Spectral Density (PSD).

embeddings) and the lag to shift each additional channel by. In osl-dynamics, we always shift
by one time point, so we only need to specify the number of lags. By adding extra channels, we
embed the autocorrelation function (ACF) of the original data (as well as the cross-correlation
function) into the covariance matrix of the TDE data. This is illustrated in Figure .H. We
plot the ACF taken from the TDE covariance matrix and the PSD (calculated using a Fourier
transform) in Figure .III. By using TDE data we make the covariance matrix sensitive to the
frequency of oscillations in the original data. The covariance matrix is also sensitive to cross
channel phase synchronisation via of the off-diagonal elements. Training on TDE data allows us
to study dynamics in oscillatory amplitude and phase synchronisation between channels. When
we prepare TDE data, we are normally only interested in looking for dynamics in the auto/cross
correlation function via the covariance matrix, so we fix the mean to zero in the generative
model.

For further details and example code for preparing data in osl-dynamics see the tutorial:
https://osl-dynamics.readthedocs.io/en/latest/tutorials_build/data_preparation.html.

2.5 First-Level and Group-Level Analysis

Starting from the source reconstructed data, we study a dataset with a two-stage process:

1. First-level analysis. Here, our objective is to estimate subject-specific quantities. In
the static (time-averaged) analysis, we calculate these quantities directly from the source
data. However, if we are doing a dynamic analysis, we first train a generative model, such
as the HMM or DyNeMo. Note, the HMM /DyNeMo are typically trained as group-level
models using the concatenated data from all subjects. This means the models are unaware
that the data originates from different subjects and allows the model to pool information
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across subjects, which can lead to more robust estimates of dynamic quantities. We use the
latent description provided by the model with the source data to estimate the quantities
of interest - this approach is known as dual estimationﬂ 144].

2. Group-level analysis. Quantities estimated for individual subjects, such as network
metrics or summary statistics for dynamics, are used to model a group. For example, this
could be predicting behavioural traits or characteristics of individual subjects, comparing
two groups, or calculating the group average of an network response to a task. Typi-
cally, statistical significance testing is done at the group-level to verify that any observed
differences or inferred relationships are not simply due to chance.

We will present the results of applying five pipelines to source reconstructed data calculated
from the datasets mentioned in Section a burst detection pipeline based on the HMM
(discussed in Section ; three dynamic network analysis pipelines based on the HMM and
DyNeMo (discussed in Section and a static network analysis pipeline (discussed in Sec-
tion . Both the HMM and DyNeMo have been validated on simulated data for each
application. See [45] for a demonstration of the HMM'’s ability to identify oscillatory bursts
and [24 26] for a demonstration of the HMM /DyNeMo’s ability to identify dynamic networks.

Burst Detection

A) First-Level Modelling B) Group-Level Modelling
I Source Reconstructed Data I Subject-Specific Description
v v
Time-Delay Embedding: Group Averages:
- Augment time-lagged channels - Summary statistics
- Standardisation

Summary Statistics:
- Mean lifetimes

- Mean interval

- Burst count

- Mean amplitude

Figure 4: TDE-HMM burst detection pipeline. This is run on a single region’s parcel time
course. Separate HMMs are trained for each region. A) Source reconstructed data is prepared by
performing time-delay embedding and standardisation (z-transform). Following this an HMM
is trained on the data and statistics that summarise the bursts are calculated from the inferred
state time course. B) Subject-specific metrics summarising the bursts at a particular region are
used in group-level analysis.

2.5.1 Burst Detection

We use an approach based on the HMM to detect bursts of oscillatory activity. In this approach,
we prepare the source data using TDE. A typical TDE-HMM burst detection pipeline is shown
in Figure 4l When the HMM state time courses are inferred on the training data, each “visit”
to a particular state corresponds to a burst, or transient spectral event, with spectral properties
specific to the state (e.g. an increase in -band power). This approach assumes that we are
looking for bursting in a single channel (brain region) at a time; separate HMMs can be used to
detect bursting in each channel. We use the state time course to calculate summary statistics
that characterise the dynamics of bursts. Typical summary statistics are:

"This step is analogous to dual regression in independent component analysis.
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Mean lifetim This is the average duration a state is active.

Mean interval. This is the average duration between successive state activations.

Burst count. This is the number of times a state activates in a second on average.

e Mean amplitude. This is the average value of the AE of the source data when each state
is active.

We calculate each of these for a particular state and subject. The averages are taken over all
state activations. Given when a state is active we can use the source data to calculate the PSD
of each burst type. We use the multitaper approach described in [24] to do this due to its ability
to accurately estimate spectra. We present the results of applying a TDE-HMM burst detection
pipeline to the CTF rest MEG dataset in Section

2.5.2 Identifying Dynamic Functional Networks

osl-dynamics provides more options for modelling dynamic functional networks. Note, in
this case we train on multivariate data containing the activity at multiple regions of interest,
rather than a single region, which is what we did in the burst detection pipeline (Section .
Indeed, one perspective on using osl-dynamics to model dynamic functional networks, is that
it is identifying bursts that span across multiple brain regions. Figure [5| shows the different
combinations of data preparation and generative models that are available for a dynamic network
analysis pipeline. We discuss each of these options and when they should be used below.

