

1 **StocSum: stochastic summary statistics for whole**

2 **genome sequencing studies**

3

4 Nannan Wang¹, Bing Yu¹, Goo Jun¹, Qibin Qi², Ramon A. Durazo-Arvizu^{3,4}, Sara
5 Lindstrom^{5,6}, Alanna C. Morrison¹, Robert C. Kaplan², Eric Boerwinkle^{1,7}, Han Chen^{1,8}

6

7 ¹Human Genetics Center, Department of Epidemiology, Human Genetics and
8 Environmental Sciences, School of Public Health, The University of Texas Health Science
9 Center at Houston, Houston, TX, USA.

10
11 ²Department of Epidemiology & Population Health, Albert Einstein College of Medicine,
12 Bronx, NY, USA.

13
14 ³The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.

15
16 ⁴Department of Pediatrics, Keck School of Medicine, University of Southern California,
17 Los Angeles, CA, USA

18
19 ⁵Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA,
20 USA.

21
22 ⁶Department of Epidemiology, School of Public Health, University of Washington, 3980
23 15th Ave NE, Seattle, WA, USA.

24
25 ⁷Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.

26
27 ⁸Center for Precision Health, School of Biomedical Informatics, The University of Texas
28 Health Science Center at Houston, Houston, TX, USA.

29
30 Correspondence: Han Chen (Han.Chen.2@uth.tmc.edu)

31 **Abstract**

32 Genomic summary statistics, usually defined as single-variant test results from genome-
33 wide association studies, have been widely used to advance the genetics field in a wide
34 range of applications. Applications that involve multiple genetic variants also require their
35 correlations or linkage disequilibrium (LD) information, often obtained from an external
36 reference panel. In practice, it is usually difficult to find suitable external reference panels
37 that represent the LD structure for underrepresented and admixed populations, or rare
38 genetic variants from whole genome sequencing (WGS) studies, limiting the scope of
39 applications for genomic summary statistics. Here we introduce StocSum, a novel
40 reference-panel-free statistical framework for generating, managing, and analyzing
41 stochastic summary statistics using random vectors. We develop various downstream
42 applications using StocSum including single-variant tests, conditional association tests,
43 gene-environment interaction tests, variant set tests, as well as meta-analysis and LD score
44 regression tools. We demonstrate the accuracy and computational efficiency of StocSum
45 using two cohorts from the Trans-Omics for Precision Medicine Program. StocSum will
46 facilitate sharing and utilization of genomic summary statistics from WGS studies,
47 especially for underrepresented and admixed populations.

48

49

50 Key words: genomic summary statistics, whole genome sequencing, rare variants, LD
51 score regression, underrepresented populations

52

53 **Main**

54 International consortia for genomic epidemiology research on complex diseases and
55 quantitative traits have generated a great abundance of genomic summary statistics^{1–11}.
56 These summary statistics are often in the form of regression coefficients and their standard
57 errors (and/or z scores) from single-variant tests for common genetic variants, typically
58 defined as those with a minor allele frequency (MAF) of greater than 5% or 1%, in genome-
59 wide association studies (GWAS). Genomic summary statistics contain important
60 information for researchers without direct access to individual-level genotype data and
61 sharing genomic summary results is now commonly mandated by scientific journals and
62 funding agencies. Genomic summary statistics also play a crucial role for cross-
63 institutional (both national and international) collaborations where individual-level data are
64 difficult to share due to ethical and legal restrictions.

65

66 Genomic summary statistics have been used to address different scientific questions in
67 genetic and genomic research, such as meta-analysis^{12,13}, heritability estimation^{14–16},
68 conditional analysis¹⁷, variant set^{18–21} and gene-based tests^{22,23}, multiple phenotype
69 analysis^{24–26}, genetic correlation or co-heritability estimation^{27,28}, and others^{29,30}. Many of
70 these methods also require information on the linkage disequilibrium (LD) or correlation
71 structure between genetic variants, which is commonly derived from external reference
72 panels^{14–17,23}. While these methods usually have good performance for common variants
73 in populations of European ancestry, it has been challenging to extend the scope of
74 summary statistic-based applications to other ancestry groups and admixed populations¹⁴
75 as well as rare variants¹⁵, defined as those with MAF < 5% or 1%, since the LD patterns in
76 an external reference panel often do not match with those in the study sample.

77

78 Current large-scale whole genome sequencing (WGS) projects, such as the National Heart,
79 Lung, and Blood Institute's (NHLBI's) Trans-Omics for Precision Medicine (TOPMed)
80 program, the National Human Genome Research Institute's (NHGRI's) Centers for
81 Common Disease Genomics (CCDG) initiative, and the National Institute on Aging's
82 (NIA's) Alzheimer's Disease Sequencing Project (ADSP), have unveiled hundreds of
83 millions of rare variants from diverse populations. Making efficient and flexible use of

84 these WGS resources and derived genomic summary results is paramount to facilitate
85 international collaborations and scientific discoveries. However, managing and
86 coordinating large-scale consortium efforts on rare variant meta-analyses has been quite
87 challenging, since many existing meta-analysis software programs such as seqMeta³¹,
88 MetaSKAT¹⁸, RVTESTS³², RAREMETAL³³ and SMMAT²¹, require the correlation (or
89 LD) matrices for rare variants to be computed internally in the study samples. In rare
90 variant tests^{21,34-40}, variant set definitions often need to be pre-specified (e.g., by genomic
91 motifs such as genes or physical windows). Therefore, researchers have to recreate the LD
92 matrices every time they want to redefine a variant set (e.g., by including more variants in
93 a test region or combining two testing windows). This requires additional computational
94 resources, making it difficult for researchers to efficiently leverage the richness of the data.
95 On the other hand, sharing terabytes or even petabytes of individual-level WGS and
96 phenotype data across research groups is a daunting task, and the risk of privacy breaches
97 generally increases as more copies of individual-level data are being shared. Although
98 individual-level WGS data can now be accessed through cloud-based computing platforms
99 such as the Analysis Commons⁴¹, BioData Catalyst and AnVIL, and recently developed
100 analysis tools such as STAARpipeline⁴² have greatly improved rare variant analyses
101 especially for the noncoding genome, research groups are still largely constrained by the
102 computational costs they can afford in running WGS data analysis using individual-level
103 data directly.

104

105 Ideally, computing genomic summary statistics only once and then recycling them for
106 different variant set definitions and weighting schemes is a more efficient strategy for WGS
107 analysis on rare variants. Downstream analyses using summary statistics would not depend
108 on the sample size N and therefore could be easily performed on a desktop computer.
109 However, there are critical barriers in scaling existing statistical methods based on GWAS
110 summary statistics up to allow for summary statistics based on WGS studies. First,
111 calculating traditional pairwise LD measures from individual-level genomic data is
112 computationally intensive. In general, a covariance matrix of size $M \times M$ is desired
113 (**Fig.1a**), where M is the total number of variants, which has already exceeded 700 million
114 in TOPMed. In practice, genotype data are usually saved by chromosome, but M is still on

115 the scale of millions even for the shortest chromosome, making pairwise LD calculations
116 on the whole genome (or one chromosome) computationally infeasible. Second, although
117 restricting LD calculations to only genetic variants in close proximity (e.g., the sliding
118 window strategy⁴³ and the banded sparse LD matrices in 500kb windows⁴⁴) is more
119 computationally efficient than calculating the full $M \times M$ covariance matrix, it does not
120 allow for the flexibility of testing distant genetic variants jointly. As there is growing
121 evidence that the three-dimensional organization of chromosomes profoundly affects gene
122 regulation^{29,45-52}, LD matrices generated through sliding windows cannot be used if the
123 variant set of interest contains genetic variants that are located far away from each other.
124 In addition, LD statistics used in rare variant tests can greatly depend on the phenotype of
125 interest (e.g., the phenotype distributions in minor allele carriers vs. non-carriers for each
126 variant), and generally cannot be pre-computed using WGS data without the phenotype
127 information.

128

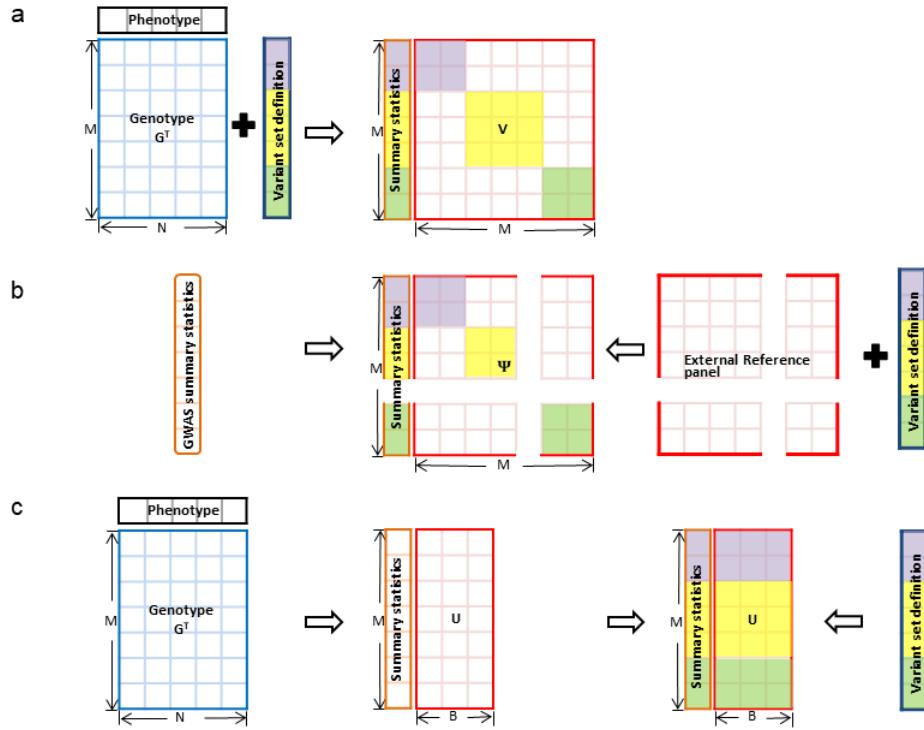
129 In addition, many existing methods using genomic summary statistics based on common
130 variants rely on LD information from external reference panels^{14-17,23} (**Fig. 1b**). These
131 methods have been widely applied to common variants in primary populations of European
132 ancestry. Extension of these methods to underrepresented and admixed populations,
133 however, has been noted as a challenge^{14,27} due to lack of appropriate reference panels that
134 accurately represent the LD structure.

135

136 In this study, we propose the StocSum framework as illustrated in **Fig. 1c** to extend the
137 scope of summary statistic-based applications. For methods that require between-variant
138 correlation or LD matrices, we use a stochastic summary statistic matrix \mathbf{U} to replace the
139 traditional pairwise LD matrix \mathbf{V} . Specifically, by using B independent and identically
140 distributed random vectors to represent the parametric distribution of any model-based
141 residuals from a complex statistical model that accounts for potential sample correlations,
142 matrix \mathbf{U} can be quickly computed by matrix multiplication of the $N \times M$ genotype matrix
143 \mathbf{G} and these B random vectors. The size of \mathbf{U} scales linearly with M and B (i.e., $O(MB)$),
144 compared to quadratically in the form of a traditional pairwise LD matrix \mathbf{V} . The stochastic
145 summary statistic matrix \mathbf{U} can always be computed in linear time with the sample size N

146 (*i.e.*, $O(NMB)$), regardless of any complex sample correlation structures, compared to
147 $O(NM^2)$ for the traditional pairwise LD matrix \mathbf{V} in classical linear and logistic regression
148 models for unrelated individuals, or mixed effect models to account for sample correlations
149 in the presence of a sparse and block-diagonal relatedness matrix with bounded block sizes
150 (e.g., a population-based family study, with known pedigrees). The complexity for
151 computing \mathbf{V} could further increase to $O(N^2M + NM^2)$ if the relatedness matrix used in
152 the mixed effect model is not block-diagonal (e.g., the genetic relationship matrix, or
153 GRM). We also develop downstream applications using StocSum, including single-variant,
154 conditional association, gene-environment interaction, variant set tests, as well as meta-
155 analysis and LD score regression tools. This framework can flexibly accommodate changes
156 of variant set definitions in analysis plans. For example, in variant set tests for rare variants,
157 we can efficiently calculate the LD matrix for any variant sets by simply looking up $\frac{\mathbf{U}\mathbf{U}^T}{B}$
158 rather than rerunning the analysis with individual-level genotype data to update LD
159 matrices for new variant sets. Compared with using external reference panels which might
160 not well represent the LD structure in study samples from underrepresented and admixed
161 populations, StocSum can be used to better calibrate the LD information in a wide range
162 of genomic summary statistic-based applications.

163



164

165 **Figure 1: The StocSum framework.** **a)** Traditional methods calculate the correlation or
166 LD matrix V from individual-level genotype data. To reduce the computational burden, the
167 full $M \times M$ matrix is usually not computed in practice, but rather replaced by a block-
168 diagonal or banded sparse matrix based on pre-defined variant sets, at the cost of losing the
169 flexibility in testing distant genetic variants jointly. **b)** The approximate LD matrix Ψ is
170 obtained from external reference panels when individual-level genotypes are not available,
171 in many genomic summary statistic-based applications. However, variants may be
172 excluded if they do not exist in the reference panel. **c)** StocSum generates stochastic
173 summary statistics U from random vectors, which can be used to efficiently look up the
174 covariance among arbitrary variant sets that are not pre-defined. M , the number of variants.
175 N , the sample size. B , the number of random vectors used to construct stochastic summary
176 statistics U .

177 Results

178 Overview of the method

179 We describe StocSum under the generalized linear mixed model (GLMM) framework. It
180 can also be applied to simpler statistical models such as generalized linear models⁵³ and
181 extended to more complex models such as generalized additive mixed models⁵⁴. The
182 GLMM can be written as:

183

$$\text{g}(\mu_i) = \mathbf{X}_i \boldsymbol{\alpha} + \tilde{\mathbf{G}}_i \boldsymbol{\beta} + b_i \quad (1)$$

184 where $\text{g}(\cdot)$ is a monotonic link function of μ_i , and $\mu_i = E(y_i | \mathbf{X}_i, \tilde{\mathbf{G}}_i, b_i)$ is the conditional
185 mean of the phenotype y_i given p covariates \mathbf{X}_i , q genotypes $\tilde{\mathbf{G}}_i$ and random effects b_i , for
186 individual i of N samples. The phenotype y_i follows a distribution in the exponential
187 family, such as a normal distribution for continuous phenotypes, or a Bernoulli distribution
188 for binary phenotypes. Here $\boldsymbol{\alpha}$ is a length p column vector of fixed covariate effects
189 including an intercept term. The genotype matrix $\tilde{\mathbf{G}} = (\tilde{\mathbf{G}}_1^T \tilde{\mathbf{G}}_2^T \cdots \tilde{\mathbf{G}}_N^T)^T$ is an $N \times q$ matrix
190 for q ($q \geq 1$) genetic variants and $\boldsymbol{\beta}$ is a length q genotype effect vector. We assume that
191 $\mathbf{b} = (b_1 \ b_2 \ \cdots \ b_N)^T$ is a length N column vector of random effects and $\mathbf{b} \sim \sum_{k=1}^K \tau_k \boldsymbol{\Phi}_k$,
192 where τ_k are the variance component parameters and $\boldsymbol{\Phi}_k$ are known $N \times N$ dense or
193 sparse relatedness matrices which account for multiple layers of correlation structures, such
194 as genetic relatedness, hierarchical designs, shared environmental effects and repeated
195 measures from longitudinal studies.

196

197 For both single-variant ($q = 1$) and variant set ($q > 1$) tests, we only need to fit the null
198 model $\text{g}(\mu_{0i}) = \mathbf{X}_i \boldsymbol{\alpha} + b_i$ without fixed genetic effects one time, then each test can be
199 constructed using single-variant scores \mathbf{S} and $q \times q$ covariance matrices $\tilde{\mathbf{V}} = \tilde{\mathbf{G}}^T \mathbf{P} \tilde{\mathbf{G}}$,
200 where \mathbf{P} is the projection matrix from this model^{21,55}. Denote M as the total number of
201 genetic variants on the whole genome (or one chromosome). To avoid computing the full
202 $M \times M$ matrix \mathbf{V} or its block-diagonal version for every q variants $\tilde{\mathbf{V}}$ directly from
203 individual-level data or an external reference panel, StocSum leverages a length N random
204 vector \mathbf{R}_b from a multivariate normal distribution with mean $\mathbf{0}$ and covariance matrix \mathbf{P} .

205 Then it repeats this simulation process B times and combines these random vectors into an
206 $N \times B$ random matrix $\mathbf{R} = (\mathbf{R}_1 \ \mathbf{R}_2 \ \dots \ \mathbf{R}_B)$. Denoting $\mathbf{U} = \mathbf{G}^T \mathbf{R}$ as the stochastic
207 summary statistics for M genetic variants on the whole genome (or one chromosome), for
208 arbitrary q variants ($q < B$), we can extract the corresponding rows from the $M \times B$
209 stochastic summary statistics matrix \mathbf{U} as $\tilde{\mathbf{U}}$ and use $\frac{\tilde{\mathbf{U}}\tilde{\mathbf{U}}^T}{B}$ to estimate the covariance matrix
210 $\tilde{\mathbf{V}}$.

211
212 To implement StocSum and various downstream genetic analysis applications, our
213 framework comprises four major steps: (1) fitting a generalized linear mixed model under
214 the null hypothesis, e.g., $\mathbf{g}(\mu_{0i}) = \mathbf{X}_i \boldsymbol{\alpha} + b_i$, estimating variance component parameters,
215 residuals and the projection matrix \mathbf{P} ; (2) generating an $N \times B$ random matrix \mathbf{R} , with each
216 column of \mathbf{R} simulated from a multivariate normal distribution with mean $\mathbf{0}$ and
217 covariance matrix \mathbf{P} ; (3) using individual-level genotypes \mathbf{G} to compute score statistics
218 from residuals, and the stochastic summary statistics matrix $\mathbf{U} = \mathbf{G}^T \mathbf{R}$; and (4) computing
219 P values in each downstream application (see **Methods**). The first three steps could be
220 shared by multiple genetic analysis applications including single-variant, conditional
221 association, gene-environment interaction, and variant set tests. We could also estimate LD
222 scores efficiently in the stochastic summary statistics framework, thus extending its
223 application to underrepresented and admixed populations (see **Methods**).

224 **Single-variant tests**

225 To evaluate the performance of StocSum in single-variant tests, we used TOPMed WGS
226 freeze 8 data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
227 After quality control we had data for 120M variants in 7,297 individuals (**Methods**). We
228 first compared P values calculated by StocSum with different numbers of random vector
229 replicates B and GMMAT⁵⁵ using individual-level genotypes in a genome-wide single-
230 variant analysis of blood low-density lipoprotein (LDL) cholesterol levels (**Fig. 2a-d**). The
231 P values calculated from StocSum were compared with those from GMMAT using
232 individual-level data. No systematic genomic inflation was observed from the quantile-
233 quantile (Q-Q) plots (**Fig. S1**). StocSum P values were close to GMMAT when the number

234 of random vector replicates B ranged from 100 to 10,000 (Fig.2b-2d). We did observe that
235 a small B ($B=10$) led to inaccurate P values (Fig. 2a).

236

237 To demonstrate the computational efficiency of StocSum, we ran GMMAT and StocSum
238 ($B=1,000$) on the same computing platform where 64 cores were used in parallel computing
239 for both programs. Both runtime and memory usage of StocSum were much lower
240 compared to GMMAT. For example, it took about 50.2 CPU hours to run chromosome 1
241 with 9.7M variants using StocSum, which was 4.6-fold faster than GMMAT. Meanwhile,
242 StocSum only had 29.3% of the memory footprint compared to GMMAT. Across all 22
243 autosomes, StocSum was 4.4-fold faster than GMMAT, with about 25.1% of the memory
244 footprint compared to GMMAT (Fig. 2e-f). As expected, both the run time and memory
245 footprint increased with a larger B . However, the run time and memory footprint of
246 StocSum when $B=10,000$ were still only 29.3% and 50.6% compared to GMMAT,
247 respectively.

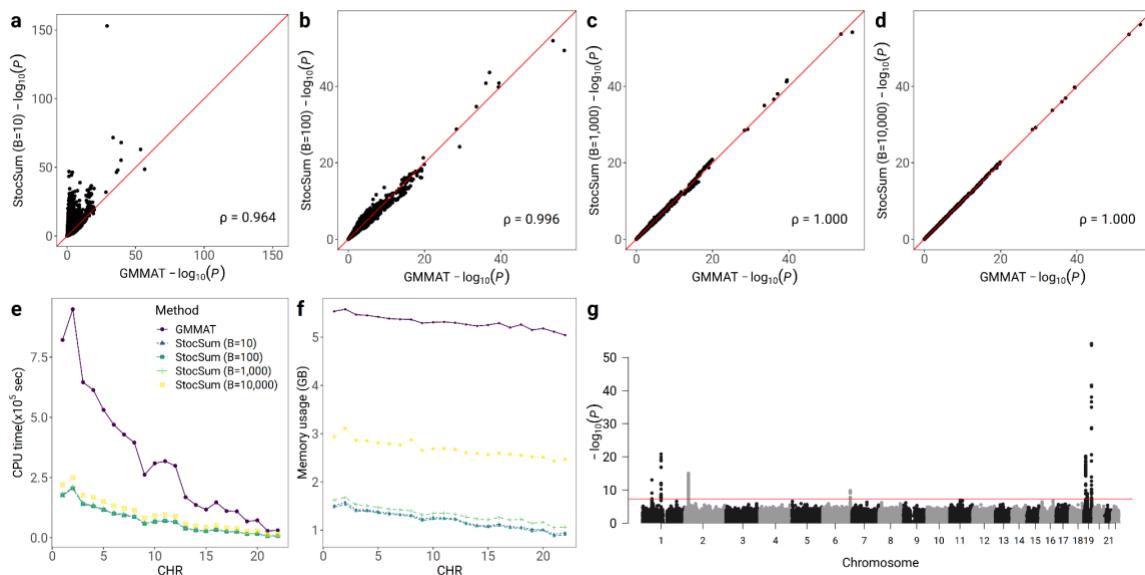
248

249 Using StocSum, we ran a WGS study of LDL cholesterol in HCHS/SOL and identified
250 seven genome-wide significant (P values $< 5 \times 10^{-8}$) regions mapped to genes *PCSK9* and
251 *CELSR2* on chromosome 1, *APOB* on chromosome 2, *LPA* on chromosome 6, *LDLR*,
252 *SUGP1*, and *APOE* on chromosome 19 (Fig. 2g, Table S1), all of which had been
253 previously reported to be associated with LDL^{4,56-59}.

254

255 We also compared StocSum with fastGWA⁶⁰, another widely used single-variant test tool
256 (Figs. S2-3). To make a fair comparison on the same statistical model, we only included
257 one random effect term for genetic relatedness, without allowing for heteroscedasticity in
258 the null model for GMMAT and StocSum. Both fastGWA and GMMAT results were very
259 similar (Figs.S2-3). In this different null model, StocSum P values were still consistent
260 with GMMAT when B ranged from 100 to 10,000. The CPU time used by fastGWA was
261 generally stable for different chromosomes (Fig.S4a). The total CPU time for the whole
262 genome analysis was similar for StocSum ($B=1,000$) and fastGWA. The memory usage of
263 fastGWA was slightly larger (about 1.7-fold) compared to StocSum with $B=1,000$
264 (Fig.S4b).

