

1 Local contribution to the somatosensory 2 evoked potentials in rat's thalamus

3 **Władysław Średniawa¹, Zuzanna Borzymowska², Kacper Kondrakiewicz^{2,3},**
4 **Paweł Jurgielewicz⁴, Bartosz Mindur⁴, Paweł Hottowy⁴, Daniel Krzysztof**
5 **Wójcik^{5,6,*}, and Ewa Kublik^{2,*}**

6 **¹Laboratory of Neurophysiology of Mind, Centre of Excellence for Neural Plasticity and**
7 **Brain Disorders (BrainCity), Nencki Institute of Experimental Biology of Polish Academy**
8 **of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland**

9 **²Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of**
10 **Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland**

11 **³NeuroElectronics Research Flanders (imec, KU Leuven & VIB) Kapeldreef 75, 3001**
12 **Leuven, Belgium**

13 **⁴AGH University of Science and Technology in Kraków, Faculty of Physics and Applied**
14 **Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland**

15 **⁵Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish**
16 **Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland**

17 **⁶Jagiellonian University, Faculty of Management and Social Communication, Jagiellonian**
18 **University, 30-348 Krakow, Poland**

19 ***corresponding authors d.wojcik@nencki.edu.pl (DKW), e.kublik@nencki.edu.pl (EK)**

20 ABSTRACT

21 Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation
22 and synchrony of their sources, both oscillations and more complex waves may passively spread in brain
23 tissue over long distances and be falsely interpreted as local activity at such distant recording site. Current
24 Source Density method was proposed to recover locally active currents from multi-site LFP recordings.
25 Here we use a model-based kernel CSD (kCSD) to study the contribution of local and distant currents to
26 LFP recorded with dense multichannel probes from rat thalamic nuclei and barrel cortex, activated by
27 whisker stimulation. We show that the evoked potential wave seen in the thalamic nuclei around 7–15
28 ms post-stimulus has a substantial negative component reaching from cortex. This component can be
29 analytically removed and truly local thalamic LFP, with purely thalamic contributions, can be recovered
30 reliably using kCSD. In particular, concurrent recordings from the cortex are not essential for reliable
31 thalamic CSD estimation. Proposed framework can be used to analyse LFP from other brain areas and
32 has consequences for general LFP interpretation and analysis.

33 **Keywords:** subcortical signal, field potentials, volume conduction, CSD, vibrissa-barrel system

34 1 BRIEF SUMMARY

35 While recording LFP simultaneously in multiple structures, we often see significant correlations between
36 the observed waves. A natural question is if they are propagated passively from one structure to another
37 or if they are simultaneously generated by different, separated sets of sources. We argue this can be
38 answered reliably using CSD analysis. We focus on the case of thalamic and cortical recordings in
39 the somatosensory system in response to whisker stimulation where we observe significant correlations
40 between early thalamic and cortical responses to whisker deflection.

41 2 INTRODUCTION

42 The local field potential (LFP) recordings are well suited for both chronic and acute monitoring of neuronal
43 activity at the population level. LFP mainly reflects synaptic and corresponding return currents, although
44 it may also contain contributions from spiking activity, glia, or other sources (Nunez and Srinivasan, 2006;

45 Buzsáki et al., 2012; Einevoll et al., 2013; Głabska et al., 2017). Due to the volume conduction, high
46 amplitude oscillations in the electric field can propagate widely within the brain tissue. Thus, the signal
47 recorded in one place may have a substantial contribution from distant neuronal populations (Mitzdorf,
48 1985; Einevoll et al., 2013; Łęski et al., 2010). There is no consensus among researchers on the magnitude
49 of this passive spread. Some reports claim that the recorded potential is almost exclusively a sum of
50 signals originating in a radius about 250 μm from an electrode (Xing et al., 2009; Katzner et al., 2009),
51 while others consider larger distances: Berens et al. (2008) estimated gamma-band spatial resolution to
52 be about 600–1000 μm ; Hunt et al. (2011) found that high frequency (around 150 Hz) oscillations can
53 be detected by electrodes placed several millimeters from their source; we found considerable similarity
54 between LFP collected over the range of about 3 mm in the rat forebrain (Łęski et al., 2007, 2010).
55 Kajikawa and Schroeder (2011) calculated that both lateral and vertical spread of potential at 6 mm
56 from its generator has still 50% of their original magnitude. Kreiman et al. (2006) found that stimulus
57 preferences in visual cortex are similar on a scale of around 5 mm when estimated by the amplitude of
58 evoked field potentials, while for spikes the range of substantial similarity was only around 800 μm . They
59 propose that this difference may be at least partially due to volume conduction. Clearly, the level of LFP
60 correlation between different sites depends on the studied structures, animal model, and applied recording
61 protocol (Lindén et al., 2011).

62 The theoretical considerations of how far can field potential spread must be confronted with practical
63 considerations addressing the origin of signals recorded from structures of interest. This question is
64 particularly relevant when we record from subcortical nuclei composed of stellate neurons forming
65 nearly closed electric fields. We do record field potential in such structures and they contain a range of
66 physiological oscillations and small but clear waves evoked by sensory stimuli (i.e. evoked potentials).
67 Identification of local and remote origins of these signals and separation of components coming from
68 different anatomically well-defined regions remains an open question.

69 An important subcortical structure is the thalamus: centrally located mass of neurons clustered in
70 multiple nuclei, with vast network of connection and complex functions. Classical view on thalamus
71 highlighted its role in relaying information to and from neocortex. Currently it is also believed to play
72 a critical role in gating and modulating information transfer not only between periphery and cortex
73 but also between hierarchically organized cortical areas (Sherman and Guillery, 2011). Thalamus and
74 thalamo-cortical loops are believed to be involved in mechanisms responsible for high level cognitive
75 functions (see a review by Wolff and Vann (2019)).

76 Laboratory rodents offer a convenient model to study the thalamus and thalamo-cortical interaction
77 and LFP is well suited for stable, chronic *in vivo* monitoring of population level activity. It is, however,
78 essential, though not always easy, to properly understand the components of recorded signals. In our
79 previous experiments we showed in a rat that the early negative (around 10 ms poststimulus, N1₂) thalamic
80 wave coincides with the strong negative cortical wave (Fig. 1; see also: Kublik et al. (2003); Łęski et al.
81 (2010); Sobolewski et al. (2010)). The amplitude of the thalamic N1₂ was modulated during cortical
82 cooling — it precisely followed the changes of the amplitude of the cortical potential. We interpreted this
83 as a result of the active influence of the cortical feedback connection over thalamic activity (Kublik et al.,
84 2003; Diamond et al., 1992b). However, in light of our later results (Łęski et al., 2007, 2010) and those
85 from other groups (Kreiman et al., 2006; Kajikawa and Schroeder, 2011), we see that such similarity of
86 thalamic and cortical recordings, to some extent, must be a result of passive spread of the strong cortical
87 signal to the thalamus. Indeed, the cortical representation of mystacial vibrissae in rodents is located
88 relatively close above the somatosensory thalamic nuclei (ventral posteromedial thalamic nuclei, VPM,
89 and medial part of the posterior thalamic nuclear group, PoM). In the rat, the distance between the center
90 of the somatosensory thalamus and the barrel field is around 4 mm and the interval between their borders
91 is around 2 mm (own measurements). In mice, it is about 2.7 mm and 1.4 mm, respectively (estimation
92 based on data from the Allen Mouse Brain Atlas, <http://atlas.brain-map.org/>). This falls
93 within the distance of the above-mentioned estimates of a field potential passive spread.

94 The main aim of the present study was to determine what part of the field potential recorded in the
95 somatosensory thalamic nuclei is generated locally and what part is a volume-conducted contribution
96 from the primary somatosensory cortex. To examine this problem, we recorded evoked potentials (EPs)
97 from multiple locations through the barrel cortex and thalamus, and we applied kernel Current Source
98 Density method (kCSD, Potworowski et al. (2012); Chintaluri et al. (2021)) to estimate the distribution
99 of current sinks and sources along the shaft of the electrode (Mitzdorf, 1985). Next, we used them, in a

100 forward modeling approach (Einevoll et al., 2013), to compute contributions coming from thalamic or
101 cortical areas to the potential measured at different electrode locations.

102 **3 RESULTS**

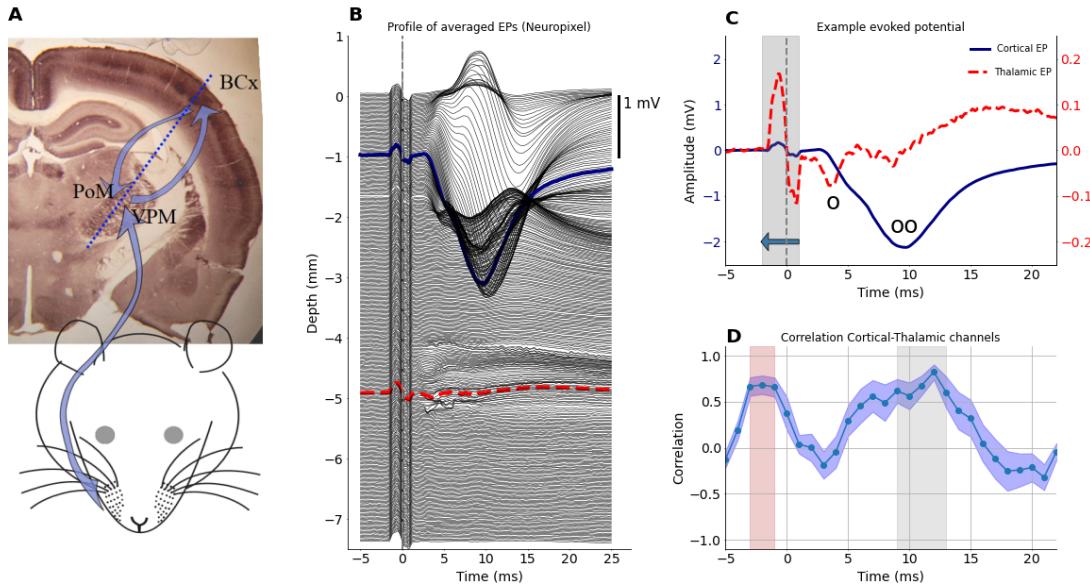
103 **3.1 LFP in the barrel cortex and thalamic area**

104 We recorded whisker-evoked field potentials in the primary somatosensory cortex and in the somatosensory
105 thalamus of the rat's right hemisphere (Fig. 1A) and repeated this paradigm with three different
106 experimental setups (see Methods). Example results for simultaneous thalamo-cortical recordings done
107 with a 384 channel Neuropixels probe are presented in Fig. 1B. Note that during the strongest negative
108 wave recorded in the cortex, around 10 ms poststimulus (see 'oo' mark in Fig. 1C), a negative deflection
109 of the potential recorded in the thalamus occurs. To quantify similarity of thalamic and cortical EPs, in
110 each rat we computed their correlation in a 3 ms window rolling along EP waveforms (Fig. 1D). For a
111 group of 11 rats, the correlation value above 0.5 was observed around 10–12 ms after the stimulus.