Identifying Dynamic Functional Networks

A) First-Level Modelling B) Group-Level Modelling
ISource Reconstructed Data I Subject-Specific Description
L 2 y v
Amplitude Envelope: . — Group Averages:
- Bandpass filtering Time-Delay Embedding: - Networks

- Augment time-lagged channels
- Principal component analysis
- Standardisation

- Hilbert transform
- Smoothing (sliding window)
- Standardisation

- Summary statistics
- Network response

[AE-HMM/DyNeMo|  TDE-HMM/DyNeMo |

e 3 > N

Summary Statistics:
Networks: . v . Networks:
4 - Fractional occupancies
- Amplitude maps - Mean lifetimes - PSDs
. - Power maps
- Mean intervals
- Coherence networks

- Switching rates

Figure 5: Dynamic functional network analysis pipeline. A) First-level modelling. This
includes data preparation (shown in the blue boxes), model training and post-hoc analysis
(shown in the red boxes). The first-level modelling is used to derive subject-specific quantities.
B) Group-level modelling. This involves using the subject-specific description from the first-level
modelling to model a group.

AE-HMM. If we are interested in identifying dynamics in amplitude, we can train on
AE data. Once we have trained a model, we can estimate subject and state-specific networks
(amplitude maps) using the training data and inferred state time course. Additionally, we can
calculate summary statistics that characterise the dynamics from the inferred state time course.
These summary statistics are:

8The lifetime is also known as dwell time.
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e Fractional occupancy. This is the fraction of the total time that each state is active.
e Mean lifetime. This is the average duration that a state is active.

e Mean interval. This is the average duration between successive state visits.

e Switching rate. This is the number of activations per second of a particular state.

We calculate each of these for a particular state and subject. The averages are taken over all
state activations. We present the results of an AE-HMM pipeline on the Elekta task MEG
dataset in Section [3.21

TDE-HMM. We can use TDE data to study dynamics in phase synchronisation as well as
dynamics in amplitude. In a dynamic network analysis pipeline we train on a multivariate time
series (i.e. the time series for all regions of interest together). This means after TDE we have
a very large number of channels (number of embeddings times number of regions). Therefore,
we often need to perform principal component analysis (PCA) for dimensionality reduction to
ensure the data fits into computer memory.

In the TDE-HMM pipeline, we can calculate the same summary statistics as the AE-HMM
pipeline. However, to estimate the functional networks we use the multitaper approach described
n [24]. Here, we use the source data and inferred state time course to estimate subject, region
and state-specific PSDs and cross PSDs. When then use the PSDs to calculate power maps and
cross PSDs to calculate coherence networks, see [24] for further details. Note, we also use the
spectral decomposition approached introduced in [14] to specify a frequency range for calculating
power maps and coherence networks. This involves applying non-negative matrix factorisation
to the stacked subject and state-specific coherence spectra to identify common frequency bands
of coherent activity. In this report, we fit two spectral components and only present the networks
for the first band, which typically cover 1-25 Hz. We will see the results of applying a TDE-HMM
pipeline for dynamic network analysis on both the CTF rest and Elekta task MEG dataset in
Section 3.3l

TDE-DyNeMo. This this pipeline, we replace the HMM with DyNeMo and train on TDE
data. Unlike the mutually exclusive state description provided by the HMM, DyNeMo infers
mode time courses, which describe the mixing ratio of each mode at each time point [26]. This
mixture description complicates the calculation of subject-specific quantities, such as networks
and summary statistics. To calculate mode and region-specific PSDs, we use the approach based
on the General Linear Model (GLM) proposed in [46] where we regress the mixing coefficients
onto a (cross) spectrogram, see [26] for further details. We then use the mode PSDs and
cross PSDs to calculate power maps and coherence networks respectively. We can summarise
the dynamics of each mode time course with quantities such as the mean, standard deviation
and pairwise Pearson correlation. Alternatively, if we were interested in calculating the same
summary statistics as the HMM (fractional occupancy, lifetime, interval, switching rate) we
would first need to binarise the mode time courses. This can be done using a two-component
Gaussian Mixture Model (GMM), which is discussed in [26]. Note, an additional complication
related to the mode time course is that it does not contain any information regarding the relative
magnitude of each mode covariance. For example, a mode with a small value for the mixing
ratio can still be a large contributor to the instantaneous covariance if the values in the mode
covariance matrix are relatively large. We account for this by renormalising the mode time
courseﬂ this is discussed further in [26]. We present the results of a TDE-DyNeMo pipeline on
the CTF rest MEG dataset in Section

AE-DyNeMo. The final option is to train DyNeMo on AE data. In this case, the amplitude
maps are calculated using the GLM approach by regressing the mixing coefficients on a sliding

9We weight each mode time course by the trace of its mode covariance and divide by the sum over modes at
each time point to ensure the renormalised mode time course sums to one.
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window AE time course. Summary statistics for dynamics are calculated in the same way as
the TDE-DyNeMo pipeline.