265



266

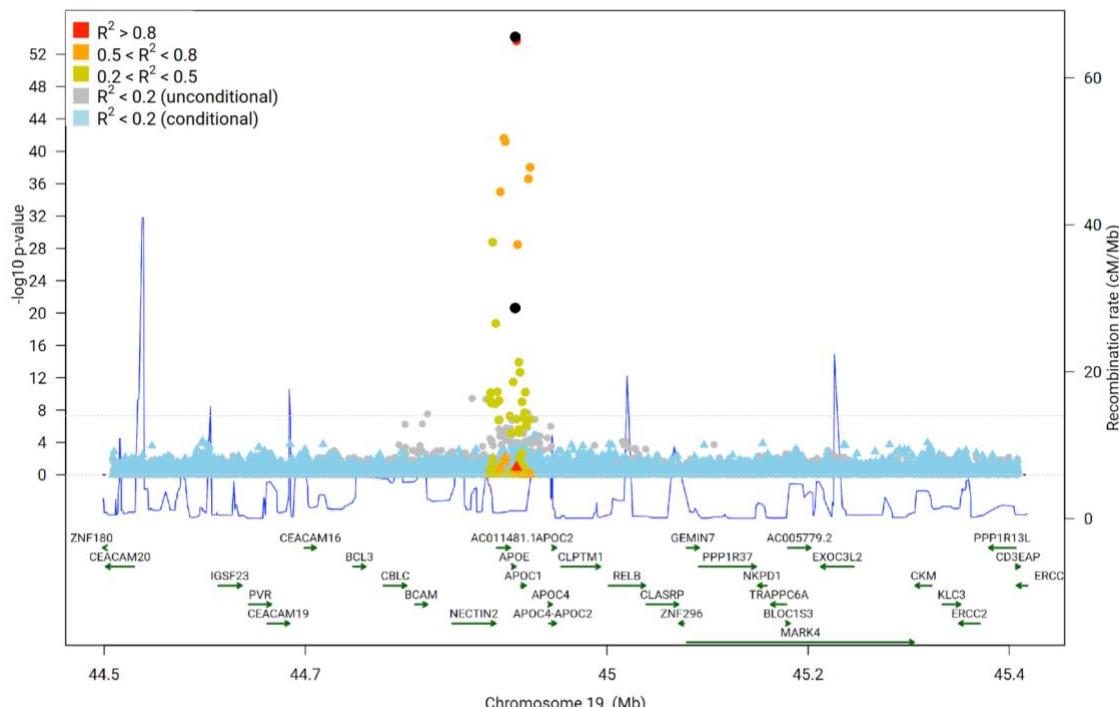
267 **Figure 2: StocSum in single-variant tests.** a-d) comparison of P values from GMMAT
 268 and StocSum with the number of random vector replicates B being equal to 10 (a), 100 (b),
 269 1,000 (c) and 10,000 (d). The x axis and the y axis represent $-\log_{10}(P)$ from single-variant
 270 tests using GMMAT and StocSum, respectively. The red line denotes the reference line of
 271 equality. Spearman's rank correlation coefficients are shown at the bottom right. e)
 272 comparison of CPU time between GMMAT and StocSum. The x axis represents the
 273 chromosome numbers, and the y axis represents the CPU time in 10^5 seconds. For
 274 GMMAT, the CPU time consists of fitting the null model and conducting the association
 275 test. For StocSum, the CPU time is the sum of four steps: fitting the null model, generating
 276 the random vectors, computing the single-variant score statistics and the stochastic
 277 summary statistics, and computing the P values. f) comparison of memory usage by
 278 GMMAT and StocSum. The x axis represents the chromosome numbers and the y axis
 279 represents the memory footprint per core in GB. The data used in this test consisted of
 280 120M variants from 7,297 individuals in HCHS/SOL. All tests were performed on a high-
 281 performance computing server, with 64 cores used for parallel computing. g) the
 282 Manhattan plot of single-variant test on LDL in the HCHS/SOL study using StocSum. The
 283 x-axis represents the physical chromosome and position of each variant and the y-axis
 284 represents $-\log_{10}(P)$ from the StocSum single-variant test. Only variants with $MAF > 0.5\%$

285 were included in the Manhattan plot. The red line indicates the genome-wide significance
286 level on the log scale, $-\log_{10}(5 \times 10^{-8})$.

287 **Conditional association tests**

288 We implemented StocSum for conditional association tests and applied it to the seven
289 genome-wide significant regions identified in **Fig. 2g**. The sentinel variant in the *APOE*
290 gene region is chr19: 44908822 (rs7412) with $P = 7.1 \times 10^{-55}$. There are 26 common variants
291 with MAF > 0.5% close to this sentinel variant in this region, with a P value less than 5×10^{-8}
292 (**Fig. 3**). After conditioning on the sentinel variant, we identified a secondary association
293 variant chr19: 44908684 (rs429358) with conditional $P = 8.2 \times 10^{-15}$. After conditioning on
294 both rs7412 and rs429358, all other variants in the region had P values $> 1.8 \times 10^{-3}$,
295 indicating that no additional independent associations exist in this region. We also observed
296 similar patterns in the other six regions (**Table S1**), after conditioning on either one or two
297 top associated variants in each region (**Fig. S5 a-f**).

298



299

300 **Figure 3: A regional plot of StocSum conditional association test results in the APOE**
301 **region.** Variants with MAF > 0.5% in a 1Mb window near association variants rs7412 and
302 rs429358 (highlighted in black dots). Original single variant test P values are shown in dots

303 and conditional P values are shown in triangles. Variants in four LD categories are shown
304 in different colors based on the maximum squared correlation to the sentinel variant rs7412
305 and the secondary association variant rs429358 calculated in HCHS/SOL. The horizontal
306 dashed line indicates the genome-wide significance level on the log scale, $-\log_{10}(5 \times 10^{-8})$. The blue curve shows recombination rates from all populations in the 1000 Genome
307 Project.
308

309 **Gene-environment interaction tests**

310 We next developed and implemented a one-degree-of-freedom gene-environment
311 interaction test and a two-degree-of-freedom joint test of the genetic main effects and the
312 gene-environment interactions in the StocSum framework. We benchmarked our tests with
313 MAGEE using individual-level data⁶¹. No systematic genomic inflation was observed from
314 the quantile-quantile (Q-Q) plots (Fig. S6). Fig. S7 shows P values from a gene-sex
315 interaction analysis on waist-hip ratio (WHR) in HCHS/SOL. MAGEE and StocSum P
316 values were highly consistent, with Spearman's correlations of 1.000, 0.998, 0.999,
317 respectively, for the marginal genetic effect test, the gene-environment interaction test and
318 the joint test. We identified four potential loci from marginal genetic effect tests, three
319 with significant gene-sex interactions, and four from the joint tests, at the suggestive
320 significance level of 5×10^{-7} , including six previously reported genome-wide significant
321 loci in gene regions *COBLL1*, *IGF2R*, *AOAH*, *IQSEC3*, *TEKT5*, and *MAPT*⁶²⁻⁶⁸ (Table S2).

322 **Variant set tests**

323 We also used TOPMed WGS freeze 8 data and LDL cholesterol levels from the
324 HCHS/SOL study to illustrate variant set tests in the StocSum framework. We compared
325 P values calculated by StocSum with different numbers of random vector replicates B and
326 SMMAT²¹ using individual-level genotypes in a genome-wide 20 kb non-overlapping
327 sliding window analysis on all genetic variants, using a beta density weight on the MAF
328 with parameters 1 and 25. We noted that 20 kb was probably wider than what was
329 commonly used in WGS sliding window analyses⁴³, but we chose this window size to
330 evaluate the performance of StocSum variant set tests in an extreme scenario not in favor
331 of StocSum, because there could be many windows with the number of variants $q > B$. In
332 this case, $\frac{\tilde{U}\tilde{U}^T}{B}$ from StocSum would not be an appropriate estimate for the $q \times q$

333 covariance matrix $\tilde{\mathbf{V}}$ computed directly from individual-level data, since only B singular
334 values could be computed from the $q \times B$ matrix $\tilde{\mathbf{U}}$.

335

336 **Figs. 4a-d** shows comparisons of P values from SMMAT using individual-level genotypes
337 and StocSum with B ranging from 10 to 10,000. When $B=1,000$ or 10,000, P values from
338 the two methods were highly consistent (**Figs. 4c-d**). For windows with small SMMAT P
339 values, StocSum tended to overestimate these P values when $B=10$ or 100 (**Fig. 4a-b**),
340 possibly because only 10 or 100 singular values from $\tilde{\mathbf{U}}$ was insufficient to approximate
341 the eigenvalues from the $q \times q$ covariance matrix $\tilde{\mathbf{V}}$ from SMMAT.

342

343 StocSum variant set tests are computationally efficient (**Figs. 4e-f**). It only took StocSum
344 ($B=1,000$) 2.7 CPU hours to finish variant set tests on chromosome 1 using 20 kb sliding
345 windows, which was 9.7-fold faster than SMMAT using individual-level data. Across the
346 autosomes, there were a total of 134,739 non-overlapping 20 kb windows containing at
347 least one variant. On average, the StocSum ($B=1,000$) CPU time was about 14.3% of the
348 SMMAT CPU time. Meanwhile, StocSum ($B=1,000$) only required about 68.1% of the
349 memory compared to SMMAT. StocSum with $B=10,000$ utilized more CPU time than
350 SMMAT since B was larger than the sample size ($N=7,297$), making the $M \times B$ stochastic
351 summary statistics matrix \mathbf{U} even larger in size compared to the $N \times M$ genotype matrix
352 \mathbf{G} . In this 20 kb sliding window analysis using StocSum variant set tests, we identified four
353 regions associated with LDL levels in HCHS/SOL^{4,56-59}, at the significance level of
354 $0.05/134,739=3.7 \times 10^{-7}$ (**Fig. 4g, Table S3**).

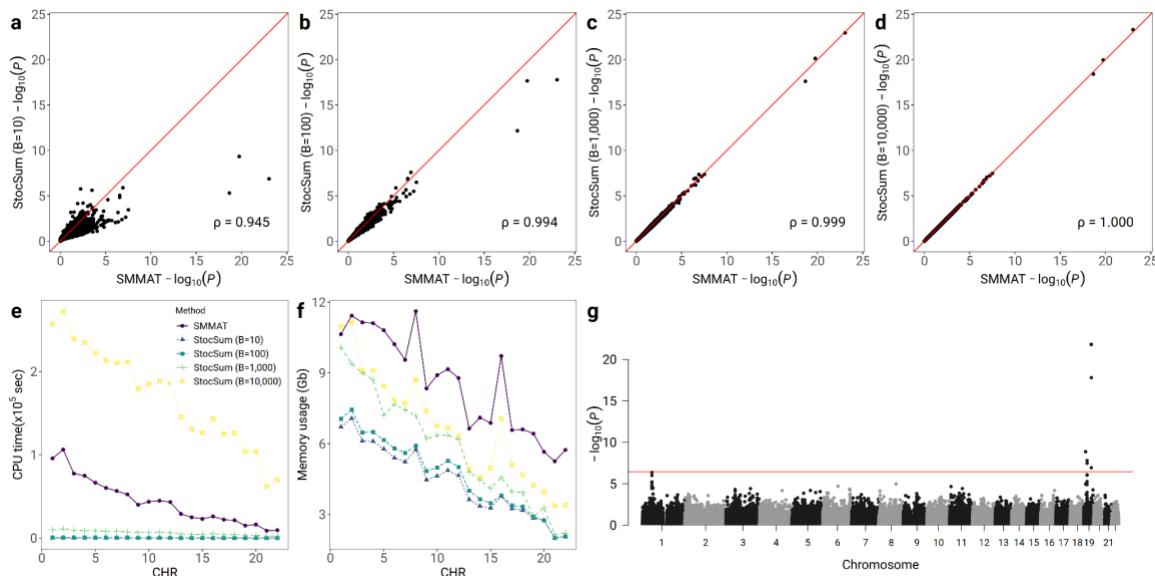
355

356 We next compared StocSum with fastBAT for variant set tests. fastBAT utilizes single-
357 variant summary statistics from fastGWA and LD information from a reference panel such
358 as the 1000 Genomes Project⁶⁹. To make a fair comparison on the same statistical model
359 and same weights used in variant set tests, we only included one random effect term for
360 genetic relatedness, without allowing for heteroscedasticity in the null model for SMMAT
361 and StocSum, and a beta density weight on the MAF with parameters 0.5 and 0.5 (which
362 is equivalent to rescaling each variant with a unit variance as implemented in fastBAT).
363 For fastBAT, we compared five different reference panels, including an internal reference

364 panel using individual-level genotypes from the original study sample (called fastBAT
365 (Sample)), as well as four external reference panels from the 1000 Genomes Project⁶⁹:
366 European populations (fastBAT (Eu)), European and African populations (fastBAT
367 (EuAf)), European and American populations (fastBAT (EuAm)), and European, African
368 and American populations (fastBAT (EuAfAm)). Variant set test P values from SMMAT,
369 StocSum ($B=1,000$), and fastBAT (Sample) were highly concordant (**Figs. S9-10**), with
370 pairwise Spearman correlation coefficients being greater than 0.99. However, fastBAT
371 with external reference panels, i.e., fastBAT (Eu), fastBAT (EuAf), fastBAT (EuAm),
372 fastBAT (EuAfAm), gave inaccurate variant set test P values compared to SMMAT using
373 individual-level genotypes. The correlation coefficients of $\log_{10}(P)$ between SMMAT and
374 fastBAT with Eu, EuAf, EuAm, EuAfAm reference panels were 0.59, 0.77, 0.66, and 0.78,
375 respectively (**Fig. S10**). Since Hispanic/Latino adults are three-way admixed populations
376 with European, African and Amerindian ancestries, it is not surprising that an external
377 reference panel from only European populations could not represent the LD structure in
378 HCHS/SOL samples accurately. Interestingly, although including African and American
379 populations in the external reference panel did improve the concordance of fastBAT P
380 values compared to SMMAT, fastBAT using the internal reference panel clearly
381 outperformed all external reference panels that we investigated. In addition, when an
382 external reference panel was used, variants not included in the panel would have to be
383 excluded, leading to loss of unique variants in the study samples. This highlights the
384 importance of choosing an accurate reference panel for fastBAT, and the best reference
385 panel for study samples from underrepresented, admixed or isolated populations are the
386 study samples themselves. StocSum represents the LD structure in any variant sets through
387 a stochastic summary statistic matrix \mathbf{U} directly derived from study samples rather than
388 external reference panels, thus providing accurate variant set test results. Meanwhile,
389 StocSum with $B=1,000$ was slightly faster (1.7-fold) than fastBAT (Sample) on the whole
390 genome (**Fig. S11a**), with a dramatically reduced memory footprint (3.6%) compared to
391 fastBAT (Sample) (**Fig. S11b**).
392
393 To illustrate StocSum variant set tests beyond sliding windows, we compared StocSum
394 ($B=1,000$) with SMMAT when the variant sets composed of different regions that were

395 physically farther away. These variant sets were defined by merging chromatin loops of
396 H3K27ac HiChIP interaction in the GM12878 cell line^{70–72}. As the definition of variant
397 sets changed, SMMAT required rerunning the analysis using individual-level genotypes,
398 while StocSum variant set tests could directly extract information about these new variant
399 sets from the same pre-computed stochastic summary statistic matrix U , which yielded
400 highly accurate P values (Fig. S12a), while using much less CPU time and memory (Figs.
401 S12b-c).

402



403

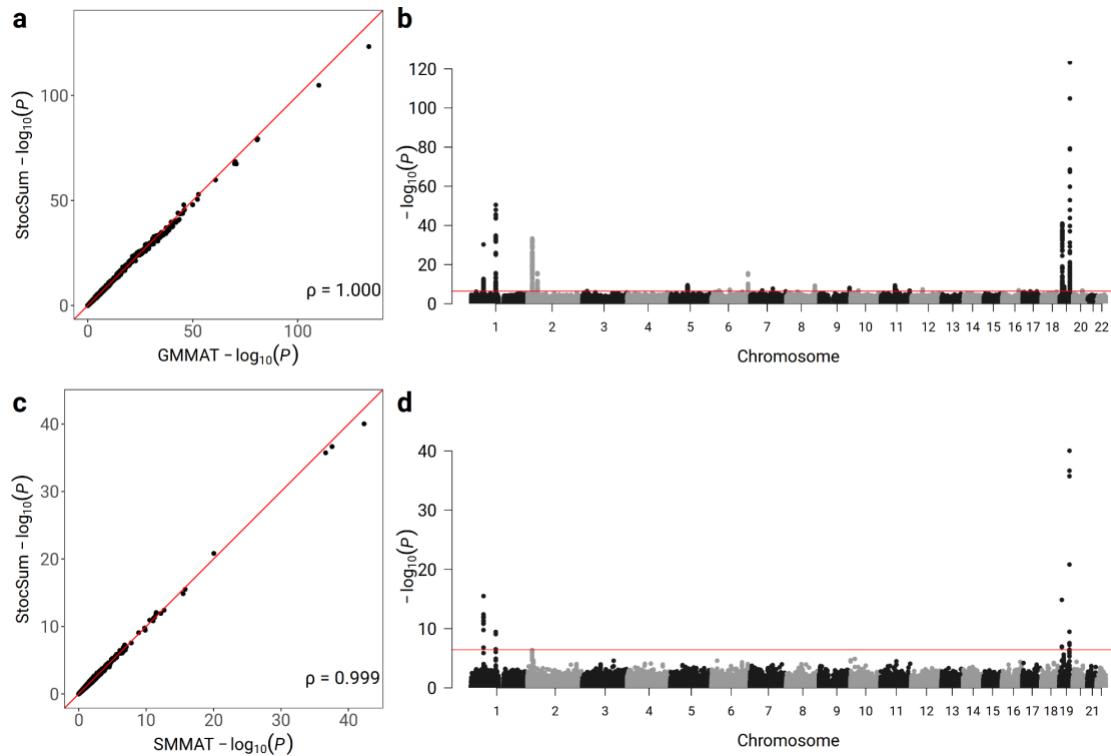
404 **Figure 4: StocSum in variant set tests.** Comparison of P values from SMMAT and
405 StocSum with the number of random vector replicates B being equal to 10 (a), 100 (b),
406 1,000 (c) and 10,000 (d) in a 20 kb sliding window analysis on the whole genome. The x
407 axis and the y axis represent $-\log_{10}(P)$ from a whole genome 20 kb sliding window analysis,
408 using variant set tests from SMMAT and StocSum, respectively, with a beta density weight
409 on the MAF with parameters 1 and 25. The red line denotes the reference line of equality.
410 Spearman's rank correlation coefficients are shown at the bottom right. e, comparison of
411 CPU time between SMMAT and StocSum. The x axis represents the chromosome numbers
412 and the y axis represents the CPU time in 10^5 seconds. For SMMAT, the CPU time did not
413 include fitting the null model or reading the variant set definitions. For StocSum, the CPU
414 time did not include computing stochastic summary statistics from individual-level data. f,
415 comparison of memory usage by SMMAT and StocSum. The x axis represents the

416 chromosome number and the y axis represents the memory footprint in GB. The data used
417 in this test consisted of 120M variants from 7,297 individuals in HCHS/SOL, including all
418 variants regardless of their MAF (such as singletons and doubletons). All tests were
419 performed on a high-performance computing server, with a single thread for each
420 chromosome. g, the Manhattan plot of 20 kb sliding window variant set tests on LDL in
421 the HCHS/SOL study using StocSum. The x-axis represents the start physical chromosome
422 and position of each variant set and the y-axis represents $-\log_{10}(P)$ from the StocSum
423 variant set test corresponding to SMMAT. The red line indicates the genome-wide
424 significance level on the log scale, $-\log_{10}(3.7 \times 10^{-7})$.

425 **Meta-analysis**

426 Meta-analysis in the StocSum framework can be performed by combining the stochastic
427 summary statistic matrices \mathbf{U} from different studies. To illustrate how single-variant and
428 variant set tests can be conducted in a meta-analysis, we combined the stochastic summary
429 statistic matrices \mathbf{U} from three studies: longitudinal LDL levels as repeated measures in
430 African-Americans (AA) from the Atherosclerosis Risk in Communities (ARIC) study
431 (70M variants from 2,045 individuals) visits 1-6, European-Americans (EA) from ARIC
432 (92M variants from 6,327 individuals) visits 1-6, and baseline LDL levels as cross-
433 sectional measures in Hispanic/Latino adults from HCHS/SOL (120M variants from 7,297
434 individuals). P values from StocSum ($B=1,000$) were highly concordant with GMMAT
435 results from longitudinal LDL level analyses, for both ARIC AA and EA subgroups (**Fig.**
436 **S13**), which further demonstrated the robustness of StocSum in different populations. P
437 values from StocSum meta-analysis ($B=1,000$) were highly concordant with those from
438 GMMAT single-variant meta-analysis (**Fig. 5a**) and SMMAT variant set meta-analysis
439 (**Fig. 5c**). We identified 14 LDL loci from StocSum meta-analysis ($B=1,000$) single-variant
440 tests^{4,56-59,73-76} (**Fig. 5b, Table S4**), at the significance level of 5×10^{-8} . In variant set tests
441 (**Fig. 5d, Table S5**), we identified four regions associated with LDL levels from StocSum
442 meta-analysis ($B=1,000$), at the significance level of 3.7×10^{-7} .

443



444

445 **Figure 5: StocSum in meta-analysis.** a, comparison of single-variant meta-analysis P
446 values from GMMAT and StocSum with the number of random vector replicates B being
447 equal to 1,000. The x axis and the y axis represent $-\log_{10}(P)$ from single-variant meta-
448 analysis using GMMAT and StocSum, respectively. The red line denotes the reference line
449 of equality. Spearman's rank correlation coefficients are shown at the bottom right. b, the
450 Manhattan plot of single-variant tests on LDL in the meta-analysis of ARIC AA and EA,
451 and HCHS/SOL studies using StocSum. The x-axis represents the physical chromosome
452 and position of each variant and the y-axis represents $-\log_{10}(P)$ from the StocSum single-
453 variant test. Only variants with $MAF > 0.5\%$ were included in the Manhattan plot. The red
454 line indicates the genome-wide significance level on the log scale, $-\log_{10}(5 \times 10^{-8})$. c,
455 comparison of variant set meta-analysis P values from SMMAT and StocSum with the
456 number of random vector replicates B being equal to 1,000. The x axis and the y axis
457 represent $-\log_{10}(P)$ from variant set meta-analysis using SMMAT and StocSum,
458 respectively. The red line denotes the reference line of equality. Spearman's rank
459 correlation coefficients are shown at the bottom right. d, the Manhattan plot of variant set
460 tests on LDL in the meta-analysis of ARIC AA and EA, and HCHS/SOL studies using
461 StocSum. The x-axis represents the start physical chromosome and position of each variant

462 set and the y-axis represents $-\log_{10}(P)$ from the StocSum variant set test corresponding to
463 SMMAT. The red line indicates the genome-wide significance level on the log scale, $-\log_{10}(3.7 \times 10^{-7})$. All tests were performed on a high-performance computing server, with a
464 single thread for each chromosome.
465