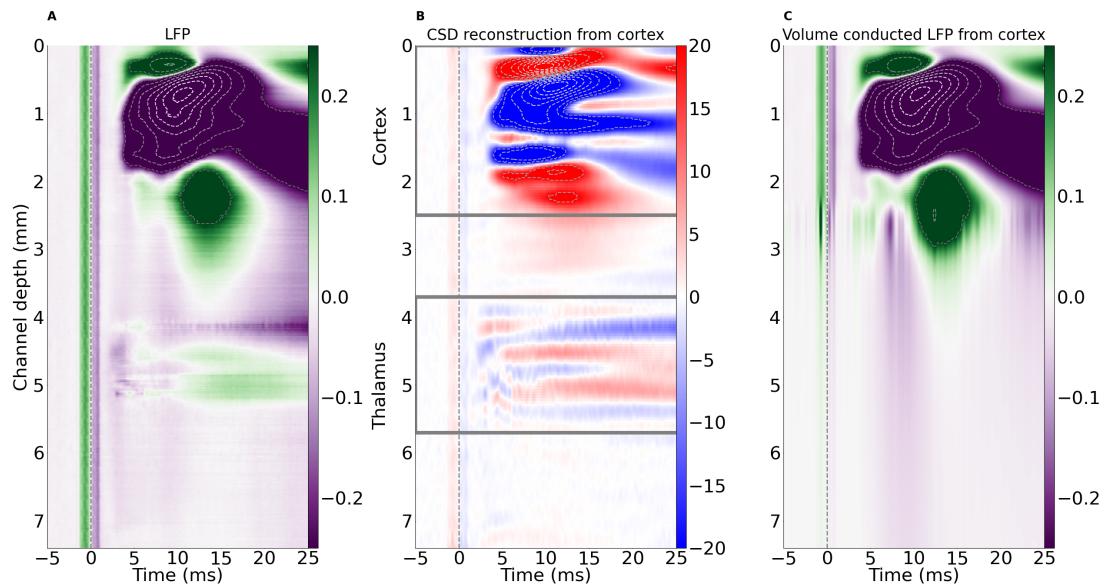
112 Similarity of the cortical and thalamic negative waves around 10 ms suggests that they may reflect
113 partly the same currents, which — observed from different distances — result in waves of larger (cortex)
114 or smaller (thalamus) amplitudes. However, the amplitude and polarity of evoked potentials change along
115 the depth profile spanning from cortex to the thalamus. The largest wave around 10 ms post stimulus is
116 the negative deflection in the cortical middle layers; but at the same latency, the potentials at the bottom of
117 the cortex have a clear positive polarity (Fig. 1B, 2A). Interestingly, the polarity of the thalamic recordings
118 remains negative across a range of depths which seems consistent with the cortical signal recorded in the
119 middle layers rather than with the positive signal recorded deeper.

120 To better understand the relation between these cortical and thalamic signals we made a simple
121 estimation of the potential spread: we calculated currents from EP profile and selected cortical CSD
122 channels (example in Fig. 2B). We then estimated field potentials that these cortical sources would induce
123 in the tissue along the electrode line going from brain surface into the thalamus. As can be seen in Fig. 2C,
124 the strong negative cortical field has a very long range. The purple stripe around 10 ms is only transiently
125 reversed at the bottom of the cortex, and it is evident in a whole sub-cortical space below. This example
126 highlights the strength of passive spread (i.e. volume conduction) from cortical currents and their possible
127 impact on distal (thalamic) potential values.

128 We thus stated a hypothesis that a strong activity from middle cortical layers can be seen even 3 mm
129 from the source and can overshadow subcortical signals, and we propose a general CSD-based pipeline to
130 recover the local contributions to field activity. This analytical pipeline is of general validity even if here
131 it is illustrated with examples from the primary somatosensory pathway.


132 **3.2 CSD reconstruction and forward modeling**

133 Generally used approach to extract local activity from LFP is the CSD method. We used kCSD method,
134 which enables reconstruction from nonlinearly distributed electrode contacts and in arbitrary space of
135 sources. The example CSD computed from the recordings from Neuropixels probe (Fig. 2A) is plotted as
136 a spatio-temporal profile along electrode track (Fig. 2B). As seen in case of potential values the density of
137 currents in the cortex is much higher than in thalamus. However, the analysis revealed clear local thalamic
138 activity not only at the earliest post-stimulus time (before evolution of cortical activity), but also later,
139 dipole-like current sinks and sources.


140 Having estimated the CSD, we can compute how much a given subset of sources contributes to
141 potentials at each recording site. This should show us how thalamic LFPs would look with and without a
142 cortical component and vice versa (Fig. 3).

143 **3.3 LFP reconstruction from subset of sources**

144 In all datasets we used CSD reconstructed from measured EPs to estimate potential waveforms, first from
145 full CSD profiles, and then separately from its cortical and thalamic subsets. The results are illustrated
146 in Fig. 3 with an example from one of 2D EP profiles obtained with A8x8 NeuroNexus probe. Taking
147 all the sources for reconstruction we obtained LFPs almost identical with measured ones (Fig. 3A1–A3;
148 as required by self-consistent properties of kCSD). Cortical recordings and their reconstructions from
149 cortical-only sources mostly overlapped (Fig. 3B2) which indicates that cortical potential has indeed
150 mainly local origin. The influence of thalamic sources was minimal in the cortex — the reconstructed
151 contributions from thalamic sources to cortical potential were practically flat (Fig. 3C2).

Figure 1. A: Schematic picture of the sensory pathway from the whisker pad to the thalamus (PoM and VPM) and somatosensory barrel cortex (BCx, both clearly visible on cytochrome oxidase stained coronal slice of a rat brain). Blue arrows indicate information flow from periphery to the cortex and a recurrent connection back to the thalamus. In the thalamus, whisker responsive area can be found in the upper-lateral sector of both VPM and PoM nuclei (near arrow heads). Trigeminal ganglion and brain stem nuclei are not marked for clarity of the schema. B: Depth profile of average LFP responses (EPs) to whisker stimulation obtained from Neuropixels inserted at ~ 30 deg through the cortex to deep thalamic locations (approximate). Out of 384 Neuropixels channels, uppermost contacts were above the cortical surface while the deepest recording level was around 7.5 mm in the brain. C: Comparison of EPs from a medial cortical channel (indicated by the solid blue line in B) and a thalamic channel (indicated by the dashed red line in B). Vertical dashed line marks the stimulation time (note a bipolar wave of the stimulus artifact around zero, which increases the correlation between thalamic and cortical waveforms presented in D). Circles mark the components of early thalamic negative wave N1₁ (o) and N1₂ (oo); the second coincides with strong cortical potential. Note the difference in magnitudes of the cortical and thalamic EPs — left ordinate for cortex, right ordinate for thalamus. D: Average rolling correlation across all experiments (n=11) computed between the central cortical channel and the central thalamic channel (chosen from the histology). Values computed in 3 ms window (represented by gray area in C) were attached at a time point corresponding to the beginning of that window (indicated by the horizontal arrow in C). The blue band along the plot indicates the standard error of the mean across all experiments. Gray shading marks the time when the mean correlation is above 0.5. A similar effect before whisker deflection marked in pink is a consequence of the stimulus artifact.

Figure 2. A: Example spatiotemporal EP profile from Neuropixels probe (same data as in Fig. 1B) presented as a 3D color map. B: Spatiotemporal CSD profile estimated from data in A. Note evident current sinks and sources in the thalamic region. C: Spatiotemporal profile of EPs estimated in the whole cortico-thalamic space from recordings restricted to cortical area marked in B by a gray rectangle. Note a stripe of negative (purple) potential around 10 ms spreading from cortical sources to deep subcortical levels, which may modify thalamic waveforms. In all panels, horizontal axis shows the time with respect to the stimulus (applied at $t=0$); left vertical axis shows recording depth; colorbars on the right of each panel show the magnitude of potential (A and C, [mV]) and current source density (B, [$\mu\text{A}/\text{mm}^3$]). Vertical dotted lines at time 0 mark the stimulus onset and related artefact in the data.

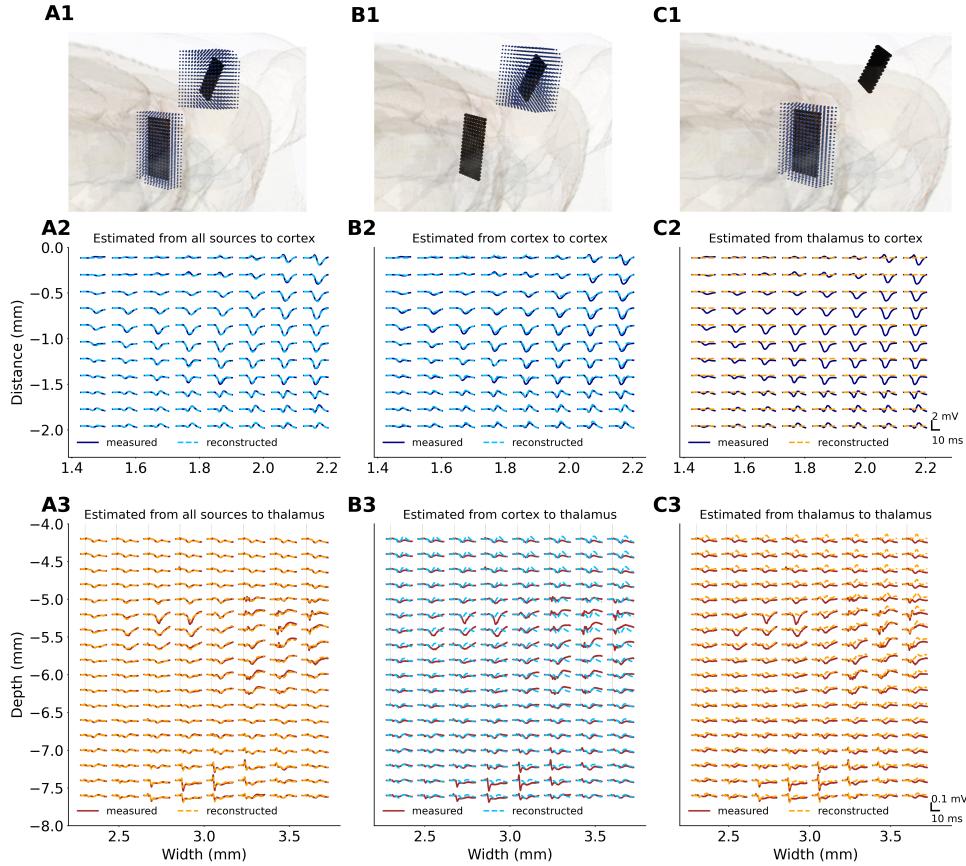
152 This is not the case in the thalamus. Here, the locally generated part (estimated from thalamic sources,
153 Fig. 3C3, dashed orange) is much closer to the measured potentials than the cortex based estimation
154 (Fig. 3B3, dashed blue) but on average more positive. Cortical contributions to thalamic evoked potentials
155 constituted relatively large negative wave all over the thalamic space (Fig. 3B3). Clearly, the LFP recorded
156 in the thalamus contains a mix of thalamic and cortical contributions each of which must be recovered
157 with the help of CSD methods.