When we display the networks inferred by each of the pipelines above, we will threshold them
to only show the strongest connections. In this work, we will specify the threshold using a data-
driven approach where we fit a two-component GMM to the distribution of connections in each
network. We interpret one of the components as the distribution for background connections
and the other as the distribution for atypically strong connections, which is what we display in
each plot.

Identifying Static Functional Networks

A) First-Level Modelling B) Group-Level Modelling
I Source Reconstructed Data I Subject-Specific Description
v 4
Metrics: Group Averages:
- PSDs - Networks

- Power maps
- Coherence networks
- AEC networks

Figure 6: Static functional network analysis pipeline. A) The source reconstructed data
is used to calculate metrics that describe networks. B) The subject-specific metrics are used
to model a group. Acronyms: amplitude envelope correlation (AEC), power spectral density
(PSD).

2.5.3 Identifying Static Functional Networks

A feature of osl-dynamics is that more conventional, static (time-averaged), network analyses
can be carried out using the same methodology that we use in the dynamic methods. This
allows for a much more straightforward comparison between static and dynamic analyses. To
model static functional networks we simply need to specific the metrics we would like to use to
summarise the networks and we calculate these directly from the source data. Figure [6] shows
a typical static network analysis pipeline. We present the result of a static network analysis
pipeline on the CTF rest MEG dataset in Section Note, for the static networks we select
the top 5% of connections to display in each plot rather than the GMM approached we used to
threshold the dynamic functional networks.

2.6 Run-to-Run Variability

The HMM and DyNeMo are trained by minimising a cost function (in osl-dynamics, we use the
variational free energy |34l 126]). As is typical, this approach suffers from a local optimum issue,
where the model can converge to different explanations (latent descriptions) of the data during
training. L.e., different state/mode time courses can lead to similar values for the variational free
energy. The final description can be sensitive to the stochasticity in updating model parameters
and the initial parameter values.

A strategy for dealing with this that has worked well in the past is to train multiple models
from scratch (each model is referred to as a run) and only the model with the lowest variational
free energy is analysed. We consider this model as the best description of the data. We ensure
any conclusions based on this model are reproducible in the best model from another set of
independent runs. In all of our figures here, we present the results from the best run from
a set of 10. In the supplementary information (SI) we show these results are reproducible in
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an independent set of runs. Other strategies for dealing with run-to-run variability involve
combining multiple runs, see [47] for a discussion of these techniques.

CTF Rest MEG Dataset: Single-Region TDE-HMM
A) Training Data B) First-Level Burst Detection

1) Wavelet Transform I) State Probability Time Course
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Figure 7: Burst detection: single region source reconstructed MEG data (left motor
cortex) shows short-lived bursts of oscillatory activity. A.I) Dynamic spectral properties
of the first 20s of the time series from the first subject. A.Il) Amplitude envelope calculated
after bandpass filtering the time series over the S-band (top), a-band (middle) and §/6-band
(bottom). B.I) The inferred state probability time course for the first 20s of the first subject.
B.II) The PSD of each state. B.III) Pearson correlation of each state probability time course
with the amplitude envelopes for different frequency bands. B.IV) Distribution over subjects
for summary statistics characterising the bursts. Note, no additional bandpass filtering was
done to the source data when calculating the mean amplitude. The script used to generate
the results in this figure is here: https://github.com/0HBA-analysis/osl-dynamics/blob/
main/examples/toolbox_paper/ctf_rest/tde_hmm_bursts.py.

3 Exemplary Analyses

In this section, we outline example uses of osl-dynamics to study source reconstructed MEG
data. Section [3.1] presents the results of an oscillatory burst analysis pipeline. Sections |3.2
present the results of various dynamic network analysis pipelines. For comparison, we also
include the results of a static network analysis pipeline in Section

3.1 Burst detection using a single-region TDE-HMM

The pipeline in Figure [4| was applied to do burst detection on a single parcel in the left motor
cortex. The source data was calculated using the CTF rest MEG dataset. All subjects were
concatenated temporally and used to train the TDE-HMM. The results are shown in Figure

We see from the wavelet transform in Figure [TA.I that there are short bursts of oscillatory
activity in this time series. This illustrates how it would be non-trivial, using conventional
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bandpass filtering and thresholding methods, to identify when exactly a burst occurs and what
frequencies are contained within it. Instead of a conventional burst detection method, we use a
3 state TDE-HMM to identify bursts in a data-driven fashion. We see from the inferred state
probability time course (Figure .I) that there are short-lived states that describe this data.
We can see from Figure [7B.II that each state corresponds to unique oscillatory activity. State
1 is interpreted as a non-oscillatory background state because it does not show any significant
peaks in its PSD. States 2 and 3 show oscillatory activity in the 6/6 band (1-7Hz) and o/ band
(7-30 Hz) respectively. Figure .HI shows the correlation of each state probability time course
with the AEs for different frequency bands (Figure .H). Based on this, we identify state 2
as a 0/0-burst state and state 3 as a [-burst state. We can see from Figure .IV that these
bursts have a variety of lifetimes ranging from a hundred to several hundred milliseconds. The
reproducibility of these results is shown in SI Figure S1.