466 **LD score regression**

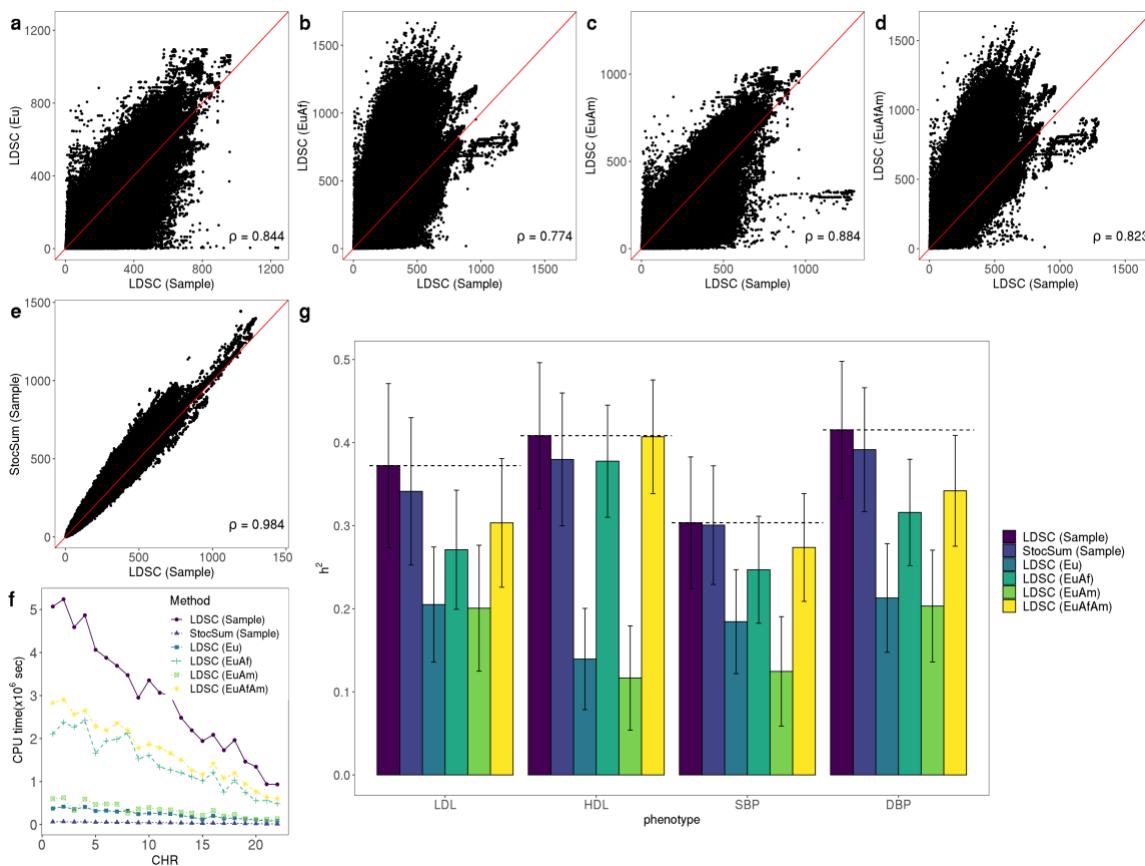
467 StocSum can also be used to extend the LD Score Regression (LDSC) framework¹⁴ to
468 underrepresented, admixed or isolated populations, without external reference panels. In
469 this example, we compared LD scores and heritability estimates of four traits: LDL, high-
470 density lipoprotein (HDL) cholesterol levels, systolic blood pressure (SBP), and diastolic
471 blood pressure (DBP) from Hispanic/Latino adults in HCHS/SOL. LD scores were
472 calculated using six different approaches: 1) StocSum (Sample): StocSum ($B=1,000$) on
473 HCHS/SOL study samples; 2) LDSC (Sample): LDSC using HCHS/SOL study samples as
474 internal reference panels; 3) LDSC (Eu): LDSC using European populations from the 1000
475 Genomes Project as external reference panels; 4) LDSC (EuAf): LDSC using European
476 and African populations from the 1000 Genomes Project as external reference panels; 5)
477 LDSC (EuAm): LDSC using European and American populations from the 1000 Genomes
478 Project as external reference panels; and 6) LDSC (EuAfAm): LDSC using European,
479 African and American populations from the 1000 Genomes Project as external reference
480 panels. LD scores computed from StocSum (Sample) and LDSC using external reference
481 panels were compared with those computed from LDSC (Sample).
482

483 LD scores from StocSum (Sample) were much closer to those from LDSC (Sample) (**Fig. 6e**), compared to LDSC results using external reference panels (**Fig. 6a-d**). Moreover, there
484 seems to be an upward bias for many variants in LDSC (EuAf) and LDSC (EuAfAm)
485 results, when African populations from the 1000 Genomes Project were included in the
486 reference panel (**Fig. 6b,d**), highlighting the challenges in selecting appropriate external
487 reference panels for LD score estimation in underrepresented, admixed or isolated
488 populations. StocSum (Sample) required only 1.4% of CPU time used by LDSC (Sample)
489 (**Fig. 6f**). It was also 6-fold to 42-fold faster than LDSC using different external reference
490 panels.
491

492

493 Using LD scores from these six approaches, we compared heritability estimates of four
494 traits LDL, HDL, SBP and DBP in HCHS/SOL (Fig. 6g). StocSum (Sample) results were
495 consistently observed to be close to LDSC (Sample) heritability estimates, for all these
496 traits. Heritability estimates from LDSC using external reference panels tended to be lower
497 than LDSC (Sample), especially when African populations from the 1000 Genomes Project
498 were excluded in the reference panel. For example, heritability estimates from LDSC
499 (EuAm) were about 46.1%, 71.4%, 59.0%, and 51.1% lower compared to those from
500 LDSC (Sample), for LDL, HDL, SBP, and DBP traits. Heritability estimates partitioned
501 by different MAF bins also showed that StocSum (Sample) results were consistent with
502 those from LDSC (Sample) (Fig. S14). Overall, StocSum is better suited for conducting
503 LD score regression in Hispanic/Latino adults, while LDSC needs a reference panel that
504 matches the LD structure in the study samples.

505



506

507 **Figure 6: StocSum in LD score regression and heritability estimation.** a-e, comparison
508 of LD scores from LDSC (Sample) (x-axis) and different alternative methods (y-axis). a,
509 LDSC (Eu). b, LDSC (EuAf). c, LDSC (EuAm). d, LDSC (EuAfAm). e, StocSum
510 (Sample). Spearman's rank correlation coefficients are shown at the bottom right. f,
511 comparison of CPU time between StocSum and LDSC in LD score calculations. The x axis
512 represents the chromosome numbers and the y axis represents the CPU time in 10^6 seconds.
513 g, heritability estimates using LD scores from LDSC and StocSum. The error bars show
514 point estimates \pm standard errors. LD scores were estimated from LDSC (Sample) and
515 StocSum (Sample) using HCHS/SOL study samples, or LDSC on external reference panels
516 using European, African and/or American populations from the 1000 Genomes Project:
517 LDSC (Eu), LDSC (EuAf), LDSC (EuAm), and LDSC (EuAfAm).

518 **Discussion**

519 We have developed and implemented StocSum, a novel framework for generating,
520 managing, and using stochastic summary statistics for WGS studies. We showed that in all
521 the example applications that use between-variant correlation or LD matrices, either from
522 the study samples or external reference panels, such as conditional association tests, variant
523 set tests and LD score regression, we could use a much smaller stochastic summary statistic
524 matrix \mathbf{U} to replace the between-variant correlation or LD matrices, and flexibly extract
525 the pairwise LD information between any variants on the same chromosome. This strategy
526 was highly accurate and computationally efficient. The size of \mathbf{U} scales linearly with the
527 number of genetic variants M , compared to quadratically in the form of traditional pairwise
528 LD matrices. The computing time for the stochastic summary statistic matrix \mathbf{U} always
529 scales linearly with both the sample size N and the number of genetic variants M (the same
530 complexity with reading the data), regardless of any complex sample correlation structures.
531 This matrix only needs to be computed once for each phenotype in both cross-sectional
532 and longitudinal studies, and can be reused in single-variant tests, conditional association
533 tests, and variant set tests with different variant set definitions.

534 StocSum leverages stochastic algorithms to reduce the computational burden in WGS
535 studies. Similar algorithms have previously been applied to principal component

537 analysis^{77,78}, heritability⁷⁹ and genetic correlation estimation⁸⁰, and it is our hope that the
538 StocSum framework can be extended to a wide range of other applications to genomic
539 summary statistics that currently require external reference panels, thus facilitating use of
540 genomic summary statistics from WGS studies. This is especially important for
541 underrepresented, admixed, and/or isolated populations, for which appropriate reference
542 panels are difficult to find. We have shown for variant set tests (Fig. S9-10) and LD score
543 regression (Fig. 6) that external reference panels did not perform well even when all three
544 ancestry populations for Hispanic/Latino adults were included, and the performance was
545 even worse when a European-only reference panel was used. By using StocSum instead of
546 external reference panels, more genetic research can be conducted in diverse populations
547 that will equally benefit all humans.

548

549 StocSum will likely also facilitate international collaborations on genomic epidemiological
550 research using WGS data, so that meta-analysis for rare genetic variants can be easily
551 conducted without sharing individual-level WGS data across borders. Such collaborations
552 have largely focused on common genetic variants in the past, by sharing genomic summary
553 statistics. With the decreasing cost and increasing availability of WGS data, large-scale
554 meta-analysis efforts on rare genetic variants are currently very difficult to coordinate, as
555 variant sets determining how rare genetic variants should be grouped need to be pre-
556 defined. In contrast, in the StocSum framework, researchers can combine the stochastic
557 summary statistic matrices U from different studies first, and then decide how the variants
558 should be grouped. When analysis plans change, there is no need to rerun any analyses
559 using individual-level data, thus encouraging use of WGS data in international consortia.

560

561 WGS data are big in size and often difficult to share. Although large-scale studies such as
562 the UK Biobank¹¹, the TOPMed program¹⁰, and the CCDG initiative, have made plans to
563 host their WGS data on cloud-computing platforms to facilitate access, it is still
564 computationally expensive to directly analyzing individual-level data, making it financially
565 difficult for small research groups to contribute to scientific discoveries using WGS data.
566 The StocSum framework will democratize access to WGS resources, as we expect these
567 high-level summary data will be generated by central analysis centers who are familiar

568 with and have direct access to individual-level phenotype and WGS data, and broadly
569 shared with the scientific community. All downstream analyses using StocSum are free of
570 the sample size N and could be performed on a laptop. It is also an eco-friendly strategy by
571 avoiding different research teams running individual-level WGS data analyses on the same
572 phenotypes, which are at least $O(NM)$ operations for each team, thus saving a lot of
573 electricity in computation.

574

575 There are also several limitations. We have demonstrated concordance of StocSum results
576 as compared to methods that directly use individual-level data, for both common and rare
577 variants, but it does not imply these results are statistically valid in all scenarios. For
578 example, asymptotic P values from GMMAT may not be well-calibrated for extremely
579 unbalanced cases:control ratios from Biobank studies⁸¹. This issue likely also exists for
580 StocSum tests, given the concordance of StocSum and GMMAT results, and would require
581 further adjustments or approximations. Moreover, although LD scores and heritability
582 estimates from StocSum matched well with those from LDSC using internal reference
583 panels (Fig. 6), these heritability estimates are likely underestimates and may not compare
584 with estimates from other studies, due to the relatively small sample size in HCHS/SOL.
585 Also, the choice of the number of random vector replicates B depends on the scientific
586 questions to be investigated in downstream analyses. It does not depend on the sample size
587 N , although we note that for small studies with $N < B$, it might be more computationally
588 expensive to use StocSum, compared to directly using individual-level data. In this study
589 we have recommended using $B=1,000$ in all applications, and it worked well in variant set
590 tests for both regions with the number of variants $q \leq B$ and $q > B$ (Fig. S8). However,
591 when it is of interest to test a very wide region with q being much greater than B , such as
592 topologically associating domains and chromosome-wide association by class of histone
593 markers⁸², the performance of StocSum is not guaranteed. Nevertheless, we expect
594 StocSum to be a computationally efficient and eco-friendly framework for WGS studies
595 that will facilitate genetic research in diverse populations, international collaborations, and
596 equal access to WGS resources for the scientific community.

597 **Methods**

598 **Stochastic summary statistics**

599

600 We first define the basic null model in the StocSum framework. Under the null hypothesis
601 of no genetic fixed effects $H_0: \boldsymbol{\beta} = 0$, model (Eq.(1)) (see Results) reduces to
602

$$\mathbb{g}(\mu_{0i}) = \mathbf{X}_i \boldsymbol{\alpha} + b_i. \quad (2)$$

603 Here $\mathbb{g}(\cdot)$ is a monotonic link function of μ_{0i} , and $\mu_{0i} = E(y_i | \mathbf{X}_i, b_i)$ is the conditional
604 mean of the phenotype y_i under the null hypothesis $H_0: \boldsymbol{\beta} = 0$, given p covariates \mathbf{X}_i
605 (including an intercept) and random effects b_i , for individual i of N samples. Let $\hat{\boldsymbol{\mu}}_0 =$
606 $(\hat{\mu}_{01}, \hat{\mu}_{02}, \dots, \hat{\mu}_{0N})^T$ be a length N column vector for the estimated values of μ_{0i} , $\hat{\phi}$ be an
607 estimate of the dispersion parameter (or the residual variance for continuous traits in linear
608 mixed models) ϕ , and $\hat{\tau}_k$ be the estimates for variance component parameters τ_k
609 corresponding to $N \times N$ relatedness matrices $\boldsymbol{\Phi}_k$, from the null model (Eq.(2)), we define
610 $\mathbf{P} = \hat{\boldsymbol{\Sigma}}^{-1} - \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{X} (\mathbf{X}^T \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \hat{\boldsymbol{\Sigma}}^{-1}$ as the projection matrix, where $\mathbf{X} =$
611 $(\mathbf{X}_1^T \mathbf{X}_2^T \dots \mathbf{X}_N^T)^T$ is a $N \times p$ covariate matrix, and $\hat{\boldsymbol{\Sigma}} = \hat{\boldsymbol{\Omega}}^{-1} + \sum_{k=1}^K \hat{\tau}_k \boldsymbol{\Phi}_k$ with $\hat{\boldsymbol{\Omega}}^{-1} =$
612 $\hat{\phi} \mathbf{I}_n$ for continuous traits in linear mixed models, and $\hat{\boldsymbol{\Omega}}^{-1} = \text{diag} \left\{ \frac{1}{\hat{\mu}_{0i}(1-\hat{\mu}_{0i})} \right\}$ for binary
613 traits in logistic mixed models⁵⁵.

614

615 StocSum leverages a length N random vector \mathbf{R}_b from a multivariate normal distribution
616 with mean $\mathbf{0}$ and covariance matrix \mathbf{P} , repeats this simulation process B times and
617 combines \mathbf{R}_b ($1 \leq b \leq B$) into an $N \times B$ random matrix $\mathbf{R} = (\mathbf{R}_1 \mathbf{R}_2 \dots \mathbf{R}_B)$. In our
618 implementation, we first decompose relatedness matrices $\boldsymbol{\Phi}_k = \mathbf{Z}_k \mathbf{Z}_k^T$, where \mathbf{Z}_k is an
619 $N \times L_k$ matrix ($L_k \leq N$). For low-rank relatedness matrices (such as those indicating
620 observations from the same sample in longitudinal studies), \mathbf{Z}_k is often known as the
621 random effect design matrix, with L_k being the rank of $\boldsymbol{\Phi}_k$. For sparse block-diagonal
622 relatedness matrices (such as positive definite kinship matrices), \mathbf{Z}_k is the Cholesky
623 decomposition of $\boldsymbol{\Phi}_k$, which is also sparse block-diagonal. We construct the $N \times B$ random

624 matrix as $\mathbf{R} = \sqrt{\hat{\phi}}\mathbf{r}_0 + \sum_{k=1}^K \sqrt{\hat{\tau}_k} \mathbf{Z}_k \mathbf{r}_k$, in which \mathbf{r}_0 is an $N \times B$ random matrix and \mathbf{r}_k
625 ($1 \leq k \leq K$) are $L_k \times B$ random matrices, with all entries in \mathbf{r}_0 and \mathbf{r}_k simulated from a
626 standard normal distribution.

627

628 For an $N \times M$ genotype matrix \mathbf{G} for M variants on the whole genome (or on one
629 chromosome), the $M \times B$ stochastic summary statistic matrix \mathbf{U} can be calculated as $\mathbf{U} =$
630 $\mathbf{G}^T \mathbf{R}$. In the next sections, we describe how the stochastic summary statistics can be used
631 in various downstream genetic analysis applications.

632 Single-variant tests

633 We are interested in conducting single-variant tests for the null hypothesis $H_0: \beta = 0$, using
634 the score test. The GMMAT single-variant score is $S = \frac{\mathbf{g}^T(\mathbf{y} - \hat{\mu}_0)}{\hat{\phi}}$, where $\mathbf{g} =$
635 $(g_1 g_2 \dots g_N)^T$ is a length N column genotype vector for the variant of interest, $\mathbf{y} =$
636 $(y_1 y_2 \dots y_N)^T$ is a length N column vector for the phenotype (Chen et al., 2016). The
637 variance of the score is $Var(S|H_0) = \mathbf{g}^T \mathbf{P} \mathbf{g}$.

638

639 Denote the j th row of the stochastic summary statistic matrix \mathbf{U} (for variant j , $1 \leq j \leq M$)
640 by a length B row vector $\mathbf{U}_{j\cdot}$, we can show that the variance $Var(S|H_0)$ of single-variant
641 score S for variant j can be estimated as $\frac{1}{B} \mathbf{U}_{j\cdot} \mathbf{U}_{j\cdot}^T$, without using any individual-level data.
642 The asymptotic P value is then computed using the single-variant score S^{55} and its variance
643 estimated from the stochastic summary statistic matrix \mathbf{U} , for each variant of interest.

644 Conditional association tests

645 Assume $\dot{\mathbf{G}}$ is an $N \times c$ genotype matrix for $c \geq 1$ association genetic variants to be
646 conditioned on and \mathbf{g} is a length N column genotype vector for the variant of interest in
647 the conditional association test. The single-variant score conditional on the variant set $\dot{\mathbf{G}}$ is

$$648 S_{\mathbf{g}|\dot{\mathbf{G}}} = S_{\mathbf{g}} - \mathbf{g}^T \mathbf{P} \dot{\mathbf{G}} (\dot{\mathbf{G}}^T \mathbf{P} \dot{\mathbf{G}})^{-1} S_{\dot{\mathbf{G}}}.$$

649 The variance of the conditional score is $Var(S_{\mathbf{g}|\dot{\mathbf{G}}}) = \mathbf{g}^T \mathbf{P} \mathbf{g} - \mathbf{g}^T \mathbf{P} \dot{\mathbf{G}} (\dot{\mathbf{G}}^T \mathbf{P} \dot{\mathbf{G}})^{-1} \dot{\mathbf{G}}^T \mathbf{P} \mathbf{g}^{17}$.

650

651 In the StocSum framework, S_g and \mathbf{U}_g are the single-variant score and stochastic summary
 652 statistics corresponding to the variant of interest in the conditional association test and $\mathbf{S}_{\hat{G}}$
 653 (a length c vector) and $\mathbf{U}_{\hat{G}}$ (a $c \times B$ matrix) are the single-variant score and stochastic
 654 summary statistics corresponding to the association variants to be conditioned on. The
 655 conditional score can be computed as

656
$$S_{g|\hat{G}} = S_g - \mathbf{U}_g \mathbf{U}_{\hat{G}}^T (\mathbf{U}_{\hat{G}} \mathbf{U}_{\hat{G}}^T)^{-1} \mathbf{S}_{\hat{G}},$$

657 and the conditional stochastic summary statistics can be computed as

658
$$\mathbf{U}_{g|\hat{G}} = \mathbf{U}_g - \mathbf{U}_g \mathbf{U}_{\hat{G}}^T (\mathbf{U}_{\hat{G}} \mathbf{U}_{\hat{G}}^T)^{-1} \mathbf{U}_{\hat{G}}.$$

659

660 The variance $Var(S_{g|\hat{G}})$ of the conditional score $S_{g|\hat{G}}$ can be estimated as $\frac{1}{B} \mathbf{U}_{g|\hat{G}} \mathbf{U}_{g|\hat{G}}^T$.
 661 The asymptotic P value is computed using the conditional score $S_{g|\hat{G}}$ and its variance
 662 estimated from the stochastic summary statistics $\mathbf{U}_{g|\hat{G}}$, for each variant of interest in the
 663 conditional association test.

664

665 **Gene-environment interaction tests**

666 We introduce a general model for testing m gene-environment interaction (GEI) terms in
 667 the GLMM framework. The full model including the genetic main effect and GEI effects
 668 is

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\alpha} + g_i \beta + \mathbf{H}_i \boldsymbol{\gamma} + b_i, \quad (3)$$

669 where g_i is the genotype for the variant of interest for individual i , β is a scalar of the
 670 genetic main effect, \mathbf{H}_i is a length m row vector for the GEI terms, which include the
 671 products of g_i and m environmental factors (a subset from p covariates in \mathbf{X}_i), and $\boldsymbol{\gamma}$ is a
 672 length m column vector for GEI effects. We note that under the constraint $\boldsymbol{\gamma} = 0$, β also
 673 represents the marginal genetic effect. Other notations follow the null model (Eq.(2)).

674

675 The single-variant score for the marginal genetic effect is $S_g = \frac{\mathbf{g}^T (\mathbf{y} - \hat{\mu}_0)}{\hat{\phi}}$ and its variance is
 676 $Var(S_g) = \mathbf{g}^T \mathbf{P} \mathbf{g}$. The single-variant score for the GEI effects is $S_H = \frac{\mathbf{H}^T (\mathbf{y} - \hat{\mu}_0)}{\hat{\phi}}$ and its
 677 $m \times m$ covariance matrix is $Var(S_H) = \mathbf{H}^T \mathbf{P} \mathbf{H}$, where $\mathbf{H} = (\mathbf{H}_1^T \ \mathbf{H}_2^T \ \cdots \ \mathbf{H}_N^T)^T$ is a $N \times m$

678 matrix for the GEI terms. The score for GEI effects adjusting for the marginal genetic effect
679 can be approximated by $S_{H|g} = S_H - \mathbf{H}^T \mathbf{P} \mathbf{g} (\mathbf{g}^T \mathbf{P} \mathbf{g})^{-1} S_g$ ⁶¹, with a covariance matrix
680 $Var(S_{H|g}) = \mathbf{H}^T \mathbf{P} \mathbf{H} - \mathbf{H}^T \mathbf{P} \mathbf{g} (\mathbf{g}^T \mathbf{P} \mathbf{g})^{-1} \mathbf{g}^T \mathbf{P} \mathbf{H}$. The marginal genetic effect can be tested
681 using the quadratic form $S_g^T Var(S_g)^{-1} S_g$, which follows a chi-square distribution with 1
682 degree of freedom under the null hypothesis of no marginal genetic effects. The GEI effects
683 can be tested using $S_{H|g}^T Var(S_{H|g})^{-1} S_{H|g}$, which follows a chi-square distribution with
684 m degrees of freedom under the null hypothesis of no gene-environment interactions. The
685 joint test, which evaluates both marginal genetic effects and GEI effects, can be constructed
686 by the sum of these two chi-square statistics, since S_H and $S_{H|g}$ are asymptotically
687 independent. The joint test statistic follows a chi-square distribution with $1 + m$ degrees
688 of freedom under the null hypothesis of no marginal genetic effects or gene-environment
689 interactions.

690
691 In the StocSum framework, we first compute stochastic summary statistics for the marginal
692 genetic effect $\mathbf{U}_g = \mathbf{g}^T \mathbf{R}$ and GEI effects $\mathbf{U}_H = \mathbf{H}^T \mathbf{R}$ using individual-level data. We can
693 use $\frac{1}{B} \mathbf{U}_g \mathbf{U}_g^T$, $\frac{1}{B} \mathbf{U}_H \mathbf{U}_H^T$, and $\frac{1}{B} \mathbf{U}_g \mathbf{U}_H^T$ to estimate the variance of the marginal genetic effect
694 score $Var(S_g)$, the covariance matrix of the GEI effect score $Var(S_H)$, and the covariance
695 of S_g and S_H , respectively. The adjusted scores can be constructed as $S_{H|g} = S_H -$
696 $\mathbf{U}_H \mathbf{U}_g^T (\mathbf{U}_g \mathbf{U}_g^T)^{-1} S_g$, and its variance $Var(S_{H|g})$ can be approximated as $\frac{1}{B} \{ \mathbf{U}_H \mathbf{U}_H^T -$
697 $\mathbf{U}_H \mathbf{U}_g^T (\mathbf{U}_g \mathbf{U}_g^T)^{-1} \mathbf{U}_g \mathbf{U}_H^T \}$.
698

699 Variant set tests

700 We include four variant set tests: the burden test³⁴⁻³⁷, SKAT³⁸, SKAT-O⁸³, and the efficient
701 hybrid test of burden and SKAT^{21,39}, in the StocSum framework. Here we consider a
702 variant set including q genetic variants ($q > 1$) and denote $\tilde{\mathbf{S}}$ as a length q single-variant
703 score vector, and $\tilde{\mathbf{G}}$ as an $N \times q$ genotype matrix (a subset of the $N \times M$ genotype matrix
704 \mathbf{G} on the whole genome, or on one chromosome). We note that our examples are not a
705 complete list of all variant set tests that are commonly used, but any other variant set tests

706 that would require $q \times q$ covariance matrices could also be implemented using stochastic
707 summary statistics.