158 **3.4 Estimating overall effect of cortical LFP volume conduction**

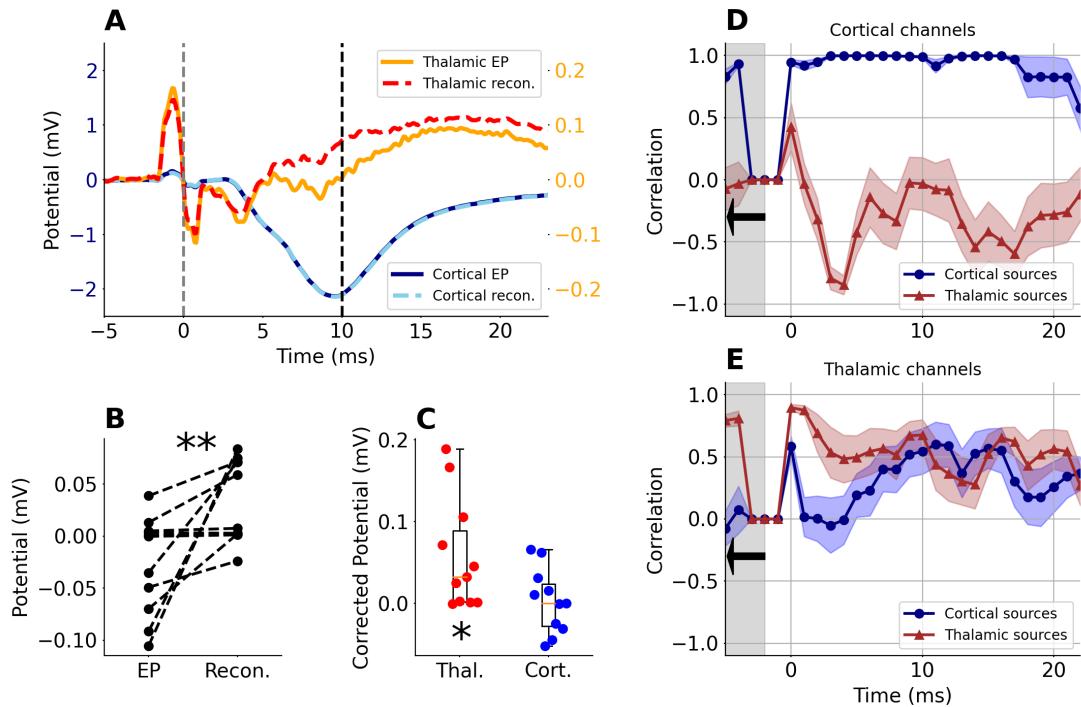
159 Fig. 4A shows enlarged overlay of exemplary measured and estimated, cortical and thalamic, EPs
160 (examples from Fig. 3B2 and C3). Contributions from cortical sources were sufficient to fully reconstruct
161 cortical EPs, while thalamic sources were not sufficient to precisely reconstruct thalamic EP. Contributions
162 from cortical sources reliably reconstructed cortical EPs, while reconstruction from thalamic sources
163 differed from the measured thalamic EPs. Real EP trace tended to be more negative, in particular from
164 around 6 to 14 ms, than the reconstructed ones (see Fig. 4B and C for a group summary of EP amplitude
165 at 10 ms post stimulus, B: permutation paired-test, p-value=0.002, n=11, C thalamic channels: 1 sample
166 ttest, p-value=0.013, C cortical channels: 1 sample ttest, p-value=0.44). We argue this is a consequence of
167 the strong negative wave conducted from the cortex.

168 To quantify the similarities and differences between the waveforms of measured EPs and reconstructed
169 contributions from thalamic and cortical sources we calculated their correlations in a 3 ms window running
170 along the EP traces. In each rat, correlation coefficients were computed separately for the thalamus and
171 for the cortex for the channels that were identified in histological data as located in the centers of analysed
172 structures (details in Suppl. Table 1). Group averaged results (n=11 rats) are presented in Fig. 4D and E.
173 The correlation score for the cortical channels (Fig. 4D) was close to one throughout the analyzed time
174 (25 ms) when reconstructed from cortical sources and it was close to zero or negative when comparing
175 measurements with contributions to cortical potentials from thalamic sources.

176 Correlation coefficient for thalamic waveforms measured and reconstructed from thalamic sources
177 (Fig. 4E, red line) was the highest (0.87 ± 0.05) in the early post stimulus window, fell down after 5 ms
178 and was close to zero (0.21 ± 0.14) at 14 ms (Fig. 4E, red line). Similarity of the real thalamic EPs to
179 those estimated from cortical sources showed an opposite pattern (Fig. 4E, blue line). Correlation was
180 close to zero in an early window up to 5 ms post stimulus but then increased reaching a maximum up to
181 0.59 ± 0.18 around 11 ms and then dropped again.


182 This group analysis confirmed that strong cortical currents indeed may strongly affect the field
183 potentials recorded in the thalamus. This influence was maximal in a time window between 10 and 15 ms,
184 when LFP recorded from thalamus was defined predominantly by cortical sources.

185 **3.5 Detecting weak thalamic activity in the CSD space**


186 Our analyses showed that thalamic LFP can be substantially contaminated by passive contributions
187 from strong sources, cortical in this case, and that CSD reconstruction allows to identify truly local
188 contributions. This observation leads to a range of practical questions: how to reconstruct this local
189 activity most reliably? Where to locate the electrodes? Should one record from all the possible (close
190 and far) current sources, or is it enough to monitor the local activity? How to optimally choose CSD
191 reconstruction space in a model-based reconstruction method such as kCSD?

192 To address these issues we considered four analytical setups using data from an experiment with two
193 independent A8x8 silicon probes (Fig. 5). In consecutive analyses we assumed that either (1) only the
194 thalamic electrode was used, probing relatively weak thalamic responses, or (2) both electrodes were
195 used, one in thalamus and the other in the cortex, probing the stronger cortical activity. The reconstruction
196 was performed in two different source spaces: one, limited to thalamic region and the other, covering
197 substantial part of the forebrain including all thalamic and cortical electrodes. We then estimated CSD in
198 four available combinations of electrode setups and CSD spaces (Fig. 5, top row).

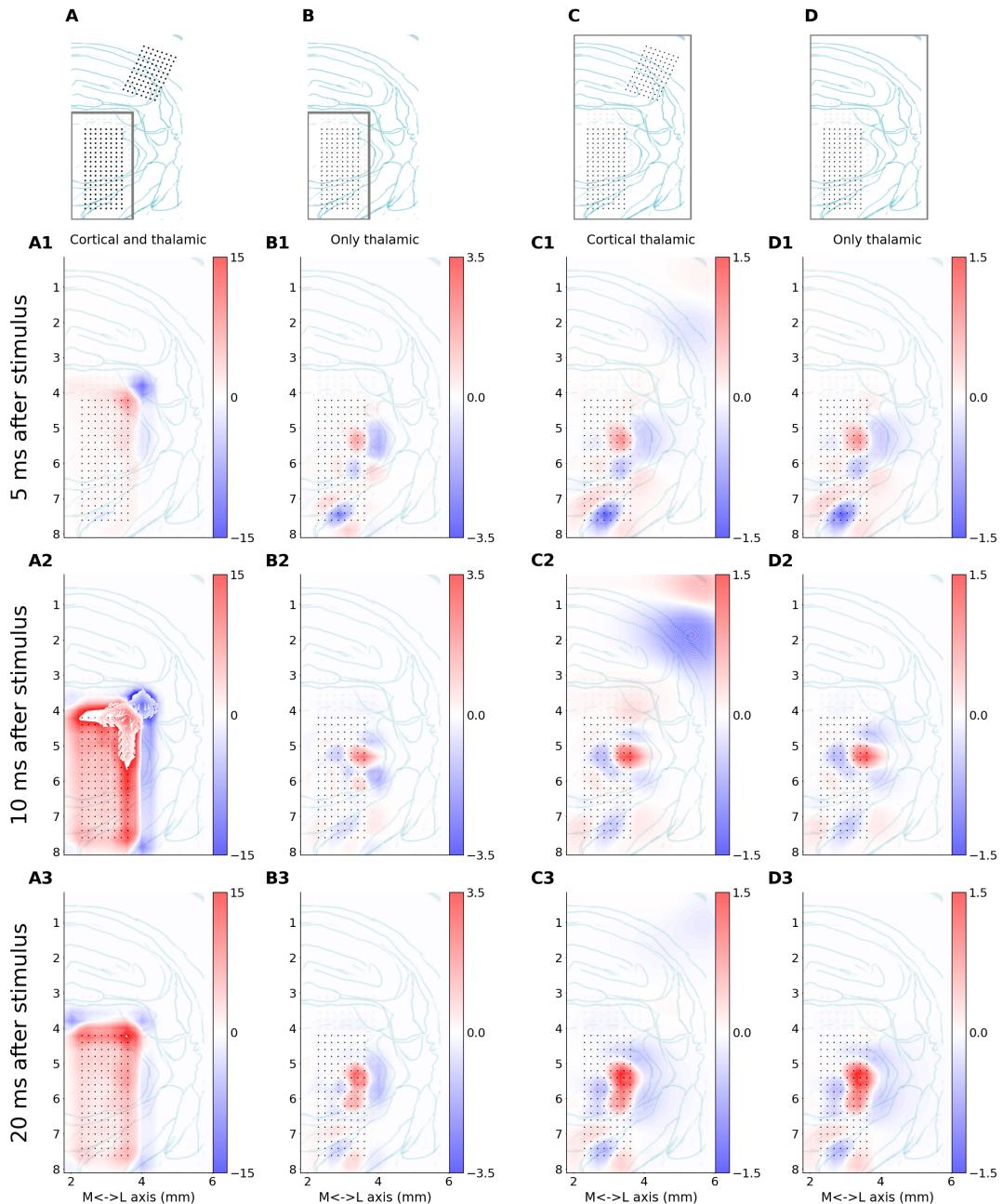

199 Of these four analysis three rendered consistent results (Fig. 5B–D), the other was erroneous (Fig. 5A)
200 — where we tried to explain simultaneously strong cortical and weak thalamic recordings with sources
201 placed only in the thalamus. As long as the reconstruction space encompassed all the electrode positions,
202 obtained CSD reconstructions seemed credible. What we consider natural approaches to CSD analysis of
203 these data are shown in column Fig. 5B, where the reconstruction space is a region in the thalamus con-
204 taining the electrodes with a 0.5 mm margin to accommodate possible artifacts from remote sources, and
205 in Fig. 5C, where the information is taken from both thalamic and cortical electrodes and reconstruction

Figure 3. Comparison of measured EPs with their counterparts computed from subsets of current sources (example from an experiment using 8x8 Neuronexus probes). Panels in the first row (A1, B1 and C1) show schematic representations of sources reconstruction space (black dots: electrode positions; blue dots: subset of CSD used for computation of cortical (B) and thalamic (C) contributions to the EPs). Measured EPs and computed contributions are overlaid in the second (for cortical channels) and third row (for thalamic channels). Note a lateral gradient of EP amplitude in the cortex — NeuroNexus A8x8 silicon probe was inserted on the edge of barrel field (see Suppl. Fig. 2B). In the thalamus (A3, B3, C3) we can spot two clusters of early evoked responses — one (middle-right area) around the main whisker representation in VPM/PoM complex, the other (lower edge) corresponding to zona incerta nucleus. (A) All the cortical and thalamic sources were used for computed EPs shown in A2, A3 panels. Obtained EPs are consistent with the measurements which shows the method is self-consistent. (B) Cortical contributions to the measured EPs (B2, B3). Estimated potentials fit well cortical measurements (B2) and show similarities with thalamic recordings (B3). (C) Thalamic contributions to the measured EPs (C2, C3). As expected, the thalamic contributions to the cortical channels are negligible. On the other hand, the truly local part of the thalamic LFP, which is that estimated from thalamic sources (dashed orange line), is different from the measured EPs, which are contaminated by passively propagated strong cortical signal (dashed blue line in B3).