3.2 Detecting network dynamics using a multi-region AE-HMM

The AE-HMM pipeline in Figure [5| was applied to source reconstructed data from the Elekta
task MEG dataset to identify amplitude-based network dynamics. All subjects and runs were
concatenated temporally to train the model. The results are shown in Figure [§| with an example
of a group-level analysis on the HMM state time courses (calculation of a group-averaged network
response).

We see the AE-HMM identifies plausible functional networks [48] with fast dynamics, typi-
cally with lifetimes of around 50 ms (Figure [BA.IIT). We identify a default mode network (state
1); two visual networks (states 2 and 6); a frontotemporal networks (state 3 and 7); and a
sensorimotor network (state 4).

The AE-HMM was trained on the continuous source reconstructed data in an unsupervised
manner, i.e. without any knowledge of the task. Post-HMM training, we can epoch the inferred
state time course (Veterbi path) around the task (presentation of a visual stimuli@ and average
over trials. This gives the probability of each state being activate around a visual event. This is
shown in Figure [8B.I. We observe a significant increase (p-value < 0.05) in the activation of the
visual networks (states 2 and 6) between 50-100 ms after the presentation of the visual stimuli
as expected. We also observe a significant activation (p-value < 0.05) of the frontotemporal
network (state 7) 300-900ms after the visual stimuli as well as a deactivation of the visual
networks (states 2 and 6). The reproducibility of these results is shown in SI Figure S2.

3.3 Detecting network dynamics using a multi-region TDE-HMM

The TDE-HMM pipeline in Figure [5 was also applied to the Elekta task MEG dataset. All
subjects and runs were concatenated temporally and used to train the model. The results are
shown in Figure [9]

For the high-power networks (states 1-4), we see the same spatial patterns in TDE-HMM
power maps (Figure @A.I, top) and AE-HMM amplitude maps (Figure .I). We can see from the
state PSDs (Figure[9A.I, bottom) that the networks identified by the TDE-HMM exhibit distinct
spectral (oscillatory) activity. The TDE-HMM networks also have fast dynamics (Figure[9A.I1I)
with lifetimes of around 50 ms. In Figure [9B.I, we can see we are able to reproduce the network
response analysis we did using the AE-HMM (Figure .I). The reproducibility of these results
is shown in SI Figure S3.

The Elekta MEG dataset was recorded during a visual perception task. For comparison,
we perform the same analysis on the CTF rest MEG dataset. All subjects were concatenated
temporally and used to train the model. Figure shows the results of applying a TDE-
HMM pipeline to this dataset. We observe similar networks in rest (Figure ) as in task
(Figure [9A), which is a known result from fMRI studies [49]. We also include the coherence

10A picture of a familiar, unfamiliar or scrambled face.

13


https://doi.org/10.1101/2023.08.07.549346
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.07.549346; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Elekta Task MEG Dataset: Multi-Region AE-HMM

A) First-Level Dynamic Network Analysis
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Figure 8: Dynamic network detection: a multi-region AE-HMM trained on the
Elekta task MEG dataset reveals functional networks with fast dynamics that are
related to the task. A.I) For each state, group-averaged amplitude maps relative to the
mean across states (top) and absolute amplitude envelope correlation networks (bottom). A.IT)
State probability time course for the first 8 seconds of the first subject. A.III) Distribution
over subjects for the summary statistics for each state. B.I) State time courses (Viterbi path)
epoched around the presentation of visual stimuli. The horizontal bars indicate time points
with p-value < 0.05. The maximum statistic pooling over states and time points was used in
permutation testing to control for the family-wise error rate. The script used to generate the re-
sults in this figure is here: https://github.com/0HBA-analysis/osl-dynamics/blob/main/
examples/toolbox_paper/elekta_task/ae_hmm.py.

networks in Figures [9A.I and [I0JA.I. We observe regions with high power activations have high
connectivity (coherence). These networks also have fast dynamics (Figure .III) with lifetimes
of 50-100 ms.