708

709 The burden test statistic can be constructed as

$$710 \quad T_{Burden} = \tilde{\mathbf{S}}^T \mathbf{W} \mathbf{1}_q \mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{S}},$$

711 where $\mathbf{W} = diag\{w_j\}$ is a pre-specified $q \times q$ diagonal weight matrix, and $\mathbf{1}_q$ is a length
712 q vector of 1's. The weights can be a function of the MAF^{36,38}, or functional annotation
713 scores such as CADD^{84,85}, FATHMM-XF⁸⁶, and annotation principal components from
714 STAAR⁸⁷. Under the null hypothesis, the statistic T_{Burden} asymptotically follows
715 $\xi_{Burden} \chi_1^2$, where the scaling factor $\xi_{Burden} = \mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{G}}^T \mathbf{P} \tilde{\mathbf{G}} \mathbf{W} \mathbf{1}_q = \mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{V}} \mathbf{W} \mathbf{1}_q$ (where $\tilde{\mathbf{V}}$
716 is a $q \times q$ covariance matrix for the single-variant score vector $\tilde{\mathbf{S}}$), and χ_1^2 is a chi-square
717 distribution with 1 df. In the StocSum framework, ξ_{Burden} can be estimated as
718 $\frac{1}{B} \mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W} \mathbf{1}_q = \frac{1}{B} \tilde{\mathbf{u}}^T \tilde{\mathbf{u}}$, where $\tilde{\mathbf{U}}$ is a $q \times B$ matrix (a subset of the $M \times B$ stochastic
719 summary statistic matrix \mathbf{U}), and $\tilde{\mathbf{u}} = \tilde{\mathbf{U}}^T \mathbf{W} \mathbf{1}_q$ is a length B vector (i.e., column sum of
720 $\mathbf{W} \tilde{\mathbf{U}}$).

721

722 The SKAT statistic can be constructed as

$$723 \quad T_{SKAT} = \tilde{\mathbf{S}}^T \mathbf{W} \mathbf{W} \tilde{\mathbf{S}}.$$

724 Under the null hypothesis, T_{SKAT} asymptotically follows $\sum_{j=1}^q \xi_{SKAT,j} \chi_{1,j}^2$, where $\chi_{1,j}^2$ are
725 independent chi-square distributions with 1 df, and $\xi_{SKAT,j}$ are the eigenvalues of $\mathbf{E}_{SKAT} =$
726 $\mathbf{W} \tilde{\mathbf{G}}^T \mathbf{P} \tilde{\mathbf{G}} \mathbf{W} = \mathbf{W} \tilde{\mathbf{V}} \mathbf{W}$. In the StocSum framework, $\xi_{SKAT,j}$ can be estimated as the square
727 of the singular values of $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}}$ (**Supplementary Note 1**).

728

729 In SKAT-O, the variance component statistic T_ρ given a weight parameter ρ ($0 \leq \rho \leq 1$)
730 is

$$731 \quad T_\rho = \rho T_{Burden} + (1 - \rho) T_{SKAT}.$$

732 If $\rho = 1$, T_ρ becomes the burden test statistic T_{Burden} ; if $\rho = 0$, T_ρ becomes the SKAT
733 statistic T_{SKAT} . SKAT-O searches for an optimal ρ by minimizing the P value of T_ρ .
734 Specifically, the $q \times q$ weighted covariance matrix $\mathbf{E}_{SKAT} = \mathbf{W} \tilde{\mathbf{V}} \mathbf{W}$ is decomposed into

735 two parts $\Xi_{Burden} = \Xi_{SKAT} \mathbf{1}_q (\mathbf{1}_q^T \Xi_{SKAT} \mathbf{1}_q)^{-1} \mathbf{1}_q^T \Xi_{SKAT}$ and $\Xi_{SKAT|Burden} = \Xi_{SKAT} -$
 736 Ξ_{Burden} , used in subsequent one-dimensional numerical integration to compute the SKAT-
 737 O P value. In the StocSum framework, Ξ_{Burden} can be estimated as $\frac{1}{B} \tilde{\mathbf{U}}_{Burden} \tilde{\mathbf{U}}_{Burden}^T$,
 738 where $\tilde{\mathbf{U}}_{Burden} = \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T$, and $\Xi_{SKAT|Burden}$ can be estimated as
 739 $\frac{1}{B} \tilde{\mathbf{U}}_{SKAT|Burden} \tilde{\mathbf{U}}_{SKAT|Burden}^T$, where $\tilde{\mathbf{U}}_{SKAT|Burden} = \mathbf{W} \tilde{\mathbf{U}} - \tilde{\mathbf{U}}_{Burden}$.

740

741 In the efficient hybrid test to combine the burden test and SKAT, the adjusted SKAT
 742 statistic $T_{SKAT|Burden}$ can be approximated by

$$743 T_{SKAT|Burden} = \tilde{\mathbf{S}}^T \mathbf{W} \left\{ \mathbf{I}_q - \mathbf{1}_q (\mathbf{1}_q^T \Xi_{SKAT} \mathbf{1}_q)^{-1} \mathbf{1}_q^T \Xi_{SKAT} \right\} \left\{ \mathbf{I}_q - \Xi_{SKAT} \mathbf{1}_q (\mathbf{1}_q^T \Xi_{SKAT} \mathbf{1}_q)^{-1} \mathbf{1}_q^T \right\} \mathbf{W} \tilde{\mathbf{S}}.$$

745 Under the null hypothesis, $T_{SKAT|Burden}$ asymptotically follows $\sum_{j=1}^q \xi_{SKAT|Burden_j} \chi_{1,j}^2$,
 746 where $\chi_{1,j}^2$ are independent chi-square distributions with 1 df and $\xi_{SKAT|Burden_j}$ are the
 747 eigenvalues of $\Xi_{SKAT|Burden}$. In the StocSum framework, these eigenvalues can be
 748 estimated as the square of the singular values of $\frac{1}{\sqrt{B}} \tilde{\mathbf{U}}_{SKAT|Burden}$ (**Supplementary Note**
 749 **2**).

750

751 **Meta-analysis**

752 In a traditional meta-analysis on a region with q genetic variants from L studies, we use
 753 the single-variant scores $\tilde{\mathbf{S}}_l$ and the covariance matrix $\tilde{\mathbf{V}}_l$ from each study l ($1 \leq l \leq L$).
 754 The variant set meta-analysis can be performed using the summary scores $\tilde{\mathbf{S}} = \sum_{l=1}^L \tilde{\mathbf{S}}_l$ and
 755 the summary covariance matrix $\tilde{\mathbf{V}} = \sum_{l=1}^L \tilde{\mathbf{V}}_l^{18,19,21,31,33}$. The single-variant meta-analysis
 756 only requires $\tilde{\mathbf{S}}$ and the diagonal elements of $\tilde{\mathbf{V}}$. In the StocSum framework, we compute
 757 $\tilde{\mathbf{U}} = \sum_{l=1}^L \tilde{\mathbf{U}}_l$ instead of $\tilde{\mathbf{V}}$. Assuming $q < B$, each column of $\tilde{\mathbf{U}}_l$ follows a multivariate
 758 normal distribution with mean $\mathbf{0}$ and covariance matrix $\tilde{\mathbf{V}}_l$, and $\tilde{\mathbf{U}}_l$ are independent across
 759 L studies assuming no sample overlaps or between-study relatedness. Therefore, each
 760 column of $\tilde{\mathbf{U}}$ follows a multivariate normal distribution with mean $\mathbf{0}$ and covariance matrix
 761 $\tilde{\mathbf{V}}$. In our implementation, we first compute the stochastic summary statistic matrix $\mathbf{U} =$

762 $\sum_{l=1}^L \mathbf{U}_l$ for all M genetic variants on the whole genome (or one chromosome), regardless
763 of how variants should be grouped, and then extract q genetic variants by taking a subset
764 of \mathbf{U} only when computing P values, for both single-variant meta-analysis and variant set
765 meta-analysis.

766 **LD score regression**

767 LD Score Regression (LDSC) has been widely applied to GWAS summary statistics to
768 estimate confounding bias, heritability explained by genotyped variants, heritability
769 enrichments of functional categories, and genetic correlations^{14,15,88}. The classical LDSC
770 model can be written as

771
$$E \left[\chi^2_j | l_j \right] = \frac{Nh^2 l_j}{M} + Na + 1,$$

772 where χ^2_j denotes the χ^2 statistic of variant j from GWAS summary statistics; $l_j =$
773 $\sum_k r_{jk}^2$ is the LD score of variant j with r_{jk}^2 being the squared Pearson correlation
774 coefficient of genotypes between variants j and k , N is the sample size, M is the total
775 number of variants, a is a measure of confounding bias, and h^2 is the heritability of the
776 phenotype. In practice, LDSC calculates l_j by summing up $\hat{r}_{adj_{jk}}^2$ for all variants k in
777 specific window around the index variant j . The adjusted correlation estimate $\hat{r}_{adj_{jk}}$ can
778 be computed from the sample correlation estimate \hat{r}_{jk} using

779
$$\hat{r}_{adj_{jk}}^2 = \hat{r}_{jk}^2 - \frac{1 - \hat{r}_{jk}^2}{N-2}.$$

780 Sample correlation coefficients \hat{r}_{jk} can be estimated as $\frac{w_j \mathbf{G}_{.j}^T \mathbf{L} \mathbf{G}_{.k} w_k}{N-1}$, where $\mathbf{G}_{.j}$ is the j th
781 column of the genotype matrix \mathbf{G} , representing variant j , $\mathbf{L} = \left(\mathbf{I}_N - \mathbf{1}_N (\mathbf{1}_N^T \mathbf{1}_N)^{-1} \mathbf{1}_N^T \right)$
782 is an $N \times N$ idempotent projection matrix, and $w_j = \frac{1}{\sqrt{2f_j(1-f_j)}}$ (f_j is the MAF of variant
783 j) is a weight that standardizes $\mathbf{G}_{.j}$ to a unit variance.

784
785 In the StocSum framework, we construct the $N \times B$ random matrix as $\mathbf{R} = \mathbf{L} \mathbf{r}_0$, where \mathbf{r}_0
786 is an $N \times B$ random matrix with all entries simulated from a standard normal distribution.
787 For an $N \times M$ genotype matrix \mathbf{G} for all M genetic variants on the whole genome (or one

788 chromosome), we compute the $M \times B$ stochastic summary statistic matrix $\mathbf{U} = \mathbf{W}\mathbf{G}^T\mathbf{R}$,
789 where $\mathbf{W} = \text{diag}\{w_j\}$ is an $M \times M$ diagonal weight matrix. For variant j , we subset M_j
790 variants within the flanking region (with a default window width of 1000 Kb) to get the
791 corresponding $M_j \times B$ subset $\tilde{\mathbf{U}}$. The adjusted correlation coefficient $\tilde{r}_{adj_{jk}}$ for \tilde{r}_{jk} from
792 StocSum is computed as (**Supplementary Note 3**)

$$793 \quad \tilde{r}_{adj_{jk}}^2 = \tilde{r}_{jk}^2 - \frac{1 - \tilde{r}_{jk}^2}{B-2} - \frac{1 - \tilde{r}_{jk}^2}{N-2}.$$

794 The LD score l_j of variant j could be estimated by summarizing stochastic summary
795 statistics of M_j variants in flanking region,

$$796 \quad l_j = \sum_{k=1}^{M_j} \tilde{r}_{adj_{jk}}^2 = \left\{ \sum_{k=1}^{M_j} \left(1 + \frac{1}{B-2} + \frac{1}{N-2} \right) \tilde{r}_{jk}^2 \right\} - \frac{M_j}{B-2} - \frac{M_j}{N-2} \\ 797 \quad = \left(1 + \frac{1}{B-2} + \frac{1}{N-2} \right) \left(\frac{\tilde{\mathbf{U}} \tilde{\mathbf{U}}_{j.}^T}{B(N-1)} \circ \frac{\tilde{\mathbf{U}} \tilde{\mathbf{U}}_{j.}^T}{B(N-1)} \right)^T \mathbf{1}_{M_j} - \frac{M_j}{B-2} - \frac{M_j}{N-2}.$$

798 in which \circ denotes the Hadamard product, and $\tilde{\mathbf{U}}_{j.}$ is the j th row of $\tilde{\mathbf{U}}$.

799 Whole genome sequence and phenotype data

800
801 The Trans-Omics for Precision Medicine (TOPMed), sponsored by the National Heart,
802 Lung and Blood Institute (NHLBI), generates scientific resources to enhance our
803 understanding of fundamental biological processes that underlie heart, lung, blood and
804 sleep disorders (HLBS)¹⁰. WGS of the TOPMed samples was performed over multiple
805 studies, years and sequencing centers. The TOPMed freeze 8 WGS data include 138K
806 samples from 72 studies. The sequence reads were aligned to the human genome build
807 GRCh38 using BWA-MEM following the protocol published previously⁸⁹. To perform
808 variant quality control, a support vector machine classifier was trained on known variant
809 sites (positive labels) and Mendelian inconsistent variants (negative labels). Further variant
810 filtering was done for variants with excess heterozygosity and Mendelian discordance.
811 Sample quality control measures included: concordance between annotated and inferred
812 genetic sex, concordance between prior array genotype data and TOPMed WGS data, and
813 pedigree checks¹⁰.

814

815 In this paper, our analysis includes genotypes and phenotypes from two TOPMed studies,
816 Hispanic Community Health Study/Study of Latins (HCHS/SOL) and the Atherosclerosis
817 Risk in Communities (ARIC) study.

818

819 **HCHS/SOL data.** The HCHS/SOL is a multi-center study of Hispanic/Latino populations
820 with the goal of determining the role of acculturation in the prevalence and development
821 of diseases, and to identify other traits that impact Hispanic/Latino health⁹⁰. Participants
822 were recruited using a multi-stage probability sample design, as described previously^{90,91}.
823 The HCHS/SOL is composed of six different background groups including Central
824 Americans, Cubans, Dominicans, Mexicans, Puerto Ricans, and South Americans⁷. A total
825 of 123,004,674 variants from 7,684 HCHS/SOL participants in TOPMed were available
826 for genetic association analyses.

827

828 Low-density lipoprotein (LDL) cholesterol levels were used as an illustrating example in
829 single-variant tests, conditional association tests, variant set tests, meta-analysis, and LD
830 score regression. Additional phenotypes including high-density lipoprotein (HDL)
831 cholesterol levels, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were
832 also used as examples in LD score regression. To account for the effect of lipid-lowering
833 medication, LDL cholesterol levels for study participants who took statins were adjusted
834 by dividing raw values by 0.7, following previous studies^{57,92,93}. Both LDL and HDL
835 cholesterol levels were set to missing for study participants with unknown statins use,
836 unknown fibric/nicotinic acids use, or those who took only fibric/nicotinic acids but no
837 statins. SBP and DBP were adjusted by adding 15 mmHg and 10 mmHg for study
838 participants self-reporting use of any antihypertensive medication, respectively⁷⁶. The
839 waist-hip ratio (WHR) was used as an illustrating example in gene-environment interaction
840 tests.

841

842 **ARIC data.** The cohort component of the ARIC study began in 1987, and each of the four
843 ARIC field centers (Washington County, MD; Forsyth County, NC; Jackson, MS; and
844 Minneapolis, MN) randomly selected and recruited a cohort sample of approximately 4,000
845 individuals aged 45-64 from a defined population in their community. A total of 15,792

846 participants received an extensive examination, including medical, social, and
847 demographic data⁹⁴. These participants were examined with the first (baseline) exam
848 occurring in 1987-89, the second in 1990-92, the third in 1993-95, the fourth in 1996-98,
849 the fifth in 2011-13, and the sixth in 2016-17. The TOPMed WGS study over-sampled
850 ARIC participants with incident venous thromboembolism (VTE). We removed
851 samples/visits with missing phenotype (LDL) or covariates (age, sex, BMI, field center,
852 and top five ancestry principal components), resulting in 26,668 observations from 6,327
853 ARIC EA samples and 7,514 observations from 2,045 ARIC AA samples. After removing
854 low-quality variants with a genotype call rate less than 90% and monomorphic markers,
855 there were 91,715,717 and 69,958,574 variants in ARIC EA and AA samples, respectively.
856

857 Longitudinal LDL cholesterol levels from the baseline exam until up to the 6th exam were
858 used as an illustrating example in single-variant and variant set meta-analyses. To account
859 for the effect of lipid-lowering medication, LDL cholesterol levels for study participants
860 who took statins were adjusted by dividing raw values by 0.7^{57,92,93}. LDL cholesterol levels
861 were set to missing for study participants with unknown statins use, unknown cholesterol
862 medication use, or inconsistent information from statins use and cholesterol medication
863 use.
864

865 **Reference data from 1000 Genomes.** Individual-level WGS data from the 1000 Genomes
866 Project⁹⁵ were used as reference panels in fastBAT variant set tests and LD score
867 regression. Only high-quality variants with a genotype call rate $\geq 95\%$ and passed the
868 quality control filters were included. Four reference panels were constructed with different
869 combinations of super-populations: European (Eu), European and African (EuAf),
870 European and American (EuAm), and European, African and American (EuAfAm), with
871 23,654,568, 45,780,202, 31,334,904, and 49,350,7868 variants from 503, 894, 682, and
872 1,073 samples, respectively.
873

874 **Statistical Analyses**

875 **Single-variant tests.** We removed samples with missing values in the phenotype LDL
876 cholesterol levels or covariates (age, sex, body mass index [BMI], field center, sampling

877 weight, Hispanic/Latino background groups, and top five ancestry principal components)
878 and excluded variants with a genotype call rate less than 90% and monomorphic markers
879 in single-variant test comparisons. After quality control, a total of 120,066,450 variants
880 from 7,297 HCHS/SOL samples were available for analysis. We included age, age², sex,
881 age × sex, age² × sex, BMI, field center, sampling weight, Hispanic/Latino background
882 groups and top five ancestry principal components as fixed-effects covariates. We rank-
883 normalized residuals after regressing the phenotype LDL cholesterol levels on fixed-effects
884 covariates, and then used them as the phenotype in downstream null model fitting and
885 association tests⁹⁶. Three random effects representing household, census block, and kinship
886 effects were included to account for sample relatedness. We also allowed the residual
887 variance to be different across 6 Hispanic/Latino background groups (i.e., Central
888 American, Cuban, Dominican, Mexican, Puerto Rican, and South American), in a
889 heteroscedastic linear mixed model⁷ for both GMMAT and StocSum. The *P* values from
890 StocSum were compared to those from GMMAT using individual-level data. The default
891 value of the number of random vectors *B* in StocSum was set to 1,000. To benchmark the
892 numerical accuracy and required computational resources, the number of random vectors
893 *B* changed from 10 (StocSum (B=10)), 100 (StocSum (B=100)), 1,000 (StocSum
894 (B=1,000)), to 10,000 (StocSum (B=10,000)).

895
896 To compare with fastGWA⁶⁰ in single-variant analysis, we dropped household and census
897 block random effects, and only included a kinship random effects to account for sample
898 relatedness. We also assumed an equal residual variance across 6 Hispanic/Latino
899 background groups in the linear mixed model for GMMAT and StocSum, to make a fair
900 comparison with fastGWA.

901
902 **Conditional association tests.** We performed conditional analyses for the seven regions
903 associated with LDL at the genome-wide significance level of 5×10^{-8} from the single-
904 variant analysis in HCHS/SOL (**Table S1**). For each region, we started with a sentinel
905 variant with the smallest *P* value, and computed conditional association test *P* values for
906 all variants in the flanking region (1 Mb) after adjusting for the sentinel variant. If there
907 were any variants in a region with a conditional *P* < 5×10^{-8} , we then selected the variant

908 with the smallest conditional *P* value as the secondary association variant, and performed
909 conditional analyses after adjusting for both association variants.

910

911 **Gene-environment interaction tests.** We compared gene-environment interaction tests in
912 StocSum with MAGEE single-variant interaction tests using individual-level data. We
913 focused on gene-sex interaction effects on an anthropometric phenotype waist-hip ratio
914 (WHR) which shows strong evidence of sex dimorphism, using WGS data from
915 HCHS/SOL. We included age, age², sex, age × sex, age² × sex, BMI, field center, sampling
916 weight, Hispanic/Latino background groups, top five ancestry principal components (PCs),
917 and sex by top five ancestry PC interactions as fixed-effects covariates. After removing
918 samples with missing values in the phenotype WHR or covariates, and variants with a
919 genotype call rate less than 90% and monomorphic markers, a total of 122,076,760 variants
920 from 7,636 HCHS/SOL samples were available for analysis. Similar to the single-variant
921 analysis, we followed a two-step approach⁹⁶ and used rank-normalized WHR residuals as
922 the phenotype in null model fitting and gene-sex interaction tests. We included three
923 random effects representing household, census block and kinship effects to account for
924 sample relatedness, and used a heteroscedastic linear mixed model by allowing the residual
925 variance to be different across the 12 sex by Hispanic/Latino background groups. The
926 marginal genetic effect, gene-sex interaction, and joint test *P* values from StocSum were
927 compared to corresponding test results from MAGEE single-variant interaction tests using
928 individual-level data.

929

930 **Variant set tests.** We compared variant set tests using StocSum versus SMMAT using
931 individual-level data. After removing samples with missing values in the phenotype LDL
932 cholesterol levels or covariates, and variants with a genotype call rate less than 90% and
933 monomorphic markers, a total of 120,066,450 variants from 7,297 HCHS/SOL samples
934 were available for analysis. We used the same null model as previously described in the
935 single-variant tests for GMMAT and StocSum, and conducted a sliding window analysis⁴³
936 with 20kb non-overlapping windows. We applied a beta density function with parameters
937 1 and 25 on the MAF as variant weights³⁸ in both SMMAT and StocSum. SMMAT requires
938 individual-level data to conduct variant set tests. In contrast, StocSum directly uses the

939 single-variant summary statistics and stochastic summary statistics previously computed
940 for single-variant tests.

941

942 To compare with fastBAT⁹⁷ in variant set tests, we used the same kinship-only null model
943 with equal residual variance as previously described in the single-variant test comparison
944 for fastGWA, GMMAT, and StocSum. We also changed variant weights using a beta
945 density function with parameters 0.5 and 0.5 on the MAF (also known as the Madsen-
946 Browning weights)⁹⁸, equivalent to rescaling the genotypes to a unit variance in fastBAT.
947 Four external reference panels from 1000 Genomes (Eu, EuAf, EuAm, EuAfAm), as well
948 as an internal reference panel using the HCHS/SOL study samples, were used to estimate
949 LD between variants in each set in fastBAT.

950

951 In a second example, we also applied StocSum to variant set tests using windows defined
952 by functional genomic units. We collected Hi-C data generated from an *in situ* Hi-C
953 protocol on human GM12878 B-lymphoblastoid cells⁴⁹, in which the crosslinked DNA was
954 pulled down followed by Illumina sequencing. The whole genome was split into non-
955 overlapping segments with a bin size of 10kb (i.e., contact matrices were generated at base
956 pair delimited resolutions of 10kb), and a total of 17,224 pairs of contacts were defined.
957 Each segment pair can be considered as a long-distance DNA crosslink. We grouped
958 variants from each contact pair as a variant set, including two 10kb windows which may
959 not be located in close proximity on the primary structure of DNA (the linear sequence),
960 to evaluate the performance of StocSum on variant sets that are physically farther away
961 and not typically covered using fixed-size sliding windows.

962

963 **Meta-analysis.** We combined StocSum on LDL cholesterol levels from ARIC and
964 HCHS/SOL in single-variant and variant set meta-analysis. For HCHS/SOL, we used
965 single-variant summary statistics and stochastic summary statistics previously computed
966 for single-variant tests on LDL cholesterol levels. For ARIC, we first fit two linear mixed
967 models separately for EA and AA, treating LDL cholesterol levels from up to 6 visits as
968 repeated measures for each participant, and then computed single-variant summary
969 statistics and stochastic summary statistics. We included age, age², sex, age × sex, age² ×

970 sex, BMI, field center, and top five ancestry principal components as fixed-effects
971 covariates. We rank-normalized residuals after regressing the phenotype LDL cholesterol
972 levels on fixed-effects covariates, and then used them as the phenotype⁹⁶. In each ARIC
973 dataset (EA and AA), variants with a genotype call rate less than 90% and monomorphic
974 markers were excluded. After quality control, there were a total of 91,715,717 variants
975 from 6,327 ARIC EA samples, and 69,958,574 variants from 2,045 ARIC AA samples.

976

977 We took the union of all variants and combined ARIC EA, ARIC AA, and HCHS/SOL
978 summary statistics in a traditional single-variant meta-analysis using GMMAT, and a
979 traditional variant set meta-analysis using SMMAT. In StocSum meta-analysis, we
980 combined stochastic summary statistics from ARIC EA, ARIC AA and HCHS/SOL into a
981 single file by adding together stochastic summary statistics for the same variant across
982 three studies. We assigned 0 to both the single-variant summary statistic and stochastic
983 summary statistic for a variant that was not observed in a study, since it did not contribute
984 to the test statistic. In variant set meta-analysis, we applied a beta density function with
985 parameters 1 and 25 on the MAF as variant weights, and conducted a 20kb sliding window
986 analysis, for both SMMAT and StocSum.