Figure 4. A: Examples of measured and reconstructed potential from central cortical (cyan and dotted-blue, left Y axis) and thalamic sites (orange and red-dashed, right Y axis) from Figure 3 B2 and C3 panels. Solid lines represent measured potentials, dashed lines represent reconstructed potential from local sources. B: Potential values at 10 ms after whisker stimulation in recorded thalamic EPs and their reconstructions. Note significantly less negative values in reconstructed data (permutation paired-test, p-value=0.002, n=11). C: Absolute reconstructed-minus-measured values for thalamic (red) and cortical (blue) potential wave at 10 ms post-stimulus. Note that the difference is significantly different from zero in thalamus but not in the cortex. (reconstructed-measured) in thalamic area (orange) and in cortical area (blue). There is a significant difference from 0 in the thalamic area, (1 sample ttest, t=3.03, p-value=0.013, n=11) but not in the cortex (1 sample ttest, t=0.8, p-value=0.44, n=11) D: Average correlation score in cortical channels between measured EPs and EPs reconstructed from cortical (blue) or thalamic (red) sources. E: The same as B but for thalamic channels. Shaded corridor along line-plots in B and C represent SEM (n=11 rats).

Figure 5. The first row shows the analytical setup used in the analysis in a given column. The dots represent the electrodes taken into consideration. The frame indicates area where sources were assumed (basis sources were placed). A: Recordings from the thalamus and cortex considered; sources assumed only in the thalamus. B: Only thalamic recordings considered; sources assumed only in the thalamus. C: Recordings from the thalamus and cortex considered; reconstruction in a large block of tissue covering thalamus and cortex (same as in D). D: Only thalamic recordings considered; reconstruction in a large block of tissue covering thalamus and cortex (same as in C). Rows A1–A3 show CSD reconstructions snapshots at 5, 10 and 20 ms after stimulus that were analyzed assuming setups indicated in the first row. CSD spatial maps are overlaid on a drawing representing histological verification of recording points (dots) location within thalamic structures. X and Y axes are scaled in millimeters with horizontal zero at cortical surface above thalamus and lateral (X axis) values measured from mid-line. Coronal plane corresponds to ~ 3 mm posterior from bregma point. Note the different color scales shown next to each panel.

206 space covers all electrode positions. Using only thalamic data for reconstruction in the larger space does
207 not significantly affect thalamic reconstruction Fig. 5D. However, keeping reconstruction space restricted
208 to the thalamus and demanding it to explain both thalamic and cortical recordings requires the method to
209 compensate the missing cortical sources present in Fig. 5C with a strong non-physiological dipolar halo
210 surrounding the thalamic electrodes (Fig. 5A), which could not be aligned with the anatomy of thalamic
211 nuclei, and which is a clear artifact.

212 The results shown in Fig. 5B–D provide similar patterns of detailed thalamic currents, clearly and
213 reasonably aligned with the histology. Clusters of earliest sinks and sources (5 ms, Fig. 5A1–D1) were
214 localized precisely in the regions receiving direct peripheral input — the dorsal sector of VPM and
215 PoM, and zona incerta. Importantly, this well localized pattern was preserved also in later post-stimulus
216 windows (see Fig. 5, rows 2–3), which in the LFP picture would be overflowed by the strong cortical
217 negative wave. The main effect of the extension of estimation space from Fig. 5B to D was a reduction in
218 magnitude of thalamic currents (compare colour intensity between B and C–D in Fig. 5), however the
219 source pattern was the same. Interestingly, the inclusion of cortical signals in estimation (Fig. 5D) did
220 not significantly affect the pattern of reconstructed CSD in the thalamus, i.e. it did not improve their
221 separation. This is what we expect from traditional approaches to CSD estimation using three-point
222 second derivative Pitts (1952) and it is also true here for this model-based analysis.

223 4 DISCUSSION

224 4.1 Summary

225 In the current paper, we have addressed the problem of ambiguous origin of subcortical local field
226 potentials. We recorded simultaneous whisker evoked responses from somatosensory thalamus and cortex
227 in rat. We confirmed that the earliest waves in thalamic LFP are of local origin (they correspond to the
228 activation by peripheral input) but strong impact of cortical field is passively shaping thalamic signal in
229 consecutive (7–15 ms) poststimulus time window. Therefore, it is necessary to precede the interpretation
230 of such data with appropriate analyses. We showed that with use of kernel CSD analysis it is possible to
231 recover the contribution of weak local currents to the thalamic waves.

232 Extracellular electrophysiological recordings reflect activity of local and distant generators. Mixing of
233 such varied contributions makes it difficult to interpret the data, especially in the case of closely located
234 and interconnected structures, where waves resulting from real interactions are entangled with volume
235 conducted ones. This reservation may apply to any field recordings in animals as small as laboratory
236 rodents, however, it has also been raised for signals from human intracranial electrodes (Wennberg and
237 Lozano, 2003). Our example comes from a rat vibrissae-barrel system which is an important experimental
238 model. Thanks to its easily accessible receptive field (whisker pad) and large and clear somatotopic
239 representation (Welker, 1976; Diamond et al., 1992a; Land et al., 1995; Fox and Woolsey, 2008) it is
240 widely used to study neuronal plasticity (Erzurumlu and Gaspar, 2020) but also information processing
241 within feed-forward and reciprocal thalamo-cortical connections (Petersen, 2007; Sobolewski et al., 2010,
242 2015). In anatomical studies, the large size of cortical barrel fields is an advantage. However, it is not
243 so beneficial in case of in vivo recording of electrical activity outside barrel cortex. In the thalamus the
244 earliest responses to whisker stimulation start around 3 ms post stimulus. At this time single or multi-unit
245 activity can be observed followed by a small-amplitude negative potential wave peaking around 8–12 ms
246 (e.g. Fig. 1C). Whisker evoked response in the cortex starts from ~5 ms post-stimulus (Armstrong-James,
247 1995) and it develops a very large negative wave which peaks, at the level of layer 4/5, with a latency of
248 around 10 ms. Here we showed that the trace of this field, generated in the large volume of active barrel
249 cortex, can affect recordings in subcortical structures including thalamus. There are also examples that
250 barrel cortex activity may reach less obvious locations like the olfactory bulb (Parabucki and Lampl, 2017).
251 Another substantial structure whose activity may spread widely in a brain is hippocampal formation. It is
252 believed to oscillate in synchrony (in the theta rhythm) with other nodes of its functional network (Nuñez
253 and Buño, 2021). However, it has recently been estimated, at the level of field potential recordings, that
254 some of these synchronizations are illusory: theta oscillation in the habenular LFP signals (Goutagny
255 et al., 2013) came out not to be locally generated in synchrony with hippocampus but simply passively
256 conducted from it (Bertone-Cueto et al., 2020). Similarly, synchrony of high-frequency oscillations
257 (HFO) between hippocampus and nucleus accumbens was shown to be a consequence of passive field
258 propagation (Hunt et al., 2011).

259 Cortex and hippocampus are laminar structures with multiple parallel pyramidal cells forming synchronous electrical dipoles upon synaptic activation and generating open electric fields, which can be recorded even from far away. Many subcortical nuclei are composed of stellate neurons with roughly spherically symmetric dendritic trees (never perfectly symmetrical) and closed electric fields which are much more difficult to detect, in particular from a distance. Modelling indicated that the electrodes penetrating such a structure should reliably record its local signals (Tanaka and Nakamura, 2019). Experimental data confirmed that subcortical LFP is built by well-defined local sinks and sources (Łęski et al. (2007, 2010) and current data), however, it is contaminated with distant influences.

267 **4.2 Extracellular electrophysiology versus other techniques**

268 Classical electrophysiology is not the only technique to monitor neuronal electrical activity and ionic flow. Recent development of optical imaging (i.e. new, faster voltage sensitive and calcium indicators, 269 and multi-photon microscopy (Antic et al., 2016) enabled monitoring electrical events in tissue with 270 good spatial resolution and without the burden of volume conduction, electromagnetic interference and 271 ambiguous referencing. The methodology is widely applied for little-invasive studies of the brain cortex, 272 and the use of implantable optical fibres or gradient-index (GRIN) lenses pushes the imaging plane to 273 subcortical level (see review by Zhang et al. (2019)). However, due to their large diameter (~ 1 mm), 274 GRIN lenses cause tremendous trauma to the brain while multichannel silicon probes, with their small 275 diameter ($\sim 100 \mu\text{m} \times 20 \mu\text{m}$), are much less invasive and preserve neural tissue in a more physiological 276 state. Also, the time resolution of optical imaging techniques is lower than in electrophysiology. Voltage 277 sensitive indicators used to record whisker evoked activity in mouse somatosensory thalamus (Tang et al., 278 2015) completely overlooked earliest responses. Peripheral input evokes spiking activity with a few 279 millisecond latency (Armstrong-James and Callahan, 1991; Diamond et al., 1992b), while the optical 280 thalamic response reported by Tang et al. (2015) started after 20 ms post-stimulus. Stronger, cortical 281 optical responses were noticeable, as expected from electrophysiology (Armstrong-James and Callahan 282 (1991)), in an early window between 5 and 10 ms post-stimulus. Thus, electrophysiological recordings 283 using implanted multichannel probes remain the simplest and least invasive tool for detecting neuronal 284 activity, including relatively weak signals, from multiple subcortical sites in the brain. Silicon probes 285 allow recording from multiple structures along one shaft, can be reinserted multiple times during one 286 surgery, and 3D patterns of multiple shafts can be chosen or designed to fit anatomical requirements 287 of particular experiments. As we have shown in this report, appropriate analyses help overcome the 288 difficulties posed by volume conductivity.