To illustrate a group-level analysis we could do with a dynamic network perspective, we
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Elekta Task MEG Dataset: Multi-Region TDE-HMM
A) First-Level Dynamic Network Analysis
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Figure 9: Dynamic network detection: a multi-region TDE-HMM trained on the
Elekta task MEG dataset reveals spectrally distinct functional networks with fast
dynamics. A.I) For each state, group-averaged power maps relative to the mean across states
(top), coherence networks (middle) and PSD averaged over regions (bottom), both the state-
specific (coloured solid line) and static PSD (i.e. the average across states, dashed black line)
are shown. A.IT) State probability time course for the first 8 seconds of the first subject. A.III)
Distribution over subjects for the summary statistics for each state. B.I) State time courses
(Viterbi path) epoched around the presentation of visual stimuli. The horizontal bars indicate
time points with p-value < 0.05. The maximum statistic pooling over states and time points was
used in permutation testing to control for the family-wise error rate. The script used to generate
the results in this figure is here: https://github.com/0HBA-analysis/osl-dynamics/blob/
main/examples/toolbox_paper/elekta_task/tde_hmm.py.
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CTF Rest MEG Dataset: Multi-Region TDE-HMM
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Figure 10: Dynamic network detection: a multi-region TDE-HMM trained on the
CTF rest MEG dataset identifies the same functional networks to those found with
the Elekta task MEG dataset and reveals differences in the dynamics for young vs
old groups. A.I) For each state, group-averaged power maps relative to mean across states
(top), absolute coherence networks (middle) and PSD averaged over regions (bottom), both the
state-specific (coloured solid line) and static PSD (i.e. the average across states, dashed black
line) are shown. A.II) State probability time course for the first 8 seconds of the first subject and
run. A.IIT) Distribution over subjects for the summary statistics of each state. B.I) Comparison
of the summary statistics for a young (18-34 years old) and old (34-60 years old) group. The
star indicates a p-value < 0.05. The maximum statistic pooling over states and metrics was used
in permutation testing to control for the family-wise error rate. The script used to generate
the results in this figure is here: https://github.com/0HBA-analysis/osl-dynamics/blob/
main/examples/toolbox_paper/ctf_rest/tde_hmm_networks.py.

compared two groups: 27 subjects in a young group (18-34 years old) and 38 subjects in an
old group (34-60 years). Figure [I0B.I shows summary statistics for each group. We see the
fractional occupancy and switching rate of the sensorimotor network (state 4) is increased in the
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older group (p-value < 0.05). The mean lifetime of the visual network (state 6) is also decreased
in the older group (p-value<0.05). The older group also has a wider distribution of mean
intervals for the default mode network (state 1) and suppressed state (8) (p-value < 0.05). The
reproducibility of these results is shown in SI Figure S4. The age-related differences we observe
here are consistent with existing studies [50]. We will discuss the young vs old comparison
further in Section 3.5

3.4 Dynamic network detection using multi-region TDE-DyNeMo

The TDE-DyNeMo pipeline in Figure 5| was applied to the CTF rest MEG dataset. All subjects
were concatenated temporally and used to train the model. The results are shown in Figure
Note, for DyNeMo we found that learning 7 modes (rather than 8) led to more reproducible
results. Therefore, we present the 7 mode fit in Figure

We can see from the power maps and coherence networks (Figure [11]A.I) that DyNeMo
identifies much more localised power activations and a cleaner network structure than was seen
with the TDE-HMM. We can see from the PSDs (Figure [LIA.I, bottom) that these networks
also exhibit distinct spectral characteristics.

From the (renormalised) mode time course (Figure [L1]A.II) we see the description provided
by DyNeMo is that of overlapping networks that dynamically vary in mixing ratios. This is
a complementary perspective to the state description provided by the HMM. Co-activations of
each mode can be understood by looking at the Pearson correlation between (renormalised)
mode time courses (Figure .IH). We observe modes with activity in neighbouring regions
show more co-activation. We summarise the (renormalised) mode time course using statistics
(the mean and standard deviation) in Figure .IV.

To compare DyNeMo to the HMM in a group-level analysis, we repeat the young vs old
study using the DyNeMo-specific summary statistics (i.e. the mean and standard deviation of the
renormalised mode time courses). Figure .I shows significant group differences for young (18-
34 years old) and old (34-60 years old) participants. We can see an increased mode contribution
(mean renormalised mode time course) for the sensorimotor network (mode 4), which reflects
the increase in fractional occupancy we saw in the TDE-HMM (Figure .I). We see DyNeMo
is able to reveal a stronger effect size with a p-value < 0.01 compared to the TDE-HMM, which
had a p-value < 0.05. DyNeMo also shows a decrease in the variability (standard deviation of
the renormalised mode time course) for the left temporal network (mode 5, p-value < 0.01). We
will discuss the young vs old comparison further in Section The reproducibility of these
results is shown in SI Figure S5.

3.5 Estimating Static Functional Networks

For comparison, we also apply a typical static network analysis pipeline (including static func-
tional connectivity) to the CTF rest MEG dataset. We also consider how the static perspective
in a young vs old group-level analysis compares to the dynamic perspective provided by the
TDE-HMM in Figure [10]and TDE-DyNeMo in Figure [11] illustrating the benefits of being able
to do static and dynamic analyses within the same toolbox.

Figure [12| shows the the group-averaged PSD (A.I), power maps (A.II), coherence networks
(A.IIT) and amplitude envelope correlation (AEC) networks (A.IV) calculated using all subjects.
We observe §-power is strongest in anterior regions and a-power is strongest in posterior regions.
We also observe qualitatively similar coherence and AEC networks. In particular, we see strong
occipital connectivity in the a-band in both the coherence and AEC networks.