987

988 **LD score regression.** In LD score regression, we only included common genetic variants
989 with MAF $\geq 1\%$ in HCHS/SOL. Following previous guidelines^{14,16,99,100}, we excluded
990 variants within the major histocompatibility complex (MHC; chromosome 6: 25-34Mb)
991 and variants in regions with exceptionally long-range LD (**Table S6**). After quality control,
992 11,190,311 common variants with MAF $> 1\%$ from 7,289 HCHS/SOL study samples were
993 used in StocSum to calculate LD score. We used single-variant summary statistics from
994 GWAS of LDL, HDL, SBP and DBP in HCHS/SOL using GMMAT. Covariates included
995 age, age², sex, age \times sex, age² \times sex, BMI, field center, sampling weight, Hispanic/Latino
996 background groups, and top five ancestry principal components. The same HCHS/SOL
997 study samples were used as an internal reference panel in the LDSC program and StocSum
998 to calculate LD scores, i.e., LDSC (Sample) and StocSum (Sample). With the same filters,
999 four external reference panels from the 1000 Genomes Project were used in the LDSC
1000 program to calculate LD scores, i.e., LDSC (Eu), LDSC (EuAf), LDSC (EuAm), LDSC

1001 (EuAfAm), including 9,092,238, 14,296,986, 9,410,628, 13,819,023 common variants
1002 with MAF > 1% (1000 Genomes Project Consortium), from 503 Eu, 894 EuAf, 682 EuAm,
1003 and 1,073 EuAfAm samples, respectively. With the LD scores from these internal and
1004 external references, the LDSC program was used to estimate heritability. For both LDSC
1005 and StocSum, we used a 1 Mb window around each index variant to calculate its LD score.
1006
1007 To evaluate the performance of StocSum, we also compared heritability estimates from
1008 LDSC (Sample) and StocSum (Sample) partitioned by different MAF bins. Common
1009 variants from HCHS/SOL and external reference panels were divided into 6 MAF bins,
1010 i.e., $1\% < \text{MAF} \leq 5\%$, $5\% < \text{MAF} \leq 10\%$, $10\% < \text{MAF} \leq 20\%$, $20\% < \text{MAF} \leq 30\%$, $30\% < \text{MAF} \leq 40\%$, and $40\% < \text{MAF} \leq 50\%$. Partitioned LD scores for different MAF bins
1011 were calculated by LDSC and StocSum, i.e., LDSC (Sample), LDSC (Eu), LDSC (EuAf),
1012 LDSC(EuAm), LDSC (EuAfAm), and StocSum (Sample). Partitioned heritability was
1013 estimated by the LDSC program with summary statistics for the phenotype LDL and
1014 partitioned LD scores.
1015

1016 **Reference**

- 1017 1. Morris, A. P. *et al.* Large-scale association analysis provides insights into the
1018 genetic architecture and pathophysiology of type 2 diabetes. *Nat Genet* **44**, 981–
1019 990 (2012).
- 1020 2. Manning, A. K. *et al.* A genome-wide approach accounting for body mass index
1021 identifies genetic variants influencing fasting glycemic traits and insulin resistance.
Nat Genet **44**, 659–669 (2012).
- 1023 3. Lambert, J.-C. *et al.* Meta-analysis of 74,046 individuals identifies 11 new
1024 susceptibility loci for Alzheimer's disease. *Nat Genet* **45**, 1452–1458 (2013).
- 1025 4. Global Lipids Genetics Consortium. Discovery and refinement of loci associated
1026 with lipid levels. *Nat Genet* **45**, 1274–1283 (2013).
- 1027 5. Locke, A. E. *et al.* Genetic studies of body mass index yield new insights for
1028 obesity biology. *Nature* **518**, 197–206 (2015).
- 1029 6. Liu, J. Z. *et al.* Association analyses identify 38 susceptibility loci for
1030 inflammatory bowel disease and highlight shared genetic risk across populations.
Nat Genet **47**, 979–986 (2015).
- 1032 7. Conomos, M. P. *et al.* Genetic diversity and association studies in US
1033 Hispanic/Latino populations: applications in the Hispanic Community Health
1034 Study/Study of Latinos. *The American Journal of Human Genetics* **98**, 165–184
1035 (2016).

1036 8. Graham, S. E. *et al.* The power of genetic diversity in genome-wide association
1037 studies of lipids. *Nature* **600**, 675–679 (2021).

1038 9. Mikhaylova, A. V. *et al.* Whole-genome sequencing in diverse subjects identifies
1039 genetic correlates of leukocyte traits: The NHLBI TOPMed program. *The
1040 American Journal of Human Genetics* **108**, 1836–1851 (2021).

1041 10. Taliun, D. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
1042 Program. *Nature* **590**, 290–299 (2021).

1043 11. Halldorsson, B. V. *et al.* The sequences of 150,119 genomes in the UK Biobank.
1044 *Nature* **607**, 732–740 (2022).

1045 12. Lin, D. Y. & Zeng, D. Meta-analysis of genome-wide association studies: no
1046 efficiency gain in using individual participant data. *Genetic Epidemiology: The
1047 Official Publication of the International Genetic Epidemiology Society* **34**, 60–66
1048 (2010).

1049 13. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in
1050 meta-analysis of genome-wide association studies. *The American Journal of
1051 Human Genetics* **88**, 586–598 (2011).

1052 14. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from
1053 polygenicity in genome-wide association studies. *Nat Genet* **47**, 291–295 (2015).

1054 15. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using
1055 genome-wide association summary statistics. *Nat Genet* **47**, 1228–1235 (2015).

1056 16. Speed, D. & Balding, D. J. SumHer better estimates the SNP heritability of
1057 complex traits from summary statistics. *Nat Genet* **51**, 277–284 (2019).

1058 17. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary
1059 statistics identifies additional variants influencing complex traits. *Nat Genet* **44**,
1060 369–375 (2012).

1061 18. Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-
1062 analysis of rare variants in sequencing association studies. *The American Journal
1063 of Human Genetics* **93**, 42–53 (2013).

1064 19. Liu, D. J. *et al.* Meta-analysis of gene-level tests for rare variant association. *Nat
1065 Genet* **46**, 200–204 (2014).

1066 20. Feng, S. *et al.* Methods for Association Analysis and Meta-Analysis of Rare
1067 Variants in Families. *Genet Epidemiol* **39**, 227–238 (2015).

1068 21. Chen, H. *et al.* Efficient variant set mixed model association tests for continuous
1069 and binary traits in large-scale whole-genome sequencing studies. *The American
1070 Journal of Human Genetics* **104**, 260–274 (2019).

1071 22. Gamazon, E. R. *et al.* A gene-based association method for mapping traits using
1072 reference transcriptome data. *Nat Genet* **47**, 1091–1098 (2015).

1073 23. Gusev, A. *et al.* Integrative approaches for large-scale transcriptome-wide
1074 association studies. *Nat Genet* **48**, 245–252 (2016).

1075 24. Zhu, X. *et al.* Meta-analysis of correlated traits via summary statistics from
1076 GWASs with an application in hypertension. *The American Journal of Human
1077 Genetics* **96**, 21–36 (2015).

1078 25. Liu, Z. & Lin, X. Multiple phenotype association tests using summary statistics in
1079 genome-wide association studies. *Biometrics* **74**, 165–175 (2018).

1080 26. Turley, P. *et al.* Multi-trait analysis of genome-wide association summary statistics
1081 using MTAG. *Nat Genet* **50**, 229–237 (2018).

1082 27. Bulik-Sullivan, B. *et al.* An atlas of genetic correlations across human diseases and
1083 traits. *Nat Genet* **47**, 1236–1241 (2015).

1084 28. Lu, Q. *et al.* A powerful approach to estimating annotation-stratified genetic
1085 covariance via GWAS summary statistics. *The American Journal of Human
1086 Genetics* **101**, 939–964 (2017).

1087 29. Wang, Y. *et al.* The 3D Genome Browser: a web-based browser for visualizing 3D
1088 genome organization and long-range chromatin interactions. *Genome Biol* **19**, 1–
1089 12 (2018).

1090 30. Zhang, Y., Qi, G., Park, J.-H. & Chatterjee, N. Estimation of complex effect-size
1091 distributions using summary-level statistics from genome-wide association studies
1092 across 32 complex traits. *Nat Genet* **50**, 1318–1326 (2018).

1093 31. Voorman, A., Brody, J., Chen, H., Lumley, T. & David, B. seqMeta: An R
1094 package for meta-analyzing region-based tests of rare DNA variants. Preprint at
1095 (2017).

1096 32. Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and
1097 comprehensive tool for rare variant association analysis using sequence data.
1098 *Bioinformatics* **32**, 1423–1426 (2016).

1099 33. Feng, S., Liu, D., Zhan, X., Wing, M. K. & Abecasis, G. R. RAREMETAL: fast
1100 and powerful meta-analysis for rare variants. *Bioinformatics* **30**, 2828–2829
1101 (2014).

1102 34. Morgenthaler, S. & Thilly, W. G. A strategy to discover genes that carry multi-
1103 allelic or mono-allelic risk for common diseases: a cohort allelic sums test
1104 (CAST). *Mutation Research/Fundamental and Molecular Mechanisms of
1105 Mutagenesis* **615**, 28–56 (2007).

1106 35. Li, B. & Leal, S. M. Methods for detecting associations with rare variants for
1107 common diseases: application to analysis of sequence data. *The American Journal
1108 of Human Genetics* **83**, 311–321 (2008).

1109 36. Madsen, B. E. & Browning, S. R. A groupwise association test for rare mutations
1110 using a weighted sum statistic. *PLoS Genet* **5**, e1000384 (2009).

1111 37. Morris, A. P. & Zeggini, E. An evaluation of statistical approaches to rare variant
1112 analysis in genetic association studies. *Genet Epidemiol* **34**, 188–193 (2010).

1113 38. Wu, M. C. *et al.* Rare-variant association testing for sequencing data with the
1114 sequence kernel association test. *The American Journal of Human Genetics* **89**,
1115 82–93 (2011).

1116 39. Sun, J., Zheng, Y. & Hsu, L. A unified mixed-effects model for rare-variant
1117 association in sequencing studies. *Genet Epidemiol* **37**, 334–344 (2013).

1118 40. Chen, H., Meigs, J. B. & Dupuis, J. Sequence kernel association test for
1119 quantitative traits in family samples. *Genet Epidemiol* **37**, 196–204 (2013).

1120 41. Brody, J. A. *et al.* Analysis commons, a team approach to discovery in a big-data
1121 environment for genetic epidemiology. *Nat Genet* **49**, 1560–1563 (2017).

1122 42. Li, Z. *et al.* A framework for detecting noncoding rare-variant associations of
1123 large-scale whole-genome sequencing studies. *Nat Methods* 1–13 (2022).

1124 43. Morrison, A. C. *et al.* Practical approaches for whole-genome sequence analysis of
1125 heart-and blood-related traits. *The American Journal of Human Genetics* **100**, 205–
1126 215 (2017).

1127 44. Li, X. *et al.* Powerful, scalable and resource-efficient meta-analysis of rare variant
1128 associations in large whole genome sequencing studies. *Nat Genet* 1–11 (2022).

1129 45. Li, G. *et al.* Extensive promoter-centered chromatin interactions provide a
1130 topological basis for transcription regulation. *Cell* **148**, 84–98 (2012).

1131 46. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction
1132 landscape of gene promoters. *Nature* **489**, 109–113 (2012).

1133 47. Jin, F. *et al.* A high-resolution map of the three-dimensional chromatin interactome
1134 in human cells. *Nature* **503**, 290–294 (2013).

1135 48. Heidari, N. *et al.* Genome-wide map of regulatory interactions in the human
1136 genome. *Genome Res* **24**, 1905–1917 (2014).

1137 49. Rao, S. S. *et al.* A 3D map of the human genome at kilobase resolution reveals
1138 principles of chromatin looping. *Cell* **159**, 1665–1680 (2014).

1139 50. Turner, A. W. *et al.* Single-nucleus chromatin accessibility profiling highlights
1140 regulatory mechanisms of coronary artery disease risk. *Nat Genet* **54**, 804–816
1141 (2022).

1142 51. Zhou, T. *et al.* Lupus enhancer risk variant causes dysregulation of IRF8 through
1143 cooperative lncRNA and DNA methylation machinery. *Nat Commun* **13**, 1–16
1144 (2022).

1145 52. Nasser, J. *et al.* Genome-wide enhancer maps link risk variants to disease genes.
1146 *Nature* **593**, 238–243 (2021).

1147 53. McCullagh, P. & Nelder, J. Generalized Linear Models Second edition Chapman
1148 & Hall. Preprint at (1989).

1149 54. Lin, X. & Zhang, D. Inference in generalized additive mixed models by using
1150 smoothing splines. *J R Stat Soc Series B Stat Methodol* **61**, 381–400 (1999).

1151 55. Chen, H. *et al.* Control for population structure and relatedness for binary traits in
1152 genetic association studies via logistic mixed models. *The American Journal of
1153 Human Genetics* **98**, 653–666 (2016).

1154 56. Hoffmann, T. J. *et al.* A large electronic-health-record-based genome-wide study
1155 of serum lipids. *Nat Genet* **50**, 401–413 (2018).

1156 57. Peloso, G. M. *et al.* Association of low-frequency and rare coding-sequence
1157 variants with blood lipids and coronary heart disease in 56,000 whites and blacks.
1158 *The American Journal of Human Genetics* **94**, 223–232 (2014).

1159 58. Teslovich, T. M. *et al.* Biological, clinical and population relevance of 95 loci for
1160 blood lipids. *Nature* **466**, 707–713 (2010).

1161 59. Kurano, M. *et al.* Genome-wide association study of serum lipids confirms
1162 previously reported associations as well as new associations of common SNPs
1163 within PCSK7 gene with triglyceride. *J Hum Genet* **61**, 427–433 (2016).

1164 60. Jiang, L. *et al.* A resource-efficient tool for mixed model association analysis of
1165 large-scale data. *Nat Genet* **51**, 1749–1755 (2019).

1166 61. Wang, X. *et al.* Efficient gene–environment interaction tests for large biobank-
1167 scale sequencing studies. *Genet Epidemiol* **44**, 908–923 (2020).

1168 62. Christakoudi, S., Evangelou, E., Riboli, E. & Tsilidis, K. K. GWAS of allometric
1169 body-shape indices in UK Biobank identifies loci suggesting associations with
1170 morphogenesis, organogenesis, adrenal cell renewal and cancer. *Sci Rep* **11**, 1–18
1171 (2021).

1172 63. Lotta, L. A. *et al.* Association of genetic variants related to gluteofemoral vs
1173 abdominal fat distribution with type 2 diabetes, coronary disease, and
1174 cardiovascular risk factors. *JAMA* **320**, 2553–2563 (2018).

1175 64. Pulit, S. L. *et al.* Meta-analysis of genome-wide association studies for body fat
1176 distribution in 694 649 individuals of European ancestry. *Hum Mol Genet* **28**, 166–
1177 174 (2019).

1178 65. Westerman, K. E. *et al.* GEM: scalable and flexible gene–environment interaction
1179 analysis in millions of samples. *Bioinformatics* **37**, 3514–3520 (2021).

1180 66. Winkler, T. W. *et al.* The influence of age and sex on genetic associations with
1181 adult body size and shape: a large-scale genome-wide interaction study. *PLoS
1182 Genet* **11**, e1005378 (2015).

1183 67. Wood, A. C. *et al.* Identification of genetic loci simultaneously associated with
1184 multiple cardiometabolic traits. *Nutrition, Metabolism and Cardiovascular
1185 Diseases* **32**, 1027–1034 (2022).

1186 68. Zhu, Z. *et al.* Shared genetic and experimental links between obesity-related traits
1187 and asthma subtypes in UK Biobank. *Journal of Allergy and Clinical Immunology*
1188 **145**, 537–549 (2020).

1189 69. Consortium, 1000 Genomes Project. A global reference for human genetic
1190 variation. *Nature* **526**, 68 (2015).

1191 70. Mumbach, M. R. *et al.* HiChIP: efficient and sensitive analysis of protein-directed
1192 genome architecture. *Nat Methods* **13**, 919–922 (2016).

1193 71. Mumbach, M. R. *et al.* Enhancer connectome in primary human cells identifies
1194 target genes of disease-associated DNA elements. *Nat Genet* **49**, 1602–1612
1195 (2017).

1196 72. Salameh, T. J. *et al.* A supervised learning framework for chromatin loop detection
1197 in genome-wide contact maps. *Nat Commun* **11**, 1–12 (2020).

1198 73. Noordam, R. *et al.* Multi-ancestry sleep-by-SNP interaction analysis in 126,926
1199 individuals reveals lipid loci stratified by sleep duration. *Nat Commun* **10**, 1–13
1200 (2019).

1201 74. Ripatti, P. *et al.* Polygenic hyperlipidemias and coronary artery disease risk. *Circ
1202 Genom Precis Med* **13**, e002725 (2020).

1203 75. Tamai, K. *et al.* LDL-receptor-related proteins in Wnt signal transduction. *Nature*
1204 **407**, 530–535 (2000).

1205 76. Wojcik, G. L. *et al.* Genetic analyses of diverse populations improves discovery
1206 for complex traits. *Nature* **570**, 514–518 (2019).

1207 77. Galinsky, K. J. *et al.* Fast principal-component analysis reveals convergent
1208 evolution of ADH1B in Europe and East Asia. *The American Journal of Human
1209 Genetics* **98**, 456–472 (2016).

1210 78. Agrawal, A., Chiu, A. M., Le, M., Halperin, E. & Sankararaman, S. Scalable
1211 probabilistic PCA for large-scale genetic variation data. *PLoS Genet* **16**, e1008773
1212 (2020).

1213 79. Pazokitoroudi, A. *et al.* Efficient variance components analysis across millions of
1214 genomes. *Nat Commun* **11**, 1–10 (2020).

1215 80. Wu, Y. *et al.* Fast estimation of genetic correlation for biobank-scale data. *The
1216 American Journal of Human Genetics* **109**, 24–32 (2022).

1217 81. Zhou, W. *et al.* Efficiently controlling for case-control imbalance and sample
1218 relatedness in large-scale genetic association studies. *Nat Genet* **50**, 1335–1341
1219 (2018).

1220 82. Lumley, T., Brody, J., Peloso, G., Morrison, A. & Rice, K. FastSKAT: Sequence
1221 kernel association tests for very large sets of markers. *Genet Epidemiol* **42**, 516–
1222 527 (2018).

1223 83. Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in sequencing
1224 association studies. *Biostatistics* **13**, 762–775 (2012).

1225 84. Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of
1226 human genetic variants. *Nat Genet* **46**, 310–315 (2014).

1227 85. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD:
1228 predicting the deleteriousness of variants throughout the human genome. *Nucleic
1229 Acids Res* **47**, D886–D894 (2019).

1230 86. Rogers, M. F. *et al.* FATHMM-XF: accurate prediction of pathogenic point
1231 mutations via extended features. *Bioinformatics* **34**, 511–513 (2018).

1232 87. Li, X. *et al.* Dynamic incorporation of multiple in silico functional annotations
1233 empowers rare variant association analysis of large whole-genome sequencing
1234 studies at scale. *Nat Genet* **52**, 969–983 (2020).

1235 88. Zheng, J. *et al.* LD Hub: a centralized database and web interface to perform LD
1236 score regression that maximizes the potential of summary level GWAS data for
1237 SNP heritability and genetic correlation analysis. *Bioinformatics* **33**, 272–279
1238 (2017).

1239 89. Regier, A. A. *et al.* Functional equivalence of genome sequencing analysis
1240 pipelines enables harmonized variant calling across human genetics projects. *Nat
1241 Commun* **9**, 1–8 (2018).

1242 90. LaVange, L. M. *et al.* Sample design and cohort selection in the Hispanic
1243 Community Health Study/Study of Latinos. *Ann Epidemiol* **20**, 642–649 (2010).

1244 91. Sorlie, P. D. *et al.* Design and implementation of the Hispanic community health
1245 study/study of Latinos. *Ann Epidemiol* **20**, 629–641 (2010).

1246 92. Baigent, C. Cholesterol Treatment Trialists' (CTT) Collaborators: Efficacy and
1247 safety of cholesterol-lowering treatment: prospective meta-analysis of data from
1248 90,056 participants in 14 randomised trials of statins. *Lancet* **366**, 1267–1278
1249 (2005).

1250 93. Klarin, D. *et al.* Genetics of blood lipids among~ 300,000 multi-ethnic participants
1251 of the Million Veteran Program. *Nat Genet* **50**, 1514–1523 (2018).

1252 94. Wright, J. D., Folsom, A. R., Coresh, J., Sharrett, A. R., Couper, D., Wagenknecht,
1253 L. E., & Heiss, G. The ARIC (Atherosclerosis Risk in Communities) study: JACC
1254 focus seminar 3/8. *Journal of the American College of Cardiology* **77**, 2939–2959
1255 (2021).

1256 95. 1000 Genomes Project Consortium. A map of human genome variation from
1257 population scale sequencing. *Nature* **467**, 1061 (2010).

1258 96. Sofer, T. *et al.* A fully adjusted two-stage procedure for rank-normalization in
1259 genetic association studies. *Genet Epidemiol* **43**, 263–275 (2019).

1260 97. Bakshi, A. *et al.* Fast set-based association analysis using summary data from
1261 GWAS identifies novel gene loci for human complex traits. *Sci Rep* **6**, 1–9 (2016).

1262 98. Madsen, B. E. & Browning, S. R. A groupwise association test for rare mutations
1263 using a weighted sum statistic. *PLoS Genet* **5**, e1000384 (2009).

1264 99. Speed, D. *et al.* Reevaluation of SNP heritability in complex human traits. *Nat*
1265 *Genet* **49**, 986–992 (2017).

1266 100. De Vlaming, R., Johannesson, M., Magnusson, P. K. E., Ikram, M. A. & Visscher,
1267 P. M. Equivalence of LD-score regression and individual-level-data methods.
1268 *Biorxiv* 211821 (2017).

1269

1270 **Acknowledgements**

1271 Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program was
1272 supported by the National Heart, Lung and Blood Institute (NHLBI). Whole genome
1273 sequencing for “NHLBI TOPMed - NHGRI CCDG: Hispanic Community Health
1274 Study/Study of Latinos (HCHS/SOL) (phs001395.v1.p1)” was performed at Baylor
1275 College of Medicine Human Genome Sequencing Center (HHSN268201600033I). Whole
1276 genome sequencing for “NHLBI TOPMed - NHGRI CCDG: Atherosclerosis Risk in
1277 Communities (ARIC) (phs001211.v1.p1)” was performed at Baylor College of Medicine
1278 Human Genome Sequencing Center (3U54HG003273-12S2; HHSN268201500015C) and
1279 the Broad Institute Genomics Platform (3R01HL092577-06S1). Core support including
1280 centralized genomic read mapping and genotype calling, along with variant quality metrics
1281 and filtering were provided by the TOPMed Informatics Research Center (3R01HL-
1282 117626-02S1; contract HHSN268201800002I). Core support including phenotype
1283 harmonization, data management, sample-identity QC, and general program coordination
1284 were provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-
1285 120393; contract HHSN268201800001I). We gratefully acknowledge the studies and
1286 participants who provided biological samples and data for TOPMed.

1287

1288 The Genome Sequencing Program (GSP) was funded by the National Human Genome
1289 Research Institute (NHGRI), the National Heart, Lung, and Blood Institute (NHLBI), and
1290 the National Eye Institute (NEI). The GSP Coordinating Center (U24 HG008956)
1291 contributed to cross program scientific initiatives and provided logistical and general study
1292 coordination. The Centers for Common Disease Genomics (CCDG) program was

1293 supported by NHGRI and NHLBI, and whole genome sequencing was performed at the
1294 Baylor College of Medicine Human Genome Sequencing Center (UM1 HG008898).