290 **4.3 Field potentials versus spikes: complementary, not an alternative**

291 Wideband extracellular signals can be broadly divided into low and high frequency components. The 292 Low Frequency Part, as we can also spell out the LFP (Głabska et al., 2017), is built up mostly by slow 293 transmembrane currents, while the latter includes traces of action potentials (spikes) fired by single or 294 multiple neurons in the vicinity of a microelectrode tip (Destexhe and Bedard, 2013). Spikes' amplitudes 295 drop quickly with increasing distance from an electrode and the size of an electrode (Moffitt and McIntyre, 296 2005; Pettersen and Einevoll, 2008). Thus, in case of spikes, there is little or no confusion regarding 297 the location of their generators. While the location of LFP remains a challenge, there are multiple 298 advantages of field potential recordings and analysis (Buzsáki et al. (2012); Herreras (2016); Jackson 299 and Hall (2017)). Spikes and LFP carry different information about neuronal activity and cannot be used 300 interchangeably. Slow postsynaptic potentials dominating LFP inform about the input to the neurons, the 301 analogue processes of data accumulation and analysis realized on neuronal membranes through summation 302 of postsynaptic depolarizations and hyperpolarizations. This may or may not lead to generation of an 303 action potential depending on whether the spiking threshold is reached. Spiking activity is thus interpreted 304 as an output of the system. These different roles of the two communication channels can be utilized in 305 analysis, for instance Laminar Population Analysis attempts to establish functional connectivity pattern 306 within a network combining the information about the inputs and outputs from multiple locations in a 307 structure (Głabska et al., 2016). This is why it is best to record wideband signal and analyze both action 308 and field potentials. However, this may not be possible if an amplifier input range and a bit-depth are 309 not good enough to cover frequency and amplitude ranges of both signal types. We then have to set 310 filtering and choose which component to record and which to discard. LFP is chosen if we are interested 311 in population, subthreshold oscillatory activity. There is also a practical aspect to LFP recording. Implanted 312 probes provoke scarring in neuronal tissue which, in particular in long-lasting, chronic experiments,

313 degrades the quality of spike registration. Currently, great research effort is being put into improving the
314 biocompatibility of implanted probes (Fattah et al., 2014; Szostak et al., 2017), but in the meantime, LFP
315 is a more stable and predictable signal, in particular in the chronic applications (Jackson and Hall, 2017).
316 It is thus crucial to systematically study the sources of LFP (Herreras, 2016).

317 **4.4 Identification and extraction of local and distant contributions to the LFP with exper- 318 mental interventions**

319 Having decided that using LFP is a viable approach to study subcortical activity we can use experimental
320 and analytical tools to distinguish local from remote contributions. Experimentally we can switch off
321 efferent pathways by cooling, dissection, chemo- and optogenetics. These methods can help identify
322 different contributions but all of them affect the network so in consequence we study an altered system.
323 If we wish to understand minimally affected system there is no alternative to analytical extraction of
324 signal sub-components from physiological in vivo data. Following experimental interventions can help to
325 verify the conclusions regarding their anatomical sources. Surgical interventions can be used to physically
326 separate structures and identify local and distant, active and passive signal elements. For example,
327 dissection of the olfactory bulb blocked the widespread, ketamine-induced high frequency oscillations and
328 confirmed it as a site of their neuronal generator (Średniawa et al., 2021). Whisker evoked field potentials
329 were still recorded in the olfactory bulb after transection of neuronal pathways, which indicated that they
330 were transmitted passively through touching blocs of cut tissue (Parabucki and Lampl, 2017). While the
331 olfactory bulb is relatively easy to isolate from the rest of the brain, in vivo dissection of structures like
332 the cortex and thalamus is not as feasible. Moreover, brain trauma is huge and effects are not reversible.
333 A less invasive approach involves silencing of chosen structures or neuronal population with physical
334 (e.g. cold), genetic (e.g. opto- or chemogenetics) or pharmacological tools (e.g. lidocaine, tetrodotoxin,
335 magnesium solution). The inactivated structure does not generate its own field potentials, so any locally
336 recorded signal can be interpreted as originating from other generators; also, inactivated structure cannot
337 influence distant regions, neither passively nor actively. Silencing is usually used to study the active
338 synaptic interactions, just like in the case of research showing how the whisker evoked spiking in thalamic
339 sensory nuclei is independent (VPM) or dependent (PoM) on the cortical activity (Diamond et al., 1992a;
340 Mease et al., 2016). On the other hand, we showed that, unlike action potentials, LFP responses in both
341 nuclei similarly followed the changes in cortical activity modulated by a gradual cooling (Kublik et al.,
342 2003). Those results suggested that both thalamic nuclei receive subthreshold cortical input (presumably
343 from layer 6) that can be detected by LFP, but not single unit recordings. However, some of these thalamic
344 potential waves might be a result of volume conduction, not synaptic activation from the cortex. This
345 reservation was confirmed by the current analyses. CSD and modeling approach allowed to exclude the
346 cortical generators and reconstruct "pure" thalamic EP in which the negative deflection around 10 ms was
347 substantially reduced as compared to the LFP (Fig. 4 A–C). We further confirmed this analytical approach
348 with experimental intervention: we repeated whisker stimulation and kCSD analysis after topical lidocaine
349 application over barrel cortex (see Supplementary materials). Thalamic EPs, recorded during cortical
350 inactivation, were no longer significantly different from reconstructed EPs (Supp. Fig. 1 D, E) but were
351 slightly different from the control ones (Supp. Fig. 1 D). The difference between recorded thalamic EPs
352 before and after cortical inactivation can be explained by the elimination of synaptic cortico-thalamic
353 interaction. Layer 6 is a well known modulator of thalamic activity (Wróbel et al., 1998; Thomson,
354 2010; Mease et al., 2014); also layer 5 can induce strong EPSPs in PoM neurons (Mease et al., 2016).
355 In the context of current research, more important was the fact that the lidocaine eliminated cortical
356 generators and volume conducted components from thalamic recordings. Local thalamic currents evoked
357 by peripheral input were the only generators of thalamic LFP and our kCSD analysis was able to reliably
358 reconstruct this effect, which confirms the validity of its results also in control conditions.

359 **4.5 Analytical approaches alternative to CSD**

360 Many approaches have been used to analyze relations between continuous signals recorded in different
361 structures (Kamiński and Blinowska, 1991; Wójcik et al., 2001; Kuś et al., 2004; Stam, 2005; Łęski
362 and Wójcik, 2008; Sobolewski et al., 2010) and to untangle the signals coming from different sources
363 (Makeig et al., 1997; Musial et al., 1998; Makarov et al., 2010; Whitmore and Lin, 2016; Bertone-
364 Cueto et al., 2020). We can distinguish approaches grounded in nonlinear dynamics, spectral analysis,
365 signal decomposition, source separation, source reconstruction (CSD analysis) with multiple approaches
366 to functional connectivity. In our view, to obtain actual localization of a given activity there is no

367 alternative to current source reconstruction. With all the limitations of CSD analysis it remains the
368 only approach indicating locality of the signal, effectively deblurring the recorded LFP. While other
369 methods mentioned can help answer questions of signal interactions, indicate common drivers or separate
370 functional components, as long as they are based on raw LFPs the inherent mixing of local and remote
371 sources within each signal is unavoidable and present.

372 **4.6 Practical aspects of CSD estimation**

373 The final question remains how to best estimate the distribution of current sources from a given set of
374 recordings obtained in a given anatomical context.

375 Traditional approach of computing three-point approximation to the second derivative was proposed
376 by Pitts (1952), who calculated a map of spinal cord activity from 2 D grid of recording points. This
377 method gained popularity after rise of one dimensional, laminar probes, when Nicholson and Freeman
378 (1975) advocated its use in laminar structures, see review by Mitzdorf (1985). This traditional CSD has
379 the advantage of simplicity but numerous disadvantages. Notably, it does not give independent results at
380 the boundary, it requires regular electrode grids, and it gives estimation only at the recording points. These
381 limitations can be circumvented, e.g. with interpolation, but in our view the simplest approach to obtain
382 the distribution of CSD is with model-based methods such as inverse CSD (Pettersen et al., 2006; Łęski
383 et al., 2007, 2011), kernel CSD (Potworowski et al., 2012; Chintaluri et al., 2021), or Gaussian process
384 CSD (Klein et al., 2021). These approaches overcome the limitations of the traditional approaches, allow
385 for self-consistent estimation of potential and CSD at arbitrary points, but since they are model-based
386 it may be less apparent how to best use them. One of our goals here was to discuss the main aspects of
387 model-based CSD analysis in the context of the present data. We focus on kernel CSD of which inverse
388 CSD is a special case (Potworowski et al., 2012).

389 To apply kernel CSD we first cover the region of interest where dominating sources are expected
390 with a rich family of basis sources, typically small overlapping gaussians covering the region densely.
391 This procedure separates the experimental setup (electrode placement) from analytical setup (estimation
392 space). The number of basis sources is not very important. The more the better but we observe stability
393 with growing number of basis sources, also reasonable independence from the basis source specific shape
394 and size. It is always good to check if significant improvement is obtained for a given analysis when
395 increasing the number of basis sources or modifying their size.

396 In principle it is possible to estimate CSD in one place (e.g. thalamus) from measurements elsewhere
397 (e.g. cortex), see (Chintaluri et al., 2021) for an example and discussion. In practice, common sense
398 is recommended. The level of noise in the system obviously precludes certain analysis; it is best to
399 record in the system of interest as close to the generating sources as possible. Thanks to separation of
400 the experimental and analytical setups in kCSD, the grids of recording points can be arbitrary, irregular.
401 Electrodes can cluster in distant structures (e.g. cortex and thalamus), probes can have semilinear, zigzag
402 pattern (as in Neuropixels) or broken contacts (as practically each probe in our experiment) and kCSD
403 still gives reliable results.

404 The price we pay for the flexibility of kCSD is that by its nature the estimation can be obtained only in
405 the space defined by the basis sources. If our initial placement makes no sense, the results of the analysis
406 make no sense. In practice, we find that distributing the basis sources to cover densely the region span by
407 the electrodes gives results consistent with the simplest CSD estimation, that is we effectively compute
408 the derivative of the potential, except we obtain results independent of electrode distribution, smooth, and
409 self-consistent. To compensate for the sources outside the region span by the electrodes we recommend
410 extending the estimation region. In this way the artifacts introduced by the method trying to compensate
411 for the sources beyond our electrodes are typically crammed within the added margin area. See Methods
412 section for the description of our procedure in the present case, e.g. for Fig. 5.

413 Possible sanity checks of the assumed procedure (combination of electrode setup and basis source
414 placement) are to compare the obtained results with histology or to compute the eigensources for the
415 system (Chintaluri et al., 2021). Comparison against histology, such as shown here in Fig. 5, allows to
416 verify if the obtained results make anatomical sense, e.g. sinks and sources observed in meaningful nuclei
417 or cortical regions. The eigensources are profiles of CSD which can in principle be ideally reconstructed.
418 They span the space of all possible reconstructions that can be obtained for a given combination of
419 electrode distribution and base sources placement.

420 Noise is another factor we must consider in the analysis. To avoid overfitting to noise we regularize

421 estimation (see Methods). We select the regularization parameter λ using cross-validation or the L-
422 curve (Chintaluri et al., 2019). However, when the automatic selection procedure provide unrealistically
423 small λ values it is prudent to increase it to further dampen the noise.

424 CSD reconstruction effectively plays the role of deblurring of the potential landscape. A problem it
425 does not solve is separation of activity of overlapping cell populations. In our experience combining CSD
426 analysis with spatial ICA gives excellent, interpretable results (Łęski et al., 2010; Głabska et al., 2014)
427 facilitating structural analysis.

428 In the analysis here we assumed constant, isotropic and homogeneous conductivity. While there
429 are reports of tissue conductivity, in particular inhomogeneity and anisotropy in the cortex (Goto et al.,
430 2010), in our view the variability between different specimen as reported there is so big, that assuming
431 literature values rather than those characterizing the specific animal currently studied we would make
432 bigger estimation errors than simply assuming constant values. This is supported by our finite element
433 modeling in a slice (Ness et al., 2015). The situation is different for inverse methods for EEG or ECoG,
434 where significant changes of conductivity between scalp, skull and brain tissue cannot be ignored, but for
435 recordings deep within tissue we recommend assuming constant conductivity.