Figure shows significant (p-value < 0.05) differences in the power maps (B.I) and AEC
networks (B.II) for old (34-60 years old) minus young (18-34 years old) groups. We observe a
significant reduction in temporal §-power and increase in sensorimotor 3-power. We also observe
a significant increase in sensorimotor AEC in the 8-band (Figure [[2B.1I).
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CTF Rest MEG Dataset: Multi-Region TDE-DyNeMo

A) First-Level Dynamic Network Analysis
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Figure 11: Dynamic network detection: a multi-region TDE-DyNeMo trained on the
CTF rest MEG dataset reveals spectrally distinct modes that are more localised
than HMM states and overlap in time. A.I) For each mode, group-averaged power maps
relative to the mean across modes (top), absolute coherence networks (middle) and PSD av-
eraged over regions (bottom), both the mode-specific (coloured solid line) and static PSD (i.e.
the average across modes, dashed black line) are shown. A.ITI) Mode time course (mixing co-
efficients) renormalised using the trace of the mode covariances. A.III) Pearson correlation
between renormalised mode time courses calculated by concatenating the time series from each
subject. A.IV) Distribution over subjects for summary statistics (mean and standard deviation)
of the renormalised mode time courses. B.I) Comparison of the summary statistics for a young
(18-34 years old) and old (34-60 years old) group. The maximum statistic pooling over modes
and metrics was used in permutation testing to control for the family-wise error rate. The
script used to generate the results in this figure is here: https://github.com/0HBA-analysis/
osl-dynamics/blob/main/examples/toolbox_paper/ctf_rest/tde_dynemo_networks.py.
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CTF Rest MEG Dataset: Static Networks

A) First-Level Static Network Analysis
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Figure 12: Static network detection: osl-dynamics can also be used to perform static
network analyses (including functional connectivity). In the CTF rest MEG dataset,
this reveals frequency-specific differences in the static functional networks of young (18-34 years
old) and old (34-60 years old) participants. Group-average PSD (averaged over subjects and
parcels, A.I) power maps (A.Il) coherence networks (A.IIl) and AEC networks (A.IV) for the
canonical frequency bands (4,6, «, ). B.I) Power difference for old minus young (top) and p-
values (bottom). Only frequency bands with at least one parcel with a p-value < 0.05 are shown,
the rest are marked with n.s. (none significant). B.II) AEC difference for old minus young only
showing edges with a p-value < 0.05. The maximum statistic pooling over frequency bands and
parcels/edges was used in permutation testing to control for the family-wise error rate. The
script used to generate the results in this figure is here: https://github.com/0HBA-analysis/
osl-dynamics/blob/main/examples/toolbox_paper/ctf_rest/static_networks.py.
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The static (time-averaged) differences we see in young vs old participants can arise in many
ways from the underlying dynamics of resting-state networks (Figure .I and .I). For
example, an increase in static power could due to more frequent activations of a particular
network. Conversely, the dynamics of the networks may be unaffected and the power within a
network could be altered. Studying the dynamic network perspective using the HMM and/or
DyNeMo can help provide further insights into how the static differences arise. Looking at the
dynamic network perspective provided by the TDE-HMM, we see an increase in the fractional
occupancy of state 4 (Figure .I), which is a network with high g-power and connectivity
(coherence) in the sensorimotor region. This is consistent with the static increase in S-power
and AEC connectivity we observe here; i.e. the increase in static S-power and connectivity
with age can be linked to a larger fraction of time spent in the sensorimotor network. The
perspective provided by TDE-DyNeMo shows an increase with age in the contribution of mode
4 (Figure .I), which represents a sensorimotor network. This is a complementary explanation
for the increase in static S-power and connectivity as a larger contribution from the sensorimotor
network to the overall brain activity of older participants.

4 Discussion

In Section (3.1} we use the TDE-HMM to identify oscillatory bursts in a data-driven manner
with much fewer assumptions than conventional burst detection methods based on amplitude
thresholding. The advantages of using a data-driven approach like the TDE-HMM are discussed
further in [9} [51]. In short, with a conventional approach we must pre-specify a frequency of
interest and we may miss oscillatory bursts that do not reach an arbitrary threshold. In contrast,
the TDE-HMM is less sensitive to the amplitude (it is better able to identify low-amplitude
oscillatory bursts) and can identify the frequency of oscillations automatically.

In Sections[3.2land we presented the functional networks identified by HMMs in a variety
of settings. These networks were identified automatically at fast (sub-second) timescales from
the data (unsupervised) with no input from the user. We found a set of plausible networks
that were related to task (Figure |[8) and demographics (Figure . These networks were very
reproducible: across multiple HMM runs; across different data preparation techniques (AE and
TDE); across different experimental paradigms (task and rest) and across different scanners
(Elekta and CTF).

Given we observe similar networks with the AE-HMM and TDE-HMM (Figures [§ and [9]
respectively), one may ask which pipeline is recommended. The TDE-HMM approach is able
to model dynamics in oscillatory amplitude and phase synchronisation whereas the AE-HMM
can only model dynamics in amplitude. This means the TDE-HMM is generally a better model
for oscillatory dynamics. An occasion where the AE-HMM may be preferred is if the extra
computational load of training on TDE/PCA data prohibits the TDE-HMM.