1295

1296 The Hispanic Community Health Study/Study of Latinos is a collaborative study supported
1297 by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University
1298 of North Carolina (HHSN268201300001I / N01-HC-65233), University of Miami
1299 (HHSN268201300004I / N01-HC-65234), Albert Einstein College of Medicine
1300 (HHSN268201300002I / N01-HC-65235), University of Illinois at Chicago –
1301 HHSN268201300003I / N01-HC-65236 Northwestern Univ), and San Diego State
1302 University (HHSN268201300005I / N01-HC-65237). The following
1303 Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds
1304 to the NHLBI: National Institute on Minority Health and Health Disparities, National
1305 Institute on Deafness and Other Communication Disorders, National Institute of Dental
1306 and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney
1307 Diseases, National Institute of Neurological Disorders and Stroke, NIH Institution-Office
1308 of Dietary Supplements.

1309

1310 The Atherosclerosis Risk in Communities study has been funded in whole or in part with
1311 Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of
1312 Health, Department of Health and Human Services, under Contract nos.
1313 (75N92022D00001, 75N92022D00002, 75N92022D00003, 75N92022D00004,
1314 75N92022D00005). The authors thank the staff and participants of the ARIC study for their
1315 important contributions.

1316

1317 This work was supported by NHLBI grant R01 HL145025.

1318 **Competing interests**

1319 The authors declare no competing interests.

1320 **Supplementary Note**

1321 **1. Approximating eigenvalues in variant set tests using singular values from StocSum.**

1322 For q variants ($q < B$), the $q \times q$ covariance matrix used in variant set tests is
1323 $\tilde{\mathbf{V}} = \tilde{\mathbf{G}}^T \mathbf{P} \tilde{\mathbf{G}}$. In the StocSum framework, we compute a $q \times B$ matrix $\tilde{\mathbf{U}} = \tilde{\mathbf{G}}^T \mathbf{R}$, where
1324 each column \mathbf{R}_b ($1 \leq b \leq B$) of an $N \times B$ random matrix $\mathbf{R} = (\mathbf{R}_1 \mathbf{R}_2 \dots \mathbf{R}_B)$ is a length
1325 N random vector generated from a multivariate normal distribution with mean $\mathbf{0}$ and
1326 covariance matrix \mathbf{P} . Each column $\tilde{\mathbf{U}}_b = \tilde{\mathbf{G}}^T \mathbf{R}_b$ of $\tilde{\mathbf{U}}$ then follows a multivariate normal
1327 distribution with mean $\mathbf{0}$ and covariance matrix $\tilde{\mathbf{V}}$, and the B columns of $\tilde{\mathbf{U}}$ are
1328 independent and identically distributed. Therefore, when B is large, $\frac{1}{B} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T$ converges to
1329 the covariance matrix $\tilde{\mathbf{V}}$. For $\mathbf{\Xi}_{SKAT} = \mathbf{W} \tilde{\mathbf{V}} \mathbf{W}$ in SKAT, we can use $\frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W}$ to estimate
1330 $\mathbf{\Xi}_{SKAT}$.

1331

1332 We compute the singular value decomposition $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}} = \mathbf{Q}_L \mathbf{D} \mathbf{Q}_R^T$, where $r \leq \min(q, B)$
1333 is the rank of $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}}$, \mathbf{Q}_L and \mathbf{Q}_R are $q \times r$ and $B \times r$ semi-unitary matrices, respectively
1334 ($\mathbf{Q}_L^T \mathbf{Q}_L = \mathbf{Q}_R^T \mathbf{Q}_R = \mathbf{I}_r$), and \mathbf{D} is an $r \times r$ diagonal matrix with elements being the
1335 singular values of $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}}$. As we use $\frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W}$ to estimate $\mathbf{\Xi}_{SKAT}$, where $\frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W} =$
1336 $\mathbf{Q}_L \mathbf{D} \mathbf{Q}_R^T \mathbf{Q}_R \mathbf{D} \mathbf{Q}_L^T = \mathbf{Q}_L \mathbf{D} \mathbf{D} \mathbf{Q}_L^T$, elements in the $r \times r$ diagonal matrix $\mathbf{D} \mathbf{D}$ (the square of
1337 the singular values of $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}}$) can be used to estimate the eigenvalues of $\mathbf{\Xi}_{SKAT}$ when $r =$
1338 q . If $r < q$ (for example, when testing a large genomic region with $q > B$), we could only
1339 estimate the top r (which is usually equal to B when $q > B$) eigenvalues of $\mathbf{\Xi}_{SKAT}$ using
1340 the singular values of $\frac{1}{\sqrt{B}} \mathbf{W} \tilde{\mathbf{U}}$.

1341

1342

1343 **2. Approximating eigenvalues in the efficient hybrid variant set test using singular**
1344 **values from StocSum.**

1345

1346 In the efficient hybrid variant set test to combine the burden test and SKAT, the adjusted
 1347 SKAT statistic asymptotically follows a weighted sum of independent chi-square
 1348 distributions with 1 df, where the weights are the eigenvalues of

1349

$$1350 \quad \boldsymbol{\Xi}_{SKAT|Burden} = \boldsymbol{\Xi}_{SKAT} - \boldsymbol{\Xi}_{Burden} = \boldsymbol{\Xi}_{SKAT} - \boldsymbol{\Xi}_{SKAT} \mathbf{1}_q (\mathbf{1}_q^T \boldsymbol{\Xi}_{SKAT} \mathbf{1}_q)^{-1} \mathbf{1}_q^T \boldsymbol{\Xi}_{SKAT}.$$

1351 As we use $\frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W}$ to estimate $\boldsymbol{\Xi}_{SKAT}$ (**Supplementary Note 1**), let $\tilde{\mathbf{u}} = \tilde{\mathbf{U}}^T \mathbf{W} \mathbf{1}_q$ be a
 1352 length B vector denoting the column sum of $\mathbf{W} \tilde{\mathbf{U}}$, and define $\tilde{\mathbf{U}}_{Burden} =$
 1353 $\mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T$, $\tilde{\mathbf{U}}_{SKAT|Burden} = \mathbf{W} \tilde{\mathbf{U}} - \tilde{\mathbf{U}}_{Burden} = \mathbf{W} \tilde{\mathbf{U}} - \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T$ (see
 1354 **Methods**), it follows that

$$1355 \quad \boldsymbol{\Xi}_{SKAT|Burden} \approx \frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W} \mathbf{1}_q (\mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W} \mathbf{1}_q)^{-1} \mathbf{1}_q^T \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W}$$

1356

$$1357 \quad = \frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{U}}^T \mathbf{W} - \frac{1}{B} \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T \tilde{\mathbf{U}}^T \mathbf{W}$$

$$1358 \quad = \frac{1}{B} (\mathbf{W} \tilde{\mathbf{U}} - \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T) (\mathbf{W} \tilde{\mathbf{U}} - \mathbf{W} \tilde{\mathbf{U}} \tilde{\mathbf{u}} (\tilde{\mathbf{u}}^T \tilde{\mathbf{u}})^{-1} \tilde{\mathbf{u}}^T)^T$$

$$1359 \quad = \frac{1}{B} \tilde{\mathbf{U}}_{SKAT|Burden} \tilde{\mathbf{U}}_{SKAT|Burden}^T.$$

1360 Therefore, similar to **Supplementary Note 1**, the eigenvalues of the $q \times q$ matrix
 1361 $\boldsymbol{\Xi}_{SKAT|Burden}$ can be estimated using the square of the single values of the $q \times B$ matrix

$$1362 \quad \frac{1}{\sqrt{B}} \tilde{\mathbf{U}}_{SKAT|Burden}.$$

1363

1364

1365 3. Derivation of the adjusted correlation coefficient in the StocSum framework

1366

1367 Let r_{jk} be the Pearson correlation coefficient between variants j and k , the sample
 1368 correlation coefficient \hat{r}_{jk} can be estimated using individual-level centered and rescaled

1369 genotypes (with mean 0 and variance 1), namely, $\hat{r}_{jk} = \frac{w_j \mathbf{G}_{.j}^T \mathbf{L} \mathbf{G}_{.k} w_k}{N-1}$, where $\mathbf{G}_{.j}$ and $\mathbf{G}_{.k}$ are
 1370 the j th and k th columns of the full genotype matrix \mathbf{G} , representing variants j and k , w_j
 1371 and w_k are rescaling weights that standardize genotypes to a unit variance, and $\mathbf{L} =$

1372 $(\mathbf{I}_N - \mathbf{1}_N(\mathbf{1}_N^T \mathbf{1}_N)^{-1} \mathbf{1}_N^T)$ is an $N \times N$ idempotent projection matrix that centers the
 1373 genotypes (see **Methods**). The asymptotic distribution of \hat{r}_{jk} is given by

1374
$$\sqrt{N}(\hat{r}_{jk} - r_{jk}) \rightarrow N(0, (1 - r_{jk}^2)^2).$$

1375 Therefore,

1376
$$E(\hat{r}_{jk}^2) = E(\hat{r}_{jk})^2 + Var(\hat{r}_{jk}) = r_{jk}^2 + \frac{(1 - r_{jk}^2)^2}{N} \approx r_{jk}^2 + \frac{1 - r_{jk}^2}{N}.$$

1377 In LD score regression, the higher order term is ignored and the adjusted squared
 1378 correlation coefficient is computed as $\hat{r}_{adj_{jk}}^2 = \hat{r}_{jk}^2 - \frac{1 - \hat{r}_{jk}^2}{N-2}$ to reduce the bias (Bulik-
 1379 Sullivan et al., 2015).

1380

1381 In the StocSum framework, we compute the $M \times B$ stochastic summary statistic matrix
 1382 $\mathbf{U} = \mathbf{W}\mathbf{G}^T\mathbf{R}$, where $\mathbf{W} = diag\{w_j\}$ is an $M \times M$ diagonal weight matrix, and \mathbf{G} is an
 1383 $N \times M$ genotype matrix for all M genetic variants on the whole genome (or one
 1384 chromosome). We use \mathbf{U}_j and \mathbf{U}_k to denote length B row vectors from \mathbf{U} for variants j
 1385 and k , respectively. Then we can use $\frac{1}{B}\mathbf{U}_j\mathbf{U}_k^T$ to estimate $w_j \mathbf{G}_{j\cdot}^T \mathbf{L} \mathbf{G}_{k\cdot} w_k$, and therefore
 1386 $\tilde{r}_{jk} = \frac{\tilde{\mathbf{U}}_j \cdot \tilde{\mathbf{U}}_k^T}{B(N-1)}$ converges to $\hat{r}_{jk} = \frac{w_j \mathbf{G}_{j\cdot}^T \mathbf{L} \mathbf{G}_{k\cdot} w_k}{N-1}$ when B is large. Given \hat{r}_{jk} , the asymptotic
 1387 distribution of $\tilde{r}_{jk} | \hat{r}_{jk}$ follows

1388
$$\sqrt{B}(\tilde{r}_{jk} - \hat{r}_{jk}) \rightarrow N(0, (1 - \hat{r}_{jk}^2)^2).$$

1389

1390 Therefore,

1391
$$E(\tilde{r}_{jk}) = E\{E(\tilde{r}_{jk} | \hat{r}_{jk})\} = E(\hat{r}_{jk}) = r_{jk},$$

1392 and ignoring the higher order terms in the variance, we have

1393
$$Var(\tilde{r}_{jk}) = E\{Var(\tilde{r}_{jk} | \hat{r}_{jk})\} + Var\{E(\tilde{r}_{jk} | \hat{r}_{jk})\} \approx E\left\{\frac{1 - \hat{r}_{jk}^2}{B}\right\} + Var\{\hat{r}_{jk}\}$$

 1394
$$= \frac{1 - r_{jk}^2 - \frac{1 - r_{jk}^2}{N}}{B} + \frac{1 - \rho_{jk}^2}{N}.$$

1395 Hence,

1396
$$E(\tilde{r}_{jk}^2) = E(\tilde{r}_{jk})^2 + Var(\tilde{r}_{jk}) = r_{jk}^2 + \frac{1-r_{jk}^2 - \frac{1-r_{jk}^2}{N}}{B} + \frac{1-r_{jk}^2}{N} \approx r_{jk}^2 + \frac{1-r_{jk}^2}{B} + \frac{1-r_{jk}^2}{N}.$$

1397 The term $\frac{1-r_{jk}^2}{NB}$ is ignored as both N and B are large. Following the same adjustment in
1398 LDSC (Bulik-Sullivan et al., 2015), we calculate adjusted correlation coefficient $\tilde{r}_{adj_{jk}}$ for
1399 \tilde{r}_{jk} from StocSum using

1400
$$\tilde{r}_{adj_{jk}}^2 = \tilde{r}_{jk}^2 - \frac{1 - \tilde{r}_{jk}^2}{B - 2} - \frac{1 - \tilde{r}_{jk}^2}{N - 2}.$$

1401 **Supplementary Tables**

1402

1403 **Table S1.** Significant association regions with LDL cholesterol levels from single-variant
1404 tests in HCHS/SOL. Only variants with MAF > 0.5% were included. Genome coordinates
1405 presented were based on GRCh38.

1406

1407 **Table S2.** Regions showing suggestive evidence of gene-sex interactions or genetic
1408 associations accounting for gene-sex interactions on WHR in HCHS/SOL. Only variants
1409 with P values $< 5 \times 10^{-7}$ and MAF > 0.5% were included. Previously reported marginal
1410 genetic effects, gene-sex interactions, or joint effects within 1Mb flanking regions were
1411 shown. Genome coordinates presented were based on GRCh38.

1412

1413 **Table S3.** Significant association regions with LDL cholesterol levels from variant set tests
1414 in a 20kb sliding window analysis in HCHS/SOL. Genome coordinates presented were
1415 based on GRCh38.

1416

1417 **Table S4.** Significant association regions with LDL cholesterol levels from single-variant
1418 meta-analysis combining stochastic summary statistics from HCHS/SOL, ARIC EA and
1419 ARIC AA. Only variants with MAF > 0.5% were included. Genome coordinates presented
1420 were based on GRCh38.

1421

1422 **Table S5.** Significant association regions with LDL cholesterol levels from variant set
1423 meta-analysis in a 20kb sliding window analysis after combining stochastic summary
1424 statistics from HCHS/SOL, ARIC EA and ARIC AA. Genome coordinates presented were
1425 based on GRCh38.

1426

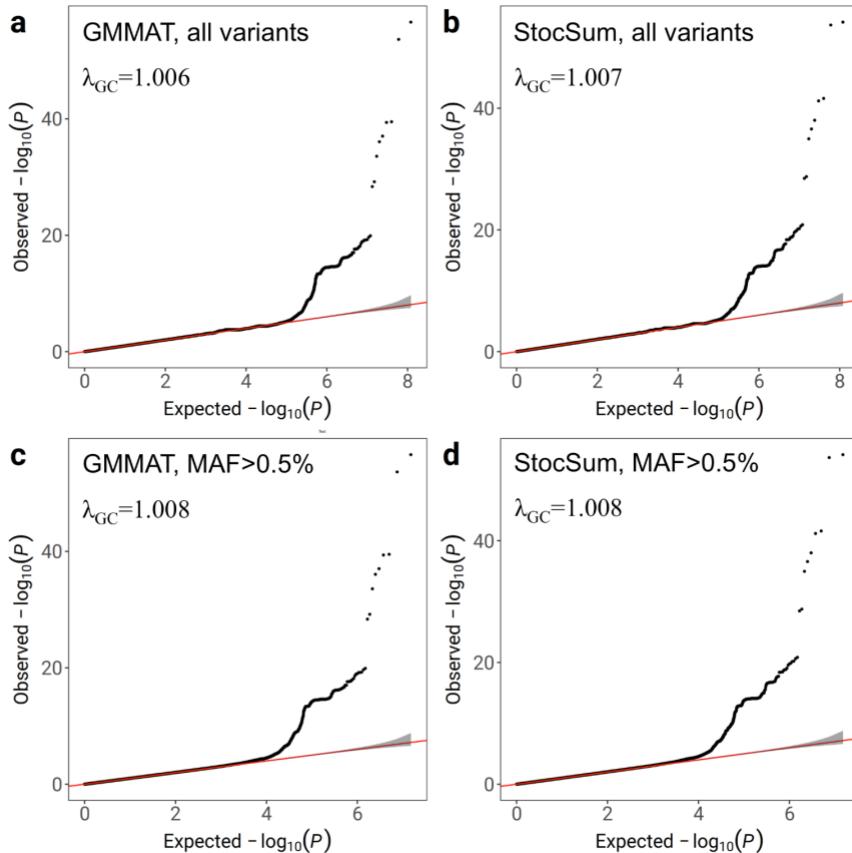
1427 **Table S6.** Regions excluded from LD score regression due to long-range LD on the human
1428 genome. Genome coordinates presented were based on GRCh38.

1429

Chromosome	Start Position (Mb)	End Position (Mb)
1	45.5	52
1	72.5	73.5
1	174	175
1	24.61	24.63
2	85.9	100.1
2	133.5	137.5
2	182	189.5
3	47.4	51.3
3	89	98.5
3	162	163.6
4	33.5	34.5
4	97.5	98.2
4	119	120
4	143	144.2
5	44.4	51.2

5	98.5	101.5
5	129.6	133
5	136.2	139.2
6	25.3	33.5
6	57.7	64.3
6	139	142.5
7	54.9	66.9
7	119	120
8	8	12.5
8	42	49
8	110	114
10	36.5	43.2
11	46	58
11	88	91.2
12	33	41.3
12	109	111.6
14	66.1	67.5
17	45	47
19	23.5	28
20	33.9	41.3

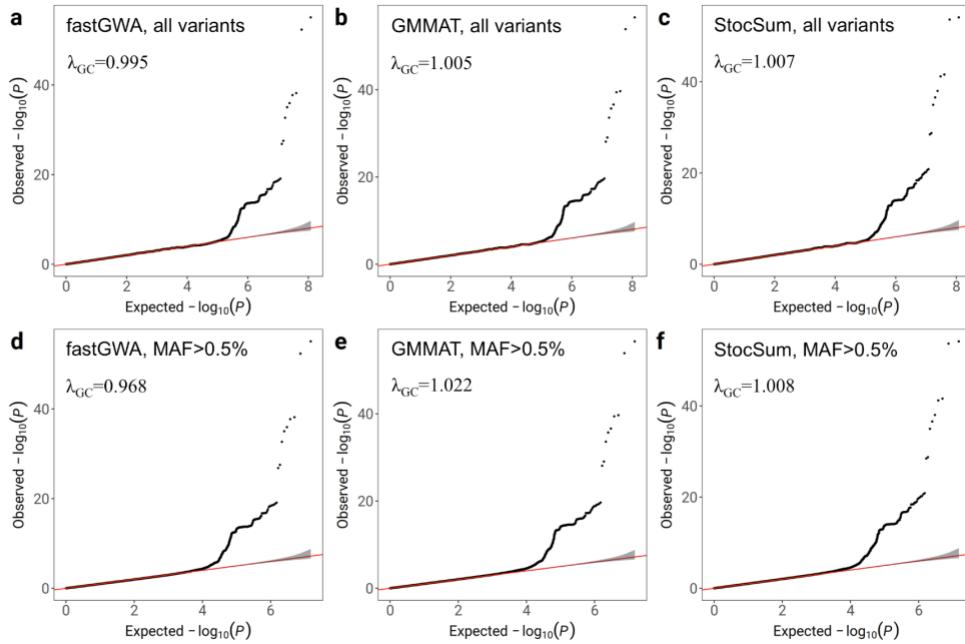
1431 **Supplementary Figures**



1432

1433 Figure S1 Quantile-quantile (Q-Q) plots of P values from single-variant tests on LDL
1434 cholesterol levels using GMMAT and StocSum in HCHS/SOL. The number of random
1435 vector replicates B in StocSum was set to 1,000. a, GMMAT P values from all variants. b,
1436 StocSum P values from all variants. c, GMMAT P values from variants with MAF > 0.5%.
1437 d, StocSum P values from variants with MAF > 0.5%. The gray shaded areas in the Q-Q
1438 plots represent 95% confidence intervals under the null hypothesis of no genetic
1439 associations.

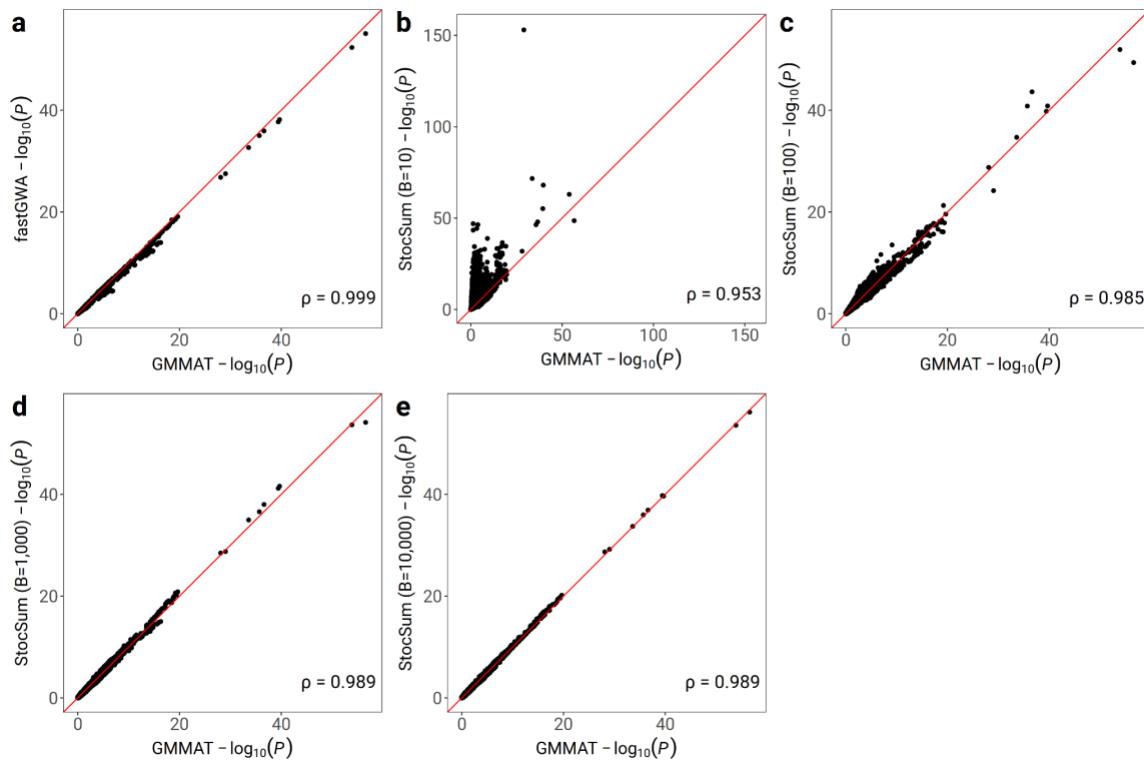
1440



1441

1442 Figure S2. Quantile-quantile (Q-Q) plots of P values from single-variant tests on LDL
1443 cholesterol levels using fastGWA, GMMAT, and StocSum in HCHS/SOL. The number of
1444 random vector replicates B in StocSum was set to 1,000. a, fastGWA P values from all
1445 variants. b, GMMAT P values from all variants. c, StocSum P values from all variants. d,
1446 fastGWA P values from variants with MAF > 0.5%. e, GMMAT P values from variants
1447 with MAF > 0.5%. f, StocSum P values from variants with MAF > 0.5%. The gray shaded
1448 areas in the Q-Q plots represent 95% confidence intervals under the null hypothesis of no
1449 genetic associations.

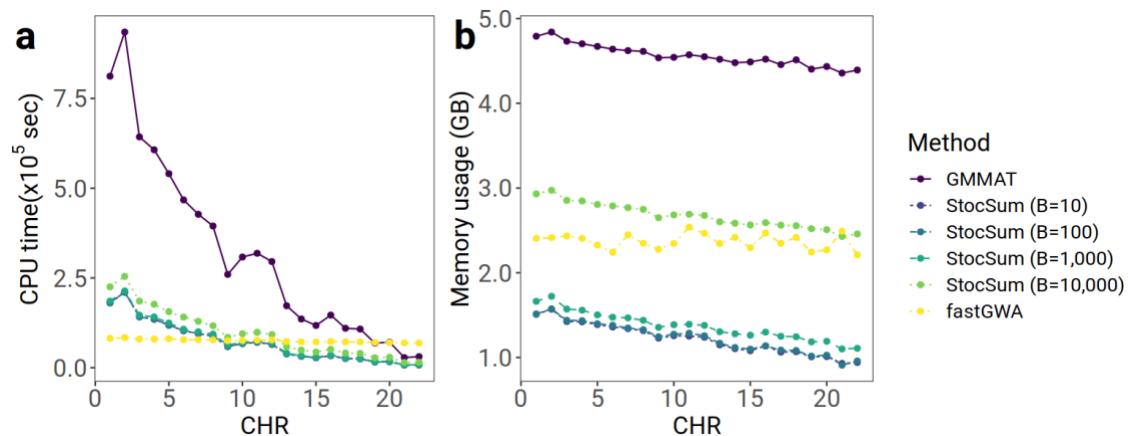
1450



1451

1452 Figure S3 Comparison of P values from single-variant tests on LDL cholesterol levels
 1453 using fastGWA, GMMAT, and StocSum in HCHS/SOL. a, comparison of P values from
 1454 GMMAT and fastGWA. b-e, comparisons of P values from GMMAT and StocSum with
 1455 the number of random vector replicates B being equal to 10 (b), 100 (c), 1,000 (d), and
 1456 10,000 (e). The red line denotes the reference line of equality. Spearman's rank correlation
 1457 coefficients are shown at the bottom right. The data used in this test consisted of 120M
 1458 variants from 7,297 individuals in HCHS/SOL.