436 CSD has most commonly been used to analyze and interpret LFP profiles recorded from laminar
437 structures with clear dipoles building the signal (Nicholson and Freeman, 1975; Mitzdorf, 1985). However,
438 CSD has also been effective in case of non-laminar structures (Łęski et al., 2007, 2010). While having
439 experimental setup which probes in 2d or 3d gives better insight into the spatial organization of the
440 sources (Pitts, 1952; Łęski et al., 2007, 2010, 2011), even laminar probes give meaningful results,
441 consistent with cuts through higher-dimensional reconstructions, and can fruitfully be used.

442 **4.7 Take home message**

443 LFP recordings from rat's somatosensory thalamus are contaminated by cortical electric field, in particular
444 during strong, whisker evoked excitation. With kernel Current Source Density method we can reliably
445 estimate currents and reconstruct thalamic activity even without monitoring cortical field potentials with
446 additional sets of electrodes. The proposed workflow can be used to identify local contributions to LFP
447 recorded in other subcortical structures.

448 **5 METHODS AND MATERIALS**

449 **5.1 Animals, surgery and histology**

450 The experiments were performed on 11 adult male Wistar rats weighing 350–560 g. All experimental
451 procedures followed EU directives 86/609/EEC and 2010/63/EU and were accepted by the 1st Warsaw
452 Local Ethics Committee. Animals were anaesthetized with urethane (1.5 mg/kg, i.p., with 10% of the
453 original dose added when necessary) and placed in stereotaxic apparatus (Narishige). Local anesthetic
454 (Emla, 2.5% cream, AstraZeneca) was applied to the rats' ears and the skin over the skull was injected
455 with lidocaine (Lignocainum hydrochloricum 1%, Polfa Warszawa S.A.) prior to the surgery. The skull
456 was opened above the barrel field and the thalamus in the right hemisphere. Fluid requirements were
457 fulfilled by s.c. injections of 0.9% NaCl, 5% glucose, or both. The body temperature was kept at 37–38°C
458 by a thermostatic blanket. To control the physiological condition of the animal heart rate, breath rate and
459 oxygen saturation were monitored during the whole experiment (using MouseOx, Starr Life Sciences
460 Corp.).

461 After completion of an experiment, rats received an overdose of pentobarbital (150 mg/kg i.p.) and
462 were perfused transcardially with phosphate buffered saline (PBS) followed by 10% formalin in PBS. The
463 brains were removed and cryoprotected in 30% sucrose solution. Coronal sections (50 μ m) were cut on a
464 freezing microtome and stained (for cytochrome oxidase or for Nissl bodies) for microscopic verification
465 of electrode positions.

466 Schematic outlines of brain structures and electrode tracks were drawn from photographs of histologi-
467 cal slices and overlaid with brain atlas planes (GNU Image Manipulation Program, GIMP v 2.10, Inkscape
468 v 1.0.1) to verify adequate placement of electrodes and estimate which probe channels recorded signal
469 from cortex and which form the representation of large mystacial vibrissae located in dorsolateral part of
470 VPM (Haidarliu et al., 2008) (Fig. 1 AB). Signals from these regions were used to estimate the similarity
471 of raw and modeled EP (see below). Examples of histological data can be seen in the supplementary
472 materials (Suppl. Fig. 2).

473 5.2 Stimulation and recordings

474 A group of large vibrissae from the left mystacial pad was glued to the piezoelectric stimulator at
475 around 10–15 mm from the snout. Spike2 sequencer software (Cambridge Electronic Design) controlled
476 square wave pulses of 1 or 2 ms duration and 20 V amplitude that produced a 0.1 mm horizontal
477 (in the rostro-caudal axis) deflection of the whiskers. The stimuli (n=100) were delivered with 3–5 s
478 pseudorandom intervals. Monopolar local field potentials (LFP) were recorded with multichannel silicon
479 probes referenced to Ag/AgCl electrode placed under skin on the neck.

480 All cortical probes were tilted ~30° from the vertical axis in order to enter the cortex roughly
481 perpendicularly to its surface, within the barrel field (1.5–3.0 mm posterior and 5.0–6.2 right to bregma
482 point). Thalamic electrodes were inserted vertically between 2.9–4.4 mm posterior to the bregma and
483 between 2.3 and 3.7 mm lateral to middle-line. Several probe configurations were used to record evoked
484 potentials (EP) from the thalamus and barrel cortex, whenever possible simultaneously, with multiple and
485 dense arrays of electrodes. Probe models used for recordings included:

- 486 1. Single-shank Neuropixels (NP) v1.0 probes (Jun et al., 2017) with 384 recording channels (n=3
487 experiments). NP was configured into the “long column” pattern (<https://billkarsh.github.io/SpikeGLX/#interesting-map-files>) in which recording points span 7.68
488 mm of a tissue. NP recorded EP profile from all cortical layers, somatosensory thalamus and the
489 intermediate tissue along the probe shank (Fig. 1).
- 490 2. Two eight-shank, 64 channels probes with 8x8 contact grid (0.2 mm inter-shank and inter-electrode
491 distances, NeuroNexus A8x8), one of which was placed in the cortex, the other inserted into the
492 thalamus (n=3 experiments). Each electrode grid covered 1.4 by 1.4 mm square within tissue.
493 Whisker stimulation and EP recording were repeated with probes advanced to deeper locations (2
494 levels in the cortex and 3 levels around thalamus). Data were combined offline to form EP profiles
495 covering the full depth of cortex (8x11 electrode grid) and a larger thalamic area (8x18 grid). For
496 overlapping levels, data from only one penetration was included in the final dataset (example data
497 can be seen in Fig. 3).
- 498 3. In the analysis we included also data from popular 16 channel probes: linear (A16) probes with
499 100 or 150 μ m spacing between contacts (NeuroNexus) and double shank probe (A2x8) with 1
500 mm inter-shank and 0.4 mm inter-electrode distance (ATLAS Neuroengineering). Two approaches
501 were used: either one A16 probe was placed in the cortex and another A16 or A2x8 in the thalamus
502 (n=2), or one linear probe was advanced obliquely from the cortex to the thalamus and recordings
503 were repeated at consecutive depths (n=3). In the latter case, there was 200–600 μ m overlap (2–4
504 recording points) between consecutive probe positions. Similarly, as for the A8x8 probes, data from
505 consecutive recording depths were combined to form longer EP profiles. For overlapping levels
506 data from only one penetration was included in the final dataset.
- 507

508 Data from Neuropixels were filtered (0.5 Hz – 10 kHz), amplified ($\times 50$) and sampled (30 kHz)
509 with SpikeGLX software (version 20190413, <https://billkarsh.github.io/SpikeGLX/>) to
510 a binary data file. Stimuli triggers were recorded by an additional digital acquisition module (PXIE-6341,
511 National Instruments) to a separate binary file.

512 For recordings with two NeuroNexus A8x8 probes we used 128-channel data acquisition (DAQ)
513 system developed at the AGH University of Science and Technology in Cracow (Szypulska et al., 2016;
514 Jurgielewicz et al., 2021). LFP signal was amplified ($\times 500$), filtered (0.6 Hz – 9 kHz) and sampled, along
515 with stimuli triggers, at 40 kHz into HDF5 format files (The HDF Group, 2010).

516 The signal from pairs of 16-channel probes was amplified ($\times 1000$) and filtered (0.3 Hz – 5 kHz)
517 by two AM System 3600 amplifiers and sampled at 10 kHz with extended 32 channel CED 1401 power
518 analog-digital interface. LFP was recorded along with the whisker stimulation markers by the Spike2
519 software (Cambridge Electronic Design) to a proprietary *.smr data format files. Files were preprocessed
520 using (Garcia et al., 2014).

521 5.3 Data preprocessing

522 Raw LFP data was loaded and analysed using *Numpy* and *Scipy* Python packages (Harris et al., 2020;
523 Virtanen et al., 2020). Each of the three file formats used (SpikeGLX binary, HDF5 and smr) re-
524 quired dedicated algorithms for data import, preprocessing, trigger detection, and extraction of evoked

525 potential sweeps. All scripts used to preprocess and analyse are available in a github repository
526 (https://github.com/wsredniawa/LFP_reconstruction).

527 Data from all the experiments were additionally filtered and resampled to prepare uniform datasets
528 with frequencies up to 2 kHz and with 5 kHz sampling rate. Signals around the stimulus (50 ms before
529 and 100 ms after) were collected and averaged to represent evoked potentials (EPs) from all recording
530 points. All channels were individually detrended by subtracting the mean amplitude from baseline level
531 before stimulus. All presented results are based on average EPs.

532 For CSD analysis, it was necessary to define the spatial relationships between individual recording
533 points. Therefore, histological outlines were aligned with atlas planes (([Paxinos and Watson, 2007](#)),
534 [Suppl. Fig. 2C](#)) to indicate stereotaxic coordinates of the probes deepest locations. These coordinates
535 were then used to anchor electrode grids in a 3D model of the rat's brain ([Papp et al., 2014](#)) according to
536 patterns supplied by the producers. As mentioned above, the patterns were linear or rectangular with the
537 exception of NP probes which recorded from a zig-zag grid with 20 μm (vertical) and 16 μm (horizontal)
538 distance (see Fig. 1a in ([Jun et al., 2017](#))). For kCSD model based reconstructions, CSD sources were
539 homogeneously distributed around electrode locations inside cuboid shaped block. Additional 1 mm
540 spacing was added in all directions to avoid edge effect of the reconstruction. For 1D visualization
541 purposes (Fig. 2), CSDs were estimated and plotted at electrode locations. In NP, one channel is always
542 dedicated to the reference and it cannot record the signal. In NeuroNexus probes, we typically had a few
543 faulty electrodes. In case of the profiles combined from consecutive recording levels, we tried to have an
544 overlap covering missing channels, but finally there were several missing points in all used probe setups.
545 These data were excluded from the grids loaded for further CSD analyses.

546 5.4 Current source density reconstruction

We estimated the density of trans-membrane current sources by applying Kernel Current Source Density
method (kCSD, [Potworowski et al. \(2012\)](#); [Chintaluri et al. \(2019, 2021\)](#)) to EPs (V) profiles. In this
model-based method, we assume that the CSD profile C at x is spanned by a large set of M basis
functions $\tilde{b}_j(x)$ covering the region where we expect the activity to be estimated: $C(x) = \sum_{i=1}^M \alpha_i \tilde{b}_i(x)$.
Each $\tilde{b}_j(x)$ generates potential $b_j(x)$ according to the assumed forward model taking into account specific
geometry and conductivity of the system and forming a corresponding basis in the potential space: $V(x) = \sum_{i=1}^M \alpha_i b_i(x)$. Conceptually, source estimation with kCSD is a two-step procedure. First, we do kernel
interpolation of the measured potential using a symmetric kernel function $K(x, y) = \sum_{i=1}^M b_i(x)b_i(y)$. The
regularized solution can be shown to be of the form ([Potworowski et al., 2012](#)) $V^*(x) = \sum_{j=1}^N \beta_j K(x, x_j)$,
where x_j are electrode positions, N is their number, and $\beta = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{V}$, with $\mathbf{K}_{i,j} = K(x_i, x_j)$. The
obtained solution must be translated to the CSD space which is achieved with a cross-kernel function $\tilde{\mathbf{K}}$,
 $\tilde{K}(x, y) = \sum_{j=1}^M \tilde{b}_j(x)b_j(y)$, leading to the following CSD estimation:

$$C(x) = \tilde{\mathbf{K}}(x, \cdot) (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{V}, \quad (1)$$

547 where $\tilde{\mathbf{K}}(x, \cdot) = [\tilde{K}(x, x_1), \dots, \tilde{K}(x, x_N)]$. In the present paper we used three-dimensional gaussian functions
548 as basis sources and assumed infinite tissue of constant conductivity. Regularization parameter λ was
549 chosen with the L-curve regularization method ([Chintaluri et al., 2019](#)).