An important choice that has to be made when training an HMM /DyNeMo is the number of
states/modes. For burst detection, we are often interested in identifying the time points when
a burst occurs. This can be achieved by fitting a two state HMM: and ‘on’ and ‘off’ state. If
we’re interested in multiple burst types, we can increase the number of states. In this work,
we chose a three state HMM to stay close to the on/off description while allowing for multiple
burst types. For the dynamic network analysis, we want a low number of states/modes to give
us a compact representation of the data. A common choice is between 6 and 12. We can use
the reproducibility analysis (section 2 in the SI) to show a given number of states/modes is
reproducible and use this to find an upper limit for the number of states/modes that can be
reliably inferred.

osl-dynamics offers a choice of two generative models for detecting network dynamics: the
HMM and DyNeMo. The HMM assumes that there are mutually exclusive network states,
whereas DyNeMo assumes the network modes are mixed differently at each time point. While
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DyNeMo’s assumption is arguably more realistic, the HMM’s stronger assumption has the ben-
efit of simplifying the decomposition, which can make interpreting the network dynamics more
straightforward. In short, the HMM and DyNeMo provide complementary descriptions of net-
work dynamics, with either one being potentially useful depending on the context [26]. DyNeMo
does have the additional advantage of using a richer temporal regularisation through the use of
a deep recurrent network. This has been shown to capture longer range temporal structure than
the HMM [26], and exploring the cognitive importance of long-range temporal structure is an
interesting area of future investigation [52]. It is possible to quantify which model is better using
a downstream task. In this manuscript, the downsteam tasks are the evoked network response
and young vs old group differences. We argue a better performance in the downstream task
indicates a more useful model.

osl-dynamics can also be used to compute static network descriptions, including conven-
tional static functional connectivity. This uses the same methodology as the state (or mode)
specific network estimation in the dynamic approaches, making comparisons between dynamic
and static perspectives more straightforward. In Section we used this feature to relate the
static functional network description to a dynamic perspective. We would like to stress that the
young vs old study is used as an example of the type of group analyses that can be performed
with this toolbox and that a more rigorous study with a larger population dataset is needed to
understand the impact of ageing on functional networks. The results in Section should be
taken as just an indication of possible ageing effects that can be investigated in a future study.
In this report, we focus on the presentation of the tools needed to make such studies possible.

5 Conclusions

We present a new toolbox for studying time series data: osl-dynamics. This is an open-source
package written in Python. We believe the availability of this package in Python improves the
accessibility of these tools, in particular for non-technical users. Additionally, it avoids the need
for a paid license. Using Python also enables us to take advantage of modern deep learning
libraries (in particular TensorFlow [53]) which enables us to scale these methods to very large
datasets, something that is currently not possible with existing toolboxes.

osl-dynamics can be used, and has been used, in a wide range of applications and on a
variety of data modalities: electrophysiological, invasive local field potential, functional magnetic
resonance imaging, etc. Here, we illustrated its use in applications of burst detection and
dynamic network analysis using MEG data. This package also allows the user to study the
static (time averaged) properties of a time series alongside dynamics within the same toolbox.
The methods contained in osl-dynamics provide novel summary measures for dynamics and
group-level analysis tools that can be used to inform our understanding of cognition, behaviour
and disease.
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Supplementary Information

1 Overview of osl-dynamics

In this section, we provide an overview of the osl-dynamics package. This include a description
of the source code (Section [L.1)), installation (Section [1.2)), documentation and tutorials (Section
13).

Note, osl-dynamics utilises many popular open-source scientific computing and data sci-
ence packages in python: numpy, scipy, pandas, sklearn, etﬂ Virtually all the the plotting
functions are wrappers for matplotlib or nilearn. osl-dynamics also uses the deep learning
library TensorFlow [1I] to implement the models. This package enables us to easily scale to large
datasets and take advantage of graphical processing units (GPUs), which can speed up training
a model by a factor of 10.

1.1 Source Code

The source code is hosted on a public GitHub repository: https://github.com/0HBA-analysis/
osl-dynamics. The different sub-packages and their use cases are:

e analysis: contains functions for post-hoc analysis; group-level modelling and statistical
significance testing. This includes: functions for calculating spectral properties of time
series data; fitting linear regressions; fitting Gaussian mixture models and General Linear
Model (GLM) statistical significance testing using permutations.

e config api: contains functions for using a simple user interface.

e data: useful classes and functions for managing and preparing neuroimaging data. This
sub-package contains the Data class which is the central object used in osl-dyanmics for
handling and preparing data.

e files: additional files for plotting and managing data, such as parcellation files and
structural MRIs.

e inference: classes and functions that are helpful for training custom TensorFlow models.
This includes custom classes for typical components in deep learning models, such as layers,
initialisers, callbacks, etc.

e models: classes for available models. This include the HMM and DyNeMo, as well as other
models that are under active development. Each model is implemented using keras [2] in
TensorFlow.

e simulation: classes for simulating time series data with popular models. This includes
classes for simulating HMMs and multivariate autoregressive models.

e utils: additional utility classes and functions. This sub-package contains the plotting
module, which is helpful for visualising results.