1459



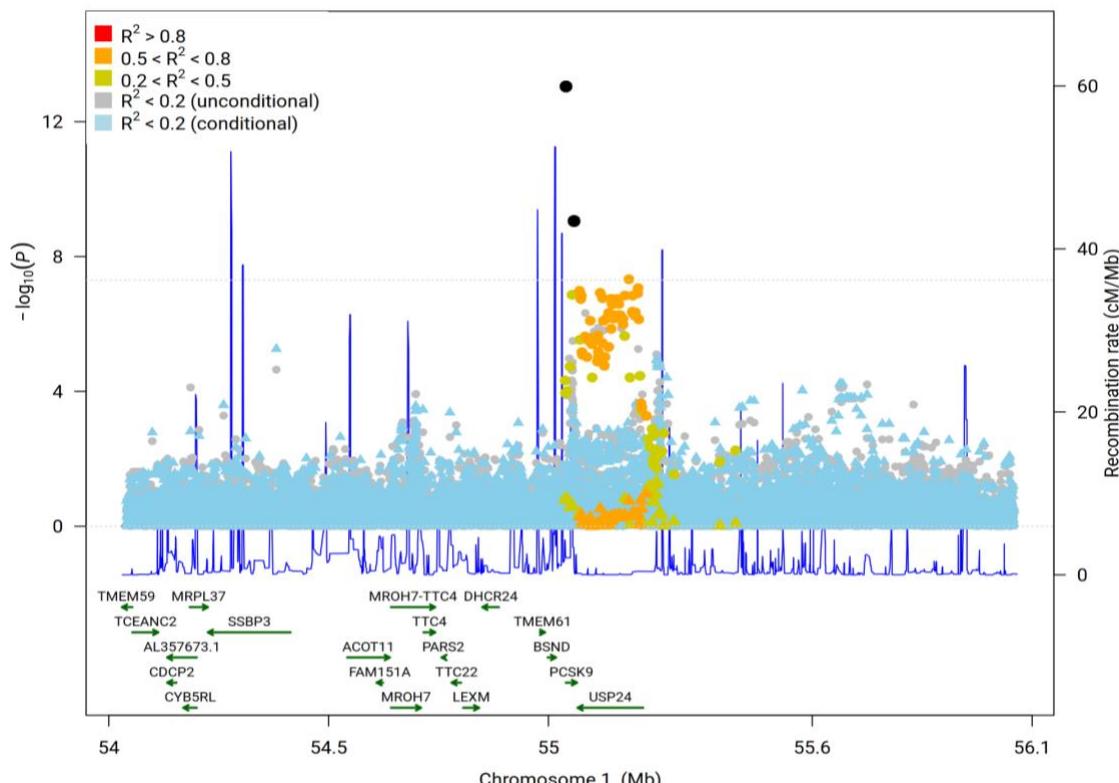
1460

1461 Figure S4 Comparison of CPU time and memory usage from fastGWA, GMMAT and
1462 StocSum in single-variant tests. a, CPU time. The x axis represents the chromosome
1463 numbers and the y axis represents the CPU time in 10^5 seconds. For GMMAT, the CPU
1464 time consists of fitting the null model and conducting the association test. For StocSum,
1465 the CPU time is the sum of four steps: fitting the null model, generating the random vectors,
1466 computing the single-variant score statistics and the stochastic summary statistics, and
1467 computing the P values. b, Memory usage. The x axis represents the chromosome numbers
1468 and the y axis represents the memory footprint per thread in GB. The data used in this test
1469 consisted of 120M variants from 7,297 individuals in HCHS/SOL. All tests were
1470 performed on a high-performance computing server, with 64 threads running in parallel.

1471

1472

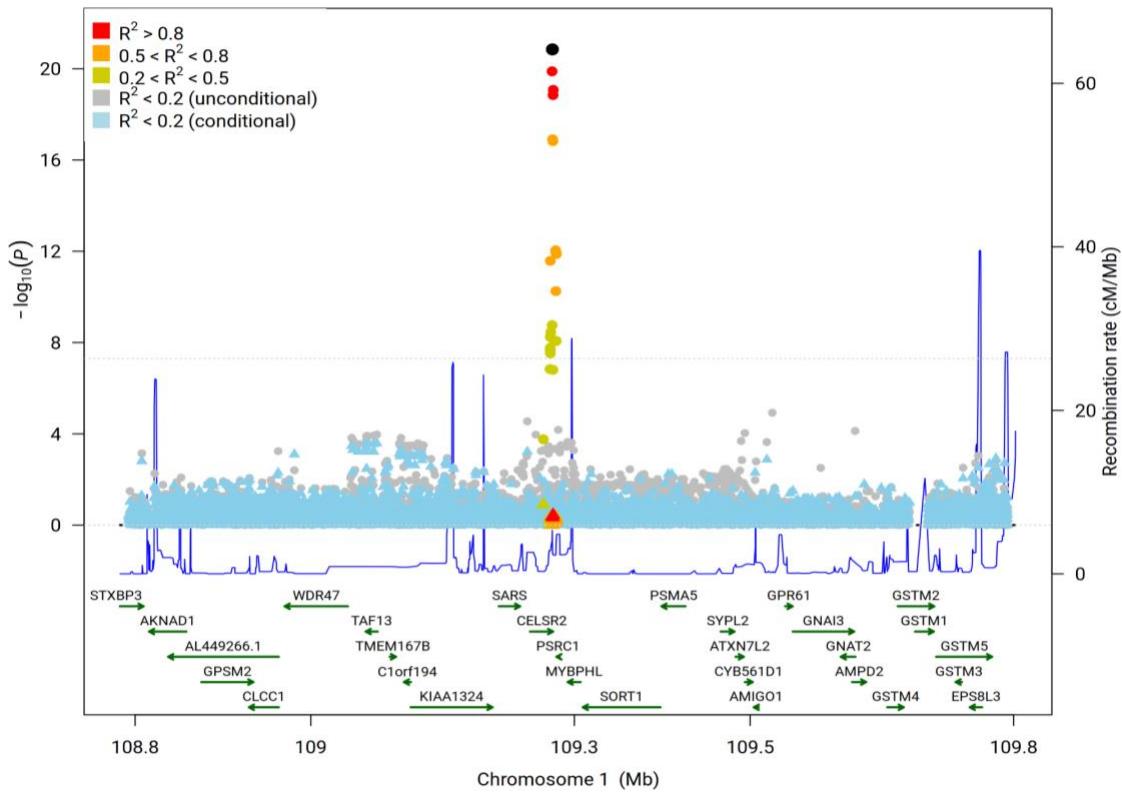
1473 a



1474

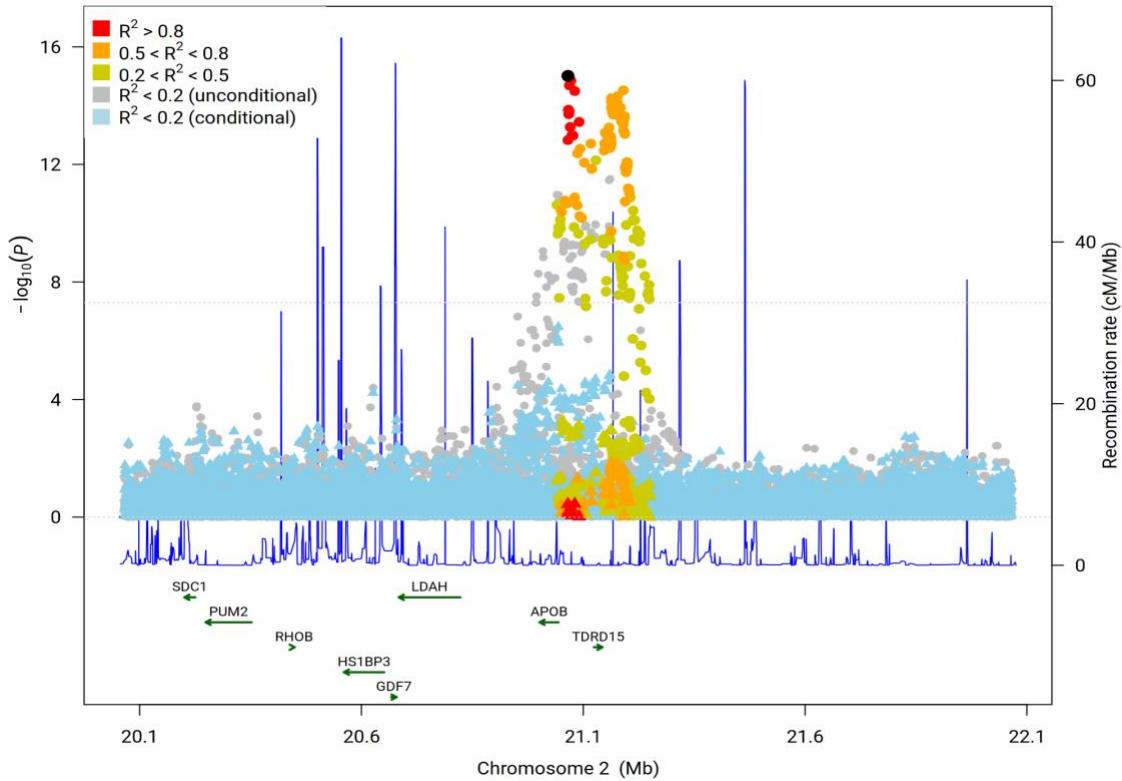
1475

1476 b



1477

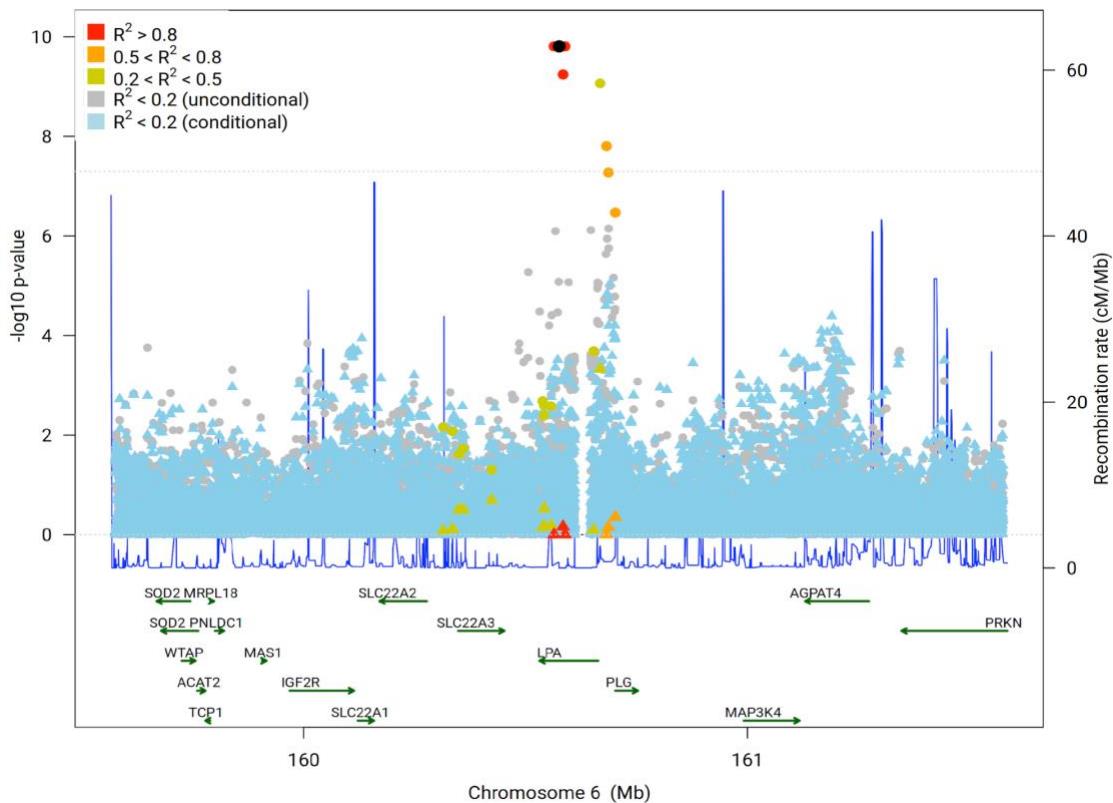
1478 c



1479

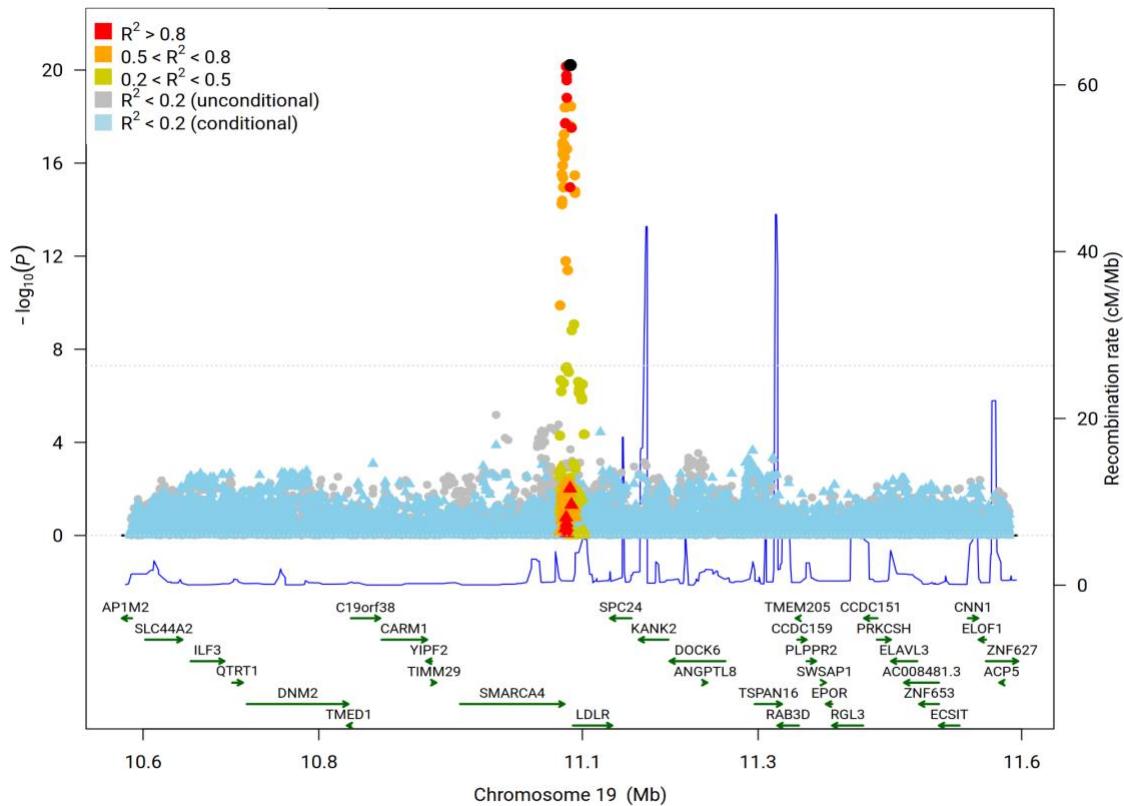
1480

1481 d



1482

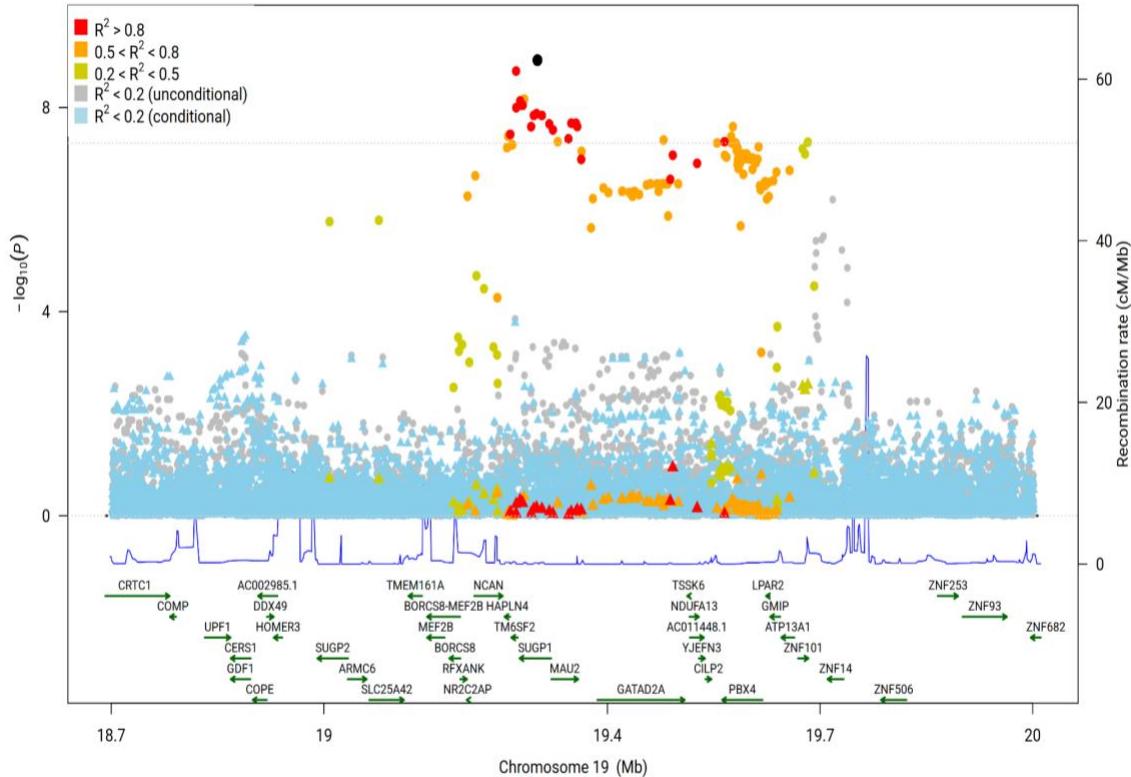
1483 e



1484

1485

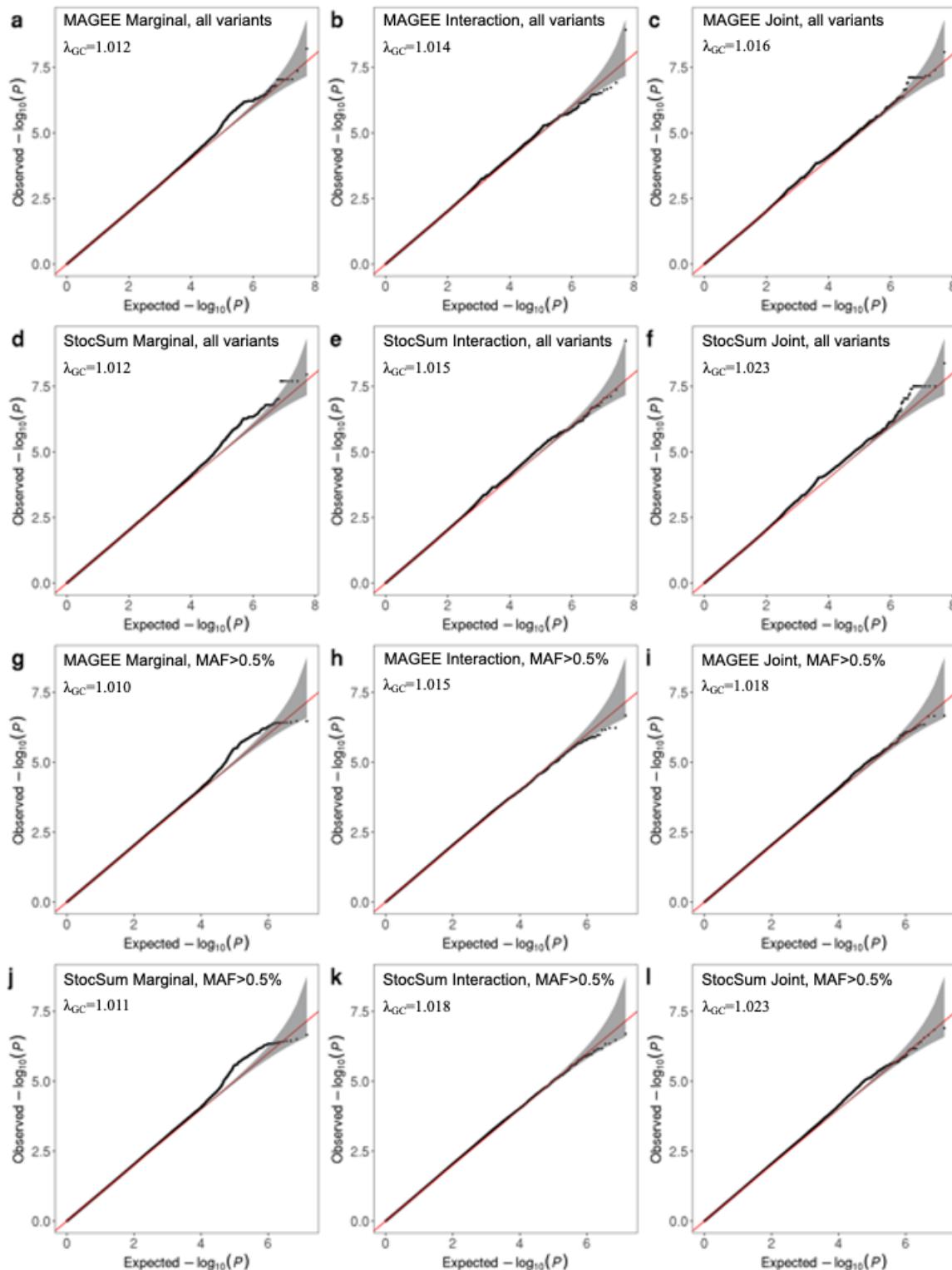
1486 f



1487

1488 Figure S5 Regional plots of StocSum conditional association test results. a, *PCSK9* gene
1489 region with association variants chr1:55039974 (rs28362263) and chr1:55058182
1490 (rs28362263). b, *CELSR2* gene region with the sentinel variant chr1:109274968
1491 (rs562338). c, *APOB* gene region with the sentinel variant chr2:21065449 (rs562338). d,
1492 *LPA* gene region with the sentinel variant chr6:160576086 (rs10455872). e, *LDLR* gene
1493 region with the sentinel variant chr19:11086210 (rs8106503). f, *SUGP1* gene region with
1494 the sentinel variant chr19:19301236 (rs57915152). Association variants are highlighted in
1495 black dots. Original single-variant test *P* values are shown in dots and conditional *P* values
1496 are shown in triangles. Variants in four LD categories are shown in different colors based
1497 on the maximum squared correlation to the sentinel variant and the secondary association
1498 variant calculated in HCHS/SOL if there are two association variants (a), or the squared
1499 correlation to the sentinel variant in HCHS/SOL if there is only one sentinel association
1500 variant (b-f). The horizontal line indicates the genome-wide significance level on the log
1501 scale, $-\log_{10}(5 \times 10^{-8})$. The blue curve shows recombination rates from all populations in
1502 the 1000 Genome Project.