550 This approach, separating estimation space from the experimental setup, makes kernel CSD robust to
551 missing nodes of EP profiles, while such data cannot be analyzed easily with classical CSD ([Nicholson
552 and Freeman, 1975](#)).

553 Note that even if CSD basis sources $\tilde{b}_j(x)$ may in principle be well localized, each generates potential
554 in the whole space. This allows modeling of various experimental situations in which electrodes are placed
555 close or far from expected active current sources which we discussed in more detail previously ([Chintaluri
556 et al., 2021](#)). In this paper we considered cortical only, thalamic only and cortico-thalamic sets of sources
557 and electrode which were placed within the block of the rat's brain model from ([Papp et al., 2014](#)) (see
558 Fig. 3 and 5).

559 We used kCSD implementation available at <https://github.com/Neuroinflab/kCSD-python>,
560 see ([Chintaluri et al., 2019](#)) for description. The analyses reported in this article were performed with a
561 version from September 9, 2022.

562 5.5 Potential estimation from the subset of sources

To identify contributions to the LFP from a subregion T , say thalamus, let's assume all basis sources $\bar{b}_i(x)$ covering T are listed with $i = 1, \dots, L$ while the rest are placed elsewhere (e.g. in the cortex). Then the total potential can be written as $V(x) = \sum_{i=1}^L \alpha_i b_i(x) + \sum_{i=L+1}^M \alpha_i b_i(x)$. Clearly, the contribution from sources located in T is $V_1(x) = \sum_{i=1}^L \alpha_i b_i(x)$. We can also split K into two parts defined by the basis functions in the two regions: $K(x, y) = \sum_{i=1}^L b_i(x)b_i(y) + \sum_{i=L+1}^M b_i(x)b_i(y) = K_1(x, y) + K_2(x, y)$. Since $\alpha_i = \sum_{j=1}^N \beta_j b_j(x_j)$, we can rephrase V_1 as

$$V_1(x) = \mathbf{K}_1(x, \cdot)(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{V}, \quad (2)$$

563 which, for T being thalamus, is the contribution of sources located within the thalamus to the total LFP.

564 5.6 Rolling correlation

565 To estimate similarity of EP waveforms we used rolling Pearson correlation score calculated in 3 ms
566 overlapping windows with 1 ms step. Correlation coefficients were computed (1) between cortical and
567 thalamic EPs (Fig. 1D), and (2) between estimated and measured EPs (Fig. 4). In the first case, we used a
568 cortical channel from the middle cortical level, characterized by a large negative wave around 10 ms post
569 stimulus and a thalamic recording from the center of the dorsal part of VPM nucleus (Fig. 1B–C). For a
570 group analysis we averaged obtained coefficients across experiments ($n=11$) and represented them as a
571 time series of mean correlation scores (e.g. Fig. 1D). Rolling correlation was used in a similar way to
572 compare the time courses of measured EPs with their counterparts estimated from all the currents and
573 from subsets of currents. The analysis was performed for EPs from the central locations in two structures
574 separately.

575 5.7 Testing setups for effective/reliable thalamic CSD

576 Data from 8x8 NeuroNexus probes were used to model four experimental setups. We fed CSD algorithm
577 with data from (1) only thalamic electrode grid or from (2) both thalamic and cortical grids; and we
578 defined reconstruction space either (3) restricted to the main region of interest (thalamus or cortex) or (4)
579 spanning the large volume including thalamic and cortical recording areas. We defined thalamic-only
580 reconstruction space stretched on the 8x18 thalamic electrode grid with additional tissue margin of 0.5
581 mm in all 3 dimensions. In the second variant, the space was extended dorsally and laterally to a brain
582 surface, and in an anterior direction to include all cortical recording point also with the margin 0.5 mm.

583 6 ACKNOWLEDGMENTS

584 The study received funding from the Polish National Science Centre's grant 2013/08/W/NZ4/00691. The
585 authors declare no conflict of interest.

586 Formatted in Overleaf with Basic Academic Journal Article Template (by John Hammersley CC BY
587 4.0)

588 REFERENCES

- 589 Antic, S. D., Empson, R. M., and Knöpfel, T. (2016). Voltage imaging to understand connections and
590 functions of neuronal circuits. *J. Neurophysiol.*, 116(1):135–152.
- 591 Armstrong-James, M. (1995). The nature and plasticity of sensory processing within adult rat barrel
592 cortex. In Jones, E. G. and Diamond, I. T., editors, *The Barrel Cortex of Rodents*, pages 333–373.
593 Springer US, Boston, MA.
- 594 Armstrong-James, M. and Callahan, C. A. (1991). Thalamo-cortical processing of vibrissal information
595 in the rat. II. spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPM) and
596 its relevance to generation of receptive fields of S1 cortical “barrel” neurones. *J. Comp. Neurol.*,
597 303(2):211–224.
- 598 Berens, P., Keliris, G. A., Ecker, A. S., Logothetis, N. K., and Tolias, A. S. (2008). Comparing the feature
599 selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate
600 visual cortex. *Frontiers in Systems Neuroscience*, 2(JUN).
- 601 Bertone-Cueto, N. I., Makarova, J., Mosqueira, A., García-Violini, D., Sánchez-Peña, R., Herreras,
602 O., Belluscio, M., and Piriz, J. (2020). Volume-Conducted origin of the field potential at the lateral
603 habenula. *Frontiers in Systems Neuroscience*, 13:78.

- 604 Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents —
605 EEG, ECoG, LFP and spikes. *Nature Reviews Neuroscience*, 13(6):407–420.
- 606 Chintaluri, C., Bejtka, M., Średniawa, W., Czerwiński, M., Dzik, J. M., Jędrzejewska-Szmejk, J., Kon-
607 drakiewicz, K., Kublik, E., and Wójcik, D. K. (2021). What we can and what we cannot see with
608 extracellular multielectrodes. *PLoS computational biology*, 17:e1008615.
- 609 Chintaluri, C., Kowalska, M., Średniawa, W., Czerwiński, M., Dzik, J. M., Jędrzejewska-Szmejk, J., and
610 Wójcik, D. K. (2019). kCSD-python, a tool for reliable current source density estimation. *bioRxiv*.
- 611 Destexhe, A. and Bedard, C. (2013). Local field potential. *Scholarpedia J.*, 8(8):10713.
- 612 Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F. (1992a). Somatic sensory
613 responses in the rostral sector of the posterior group (pom) and in the ventral posterior medial nucleus
614 (vpm) of the rat thalamus: dependence on the barrel field cortex. *The Journal of comparative neurology*,
615 319:66–84.
- 616 Diamond, M. E., Armstrong-James, M., and Ebner, F. F. (1992b). Somatic sensory responses in the
617 rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat
618 thalamus. *J Comp Neurol*, 318(4):462–476.
- 619 Einevoll, G. T., Kayser, C., Logothetis, N. K., and Panzeri, S. (2013). Modelling and analysis of local field
620 potentials for studying the function of cortical circuits. *Nature reviews. Neuroscience*, 14:770–785.
- 621 Erzurumlu, R. S. and Gaspar, P. (2020). How the barrel cortex became a working model for developmental
622 plasticity: A historical perspective. *J. Neurosci.*, 40(34):6460–6473.
- 623 Fattah, P., Yang, G., Kim, G., and Abidian, M. R. (2014). A review of organic and inorganic biomaterials
624 for neural interfaces. *Adv. Mater.*, 26(12):1846–1885.
- 625 Fox, K. and Woolsey, T. (2008). *Barrel cortex*. Cambridge University Press.
- 626 Garcia, S., Guarino, D., Jaillet, F., Jennings, T. R., Pröpper, R., Rautenberg, P. L., Rodgers, C., Sobolev, A.,
627 Wachtler, T., Yger, P., and Davison, A. P. (2014). Neo: an object model for handling electrophysiology
628 data in multiple formats. *Frontiers in Neuroinformatics*, 8:10.
- 629 Goto, T., Hatanaka, R., Ogawa, T., Sumiyoshi, A., Riera, J., and Kawashima, R. (2010). An evaluation of
630 the conductivity profile in the somatosensory barrel cortex of Wistar rats. *J Neurophysiol*, 104(6):3388–
631 3412.
- 632 Goutagny, R., Loureiro, M., Jackson, J., Chaumont, J., Williams, S., Isope, P., Kelche, C., Cassel, J.-C.,
633 and Lecourtier, L. (2013). Interactions between the lateral habenula and the hippocampus: implication
634 for spatial memory processes. *Neuropsychopharmacology*, 38(12):2418–2426.
- 635 Głańska, H., Chintaluri, C., and Wójcik, D. K. (2017). Collection of Simulated Data from a Thalamocor-
636 tical Network Model. *Neuroinformatics*, 15(1):87–99.
- 637 Głańska, H., Potworowski, J., Łęski, S., and Wójcik, D. K. (2014). Independent components of neural
638 activity carry information on individual populations. *PloS one*, 9:e105071.
- 639 Głańska, H. T., Norheim, E., Devor, A., Dale, A. M., Einevoll, G. T., and Wójcik, D. K. (2016).
640 Generalized laminar population analysis (gLPA) for interpretation of multielectrode data from cortex.
641 *Frontiers in Neuroinformatics*, 10(JAN):1–15.
- 642 Haidarliu, S., Yu, C., Rubin, N., and Ahissar, E. (2008). Lemniscal and Extralemniscal Compartments in
643 the VPM of the Rat. *Front Neuroanat*, 2:4.
- 644 Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
645 E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
646 Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,
647 Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy.
648 *Nature*, 585(7825):357–362.
- 649 Herreras, O. (2016). Local field potentials: Myths and misunderstandings. *Front. Neural Circuits*, 10:101.
- 650 Hunt, M. J., Falinska, M., Łęski, S., Wójcik, D. K., and Kasicki, S. (2011). Differential effects produced
651 by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus
652 accumbens. *Journal of psychopharmacology (Oxford, England)*, 25:808–821.
- 653 Jackson, A. and Hall, T. M. (2017). Decoding local field potentials for neural interfaces. *IEEE Trans.*
654 *Neural Syst. Rehabil. Eng.*, 25(10):1705–1714.
- 655 Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., Lee, A. K., Anastassiou,
656 C. A., Andrei, A., Aydin, C., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L.,
657 Gutinsky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., Lopez, C. M., Mitelut, C., Musa, S., Okun,
658 M., Pachitariu, M., Putzeys, J., Rich, P. D., Rossant, C., Sun, W.-L., Svoboda, K., Carandini, M., Harris,