The full list of dependencies is given in the source code: osl-dynamics/setup.cfg.
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1.2 Installation

osl-dynamics can be installed on most modern computers in a similar fashion to other popular
python packages via pip [3]. Installation instructions can be found here: https://osl-dynamics.
readthedocs.io/en/latest/install.html. In short, osl-dynamics can be installed in three
steps:

1. Create a virtual environment.
2. Install TensorFlow (and add ons).
3. Install osl-dynamics.

Note, the installation of TensorFlow is separate to osl-dynamics because there maybe com-
puter/hardware specific differences which may require different installations of TensorFlow, see
the TensorFlow documentation for further details [1].

For people who wish to contribute to development or would like to have access to the latest
development version, osl-dynamics can also be installed from source using the instructions on
the GitHub repository README .md.

1.3 Documentation and Tutorials

The official documentation for the osl-dynamics package is here: https://osl-dynamics.
readthedocs.io/en/latestl The documentation contains a short description of the models
contained in osl-dynamics, a page for frequently asked questions (FAQs) and an API reference
guide, which lists all the modules/classes and functions in the package. The API reference guide
is useful for looking up the inputs and outputs of various functions/classes. The documentation
also includes comprehensive tutorials describing each pipeline (as well as other analyses such as
sliding windows and estimation of static networks) in more detail.

2 Reproducibility

We use variational Bayesian inference to learn model parameters (state/mode time courses and
observation model means/covariances). This process involves updating the model parameters
to minimise the variational free energy [4).

Each time we train an HMM (Hidden Markov Model) or DyNeMo (Dynamic Network
Modes), we start from random model parameters and use a stochastic procedure to update
the parameters. This leads to some variability in the final model parameters we converge to and
their corresponding variational free energy. We deem the model parameters with the lowest free
energy as the ones that best describe the data and use these for subsequence analysis. We deem
a set of results as reproducible if we are consistently able to infer the same model parameters
from a dataset. Empirically, we find picking the best run from a set of 10 consistently finds
the same set of model parameters. Note, for a given set of hyperparameters, only the relative
difference between values for the variational free energy is important.

We show the variational free energy for 3 sets of 10 runs in Figures S1-S5 (A). In red we
highlight the variational free energy for the best run (i.e. the one with the lowest value). Within
a set of runs, we see large variability in the variational free energy which would reflect variability
in the model parameters. Only looking at the best run across sets we see similar values for the
variational free energy. In Figures S1-S5 (B), we see the summary statistics for the best run from
each set is very similar indicating we infer the same dynamics in each best run. In Figures S2-S5
(C), we see we infer the same amplitude/power maps. In Figures S2-S5 (D), we see we observe
the same results from the group-level analysis across all 3 sets.
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CTF Rest MEG Dataset: Single-Region TDE-HMM
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Figure S1: Reproducibility of the CTF rest MEG dataset single-region TDE-HMM
analysis. A) Variational free energy for 3 sets of 10 runs. B) Summary statistics for the best
run from each set (indicated by the red dot in A).

Elekta Task MEG Dataset: Multi-Region AE-HMM
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Figure S2: Reproducibility of the Elekta task MEG dataset multi-region AE-HMM
analysis. A) Variational free energy for 3 sets of 10 runs. B) Summary statistics for the best
run from each set (indicated by the red dot in A). C) Amplitude maps relative to the mean
across states for the best run from sets 2 and 3. D) Network response to the visual task for sets
2 and 3. The horizontal bars indicate time points with p-values < 0.05. The maximum statistic
pooling over states and time was used in permutation testing to control for the family-wise error
rate.
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Elekta Task MEG Dataset: Multi-Region TDE-HMM
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Figure S3: Reproducibility of the Elekta task MEG dataset multi-region TDE-HMM
analysis. A) Variational free energy for 3 sets of 10 runs. B) Summary statistics for the best
run from each set (indicated by the red dot in A). C) Power maps relative to the mean across
states for the best run from sets 2 and 3. D) Network response to the visual task for sets 2
and 3. The horizontal bars indicate time points with p-values < 0.05. The maximum statistic
pooling over states and time was used in permutation testing to control for the family-wise error
rate.
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CTF Rest MEG Dataset: Multi-Region TDE-HMM
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Figure S4: Reproducibility of the CTF rest MEG dataset multi-region TDE-HMM
analysis. A) Variational free energy for 3 sets of 10 runs. B) Summary statistics for the best
run from each set (indicated by the red dot in A). C) Power maps relative to the mean across
states for the best run from sets 2 and 3. D) Comparison of the summary statistics for a young
(18-34 years old) and old (34-60 years old) group. The star indicates a p-values <0.05. The
maximum statistic pooling over states and metrics was used to control for the family-wise error
rate.
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CTF Rest MEG Dataset: Multi-Region TDE-DyNeMo
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Figure S5: Reproducibility of the CTF rest MEG dataset multi-region TDE-DyNeMo
analysis. A) Variational free energy for 3 sets of 10 runs. B) Summary statistics for the best
run from each set (indicated by the red dot in A). C) Power maps relative to the mean across
modes for the best run from sets 2 and 3. D) Comparison of the summary statistics for a young
(18-34 years old) and old (34-60 years old) group. The double star indicates a p-values < 0.01.
The maximum statistic pooling over modes and metrics was used to control for the family-wise
error rate.
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