1503

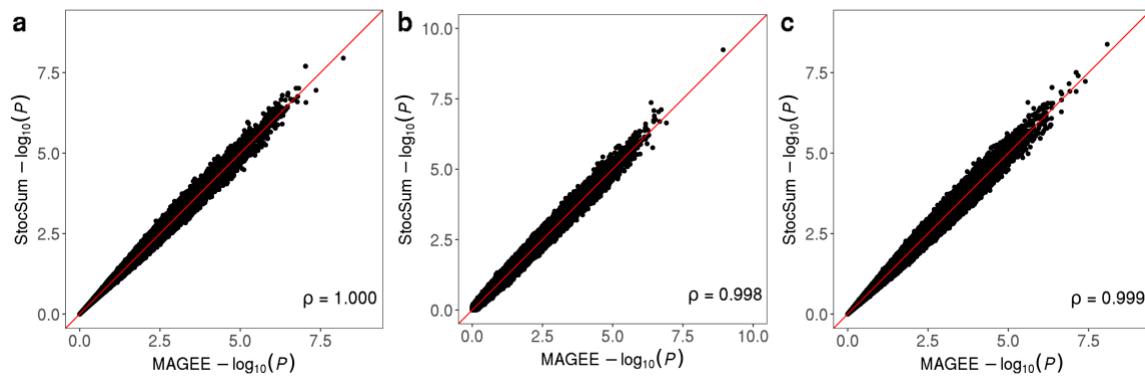


1504

1505 Figure S6 Quantile-quantile (Q-Q) plots of P values from gene-sex interaction tests on
 1506 WHR using MAGEE and StocSum in HCHS/SOL. The number of random vector
 1507 replicates B in StocSum was set to 1,000. a, Marginal P values for all variants from

1508 MAGEE. b, Interaction P values for all variants from MAGEE. c, Joint P values for all
1509 variants from MAGEE. d, Marginal P values for all variants from StocSum. e, Interaction
1510 P values for all variants from StocSum. f, Joint P values for all variants from StocSum. g,
1511 Marginal P values for variants with MAF > 0.5% from MAGEE. h, Interaction P values
1512 for variants with MAF > 0.5% from MAGEE. i, Joint P values for variants with MAF >
1513 0.5% from MAGEE. j, Marginal P values for variants with MAF > 0.5% from StocSum.
1514 k, Interaction P values for variants with MAF > 0.5% from StocSum. l, Joint P values for
1515 variants with MAF > 0.5% from StocSum. The gray shaded areas in the Q-Q plots represent
1516 95% confidence intervals under the null hypothesis of no genetic associations and/or gene-
1517 sex interactions.

1518

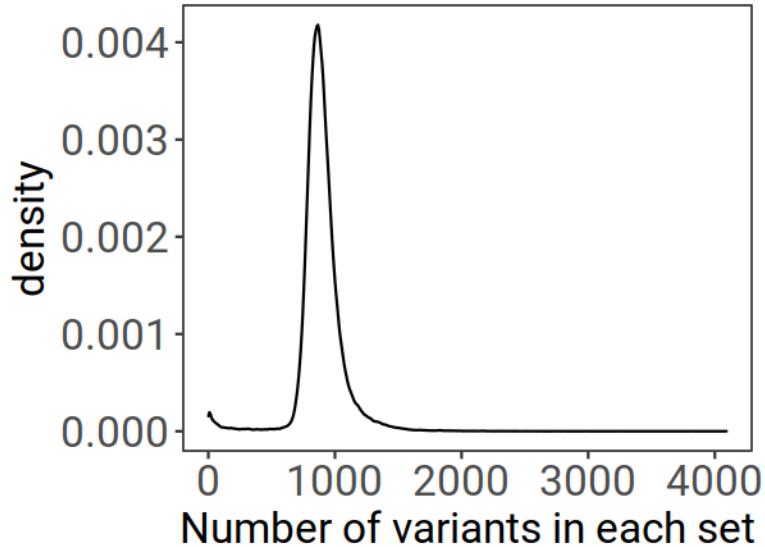


1519

1520 Figure S7 Comparison of P values from single-variant gene-sex interaction tests on WHR
1521 using MAGEE and StocSum in HCHS/SOL. a, comparison of marginal genetic effect test
1522 P values. b, comparison of gene-sex interaction test P values. c, comparison of joint test P
1523 values. The x axis and the y axis represent $-\log_{10}(P)$ using MAGEE and StocSum,
1524 respectively. The red line denotes the reference line of equality. Spearman's rank
1525 correlation coefficients are shown at the bottom right.

1526

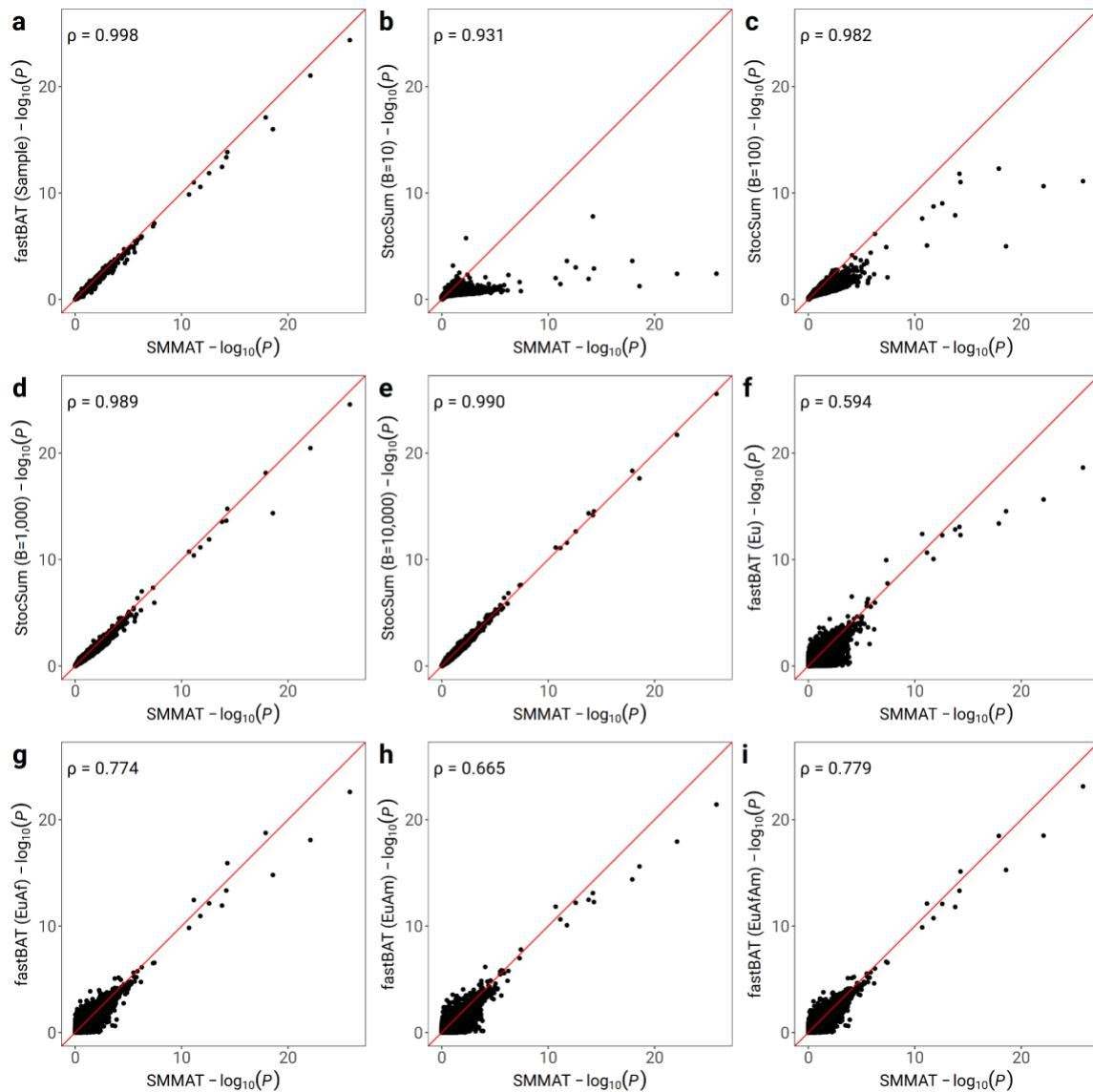
1527



1528

1529 Figure S8 A density plot showing the distribution of variant numbers in each set in a 20 kb
1530 sliding window analysis on LDL cholesterol levels in HCHS/SOL.

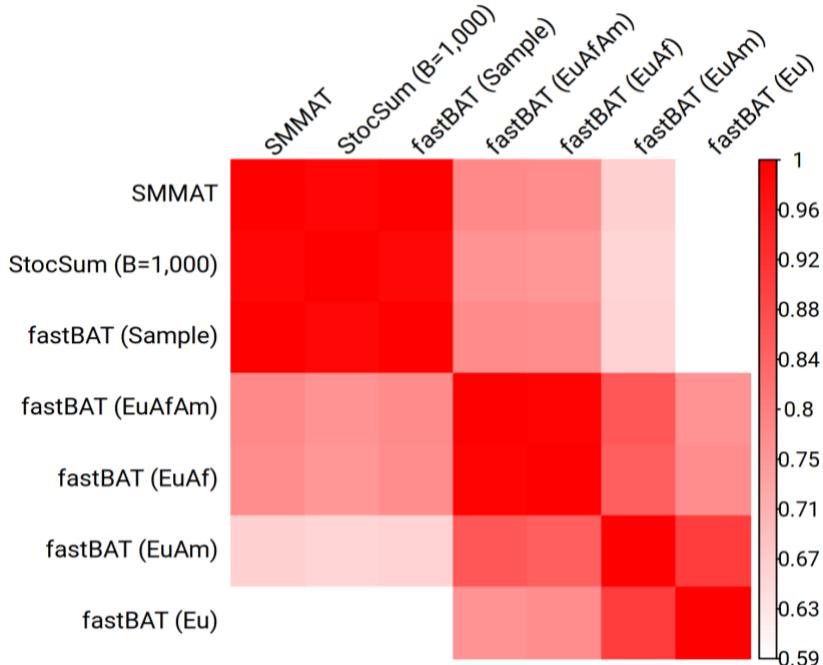
1531



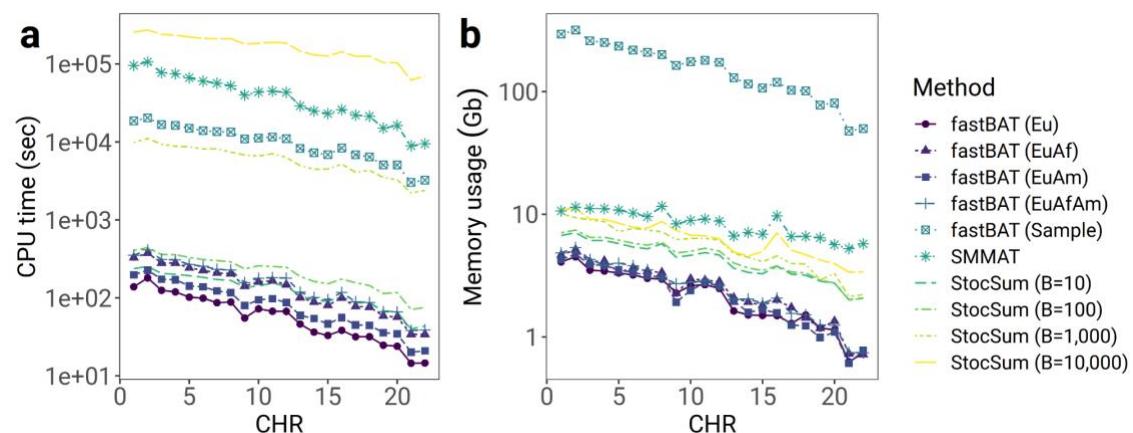
1532

1533 Figure S9 Comparison of P values from variant set tests in a 20 kb sliding window analysis
 1534 on LDL cholesterol levels using fastBAT, SMMAT, and StocSum in HCHS/SOL. The x
 1535 axis represents the $-\log_{10}(P)$ from variant set tests using SMMAT on individual-level data
 1536 and the y axis represents the $-\log_{10}(P)$ from variant set tests using StocSum or fastBAT.
 1537 a, fastBAT with an internal reference panel using the HCHS/SOL study samples (fastBAT
 1538 (Sample)). b-e, StocSum with the number of random vector replicates B being equal to 10
 1539 (b), 100 (c), 1,000 (d) and 10,000 (e). f-i, fastBAT with external reference panels from
 1540 1000 Genomes using European (fastBAT (Eu)) (f), European and African (fastBAT
 1541 (EuAf)) (g), European and American (fastBAT (EuAm)) (h), and European, African, and
 1542 American (fastBAT (EuAfAm)) (i) populations. The red line denotes the reference line of

1543 equality. The data used in this test consisted of 120M variants from 7,297 individuals in
1544 HCHS/SOL. Spearman's rank correlation coefficients are shown at the top left.
1545

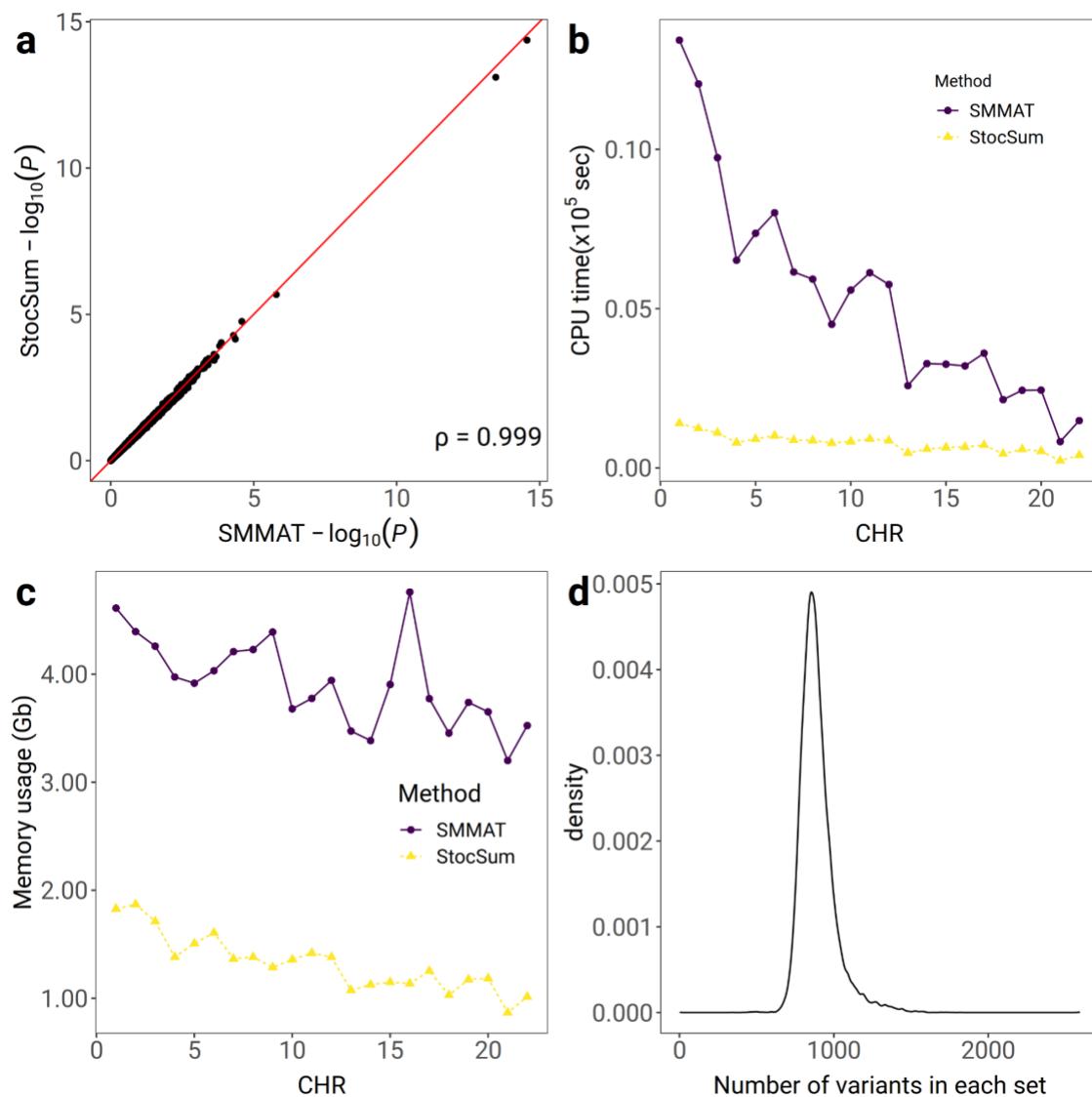


1546
1547 Figure S10 Heatmap showing Spearman's rank correlation coefficients of P values from
1548 variant set tests in a 20 kb sliding window analysis on LDL cholesterol levels using
1549 fastBAT, SMMAT, and StocSum in HCHS/SOL. For fastBAT, we used an internal
1550 reference panel using the HCHS/SOL study samples (fastBAT (Sample)), as well as four
1551 external reference panels from 1000 Genomes (Eu, EuAf, EuAm, EuAfAm).
1552



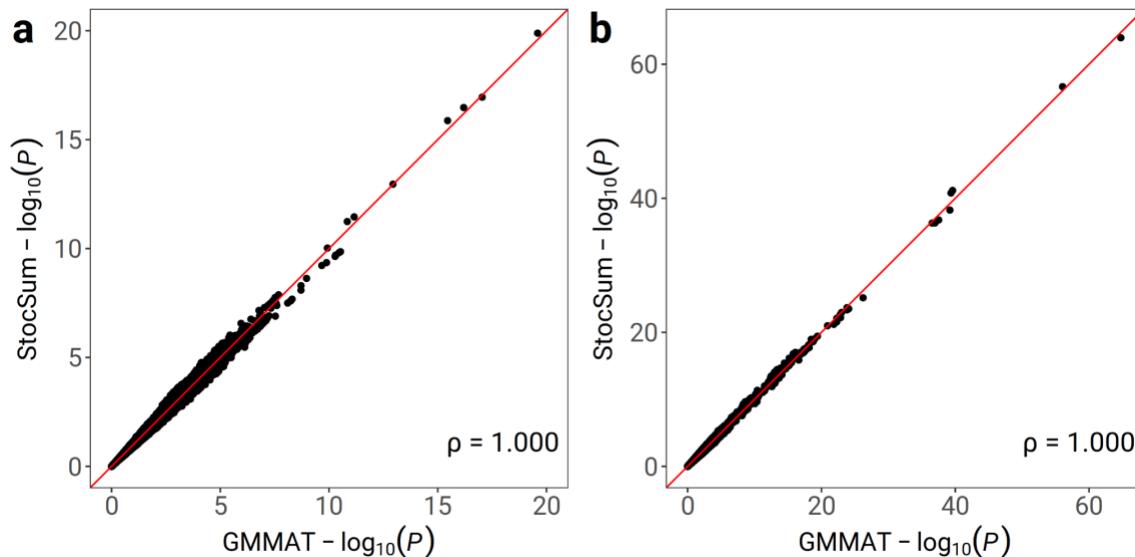
1553

1554 Figure S11 Comparison of CPU time and memory usage from fastBAT, SMMAT, and
1555 StocSum in variant set tests in a 20 kb sliding window analysis on LDL cholesterol levels
1556 in HCHS/SOL. a, CPU time. The x axis represents the chromosome numbers and the y axis
1557 represents the CPU time on the logarithmic scale. The CPU time only includes the step of
1558 computing the P values, assuming corresponding summary statistics have been computed
1559 in single-variant tests. b, Memory usage. The x axis represents the chromosome numbers
1560 and the y axis represents the memory footprint per thread in GB on the logarithmic scale.
1561 The data used in this test consisted of 120M variants from 7,297 individuals in HCHS/SOL.
1562 All tests were performed on a high-performance computing server, with a single thread for
1563 each chromosome.



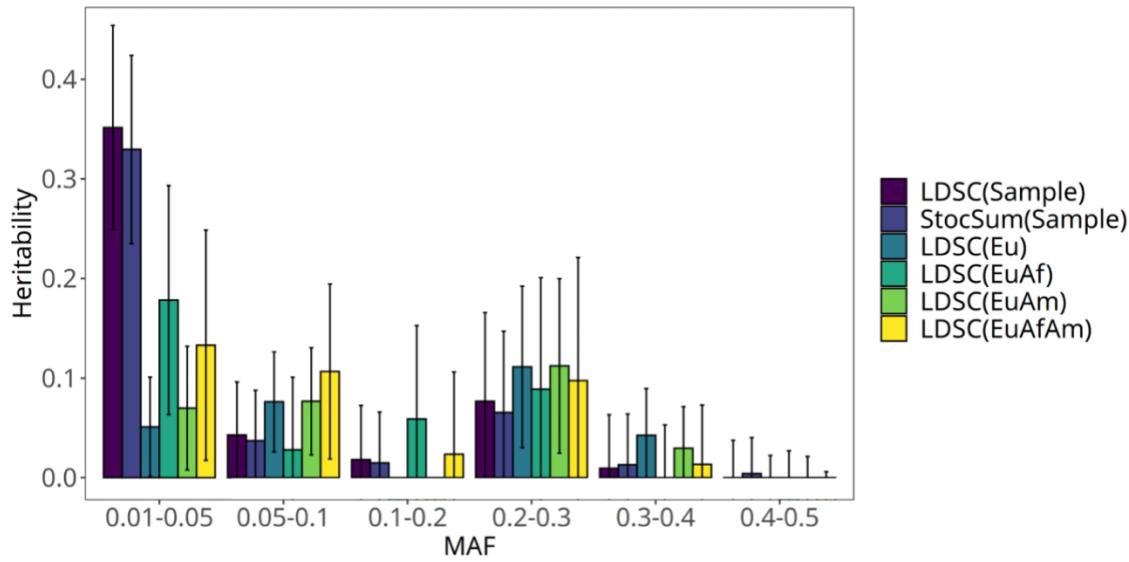
1564

1565 Figure S12 Comparison of SMMAT and StocSum variant set tests in a non-sliding-window
1566 analysis on LDL cholesterol levels in HCHS/SOL. The variant sets were defined by
1567 merging chromatin loops of H3K27ac HiChIP interaction in the GM12878 cell line. There
1568 are a total of 17,224 paired regions, each as a variant set, including two 10kb windows
1569 which may not be located in close proximity on the primary structure of DNA and not
1570 typically covered using fixed-size sliding windows. a, comparison of P values from
1571 SMMAT and StocSum with the number of random vector replicates B being equal to 1,000.
1572 The x axis and the y axis represent the $-\log_{10}(P)$ from variant set tests using SMMAT and
1573 StocSum, respectively. The red line denotes the reference line of equality. b, comparison
1574 of CPU time between SMMAT and StocSum. The x axis represents the chromosome
1575 numbers and the y axis represents the CPU time in 10^5 seconds. For SMMAT and StocSum,
1576 the CPU time only includes the step of computing the P values, assuming corresponding
1577 summary statistics have been computed in single-variant tests. c, comparison of memory
1578 usage between SMMAT and StocSum. The x axis represents the chromosome numbers and
1579 the y axis the memory footprint per thread in GB. d, a density plot showing the distribution
1580 of variant numbers in each set.



1581
1582 Figure S13 Comparison of P values from single-variant tests on longitudinal LDL
1583 cholesterol levels using GMMAT and StocSum in ARIC AA (a) and ARIC EA (b). The
1584 ARIC AA data used in this test consisted of 70M variants and 7,514 observations from
1585 2,045 individuals. The ARIC EA data used in this test consisted of 92M variants and 26,668

1586 observations from 6,327 individuals. The x axis and the y axis represent the $-\log_{10}(P)$ from
1587 single-variant tests using GMMAT and StocSum with the number of random vector
1588 replicates B being equal to 1,000. The red line denotes the reference line of equality.
1589 Spearman's rank correlation coefficients are shown at the bottom right.
1590



1591
1592 Figure S14 LDL heritability estimates by stratified LDSC and StocSum for different MAF
1593 bins. The error bars show point estimates \pm standard errors. Negative heritability estimates
1594 reported from stratified LDSC were truncated at 0. LD scores for different MAF bins were
1595 estimated from LDSC (Sample) and StocSum (Sample) using HCHS/SOL study samples,
1596 or LDSC on external reference panels using European, African and/or American
1597 populations from the 1000 Genomes Project: LDSC (Eu), LDSC (EuAf), LDSC (EuAm),
1598 and LDSC (EuAfAm).
1599