- 659 K. D., Koch, C., O'Keefe, J., and Harris, T. D. (2017). Fully integrated silicon probes for high-density
660 recording of neural activity. *Nature*, 551:232–236.
- 661 Jurgielewicz, P., Fiutowski, T., Kublik, E., Skoczeń, A., Szypulska, M., Wiącek, P., Hottowy, P., and
662 Mindur, B. (2021). Modular data acquisition system for recording activity and electrical stimulation of
663 brain tissue using dedicated electronics. *Sensors*, 21(13):4423.
- 664 Kajikawa, Y. and Schroeder, C. E. (2011). How local is the local field potential? *Neuron*, 72(5):847–858.
- 665 Kamiński, M. J. and Blinowska, K. J. (1991). A new method of the description of the information flow in
666 the brain structures. *Biological cybernetics*, 65:203–210.
- 667 Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., and Carandini, M. (2009). Local origin
668 of field potentials in visual cortex. *Neuron*, 61(1):35–41.
- 669 Klein, N., Siegle, J. H., Teichert, T., and Kass, R. E. (2021). Cross-population coupling of neural activity
670 based on gaussian process current source densities. *PLoS computational biology*, 17:e1009601.
- 671 Kreiman, G., Hung, C. P., Kraskov, A., Quiroga, R. Q., Poggio, T., and DiCarlo, J. J. (2006). Object
672 selectivity of local field potentials and spikes in the macaque inferior temporal cortex. *Neuron*,
673 49(3):433–445.
- 674 Kublik, E., Swiejkowski, D. A., and Wróbel, A. (2003). Cortical contribution to sensory volleys recorded
675 at thalamic nuclei of lemniscal and paralemniscal pathways. *Acta Neurobiol Exp (Wars)*, 63(4):377–
676 382.
- 677 Kuś, R., Kamiński, M., and Blinowska, K. J. (2004). Determination of EEG activity propagation:
678 pair-wise versus multichannel estimate. *IEEE transactions on bio-medical engineering*, 51:1501–1510.
- 679 Land, P. W., Buffer, S. A., and Yaskosky, J. D. (1995). Barreloids in adult rat thalamus: Three-dimensional
680 architecture and relationship to somatosensory cortical barrels. *The Journal of Comparative Neurology*,
681 355(4):573–588.
- 682 Lindén, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Grün, S., Diesmann, M., and Einevoll, G. T.
683 (2011). Modeling the spatial reach of the LFP. *Neuron*, 72(5):859–872.
- 684 Makarov, V. A., Makarova, J., and Herreras, O. (2010). Disentanglement of local field potential sources
685 by independent component analysis. *J. Comput. Neurosci.*, 29(3):445–457.
- 686 Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., and Sejnowski, T. J. (1997). Blind separation of
687 auditory event-related brain responses into independent components. *Proc. Natl. Acad. Sci. U. S. A.*,
688 94(20):10979–10984.
- 689 Mease, R. A., Krieger, P., and Groh, A. (2014). Cortical control of adaptation and sensory relay mode in
690 the thalamus. *Proc. Natl. Acad. Sci. U. S. A.*, 111(18):6798–6803.
- 691 Mease, R. A., Sumser, A., Sakmann, B., and Groh, A. (2016). Cortical dependence of whisker responses
692 in posterior medial thalamus in vivo. *Cereb. Cortex*, 26(8):3534–3543.
- 693 Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation
694 of evoked potentials and EEG phenomena. *Physiological Reviews*, 65:37–100.
- 695 Moffitt, M. A. and McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon
696 microelectrodes. *Clinical neurophysiology : official journal of the International Federation of Clinical
697 Neurophysiology*, 116:2240–2250.
- 698 Musial, P., Kublik, E., and Wróbel, A. (1998). Spontaneous variability reveals principal components in
699 cortical evoked potentials.
- 700 Ness, T. V., Chintaluri, C., Potworowski, J., Łęski, S., Głabska, H., Wójcik, D. K., and Einevoll, G. T.
701 (2015). Modelling and analysis of electrical potentials recorded in microelectrode arrays (meas).
702 *Neuroinformatics*, 13:403–426.
- 703 Nicholson, C. and Freeman, J. A. (1975). Theory of current source-density analysis and determination of
704 conductivity tensor for anuran cerebellum. *J Neurophysiol*, 38(2):356–368.
- 705 Nuñez, A. and Buño, W. (2021). The theta rhythm of the hippocampus: From neuronal and circuit
706 mechanisms to behavior. *Front. Cell. Neurosci.*, 15:649262.
- 707 Nunez, P. L. and Srinivasan, R. (2006). *Electric Fields of the Brain*. Oxford University Press.
- 708 Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A., and Bjaalie, J. G. (2014). Waxholm Space
709 atlas of the Sprague Dawley rat brain. *NeuroImage*, 97:374–386.
- 710 Parabucki, A. and Lampl, I. (2017). Volume conduction coupling of Whisker-Evoked cortical LFP in the
711 mouse olfactory bulb. *Cell Rep.*, 21(4):919–925.
- 712 Paxinos, G. and Watson, C. (2007). *The Rat Brain in Stereotaxic Coordinates*. Academic Press, 6th
713 edition.

- 714 Petersen, C. C. H. (2007). The functional organization of the barrel cortex. *Neuron*, 56(2):339–355.
- 715 Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M., and Einevoll, G. T. (2006). Current-source density
716 estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal
717 activity and conductivity discontinuities. *J Neurosci Methods*, 154(1-2):116–133.
- 718 Pettersen, K. H. and Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of
719 neuronal spikes. *Biophysical journal*, 94:784–802.
- 720 Pitts, W. (1952). Investigations on synaptic transmission. In *Cybernetics, Trans. 9th Conf. Josiah Macy,*
721 *New York*, pages 159–162.
- 722 Potworowski, J., Jakuczun, W., Łęski, S., and Wójcik, D. (2012). Kernel current source density method.
723 *Neural computation*, 24:541–575.
- 724 Sherman, S. M. and Guillory, R. W. (2011). Distinct functions for direct and transthalamic corticocortical
725 connections. *Journal of Neurophysiology*, 106:1068 –1077.
- 726 Sobolewski, A., Kublik, E., Swiejkowski, D. A., Kamiński, J., and Wróbel, A. (2015). Alertness opens
727 the effective flow of sensory information through rat thalamic posterior nucleus. *Eur. J. Neurosci.*,
728 41(10):1321–1331.
- 729 Sobolewski, A., Kublik, E., Swiejkowski, D. A., Łęski, S., Kamiński, J. K., and Wróbel, A. (2010). Cross-
730 trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical
731 coupling. *Journal of computational neuroscience*, 29:485–493.
- 732 Średniawa, W., Wróbel, J., Kublik, E., Wójcik, D. K., Whittington, M. A., and Hunt, M. J. (2021).
733 Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory
734 bulb under ketamine-xylazine anesthesia. *Sci. Rep.*, 11(1):6390.
- 735 Stam, C. J. (2005). Nonlinear dynamical analysis of eeg and meg: review of an emerging field.
736 *Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology*,
737 116:2266–2301.
- 738 Szostak, K. M., Grand, L., and Constandinou, T. G. (2017). Neural interfaces for intracortical recording:
739 Requirements, fabrication methods, and characteristics. *Front. Neurosci.*, 11:665.
- 740 Szypulska, M., Dwuznik, M., Wiacek, P., Skoczen, A., Fiutowski, T., Jedraczka, M., Dusik, J., Ahmed,
741 M. I., Dabrowski, W., Hottowy, P., and Kublik, E. (2016). Modular ASIC-based system for large-scale
742 electrical stimulation and recording of brain activity in behaving animals. In *Proceedings of the 23rd*
743 *International Conference Mixed Design of Integrated Circuits and Systems, MIXDES 2016*, pages
744 217–222. Institute of Electrical and Electronics Engineers Inc.
- 745 Tanaka, T. and Nakamura, K. C. (2019). Focal inputs are a potential origin of local field potential (LFP)
746 in the brain regions without laminar structure. *PLoS One*, 14(12):e0226028.
- 747 Tang, Q., Tsytarev, V., Liang, C.-P., Akkentli, F., Erzurumlu, R. S., and Chen, Y. (2015). In vivo
748 Voltage-Sensitive dye imaging of subcortical brain function. *Sci. Rep.*, 5:17325.
- 749 The HDF Group (2000-2010). Hierarchical data format version 5.
- 750 Thomson, A. M. (2010). Neocortical layer 6, a review. *Front. Neuroanat.*, 4:13.
- 751 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
752 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
753 Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,
754 E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,
755 C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors
756 (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*,
757 17:261–272.
- 758 Welker, C. (1976). Receptive fields of barrels in the somatosensory neocortex of the rat. *Journal of*
759 *Comparative Neurology*, 166(2):173–189.
- 760 Wennberg, R. A. and Lozano, A. M. (2003). Intracranial volume conduction of cortical spikes and sleep
761 potentials recorded with deep brain stimulating electrodes. *Clin. Neurophysiol.*, 114(8):1403–1418.
- 762 Whitmore, N. W. and Lin, S.-C. (2016). Unmasking local activity within local field potentials (LFPs)
763 by removing distal electrical signals using independent component analysis. *NeuroImage*, 132:79–92.
- 764 Wolff, M. and Vann, S. D. (2019). The cognitive thalamus as a gateway to mental representations. *J.*
765 *Neurosci.*, 39(1):3–14.
- 766 Wróbel, A., Hedström, A., and Lindström, S. (1998). Synaptic excitation of principal cells in the cat's
767 lateral geniculate nucleus during focal epileptic seizures in the visual cortex. *Acta Neurobiol. Exp.*,
768 58(4):271–276.

- 769 Wójcik, D., Nowak, A., and Kuś, M. (2001). Dimension of interaction dynamics. *Physical review. E, Statistical, nonlinear, and soft matter physics*, 63:036221.
- 770
- 771 Xing, D., Yeh, C.-I., and Shapley, R. M. (2009). Spatial spread of the local field potential and its laminar
772 variation in visual cortex. *J Neurosci*, 29(37):11540–11549.
- 773 Zhang, L., Liang, B., Barbera, G., Hawes, S., Zhang, Y., Stump, K., Baum, I., Yang, Y., Li, Y., and Lin,
774 D.-T. (2019). Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain
775 structures in behaving animals. *Curr. Protoc. Neurosci.*, 86(1):e56.
- 776 Łęski, S., Kublik, E., Swiejkowski, D. A., Wróbel, A., and Wójcik, D. K. (2010). Extracting functional
777 components of neural dynamics with Independent Component Analysis and inverse Current Source
778 Density. *Journal of Computational Neuroscience*, 29(3):459–473.
- 779 Łęski, S., Pettersen, K. H., Tunstall, B., Einevoll, G. T., Gigg, J., and Wójcik, D. K. (2011). Inverse
780 Current Source Density method in two dimensions: Inferring neural activation from multielectrode
781 recordings. *Neuroinformatics*, 9(4):401–425.
- 782 Łęski, S. and Wójcik, D. K. (2008). Inferring coupling strength from event-related dynamics. *Physical
783 review. E, Statistical, nonlinear, and soft matter physics*, 78:041918.
- 784 Łęski, S., Wójcik, D. K., Tereszczuk, J., Swiejkowski, D. A., Kublik, E., and Wróbel, A. (2007). Inverse
785 current-source density method in 3D: Reconstruction fidelity, boundary effects, and influence of distant
786 sources. *Neuroinformatics*, 5(4):207–222.